
Efficient Modeling and
Computation Methods for Robust

AMS System Design

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung

der Würde eines Doktors der Naturwissenschaften
(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Leandro Javier Gil

aus Buenos Aires

Hauptberichter: Prof. Dr.-Ing. Martin Radetzki
Mitberichter: Prof. Dr. Christoph Grimm

Tag der mündlichen Prüfung: 07.11.2018

Institut für Technische Informatik der Universität Stuttgart

2018

iii

Erklärung

Hiermit versichere ich, diese Dissertation selbstständig verfasst und
nur die angegebenen Quellen benutzt zu haben.

Stuttgart, 14.08.2018

Leandro Javier Gil

This dissertation is dedicated to my
better half, big love and best friend,
Susanne van Luijn, who has always
been a constant source of support and
encouragement during all the challenges
of this work. This dissertation is also
dedicated to my mother, Rosa Zaia,
whose committment to success has
taught me to work hard for the things
that I aspire to achieve.

vii

Acknowledgements

I would like to sincerely thank my dissertation supervisor, Prof. Dr. -Ing.
Martin Radetzki, for his valuable guidance throughout this doctoral
research, especially for his confidence in me and for giving me the
opportunity to research in the field of embedded systems.

I also wish to thank Prof. Dr. Christoph Grimm for his valuable feed-
back on my publications and doctoral research as well as for evaluating
my dissertation.

Finally I would like to thank all my colleagues at the University of
Stuttgart for the collaboration and continuous support, in particular
Sabine, Helmut, Lothar, Manuel, Jie, Gert, Marcus, Bastian, Rauf and
Adan.

ix

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Dissertation Goal and Objectives . 3
1.3 Dissertation Outline . 3
1.4 Contributions to AMS System Design 5
1.5 Paradigm Change in AMS System Simulation 6

2 Methodological Background . 7
2.1 Motivation . 8
2.2 Related Work . 9
2.3 Representing a Seamless System Design Chain 10
2.4 Embedded System Design Methodologies 11

2.4.1 The Design Productivity Gap for AMS Systems . . 12
2.5 Layered System Design Platform Model 14

2.5.1 Model Requirements Layer . 16
2.5.2 Model Constraints Layer . 17
2.5.3 Model Structure Layer . 18
2.5.4 Model Behavior Layer . 19
2.5.5 Model Implementation Layer 23
2.5.6 Model Refinement Layer . 24
2.5.7 Model Platform Layer . 26
2.5.8 Model Execution Layer . 28
2.5.9 Model Analysis Layer . 29
2.5.10 Model Verification Layer . 30

2.6 Chapter Summary and Conclusions 31

3 Electrical Network Modeling and Simulation 33
3.1 Motivation . 34
3.2 Related Work . 34
3.3 Contribution to Power Electronic Modeling 37
3.4 Circuit Modeling and Simulation . 38

3.4.1 Formulation of Circuit Equations 39
3.4.2 Numerical Integration . 41
3.4.3 Numerical Linearization . 44

x Contents

3.4.4 Numerical Solution of Linear Algebraic Equations 44
3.5 Power Electronic Modeling with Ideal Switches 46
3.6 Topology Analysis of Switched Electrical Networks 48
3.7 Implementation . 53
3.8 Experimental Results . 57
3.9 Chapter Summary and Conclusions 59

4 Signal Modeling for AMS Systems . 61
4.1 Motivation . 61
4.2 Related Work . 62
4.3 Contribution to Formal Signal Modeling 63
4.4 The Tagged Signal Model . 64
4.5 The Mixed Orthogonal Signal Model 64

4.5.1 Representing Timed Signals in Vector Spaces 64
4.5.2 Coding Signals in a Signal Space 66
4.5.3 Parameterizing Signals in a Vector Space 67

4.6 Operational Subdivision of Analog Signals 74
4.7 Computing Threshold Crossing Events 76
4.8 Sampling Analog Signals . 76

4.8.1 Periodic Sampling . 77
4.8.2 Event Based Sampling . 77
4.8.3 Adaptive Sampling . 77

4.9 Implementation . 79
4.10 Chapter Summary and Conclusions 80

5 Modeling and Simulation of AMS Systems 81
5.1 Motivation . 82
5.2 Related Work . 82
5.3 Contribution to AMS Circuit Simulation 84
5.4 Efficient Computation of Analog Circuits 85

5.4.1 State Transition Matrix Based Circuit Computation 85
5.4.2 Chebyshev Series Based Circuit Computation . . . 88

5.5 Operational Computation of Analog Circuits 91
5.5.1 Operational Computation of Linear Circuits 91
5.5.2 Operational Computation of Non-Linear Circuits 95

5.6 Sequential Computation of Digital Circuits 96
5.7 Iterative Data Flow Computation of AMS Circuits 97
5.8 Implementation . 98
5.9 Experimental Results . 102

Contents xi

5.10 Chapter Summary and Conclusions 108

6 Robust AMS System Design Optimization 109
6.1 Motivation . 110
6.2 Related Work . 110
6.3 Contribution to Robust System Design Optimization . . . 112
6.4 Robust System Design . 113

6.4.1 System Robustness Evaluation 113
6.4.2 Robust System Design Optimization 114
6.4.3 Robust Control Design . 116

6.5 Control System Robustness Evaluation 119
6.6 Robust Design Optimization of AMS Systems 121

6.6.1 Modeling Parametric Uncertainty 122
6.6.2 Fixed Structure Robust Controller Design 123

6.7 Experimental Results . 125
6.8 Chapter Summary and Conclusions 135

7 Analysis and Verification of AMS Systems 137
7.1 Motivation . 138
7.2 Related Work . 138
7.3 Contribution to Uncertain Analog Circuit Analysis 140
7.4 Parameter Uncertainty Modeling . 141

7.4.1 Interval Arithmetic . 141
7.4.2 Affine Arithmetic . 143
7.4.3 Limitations of Affine Arithmetic 148
7.4.4 Generalized Interval Arithmetic 149

7.5 Orthogonal Interval Arithmetic . 151
7.5.1 Considerations for Orthogonal Interval Arithmetic154

7.6 Analysis and Verification of Uncertain Circuits 156
7.6.1 Operational Time Domain Robustness Evaluation 157
7.6.2 Behavior Verification of Uncertain Analog Circuits158
7.6.3 Operational Computation of Performance Indexes159
7.6.4 Operational Computation of Response Overshoot 161

7.7 Time Domain Robust Control Design Refinement 162
7.8 Implementation . 163
7.9 Experimental Results . 163
7.10 Chapter Summary and Conclusions 169

xii Contents

8 Conclusions and Future Work . 171
8.1 Part I: Efficient System Modeling and Simulation 172
8.2 Part II: Robust System Design and Verification 175

References . 177

A Parameter Identification Algorithm . 187

B Survey of Affine Arithmetic Modifications and Extensions . 189
B.1 Modified Affine Arithmetic . 189
B.2 Handling of Independent Error Terms 192
B.3 Extensions to Affine Arithmetic . 193
B.4 Quadratic Arithmetic . 196
B.5 Uncertainty Interval Partitioning (UIP) 196

xiii

List of Figures

1.1 Dissertation structure . 4
1.2 Paradigm change in AMS system simulation 6

2.1 DVFS system block diagram . 13
2.2 Layered system design platform model 14
2.3 Heterogeneity handling: a) MoC specialization

b) Hierarchical MoC composition c) Direct MoC
composition d) Orthogonal signals . 21

2.4 Design space depending on the model abstraction level . . 24
2.5 Abstract model execution semantics: a) Simulink b)

SystemC . 27

3.1 General time domain circuit simulation approach 38
3.2 Discretization methods: a) One-step b) Linear multi-step . 41
3.3 Buck converter: a) Circuit b) Graph representation 48
3.4 Solver step refinement and topology change loops 56
3.5 Buck converter simulation results using EPN MoC 58

4.1 Signal representation: a) Functional b) Vectorial 65
4.2 Coding a sampled sine wave signal . 67
4.3 Polynomial approximation: a) Taylor b) Chebyshev 70
4.4 Signal expansion: a) Continuous (analog) b) Discrete

(digital) . 71
4.5 Mixed-signal coefficient matrix . 72
4.6 Signal sampling: a) Periodic b) Event-based c) Adaptive . 78
4.7 Signal model implementation in SystemC AMS 79

5.1 Analog system representation in state space form 91
5.2 Digital system representation as finite state machine 96
5.3 OSF module processing function . 100
5.4 Average Buck converter circuit . 102
5.5 Nonlinear circuit . 104
5.6 Nonlinear Circuit Response . 105
5.7 Block diagram of the PLL system . 106

xiv List of Figures

5.8 PLL simulation results . 107

6.1 System performance . 113
6.2 System robustness . 114
6.3 Robust design optimization problem 115
6.4 Robust control system block diagram 116
6.5 Mixed sensitivity robustness index . 120
6.6 Internal model control . 124
6.7 Buck converter control . 125
6.8 Worst case plant perturbation . 127
6.9 PID control characteristic for linear and nonlinear plant

model . 128
6.10 Set-point tracking: a) Linear plant b) Nonlinear plant 129
6.11 Disturbance rejection: a) Input voltage b) Load current . . . 130
6.12 Parameter variations for nonlinear plant model 131
6.13 Linear control system design characterization 132
6.14 Nonlinear plant model set-point-tracking: a) Small

reference change b) Large reference change 133
6.15 Nonlinear control system design characterization 134

7.1 Center and radius of interval variables 142
7.2 Center and radius of affine variables 143
7.3 Affine variable inversion: a) Chebyshev approximation

b) Minimum range approximation . 147
7.4 Geometric representation of orthogonal interval variables 151
7.5 Tolerance analysis upper bound for Buck converter circuit164
7.6 Tolerance analysis: a) Affine arithmetic b) Monte Carlo . . 166
7.7 Nonlinear circuit tolerance analysis . 167
7.8 Time domain robust optimization results 168

8.1 Modeling methods for efficient system behavior
computation . 173

xv

List of Tables

3.1 Buck converter table . 49
3.2 Reduced circuit table for Buck converter 50
3.3 Current analysis table for Buck converter 52
3.4 Voltage analysis table for Buck converter 53
3.5 Buck converter simulation execution time 58

5.1 Linear circuit accuracy and performance results 103
5.2 Nonlinear circuit accuracy and performance results 105
5.3 PLL simulation execution time in ms 107

6.1 Buck converter parameters . 126
6.2 Impact of parameter variations on system response 131
6.3 Robustness index φR . 133

7.1 Range arithmetic relative range error 165
7.2 Accuracy of time domain range computations 167
7.3 Optimization execution time . 169

xvii

Acronyms

ADL Architecture Description Language
AMS Analog and Mixed-Signal
ASIC Application Specific Integrated Circuit
CPS Cyber-Physical System
DSL Domain Specific Language
EDA Electronic Design Automation
ESL Electronic System Level
FPGA Field Programmable Gate Array
HDL Hardware Description Language
HLS High-Level Synthesis
IMC InTernal Model Control
ISA Instruction Set Architecture
LMS Linear Multi-Step
MNA Modified Nodal Analysis
MoC Models of computation
OEM Original Equipment Manufacturer
OSA Open Simulation Architecture
PBD Platform Based Design
PWC Piece-Wise Constant
RTL Register Transfer Level
SiP System in Package
SLD System Level Design
SoC System on Chip
TLM Transaction Level Modeling
VHDL Very High Speed Integrated Circuit Hardware Description

Language

xix

Abstract

This dissertation copes with the challenge regarding the development
of model based design tools that better support the mixed analog and
digital parts design of embedded systems. It focuses on the conception
of efficient modeling and simulation methods that adequately support
emerging system level design methodologies.

Starting with a deep analysis of the design activities, many weak
points of today’s system level design tools were captured. After con-
sidering the modeling and simulation of power electronic circuits for
designing low energy embedded systems, a novel signal model that
efficiently captures the dynamic behavior of analog and digital circuits
is proposed and utilized for the development of computation meth-
ods that enable the fast and accurate system level simulation of AMS
systems.

In order to support a stepwise system design refinement which is
based on the essential system properties, behavior computation meth-
ods for linear and nonlinear analog circuits based on the novel signal
model are presented and compared regarding the performance, accu-
racy and stability with existing numerical and analytical methods for
circuit simulation.

The novel signal model in combination with the method proposed
to efficiently cope with the interaction of analog and digital circuits as
well as the new method for digital circuit simulation are the key con-
tributions of this dissertation because they allow the concurrent state
and event based simulation of analog and digital circuits. Using a syn-
chronous data flow model of computation for scheduling the execution
of the analog and digital model parts, very fast AMS system simulations
are carried out.

As the best behavior abstraction for analog and digital circuits may
be selected without the need of changing component interfaces, the im-
plementation, validation and verification of AMS systems take advan-
tage of the novel mixed signal representation. Changes on the modeling
abstraction level do not affect the experiment setup.

The second part of this work deals with the robust design of AMS
systems and its verification. After defining a mixed sensitivity based

xx Abstract

robustness evaluation index for AMS control systems, a general robust
design method leading to optimal controller tuning is presented.

To avoid over-conservative AMS system designs, the proposed ro-
bust design optimization method considers parametric uncertainty and
nonlinear model characteristics. The system properties in the frequency
domain needed to evaluate the system robustness during parameter
optimization are obtained from the proposed signal model.

Further advantages of the presented signal model for the compu-
tation of control system performance evaluation indexes in the time
domain are also investigated in combination with range arithmetic.
A novel approach for capturing parameter correlations in range arith-
metic based circuit behavior computation is proposed as a step towards
a holistic modeling method for the robust design of AMS systems.

The several modeling and computation methods proposed to im-
prove the support of design methodologies and tools for AMS system
are validated and evaluated in the course of this dissertation consider-
ing many aspects of the modeling, simulation, design and verification
of a low power embedded system implementing Adaptive Voltage and
Frequency Scaling (AVFS) for energy saving.

xxi

Zusammenfassung

Diese Dissertation befasst sich mit der Herausforderung, modell-
basierte Entwurfswerkzeuge zu entwickeln, die den Entwurf analoger
und digitaler Komponenten eingebetteter Systeme besser unterstützen.
Der Forschungsschwerpunkt der Dissertation liegt auf der Konzep-
tion von Modellierungs- und Simulationsverfahren, die neu enstehende
Entwurfsmethoden auf Systemebene ausreichend unterstützen.

Anhand einer tiefgehenden Analyse der Entwurfsaktivitäten wur-
den die Schwachstellen heutiger Systemebene-Entwurfswerkzeuge er-
mittelt.

Nachdem die Modellierungs- und Simulationsverfahren leistungs-
elektronischer Schaltungen in energiesparenden eingebetteten Syste-
men dargestellt sind, wird ein neuartiges Signalmodell vorgeschla-
gen, welches das dynamische Verhalten analoger und digitaler Schal-
tungen erfasst. Es ermöglicht die schnelle und genaue Simulation
der sogennanten AMS-Systeme auf Systemebene. Um eine schrit-
tweise Verfeinerung des Designentwurfes auf Basis wesentlicher Sys-
temeigenschaften möglich zu machen, werden Berechnungsmethoden
für die Simulation linearer und nichtlinearer Schaltungen, die das
neue Signalmodell nutzt, abgeleitet und bezüglich der Performance,
Genauigkeit und Stabilität mit bekannten numerischen und analytis-
chen Berechnungsverfahren der Schaltungstechnik verglichen.

Neben dem neuen Signalmodell sind das vorgeschlagene Verfahren
zur effizienten Handhabung der Interaktion zwischen analogen und
digitalen Schaltungen wie auch das entsprechende Verfahren zur
Simulation digitaler Schaltungen Schlüsselbeiträge dieser Disserta-
tion, da sie die gleichzeitige zustands- und ereignisbasierte Simula-
tion analoger und digitaler Schaltungen ermöglichen. Unter Einsatz
eines synchronen Datenfluss-Berechnungsmodells zur Bestimmung
der Ausführungsreihenfolge analoger und digitaler Modellbestandteile
werden sehr schnelle Simulationen von AMS-Systemen durchgeführt.

Da die am besten passende Verhaltensabstraktion für analoge und
digitale Schaltungen ausgewählt werden kann, ohne dass eine Ände-
rung der Schnittstellen erforderlich wird, profitieren die Entwicklungs-
schritte wie Implementierung, Validierung und Verifikation von der

xxii Zusammenfassung

neuen gleichzeitigen Darstellung gemischter analoger und digitaler
Signale. Änderungen des Gesamtmodells oder des Simulationsaufbaus
sind normalerweise nicht notwendig, um detaillierte Modellkompo-
nenten einzusetzen.

Der zweite Teil dieser Arbeit befasst sich mit dem robusten Ent-
wurf von AMS-Systemen und seiner Verifikation. Der Definition eines
Mixed-Sensitivity-Indexes zur Robustheitsbewertung von AMS-Rege-
lungssystemen folgt die Beschreibung einer allgemeingültigen Me-
thode für den Entwurf robuster Systeme, die zu einer optimalen Ein-
stellung der Reglereigenschaften führt.

Um überkonservative Entwürfe von AMS-Systemen zu vermei-
den, zieht die vorgeschlagene Methode zur robusten Entwurfsopti-
mierung sowohl parametrische Unsicherheiten als auch die nichtlin-
earen Modelleigenschaften in Betracht. Um die nötigen Systemmerk-
male im Frequenzbereich zu bestimmen, die zur Ermittlung und Opti-
mierung der Systemrobustheit benötigt werden, wird das vorgeschla-
gene Signalmodell eingesetzt.

Weitere Vorteile des neuen Signalmodells für die Berechnung von
Performance-Metriken, die zur Evaluierung von Regelungssystemen
in der Zeitdomäne nützlich sind, werden in Kombination mit Bereich-
sarithmetik erforscht. Auf dem Weg zur Definition einer ganzheitlichen
Robustentwurfsmethodik für AMS-Systeme wird eine neue Metho-
de zur Betrachtung von Parameterkorrelationen in Schaltungsberech-
nungsverfahren basierend auf Bereichsarithmetik eingeführt.

Die verschiedenen Modellierungs- und Berechnungsverfahren, die
eine Verbesserung der Entwurfsmethoden und -werkzeuge ermög-
lichen, werden im Verlauf dieser Dissertation validiert und bewertet.
Dabei werden die Modellierung, Simulation, Entwurf, Analyse und
Verifikation energiesparender eingebetteter Systeme auf Basis von
Adaptive Voltage and Frequency Scaling (AVFS) betrachtet.

1

Chapter 1

Introduction

System level design (SLD) languages and tools are fundamental for ef-
ficient embedded system design, analysis, validation and verification.
In order to adequately support emerging embedded system design
methodologies, design tools must be continuously improved. Model-
ing methods supporting many abstraction levels and more efficient
computation methods are needed for properly coping with contempo-
rary system design activities. This dissertation proposes a set of novel
modeling and computation methods that allow to efficiently carry out
the simulation, design, analysis and verification of analog and mixed
signal (AMS) systems for faster achieving robust and reliable designs.
This chapter provides an outline of current productivity challenges in
AMS system design and presents the contributions of this dissertation
to the state-of-the-art in design tools for AMS systems. It is organized
as follows. Section 1.1 describes the motivation of this thesis regarding
the improvement of system level design tools’ efficiency and modeling
support. Section 1.2 states the main research goals. Section 1.3 indicates
the dissertation structure and chapter contents. Section 1.4 presents the
main contributions of the dissertation. Finally, section 1.5 states the
main advantages of the novel modeling and computation methods.

1.1 Motivation

The engineering techniques required to design, analyze and verify
embedded systems are sophisticated because many non-functional re-
quirements need to be considered. For example, they have to respond
sufficiently fast to their environment in order to perform a correct sys-
tem operation. A careful timing analysis is necessary for a proper task
execution [71]. Safety-critical embedded systems must guarantee a high
level of reliability and predictability and battery-driven embedded sys-
tems must be power-efficient [54]. As a consequence of the large num-
ber of design constraints, optimization techniques are often needed for
designing embedded systems [71].

2 1 Introduction

A contemporary challenge in the design of embedded systems is the
growing functionality and heterogeneity. More and more specialized
systems are being interconnected [106]. System on chips (SoCs) inte-
grate on a single chip a lot of analog and digital hardware devices [54].
The advances in packaging technology even allow the integration of
many chips in a single package (System-in-Package, SiP). Thus, analog
components requiring more processing steps can be implemented in a
separated chip in order to improve the manufacturing process [106].
As a very large number of features can be implemented on a chip or
package, the decision of the hardware functionality is mainly deter-
mined by non-functional constraints such as performance, cost, power
consumption and reliability [106].

To cope with the complexity of embedded system design, the design
abstraction level continues increasing [103]. Many commercial tools
are available which directly generate embedded code, e.g. C or HDL,
from abstract high-level models. As these tools utilize purely functional
models such as Simulink models, it is not possible to seamlessly explore
several architectural alternatives [131]. In particular, the complex in-
teraction between digital and analog system components requires a
careful low-level design for accomplishing system requirements and
constraints. Due to the difficulty in representing the system behavior
entirely, design verification is an additional challenge which leads to
separated verification of analog and mixed signal systems.

Dealing with the contemporary AMS system design challenges is
of central importance for bringing products to market in time with
the required functionality and quality. Sangiovanni-Vincentelli speaks
about a ”novel engineering field” that is emerging for efficiently coping
with the needs for a successful system level design [104] [103] [106].

In order to provide the needed efficiency for designing today’s em-
bedded systems, both design methodologies and tools must be im-
proved. Design methodologies should capture the design components
and constraints at several abstraction levels for a seamless system de-
sign refinement [103]. System level design languages and tools must be
improved for better supporting emerging design methodologies. They
should allow the modeling of heterogeneous analog and digital sys-
tems based on formal descriptions for supporting automated analysis
and synthesis. Moreover, they should carry out fast model execution
at multiple abstraction levels for enabling early design validation and
verification.

1.3 Dissertation Outline 3

1.2 Dissertation Goal and Objectives

The goal of the research presented in this dissertation was the devel-
opment of modeling and computation methods that enable the fast
simulation as well as the robustness evaluation of large heterogeneous
analog and digital systems.

In order to develop design tools that better support the modeling,
design, analysis and verification of analog and mixed signal systems,
the impact of the modeling and computation methods on these design
activities were considered in the scope of the research activities. The
application domain was restricted to the design of AMS components
in low power embedded systems. As several abstraction levels are re-
quired for designing such components, they provide the needed com-
plexity for the evaluation of the novel system modeling and behavior
computation methods.

1.3 Dissertation Outline

This dissertation is organized as shown in Fig 1.1. There are two parts
that correspond to the research goals. The main chapters are structured
as independent contributions presenting their particular motivation
and related work and evaluating their findings to each research topic.

Chapter 2 introduces the state-of-the-art in AMS system design and
indicates the support gap of design tools. It presents in section 2.5 a
layered model, that captures the relevant system design activities that
should be supported by design methodologies and tools.

The first part of this dissertation (chapters 3– 5) copes with the mod-
eling and simulation of AMS systems. Chapter 3 describes the state-
of-the-art in analog circuit simulation and introduces the modeling
of power electronic circuits using ideal switches. It defines in section
3.6 a graph based method for finding inconsistencies and predicting
electrical impulses after topology switching which is explained using
a DC-DC power converter. It also proposes SystemC AMS extension
for the simulation of power electronic circuits at system level. Chapter
4 presents in section 4.5 a novel mathematical model of signals that
efficiently captures continuous time and discrete event component be-
haviors as well as a signal subdivision method in section 4.6 which is

4 1 Introduction

1 Introduction

7 Analysis and Verification of
AMS systems

7.5 Orthogonal Interval Arithmetic
7.6 Analysis and Verification of

Uncertain Circuits
7.7 Time Domain Robust Control

Design Refinement

8 Conclusions and Future
Work

6 Robust AMS System Design
Optimization

6.5 Control System Robustness
 Evaluation
6.6 Robust Design Optimization of

AMS Systems

3 Electrical Network Modeling
and Simulation

3.6 Topology Analysis of Switched
 Electrical Networks

5 Modeling and Simulation
of AMS System

5.5 Operational Computation of

Analog Circuits
5.6 Sequential Computation of

Digital Circuits
5.7 Iterative Data Flow

Computation of AMS Circuits

2 Methodological Background

2.5 Layered System Design
 Platform Model

4 Signal Modeling for AMS
Systems

4.5 Mixed Orthogonal Signal

Model
4.6 Operational Subdivision of

Analog Signals
4.7 Computing Threshold Crossing

Events
4.8 Sampling Analog Signals

Chapter Structure

• Abstract
• Motivation
• Related work
• Goals and contributions
• Preliminaries
• Content
• Implementation
• Experimental results
• Summary and conclusions

Part I

Part II

Fig. 1.1: Dissertation structure

utilized for efficiently handling the mapping of continuous time signals
into discrete event signals. Section 4.7 and 4.8 explain the application
of the signal subdivision method for threshold detection and signal
sampling respectively. Chapter 5 utilizes the novel signal model for
the efficient simulation of AMS systems. It derives in section 5.5 oper-
ational behavior computation methods for analog circuits at different
abstraction levels and presents in section 5.6 a state based digital system
modeling and behavior computation method. After that, it proposes in
section 5.7 an iterative data flow model of computation which relies on
the developed computation methods for achieving fast and accurate
AMS system simulations in SystemC AMS.

1.4 Contributions to AMS System Design 5

The second part of this dissertation investigates the impact of the
novel modeling and computation methods on the design, validation
and verification of AMS systems. Chapter 6 proposes in section 6.6 a
control system design optimization method that does not impose re-
strictions on the controller structure and enables the improvement of
the control system robustness with respect to disturbances and man-
ufacturing tolerances. Moreover, it defines in section 6.5 a robustness
evaluation index which is applicable to linear and nonlinear control
systems and allows the simple comparison of several designs as well
as the fine tuning of the design parameters. Chapter 7 investigates the
properties of several range arithmetic methods in order to carry out
faster and more accurate circuit tolerance analysis. It defines in sec-
tion 7.5 a novel range arithmetic approach that keeps the correlation
between parameters in vectorial form. It presents in section 7.6 oper-
ational computation methods for analog system design analysis and
verification and proposes in section 7.7 a cost function which is well
suited for robust control design refinement in the time domain.

Finally, chapter 8 states the main contributions of the dissertation
and proposes topics for future work.

1.4 Contributions to AMS System Design

This dissertation contributes to the state-of-the-art in AMS system mod-
eling and simulation by the following:

1. A generic method for predicting topology inconsistencies and elec-
trical impulses in switched electrical networks which enables the fast
simulation of power electronic circuits (3.6).

2. A novel formal signal model that efficiently captures the continuous
time and discrete event behavior of AMS systems’ components (4.5).

3. An operational matrix for arbitrary analog signal subdivision which
enables fast and accurate threshold crossing events’ detection (4.6).

4. A set of analog circuit behavior computation methods based on the
proposed signal model which allow efficient and accurate analog
component simulations at several abstraction levels (5.5).

5. A state based digital system modeling and computation method
which supports the proposed signal model to enable the fast AMS
system simulations (5.7).

6 1 Introduction

Moreover, this dissertation contributes to the state-of-the-art in AMS
system design tools by the following:

1. A normalized robustness evaluation index which is applicable to lin-
ear and nonlinear control systems and allows the simple comparison
of several AMS system designs (6.5).

2. A fast and reliable approach for computing the plant uncertainty
characteristics due to parameter tolerances (6.6.1).

3. A novel operational matrix of multiplication which enables the effi-
cient computation of common control system evaluation indexes for
fast AMS system design analysis and refinement (7.6.3).

1.5 Paradigm Change in AMS System Simulation

Based on the mentioned contributions, this dissertation proposes a
novel way of modeling and computing the AMS system’s behavior.
As shown in Fig. 1.2, instead of carrying out iterative scalar value or
event computations at single time points, the behavior computation
takes place on a value matrix or event sequence over large time in-
tervals. The key advantages of the novel AMS system modeling and
computation methods are that they enable:

1. fast and accurate simulations
2. multiple concurrent behavior abstraction levels
3. fast analog signal analysis and tracing

These properties lead to a seamless design of AMS systems that to-
gether with the novel computation methods for performance and ro-
bustness evaluation allow a fast robust design optimization and refine-
ment which consider both disturbances and manufacturing tolerances.

Block-wise interval

computations
Single event

computations

Tt1 t2 ti tn

Fig. 1.2: Paradigm change in AMS system simulation

7

Chapter 2

Methodological Background

Methodologies and tools for embedded system design contribute sig-
nificantly to the reduction of the time-to-market as well as to the min-
imization of design errors. The understanding of the system design
principles is fundamental for the appropriate selection of system de-
sign methodologies and for the development of powerful design and
analysis tools. This chapter presents a simple and general model that
organizes the essential steps of the model based system design into a set
of inter-dependent layers. It captures the relevant design activities al-
lowing the representation of existing design methodologies and tools
into a unified view. This abstract representation of the system design
process allows the systematical reasoning about the key characteristics
and dependencies of the design activities and serves as methodologi-
cal background for deriving modeling and computation methods that
better support the system design activities. In particular, some issues
that currently limit the support of design tools across several design
activities such modeling, analysis and verification for AMS systems are
identified. Furthermore, the corresponding contributions of the disser-
tation chapters to the AMS system design topics are ordered using this
model.

This chapter is organized as follows. After the presentation of the re-
search motivation and related work in section 2.1 and 2.2 respectively,
the contributions of this chapter are summarized in section 2.3. Sec-
tion 2.4 explains the current problems of design tools for AMS systems
which lead to a productivity gap. Section 2.5 describes the Layered Sys-
tem Design Platform Model. Finally, section 2.6 summarizes how the sev-
eral layers of the presented system design platform model contribute to
the development of better design methodologies and tools indicating
the weak points of current design tools.

8 2 Methodological Background

2.1 Motivation

The continuous advances on computer systems in the past decades have
contributed to the increasing popularity of model based engineering
methods. System specification, design and validation can be carried
out at higher abstraction levels using model centered development
approaches [100]. In addition, simulation techniques allow to cope with
design problems that can not be worked out analytically [129].

The increasing demand for reducing time-to-market, cost and de-
sign errors in embedded system design requires that the essential de-
sign steps are adequately supported by design methodologies and tools
across the whole design process [106]. A seamless design chain based
on the system properties at the several design steps is needed for im-
proving design productivity and quality [106].

A fundamental issue in the design of AMS systems is that current
design methodologies do not utilize appropriate abstractions for cap-
turing the system properties [103]. In order to achieve correct, efficient,
reliable and robust electronic designs, a rigorous specification and char-
acterization of system properties at several abstraction levels is neces-
sary [105]. Capturing the properties of AMS systems’ functionality in a
formal way (mathematically) is a prerequisite for enabling the efficient
design correctness verification and the error-free design refinement to-
wards the final system implementation [105]. It allows the automatic
system design refinement that meets design constraints and optimiza-
tion criteria from one abstraction level to the next [105].

The early validation and verification of AMS systems’ functionality
and performance requires design tools that allow the heterogeneous
behavior specification of analog and mixed signal parts and support
the fast model execution. As design languages and tools must be based
on formally defined models for effectively supporting design activities,
it is fundamental to understand the required model properties at the
several steps in order to achieve a better design support.

2.2 Related Work 9

2.2 Related Work

Focused on the simulation of discrete event systems (DEVS), Zeigler
defined an extensive theoretical background for modeling analog and
digital systems [130]. In order to understand and compare the prop-
erties of the modeling formalisms utilized in embedded system de-
sign, Lee proposed a denotational framework called the tagged signal
model that captures the concurrency and communication behavior of
frequently used computational models [70] [69] [68].

Based on a clear definition of model execution and interconnection
semantics, Sander et al. proposed a formal system development pro-
cess for performing design refinement [102]. They organized models of
computation with respect to time abstraction and remarked the impor-
tance of separating computation and communication for better fit the
right model abstraction [54]. They also implemented a design language
named ForSyDe which provides design transformations for enabling
the automatic design synthesis from embedded system models [101].

For better explanation of a modeling and simulation environment
supporting decision making, Zeigler presented a layered representation
of the tool functionality which captures the necessary problem solving
activities [129]. Dalle et al. extended Zeigler’s layered tool architecture
representation for promoting the collaborative development of DEVS
simulation platforms. The proposed Open Simulation Architecture (OSA)
defines standardized interfaces for integrating modeling, simulation
and analysis tools [20] [19] [21] [22]. Vachoux et al. utilized a similar
layered structure for enabling the simple definition and integration of
computational models in SystemC AMS [119] [118].

Due to the increasing complexity and heterogeneity of contemporary
AMS systems, the selection and integration of design methodologies
and tools becomes a challenge. It requires a good understanding of
the entire design task. In particular, the impact of the modeling and
simulation capabilities on the essential system design activities need
to be better considered. An abstract representation of the design task
needs to be worked out for the development of more efficient design
methodologies and tools.

10 2 Methodological Background

2.3 Representing a Seamless System Design Chain

The aim of the work presented in this chapter was the definition of
a methodological framework that captures the essential model based
design steps (from specification to implementation) and the relevant
model properties for the development of more efficient AMS system
modeling and behavior computation methods. To this end, it was nec-
essary:

• To investigate which are the most relevant properties that should be
captured for adequately modeling AMS systems.

• To analyze how design tools supporting heterogeneous analog and
digital system modeling and simulation are built.

• To find out which design activities are not well addressed by current
design methodologies and tools.

• To capture design activities dependencies and interaction.
• To analyze the properties and limitations of the modeling and sim-

ulation approaches for design analysis and verification regarding
performance, accuracy and stability.

As result of these activities, a methodological framework which focuses
on describing the key model properties required at the several system
design activities was elaborated. For better matching design method-
ologies and tools, the identified model properties were organized in
several layers. This system design model extends Zeigler’s layered ar-
chitecture representation for modeling and simulation by:

• Considering further activities that are required for achieving a cor-
rect, efficient, reliable and robust embedded system design.

• Providing a unified view of design methodologies and tools.
• Describing the system properties that should be captured at each

layer during model based system design.
• Taking into account the interaction of system model with both, the

simulation software and the hardware execution platform.

As the dependencies between the design activities and the model
properties were captured and analyzed regarding their impact on sys-
tem design correctness and efficiency, this chapter defines a method-
ological background for the development of efficient design tools that
meet contemporary design support requirements for AMS systems.

2.4 Embedded System Design Methodologies 11

2.4 Embedded System Design Methodologies

Design is a transformation process that based on a specification creates
a product [106]. The design methodology describes the way in which
the design process is organized. It specifies the steps and checks that
must be carried out during the design process [106]. Different method-
ologies are used for system design [106]. System-Level Design (SLD) is
a design methodology that assembles components to a whole system
[103]. In order to deal with system complexity, top-down decomposition
into subsystems is usually applied. This widely utilized design tech-
nique requires a full understanding of the entire system for achieving
an appropriated system partitioning. This is a difficult task because the
complexity of today’s embedded systems is very high [106]. Bottom-up
system design is a design method that starting with a set of pre-existing
designs, modifies or extends these solutions to respond to a set of (new)
application requirements [106]. Developing systems by composing al-
ready pre-designed subsystems (vertical design chain) helps to reduce
time-to-market and design costs [106]. As already working systems are
utilized as initial solution, this design technique reduces the system
implementation risks. However, it becomes often difficult to meet all
system requirements and to achieve an optimal system design using this
design method [106]. Electronic System Level (ESL) is a design method-
ology that emerged to cope with the complexity of emerging system on
chip (SoC) designs [35]. This technique describes the electronic system
using a set of abstractions (at different levels) that allows the concep-
tualization of the chip design [107]. Depending on the elements of the
design abstraction, several ESL methodologies were proposed. Function
based ESL describes the embedded systems utilizing formal computa-
tional models which represent the relations between input and outputs
[132]. Architecture based ESL utilizes a set of components (processors,
memories, peripherals, etc.) that describe the computer organization
[132]. Function-Architecture based ESL, refines first the design require-
ments into a functional model (such as in functional based ESL) and
then into an architectural model (such as in the architecture based ESL).
Although this co-design methodology is particularly suitable for archi-
tecture exploration, the system architecture is top-down designed for a
particular function or application. For this reason, it becomes difficult
to extend the architecture design to support multiple applications.

12 2 Methodological Background

In order to reduce design and implementation costs, system-on-chips
(SoCs) are typically designed as a platform that provide support for
many applications [132]. A platform is an abstraction characterized by a
set of components. It allows a parametrization of the possible solution
space for a given level of abstraction [106]. The purpose of a platform is
to provide a common design that can be re-used or adapted to several
domain specific applications. Platform based ESL design combines top-
down and bottom-up design methods [106]. The design functionality is
mapped (top-down) into a platform instance propagating implementa-
tion constraints. The platform instance is built (bottom-up) by selecting
library components. For systems designed using a domain-specific com-
putational model (function-based design), the best suited architecture
is normally known and represented as architecture template. As the archi-
tecture instance can be automatically parametrized, the manual design
refinement is not necessary [132]. Design reuse is guided ”from the
perspective of a reference system architecture” [107]. Platform based design
(PBD) defines a standard layer of abstraction that separates system func-
tionality and architecture, hiding unnecessary implementation details
[106] [103]. This design technique allows the refinement of the system
functionality at several levels of abstraction (using the same workflow)
that is the main idea of the Y-chart proposed by Gajski [32].

2.4.1 The Design Productivity Gap for AMS Systems

Electronic design automation (EDA) tools provide a set of processes and
guidelines that describe the system design flow as well as features for be-
havioral synthesis and design verification. They enable the early design
space exploration of high-level system designs and the increase of the
design productivity for high complex integrated circuits [132]. As ”de-
sign productivity decreases exponentially with respect to technology
advances” [105], the efficiency of design methodologies and tools must
be continuously improved for addressing the emerging challenges in
the system design chain [106]. Metrics describing system properties
such as cost, weight, size, power dissipation and performance should
be utilized for optimally guiding the design [105]. EDA tools that work
efficient and with guaranteed correctness through different abstraction
levels from the conceptual model to the silicon implementation and

2.4 Embedded System Design Methodologies 13

packaging are needed. As the number of analog and mixed signal
components in electronic systems continues increasing, the maturity
level of today’s design tools is not proper for system integration [106].
In order to reduce design costs, companies designing electronic systems
are demanding design methodologies and tools that enable a reliable
integration of pre-designed components into large chips (design reuse)
as well as a better verification and validation support that considers ro-
bustness and reliability requirements [106]. The poor abstraction level
in the analog and mixed signal design makes difficult the harmonized
system representation and leads to segregated design methodologies
for analog and digital hardware [107]. In order to improve system de-
sign exploration, refinement, synthesis and verification both, a unified
design methodology as well as suitable tool supporting combined ana-
log and digital design are required [106].

The major problems that difficult the analog design at system level
are the poor behavior abstraction and the low simulation performance
of the modeling and computation methods utilized in today’s AMS
design tools. In order to evaluate the impact of modeling and com-
putation methods on AMS system design productivity, the hardware
component design of a low-power embedded system is considered in
the course of this dissertation. It utilizes both Dynamic Voltage Scal-
ing (DVS) and Dynamic Frequency Scaling (DFS) for energy saving as
shown in the block diagram in Fig. 2.1. The DVFS system estimates the
processor workload and adjusts its supply voltage and operation fre-
quency for minimizing power consumption. The voltage and frequency
control parts require a careful design because they are subject to a lot
of non-functional implementation requirements and constraints.

Processor

Voltage
Control

Frequency
Control

Vo

fo

DVFS

Vref

fref

Fig. 2.1: DVFS system block diagram

14 2 Methodological Background

2.5 Layered System Design Platform Model

In the context of this work, a model is an abstract representation of a
physical system that captures knowledge or information about a sys-
tem for specification, design, analysis, verification or implementation
purposes. A physical system is composed by a set of parts (called com-
ponents) which jointly interact with the system environment for pro-
viding or enabling a self contained functionality. A design activity (or
design step) is an action performed by a designer during design of a
system, possibly following a design methodology and ideally utilizing
tool support [98].

Model Constraints Layer

Model Structure Layer

Model Behavior Layer

Model Implementation Layer

Model Refinement Layer

Model Platform Layer

Model Execution Layer

Model Analysis Layer

Model Verification Layer

Modeling

Design

Simulation

Evaluation

Accuracy

Efficiency

Time

Quality

Model Requirements Layer
Specification Performance

M
o
d
e
l
B

a
s
e
d
 S

y
s
te

m
 D

e
s
ig

n

(3)

(4)

(6)

(5)

(7)

(7)

(6)

(5)(3)

Fig. 2.2: Layered system design platform model

As pointed out by Sangiovanni-Vincentelli [106], design tools may be
considered as a platform. This idea corresponds with Zeigler’s layered
design tool representation and the recently proposed open simulation
architecture (see related work in section 2.2). With the aim of capturing
the purposes and properties of embedded system models at the dif-
ferent design stages, this work proposes a conceptual design platform
representation which describes in 10 layers the relationships between
embedded system design methodologies and tools. It is shown in figure
2.2 and may be considered as a more contemporary model of Zeigler’s
design tool representation. It serves as guide for understanding how the
several contributions of this work may impact on the improvement of

2.5 Layered System Design Platform Model 15

design tool’s productivity. The corresponding chapters are indicated in
brackets. This layered system design platform representation is a con-
ceptual model that aims to represents the main steps which are usually
explicitly or implicitly carried out during the system design process. It
does not define nor recommend a particular workflow for designing
embedded systems. The model layers are organized as pairs of comple-
mentary activities. Each layer of the model involves different features
that are needed for supporting the system design activities and extends
or utilizes the functionality of previous layers. The main impact of the
several activity pairs on the system development is represented by the
properties on the right hand side of the figure 2.2.

Example 2.1. Consider the design of the AMS system shown in Fig.
2.1. The model requirements layer captures the desired behavior
of DVFS system, that is: depending on the current task the power-
consumption of the processor is minimized by adjusting the power
supply and operation frequency. The model constraints layer cap-
tures the properties and constraints that guide the design imple-
mentation. They are: the voltage and the frequency must be stably
adjusted within a defined time slot (performance requirements)
as well as the corresponding voltage ripple and frequency jitter-
ing must be smaller than a given value. Additional non-functional
properties such as thermal dissipation, size and cost must be min-
imized. The system components must be robust respect to man-
ufacturing variations and external perturbations (design criteria).
The model structure layer supports the definition, interface dec-
laration and interconnection of the system parts as well as the
top-down hierarchical decomposition. The model behavior layer
provides a set of modeling abstractions (transfer function, electri-
cal network, etc.) which enables the representation of the system
components’ behavior with different levels of accuracy during de-
sign. The model implementation layer enables the specification of
implementation details such as the behavior computation meth-
ods and parameters which allow the model simulation as well as
component constraints which allow the system design refinement.
In best case, it also includes a library of pre-designed compo-
nents. The model refinement layer provides tools that select and
parametrize library components (if component models are avail-

16 2 Methodological Background

able) or support the refinement of abstract design models towards
the final implementation. The model platform layer defines and
implements a simulation platform which enables the system be-
havior computation during design and analysis. The model ex-
ecution layer maps the entire system model (including behavior
computation algorithms) on the target platform (single or multi-
core). The model analysis layer allows the fast simulation of a
mission profile subset and the evaluation of the system design
performance at several operating points. It should support the
design optimization in terms of the defined properties. The model
verification layer should provide enough support for the verifi-
cation that system design and implementation models fulfill the
imposed requirements and constraints e.g. the specified system
performance is reached and the supplied voltage and frequency
fulfill the defined ripple and jittering constraints. A deep verifica-
tion considering parameter tolerances and corner cases should be
possible.

The following sections describe the design platform model layers,
indicating the state-of-the-art and the contributions of the several dis-
sertation chapters to the open issues.

2.5.1 Model Requirements Layer

A system requirements specification is a prerequisite to start the system
design. It specifies ”the effects that a system is required to achieve”
[15] and should completely define ”what the system is supposed to
do” [105] but any design or implementation detail that unnecessarily
constrains system design should be omitted [15]. The Model Require-
ments Layer collects the system design requirements which state the
externally observable behavior (system functionality).

A good design methodology as well as development tools that define
and support the requirements management activities are very impor-
tant for the mitigation of requirements ambiguities, inconsistencies and
traceability problems during the system design process [105].

2.5 Layered System Design Platform Model 17

2.5.2 Model Constraints Layer

The system requirements specification should be accompanied by a
set of properties and constraints that the system design has to fulfill as
well as by a description of the environmental and regulatory conditions
[105]. The Model Constraints Layer collects the set of system properties
and constraints which guide the design implementation and optimiza-
tion. The set of system constraints includes constraints on the system
behavior and on the system implementation characteristics.

The system behavior constraints should be described as a set of equa-
tions and inequalities for simplifying its verification (property assess-
ment and relationship evaluation) [105]. The behavior of the system
environment cannot be predicted. This non-determinism should be de-
scribed in the environment specification of the system under design but
it is not a design property [105]. A set of design criteria such as robust-
ness, reliability, etc. should be also specified for guiding system design
[105]. Chapter 6 introduces the robustness specification and evaluation
problem and proposes a suitable property set for control systems.

The constraints on the system implementation characteristics indicate the
components to be used or define requirements on the system imple-
mentation that are expressed in terms of physical quantities such as
power or timing [105]. The so called reaction requirements specify the
interaction of the system with its environment [47] [46]. They are usu-
ally described in terms of equalities or inequalities that involve the
design variables and the implementation characteristics [105]. As the reac-
tion requirements allow the verification if a given architecture (”how
the system does what is supposed to do”) is feasible, they guide the sys-
tem architecture selection (platform instance) [103] [105]. The so called
execution requirements define constraints on the characteristics of the im-
plementation platform elements such as e.g. the battery capacity or the
channel bandwidth [105].

The system specification, including system functional requirements,
properties, design criteria and constraints as well as the system en-
vironment characteristics has a significant impact on the final system
performance and quality. Chapters 6 and 7 define behavior properties
and design criteria that are suitable for guiding and refining the de-
sign of AMS control systems to be robust to external perturbation and
parameter tolerances.

18 2 Methodological Background

2.5.3 Model Structure Layer

The aim of modeling is to describe systems. The model based system
design starts with the construction of a specification model in a declarative
or executable language, according to the design requirements defined
in the system requirements specification [54] [107]. At the start of sys-
tem design, the specification model is constructed by interconnecting
components which describe the different parts of the system [129]. The
interaction of the system with its environment is usually represented
as a model part. This structural model captures static information about
the system construction [71]. It is described by a structure that specifies
a set of components a set of interfaces, (including the interfaces to the sys-
tem environment) and a set relations among components and interfaces
(interconnection or coupling).

The Model Structure Layer provides a functionality for representing
the system under design from a physical or logical view point by in-
terconnecting model components i.e. defining components and their
interconnection relations. It captures the system architecture. In order
to model complex systems, hierarchical decomposition is applied to the
specification model breaking down the represented system into smaller
systems. Atomic components are successively replaced by modular com-
ponents. In order to hide details about the system structure, hierarchical
composition is applied to the specification model. The different com-
ponents and the relations along their interfaces are encapsulated in a
modular component (also called coupled model or subsystem) which also
represents a system [129]. For carrying out the composition of the model
components, well defined interfaces to the component environment are
needed [68]. Hierarchical decomposition and composition are essen-
tial features that capture different levels of detail and support top-down
and bottom-up design.

A weak point of most modeling tools is that the underlying syntax
utilized for analog behavior description does not capture the system
structure i.e. systems are represented directly at equation level. Using
an abstract syntax (which is not bound to a specific interpretation) for
representing the structure of a model is becoming necessary in order
to capture different behavioral and physical domains [106]. Chapter 3
utilizes a modeling approach based on clustered graphs for the efficient
analysis and equation formulation of switched electrical networks.

2.5 Layered System Design Platform Model 19

2.5.4 Model Behavior Layer

The Model Behavior Layer aims to capture the system behavior in an
appropriate manner for system design analysis, implementation, val-
idation and verification. The modeling approach for representing the
system functionality should enable the analysis, processing and trans-
formation of the specification model. As AMS systems are usually re-
active systems that respond continuously to their environment, the re-
sulting behavioral model must enable the computation of the system state
evolution in time (system dynamics) [71]. The behavior of a structural
(or coupled) model is computed from the behaviors of its components
and the relation among their interfaces (coupling specification) [129].
Every model component is an entity with a given behavior expressed
in terms of a set of variables and a set of parameters. The time constitutes
an independent variable for all model components.

There is normally more than one representation for a given system
(or modular component). In order to reduce the modeling complexity,
the system design functionality should be captured at the highest possi-
ble abstraction level [105]. This requires that the systems’ behavioral
characteristics are reduced to a set of essential properties. There are many
formalisms, that are able to capture a given system design specification.
These abstract formalisms of the system behavior are called Models of
Computation (MoCs). They govern the interaction across model com-
ponents in the system design [68].

A model of computation (MoC) is a mathematical description of a system
that has a syntax and specifies the semantics of the computation and
communication behavior described by the syntax [105]. This architec-
tural pattern defines abstract components and their interaction (opera-
tional relationships between components) [68]. The syntax of a model
of computation defines the symbols that may be used for describing a
system as well as the valid composition of its parts. It allows to specify
structurally correct models. The semantics of a model of computation
defines the rules that ”give a meaning to the system behavior” [105].
The semantic rules of a model of computation define three fundamental
characteristics [105]:

• the component actions (computations)
• the coordination of the component actions (concurrency)
• the exchange of components data (communication)

20 2 Methodological Background

As the semantics of a model of computation is formally defined, it
unambiguously captures the system design specification avoiding in-
terpretation mistakes. A key feature of MoCs is the possibility to execute
the design functionality for analysis and verification. This allows the
early finding of design errors and the validation of the system function-
ality [105]. Models of computation have a rich set of intrinsic properties
which determines the particular class of systems that they can suitably
model, e.g. control-dominated or data-dominated systems. A trade-off
between MoC properties is normally needed, e.g. making a MoC more
expressive can lead to a very difficult or even to an impossible behavior
verification. In particular, the communication semantics of a MoC has
a significant impact on its properties [106].

In order to overcome modeling and design limitations, different
MoCs are usually combined for system design specification, keeping
verification and synthesis separated for the heterogeneous parts of the
system [105]. The appropriate MoC selection and the integration of the
heterogeneous model components which are part of AMS systems need
a lot of system knowledge. Moreover, different MoCs are needed to rep-
resent the system properties at several phases in the system design pro-
cess [54]. Such heterogeneous system models require a clear definition
of the execution and interconnection semantics between the different
MoCs. This is a challenging task, because the semantic of several MoCs
may be fundamentally different [54]. Heterogeneity handling can take
place implicitly or needs the manual inclusion of domain interfaces. In
order to provide a coherent heterogeneous system modeling, several
approaches for the integration of different MoCs are utilized in design
tools [54]:

• Common refinement of heterogeneous MoCs.
• Hierarchical composition of heterogeneous MoCs.
• Direct composition of heterogeneous MoCs.

In the common refinement of heterogeneous MoCs (called framework
specialization), the different MoCs embedded in a modeling language
are restricted to a common MoC, obtaining thus a homogenous MoC
model which deals with several dynamic behaviors. Modeling lan-
guages such as Simulink and VHDL-AMS utilize this approach to han-
dle continuous time (CT) and discrete event (DE) systems. A common
signal model is utilized to interconnect components.

2.5 Layered System Design Platform Model 21

Heterogeneous frameworks, such as Ptolemy II, utilize a finite state
machine for the hierarchical composition of heterogeneous MoCs. Each
state of the finite state machine may utilize a different MoC [39] [106].
As each level of the hierarchy is a homogenous system, this method
is not very suitable for representing mixed signal systems such as e.g.
analog-to-digital converters.

Coordination languages provide special interfaces for carrying out a
direct composition of heterogeneous MoCs. These domain interfaces allow
a better modeling of heterogeneous systems (mixed signal systems are
more naturally described) but they are quite difficult to define. Each
model of computation is embedded in a domain. SystemC AMS and
SystemC ForSyDe implement domain interfaces for handling hetero-
geneous MoCs.

CT DE

CT DE

CT DE DE

(a) (b)

(c) (d)

Continuous time signal

Discrete event signal

Orthogonal signal

CT

DE
DECT

MS

DECT MS

Fig. 2.3: Heterogeneity handling: a) MoC specialization b) Hierarchical
MoC composition c) Direct MoC composition d) Orthogonal signals

In order to avoid the challenging task of having to design domain
interfaces for each combination of MoCs, Ptolemy II utilizes domain
polymorphic components. This modeling method requires the defini-
tion of an abstract interface that is as unspecific as possible, e.g. based on
non-deterministic automata [68]. Furthermore it is necessary to explic-
itly define domains for each model of computation. Ptolemy II utilizes
special blocks called directors for this purpose.

22 2 Methodological Background

Jantsch et al. applied composite data-flow for integrating data and con-
trol flow [53]. This approach captures the timing effects of the domain
conversions without resorting to a synchronous or timed MoC. The tim-
ing of computational processes is represented at the abstract level of
determining if sufficient data is available to start a computation. Thus,
the effects of control and timing on data-flow processing are consid-
ered at the highest possible abstraction level (i.e. as a data dependency
problem) [54].

This dissertation presents in chapter 4 a novel method for signal
modeling that enables the representation of heterogeneous behaviors.
As shown in Fig. 2.3, orthogonal signals allow the direct composition
of several MoCs without the explicit definition of domain interfaces.
Avoiding multiple signal representations, this signal modeling method
enables the implementation of polymorphic components that change
the MoC during design process according to the required properties for
refinement or analysis. The redefinition of interfaces is not necessary.
Furthermore this approach is significantly more efficient and accurate.

Although a high level of modeling abstraction is important for han-
dling system complexity, the suitability of the MoC primitives for repre-
senting the system properties is also crucial in order to efficiently carry
out design and analysis tasks. The most suitable system abstraction for
coping with a given design task is defined by the design methodology
or manually chosen by the developer. According to general behav-
ioral relations or rules which are common to all components of a given
model (or modular component), it is possible to define specific behav-
ioral domains which impose variables and inter-component relations.
Physical domains like electrical, mechanical or thermal describe sys-
tems through physical variables such as current, velocity, heat flow, etc.
The set of possible variables which may be used to describe the be-
havior of a given physical component is thus restricted to a subset of
domain variables. In physical system modeling, the set of relations across
system components and their environment must respect physical laws.
For example, electrical components must meet Kirchhoffs’ laws. Using
domain specific components, the model correctness can be ensured by con-
struction and the modeling effort reduced. This dissertation focuses on
the modeling of power electronic circuits and presents in chapter 3 a
modeling abstraction that allows fast and accurate simulations.

2.5 Layered System Design Platform Model 23

2.5.5 Model Implementation Layer

As relevant system characteristics are missing, abstract models describ-
ing the system functionality are not suitable for implementation pur-
poses [54]. Each possible system implementation must provide the spec-
ified functionality but it also has to meet the required performance and
implementation constraints [106]. The Model Implementation Layer aims
to include sufficient modeling details for enabling the stepwise system
implementation and verification with respect to all requirements and
constraints. It should be possible to realize the desired product as sug-
gested by the implementation model. In order to increase the productivity
and minimize errors, design tools should provide libraries which in-
clude a rich set of component implementation models. Thus, the design
space is reduced by specifying a static configuration (selection of com-
ponents and connectivity) and a dynamic control configuration [105]. The
choice and configuration of predefined system components is called
platform instance.

The computation of the model behavior for analysis or verification
usually needs the configuration of a simulation platform. For instance,
the simulation of analog components requires the specification of an
algorithm which is utilized for the numerical computation of the dif-
ferential equations that describe the circuit behavior. This algorithm
choice is complemented by the specification of execution constraints
such as e.g. the integration step size or the allowed computation er-
ror. Assuming that the Backward-Euler algorithm is selected, then this
platform instance is the functional specification for the next layer which
implements the algorithm (the model platform layer). The full imple-
mentation of the specified algorithm may require further choice of
components such as the linear equation solver, for running on a par-
ticular computing platform (carried out by the model execution layer)
[106]. Taking into account that each level of the behavior computation
algorithm has an impact 1 on the achieved simulation performance and
accuracy, this dissertation presents and analyzes in chapters 3, 5 and 7
the characteristics of several simulation platforms instances.

1 The impact of the algorithm mapping into the available computation resources on
the simulation performance is considered in the Model Execution Layer

24 2 Methodological Background

2.5.6 Model Refinement Layer

The specification model should be sufficiently abstract to enable the
implementation of its functionality in many ways, i.e. it should not over-
constrain the system implementation [54]. The higher is the abstraction
level of the implementation model (fewer implementation details), the
larger is the number of possible implementations (design space) that
fulfill the behavior defined by the model [54]. This is illustrated in Fig.
2.4.

���������	

��
��

�����

�����

��
���	�������

���������	��
���	�������

�	
��
���	�������

Fig. 2.4: Design space depending on the model abstraction level

As functional requirements and implementation constraints often
demand different levels of abstraction, different models (and possibly
different MoCs) are usually utilized for system specification and im-
plementation purposes [54]. Starting with a specification model that
includes a few implementation details for enabling a fast verification,
the design process usually proceeds with a step-wise model refinement
which results in an efficient system implementation [54].

Depending on the design and verification goals, different abstraction
levels may be used for modeling power electronic circuits:

1. Linear electrical network (transfer function or state space equations).
2. Electrical network with ideal components (piece-wise linear).
3. Electrical network with detailed components (often nonlinear).

For controller design a mathematical description of the electrical net-
work in form of a transfer function (or state space model) is commonly
used. This abstract model describes the electrical network as a linear
functional system which can be analyzed in the frequency domain

2.5 Layered System Design Platform Model 25

(Laplace transform). This approximation is only valid for small signal
behavior. The analysis of the switching response can not be carried out
at this abstraction level (no harmonics).

For circuit design and controller optimization tasks, a time domain
mathematical description of the power electronic system is required.
The electrical network may be represented using linear components
and switches which is shown in chapter 3. This abstract model is valid
for large signal behavior and it is utilized for the evaluation of the over-
all system performance. Voltage and current waveforms of different
system parts may be analyzed.

For circuits component choice and design verification, a detailed
mathematical model of circuit components including manufacturer
specific characteristics is required. Nonlinear component models are
normally utilized for modeling and analysis of parasitic effects, switch-
ing transitions and component stress at the last design stages.

This dissertation proposes in chapters 3 and 5 efficient computation
methods for analog circuit simulation at all these abstraction levels.

Although the component selection can be satisfactorily carried out
by experienced designers, the refinement and optimization of the im-
plementation model should be done automatically using efficient tools
in order to obtain an optimal implementation and to reduce the im-
plementation time [105]. The aim of the Model Refinement Layer is to
provide design support to automatically achieve a correct and opti-
mal final system design implementation by refining the corresponding
specification model. As the models of computation needed for speci-
fication and implementation purposes are usually different, the Model
Refinement Layer should also provide mapping rules between different
models of computation that utilize the constraints and directives de-
fined by the designer for controlling the synthesis. The properties of the
implementation model after a synthesis step should be defined by the
design methodology. The definition of abstraction levels at which the
mapping and refinement processes take place is an important method-
ology decision. In particular, the performance indexes that characterize
the architectural components should be chosen to enable a better com-
ponent reuse.

The robust control design method proposed in chapter 6 maps the
complex IMC controller derived from the plant transfer function into a
classical PID controller, keeping the frequency response characteristics.
Linear and nonlinear circuits are utilized for design refinement.

26 2 Methodological Background

Based on performance indexes and constraints, the system design is
refined following well defined steps toward the final implementation
[103]. This requires the availability of models that capture the system
properties at the defined abstraction levels (e.g. logic function, boolean
network, electrical circuit, etc) [105].

As there are typically many alternatives for refining a specifica-
tion model into an implementation model, optimization techniques are
needed to find a good trade-off between interrelated implementation
criteria such as hardware area, software code size, system performance,
power dissipation, etc. [98]. This dissertation proposes in chapter 6 a
robust control design optimization method that based on the desired
controller bandwidth and the parameter tolerances of the power elec-
tronic circuit, reliably refines the control system implementation for
obtaining an optimal robust design.

The design methodology should properly capture the platform char-
acteristics and define several platform abstraction levels depending on
the size of the design space to be explored and on the accuracy needed
for the estimation of the defined characteristics [103]. Using a common
description of the system target platform (platform API) the system
implementation can be achieved by properly interconnecting library
components (mapping onto the platform services) and the performance
of several designs can be faster explored [105]. This dissertation consid-
ers the exploration of several robust controllers based on the proposed
mixed sensitivity robustness index. 2

2.5.7 Model Platform Layer

The mapping of the implementation model into software running on
target processors requires an architectural specification of the system un-
der design [107]. The hardware platform model captures the architec-
tural specification needed for the analysis and verification of the whole
system design. For embedded systems, this hardware platform model
is typically built utilizing hardware components such as processors,
memories, buses and non-programmable hardware components. The
models of computation used for modeling the system functionality can

2 The definition of a power supply platform for DVFS is outside of the scope of this
work.

2.5 Layered System Design Platform Model 27

be also utilized for the representation of hardware platforms and their
instances [105].

For the computation of the system behavior, both the system specifi-
cation model and the hardware platform model require an interacting
engine that executes the (overall) system specification. The Model Plat-
form Layer deals with the creation of a simulation model for system design
analysis and verification. To this end, a simulation engine that provides
appropriate methods for managing model execution is linked to the
system model. It schedules the model execution and synchronizes the
simulation data. This abstract machine that executes the system model
based on the semantics of a computational model defines a simulation
platform. Given an appropriate input trajectory, the resulting output
trajectory (model behavior) is computed by executing the abstract ma-
chine [129] [91]. Design languages and simulation programs are not
computational models but they have an underlying one [54]. Typically
a set of sequential functions define the next execution point that meet
the model behavioral relations [68].

Start of simulation

mdlInitializeSizes

mdlInitializeSampleTimes

mdlOutputs

yes

no

mdlGetTimeOfNextVarHit

Simulation
time ready?

mdlTerminate

(a)

Start of simulation

Initialization

Process
?

Evaluation

yes

Update signals

Delta
cycle?

Pending
events?

no

yes

no

yes

End simulation

to run?

no

(b)

Fig. 2.5: Abstract model execution semantics: a) Simulink b) SystemC

28 2 Methodological Background

The abstract semantics of the execution engine can be quite differ-
ent depending on the modeling approach. Fig. 2.5 shows the abstract
semantic of the Simulink and SystemC simulation engines. Executing
only active processes, the SystemC discrete event execution algorithm
achieves fast simulations of digital systems. For continuous time sys-
tems the state based simulation engine of Simulink requires less com-
putation steps. As available system design tools extend one of both
computation approaches for enabling AMS system simulation, they
show a performance and accuracy trade-off for mixed analog and dig-
ital system simulation.

The concrete implementation of the set of functions defined in the
abstract semantics of execution engine determines the semantics of
the computation domains. Chapters 3 and 5 present domain specific
implementations for the behavior computation of switched electrical
networks and digital systems at register transfer level which enable fast
AMS system simulations in SystemC and SystemC AMS respectively.

The architecture of the domain specific execution engine represents
a higher level simulation platform and the algorithms provided for
model computation (operational specification) such as e.g. the Newton-
Raphson nonlinear equations solver utilized for the simulation of ana-
log circuits, constitute the domain specific platform services.

The behavior computation of analog models usually requires that
models represented at lower abstraction level (e.g. circuit level) are
reduced using a complex computational algorithm to a more abstract
functional representation (e.g. state space equations) [91]. Transforma-
tion rules for mapping the supported models of computation onto the
abstract execution machine are implicitly or explicitly implemented.
Chapter 5 derives operational computation methods for analog sys-
tems at several abstraction levels that are very efficient and do not
require the transformation of circuit equations to a reduced form.

2.5.8 Model Execution Layer

The Model Execution Layer runs the simulation model on one or more
previously defined or dynamically assigned targets which are part of
the computational platform. The computational platform is characterized
by the following properties:

2.5 Layered System Design Platform Model 29

• computation power (instructions or tasks per second)
• concurrency (central or single-core/distributed or multi-core)
• heterogeneity (homogeneous/heterogeneous processors)

The utilization of the computational platform determines the time re-
quired to carry out the simulation of the system model [129]. Powerful
computational platforms are needed to cope with design analysis, op-
timization and verification for large scale systems. In such engineering
problems, the size of the design space or alternative design configura-
tions become a challenge [129]. The optimal utilization of the compu-
tational platform resources requires today the implementation of con-
current model execution algorithms as well as the support of hardware
acceleration such as GPUs. The intrinsic properties of the behavior com-
putation methods determine the capability of the simulation platform
to take advantage from the available computation platform.

2.5.9 Model Analysis Layer

The aim of the Model Analysis Layer is to capture and to evaluate the
system design properties. An important design activity is to validate
that the specification model behaves according to the system design
purposes. As model simulation enables the computation of the model
behavior, this is the most commonly used method for system design
analysis and validation [106]. It requires the definition of an input values
sequence (stimuli) under which a certain system behavior (sequence of
computed output values) is expected.

Performance and cost metrics that characterize the system and their
components are needed for system design analysis and validation [98].
The implementation model that results after a refinement step is val-
idated against the specification model [98]. Design tools that evaluate
the results of a refinement step with respect to the performance indexes
and constraints are necessary for speeding up model refinement val-
idation. For fast exploring the trade-off amongst different solutions,
design tools that enable the instrumentation of behavioral models for
performance and cost estimation are also necessary [107] [106]. In par-
ticular, the essential characteristics of the final system design such as
performance, power, reliability, robustness and cost should be captured
by design tools [103].

30 2 Methodological Background

This dissertation proposes a novel robustness evaluation method
as well as operational methods for fast computation of performance
indexes which can be applied to common AMS control systems.

2.5.10 Model Verification Layer

The aim of the Model Verification Layer is to ensure that the final system
implementation fulfills the specified requirements and constraints. This
is a key activity and should be always part of system design method-
ology. The primary goal is the verification that system implementation
has no errors. In order to find design errors, the input sequence val-
ues utilized for system design simulation are often chosen to cover
(all possible) corner cases. The specification and simulation of corner
cases becomes particularly difficult for large and complex systems. This
increases the probability that design errors in the final system imple-
mentation are not detected [106]. For this reason, it is very important
that the simulation speed of design tools enables the verification of
large systems [54]. System design languages such as SystemC are con-
ceived for achieving a better simulation speed compared to hardware
description languages such as VHDL and Verilog.

As the verification effort increases exponentially with the system
functionality and complexity, it has usually the higher impact on the
total development cost of contemporary embedded systems [54]. Com-
mon design verification methodologies take a system model and deter-
mine if the set of properties and constraints imposed on the system are
fulfilled. The formalism and semantics of the design language utilized
for representing the system under design have a considerable impact
on the verification efficiency and effectiveness [54].

Design verification should be carried out at high abstraction level to
early find design problems [54]. Simulation based system verification
is the most common used method for system verification. Due to the
fact that the system model is usually not based on a single semantics
(different MoCs), the verification of system design and implementa-
tion becomes a challenge [54]. The orthogonal signal based modeling
method presented in chapter 4 and its computational advantages helps
to cope with these issues. It is explained in chapter 7. Moreover, semi-
symbolic tolerance analysis is investigated.

2.6 Chapter Summary and Conclusions 31

2.6 Chapter Summary and Conclusions

As a clear definition of nonfunctional requirements helps to reduce
the design space exploration effort and enables the definition of better
design methodologies, the presented system design platform model
separates functional requirements from design constraints. Design tools
which describe the system specification in this way are more suitable
for a stepwise system design refinement and optimization.

The presented design platform model separates the modeling of sys-
tem structure from behavior to achieve more general and efficient de-
sign tools. Most design tools present a poor topology analysis support.
Capturing the model architecture is an important modeling feature be-
cause structural models allow a better MoC abstraction and analysis
than models described only at behavioral level as shown in chapter 3.
It enables the faster simulation and efficient verification (corner cases
can be automatically derived) of switched electrical networks. Model-
ing formalisms supporting AMS systems are a further weak point of
many design tools. Appropriate MoCs that capture the system proper-
ties at several abstraction levels are necessary to ensure a correct system
design implementation. In particular, the utilized MoCs should capture
the relevant system properties before and after each design refinement
step. The set of available MoCs has a considerable impact on the whole
design process. Both the availability of MoCs that provide adequate
abstractions for system design as well as the efficient implementation
of the MoC primitives are very important design tool features that
contribute to increasing the system design productivity.

A reason for the poor MoC support is the difficult composition and
accurate synchronization of heterogeneous MoCs. The root of this prob-
lem lies in the approach for representing signals. The domain mapping
or the reduction to a single semantics for completely different dynam-
ical behaviors such as the behaviors of analog and digital systems re-
quires a signal modeling approach that is able to efficiently capture
the behavioral properties. A novel signal modeling method with a uni-
fied yet orthogonal representation of continuous and discrete dynamic
behaviors is proposed in chapter 4 for overcoming the heterogeneous
modeling issues. As shown in chapter 5, design tools that provide a
better support for heterogeneous system modeling and simulation at
several levels of abstraction can be achieved using this orthogonal sig-
nal model.

32 2 Methodological Background

Design tools usually hide the exact structure of the program utilized
for carrying out model processing and execution. Domain interfaces
are implicitly inserted by the model translation process. The program-
mer or designer does not known the details of the algorithms utilized
for implementing model decomposition, mapping and execution [54].
The selection or modification of these algorithms is normally not possi-
ble. With the aim of improving design tool customizing, the presented
design platform model emphasizes the importance of a more abstract
representation of the simulation platform. The model implementation
layer does not only include the system implementation parameters and
constraints in the specification model, it also defines an instance of the
simulation platform. Moreover, the proposed design platform model
decouples the simulation platform from the concrete computational
platform and has the potential to support faster model simulations on
emerging parallel and high-performance computational platforms3.

The capabilities of design tools for system design analysis and verifi-
cation have a significant impact on the system design productivity. For
this reason, chapters 6 and 7 propose design methodologies and com-
putation methods that enable the faster achievement of robust AMS
system designs based on a reduced set of system properties. The com-
putational advantages of the system behavior modeling and computa-
tion methods proposed in chapters 4 and 5 enable faster system design
analysis and verification.

As the proposed layered system design platform model captures the
entire design process and organizes the design activities in a hierarchi-
cal manner, it is very useful to compare and develop design method-
ologies and tools. The formal description of the several model layers
would be an interesting future work towards a quantitative evaluation
of design methodologies and tools. In the scope of this dissertation, the
presented layered system design model serves as overview for evalu-
ating the impact of the proposed behavior modeling and computation
methodologies on the system design activities regarding quality and
productivity.

3 This research topic is not included in the scope of this dissertation

33

Chapter 3

Electrical Network Modeling and
Simulation

Behavior abstraction techniques for analog components modeling at
system level are an active research topic in heterogeneous SoC design.
In particular, efficient power system modeling is relevant for low power
consumption embedded system design. Modeling semiconductor com-
ponents such as diodes and transistors as ideal instantaneous switches
lead to efficient circuit response computations. The resulting switched
electrical networks are well suited for the integration of power elec-
tronic circuits into system level models. They provide a good accuracy
and simulation speed for design and validation purposes. The circuit
behavior abstraction based on ideal switches allows fast and stable
power control simulations, however requires the handling of voltage
and current impulses for determining the correct topology after switch-
ing. This chapter presents an efficient impulse analysis method at topol-
ogy level that allows the prediction and logic representation of voltage
and current impulses as well as the fast and reliable topology switching
computation. The main advantage of the proposed topological impulse
analysis method is the efficient clustering of multiple topologies that
produce electrical impulses. It enables the fast identification of such
topologies for circuits containing a large number of switches before sim-
ulation start. Furthermore, the proposed topological analysis method
does not depend on the circuit equations formulation form which is a
key feature. In order to validate the proposed methodology, a SystemC
AMS extension was implemented and utilized for the modeling and
simulation of several power converters.

This chapter is organized as follows. After the presentation of the re-
search motivation and related work in section 3.1 and 3.2 respectively,
the research contribution of this chapter is summarized in section 3.3.
The traditional circuit modeling and simulation methodology is re-
viewed in section 3.4. The modeling of switched electrical networks
is introduced in section 3.5 and the proposed modeling and analysis
method is presented in section 3.6. The SystemC MoC implementation
for power electronic modeling is described in section 3.7 and its practi-
cal applicability is demonstrated in section 3.8. Finally, section 3.9 states
the value of the presented circuit analysis and computation methods.

34 3 Electrical Network Modeling and Simulation

3.1 Motivation

Analog circuit modeling at higher levels of abstraction is gaining im-
portance to facilitate high-performance system-level simulations. In or-
der to provide support for System-on-Chip (SoC) design, system level
modeling and simulation languages and tools such as SystemC were
extended in the past years to enable the modeling and simulation of
analog and mixed-signal (AMS) systems. The current SystemC AMS
standard includes models of computation (MoCs) for continuous and
discrete time data flow modeling as well as for electrical network mod-
eling. These behavior abstraction methodologies provide enough sup-
port for system design and verification in a wide range of applications.
However, for applications requiring large signal behavior and switch-
ing mode operation such as driver stages with pulse width modulation
(PWM), the existing SystemC AMS modeling capabilities do not achieve
the necessary accuracy [44]. Hardware description languages such as
VHDL-AMS and Verilog-AMS provide more accurate analog modeling
features but they present a poor simulation performance [117].

Modeling methodologies that rely on ideal instantaneous switches
represent power electronic systems as internally and externally con-
trolled switched networks providing an appropriate behavior abstrac-
tion of power electronic systems. They enable fast, stable and accurate
simulations of power electronic circuits coping with the growing need
for better models of computation but require the implementation of
efficient and reliable computation methods that are able to predict and
handle voltage and current impulses as well as to correctly compute
and handle circuit topologies after switching. This is a mandatory fea-
ture for simulating circuits which contain a large number of internally
controlled switches such as high voltage power converters.

3.2 Related Work

In order to provide modeling capabilities for systems with mixed digital
and analog behavior, Al-Junaid at al. presented a SystemC extension
that uses a general-purpose analog solver for the computation of analog
components [1]. A lock-step method was applied for invoking and
synchronizing the analog solver with the SystemC kernel.

3.2 Related Work 35

The language constructs of SystemC-A support a variety of analog
abstraction levels, including non-linear components (diode and MOS-
FET) for electrical circuit modeling. The corresponding circuit equation
set was formulated using the modified nodal analysis (MNA) method
and the resulting differential algebraic equations (DAEs) were solved
using the Newton-Raphson (NR) method. To deal with simulation per-
formance issues, the handling of extremely small and zero time-steps
was incorporated into the analog solver [2].

With the aim of filling the gap in heterogeneous SoC modeling and
simulation, the SystemC extension for analog and mixed-signal systems
includes MoCs that enable the modeling of linear dynamic continuous
time systems and linear electrical networks [119] [118]. The continuous
time MoCs are embedded into discrete event modules as a cluster of
data flow components with a static scheduler. The synchronization be-
tween continuous time and discrete event model parts is carried out
utilizing a fixed time step. Uhle et al. proposed a model of computa-
tion for SystemC AMS that enables the modeling of analog nonlinear
parts of cyber-physical systems in similar way to VHDL-AMS and Ver-
ilogAMS [117]. They utilized the generic mechanism of SystemC AMS
for interfacing the nonlinear continuous time solvers and discrete event
system parts during simulation.

Although electrical network modeling is supported by the above
mentioned SystemC extensions, the implemented circuit abstractions
do not provide the necessary accuracy or simulation performance for
the analysis and validation of power electronic circuits at system level.
SystemC AMS allows rapid electrical network simulations but it does
not offer primitives for modeling internally controlled switches (such as
diodes and similar semiconductor components). The proposed exten-
sions based on nonlinear continuous time behavior computation lead to
sophisticated models (based on detailed component models with large
number of parameters) and slow simulations, restricting their practical
application to small power electronic circuits.

Grimm et al. utilized pre-solved parametrized differential equations
to enable faster simulations of analog power drivers [44]. The dom-
inant cycle of the network was determined by applying the Dijkstra
algorithm. This approach allows very fast simulations but similar to
SystemC AMS, it does not fully support the simulation of internally
controlled switches. Only a single topological change is permitted at
each switching instant.

36 3 Electrical Network Modeling and Simulation

In order to carry out fast and accurate time domain analysis of inter-
nally controlled switched networks, Bedrosian at al. proposed a model
of computation that relies on ideal switches and allows several topolog-
ical changes after switching [12] [13]. Considered impulsive voltages
and currents at the switching instants in conjunction with the initial
conditions, they determined the correct topology after switching. For
the accurate handling of voltage and current impulses at the switch-
ing instants, they separated the circuit response into an impulsive and
a non-impulsive component. For each circuit topology, the impulsive
response part was calculated using a computational method based on
the inverse Laplace transform from the network equations (generated
utilizing a two-graph modified nodal analysis technique).

Chung et al. presented a simulation method for switching circuits
with internally controlled switches that analyzes the circuit as a linear
resistive one (energy-storing elements are replaced by independent DC
sources) to avoid the inverse Laplace transform calculations [17].

Allmeling et al. developed a toolbox named PLECS which reduces
the automatically generated mesh and node equations describing the
circuit to a state space form and determines the circuit topology by
analyzing the system outputs and the control inputs. In addition to the
non-impulsive part of the system output, an output impulse-multiplier
which is implicitly associated with a voltage or current impulse, is
determined after switching by a switch manager [4].

Massarini et al. proposed a switched network time domain analysis
method based on a state space circuit equations formulation that allows
the prediction of possible impulsive transitions due to internally con-
trolled switches [80] [79] [81]. For each topology, the state equations and
output equations are systematically obtained from the circuit equations
and analyzed using a logical representation of impulsive quantities, in
order to find the correct topology after switching.

Although the switched network behavior computation methods
based on the state space representation of circuit equations allow the
systematic prediction and logic description of voltage and current im-
pulses, they require a considerable effort to reduce the circuit equations
to the state space form at each switching instant. On the other hand, the
prediction and analysis of voltage impulses demands a considerable
effort for circuits described using the MNA method. Therefore, a more
general switched network analysis method is needed for the efficient
behavior computation of power electronic circuits.

3.3 Contribution to Power Electronic Modeling 37

3.3 Contribution to Power Electronic Modeling

The aim of the research work presented in this chapter was to derive
circuit equations’ analysis and reduction methods for an efficient im-
plementation of a switched network simulator that enables the system
level time domain response analysis of power electronic circuits. The
main research activities carried out to achieve this goal were the fol-
lowing:

• To investigate the suitability of several circuit equations formula-
tion methods to represent switched electrical networks (regarding
implementation complexity and computation accuracy).

• To evaluate the impact of several circuit equation formulation meth-
ods on the behavior computation efficiency.

• To derive equation reduction methods for switched electrical net-
works.

• To find out a general method for predicting possible electrical im-
pulses that does not depend on the representation of circuit equa-
tions.

• To define an efficient algorithm which finds the correct circuit topol-
ogy after switching.

• To analyze the accuracy of several algebraic computation methods.
• To develop computational approaches for improving the circuit sim-

ulation performance and accuracy.

In order to carry out an efficient analysis and formulation of cir-
cuit equations this work captures switched electrical networks using
a table representation. This approach enables the prediction of switch-
ing impulses and the compact formulation of circuit equations which
improves the simulation performance and avoids solvability problems.

As the prediction of switching impulses from network topology
properties is not limited to a particular circuit equations formulation
method and enables the efficient simulation of switched electrical net-
works (the impulse analysis after each topology change is not neces-
sary), the proposed method is a valuable contribution to the simulation
of large power electronic circuits.

38 3 Electrical Network Modeling and Simulation

3.4 Circuit Modeling and Simulation

In this section, the traditional algorithm utilized for time domain circuit
analysis4 in popular simulators such as PSpice and Saber is briefly
explained. As shown in Fig. 3.1, the simulation algorithm consists of
the following main tasks [90]:

1. Formulation of circuit equations
2. Discretization of circuit equations (numerical integration)
3. Linearization of circuit equations
4. Solving linear algebraic circuit equations

Note that the simulation algorithm tasks are carried out sequentially
and iteratively.

Start of simulation

Formulate circuit equations
f(x(t),dx(t)/dt,t) = 0

lo
o

p

n
 i

te
ra

ti
o

n

Discretize circuit equations
f(xn,tn) = 0

Linearize circuit equations
f(x (p),t)-(x -x (p))*df(x (p),t)/dt = ԑ

1

2

3

Solve circuit equations
A xn = b

T
im

e
 s

te
p

no

yes

no

End of simulation

N
e

w
th

o
n

-R
a

p
h

s
o

n

yes

f(xn ,tn)-(xn-xn)*df(xn ,tn)/dt = ԑ

4

Signal
convergence?

Simulation time
reached?

Fig. 3.1: General time domain circuit simulation approach

4 In this work circuit denotes electrical networks

3.4 Circuit Modeling and Simulation 39

3.4.1 Formulation of Circuit Equations

There are two approaches usually utilized in practice for the formula-
tion of circuit equations:

• The Modified Nodal Analysis (MNA).
• The reduction to State Space (SS) equations.

The Modified Nodal Analysis (MNA) method is utilized in circuit sim-
ulators such as PSpice or Saber for the systematic formulation of circuit
equations. It is a simple method that enables the description of a large
variety of circuits and leads to sparse system matrices of moderate size.
It is considerably more efficient than other general circuit formulation
methods such as tableau (for more details see [120]).

The state space representation of the circuit equations requires the
reduction of circuit equations to a minimal set (state space form) after
their formulation. This equation transformation method is quite sophis-
ticated but leads to dense system matrices. It is utilized by some circuit
simulators for achieving a faster time domain circuit analysis [116].

Modified Nodal Analysis (MNA)

In this general formulation method, each circuit element adds its con-
tribution to a system matrix5 using an element stamp. Frequency in-
dependent circuit elements (resistors, etc.) are added to the admittance
matrix [GMNA] and frequency dependent circuit elements (capacitors, in-
ductors, etc.) are added to the impedance matrix [CMNA]. Inductors and
other circuit elements are added in impedance form i.e. introducing a
branch current in the equations. The contribution of voltage and cur-
rent sources as well as the initial condition of energy storing elements
are added to the right-hand-side vector [w(t)]. Both matrices are square
and have the same size. The first N rows and columns of the matrices
correspond to the circuit node voltages and the remaining B rows and
columns of the matrices correspond to additional branch currents. This
equation construction method is straightforward and eliminates some
redundant variables.

5 In this work, matrices and vectors are denoted in square brackets

40 3 Electrical Network Modeling and Simulation

After the systematic construction of circuit equations, the following
set of differential algebraic equations (DAEs) is obtained:

[GMNA](N+B)2 · [x(t)]N+B+ [CMNA](N+B)2 · d
dt [x(t)]N+B = [w(t)]N+B (3.1)

where the real vector [x(t)]N+B consists of N node voltages and B branch cur-
rents. The voltage of all circuit nodes are included in this vector. Square
brackets with subscripts are used in this work to explicitly denote the
size of matrices and vectors.

Eq. (3.1) is valid for linear electrical networks. Nonlinear elements
are modeled as controlled electrical sources. They appear thus in the
right-hand-side vector [w(t)]N+B.

State Space (SS) Equations

The state space equation formulation is commonly used for the simu-
lation of switched or piece-wise linear circuits. Once the initial circuit
equations have been formulated, a procedure to reduce the implicit
equations to a set of ordinary differential equations (ODEs) must be ap-
plied (e.g. using Gaussian elimination for reducing the equation system
to a triangular form) [116]. The circuit equations are thus represented
by a minimal set of variables as follows:

d

dt
[x(t)]N = [ASS]N2 · [x(t)]N + [BSS]NM · [u(t)]M (3.2a)

[y(t)]R = [CSS]RN · [x(t)]N + [DSS]RM · [u(t)]M (3.2b)

where [x(t)]N, [u(t)]M and [y(t)]R are the state, input and output vector
variables respectively. The state vector [x(t)]N contains continuous sig-
nals such as capacitor voltages and inductor currents. The input vector
[u(t)]M contains signals that may be discontinuous such as voltages and
currents from source circuit elements.

Eq. (3.2) is valid for linear systems. It characterizes any linear sys-
tem with continuous dynamic behavior. In this chapter, linear electrical
networks are considered. There are N independent explicit linear differ-
ential equations (know as the state equations) to be solved. The remaining
R linear algebraic equations, which describe the system outputs, can be
computed directly by using algebraic operations.

3.4 Circuit Modeling and Simulation 41

3.4.2 Numerical Integration

Numerical integration methods transform the differential equations
describing a continuous time system into a set of algebraic equations.
Discretization methods are numerical integration methods that approx-
imate the time derivative operator with a divided difference operator
transforming the continuous time differential equations into discrete
time algebraic equations. Depending on the time points utilized for com-
putation, discretization methods are classified in two groups [90]:

1. One-step methods.
2. Linear multi-step (LMS) methods.

As shown in Fig. 3.2 one-step methods lead to additional computa-
tions at intermediate time points (unfilled circles). Non-stiff integration
routines such as Runge-Kutta (RK) are widely utilized for the simu-
lation of continuous time systems e.g. by Simulink. As typical power
electronic systems present large spread in time constants, they produce
a stiff set of equations which are not handled well by one-step inte-
gration methods [116]. Implicit multi-step integration methods such as
Backward Differentiation Formulas (BDF) are required for accurate and
stable simulations.

t1 t2 t3 t4 t

f(t)

(a)

t1 t2 t3 t4 t

f(t)

(b)

Fig. 3.2: Discretization methods: a) One-step b) Linear multi-step

42 3 Electrical Network Modeling and Simulation

One-step Discretization Methods

One-step discretization methods make use of the previous computed
value xn and new values at intermediate time points between tn and
tn+1 to produce the value xn+1 at the time tn+1.

The values at intermediate time points allow to improve the accuracy
of the computed new value xn+1. They are discarded after the integra-
tion step i.e. they are not reused in the computation of future steps.
Commonly used one-step integration methods are Runge-Kutta and
Rosenbrock [97]. They are suitable for variable time step simulations.

Linear Multi-step Discretization Methods

Multi-step discretization methods make use of only previously com-
puted values (xn, xn−1, etc.) in order to produce the new value xn+1 at the
time tn+1. They are computationally more efficient than one-step meth-
ods. They are also more suitable for solving stiff differential equations,
such as the equations describing linear electrical circuits. These meth-
ods are typically used in traditional circuit simulators such as PSpice.
The solution of the ordinary differential equation dx(t)/dt = f (x(t), t) by
the linear multi-step methods can be expressed in the following general
form:

k−1∑

j=−1

α j ·xn− j = h ·
k−1∑

j=−1

β j · f (xn− j, tn− j) (3.3)

where k defines the number of steps and h is the time step. Depending
on the values of α j and β j different set of LMS equations are obtained.

In the Adams-Bashforth LMS methods, β-1 is equal to zero. The
resulting equations are explicit. The next step value can be directly
computed using the previous step value and the previous computed
derivatives.

xn+1 = xn+h · fn (k = 1)

xn+1 = xn+
h
2 · (3 · fn− fn−1) (k = 2)

xn+1 = xn+
h
12 · (23 · fn−16 · fn−1+5 · fn−2) (k = 3)

(3.4)

3.4 Circuit Modeling and Simulation 43

The first Adams-Bashforth equation (k=1) is known as Forward Euler
(FE). It is sometimes used for predicting the new value xn+1.

In the Adams-Moulton LMS methods, β-1 is different from zero. The
resulting equations are therefore implicit. The next step value depends
on the previous step value xn as well as on the derivative at the next
step fn+1 and the previous computed derivatives (fn, fn−1, etc.).

xn+1 = xn+
h
2 · (fn+1+ fn) (k = 1)

xn+1 = xn+
h
12 · (5 · fn+1+8 · fn+ fn−1) (k = 2)

xn+1 = xn+
h
24 · (9 · fn+1+19 · fn−5 · fn−1+ fn−2) (k = 3)

(3.5)

The first equation (k=1) is known as the Trapezoidal Rule (TR). This is one
of the most commonly used discretization method in circuit simulation.

In the Backward Differentiation Formulas (BDF), the resulting equa-
tions are also implicit. The next step value depend on the previous step
values (xn, xn−1, etc.) as well as on the derivative at the next step fn+1.

xn+1−xn = h · (fn+1) (k = 1)

xn+1− 4
3 ·xn+

1
3 ·xn−1 =

3·h
2 · (fn+1) (k = 2)

xn+1+
18
11 ·xn− 9

11 ·xn−1+
2
11 ·xn−2 =

6·h
11 · (fn+1) (k = 3)

(3.6)

The first BDF equation (k=1) is known as Backward Euler (BE). The
most commonly used BDF equation in circuit simulation is the second
order (two-step) BDF, which is often denoted as BDF2. This is known as
the Gear-Shichman formula or second order Gear formula in the circuit
simulation literature. Higher order formulas are often more accurate
but any BDF equation with order higher than 6 is zero-unstable. The
great advantage of TR, BE, and BDF2 LMS methods is that their stability
does not impose restrictions on the time step h. In other words, these
methods produce a stable difference equation system for any given
stable differential equation system.

44 3 Electrical Network Modeling and Simulation

3.4.3 Numerical Linearization

If the differential equations describing a continuous time system are
nonlinear, the discretized algebraic equations are also nonlinear. Nu-
merical linearization methods transform a set of nonlinear algebraic
equations into a set of linear algebraic equations. Practical approaches
for solving a set of nonlinear algebraic equations typically consist in
an iterative method that generates a sequence of candidate solutions.
For circuit simulation (stiffproblems), solving nonlinear algebraic equa-
tions by any of the standard methods, such as the fixed point method, does
not work well. For stability reasons, implicit methods are required. The
Newton-Raphson (NR) method is instead more appropriate to solve
the set of nonlinear algebraic equations describing electronic circuits.
This method constructs a local linearized equation using a first order
truncated Taylor series expansion. For the one dimensional case, the
linear equation around the value xk is given by:

Mk(x) = f (xk)+ J(xk) · (x−xk) (3.7a)

J(xk) =
∂ f (x)

∂x

∣
∣
∣
∣
∣
∣
x=xk

(3.7b)

The solution of the implicit equation f (x) = 0 is approximated by
the solution Mk(x) = 0. Thus, the approximate solution xk is iteratively
improved by solving the following linear equation:

xk+1 = xk−
f (xk)

J(xk)
(3.8)

For the computation of the circuit behavior (multi-dimensional case),
Eq. (3.8) is formulated as a linear algebraic equation system.

3.4.4 Numerical Solution of Linear Algebraic Equations

After the discretization and linearization steps, a linear algebraic equa-
tion system describing the electrical circuit behavior is obtained. It has
the following generic form:

3.4 Circuit Modeling and Simulation 45

[A]N2 · [xk+1]N = [bk+1]N (3.9)

where N is the number of equations. The final form of the system matrix
[A]N2 and of the vector [bk+1]N depend on the applied numerical methods
for circuit equations formulation, integration and linearization.

There are two classes of efficient techniques for solving a linear
algebraic equation system:

1. Direct methods.
2. Indirect (or iterative) methods.

For small linear electrical circuits, Eq. (3.9) can be efficiently solved
using direct computation methods. For the simulation of large non-
linear circuits, iterative computation methods may provide a better
accuracy and performance than direct methods.

Direct methods solve a linear algebraic equation system in a fixed
and pre-determined number of steps. The most commonly used method
for finding the solution of a system of linear algebraic equations is the
Gaussian elimination (GE). It is one of the most efficient and robust
methods for solving algebraic equation systems. This method is also
easy to implement and can be extended for exploiting matrix sparsity.
This is useful for circuit simulation that relies on MNA formulation
methods. There are many variants of the Gaussian elimination method,
such as LU factorization and Cholesky decomposition. Most modern
circuit simulators carry out a LU factorization and compute the cir-
cuit response at each step applying backward substitution and forward
elimination (for more details see [120] or [90]).

Indirect methods are iterative computation techniques that approach
gradually the solution of a linear algebraic equation system. These
methods can improve the accuracy of the solution but they converge
only if the system matrix [A]N2 has certain properties. The most com-
monly used methods for the iterative computation of electrical circuit
behavior are Gauss-Seidel, Gauss-Jacobi and Conjugate Gradient [90].
As iterative computation methods involve only matrix-vector multipli-
cations, they can be more efficient than direct methods, especially for
the simulation of large nonlinear circuits on parallel computers. How-
ever, they only work well on a certain classes of circuits e.g. CMOS.

46 3 Electrical Network Modeling and Simulation

3.5 Power Electronic Modeling with Ideal Switches

As the process during switching is not important at the first design
stages, ideal instantaneous switches are an appropriate behavior ab-
straction for modeling power semiconductor components. An ideal or
perfect switch has zero resistance in ON state, zero admittance in OFF
state and switches between both states in zero time.

The computational advantages of ideal switching modeling are:

1. Simple numerical integration algorithm (no linearization).
2. Short time switching process (only two computation steps).
3. Reduced equation system.
4. Less solvability problems.
5. More accurate models (no additional components for stability).
6. Faster simulations.

The methods required to solve the differential equations describing
the circuit behavior at each circuit topology depend on the circuit ele-
ment characteristics. Using linear electrical elements, the linearization
of the circuit equations is not necessary. Simple integration methods
such as Backward Euler (BE) or the Trapezoidal Rule (TR) stably solve
the linear circuit equations. Furthermore, the time step can be adjusted
once after a switching event (new circuit topology) leading to an ef-
ficient and accurate simulation of power electronic circuits. As ideal
switches change their state in zero time, only two integration steps
need to be computed to handle the discontinuities at each switching
event. The numerical integration algorithm is applied again to compute
the system state after switching.

The nodes connecting ideal switches can be contracted to a single
node when ideal switches are ON. Thus, the size of the network matrices
and hence the computation time can be reduced.

As ideal switches do not have very small or very large parameter
values (such as resistive switch models), the resulting circuit equa-
tion system is normally non-stiff which leads to stable simulations.
Moreover, ideal switches do not affect the circuit response. Additional
passive components (called snubbers) for simulation convergence are
rarely necessary. Such snubber components introduced for simulation
stability may considerably increase the simulation time and reduce the
computation accuracy.

3.5 Power Electronic Modeling with Ideal Switches 47

Computational Requirements for Ideal Switches

Ideal switches lead to more stable and faster electronic circuit simula-
tions than other semiconductor modeling approaches but they require
the proper handling of network inconsistencies after topology changes
during simulation. An ideal switch produces a short circuit when it
is closed (ON) and an open circuit when it is open (OFF). Depending
on the resulting topology after commutation, different circuit equation
inconsistencies can take place due to:

1. Floating branches.
2. Short-circuited voltage sources.
3. Open-circuited current sources.

If one or more circuit equation inconsistencies are present in a circuit
topology, the corresponding circuit equations cannot be numerically
solved. Circuit analysis is necessary to find such network inconsisten-
cies. After removing topological inconsistencies from circuit equations,
the network response can be computed but it may be discontinuous
at the switching instants. Voltage or current impulses may occur after
topology switching. They can be caused by:

1. Short-circuited capacitors.
2. Open-circuited inductors.
3. Different initial conditions of interconnected circuit elements.

Electrical impulses are produced by inconsistent initial conditions or
changes in the topological state (number of energy storing elements).
Impulsive currents or voltages need to be accurately recognized and
appropriately handled for correct circuit simulation.

Taking into consideration the network components and topology,
switched networks can be classified into:

1. Externally controlled switched networks.
2. Internally controlled switched networks.

In externally controlled switched networks the state of the switches
do not depend on the network response. All switches are controlled by
external signals. It leads to forced commutations.

In internally controlled switched networks one or more switches
are controlled by network voltages or currents. The switching time

48 3 Electrical Network Modeling and Simulation

between different topologies depends on the state of network compo-
nents. It leads to natural commutations. Internally controlled switches
may change their state if a current or voltage impulse is applied to
them. Taking into account that many topology changes can occur at a
given switching instant in internally controlled switched networks, the
computation of the correct topology after switching is necessary.

As described in the related work, there are several methods to cope
with voltage and current impulses in switched networks as well as for
determining the correct topology after switching. In the next section, a
general method based on topological analysis is proposed.

3.6 Topology Analysis of Switched Electrical Networks

To carry out an efficient topology analysis of switched electrical net-
works this work extends graph theory representation methods for the
detection of network inconsistencies. Fig. 3.3 shows the graph repre-
sentation of a Buck converter circuit.

n1

E1

S2

D3

L4 R5
n2 n3

A
n5

Am6

C7 G8 V Vm9

n4

(a)

1

0

2 3 4

42

1

5

5

6

7
8

9
3

(b)

Fig. 3.3: Buck converter: a) Circuit b) Graph representation

3.6 Topology Analysis of Switched Electrical Networks 49

A network graph considers the network elements as terminal compo-
nents. It describes the connection between network elements capturing
the topological properties of the network in a natural way.

For the construction of the directed graph network representation,
each 2 terminal element of the network is numbered and replaced in
the circuit by a line called edge. An orientation corresponding with the
assigned current flow direction is associated with each edge in the
graph. For passive elements, the node from which the current flows is
the positive terminal. For current sources, the direction of the current is
defined by its symbol. For voltage sources, the direction of the current
flow is from the positive to the negative terminal. The nodes of the
network correspond to the vertexes of the graph. They are numbered.
The vertex numbers in the graph are placed within circles to distinguish
them from the edge numbers. Zero is assigned to the ground.

Network graphs can be efficiently described in form of a simple table.
The construction of the table representing an electrical network on the
computer is straightforward. Each 2 terminal element of the network
adds a new column to the table. The input and the output terminals
of two ports elements (e.g. a transformer) are represented as separated
edges (columns in the table form). For each network element, the edge
number, the type as well as the number of the positive and the negative
nodes are described in the corresponding table row.

In order to carry out a switched network analysis, this work extends
the graph representation by including an additional row that contains
the number Zi assigned to the switching element. It is incremented for
each switching element in the network. The following table represents
the buck converter circuit.

Edge 1 2 3 4 5 6 7 8 9

Type E S D L R Am C G Vm

Np 1 1 0 2 3 4 5 5 5

Nn 0 2 2 3 4 5 0 0 0

Zi 0 1 2 0 0 0 0 0 0

Table 3.1: Buck converter table

50 3 Electrical Network Modeling and Simulation

Reduced Network Graph for Inconsistency Analysis

The extended representation of a switched electrical network including
the switching element numbers allows the prediction of inconsistent
circuit equations as well as the reduction of the circuit equations. The
following information about the network nodes and branches is ob-
tained from the extended network graph:

• Connected elements which can be reduced to a single element.
• Floating nodes (and their switching dependencies).
• Floating branches (and their switching dependencies).
• Complementary network branches (i.e. diode bridge)

A floating node is a node to which only one element is connected. The
current through a branch containing a floating node is zero. A floating
branch is a branch terminated with floating nodes. It is not possible to
compute the voltage across its nodes.

Using the extended network graph, the following switched network
topology analysis steps are carried out in this work:

1. Group serial connected elements which are represented in impedance
form (single current branch containing R-L-Am elements).

2. Group parallel connected elements which are represented in admit-
tance form (single nodal admittance containing G-C-Vm elements).

3. Identify floating nodes if all switches are open.
4. Identify floating branches if all switches are open.

Applying the steps 1-2, a reduced circuit table is obtained. Table 3.2
shows the reduced circuit table for the Buck converter circuit.

Edge 1 2 3 4-5 7-8-9

Type E S D L-R-Am C-G-Vm

Np 1 1 0 2 5

Nn 0 2 2 5 0

Zi 0 1 2 0 0

Table 3.2: Reduced circuit table for Buck converter

The circuit elements L, R and Am have the same current and can
be grouped into a single edge. The parallel admittance elements G, C

3.6 Topology Analysis of Switched Electrical Networks 51

and Vm have the same voltage applied to their nodes and can be also
grouped into a single edge.

If all switches are open (step 3), there are two floating nodes in
the circuit (node 1 and node 2). As all circuit branches are connected
to ground, any floating branch exists that would need to be removed
from the network equations when all switches are open (step 4).

Voltage and Current Graphs for Impulse Analysis

An edge on a network graph simultaneously represents the current
through the network element and the voltage across the network ele-
ment. For some elements of the network, one of the constitutive vari-
ables may be zero. For example, the current through an ideal switch or
the voltage across its terminal are zero when it is open or closed respec-
tively (complementary behavior). For some other elements, one of the
constitutive variables is not necessary for the solution of the resulting
equation system such as the current through a voltage source and the
voltage across the terminal of a current source. Using separated graphs
for representing the network voltages and currents, this redundancy
can be eliminated (for more details see [120]).

This work utilizes the current and voltage graphs for both reducing
network equations as well as for detecting topologies may generate
impulses in switched electrical networks. From the current graph, the
following network information is obtained:

• Open circuited current sources and their switching dependencies.
• Branches which may generate voltage impulses and their switching

dependencies.
• Voltage impulses acting on internally controlled switches.

From the voltage graph, the following network information is obtained:

• Short circuited nodes and their switching dependencies.
• Branches which may generate current impulses and their switching

dependencies.
• Current impulses acting on internally controlled switches.

Using the extended current graph, the following switched network
topology analysis steps are carried out in this work:

52 3 Electrical Network Modeling and Simulation

1. Collapse the nodes of the network elements that are not of interest
for network equation formulation (voltage sources E and sinks Vm).

2. Collapse the nodes of the network elements that are not of interest for
impulse analysis (only switches and branches containing inductors
are of interest and remain in the table)

3. Identify open circuited current sources.
4. Identify branches connected to floating nodes and containing induc-

tors (branches that can generate voltage impulses).
5. Identify the switching state dependencies for branches generating

voltage impulses.
6. Identify voltage impulses acting on internally controlled switches

and their polarity.

Table 3.3 shows the reduced circuit table obtained for the Buck con-
verter circuit after applying the steps 1-2. The current across E and
Vm is not of interest for network equation formulation and their nodes
were collapsed. The parallel admittance branch G-C is not of interest
for impulse analysis and their nodes were also collapsed.

Edge 2 3 4-5-6

Type S D L-R-Am

Np 0 0 2

Nn 2 2 0

Zi 1 2 0

Table 3.3: Current analysis table for Buck converter

Using this reduced table, it is possible to find the states producing a
voltage impulse. If both switches are open (Z1 NOR Z2), the branch 4-5-6
containing an inductor can generate a voltage impulse (node 2 is open).
It is even possible to determine that the produced voltage impulse when
the switches are open (and the inductor current is different from zero)
is applied to the diode with positive polarity (turning the diode ON).

Using the extended voltage graph, the following switched network
topology analysis steps are carried out:

1. Collapse the nodes of the network elements that are not of interest
for network equation formulation (current sources J).

2. Identify short circuited voltage sources and capacitors if all switches
are closed.

3.7 Implementation 53

3. Identify the switching state dependencies for branches generating
current impulses.

4. Identify current impulses acting on internally controlled switches
and their polarity.

Table 3.4 shows the reduced circuit table obtained for the Buck con-
verter circuit after applying step 1. The voltage through Am is zero, and
their nodes can be collapsed.

Edge 1 2 3 4-5 7-8-9

Type E S D L-R C-G-Vm

Np 1 1 0 2 5

Nn 0 2 2 5 0

Zi 0 1 2 0 0

Table 3.4: Voltage analysis table for Buck converter

After collapsing all switches, current impulses generated by short
circuited voltage sources and capacitors can be easily found (step 2). In
the Buck converter example, the battery E is short circuited when the
switch S and the diode D are simultaneously closed (Z1 AND Z2). The
current flow direction is determined by the polarity of the battery.

3.7 Implementation

In order to carry out switched network simulations in SystemC, this
work exploits the generic architecture of SystemC AMS for the imple-
mentation of a model of computation supporting internally and exter-
nally controlled ideal switches. The new MoC, named Electrical Piece-
wise-linear Networks (EPN), follows the same syntax as the currently
available MoC ELN (Electrical Linear Networks). Thus, only minimal
code modifications are necessary for reusing existing SystemC AMS
models.

The EPN MoC implements new primitives for semiconductor mod-
eling and exploits the properties of ideal switched electrical networks
for minimizing solvability problems and improving the simulation per-
formance.

54 3 Electrical Network Modeling and Simulation

Listing 3.1 shows the implementation of the buck converter circuit.

Listing 3.1: Buck converter implementation using EPN MoC

1 SC_MODULE(Circuit)

2 {

3 sc_core::sc_in<bool> g;

4 sc_core::sc_in<double> u;

5 sc_core::sc_out<double> i_l;

6 sc_core::sc_out<double> v_c;

7
8 sca_epn::sca_de::sca_vsource E;

9 sca_epn::sca_r R; sca_epn::sca_l L;

10 sca_epn::sca_c C; sca_epn::sca_r G;

11 sca_epn::sca_switch S;

12 sca_epn::sca_diode D;

13 sca_epn::sca_isink Am1;

14 sca_epn::sca_de::sca_vsink Vm1;

15
16 Circuit(sc_core::sc_module_name name, sc_time time_step ,

17 g("g"), u("u"), i_l("i_l"), v_c("v_c"),

18 E("E",1.0), L("L",0.1), R("R", 0.05), C("C",0.1), G("G",0.1),

19 S("S"), D("D"), Am1("Am1"), Vm1("Vm1"),

20 gnd("gnd"), n1("n1"), n2("n2"), n3("n3"), n4("n4"), n5("n5")

21 {

22 E.p(n1); E.n(gnd); E.inp(u); E.set_timestep(time_step);

23 S.p(n1); S.n(n2); S.ctrl(g); S.set_timestep(time_step);

24 D.p(gnd); D.n(n2); D.set_timestep(time_step);

25 L.p(n2); L.n(n3); R.p(n3); R.n(n4);

26 Am1.p(n5); Am1.n(n4); Am1.outp(i_l); Am1.set_timestep(time_step);

27 C.p(n5); C.n(gnd); G.p(n5); G.n(gnd);

28 Vm1.p(n5); Vm1.n(gnd); Vm1.outp(v_c); Vm1.set_timestep(time_step);

29 }

30 private:

31 sca_epn::sca_node_ref gnd;

32 sca_epn::sca_node n1, n2, n3, n4, n5;

33 };

In order to support the specific features of ideal switching model-
ing with natural commutation, a new analog solver class was imple-
mented. All electrical element primitives (resistors, capacitors, etc.) uti-
lize attributes and methods of this solver class. The namespace sca epn
was assigned to the new types and classes. All primitives are de-
rived from the base class sca module. In order to utilize the built-in
binding mechanism of SystemC, terminals are instances of a type de-
rived from sca port and nodes are instances of a type derived from
sca interface. Circuit elements are also interconnected by binding
terminals to nodes. Primitives for modeling ideal switches and diodes
(epn switch and epn diode respectively) are provided to enable the
novel language capabilities.

3.7 Implementation 55

During the SystemC AMS initialization phase, the topology analysis
method presented in section 3.6 is carried out. After that the circuit
equations are formulated from the reduced circuit table representation
applying the MNA method. Linear multi-step (LMS) methods are then
utilized for the discretization of the linear circuit equations. The BE,
TR and BDF2 integration methods were implemented for performance
evaluation. The last step of the solver initialization is the system matrix
construction. The value of the system matrix coefficients depends on
the state of the internally and externally controlled switches. In order to
avoid memory reallocation, if the current circuit topology contains in-
consistencies, rows and columns associated to non-valid branches and
floating nodes are shifted to the border of the system matrix and the
solver variables indicating the number of system nodes and branches
are respectively reduced. In order to improve simulation performance,
the system matrix is factorized using LU decomposition. The system
matrix creation and factorization is carried out during circuit simulation
only once for each topology, when the corresponding switching condi-
tions are reached. That is, the factorized system matrices are stored in
memory and reload if the corresponding topology is being computed.

Figure 3.4 shows the implemented analog solver algorithm. It calls
a list of pre-solve methods at the start of each integration step. They
are dynamically registered by the circuit elements and managed by the
solver. This SystemC AMS functionality is utilized by the ideal switches
to read SystemC ports and update the circuit topology if necessary. If
state changes are reported, the corresponding system matrix is loaded.
The pre-solve methods are called again if inconsistencies are present in
the new topology. Forward elimination and backward substitution are
applied at each integration step for computing the system response.

After one integration step is done, the solver calls the post-solve
methods. The diode class exploits this mechanism for the evaluation
of switching conditions. It sets a solver flag if one of its threshold
values (voltage or current) was reached. The solver updates the system
matrix and repeats the integration step, if a natural switch condition
was reported. Because ideal diodes modify their state instantaneously,
this loop needs to be executed until no more switching conditions are
detected. If a topology occurs twice during the switching process, the
electrical network is assumed to be not stable and the simulation is
aborted.

56 3 Electrical Network Modeling and Simulation

Start solver step

Call pre-solve
methods

Forced
switching?

Update equation
system

Solve equation system c
h

a
n

g
e

 l
o

o
p

yes

no

System
resize?no yes

q y

Call post-solve
methods

Natural
switching?

New
topology?

Stop simulationUpdate state vector

Iteration
ready?

S
te

p

re

fi
n

e
m

e
n

t
lo

o
p

T
o

p
o

lo
g

y
 c

no

yes

no

yes

no

yes

End solver step

Call trace methods

Fig. 3.4: Solver step refinement and topology change loops

The solver time control is implemented in SystemC AMS using a
spawn process, which is triggered by events at fixed time steps. Due
to the large signal behavior of power electronic circuits, a very short
integration step is often required to minimize numerical integration er-
rors. This can notably decrease the simulation performance. As shown
in figure 3.4, a step refinement loop was incorporated into the solver
algorithm to improve the simulation accuracy results while maintain-
ing a good simulation performance. The solver variable controlling the
number of loop iterations may be modified by a circuit element during
simulation (calling the corresponding solver interface function in the

3.8 Experimental Results 57

pre- or post-solve method). Thus, the time step can be adjusted depend-
ing on the current network topology. In order to split the trace methods
from the step refinement and topology change loops, they are called by
current and voltage sinks after the integration is finished (instead of in
the post-solve method, such as in the SystemC ELN MoC).

A set of libraries are additionally provided for enabling the integra-
tion of the EPN solver into Simulink models. Thus, electrical circuits
described using the SystemC AMS syntax can be utilized for simulation
during power control design and validation.

3.8 Experimental Results

The Buck converter circuit shown in Fig. 3.3a was modeled using the
presented MoC for performance and accuracy evaluation. A bang-bang
controller (on-off controller) that closes the circuit switch when the in-
ductor current is smaller than 9.5 A and opens the circuit switch when
the inductor current is greater than 9.5 A was connected to the circuit.
Figure 3.5 shows the current inductor and capacitor voltage result-
ing from the closed loop circuit simulation. Although instantaneous
switching takes place many times during the circuit operation, the in-
ductor current does not contain discontinuities. This demonstrates the
correct operation of the implemented analog solver. At the beginning
of the simulation, the inductor current is zero (initial condition) and the
switch is immediately closed by the controller. As no energy is stored in
the capacitor (the initial voltage is zero), both the inductor current and
the capacitor voltage increase. At time 0.021 s, the upper current limit is
reached and the controller opens the switch S. As the inductor current
is interrupted (the circuit is open), a voltage impulse is generated by the
inductor which turns the diode ON. The energy stored in the inductor
is then transferred to the capacitor. The capacitor voltage increases and
the inductor current decreases. At time 0.091 s, the lower current limit is
reached and the controller closes the switch S again. The negative volt-
age applied to the diode (due to the connected voltage source) turns it
OFF. The short circuit caused by the diode when the switch is closed is
properly handled by the proposed algorithm.

In order to evaluate the simulation performance of the implemented
MoC, the Buck converter control model was implemented using the

58 3 Electrical Network Modeling and Simulation

0 2 ·10−2 4 ·10−2 6 ·10−2 8 ·10−2 0.1

0
2
4
6
8

10

Time in s

In
d

u
ct

o
r

cu
rr

en
t

in
A

0 2 ·10−2 4 ·10−2 6 ·10−2 8 ·10−2 0.1

0
0.2
0.4
0.6
0.8

1

Time in s

C
ap

ac
it

o
r

v
o

lt
ag

e
in

V

Fig. 3.5: Buck converter simulation results using EPN MoC

ELN MoC in SystemC as well as using the PLECS toolbox in Simulink.
As the ELN MoC does not support instantaneous switching, only the
first 0.021 s (till the lower current threshold is reached) were simulated
for comparison. The circuit waveforms were sampled with different
sampling times (100 µs and 10 µs) for considering their impact on
the simulation performance. The average execution time required for
the circuit simulation is presented in Table 3.5. Even for such small
model, the presented EPN MoC implementation reached a measurable
improvement of the simulation performance.

Simulation execution time in ms Sampling
time in µsSystemC

EPN
SystemC

ELN
Simulink
PLECS

45.0 50.0 64.5 100

45.0 60.0 68.0 10

Table 3.5: Buck converter simulation execution time

3.9 Chapter Summary and Conclusions 59

The implemented SystemC AMS extension for power electronic
modeling was also validated through the modeling and simulation
of a complex high-voltage power converter control utilized in medi-
cal machines for x-ray generation. The controlled switched electrical
network provides the necessary complexity for a good validation:

• Large number of switches (4 externally controlled switches and 16
internally controlled switches)

• High operation frequency (500 kHz)
• Very large output signal range (30 - 120 kV)

Although the circuit parameter values comprise a very large range,
solvability problems were only encountered for one topology (from
a total of more than 350 different topologies). The simulation results
(signal harmonics) were very close to those obtained with the toolbox
PLECS and the achieved simulation performance was even slightly
better6 (around 5%). This is a very good result considering that the
reported speed-up of PLECS is greater than 10x compared to Saber and
20x compared to Simulink/Power System Blockset [4].

3.9 Chapter Summary and Conclusions

The presented SystemC AMS extension for modeling and simulation of
power electronic circuits hides switching control details from the mod-
els reducing considerably the modeling effort. The experimental results
carried out in this work confirm that ideal switched electrical networks
are an appropriate behavior abstraction for power electronic circuit
modeling at system level. Fast and stable simulations of complex power
electronic circuits were achieved with the EPN MoC implementation
supporting multiple instantaneous switching. The modeling abstrac-
tion of this MoC allows an adequate analysis of signal harmonics for
controlled power electronic circuits. Opposite to the current SystemC
ELN MoC, the numerical properties of the proposed circuit behavior
abstraction minimize solvability issues.

The investigation and analysis activities have shown that:

6 For more details about the high-voltage power converter simulation see [38].

60 3 Electrical Network Modeling and Simulation

• Capturing switched networks using a table representation is well
suited for circuit analysis and circuit equations reduction.

• Reducing the size of the algebraic equation system that represents
the circuit equations leads to more efficient and accurate simulations.

• Matrix pivoting strategies are required to avoid solvability problems.
• Sparse matrix algebraic computation methods are often not appro-

priate for the behavior computation of power electronic circuits.
• The prediction of switching impulses improves the simulation per-

formance and avoids solvability problems.

Although the modified nodal analysis method introduces some re-
dundant variables in the circuit equations, a fast simulation of switched
electrical networks was achieved. The efficient circuit topology compu-
tation after switching (prediction of switching impulses) as well as the
consistent and compact formulation of circuit equations based on the
presented topological analysis significantly contributes to faster and
more accurate (less rounding errors) simulations.

The SystemC AMS analog solver utilizes a sparse matrix linear al-
gebraic solver to achieve a good simulation performance. It is not ap-
propriate for the computation of the stiff equations describing power
electronic circuits. The ELN MoC suffers from numerical issues which
forces the tuning of circuit parameters to achieve stable circuit sim-
ulations as shown in [38]. As the algebraic solver implementation of
the EPN utilizes matrix pivoting for additionally reducing solvability
problems, the observed numerical robustness and performance im-
provement reinforce the value of this contribution.

Even though an acceptable compromise between accuracy and sim-
ulation speed can be reached modeling semiconductor components
as ideal switches, linear and nonlinear circuit representations (which
avoid behavior details or are more accurate) are also needed for de-
sign and verification tasks. Independent of the level of abstraction, the
analog circuit behavior computation methods strongly determine the
simulation performance. In order to improve the efficiency and accu-
racy of the analog solver for the circuit behavior computation at several
levels of abstractions, computation methods based on orthogonal poly-
nomials were developed in the context of this dissertation. They will
be explained after the introduction of a signal abstraction model based
on orthogonal functions in the next chapter.

61

Chapter 4

Signal Modeling for AMS Systems

Signal modeling formalisms are an important research topic to cope
with the increasing heterogeneity in embedded system designs. This
chapter presents a novel mathematical model of signals for heteroge-
neous system specification at different abstraction levels which relies
on signal coding and signal parameterization. A key advantage of this
signal representation is that continuous time signals are efficiently and
accurately described by a finite vector of coefficients. Furthermore, a
signal subdivision method which can be performed very efficiently on
this vector is presented for speeding up AMS system design analysis
and verification.

This chapter is organized as follows. After the presentation of the
research motivation and related work in section 4.1 and 4.2 respec-
tively, section 4.3 summarizes the research contribution of this chapter.
The tagged signal model is reviewed in section 4.4 and the novel vec-
torial signal model is defined in section 4.5. The general operational
approach for analog signal subdivision and its application for fast and
accurate crossing event detection as well as for discrete-event and adap-
tive signal sampling are described in section 4.6, 4.7 and 4.8 respectively.
Finally, section 4.10 states the value of the chapter contributions.

4.1 Motivation

In order to obtain a reliable AMS system design, the model abstraction
must capture the system properties that describe the design problem.
Formal descriptions allow the automatic model analysis and synthe-
sis. In embedded system design, a system is usually represented by
a process network. The behavior of a process (computation) and the
interaction between processes (communication) is described through
signals. As signals are the operands and the results of computation
processes, a signal model that formally copes with heterogeneous de-
scriptions at different abstraction levels is essential to allow an efficient
implementation of several modeling formalisms (MoCs).

62 4 Signal Modeling for AMS Systems

4.2 Related Work

Utilizing set theory, Zeigler formalized the concept of signals (called
trajectories) for describing the interaction between different types of
dynamical systems [130]. This theoretical framework is utilized as back-
ground for the implementation of several DEVS related formalisms.

Lee proposed later a denotational framework, called the tagged signal
model, which considers signals as a collection of events and captures
the properties of common modeling formalisms utilized in embedded
system design, such as for example synchronous reactive model of
computation [70] [69] [68]. Many frameworks for embedded system
design, such as Ptolemy and ForSyDe, are based on this signal model.

Jantsch et al. recognized the importance of time representation for
the efficient design and validation of complex safety critical embedded
systems [54]. Focused on heterogeneous MoCs, Zhu et al. presented a
formal model of continuous time signals that is defined using a time contin-
uum and enables the efficient representation of signals in communica-
tions systems [133]. Instead of using time events, continuous time signals
are represented as a concatenation of sub-signals. As symbolic integration
is not suitable for simulation, SystemC ForSyDe does not take really ad-
vantage from the symbolic analog signal representation. It uses a one
step integration method (Runge-Kutta) with variable sampling time to
cope with dynamical systems such as signal filters which forces the
discretization of continuous time signals. The continuous time signal
monitoring for model analysis is even carried out using a fixed sample
rate which lead to slow simulations.

In order to efficiently sample continuous time signals, Andrade et
al. presented a time step control mechanism that is based on the slope
between the current and the previous signal value and assumes signal
continuity for determining the next time step [6]. This simple sampling
concept requires many parameters such as the maximum admissible
amplitude error, which must be previously defined for each controlled
signal and does not provide a good sampling.

Neither the time event signals nor the (symbolic) time continuum
signals are able to cope with the trade-off between efficiency and ac-
curacy for both representing and processing continuous time signals.
A formal signal description that captures the properties of both ana-
log and digital components is necessary for a suitable modeling and
analysis of AMS systems.

4.3 Contribution to Formal Signal Modeling 63

4.3 Contribution to Formal Signal Modeling

The aim of the research work presented in this chapter was to find out a
suitable signal representation that is able to cope with the challenge of
efficient and accurate behavior modeling in heterogeneous embedded
systems. The main research activities carried out to achieve this goal
have been the following:

• To investigate the efficiency of existing formal methods for signal
representation.

• To derive a general signal representation that accurately captures the
signal dynamic at several levels of abstraction.

• To evaluate the suitability of several orthogonal functions for the
accurate representation of analog and digital signals.

• To find out an analytical solution for the continuous time and value
signal subdivision problem.

• To devise an efficient computation algorithm for the quantization of
analog signals.

• To derive a simple and accurate computation algorithm for adaptive
signal sampling.

This work proposes a novel two-dimensional signal model for repre-
senting both analog and digital signals. Using a suitable parameteri-
zation of continuous time signals, the trade-off between accuracy and
efficiency is reduced to a minimum. The mathematical properties of a
given orthogonal polynomials family are exploited for the efficient rep-
resentation of continuous time signals as well as for the conception of
signal processing methods based on algebraic operations. Particularly,
a matrix for continuous signal subdivision is presented and utilized for
the efficient and reliable sampling of continuous time signals. Thus, the
proposed formalism for mixed signal modeling overcomes the practical
problems of existing theoretical frameworks.

64 4 Signal Modeling for AMS Systems

4.4 The Tagged Signal Model

The tagged signal model is a functional representation of signals. A signal
s(τ) is represented as a set of events {ei}. Each event ei maps a tag τi to
a value vi [70].

s(τ) = {ei : τi→ vi} ∀ τi ∈ T, vi ∈V (4.1)

The set of tags {τi} is partially or totally ordered [70].

4.5 The Mixed Orthogonal Signal Model

Although tags capture the main properties of models of computation
such as time abstraction, precedence relationships and event synchro-
nization, they require a large number of events to accurately represent
continuous time signals. In order to efficiently describe signals at dif-
ferent levels of behavior abstraction, this work applies the following set
of transformations for the reduction of the number of events needed to
represent timed signals:

1. Representing signals in vectorial form.
2. Coding signals in a signal space.
3. Representing continuous signals in terms of orthogonal functions.

After these transformations continuous time signals are captured by a
vector of coefficients. This enable the analysis and transformation of
signals using simple algebraic mathematical operations.

4.5.1 Representing Timed Signals in Vector Spaces

Any function s(τ) describing a continuous time signal can be expressed as
an ordered set of values [vi] in an infinite dimensional space V∞ such
as each element vi of the vector corresponds to a tag and vice versa
(τi→ vi).

s(τ) = [vi]∞ ∀τ ∈R, [vi] ∈V∞ (4.2)

4.5 The Mixed Orthogonal Signal Model 65

In this vectorial signal representation, a timed signal is considered as a
point in an infinite dimensional space.

The domainVmay be any data type. In this chapter real valued sig-
nals (V =R) are considered (time domain) but complex valued signals
(V = C) are also possible (frequency domain).

In order to denote vectors (and matrices) square brackets with sub-
scripts are used. Thus, confusion between scalar numbers and vectors
is avoided. Furthermore, the dimension of vectors (and matrices) is
explicitly defined to visualize dimension changes on signals.

Example 4.1. Consider the signal s(τ) resulting from the sampling of
a continuous time signal at the fixed times τ1, τ2 and τ3. This signal
only contains 3 events s(τ)= {e1,e2,e2}. Using the Dirac delta function
δ this signal can be defined in the time domain as s(τ) = v1 · δ(τ−
τ1)+v2 ·δ(τ−τ2)+v3 ·δ(τ−τ3). As the basis vectors [τi]1 of the vector
space V∞ univocal capture each time ordered tag τi, the vectorial
signal representation is given by s(τ)= v1 · [τ1]1+v2 · [τ2]1+v3 · [τ3]1

where the vectors [τi]1 are unitary and orthogonal.
The conceptual difference between the functional and the vec-

torial signal representation is shown in Fig. 4.1.

(a) (b)

Fig. 4.1: Signal representation: a) Functional b) Vectorial

The geometric properties of vector signals allow the systematic definition
of the mathematical operations that can be applied to signals. For exam-
ple, it is possible to define the closeness of two signals as the (euclidean)
distance between two points.

66 4 Signal Modeling for AMS Systems

In this work, it is considered that vector signals are defined in a
linear vector space. This means that the multiplication of a signal s(τ) by
a scalar number a and the addition of two arbitrary signals s1(τ) and
s2(τ) are defined.

a · s(τ) = a · [vi]∞ = [a ·vi]∞, a ∈R (4.3a)

s1(τ)+ s2(τ) = [vi1]∞+ [vi2]∞ = [vi1+vi2]∞ (4.3b)

These properties are utilized in the next section for signal coding.

4.5.2 Coding Signals in a Signal Space

In order to optimize the representation of signals, this work describes
a signal s(τ) by means of a linear combination of elementary signals se(τ)
which are defined in a finite interval [0, Te] and mapped to a finite in-
terval [τk, τk+Tk] by applying elementary signal operations as follows:

s(τ) =
∞∑

k=0

sk(τ) =
∞∑

k=0

ak · se(ρk ·τ−τk) =

∞∑

k=0

ak · [vik]∞ (4.4)

where ak and ρk = Te/Tk are scaling factors. Thus, amplitude scaling, time
scaling (time compression or time expansion) and time shifting are basic
operations allowed on elementary signals.

The set of elementary signals {se(τ)} is known as the signal space.
Representing signals in terms of elementary signals is useful to model
signal sources efficiently.

For convenience, the elementary signals se(τ) have a finite duration
and the overlapping of elementary signals is allowed.

Example 4.2. Consider now the signal s(τ) resulting from the sam-
pling of a sine waveform over two periods T. This signal can
be represented as s(τ) = se(τ)− se(τ−T/2)+ se(τ−T)− se(τ−3 ·T/2),
where the elementary signal se(τ) is defined by the sampling events
in the interval [0, 0.5] (See Fig. 4.2).

4.5 The Mixed Orthogonal Signal Model 67

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1

−0.5

0

0.5

1

Time in s

A
m

p
li

tu
d

e

coded signal
elementary signal

Fig. 4.2: Coding a sampled sine wave signal

4.5.3 Parameterizing Signals in a Vector Space

In order to approximate continuous time elementary signals with a
finite set of vector elements, each elementary signal se(τ) is expanded
in terms of a infinite vector space of linearly independent signals [f j(σ)]∞
defined in a finite interval [σa, σb]. This requires that the elementary
signals are defined in a normed inner product spaceV∞ and implies that:

1. The norm of a signal s(τ) in an interval [τa, τb] is defined by the ex-
pression:

‖ s(τ) ‖=

√
∫ τb

τa

s2(τ)dτ (4.5)

2. The inner product of two signals s1(τ) and s2(τ) in an interval [τa, τb] is
defined by the expression:

s1(τ)• s2(τ) =

∫ τb

τa

s1(τ) · s2(τ)dτ (4.6)

Furthermore, it is also assumed that the elementary signals se(τ) have a
finite energy Ese . Therefore, the totally of infinite sequences {sk(τ)} satisfy:

Esk
=

∫ τk+Tk

τk

s2
k(τ)dτ < +∞ (4.7)

Each basis signal f j(σ) must satisfy the following equation to be linear
independent:

68 4 Signal Modeling for AMS Systems

∫ σb

σa

ω(σ) · fp(σ) · fq(σ)dσ = kpq ·δpq, kpq ∈R (4.8a)

δpq =





1 if p = q

0 if p , q
(4.8b)

where ω(σ) is a weighting function and kpq is a constant value.
Each elementary vector signal in the signal space {se(τ)} is then ex-

panded in terms of the orthogonal basis signals f j(σ) by finding a set of
coefficients {aej} that satisfy:

se(σ) =
∞∑

j=0

aej · f j(σ) = [aej]
T
∞ · [f j(σ)]∞, aej ∈R ∀ σ ∈ [σa, σb] (4.9)

Using a suitable vector space of orthogonal basis functions [f j(σ)]∞ each
elementary signal se(σ) can be accurately approximated by limiting the
infinite sum Eq. (4.9) to a finite number of terms Q:

se(σ) ≈
Q∑

j=0

aej · f j(σ) = [aej]
T
Q · [f j(σ)]Q, aej ∈R ∀ σ ∈ [σa, σb] (4.10)

As the ordered set of orthogonal basis functions [f j(σ)]Q is known,
the representation of the elementary signals can be parameterized by
describing each elementary signal using only the coefficient vector [aej]Q.

Expanding Continuous Elementary Vector Signals

A continuous time and value elementary signal s̃e(τ) (analog signal) can be
expanded over a series of continuous orthogonal basis signals f̃n(σ) by a
simple vector-matrix multiplication.

s̃e(σ) =
+∞∑

n=0

cen · f̃n(σ) = [cen]T
∞ · [f̃n(σ)]∞ ∀ σ ∈R, σ ∈ [σa, σb] (4.11)

As any continuous function (small input changes result in arbitrarily
small output changes) on a finite interval can be uniformly approxi-

4.5 The Mixed Orthogonal Signal Model 69

mated by a polynomial (Weierstrass theorem), this work considers that
each continuous elementary signal s̃e(τ) and its first derivative are contin-
uous and defined in a finite interval [σa, σb]. Therefore, any continuous
elementary signal s̃e(τ) can be approximated with good accuracy (least
squares approximation) using a reduced number of orthogonal polyno-
mials Qn as basis signals.

s̃e(σ) ≈
N−1∑

n=0

cen ·Qn(σ) = [cen]T
N · [Qn(σ)]N (4.12)

The most suitable orthogonal polynomials for analog system simula-
tion are Legendre Pn(σ) and Chebyshev Tn(σ) polynomials [92][67]. In
both cases, the least square error is distributed nearly uniformly in the
approximation interval. They are orthogonal in the interval [-1, 1] and
defined by the following power expressions:

Pn(σ) =
1

2n

⌊n/2⌋∑

j=0

(-1) j

j!
·

(2n−2 j)!

(n− j)! · (n−2 j)!
·σn−2 j (4.13)

Tn(σ) =
n

2

⌊n/2⌋∑

j=0

(-1) j ·
(n− j−1)!

(j)! · (n−2 j)!
· (2σ)n−2 j (4.14)

Such classical orthogonal polynomials are characterized by a set of recursion
relations that is useful to efficiently compute numerical operations [96].

Example 4.3. Taylor series are often used for circuit behavior com-
putation. This example shows the superior accuracy of orthogonal
polynomials. Consider the polynomial approximation of the con-
tinuous signal se(τ)= 1−e-τ in the interval [0.0, 1.5] using 3, 4 and 5
terms (coefficients). Fig. 4.3 shows the approximation results a) for
a truncated Taylor power series and b) for a Chebyshev polynomials ex-
pansion. The truncated Taylor series requires more than 5 terms to
achieve a good accuracy (maximal error≈ 5%). The 3 terms Cheby-
shev polynomials expansion achieves a higher accuracy (maximal
error ≈ 1%). Furthermore, the error is uniformly distributed in the
signal approximation interval. At N Chebyshev points (denoted
explicitly in Fig. 4.3), there is no approximation error.

70 4 Signal Modeling for AMS Systems

0 0.5 1 1.5
0

0.5

1
N = 3 error = 0.40187 Polynomial coeffiients: [1, 1, 0.5]

0 0.5 1 1.5
0

0.5

1
N = 4 error = 0.16063 Polynomial coeffiients: [1, 1, 0.5, 0.167]

0 0.5 1 1.5
0

0.5

1
N = 5 error = 0.050307 Polynomial coeffiients: [1, 1, 0.5, 0.167, 0.0417]

exact value

approximation

exact value

approximation

exact value

approximation

(a)

0 0.5 1 1.5
0

0.5

1
N = 3 error = 0.010328 Polynomial coeffiients: [0.46, 0.38, -0.07]

0 0.5 1 1.5
0

0.5

1
N = 4 error = 0.00092798 Polynomial coeffiients: [0.46, 0.38, -0.07, 0.01]

0 0.5 1 1.5
0

0.5

1
N = 5 error = 6.7628e-005 Polynomial coeffiients: [0.46, 0.38, -0.07, 0.01, -0.00]

exact value

approximation

exact value

approximation

exact value

approximation

(b)

Fig. 4.3: Polynomial approximation: a) Taylor b) Chebyshev

Expanding Discrete Value Elementary Vector Signals

A discrete value elementary vector signal s̄e(τ) can be expanded using a
finite linear combination of flat orthogonal basis signals f̄m(σ) such as
block pulse, Walsh or Haar-Wavelets which are piece-wise constant.

s̄e(σ) �
M−1∑

m=0

bem · f̄m(σ) = [bem]T
M · [f̄m(σ)]M ∀ σ ∈R, σ ∈ [σa, σb] (4.15)

Continuous time digital signals can be accurately expanded over the
time interval [σa, σb] by defining the discrete orthogonal basis signals
in terms of the generalized block pulse function Bm(σ) which is defined as
follows:

Bm(σ) =





1 if σm ≤ σ < σm+Tm

0 otherwise
(4.16a)

Tm = σm+1−σm, σ0 = σa, σN = σb (4.16b)

Thus, in this work digital signals in continuous time are represented by
the expression:

4.5 The Mixed Orthogonal Signal Model 71

s̄e(σ) =
M−1∑

m=0

bem ·Bm(σ) = [bem]T
M · [Bm(σ)]M (4.17)

Example 4.4. Fig. 4.4 shows a) the parameterization of a continuous
time and value elementary signal using Chebyshev polynomials (See
previous example) and b) the parameterization of a discrete value
elementary signal using the block pulse function. The coefficients ci

and bi describing the signals are represented as vertical segments
on the orthogonal axis. They scale the corresponding orthogonal
functions, which are added for the computation of the elemen-
tary signal. In both cases, only 3 coefficients are required for the
representation of the continuous time signals.

c0

f̃0

c1

f̃1

c2

f̃2

τa

τb

τ

s̃e(τ)

(a)

b0

f̄0

b1

f̄1

b2

f̄2

τa

τb

τ1 τ2

τ

s̄e(τ)

(b)

Fig. 4.4: Signal expansion: a) Continuous (analog) b) Discrete (digital)

Expanding Mixed Dynamic Elementary Vector Signals

Equations (4.12) and (4.17) allow the definition of continuous and dis-
crete value elementary vector signals in a finite dimensional vector
space VN and VM respectively. In order to obtain a general expression
for representing continuous time signals (including discontinuities), each
elementary signal se(τ) is expanded in this work using an ordered set of
orthogonal piece-wise continuous signals [Hmn(σ)]NM as follows:

72 4 Signal Modeling for AMS Systems

se(σ) ≈
M−1∑

m=0

N−1∑

n=0

hemn ·Hmn(σ) = [[hemn]T
N]T

M · [[Hmn(σ)]N]M (4.18a)

Hmn(σ) =





g(σ) ·Qn(ρm ·σ) if σm ≤ σ ≤ σm+Tm

0 otherwise
(4.18b)

ρm = (σb−σa)/Tm, Tm = σm+1−σm, σ0 = σa, σN = σb (4.18c)

[[hemn]T
N]T

M = [vec([hemn]T
MN)]T, [[Hmn]N]M = vec([Hmn]T

MN) (4.18d)

where the function g(σ) is a constant value which depends on the flat
orthogonal basis set. In case of the block pulse function, g(σ) = 1.

The coefficients hemn enable the reliable description of analog sig-
nal that contain discontinuities. For convenience, they are represented
in matrix form [hemn]MN (See In Fig. 4.5). Each matrix row defines the
coefficients of the polynomial expansion (continuous signal). Signal
discontinuities (and concatenation) are captured using multiple matrix
rows.



























MNMMMM

N

N

N

N

MNmn

hhhhh

hhhhh

hhhhh

hhhhh

hhhhh

h

...

..................

...

...

...

...

 =][

4321

444434241

334333231

224232221

114131211

Continuous dynamic dimension

D
is

c
re

te
 d

y
n

a
m

ic
 d

im
e

n
s
io

n

Discrete value/event signal

Analog signal

Fig. 4.5: Mixed-signal coefficient matrix

The coefficient matrix [hemn]MN and the matrix of orthogonal piece-wise
continuous signals [Hmn(σ)]NM are vectorized in Eq. (4.18) for the com-
putation of the mixed dynamic signal expansion. If the matrix [hemn]MN

is reduced to a row vector (M = 1), the coefficients represent a continuous
time and value signal in the interval [σa, σb]. If the matrix [hemn]MN is
reduced to a column vector (N = 1), the coefficients represent a discrete
value signal in the interval [σa, σb].

4.5 The Mixed Orthogonal Signal Model 73

Handling Discrete Time Elementary Vector Signals

A discrete time elementary vector signal ŝe(τ) consists of a sequence of events
[ei] in time [71]. It can be considered as a special case of a discrete value
elementary signal, in which the values of the signal are only defined
at the times σm. Thus, a discrete signal is not defined over a continuous
time but rather at a set of time instants at which events occurs (discrete
time). They are captured using the Dirac delta function δ. Defining
g(σ) = δ(σ−σm) in Eq. (4.18), the previously presented signal model is
able to capture such instantaneous events in time.

As the time Tm between two events is defined and satisfies σm <σm+1,
the discrete events ei representing the signal are order preserving. There-
fore, discrete events can be counted off in temporal order. An important
observation is that M may be zero. It means, that the signal does not
contain any event in the time interval [σa, σb] and it is represented by
an empty vector []0. As a vector space may not be empty, this special case
must be properly handled in the implementation.

Handling Untimed Elementary Vector Signals

A discrete system is defined in terms of event triggered reactions. Such
events are typically clock edges (synchronous) or data tokens (asyn-
chronous). An untimed elementary vector signal ṡe(n) consist only of a
sequence of values [vi]. The time at which events occur is abstracted.
Defining g(σ) = 1 and Qn(σ) = 1 in Eq. (4.18), the previously presented
signal model is able to capture such untimed events.

In order to cope with synchronous events (events occurring at the
same time σm), it is necessary to capture the absence of a signal event.
The symbol⊥ is used to denote such empty value event. It is represented
by a zero dimension row []m0 in Eq. (4.18). For handling multi-rate signals
a vector space Vk with a dimension k > 1 is utilized. Thus adaptive
rate systems can be captured. Both cases must be properly handled by
the implementation. Note that for untimed signals, the columns and
the rows of the coefficient matrix [hemn]MN are assigned to synchronous
and asynchronous events respectively. Handling asynchronous events
requires that M ≤ 1 in Eq. (4.18). Therefore, synchronous signals should
capture more than one event (M > 1) to be correctly interpreted.

74 4 Signal Modeling for AMS Systems

4.6 Operational Subdivision of Analog Signals

As will be shown in chapter 5, the subdivision of a continuous signal
derived in this section is very useful for the efficient handling of the
interaction between analog and digital systems.

In order to find an operational approach for the subdivision of a
polynomial function, the function evaluation points σ are mapped from
the interval [-1 , 1] (in which the orthogonal polynomials Qn are defined)
to the sub-interval [σa , σb] using the following expression:

σab =
1

2
· (σb−σa) ·σ+ 1

2
· (σa+σb) (4.19)

The Chebyshev polynomials basis matrix [BT(a,b)]N2 in the sub-interval
[σa , σb] is then derived using the recurrence property of Chebyshev
polynomials [96]:

Tn(σab) = σab ·Tn−1(σab)−Tn−2(σab) (4.20)

Any orthogonal polynomial Qn(σ) can be expressed as follows:

Qn(σ) = [σn]T
N · [BQ]N2 (4.21)

where the matrix [BQ]N2 represents the basis of the polynomial in terms
of the power vector [σn]N = [σN . . . σ2 σ 1]. The basis matrix for the
Chebyshev polynomials can be computed using equation (4.13). For a
3rd order polynomial the Chebyshev basis matrix [BT]42 is:

[BT]42 =





0 0 0 4
0 0 2 0
0 1 0 -3
1 0 -1 0





(4.22)

Using equation (4.21) the subdivision matrix [Sa,b] can be computed as:

[SQ(a,b)]N2 = [BQ]-1
N2 · [BQ(a,b)]N2 (4.23)

Thus, the coefficients [cn(a,b)]N of the polynomial expansion for any
signal in a given sub-interval [σa , σb], can be computed by a simple
matrix multiplication.

4.6 Operational Subdivision of Analog Signals 75

[cn(a,b)]N = [SQ(a,b)]N2 · [cn]N (4.24)

For a 4 terms Chebyshev polynomials analog signal expansion, the
subdivision matrix [ST(a,b)] is given by:

[ST(a,b)]42 =





1 a+b
2

3·(a2+b2)+2·a·b−4
4

5·(a3+b3)+3·(a2·b+a·b2)−6·(a·b)
4

0 b−a
2

b2−a2

2
15·(b3−a3)+3·(a·b2−a2·b)+12·(a−b)

8

0 0 a2+b2−2·a·b
4

3·(a3+b3−a2·b−a·b2)
4

0 0 0
b3−a3+3·(a2·b−a·b2)

8





(4.25)

For Legendre polynomials, the subdivision matrix [SP(a,b)]N2 can be com-
puted in the same way using the basis matrix [BP(a,b)]N2 and the fol-
lowing recurrence relation:

Pn(σab) =
1

n
·
(

(2 ·n−1) ·σab ·Pn−1(σab)− (n−1) ·Pn−2(σab)
)

(4.26)

Example 4.5. Consider the binary subdivision of the elementary
signal se(σ) = [0, -0.5758,0,0.7711] · [Tn(σ)]4 which corresponds to a sine
waveform in the interval [0 , π]. The subdivision matrices are:

[ST(-1,0)]42 =





1 1/2 -1/4 -1/4
0 1/2 1 3/8
0 0 1/4 3/4
0 0 0 1/8





[ST(0,1)]42 =





1 -1/2 -1/4 1/4
0 1/2 -1 3/8
0 0 1/4 -3/4
0 0 0 1/8





Applying the subdivision 2 times (S= 1, 2) to the signal coefficients,
the following coefficient matrices are obtained:

[hemn]2x4 =

[

0.4807 0.0012 -0.5783 0.0963
-0.4807 0.0012 0.5783 0.0963

]

[hemn]42 =





0.6487 0.6151 -0.2169 0.0120
0.6018 -0.5416 -0.0722 0.0120
-0.6018 -0.5416 0.0722 0.0120
-0.6487 0.6151 0.2169 0.0120





Note that the subdivision matrices can be multiplied for carrying
out successive subdivisions. As the last coefficient of the subdivi-
sion matrices decreases exponentially in each step

(
1

(2N)S =
1
8 ,

1
64 , . . .

)

,

less coefficients are needed after several steps.

76 4 Signal Modeling for AMS Systems

4.7 Computing Threshold Crossing Events

The polynomial signal representation introduced in section 4.5 can be
exploited for accurate threshold crossing detection by using polynomial
root finding methods. As explained in [97], eigenvalue methods can be
applied for finding the roots of arbitrary polynomials but they are com-
putationally intensive and not appropriate for simulation purposes. To
overcome this limitation, this work takes advantage of the Chebyshev
polynomials properties for the identification of crossing event free in-
tervals. As they are ranged between±1 in the interval [σa , σb], the values
of the corresponding signal expansion are limited to the range:

[

c0−
N−1∑

n=1

|cn| , c0+

N−1∑

n=1

|cn|
]

(4.27)

Any other polynomial expansion can be mapped to Chebyshev poly-
nomials using Eq. (4.21).

In order to quickly find the intervals containing crossing events, pre-
computed subdivision matrices are utilized to divide the signal inter-
val into smaller intervals. Truncating then the Chebyshev polynomial
expansion to a 3rd order polynomial, the crossing point is computed
analytically. In case that the truncation error is large, the root value is
polished using only a few Newton-Raphson iterations.

4.8 Sampling Analog Signals

For many applications such as digital control, analog signals are sam-
pled periodically in time (Riemann sampling). This time triggered sam-
pling method simplifies system analysis and design [7].

For some systems, event based sampling provides a better performance
(e.g. the control action takes place only if it is required). This sampling
technique takes samples at the points at which a signal crosses certain
predefined values (Lebesgue sampling) [7]. Many digital sensors work
in this way.

For signal analysis applications, the reconstruction of a signal from its
discrete samples becomes faster if adaptive sampling (irregular sampling)

4.8 Sampling Analog Signals 77

takes place. Sampling non-uniformly a signal depending on its shape
enables a better reconstruction accuracy for different algorithms [95].

The previously presented orthogonal signal model allows a very
efficient sampling for all theses applications. It is explained in the fol-
lowing sections. An efficient adaptive sampling algorithm based on
Chebyshev polynomials is proposed in section 4.8.3.

4.8.1 Periodic Sampling

As the orthogonal polynomials utilized for the parameterization of con-
tinuous signals are defined in the interval [-1, 1], the vector [[Hmn(σ)]N]M

in Eq. (4.18) does not usually change for a fixed sampling rate. Thus, the
resulting sampling matrix can be computed once at simulation start. Peri-
odic sampling is therefore performed as a vector matrix multiplication,
which can be computed faster than function evaluations, particularly
for trigonometric functions.

4.8.2 Event Based Sampling

The event based sampling of continuous time signals requires a time step
control. Applying the threshold crossing detection method presented
in section 4.7 for the predefined signal threshold values, event based
sampling is carried out fast and accurately.

4.8.3 Adaptive Sampling

The implementation of an accurate adaptive sampling method for con-
tinuous time signals is an heuristic task and requires a considerable
computation effort for a robust algorithm. In order to achieve a faster
and more efficient sampling of continuous time and value signals, this
work proposes to successively subdivide a signal using the operational
method presented in section 4.6. The recursive subdivision is stopped

78 4 Signal Modeling for AMS Systems

when the error that would be introduced by approximating each sub-
signal to a line is smaller than a given tolerance value ǫ.

For orthogonal polynomials such as Chebyshev and Legendre, the
fast convergence rate enables the approximation of the truncation error
with a very good accuracy.

The simplest method for interval partitioning is the binary subdivision.
That is, the interval is partitioned into two equidistant sub-intervals. In
order to distribute the sampling error more uniformly, a non-symmetric
signal subdivision is necessary. To this end, the signal point at which the
perpendicular distance to the line connecting the start and end signal
value achieves the maximum value is computed. It corresponds to one
of the signal points in which the curve has a maximum or minimum
value. Taking profit again of the Chebyshev polynomials properties,
this optimal sub-division point is computed solving first the following
equation:

d

dσ
(12 · c3 ·σ2+4 · c2 ·σ+ c1−3 · c3− c1) = 0, c1 =

N/2∑

n=0

c2·n+1 (4.28)

and then finding the maximal value of all inflexion points.

Example 4.6. Fig. 4.6 shows the sampling of a sine waveform analog
signal applying the previously described methods. Event based
sampling (b) is more efficient than periodic sampling (a) but less
accurate near the inflexion point. Using an error tolerance ǫ= 0.005,
the adaptive sampling method (c) achieves an optimal sampling.

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Time

A
m

p
li

tu
d

e

(a)

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Time

A
m

p
li

tu
d

e

(b)

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Time

A
m

p
li

tu
d

e

(c)

Fig. 4.6: Signal sampling: a) Periodic b) Event-based c) Adaptive

4.9 Implementation 79

4.9 Implementation

As shown in Fig. 4.7 the orthogonal signal model was implemented as ex-
tension of SystemC AMS. The proposed signal representation is domain
independent but polymorphic with respect to the orthogonal base functions
used for signal parameterization. The base class sca osf signal base
is responsible for signal registration of a derived signal class in the
parent module. The methods of this base class are overloaded by
the domain specific implementation. In case of Fig. 4.7, the class
sca osf tdf signal implements the orthogonal signal model for the
timed synchronous data flow model of computation TDF. As the class
sca osf signal expansion implements a common signal data repre-
sentation, domain interfaces are not necessary for the interaction of
orthogonal signal based domains (e.g. continuous time, discrete event,
etc.). Thus, the implementation of domain interfaces can be avoided.
In order to support interchangeability of modules in existing SystemC
models, domain interfaces to SystemC AMS and SystemC ForSyDe are
provided. The application of the signal model for behavior computa-
tion and analysis is presented in the next chapters.

std::valarray

T

sca_osf_coefficients

T

sca_osf_value

*

sca_osf_signal_base sca_tdf::sca_signal

T

sca_osf_tdf_signal

T

sca_osf_signal_expansion

T
12

sca_osf_signal_expansion_base

*

1

2

1

Fig. 4.7: Signal model implementation in SystemC AMS

80 4 Signal Modeling for AMS Systems

4.10 Chapter Summary and Conclusions

The presented mathematical signal model allows the description of contin-
uous time signals through small size coefficient vectors and the definition
of computational operations on signals in terms of vector and matrix
operations such as e.g. the signal subdivision presented in section 4.6.
Representing analog signals using a linear combination of orthogonal poly-
nomials significantly contributes to the definition of efficient behavior
computation and analysis methods. It relies on the convergence and re-
currence properties of the proposed polynomials family. In this chapter
efficient computational methods for threshold crossing detection and
adaptive sampling of continuous time and value signals were derived.
As shown in section 4.5.3 and 4.5.3, discrete event signals and untimed
signals can also be represented using the vectorial signal model.

A key advantage of the presented signal model is the suitability
to maintain a strict separation of communication and computation. Tak-
ing profit of the behavior orthogonalization, continuous and discrete
behavior as well as synchronous and asynchronous signals are suit-
ably captured. Thus, the presented signal model can be applied for
modeling embedded system components at each possible level of be-
havior abstraction and does not require the modification of module
interfaces. The vectorial signal implementation presented in section 4.9
is domain polymorphic reducing considerably the implementation ef-
fort for heterogeneous system models. This overcomes the limitation
of representing mixed signals with different modeling methodologies
such as in SystemC AMS or SystemC ForSyDe which always require
domain interfaces.

As this work focuses on control system applications, only a subset of
operations on signals were considered (amplitude and time scaling as
well as time shifting). Other useful signal operations such as amplitude
shifting, time reversal and time reflection can be considered in future
work towards modeling communication systems.

The smart vectorial signal representation based on orthogonal func-
tions constitutes the backbone for efficient and seamless embedded
system design activities. As will be presented in the next chapters, sys-
tem behavior computation, analysis and verification benefit from the
presented signal model.

81

Chapter 5

Modeling and Simulation of AMS
Systems

Capturing the behavior of AMS system components at several abstrac-
tion levels is fundamental for supporting a seamless design methodol-
ogy based on system properties. In order to enable the fast simulation of
analog system components, efficient, stable and accurate computational
methods are required. A current challenge regarding the design of AMS
systems is the component heterogeneity. Circuit behavior computation
methods that are able to efficiently handle the interaction between the
analog and digital parts are needed for fast system level simulations.

This chapter presents operational methods for the efficient and ac-
curate computation of analog circuits’ behavior at different abstraction
levels. A novel operational method that does not require the lineariza-
tion of analog circuit equations is proposed for efficient nonlinear cir-
cuit simulations. Furthermore, an orthogonal signals based method for
the efficient computation of digital circuits’ behavior is proposed. The
threshold crossing operational computation method presented in chap-
ter 4 is applied for the efficient and accurate handling of the interaction
between the continuous and discrete time system parts. The experimen-
tal results show that the orthogonal signal based computation methods
enable faster simulations of large AMS circuits.

This chapter is organized as follows. After the presentation of the
research motivation and related work in section 5.1 and 5.2 respec-
tively, the research contribution of this chapter is summarized in section
5.3. Section 5.4 analyzes analog circuit behavior computation methods
utilized for improving the simulation performance and accuracy. Sec-
tion 5.5 describe the operational method for the solution of state space
equations and extends it for the computation of MNA circuit equa-
tions. Section 5.5.2 presents the novel operational computation method
for nonlinear circuits which avoid the linearization of MNA equations.
Section 5.7 explains the efficient computational method for discrete time
systems that enables iterative simulations. Section 5.8 describes the de-
tails of the implemented systemC AMS MoC and section 5.9 show the
experimental results of several circuit simulations. Finally, section 5.10
summarizes the contribution and the most relevant findings of the re-
search activities.

82 5 Modeling and Simulation of AMS Systems

5.1 Motivation

The design and validation of analog and mixed-signal systems require
a hierarchical approach which uses different modeling abstractions for
accurately capturing the system properties depending on the current
analysis goals. In order to capture the interaction of embedded sys-
tems with their physical environment, the modeling of the temporal
dynamics and concurrency properties of the whole system is necessary
[71]. Moreover, System Level Design (SLD) tools that support the fast
execution of heterogeneous models at several levels of abstraction are
needed to cope with the design verification and validation challenges
of today’s embedded systems.

5.2 Related Work

SystemC AMS provides features for modeling and simulation of het-
erogeneous and Analog and Mixed-Signal (AMS) systems at several
levels of abstraction. In order to maintain an acceptable simulation
performance while modeling the system’s behavior with enough accu-
racy, all SystemC AMS MoCs utilize a fixed time step for computation
[42]. Ptolemy and SystemC ForSyDe utilize a DAE solver with time
step control for fast simulation of dynamical systems [133] [75]. The re-
ported improvement of the simulation performance was not significant
compared to SystemC AMS [9].

Zaum et al. presented a simulation approach for mixed-signal cir-
cuits called PRAISE that models circuit behavior assuming piecewise
constant (PWC) excitations [128] [126] [127]. Using a symbolic mathe-
matical toolbox, the analog circuit equations were transformed into a
state space representation at run-time. This abstract circuit modeling
enables the fast transient simulation of linear analog systems. A very
good simulation performance was achieved compared with the con-
ventional PSspice circuit simulator. A wrapper approach was utilized
for interfacing PRAISE with SystemC during simulation. Hoelldampf
et al. extended this framework by including the generation of SystemC
events from analog circuit modules to allow the interaction between
analog and digital components [51] [50] [49] [72].

5.2 Related Work 83

The circuit behavior computation method based on piecewise con-
stant excitations requires the inversion and diagonalization of the sys-
tem matrix. As power electronic systems typically present a stiff set of
circuit equations, this computation approach leads often to gross errors.
Luciano et al. presented a circuit response computation algorithm for
the simulation of switching power converters that utilizes Chebyshev
polynomials for the faster truncated Taylor series approximation of the
state transition matrix [76]. The proposed algorithm avoids the sys-
tem matrix inversion and interpolates the input signals for the accurate
computation of the forced response. Thus, the approximation error in
case of rapidly varying input signals is considerably reduced.

The convergence and accuracy of the series approximation methods
depends on the matrix norm. In order to avoid gross errors and to
improve the accuracy, Tymerski et al. utilized several techniques for
reducing the system matrix norm such as scaling and squaring [116].

In order to achieve faster simulations of nonlinear circuits, Palusinski
et al. proposed a behavior computation method based on Chebyshev
polynomials [92]. They utilized modified nodal analysis (MNA) for
the formulation of the set of nonlinear ordinary differential equations
describing the circuit behavior and applied the Newton-Kantorovich 7

approach for the linearization of the circuit equations. Due to the large
number of required polynomial approximation terms, the achieved
simulation speed-up was moderate.

Li et al. investigated the computation method based on Chebyshev
series for the simulation of linear and switched circuits [73] [74]. They
proposed an error control algorithm that varies the series expansion
order while keeping the step size fixed. Thus, the factorization of the
circuit equations remains unaltered. They reported a significant im-
provement of the simulation accuracy compared with the PSpice circuit
simulator but the achieved simulation speed-up was also moderate.

Although several behavior computation methodologies were pro-
posed for the fast simulation of analog and power electronic circuits,
the accurate modeling and high performance simulation of analog and
mixed signal systems at different levels of abstraction remain a chal-
lenge for system level design languages and tools. Behavior computa-
tion approaches for analog circuits suffer from stability, accuracy and
efficiency issues limiting design, validation and verification tasks.

7 Kantorovich extended the Newton method for solving nonlinear equations to
functional spaces

84 5 Modeling and Simulation of AMS Systems

5.3 Contribution to AMS Circuit Simulation

The aim of the research work presented in this chapter was to tackle
the accuracy and efficiency problems of analog circuit behavior com-
putation methods at several levels of abstraction as well as to derive a
simulation method for analog and mixed signal systems that take ad-
vantage from the signal model presented in chapter 4 for system level
design and validation purposes. The main research activities carried
out to achieve this goal were the following:

• To investigate the limitations of several analog circuits’ behavior
computation methods utilized for fast simulations.

• To derive more efficient and accurate behavior computation methods
for linear and switched circuits.

• To work out more efficient and accurate behavior computation meth-
ods for nonlinear circuits.

• To develop a digital circuit computation method that enables the
efficient computation of mixed signal systems.

• To analyze the properties of the proposed operational computational
methods for analog circuits.

• To compare the accuracy, stability and performance properties of
several computation methods.

To cope with the challenges regarding the design and validation of
contemporary low-power embedded systems, several computational
methods that rely on orthogonal signals are proposed in this chapter.
The proposed computation methods for fast simulation of analog cir-
cuits are based on the operational matrix of integration. A state based
modeling and simulation methodology was developed for digital cir-
cuits to allow the fast simulation of AMS systems.

As the proposed operational computation methods allow the mod-
eling of analog system components at different levels of abstraction
and their efficiency, stability and accuracy properties enable fast sys-
tem level simulations, they significantly contribute to a seamless design
methodology.

5.4 Efficient Computation of Analog Circuits 85

5.4 Efficient Computation of Analog Circuits

Most circuit simulators employed in the industry use stepwise, stiffly
stable integration methods to solve the set of differential equations
describing the circuit dynamic behavior (see section 3.4.2). In order to
overcome the trade-off between simulation performance and accuracy
introduced by these integration methods, computation methods based
on the state transition matrix were often proposed. The advantages and
limitations of such computation methods are described in section 5.4.1.
Furthermore, the advantages and weak points of the Chebyshev series
based computation methods proposed in the literature for improving
circuit simulation are explained in section 5.4.2.

5.4.1 State Transition Matrix Based Circuit Computation

As explained in section 3.4.1, the set of equations describing the behav-
ior of linear electrical networks can be represented by a minimal set of
variables using state space equations. This formulation of circuit equa-
tions contains a set of ordinary differential equations (ODEs) which are
represented in vectorial form as follows:

d

dt
[x(t)]N = [ASS]N2 · [x(t)]N + [BSS]NM · [u(t)]M (5.1)

where [x(t)]N and [u(t)]M are the state and input vector variables respec-
tively. Equation (5.1) captures the dynamic properties of the circuit
behavior. As the state variables are expressed in explicit form, the ex-
act solution of the ordinary differential equation can be computed as
follows:

[x(t)]N = [Φ(t)]N2 · [x(t0)]N +

∫ t

t0

[Φ(t−τ)]N2 · [BSS]NM · [u(τ)]M dτ (5.2)

where
[Φ(t)]N2 = e[ASS]

N2 ·t (5.3)

is known as the state transition matrix.

86 5 Modeling and Simulation of AMS Systems

If the matrix [B]NM and the input vector [u(t)]M are considered to be
constant in a given time interval [ta , tb] and the matrix [ASS]N2 is invert-
ible, then the forced system response (integral part in Eq. (5.2)) can be
expressed in terms of the state transition matrix as follows:

∫ tb

ta

[Φ(tb−τ)]N2 · [B]NM · [u(τ)]M dτ = [Ψ (tb− ta)]NM · [u(t)]M (5.4)

where

[Ψ (tb− ta)]NM = [ASS]-1
N2 · ([Φ(tb− ta)]N2 − [I]N2) · [BSS]NM (5.5)

This simplification can be applied for the computation of system re-
sponses in many practical cases. The main advantage of the analytical
system response computation is that the accuracy of the solution does not
depend on the step size (if the above mentioned assumptions hold).
Thus, large step sizes can be utilized for simulation. Using this compu-
tation method, efficient and accurate simulations can be achieved.

The most popular method for the computation of the state transition
matrix is its approximation by a truncated Taylor series expansion.

[Φ(t)]N2 ≈
P∑

k=0

1

k!
([ASS]N2 · t)k (5.6)

The computation of Eq. (5.6) is straightforward. Furthermore, replac-
ing this representation of the matrix exponential in Eq. (5.5) cancels the
matrix inversion [ASS]-1

N2 . This is a useful property because the norm of
the matrix [ASS]N2 is often large for electrical circuits (particularly for
power electronic circuits) and therefore, the accurate computation of
the matrix inversion [ASS]-1

N2 becomes difficult (ill-conditioned problem).
To attain a desired accuracy, a sufficiently large number of terms P must
be summed. Utilizing orthogonal polynomials, the number of required
terms for a given accuracy can be reduced as shown in example 4.3.
Luciano et al. utilized Chebyshev polynomials for faster computation
of the matrix exponential [76].

The error produced by a matrix series approximation depends not
only on the number of added terms, but also on the norm of the matrix.
The approximation error increases as the norm of the matrix increases.

5.4 Efficient Computation of Analog Circuits 87

The application of any series expansion method for the computation
of the matrix exponential without matrix preconditioning may lead to
gross approximation errors [88]. Preconditioning techniques are neces-
sary for the reliable computation of the matrix exponential. They allow
the minimization of the matrix norm. A general approach for matrix
norm minimization is matrix balancing but its effectiveness is quite lim-
ited. The most commonly used approach to minimize the norm of a
matrix power is known as scaling and squaring8. It divides a matrix by
a non-zero scalar q and then the q-th power is applied to the series ex-
pansion. This method assures that the matrix norm is equal or smaller
than 1.

As a very good accuracy is achieved, techniques based on the eigen-
values and eigenvectors decomposition (Jordan decomposition) are of-
ten used for the matrix exponential computation. In order to avoid
the inversion of the matrix [ASS]-1

N2 the natural and the forced system re-
sponse can be computed simultaneously as proposed by Tymerski et al.
[116]. The handling of matrices with repeated eigenvalues (confluent
matrices) and matrices with an incomplete number of linearly inde-
pendent eigenvectors (defective matrices) becomes difficult in Jordan
decomposition method.

As explained in [88], there is no method that completely satisfactorily
computes the matrix exponential. Furthermore, the efficient computa-
tion of the matrix exponential integral is only possible if the forcing
function [u(t)]M is constant (or linearly changes) over the integration
interval.

Summarizing, the advantages of the state transition matrix circuit
behavior computation method are:

1. Large step sizes may be utilized for fast simulations.
2. No error control is necessary for accurate simulations.

and its limitations are:

1. The formulation of state space equations is required.
2. The computation of the state transition matrix is affected by accuracy

and stability issues.
3. This method is not efficient in case of varying input signals e.g. sine

waveforms.

8 This method is utilized by MATLAB for matrix power computation

88 5 Modeling and Simulation of AMS Systems

5.4.2 Chebyshev Series Based Circuit Computation

In order to efficiently solve the circuit equations formulated using the
modified nodal analysis method (see section 3.4.1), Palusinski et al.
proposed the approximation of each signal of the signal vectors [x(t)]N+B

(consisting of N node voltages and B branch currents), d
dt [x(t)]N+B and

[w(t)]N+B (containing the contribution of voltage and current sources) by
a truncated Chebyshev series expansion of P terms as follows [92]:

xi(σ) ≈
1

2
· c′xi0
·T0+

P−1∑

n=1

cxin ·Tn(σ) = [cxin]P · [Tn(σ)]T
P (5.7a)

d

dσ
xi(σ) ≈

1

2
· c′dxi0

·T0+

P−1∑

n=1

cdxin ·Tn(σ) = [cdxin]P · [Tn(σ)]T
P (5.7b)

wi(σ) ≈
1

2
· c′wi0

·T0+

P−1∑

n=1

cwin ·Tn(σ) = [cwin]P · [Tn(σ)]T
P (5.7c)

were the symbol ′ denotes the coefficient scaling c′
0
= 2 · c0.

As Chebyshev polynomials are orthogonal in the interval [-1, 1], the
following variable transformation is necessary:

σ =
2 · t− ta− tb

tb− ta
, ta ≤ t ≤ tb (5.8)

Due to the recurrence properties of the Chebyshev polynomials, the
coefficients cxin and cdxin meet the following relation:

cxin =
1

2 ·n ·
(

cdxi(n−1)− cdxi(n+1)

)

, n > 0 (5.9)

In order to compute the coefficient c′
xi0

, the following approximation

based on the initial condition xi(ta) was utilized by Palusinski et al. 5.2:

c′xi0
≈ 2 ·xi(ta)−2 ·

P−1∑

n=1

(-1)n · cxin (5.10)

5.4 Efficient Computation of Analog Circuits 89

Using the previous equations, a vectorial algebraic equation system
that allows the computation of the Chebyshev coefficients vector [cxin]P

for each signal in the signal vector [x(t)]N+B is expressed in the following
form:

[Ai]P · [cxin]P = [Bi]P · [cwin]P+ [cuin]P (5.11)

where the matrices [Ai]P and [Bi]P are computed from the circuit equation
matrices [GMNA]N+B and [CMNA]N+B.

With the aim of improving the simulation performance, Palusinski
computed the Chebyshev coefficients vector of the corresponding input
signal [cwin]P using a Fast Chebyshev Transformation (FCT), which is a
numerical computation method similar to the Fast Fourier Transforma-
tion (FFT) [92].

The Chebyshev coefficient vector [cuin]P represents the contribution
of the initial condition xi(ta) as well as the contribution of the remaining
N+B−1 equations to the considered signal xi(t). Thus, the set of N+B

algebraic equation systems (which are described in generic form by Eq.
(5.11)) are iteratively solved using numerical algebraic methods (see
section 3.4.4) until convergence to the solution is achieved (waveform
relaxation approach).

In order to cope with nonlinear circuit equations, the nonlinear con-
tribution to nodal voltages and branch currents is linearized applying
the following approximation (derived from the Newton-Kantorovich
method):

[g([x(t)]N+B, t)]N+B ≈ [M](N+B)2 ·
(

[x(t)]N+B− [xP(t)]N+B

)

+ [g([xP(t)]N+B, t)]N+B

(5.12a)

[M](N+B)2 =
∂g

∂x

∣
∣
∣
∣
∣
∣
[x(t)]N+B ,t

(5.12b)

where xP(t) is an initial solution or the result of the previous com-
putation. The matrix [M]N+B is known as Jacobian matrix. Note that the
presence of the argument t in Eq. (5.12b) indicates the dependence on
external voltage and current sources.

After linearization using Eq. (5.12), the matrices [Ai]P and [Bi]P are
determined for the iterative computation of the circuit behavior using
Eq. (5.11) as explained above.

Using the Chebyshev series expansions for solving circuit equations
provides several advantages:

90 5 Modeling and Simulation of AMS Systems

1. Circuit equations can be formulated as DAEs or ODEs (the formula-
tion of state space equations is not necessarily required).

2. The sparsity of the system matrices is preserved after the series
expansion of voltage and current signals.

3. As the Chebyshev series usually converge rapidly (in particular for
smooth signals), only few coefficients are necessary for accurate sig-
nal approximations.

4. As the Chebyshev polynomials can be very efficiently computed (re-
cursively), the evaluation of signals at any time point can be carried
out very quickly.

5. The Chebyshev series based computation method is efficient and
accurate in case of varying input signals e.g. sine waveforms.

6. As the Chebyshev polynomials are bound by ±1, the coefficients of
the series expansion are very good indicators of the truncation error,
enabling an efficient error control implementation.

7. The Chebyshev series based computation method is well suited for
the application of the waveform relaxation approach (parallel com-
putation).

The following weak points of this method need to be considered:

1. The matrix construction procedure for representing the circuit equa-
tions in linear form is quite complex and not general (see [92]).

2. Computing the circuit behavior over a long time interval requires a
large number of Chebyshev series expansion coefficients for accurate
results (see section 5.2).

3. The proposed method for nonlinear equations (Eq. 5.12) requires a
very good initial guess for achieving convergence to the solution.

4. The system of linear algebraic equations becomes large (proportional
to the number of Chebyshev coefficients) for the direct solution of
linear circuit equations.

Numerical analysis carried out in this work confirms that the Cheby-
shev series method proposed by Palusinski et al. requires a large num-
ber of expansion coefficients. An explanation for the poor convergence
of this method (even for linear equations) concerns the recurrent for-
mula defined by Eq. (5.9). It may be ill-conditioned, amplifying errors
in the smallest coefficients in such way that even the accuracy on the
largest coefficients becomes poor [96]. As Eq. (5.10) distributes this er-
rors across all coefficients, it does not seem to be a good approximation
for the computation of the initial condition.

5.5 Operational Computation of Analog Circuits 91

5.5 Operational Computation of Analog Circuits

With the aim of take advantage from the orthogonal signal model pro-
posed in chapter 4 (see section 4.5), this section proposes operational
computation methods that enable the behavior computation of analog
circuits at different abstraction levels (from linear transfer functions
to nonlinear circuit equations). They overcome the weak points of the
computational method described in section 5.4.2. The analog signal
expansions utilized for analog circuit behavior computation are not
restricted to be Chebyshev series. Furthermore, the differential equa-
tions describing the circuit dynamical behavior are converted to inte-
gral equations and then transformed into an algebraic equation system
using an operational matrix of integration for improving both the com-
putation accuracy and performance. Moreover, the matrix construction
procedure is defined in terms of the outer product leading to a direct
and simple computation from circuit equation matrices.

5.5.1 Operational Computation of Linear Circuits

Any linear circuit can be described by a state space equation. Fig. 5.1
shows the signal flow model of the corresponding continuous time
linear system.

B
∫

A
C

D

[xi]N [yi]R
[x0]N

[ui]M

Fig. 5.1: Analog system representation in state space form

In order to apply the operational computation method to the state
space equation formulation, the system state and signal vectors are
represented by orthogonal signals expressed in matrix-vector multipli-
cation form as follows:

92 5 Modeling and Simulation of AMS Systems

[x(σ)]N ≈ [cx]T
PN · [Qn(σ)]P = [cx]NP · [Qn(σ)]P (5.13a)

[u(σ)]M ≈ [cu]T
PM · [Qn(σ)]P = [cu]MP · [Qn(σ)]P (5.13b)

[y(σ)]R ≈ [cy]T
PR · [Qn(σ)]P = [cy]RP · [Qn(σ)]P (5.13c)

where P is the number of signal coefficients.
In order to simplify the equations, the orthogonal signal model de-

fined by Eq. (4.18) is reduced to the continuous signal form (Eq. (4.12)).
Using orthogonal polynomials Qn(σ), the analog signals of any contin-
uous time system are efficiently and accurately described by a reduced
number of coefficients.

The integration of a continuous time signal s(σ) that is defined by an
orthogonal signal expansion in terms of the coefficient vector [cs]P can
be approximated by the following matrix multiplication:

∫ σb

σa

s(σ)dσ ≈ [cs]
T
P · [PQ]P2 · [Qn(σb)]P (5.14)

The matrix [PQ]P2 is known as operational matrix of integration and its
coefficient values depend on the utilized orthogonal functions. For ex-
ample, for 3rd order Chebyshev polynomials Tn(σ), the corresponding
operational matrix of integration [PT]P2 is given by [94]:

[PT]42 =





1 1 0 0

- 1
4 0 - 1

4 0

- 1
3 - 1

2 0 1
6

1
8 0 - 1

4 0





(5.15)

Legendre polynomials Pn(σ) are also well suited for representing and
integrating analog signals [93]. In both cases, it is necessary to map the
signals to an interval [σa , σb] in which the polynomials are orthogonal.
This is carried out by a simple variable change (see Eq. (5.8)).

Although Eq. (5.14) is valid for any orthogonal function, Cheby-
shev and Legendre polynomial approximations of analog signals have
certain advantages over others orthogonal functions (e.g. Laguerre or
Walsh):

1. The approximation error is almost uniform in the integration interval
(due to the least squares approximation properties).

5.5 Operational Computation of Analog Circuits 93

2. Independently of the size of [PQ]P2 , only one non-zero term is trun-
cated (introducing less error than other operational matrices).

3. The value of the truncated term decreases proportional to the size of
[PQ]P2 (few coefficients are needed for a small approximation error).

In order to compute the system behavior, both sides of Eq. (5.1) are
integrated. Thus the explicit ordinary differential equation (ODE) is
transformed into the following integral equation:

[x(t)]N =

∫ t

t0

(

[ASS]N2 · [x(τ)]N + [BSS]NM · [u(τ)]M

)

dτ+ [x(t0)]N (5.16)

Replacing the continuous time signals in Eq. (5.16) by the proposed
orthogonal signal expansions (Eq. (5.13)) and utilizing Eq. (5.14) for the
computation of the signal integrations, the following algebraic equation
is obtained:

[cx]NP− [ASSσ]N2 · [cx]NP · [PQ]P2 = [BSSσ]NM · [cu]MP · [PQ]P2 + [cx0]NP (5.17)

Note that the orthogonal polynomials vector [Qn(σ)]P was eliminated
in Eq. (5.17). Therefore only signal coefficients are involved in the so-
lution of the differential equation. Due to the variable mapping (from
t to σ), the system matrices are modified by a scaling factor (which is
denoted by the subscript σ).

Using the Kronecker product properties, the following linear equa-
tion system is obtained:

[A](NP)2 ·vec([cx]NP) = vec([cb]NP) (5.18a)

[A](NP)2 = ([I](NP)2 − [ASSσ]N2 ⊗ [PQ]T
P2) (5.18b)

[cb]NP = [BSSσ]NM · [cu]MP · [PQ]P2 + [cx0]NP (5.18c)

where the matrix [I](NP)2 is the identity matrix and vec() is a matrix vec-
torization operator. Note that the size of the previous equation system
is proportional to the number P of coefficients. It can be solved us-
ing direct computation methods9. This work utilizes LU factorization
followed by forward and backward substitution (see section 3.4.4).

After the solution of Eq. (5.18), the computation of system response
is carried out by evaluating the following algebraic equation at the

9 For large systems or large number of required signal coefficients, an iterative
computation method may provide a better accuracy or performance.

94 5 Modeling and Simulation of AMS Systems

desired time point σ:

[y(σ)]R = ([CSSσ]RN · [cx]NP+ [DSSσ]RM · [cu]MP) · [Qn(σ)]P (5.19)

In this work, only time invariant systems were considered (i.e. [ASS]N2

and [BSS]N2 are assumed to be constant) but the presented methodology
can be extended for time varying systems (see [92]). In such case, the
system matrices need to be expressed in terms of orthogonal signals.

For electrical circuits, the circuit equations are usually expressed in
terms of a differential algebraic equation (DAE). The procedure carried
out above for state space equations can also be applied for the behav-
ior computation of circuit equations formulated using the modified
nodal analysis method (see section 3.4.1). After integrating both sides
of Eq. (3.1), the electrical circuit is described by the following integral
equation:

[CMNA](N+B)2 · [x(t)]N+B =

∫ t

t0

(

[w(τ)]N+B− [GMNA](N+B)2 · [x(τ)]N+B

)

dτ+ [x(t0)]N+B

(5.20)
where [w(t)]N+B denotes the input signal vector and the signal vector
[x(t)]N+B contains the state and output signal vectors. As the matrix
[CMNA](N+B)2 is normally not invertible, the formulation in the form of
Eq. (5.16) is not possible. Replacing the continuous time signals in Eq.
(5.20) by orthogonal signal expansions, the following algebraic equa-
tion is obtained:

[GMNAσ](N+B)2 · [cx](N+B)P · [PQ]P2 + [CMNAσ](N+B)2 · [cx](N+B)P = [cb](N+B)P (5.21a)

[cb](N+B)P ≔ [cw](N+B)P · [PQ]P2 + [cx0](N+B)P (5.21b)

Using the Kronecker product properties, the following linear equation
system is obtained (see [37]):

[A]((N+B)P)2 ·vec([cx](N+B)P) = vec([cb](N+B)P) (5.22a)

[A]((N+B)P)2 ≔ ([I]P2 ⊗ [CMNAσ](N+B)2 + [GMNAσ](N+B)2 ⊗ [PQ]T
P2) (5.22b)

[cb](N+B)P ≔ [cw](N+B)P · [PQ]P2 + [cx0](N+B)P (5.22c)

After solving Eq. (5.22), the behavior of the system is computed
evaluating the orthogonal signals at the desired time point σ.

[x(σ)]N+B = [cx](N+B)P · [Qn(σ)]P (5.23)

5.5 Operational Computation of Analog Circuits 95

5.5.2 Operational Computation of Non-Linear Circuits

Nonlinear circuits are modeled representing the nonlinear circuit el-
ements as externally controlled current or voltage sources. Eq. (5.24)
shows the MNA formulation for nonlinear circuits.

[GMNA](N+B)2 · [x(t)]N+B+ [CMNA](N+B)2 ·
d

dt
[x(t)]N+B = [w([x(t)]N+B, t)]N+B (5.24)

After formulating Eq. (5.24) in terms of orthogonal signals expansions,
the following implicit equation is defined for the computation of the
circuit behavior:

f ([cx](N+B)P) = [CMNAσ](N+B)2 · [cx](N+B)P−h([cx](N+B)P) · [PQ]P2 = 0 (5.25a)

h([cx](N+B)P)≔ [w([cx](N+B)P)]N+B− [GMNAσ](N+B)2 · [cx](N+B)P (5.25b)

The coefficients [cx](N+B)P of the system response can be computed
using the Newton-Raphson iteration:

[cx]k+1
(N+B)P = [cx]k

(N+B)P− [M]-1
((N+B)P)2 · f ([cx]k

(N+B)P) (5.26)

However, the computation of the Jacobian matrix [M]((N+B)P)2 is quite
difficult for the vector function f ([cx](N+B)P). Furthermore, the convergence
of Eq. (5.26) strongly depends on the initial guess and on the nonlinear
circuit characteristics.

In order to simplify the computations and to achieve more reliable
results, this work proposes the computation of nonlinear equations
based on the Picard iteration which is defined as follows:

[x(t)k+1]N+B = [x(t0)]N+B+

∫ t

t0

(d

dτ
[x(τ)k]N+B

)

dτ (5.27)

Eq. (5.27) avoids the linearization of the system equations. The behavior
of nonlinear circuits is computed iteratively by solving the following
algebraic equation system (which results from combining Eq. (5.25) and
Eq. (5.27)):

[CMNAσ]N+B · [cx]k+1
(N+B)P = ([cx0](N+B)P+h([cx]k

(N+B)P) · [PQ]P2 (5.28)

It shows very good convergence properties for Chebyshev polynomials
as will be shown in section 5.9.

96 5 Modeling and Simulation of AMS Systems

5.6 Sequential Computation of Digital Circuits

A digital circuit with memory is usually modeled as a finite state machine.
The block diagram shown in Fig. 5.2 represents the signal flow model
of a sequential digital circuit. The next-state function fq and the output
function fo are combinational networks (switching functions). The delay
function fd implements a feedback delay τd.

fq fd

fo

[qi-1]N [qi]N

[yi]R

[xi]M

Fig. 5.2: Digital system representation as finite state machine

This abstract representation of a digital circuit is the counterpart
of the state space model used for the abstract description of analog
circuits. It is considered in this work for computing the digital circuit
behavior. The digital state [qi]N needs to be explicitly modeled for the
correct computation of the circuit behavior. It is necessary for coping
with discrete event iterations (delta cycles). The input signal [xi]M and
the output signal [yi]R are sequences of values. Note that discretized
analog systems correspond to this circuit representation. The value
sequences [xi]M and [yi]R are represented by orthogonal signals to enable
the fast digital circuit simulation.

Digital logic circuits are usually modeled based on the axioms of
boolean algebra as binary switching functions. The computation of
digital logic circuits at gate level 10 can be expressed in transfer func-
tion form by expanding the set of input signals into a binary orthog-
onal basis. This dissertation focuses on the digital circuit modeling at
register-transfer level (RTL) as will be shown in the experimental re-
sults.

10 For gate level computation of digital logic circuits see [115]

5.7 Iterative Data Flow Computation of AMS Circuits 97

5.7 Iterative Data Flow Computation of AMS Circuits

Digital and analog circuits are executed in this dissertation using a
synchronous data flow formalism. The behavior of the several system
components is encapsulated into one or more processes. Each process
reads and/or writes signals represented in vectorial form which include
timing information. Before simulation starts, the execution properties
(timing and rates) of each computation process must be defined. This
property setting takes place during model initialization. When it is done,
the execution order of the discrete time processes is determined.

After property setting and schedule computation, the simulation
starts. In each evaluation cycle, the next execution time is computed by a
cluster manager which sequentially executes the model processes. Each
process may request the next execution time. When a process is exe-
cuted, it reads all input signals from the ports and determines the next
local event time. After updating the local process time, the event processing
function is executed. This step is repeated until all input signal events
are read. All signals are defined in the same time interval (according
to the execution time) but the number of events present on signals is
arbitrary (not limited to a constant rate). Thereby, the event processing
function may be executed several times during process execution. If a
process does not have input ports, the event processing function is exe-
cuted once per cycle. The resulting events may be written to the output
signals with any arbitrary time delay value.

For systems containing feedback loops, the model evaluation cy-
cle is repeated until signal convergence is achieved. As digital circuits
normally contain sequential processes (see finite state machine repre-
sentation in section 5.6), the logic state [qi−1]N of digital processes is
stored in a special process variable. Thus, the initial circuit state can be
restored after an evaluation cycle was carried out (if it is necessary).

For analog circuits, the continuous state is stored in the analog solver.
If an evaluation cycle is repeated to achieve signal convergence, the
state value is restored (similar to the computation of digital circuits).

Note that the global model execution is carried out synchronously
i.e. the signals of all computation processes share the same start and
end time but the events occurring in this time interval are computed
asynchronously i.e. digital processes have their own discrete event sim-
ulation mechanism and analog processes have their own analog solver
and computation settings.

98 5 Modeling and Simulation of AMS Systems

5.8 Implementation

In order to evaluate the accuracy, efficiency and stability of numerical
computation methods for analog circuits, a MATLAB toolbox which
supports the modeling of analog circuits (described by a net-list or in
state space form) was implemented in this work. The analog circuit
simulation toolbox contains classes for the formulation of circuit equa-
tions (MNA method) and several numerical solvers for time domain
circuit response analysis. A key feature of this toolbox is the symbolic
solution of circuit equations.

Architecture modeling features (modules, ports and signals) are pro-
vided for the simulation of data flow models. Listing 5.1 shows the
MATLAB test bench model utilized for circuit simulation in section 5.9.
The average Buck converter circuit is connected to a source through a
signal and the integration method is defined in the model parameters.

Listing 5.1: Circuit test bench model in MATLAB

1 function model = mdl_converter_buck_avg(par)

2 % Create an empty model

3 model = core.model(’mdl_converter_buck_avg’, par);

4 % Define model signals

5 sig_src = core.signal(’sig_src’);

6 sig_circ = core.signal(’sig_circ’);

7 % Create modules

8 src = models.mod_src_cnst(’src’,par.source);

9 circ = models.circ_converter_buck_avg(’circ’,par);

10 % Bind signals

11 src.out.bind_signal(sig_src);

12 circ.in.bind_signal(sig_src);

13 circ.out.bind_signal(sig_circ);

14 % Add modules to the model

15 model.add_module(src);

16 model.add_module(circ);

17 end

A SystemC AMS extension, that defines user analog modules using
templates was also implemented. It allows the integration and per-
formance evaluation of computation methods for analog system sim-
ulation. As the numerical computation routines implemented in the
SystemC extension are limited (compared to those provided by MAT-
LAB), only a small set of analog solvers are currently available. Listing
5.2 shows the SystemC code for the circuit test bench model.

5.8 Implementation 99

Listing 5.2: Circuit test bench model in SystemC AMS

1 template<typename data_type>

2 class sca_converter_buck_avg:

3 public ::sca_usr::sca_analog_system_module<data_type ,

4 typename sca_type<data_type>::equation_type ,

5 typename sca_type<data_type>::solver_type>

6 { // Define solver and data type for analog module

7 typedef ::sca_usr::sca_analog_module<data_type ,

8 typename sca_type<data_type>::equation_type ,

9 typename sca_type<data_type>::solver_type>

10 base_type;

11 public:

12 sca_converter_buck_avg(::sc_core::sc_module_name _name):

13 base_type(_name, _sample_time){}

14 };

MoC implementation for AMS circuit simulation

In order to keep the process modeling and communication abstract and
efficient, a model of computation called orthogonal signal flow (OSF) was
implemented as extension of the timed data flow (TDF) MoC provided
by SystemC AMS. Due to the calculation of a static schedule during
the model initialization, this synchronous computation MoC enables a
good simulation performance.

All main components are defined in the namespace sca osf. Mod-
ule, port and signal classes are derived from the respective TDF classes,
supporting thus hierarchical model construction. Input and output port
converters are provided for the interaction with SystemC and SystemC
AMS model parts. The dynamic features of the TDF MoC allow the
time-accurate interaction with discrete event parts. Port functions read,
initialize and write are overloaded to provide signal read and writ-
ing operations at the current process time for a single value or an array of
values (orthogonal signal coefficients). An additional class for modeling
of logic states (which enables digital solver rollback) was implemented.

Fig. 5.3 shows the processing function implementation for OSF mod-
ules. The current process time can be advanced using the OSF function
set event time for synchronous read and write operations on module
ports. The process time advance is limited by the cluster next time step.

100 5 Modeling and Simulation of AMS Systems

Start processing

Get solver time step

Delta
cycle?

no

yes

Restore states

Increment iterations
Clear iterations

Store states

Clear output signal
h t t

Update time interval

Event processing loop

no

yes

change states

Get input signal
change states

Signal
changes?

yes

no

Swap output signals
and clear signal events

Get next event time

New
event?

Call event_processing

Update output signal
change states

End processing

Fig. 5.3: OSF module processing function

The OSF functions initialize event and write event allow event
writing on port signals at arbitrary times, supporting therefore asyn-
chronous signals. During process execution, for each event that is
present in the input signals of a module the current process time is
updated to the next input signal event time and then, the virtual func-
tion event processing is automatically called. Event times are defined
relative to the signal start point. The start and the end time points
of module output signals can be obtained with the OSF functions
get initial time and get final time respectively.

5.8 Implementation 101

The delay properties of an OSF process are specified in the mod-
ule output ports using the functions set delay for a deadlock-free
TDF model schedule and set event delay for an arbitrary signal de-
lay time. The simulation accuracy is controlled module-wise using the
port functions set time accuracy and set signal accuracy. They al-
low the definition of the maximal admissible time and value deviation
for discrete and continuous time signals respectively. The default at-
tribute values for signal accuracy control are 1 ns and 1×10-6.

Listing 5.3 shows the implementation of a RS flip-flop with the OSF
MoC. It is utilized in the digital phase detector part of the PLL cir-
cuit which is proposed in section 5.9 for concept validation. Note that
the flip-flop state variables are instances of the OSF class sca state.
Thus, the flip-flop state is restored if a delta cycle takes place during
simulation.

Listing 5.3: RS Flip-flop implementation using OSF MoC

1 class sca_ff_rs: public sca_osf_tdf_module

2 { public:

3 ::sca_osf::sca_tdf::sca_in<bool> r, s;

4 ::sca_osf::sca_tdf::sca_out<bool> q, qb;

5 ::sca_osf::sca_state<bool> qin, qbin;

6
7 sca_ff_rs(sc_core::sc_module_name _name):

8 sca_osf_tdf_module(_name),

9 r("r"), s("s"), q("q"), qb("qb"){}

10
11 void set_attributes(void) {

12 q.set_timestep(1,SC_NS); q.set_delay(1);

13 qb.set_timestep(1,SC_NS); qb.set_delay(1);

14 q.set_event_delay(1.0e-9);

15 qb.set_event_delay(1.0e-9); }

16
17 void initialize(void)

18 { q.initialize(false); qb.initialize(false); }

19
20 void event_processing(void) {

21 if((s.read()==1)&&(r.read()==0))

22 { qin = 1; qbin = 0; }

23 if((s.read()==0)&&(r.read()==1))

24 { qin = 0; qbin = 1; }

25 if((s.read()==1)&&(r.read()==1))

26 { qin = 0; qbin = 0; }

27 q.write(qin); qb.write(qbin);}

28 };

102 5 Modeling and Simulation of AMS Systems

The analog solver implementing the operational computation meth-
ods is embedded into an OSF module for circuit simulation. The cor-
responding module initialization function carries out the solver setup.
During cycle evaluation, the module event processing function up-
dates the solver for the computation of the circuit response. Electrical
networks are modeling using the EPN MoC presented in chapter 3.

5.9 Experimental Results

As starting point for the experiments, the analog circuit shown in Fig. 5.4
was represented in state space form and simulated using the MATLAB
toolbox described in section 5.8. It corresponds to the average model
of the Buck converter circuit analyzed in chapter 3. Tab. 5.1 shows
the accuracy and performance results obtained using the traditional
linear multi-step integration methods (see section 3.4.2), the integration
methods based on the state transition matrix (see section 5.4.1) and the
proposed operational computation methods (see section 5.5.1).

E

L RLn1 n2

C

RC

V V

n3

R

C

Fig. 5.4: Average Buck converter circuit

The symbolic solver (denoted by SYM) is utilized as reference for the
accuracy analysis. It evaluates the pre-computed analytical solution at
several time points and presents therefore a short execution time. For
determining the analytical solution the symbolic solver (based on the
MATLAB symbolic toolbox) needs a very long time (around 2 min. for a
3rd order differential equation). As the computation time increases sig-
nificantly with the number of equations and often no analytical solution
can be found, it is not appropriate for practical applications.

5.9 Experimental Results 103

Solver
Mean

absolute
error (MAE)

Mean
relative

error (MRE)

Execution
Time in ms

SYM 0.0 0.0 94.142

LMS (BE) 1.4561e-2 2.2772e-3 320.740

LMS (BDF2) 1.1425e-4 8.8300e-5 328.070

LMS (TR) 4,6400e-5 5.7600e-5 338.360

STM (T) 2.5655e-3 4.0051e-4 79.145

STM (TB) 2.5655e-3 4.0051e-4 78.283

STM (TBS) 2.8300e-11 5.8400e-12 78.172

STM (JD) 1.6400e-13 3.2900e-13 77.598

COM (25) 3.4800e-7 7.9900e-8 77.390

COM (29) 1.0500e-9 2.4000e-10 77.611

COM (35) 1.8900e-13 3.3000e-13 78.833

LOM (25) 2.8500e-7 1.0700e-7 81.262

LOM (29) 8.8200e-10 3.5200e-10 81.294

LOM (35) 1.8100e-13 3.3700e-13 83.121

Table 5.1: Linear circuit accuracy and performance results

The linear multi-step (LMS) solvers, Backward Euler (BE), 2 step Back-
ward Differentiation Formula (BDF2) and Trapezoidal Rule (TR) (normally
used for circuit simulation) require a short time step size (10 times
smaller than the signal sampling step) for accurate computations. This
leads to large simulation execution times. The 2 step integration meth-
ods present a better accuracy than the simple Backward Euler, while the
impact of the additional step on the execution time is quite small.

The solvers based on the State Transition Matrix (denoted by STM)
show a very short execution time, but the computational accuracy of this
integration method is not better than the accuracy of the 2 steps meth-
ods if a Taylor expansion (denoted by T) without pre-conditioning of the
system matrix is utilized for the computation of the matrix exponential.
The system matrix norm reduction using matrix balancing (denoted by
TB) does not really improve the accuracy of the Taylor series expansion.

104 5 Modeling and Simulation of AMS Systems

It reduces however the number of required terms and thereby the exe-
cution time. Balancing and scaling need to be additionally applied to the
system matrix for achieving a significant accuracy improvement of the
Taylor series expansion (denoted by TBS). As the number of needed ex-
pansion terms is further reduced, the execution time is also improved
(but not significantly). Computing the matrix exponential using the
Jordan Decomposition (JD) method allows an improvement of the solver
accuracy and a further reduction of the simulation time compared to
the Taylor series expansion method.

The Chebyshev Operational Matrix and Legendre Operational Matrix
computation methods (denoted by COM and LOM respectively) show
a short execution time compared with the traditional multi-step meth-
ods and their accuracy can be easily controlled by increasing the num-
ber of polynomial terms (denoted in brackets). Opposite to the LMS
methods, there is no significant trade-off between accuracy and simu-
lation performance. The small impact of the number of coefficients on
the execution time indicates that it is dominated by the evaluation of
the orthogonal polynomials at the sampling time points. Polynomial
series lager than 35 terms do not further reduce the computation error
(for the given circuit). This saturation of the accuracy improvement put
in evidence that the overall computation accuracy of the operational
methods is limited by the accuracy of the linear algebraic solver. This
observation is confirmed by the similar accuracy results achieved with
the Jordan decomposition method. In this case, the maximal reachable
accuracy is limited by the implicit matrix inversion which is also com-
puted using the same linear algebraic solver.

In order to validate the operational computation method for non-
linear systems presented in Sec. 5.5.2, the circuit shown in Fig. 5.5 was
modeled and simulated. The resulting diode voltage is shown in Fig.
5.6.

I1 D1

n2n1

C2G1

C1

Fig. 5.5: Nonlinear circuit

5.9 Experimental Results 105

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

D
io

d
e

 v
o

lt
a

g
e

 i
n

 V
o

lt
s

Time in s

Matlab ode15s
Newton-Raphson iteration (BE)
Newton-Raphson iteration (TR)
Chebyshev-Picard iteration
Legendre-Picard iteration

zoom:

Fig. 5.6: Nonlinear Circuit Response

Furthermore, the implementation of the LMS methods was extended
for the computation of nonlinear circuits using the Newton-Raphson
algorithm. As the MATLAB symbolic toolbox it is not able to compute
an analytical solution for this nonlinear circuit, a numerical solution
was obtained utilizing the MATLAB ode15s function (denoted by ML)
for validation and accuracy analysis purposes. The computation results
are shown in Tab. 5.2.

As the Jacobian matrix is analytically computed, the simple Backward
Euler (BE) method shows a good performance. The Trapezoidal Rule
(TR) method improves the accuracy of the Newton-Raphson iteration
but the simulation performance significantly decreases. The presented
operational computation method based on the Picard iteration is both,
more accurate and faster for Chebyshev polynomials. The convergence
properties of Legendre polynomials are poor and they are not suitable
for the Picard iteration. It is less accurate than the LMS methods.

Solver
Mean

absolute
error (MAE)

Mean
relative error

(MRE)

Execution
Time in ms

ML 0.0 0.0 51.346

LMS (BE) 3.1734e-3 1.2846e-2 43.374

LMS (TR) 3.7102e-4 2.0975e-3 84.759

COM (15) 9.3460e-5 3.9670e-4 14.185

LOM (15) 2,0555e-2 7.9829e-2 29.597

Table 5.2: Nonlinear circuit accuracy and performance results

106 5 Modeling and Simulation of AMS Systems

The analytical method based on the state transition matrix can not be
directly applied to nonlinear systems. After linearization this method
becomes computationally more expensive than the linear multi-step
methods. For this reason, it is rarely utilized in practice and its imple-
mentation and analysis was omitted in this work.

In order to evaluate the suitability of the OSF MoC to cope with het-
erogeneous designs at different abstraction levels, a PLL system (similar
to the SystemC AMS PLL model presented in [123]) was modeled. As
shown in Fig. 5.7, the PLL consists of a reference signal generator (REF),
a phase-frequency detector (PFD), a charge pump (CP), a low-pass filter
(LPF), a voltage controlled oscillator (VCO) and a pre-scaler (PSC). The
charge pump and the analog filter were modeled at electrical level. The
VCO was modeled at functional as well as at architecture level (signal
flow). The presented operational methods were utilized for the linear
and nonlinear behavior computation. The digital parts (PFD and PSC)
were modeled at register transfer level applying the computational
model described in section 5.7. The interaction between the analog and
digital parts was computed using the method for fast threshold crossing
event detection presented in section 4.7.

yo
xr

xi

REF PDF CP LPF VCO

PSC

Fig. 5.7: Block diagram of the PLL system

Fig. 5.8 shows the PLL system simulation results. After a transient
of 250 µs, the desired output frequency is reached. In order to evaluate
the simulation performance achieved by the orthogonal signal based
computational methods (OSF MoC), the PLL system was also modeled
using the using the SystemC AMS MoCs ELN and LSF as well as TDF
for the for the analog and digital parts respectively. Discrete event mod-
eling (DE MoC) was also utilized for digital system modeling. Table 5.3
shows the execution time required by the several modeling abstractions
for the PLL system simulation. As expected, the calculation of a static
schedule leads to an improvement of the simulation performance for
synchronous computational models (TDF and OSF).

5.9 Experimental Results 107

1.6 1.8 2 2.2 2.4 2.6

·10−4

−6
−4
−2

0
2
4
6

Time in s

R
ef

er
en

ce
si

g
n

al
in

V

1.6 1.8 2 2.2 2.4 2.6

·10−4

0

2

4

Time in s

P
L

L
o

u
tp

u
t

si
g

n
al

in
V

1.6 1.8 2 2.2 2.4 2.6

·10−4

−1.8
−1.7
−1.6
−1.5
−1.4

Time in s

F
il

te
r

si
g

n
al

in
V

Fig. 5.8: PLL simulation results

The OSF MoC achieves a considerable reduction of the execution
time (2x speed-up). In particular, the signal tracing for analysis and
validation purposes was significant improved (10x speed-up). As only
few coefficients are necessary for representing continuous signals over
a large time interval, the orthogonal signal representation enables a
very efficient signal tracing.

Signal
tracing

DE MoC TDF MoC OSF MoC

off 1023.0 801.4 502.1

on 22819.8 21728.2 2048.5

Table 5.3: PLL simulation execution time in ms

108 5 Modeling and Simulation of AMS Systems

5.10 Chapter Summary and Conclusions

This chapter presented several behavior computation methods for ana-
log systems that enable faster or more accurate simulations at system
and circuit level. The investigation activities have shown that:

• Efficient, accurate and stable integration methods demand sophisti-
cated algebraic methods.

• The proposed operational behavior computation methods only need
few signal coefficients for achieving accurate simulation results.

• The proposed nonlinear circuit behavior computation method based
on the Picard iteration presents very good convergence properties
for orthogonal signals in term of Chebyshev polynomials.

• The convergence properties of Legendre polynomials are not good
enough for carrying out nonlinear circuit behavior computation.

The experimental results have shown that the proposed operational
computation methods for linear analog circuits are significantly more
efficient and accurate than the traditional LMS integration methods and
constitute a valuable alternative to the analytical behavior computation
methods based on the state transition matrix. As these methods do
not impose restrictions on the formulation of circuit equations and do
not require the linearization of circuit equations to cope with nonlinear
circuits, they are well suited for capturing the behavior of analog circuits
at several abstraction levels, enabling a system modeling that is closer
to Physics. Relevant system properties such as power consumption can
be accurately captured for system design optimization. The operational
computation methods also allow the efficient and accurate handling of
the interaction between analog and digital circuits. On the other hand,
the proposed sequential method for the behavior computation of digital
circuits leads to a more efficient process communication.

The experimental results corroborated that the orthogonal signal
modeling enables a more efficient computation of AMS systems. A sig-
nificant reduction of the execution time was obtained with the OSF
MoC, in particular if analog signals were traced, which reinforce the
importance of this chapter’s contribution. In chapter 7, the suitability
of the operational computation methods to cope with uncertain ana-
log systems is analyzed and several operational methods for the fast
analysis and verification of analog circuits are presented.

109

Chapter 6

Robust AMS System Design Optimization

Robust embedded system design is becoming more and more important
for coping with manufacturing tolerances and external perturbations.
There is growing demand for simple and efficient robust design meth-
ods that can be easily incorporated into the system design workflow as
well as for robustness evaluation methods that support design space
exploration leading to robust solutions. This chapter presents a control
system design optimization method that does not impose restrictions
on the controller structure and enables the improvement of the con-
trol system robustness with respect to disturbances and manufacturing
tolerances. The proposed AMS control system design method models
plant parameter tolerances as structured uncertainties for computing an
optimized disturbance weighting function and finds a robust design by
tuning the controller parameters to optimize the corresponding mixed
sensitivity problem. In order to reduce the design optimization time,
internal model control (IMC) is utilized for obtaining a near optimal set
of initial controller parameters. Furthermore, a mixed sensitivity index
is defined that enables the simple robustness evaluation of both linear
and nonlinear control systems. It allows the accurate comparison of
several control designs as well as the robust fine tuning of controller
parameters.

This chapter is organized as follows. After the presentation of the re-
search motivation and related work in section 6.1 and 6.2 respectively,
the research contribution of this chapter is summarized in section 6.3.
Section 6.4 introduces first the general robust design problem and then
the control system design problem presenting several techniques that
lead to robust control designs. The novel robustness evaluation index
is defined in section 6.5. The optimized disturbance weighting method
which includes the parameter uncertainties in the mixed sensitive con-
trol system design problem is explained in section 6.6. In section 6.7 the
impact of the controller structure choice and the design method on the
robustness of a Buck converter control are investigated. Finally, section
6.8 evaluates the most relevant findings of this chapter.

110 6 Robust AMS System Design Optimization

6.1 Motivation

Robust embedded system design is becoming increasingly important
for safety and manufacturing cost reasons in many industry sectors
such as automotive and aerospace. As the embedded system size is
constantly shrinking, many unknown parameters can significantly af-
fect the overall system performance. In particular, analog circuits may
be strongly sensitive to parameter variations due to the manufacturing
process as well as to changes on the environmental conditions. For this
reason, there is a growing demand for design tools that ensure system
performance by including the effects of design uncertainties at several
abstraction levels. The robustness evaluation of embedded system de-
signs is a further challenge. As there is normally a very large number
of heterogeneous system parameters, this is a quite difficult task.

6.2 Related Work

To assess the robustness of microelectronic circuits and systems, Barke
et al. presented a general approach for robustness modeling and sev-
eral ways to quantify design robustness [11]. The defined robustness
probability allows system designers to analyze and choose out of dif-
ferent implementations of mixed analog and digital systems. Beyer et
al. investigated how to account for design uncertainties in order to im-
prove system robustness [14]. They presented a useful classification of
design process uncertainties and summarized methods for robustness
measurement as well as for robust design optimization with respect
to uncertainty sources. To cope with multi-objective robust optimiza-
tion problems, Deb et al. presented two procedures for finding Pareto
optimal solutions that are less sensitive to small changes in variables
(robust solutions) [23]. Wang et al. considered small and large variations
in design variables and design environment parameters [122].

Focused on improving the robustness properties of control systems,
Alyaqout et al. introduced an approach that combines robust design
with robust control [5]. As the computational cost of improving the
robustness of the whole system is very high, they considered sequential
and iterative robust design optimization strategies.

6.2 Related Work 111

The robustness properties of control systems are strongly depen-
dent on the controller structure and parameter tuning. Loop shaping
is a commonly used method for designing robust controllers in the
frequency domain. It attenuates load disturbances and reduces the sen-
sitivity to process 11 variations while keeping measurement noise low.
This design method has two disadvantages, the resulting controller is
very complex and it is difficult to select appropriate loop shaping weights.
To mitigate these problems, Chaiya et al. proposed a mixed sensitiv-
ity design method based on a fixed-structure controller (approximated
PID) that takes into account process parameter uncertainties [16]. They
utilized Particle Swarm Optimization (PSO) for tuning the controller
parameters. In order to shape the disturbance weighting function they
estimated the disturbed plant uncertainty carrying out Monte Carlo
simulations.

For many control systems, the mixed sensitivity design optimiza-
tion method achieves excellent performance and robustness properties
if well suited weighting functions are utilized for constraining the op-
timization problem. As the statistical computation of the worst case
disturbed plant demands a long time, faster and more reliable compu-
tation methods are need to include the effect of parameter tolerances in
the loop shaping weighting functions. A further issue is that the time
required for solving the fixed structure control design optimization
problem may severely limit the robust tuning of controller parameters.
Heuristic global optimization algorithms such as Particle Swarm Op-
timization (PSO), Simulated Annealing (SA), etc. are frequently used
but they are very time demanding and do not guarantee an optimal
controller parameter tuning. Therefore, they present a very limited ca-
pability to cope with circuit level robust system design optimization
problems. As power electronic systems are very susceptible to insta-
bility, design refinement methods that consider the impact of unmod-
eled nonlinear dynamics on the system stability are needed [111] [124].
As robust control design methods may lead to very complex control
structures, robustness assessment methods that are suitable to guide
the control system design process are also necessary to evaluate the
properties of several controllers. In particular, the nonlinear dynamic
properties of AMS systems must be considered.

11 In control system context, ”process” means the process under control or plant

112 6 Robust AMS System Design Optimization

6.3 Contribution to Robust System Design Optimization

The aim of the research work presented in this chapter was to define a
robustness evaluation model that can be easily applied for the analysis and
optimization of embedded control system designs at several abstraction
levels as well as to develop a robust control system design optimization
method that reduces the controller implementation complexity and
the time required for finding optimal controller parameters. The main
research activities carried out to this end were the following:

• To investigate which robustness evaluation methods are suitable for
the analysis of electronic system designs.

• To work out a robustness evaluation method that is appropriated for
the analysis of control system designs at several abstraction levels.

• To evaluate several robust control design methods regarding the
effectiveness and simplicity.

• To derive methods for efficiently guiding and constraining the robust
design optimization problem through several abstraction levels.

For the evaluation of different controller designs, a mixed sensitiv-
ity robustness index was defined which captures the essential control
system properties as well as the impact of plant parameter tolerances.
To cope with the robustness evaluation of nonlinear control systems, a
linear system model is identified from the simulation results at several
controller operation working points using the convergence properties
of orthogonal polynomials [134].

In order to fastly achieve a robust control system design at circuit
level that does not unnecessarily restrict the controller performance, this
dissertation proposes a design method that computes plant parametric
uncertainty in a novel way (see [36]), utilizes internal model control
(IMC) to find a suitable set of initial controller parameters and stepwise
optimizes the fixed structure controller parameters for maximizing the
the above mentioned mixed sensitivity robustness index.

As a very simple control system design evaluation can be carried
out utilizing the proposed mixed sensitivity robustness index, it sig-
nificantly reduces the analysis time during design exploration. Taking
into account that the proposed robust design method speeds up the
control system optimization task and is applicable to widely used con-
trollers such as PID, the contribution of this chapter is very significant
from a practical point of view.

6.4 Robust System Design 113

6.4 Robust System Design

As shown in Fig. 6.1, a system Q which transforms an input signal
vector [r(t)] into an output signal vector [y(t)] under unknown operation
conditions and external perturbations (denoted by the vector [w(t)]) is
characterized by a set of performance properties or features (denoted
by the vector [j(t)]) [11].

[y(t)]

ρR

Q[x(t)]

[w(t)]

[j(t)]Performance

Perturbations

OutputsInputs

Robustness

Fig. 6.1: System performance

In order to evaluate the performance properties of a system, nom-
inal operation conditions [wnom(t)] are normally considered. The set of
tolerated perturbations or admissible operating conditions considered
in the system design is known as mission profileWM and it is normally
specified as an interval vector [w̄spec] in the perturbation space W. The
set of properties or performance features that the system Q shall fulfill
during its operation is known as the robust performance space JR and it is
often specified as an interval [j̄spec] in the property or performance space J.

6.4.1 System Robustness Evaluation

A system Q is called robust if the performance subspace JM resulting
from mapping the system inputs under the specified perturbationsWM

is included in the robust performance space JR. This is usually a limited
region around the nominal performance point [jnom(t)]. As shown in Fig.
6.2, a robust system may tolerate a set of disturbances WR which are
partially not included in the mission profileWM.

114 6 Robust AMS System Design Optimization

w1(t)

w2(t)

w1,maxw1,min

w2,min

w2,max

w2,nom

w1,nom
j1(t)

j2(t)

j1,maxj1,min

j2,min

j2,max

j2,nom

j1,nom

𝕁𝑴𝕁𝑹𝕎𝑴
𝕎𝑹

Fig. 6.2: System robustness

The robust implementation of a system strongly depends on the
size of performance subspace JM. The robustness of a system Q can be
defined as the probability that the system fulfills the specified properties
(robust performance space JR) although the operating conditions are not
included in the mission profile WM [11]. The robustness probability ρR is
given by:

ρR ≔ P([j(t)] ∈ JR | [w(t)] <WM) (6.1)

which can be then computed as follows:

ρR =
P([w(t)] ∈WR∧ [w(t)] <WM)

1−P([w(t)] ∈WM)
(6.2)

Computing the system robustness in terms of probability allows
the direct comparison between very different system designs. Note
that the probability distributions are used in this definition for the
normalization of the robustness value.

6.4.2 Robust System Design Optimization

Systems designed to fulfill specification requirements and optimized to
improve their performance may be very sensitive to parameter changes.
For this reason, a robustness analysis should be always part of the design
process. In a general way, a system design is considered to be robust if
the system performance remains relatively unchanged under uncertain
system manufacturing and operation conditions.

6.4 Robust System Design 115

In order to consider parameter uncertainties in the system design, a
three step system design method was proposed by Taguchi [14]:

1. System design: The system structure is designed and parameterized
to fulfill the specification requirements.

2. Parameter design: The parameters are optimized to improve the
robustness (sensitivity analysis).

3. Tolerance design: The parameter tolerances are considered for fine
tuning design parameters.

Robust design techniques should not be limited to cope with design
parameter sensitivities (parameter design step). The optimal operating
point should be also considered. Fig. 6.3 shows the resulting perfor-
mance subspace JM of two different robust design solutions under the
specified perturbationsWM. Although both system designs are robust,
the solutions present a very different robustness. Considering the sys-
tem robustness in the system design optimization problem is much
better. It is known as robust design optimization.

j1(t)

j2(t)

j1,maxj1,min

j2,min

j2,max

j2,nom
a

j1,nom
b

j2,nom
b

j1,nom
a

b𝕁𝑴
a𝕁𝑴

𝕁𝑹
a: Robust design (Taguchi)
b: Optimized robust design

Fig. 6.3: Robust design optimization problem

The objective or cost function utilized for solving the design opti-
mization problem and the constraints imposed to the design parameters
mainly determine the achieved system performance and robustness.
The optimization algorithm and its parameters have a considerable
impact on the optimization time and optimization results. In the next
section the most popular robust control design methods in the time and
frequency domain are briefly explained.

116 6 Robust AMS System Design Optimization

6.4.3 Robust Control Design

Robust control design methods are well suited to deal with both
changes of operating conditions and parameter tolerances. For this
reason, this dissertation considers that the system Q under design con-
sists of two parts, a dynamical process or plant P([u(t)], [y(t)], [pp]) and a
controller C([r(t)], [y(t)], [u(t)], [pc]) as represented in Fig. 6.4.

[r(t)]

[d(t)]Disturbances

Inputs C 1+∆P [y(t)]Outputs

[n(t)]Noise

[u(t)]

P

P
~

Fig. 6.4: Robust control system block diagram

The perturbed process P̃ has three inputs, the control signal vector [u(t)],
the disturbance signal vector [d(t)] and the noise signal vector [n(t)]. The pro-
cess perturbation∆P represents variations of the process behavior due to
parameter uncertainties and modeling inaccuracy. The measured output
signal vector [y(t)] is used by the controller to compute the control signal
vector [u(t)]. The process and controller parameters are represented by
the vectors [pp] and [pc] respectively. For system design, it is assumed
that the controller C is free of disturbances.

Typical requirements for robust control systems are [8]:

1. The system outputs [y(t)] should follow the command signals [r(t)].
2. The load disturbances [d(t)] should be attenuated by the control.
3. The measurement noise [n(t)] should be limited in the loop.
4. The control sensitivity to process variations ∆P should be small.

Considering that the dynamical perturbations [w(t)] acting on the sys-
tem have different dynamical properties, they are subdivided for con-
venience into load disturbances [d(t)] and measurement noise [n(t)]. The
attenuation of load disturbances can be improved by increasing the
system bandwidth, but it results in more noise injection (mutually con-
flicting design requirements). In order to obtain a robust control system
design, linear quadratic and H∞ control are usually applied.

6.4 Robust System Design 117

Linear Quadratic Regulator (LQR)

A trade-off between reducing the effect of load disturbances and the
injection of measurement noise can be achieved if the control design
minimizes the following loss function [8]:

JLQ ≔
1

T
·
∫ T

0
(||[y(t)]||2+ρ · ||[u(t)]||2)dt (6.3)

where ρ is a weighting parameter and ||.|| denotes the vector norm. The
loss function JLQ balances the control actions against deviations in the
output.

H∞ Control

If both the process and the controller are linear systems, the impact
of all external influences acting on the system (which are represented
by the generalized disturbance signal vector [w(t)]) can be considered to
be independent of the current command signals [r(t)] and the current
operating point. The deviation of the control and output signal vectors
from their operation values are described by an additional output signal
[z(t)] known as the generalized error [8]. After applying the Laplace
transform to the system equations, the generalized error z(s) can be
computed as follows:

z(s) =H(s) ·w(s) =





S(s) P(s) ·S(s)

C(s) ·S(s) T(s)









d(s)

n(s)




(6.4)

where S(s) and T(s) are the sensitivity and complementary sensitivity
functions respectively. They are defined as follows:

S(s)≔
1

1+P(s) ·C(s)
(6.5a)

T(s)≔
P(s) ·C(s)

1+P(s) ·C(s)
(6.5b)

118 6 Robust AMS System Design Optimization

The robust control design problem consists in minimizing the general-
ized error. The design problem is thus reduced to finding a controller
C(s) such that the gain of the transfer function H(s) is small even when
the process P(s) has uncertainty (modeling or parametric).

A robust controller that has the same order as the process can be
found solving the minimization problem:

||H(P(s),C(s))||∞ < γ (6.6)

where γ is just a design parameter. Both the system performance and
robustness are optimized in the H∞ control design.

Mixed Sensitivity Control

Minimizing the infinity norm of H(s) means that all frequencies of the
controller input signals and disturbances are equally important. This
is not very realistic because load disturbances typically have low fre-
quencies and measurement noise has high frequencies [8]. Introducing
a weighting filter, the design problem can be modified so that the distur-
bances of different frequencies get different emphasis.

The sensitivity function S(s) is a very good indicator of closed loop
performance. In order to shape S(s) over the bandwidth frequency ωB,
the following performance weighting function WP(s) is often utilized [109]:

WP(s) =
s/M+ωB

s+ωB ·A
(6.7)

where the peak specification M avoids the amplification of noise at
high frequencies. The control design problem is thus reduced to find a
controller C(s) that satisfies the relation:

||WP(s)S(s))||∞ < 1 (6.8)

The performance weighting function WP(s) specifies a bandwidth lower
bound. An upper bound is also required to make sure that the loop trans-
fer function L(s) = C(s)P(s) rolls off sufficiently fast at high frequencies.
The disturbance weighting function WT(s) is introduced for the roll-off
specification of L(s) above the bandwidth. It shapes the complemen-
tary sensitivity T(s) and can be computed as follows [109]:

6.5 Control System Robustness Evaluation 119

WT(s) =
s+ωB/M

A · s+ωB
(6.9)

In order to restrict the magnitude of the plant input signals, a control
weighting function Wu(s) may be additionally introduced. It places an
upper bound on the magnitude of C(s)S(s).

The mixed sensitivity specifications are utilized to obtain an optimal
H∞ controller by solving the following optimization problem:

min
C(s)

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

WP(s) ·S(s)
WT(s) ·T(s)

Wu(s) ·C(s) ·S(s)

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣∞

(6.10)

6.5 Control System Robustness Evaluation

The robustness probability index defined in section 6.4 has some draw-
backs for evaluating the robustness of several control systems and con-
trol design approaches. The controller robustness computed using Eq.
(6.2) depends on the performance space JR and therefore, the robustness
evaluation strongly depends on the design method. Several controller
specifications may result in completely different robustness characteri-
zations. Furthermore, the denominator of Eq. (6.2) leads to very sensi-
tive computations if it is close to zero.

In order to overcome the practical problems of the existing ap-
proaches for robustness evaluation, this dissertation proposes a ro-
bustness index φR which is based on the sensitivity and complemen-
tary sensitivity functions. This set of design parameters captures the
essence of the control problem [33] [34] [26]. They reflect the stabil-
ity, robustness and performance of a control system. The sensitivity
function S(s) is a very good indicator of closed loop performance. Fur-
thermore, it quantifies the amplification of disturbances at the output
of the plant as well as the influence of plant parameter uncertainties
[109]. The complementary sensitivity function T(s) is an important per-
formance indicator of the control system response to set-point changes.
It determines the overshoot in the system response [109].

120 6 Robust AMS System Design Optimization

The mixed sensitivity robustness index φR is defined as follows:

φR ≔

K∑

k=1

R∑

r=1

P(k) ·P(r) ·φRnom ·φR∆ ,
K∑

k=1

P(k) = 1,
R∑

r=1

P(r) = 1 (6.11a)

φRnom ≔

√

1

2
·
(

1

||Snom(s)||∞2
+

1

||Tnom(s)||∞2

)

(6.11b)

φR∆ ≔

(

1−
√

φ2
SD
+φ2

TD

)

(6.11c)

φSD ≔ σ 1
||S(s)||∞

+

∣
∣
∣
∣
∣
µ 1
||S(s)||∞

− 1

||Snom(s)||∞

∣
∣
∣
∣
∣

(6.11d)

φTD ≔ σ 1
||T(s)||∞

+

∣
∣
∣
∣
∣
µ 1
||T(s)||∞

− 1

||Tnom(s)||∞

∣
∣
∣
∣
∣

(6.11e)

The robustness of a control system design under nominal parameter
values (denoted by φRnom) is captured by Eq (6.11) as a normalized dis-
tance which is defined in terms of the system sensitivities. The impact
of the parameter uncertainties on the system robustness (denoted by
φR∆) is expressed in terms of the standard deviation σ and the expected
value µ. As shown in Fig 6.5, the normalized distances φSD and φTD

define the perturbation area around the average value.

1

1
(1,1)

∅𝐑𝐧𝐨𝐦𝕁𝑴𝕁𝑹 ∅𝐑∆

∅𝐑𝐧𝐨𝐦: Nominal sensitivity value∅𝐑∆ : Average sensitivity value 𝟏 𝑻(𝒔) ∞

 𝟏 𝑺(𝒔) ∞ 𝟏 𝑺𝒏𝒐𝒎(𝒔) ∞

 𝟏 𝑻𝒏𝒐𝒎(𝒔) ∞

 𝟏 𝑻 (𝒔) ∞,𝒎𝒊𝒏
 𝟏 𝑺 (𝒔) ∞,𝒎𝒊𝒏

Fig. 6.5: Mixed sensitivity robustness index

6.6 Robust Design Optimization of AMS Systems 121

As S(s)+T(s) = 1, the mixed sensitivity robustness index φR is con-
strained to the value range [0, 1] which allows a very simple design
evaluation. The value 1 corresponds to an ideal robust control system.

In order to characterize the robustness of nonlinear systems, K dif-
ferent operating point changes are considered for the robustness index
computation. A linear system that matches the response to each operat-
ing point change is found using identification methods and utilized for
the computation of the system sensitivity functions. The corresponding
probability that a given operating point change assigned to the index
k occurs is denoted by P(k). In a similar way, the parameter ranges are
subdivided in R regions and a linear system is identified for each pa-
rameter value in the region sample set. P(r) denotes the probability that
the system parameters are included in the region r. If the probability dis-
tributions for computing P(k) and P(r) are known, an over-conservative
robustness evaluation can be avoided. Otherwise, a uniform distribu-
tion is assumed.

This dissertation uses a linear system identification method based on
orthogonal polynomials which was extended by Zhu for the design of
DC-DC step-down converters [134]. It utilizes an operational matrix of
integration for the computation of a linear transfer function and can be
directly applied to the signal representation proposed in chapter 4 (see
appendix A). Thus, this system identification method takes advantage
of the behavior computation methods presented in chapter 5.

6.6 Robust Design Optimization of AMS Systems

This dissertation proposes the following 3 general steps to carry out a
robust control design of any nonlinear AMS system:

1. To model plant uncertainties such as they can be included in the
robust design optimization problem.

2. To select one (or more) suitable controller and plant to solve the de-
sign problem and optimize the linearized AMS system to be robust.

3. To fine-tune the controller parameters and to verify AMS system
design robustness using an accurate plant model which captures the
main system nonlinear characteristics.

122 6 Robust AMS System Design Optimization

This work modifies the mixed sensitivity robust design method ex-
plained in section 6.4.3 to fit the proposed robust design method. The
following sections present concrete methods for carrying out the design
steps. As will be shown in section 6.7, the previously defined robust-
ness index φR is well suited for both control system evaluation (design
space exploration) and controller fine tuning.

6.6.1 Modeling Parametric Uncertainty

It is impossible to exactly model a physical system. To obtain a robust
system stability and performance design, the process uncertainty needs
to be considered. Parametric uncertainty is an unavoidable form of un-
certainty in physical systems. The parameters describing the system
are unknown but normally defined in a given range. Using a multi-
plicative perturbation model, the uncertain plant transfer function P̃(s) is
represented in the following form:

P̃(s) = (1+∆P(s)) ·P(s) (6.12)

The idea behind this uncertainty model is that the normalized plant
perturbation ∆P(s) provides a plant uncertainty profile [27].

In order to include the plant uncertainty profile in the controller
design, this work proposes to obtain a disturbance weighting WT(s) by
solving the following optimization problem in the range of interest:

|WT(jw)|≔ 1

M
·max

pp
|∆P(s)|s= jw , pp ∈ [pp,min,pp,max] (6.13)

Note that it is sufficient to consider only the magnitude of WT(jw), i.e.
the consideration of the weighting function phase is not necessary for
determining WT(s).

As the solutions of Eq. (6.13) for two close frequencies do not differ
too much, this work uses the already computed solution at a given
frequency jw as start point for the optimization at the next adjacent
frequency reducing considerably the computation time. Thus, a novel
method called optimized disturbance weighting that enables the fast and
reliable inclusion of parameter uncertainties in the design process is
proposed. It consist of the following steps [36]:

6.6 Robust Design Optimization of AMS Systems 123

1. Derive a parametric linear model of the plant.
2. Compute the magnitude of the normalized plant perturbation using

Eq. (6.13).
3. Find a minimum phase transfer function that matches the computed

uncertainty profile.

6.6.2 Fixed Structure Robust Controller Design

To get a design that has both a good reference tracking and a good
disturbance rejection, a two degrees-of-freedom controller is necessary.
If WT =Wu = 1 in Eq. (6.10), the resulting H∞ controller is close to a PI
controller which shows a small steady state error A. For many applica-
tions, a fixed structure controller (such as a classical PID controller) can
be tuned to get a robust control design. Therefore, this work reduces the
mixed sensitivity design problem to chose a suitable controller and to
tune the controller parameters pc for minimizing the objective function:

min
pc

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

WP(s) ·S(s)
WT(s) ·T(s)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

(6.14)

The performance weighting function WP(s) must be derived from
the design specification. This work utilizes Eq. (6.7) to compute WP(s).

Particle Swarm Optimization (PSO) and Simulated Annealing (SA)
were proposed by several authors in order to achieve a robust control
that utilizes a fixed structure controller [16] [125] [52]. Even though
the weighting filters WP(s) and WT(s) significantly reduce the solution
space, finding the controller parameters that minimize the mixed sensi-
tivity design problem requires an excessively large number of iterations
for obtaining a good solution if such heuristic optimization methods
are applied.

A controller design method widely utilized in several industrial ar-
eas for controller parameter tuning is Internal Model Control (IMC). As
shown in figure 6.6, this control scheme utilizes an internal representa-
tion of the plant Pi for building an intrinsic feedback control loop. The
design of the internal controller Qi(s) is straightforward. The internal
plant model Pi(s) is factorized as follows:

Pi(s) = PL(s) ·PH(s) (6.15)

124 6 Robust AMS System Design Optimization

where the minimum phase transfer function PL(s) is a low-pass filter
that contains the left half plane (LHP) zeros of the plant model Pi(s).
The high-pass filter PH(s) contains right half plane (RHP) zeros and the
time delays of the plant model Pi(s).

[r(t)]

[d(t)]Disturbances

Inputs 1+∆P [y(t)]Outputs

[n(t)]Noise

[u(t)]

P

P
~

Pi

C

Qi

Fig. 6.6: Internal model control

The internal controller Qi(s) is designed to obtain the inverse system
response. In order to obtain a realizable controller C(s), a low-pass
filter F(s) is added to the internal controller Qi(s). The controller C(s) is
computed as follows:

C(s) =
Qi(s)

1−Pi(s) ·Qi(s)
(6.16a)

Qi(s)≔
F(s)

PL(s)
, F(s)≔

1

(λs+1)k
, λ ≤ 1

w0
(6.16b)

The order k of the low-pass filter F(s) is chosen to make the internal
controller transfer function proper and the filter parameter λ is selected
to achieve the desired closed loop bandwidth w0.

The reduction of the controller parameter λ improves the closed
loop performance but decreases the robustness of the control system
to external disturbances and parameters variations. In order to find a
robust controller design, this dissertation applies sequential quadratic
programming (SQP) for solving the reduced mixed sensitivity opti-
mization problem defined by Eq. (6.10). As only the parameter λ needs
to be adjusted for finding an optimal robust controller, this fast and
deterministic optimization method provides very good results.

In order to approximate the parameters of the selected fixed structure
controller, this dissertation applies balanced model order reduction to
the optimized internal model controller C(s).

6.7 Experimental Results 125

The optimal computation of the initial controller parameters leads
to a more efficient design approach than the robust optimization of the
fixed structure controller using arbitrary initial parameters.

The following steps are carried out for robust controller design:

1. Design and optimize an IMC controller according to Eq. (6.16) and
to Eq. (6.14) respectively (after computing the weighting functions
with Eq. (6.7) and Eq. (6.13)).

2. Choose a suitable fixed structure controller (e.g. PID) and deter-
mine the initial controller parameters by reducing the IMC controller
transfer function to the selected controller structure.

3. Optimize the controller parameters according to Eq. (6.14).

Finally, the following steps are carried out to improve the design
robustness considering the intrinsic nonlinearity of AMS systems:

1. Include the nonlinear system characteristics in the plant model.
2. Tune controller parameters for optimizing the mixed sensitivity ro-

bustness index Eq. (6.11).
3. Verify controller design robustness.

The verification of the controller robustness is considered in chapter 7.

6.7 Experimental Results

In order to validate the proposed robust design method, the DC-DC
step-down power converter control system shown in Fig. 6.7 was de-
signed. It utilizes pulse width modulation (PWM) to control the Buck
converter circuit shown in Fig. 3.3a) and is designed to provide a 5 V
nominal output voltage.

vref(t) C
v(t)

u(t) PWM

Buck
Converter

Fig. 6.7: Buck converter control

126 6 Robust AMS System Design Optimization

The nominal circuit parameters12 are described in Table 6.1. For de-
sign and analysis purposes it was assumed that the circuit parameters
V, L, R and C have ±20% tolerance.

Inductance L 4.1 µH

Capacitance C 376 µF

Load resistance R 1.0Ω

Input voltage V 12 V

Inductor resistance RL 0.08Ω

Capacitor resistance RC 0.005Ω

Switching frequency fs 100 kHz

Table 6.1: Buck converter parameters

With the aim of demonstrating the effectiveness of the proposed ro-
bust design method, a simple approximated PID controller was chosen
for design. It is defined by the following transfer function:

C(s)≔ Kp+
Kd

s
+

Kd.s

s+τd
(6.17)

The derivative control part is implemented as a low-pass filter to obtain
a realizable controller. It introduces a small time constant τd. Properly
tuned, this controller is able to achieve a good set-point tracking and
rejection of disturbances. The following constraints were defined for
design: ωB = 5.000 rad/s, M = 2 and A = 1e−4.

For comparison purposes, the traditional robust control design tech-
niques presented in section 6.4.3 were additionally applied for finding
a robust controller. The H∞ controller design is straightforward. Us-
ing Eq. (6.7), Eq. (6.9) and the MATLAB function mixsyn, the following
controller was obtained:

C(s) =
8.20e10 · s3+8.20e18 · s2+1.91e23 · s+5.72e27

s4+9.31e12 · s3+1.69e19 · s2+6.38e24 · s+6.32e24
(6.18)

For the design of the LQR control, a weighting factor ρ = 0.01 was
chosen. This controller additionally requires the inductor current mea-
surement for computing the plant state as well as an outer PI controller.

12 The parameters labels correspond to the average circuit shown in Fig. 5.4

6.7 Experimental Results 127

For design proposes, the Buck converter circuit was linearized uti-
lizing an average state space model (see section 7.9 for more details).
Using this plant model, the plant uncertainty profile was computed
solving the optimization problem defined by Eq. (6.13). As shown in
Fig. 6.8, this approach is more efficient and accurate than Monte Carlo
simulations. A speed-up of 8x was achieved.

10
2

10
3

10
4

10
5

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
)

Optimized Disturbance Weigthing

Monte Carlo

Fig. 6.8: Worst case plant perturbation

Fitting the computed worst case response, the following disturbance
weighting transfer function was obtained:

WT(s) =
0.71 · s2+3.06e4 · s+3.83e8

s2+3.43e4 · s+1.68e9
(6.19)

It takes into account the possible plant parameter variations which
reduces the robust stability margin introduced by WT(s) in the mixed
sensitivity control design problem.

The proposed PID controller was designed by finding an optimal
IMC controller that minimizes Eq (6.14) and then reducing the IMC
controller transfer function13 to the form given by Eq. (6.17). As only
the IMC filter parameter λmust be optimized, this method is very fast.

13 For more details see [99].

128 6 Robust AMS System Design Optimization

The linear plant model utilized in the first design step does not con-
sider that the PWM duty cycle is limited to a range from 0.1 to 0.9 (ac-
tuator saturation). This modeling uncertainty leads to an inconsistency
between plant and controller states when the control signal saturates.
This control saturation may produce performance and stability issues.
As shown in Fig. 6.9, there is a performance degradation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

PID control (nonlinear plant model)
PID control (linear plant model)

Fig. 6.9: PID control characteristic for linear and nonlinear plant model

After modeling the nonlinear plant, the initial PID controller design
was fine-tuned by optimizing the controller parameters using first Eq.
(6.14) and then Eq. (6.11). As the IMC tuning method produces a very
good initial design, sequential quadratic programming (SQP) is able to
very quickly solve both optimization problems.

Fig. 6.10 shows the set-point-tracking characteristics of the obtained
control designs for the average and nonlinear Buck converter models.
The nonlinear buck converter model includes both the nonlinear actu-
ator characteristics as well as the switching behavior of the electrical
circuit (ideal switched linear network).

All controllers were designed to be robust and therefore, there is
no overshoot in the control responses. The H∞ controller presents the
largest settling time. The more sophisticated LQR control which ad-
ditionally requires the inductor current monitoring and an outer con-
troller presents a very good performance. The simple PID controller is
faster than the LQR control. After parameter tuning based on the non-
linear plant model, it is even able to cope with the saturation issues.
Thus, applying the proposed design method the simplest controller
achieves the best control performance (shortest settling time).

6.7 Experimental Results 129

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(b)

Fig. 6.10: Set-point tracking: a) Linear plant b) Nonlinear plant

In order to analyze the robustness of the several controllers to exter-
nal disturbances, a 1 V input voltage disturbance and a 1 A load current
disturbance were applied to the several control systems. The resulting
disturbance rejection characteristics are shown in Fig. 6.11 (a) and (b)
respectively. The H∞ controller shows a quite limited disturbance rejec-
tion capability. The LQR control presents the best voltage disturbance
rejection but the worst current disturbance rejection. The PID control
achieves the best overall disturbance rejection characteristics.

Fig. 6.12 shows the set-point tracking of the several controllers un-
der parameter variations (Monte Carlo simulations). All controllers are
robust to parameter variations. In order to better analyze the results, ta-
ble 6.2 presents the area between the upper and lower response bounds
as well as the maximal deviation from the nominal response due to
parameter variations.

130 6 Robust AMS System Design Optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(b)

Fig. 6.11: Disturbance rejection: a) Input voltage b) Load current

The area between the upper and lower response bounds (first table
column) decreases with the improvement of the control performance.
The PID control design shows the smallest impact of parameter varia-
tions on the response. On the other hand, there is a correlation between
the maximal deviation from the nominal response with the controller
stability. The H∞ control presents the lowest deviation from the nom-
inal response, i.e. it is more stable than the LQR and PID controllers.

Fig 6.13 shows how the sensitivity and complementary sensitivity
functions capture the impact of parameter variations on the system
robustness. It is derived from the computed Monte Carlo simulations.
Small and large parameter variations are plotted in different colors. The
nominal controller designs are denoted by filed circles. The triangles
denote the average values from all controller design variations.

6.7 Experimental Results 131

Fig. 6.12: Parameter variations for nonlinear plant model

Controller Variation area Maximum error

H∞ 333.11e−6 445.11e−3

LQR 236.28e−6 459.56e−3

PID 212.00e−6 553.60e−3

Table 6.2: Impact of parameter variations on system response

It can be see that the PID controller which was designed utilizing
the optimized disturbance weighting shows a near optimum nominal
design i.e. the robustness value is very close to the point (1, 1). The
average robustness value (triangle) is very close to the nominal de-
sign (circle) (which is optimal). A very important observation is that
the mixed sensitivity robustness analysis captures the poor robustness
(current disturbance rejection) of the LQR design which is not visible
in the performance and parameter variation analysis.

132 6 Robust AMS System Design Optimization

Fig. 6.13: Linear control system design characterization

Due to the nonlinear behavior of the Buck converter, the controller
performance depends on the operating point. Fig 6.14 shows the per-
formance of the designed controllers for small and large changes of the
reference voltage (1V and 4V). The PID control shows a significant per-
formance degradation for small changes of the reference voltage. These
different control characteristics (performance, robustness and stability)
must be included in the control design analysis. Figure 6.15 shows the
corresponding changes of the sensitivity and complementary sensitiv-
ity functions for both multiple operating points and parameter varia-
tions. For the sensitivity computations, the response of the nonlinear
closed loop system is linearized using orthogonal polynomials.

6.7 Experimental Results 133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

4

4.5

5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

1

2

3

4

5

Time in s

O
u

tp
u

t
v
o

lt
a

g
e

 i
n

 V

||H||infinity control
LQR control
PID control

(b)

Fig. 6.14: Nonlinear plant model set-point-tracking: a) Small reference
change b) Large reference change

The nonlinearity of the buck converter has a visible impact on the
system stability. The robustness region is lager and rounder compared
to the linear system case in Fig. 6.13. The corresponding robustness
index φR for the several control designs is shown in Tab. 6.3. It reliably
captures the system robustness for both the linear and the nonlinear
control systems.

Controller Linear model Nonlinear model

H∞ 0.9678 0.9920

LQR 0.8815 0.9141

PID 0.9909 0.9793

Table 6.3: Robustness index φR

134 6 Robust AMS System Design Optimization

Fig. 6.15: Nonlinear control system design characterization

In the nonlinear case, the degradation of the system performance
(tendency to be unstable) leads to a robustness loss for the PID con-
troller (optimized in terms of the parameter uncertainty profile). The
H∞ is more robust over a large number of operating points and copes
better with unmodeled plant dynamic. Note that there is an interesting
correlation of the robustness index values with the uncertain response
values in Tab. 6.2. Not only the variation area between the uncertain
response bounds is important for the robustness assessment. The max-
imum uncertain response deviation from the nominal circuit behavior
is relevant for characterizing the stability robustness of AMS control
systems.

6.8 Chapter Summary and Conclusions 135

6.8 Chapter Summary and Conclusions

This chapter introduced the classical robust design techniques (Taguchi)
which focus on identifying robust design solutions, explained the draw-
backs of separated performance and robustness design optimization
and described how robust control design methods minimize the im-
pact of system perturbations and parameter variations. After that, a
robust control system design method was proposed which is based on
the following principles:

• The impact of parameter tolerances due to the manufacturing pro-
cess is considered in a non-conservative way during system design.

• It allows the selection of any control system structure.
• It is applicable to the several AMS system abstractions in all design

process stages.

Several improvements of the initial work (presented in [36]) were
carried out in this dissertation. In order to solve the robust design
optimization problem faster and more reliable, the IMC controller de-
sign method was considered for finding a near optimal set of initial
controller parameters. Heuristic design optimization methods such as
simulated annealing are not required for coping with the robust con-
troller parameter optimization. In order to enable the evaluation and
optimization of both linear and nonlinear control system designs, the
proposed mixed sensitivity robustness index φR was extended for in-
cluding the effect of several operating point changes and parameter
regions. Furthermore, a weighting factor was also introduced in mixed
sensitivity robustness indexφR which avoids over-conservative robust-
ness characterizations due to conditions that are unlikely to occur. Thus,
robustness evaluations leading to a system design which presents a
poor performance or is significantly more expensive may be avoided.

The investigation and analysis activities have shown that:

• The robustness of control systems strongly depends on the method
utilized for controller parameter tuning.

• The optimized disturbance weighting design method works very
well for linear systems.

• The modeling of nonlinear system properties is necessary for a reli-
able robust design refinement.

136 6 Robust AMS System Design Optimization

• The proposed mixed sensitivity robustness index is well suited for
the impact evaluation of different controller structures and parame-
ter tuning methods on the control system performance and robust-
ness for linear and nonlinear systems.

The experimental results confirm that the set-point tracking, the dis-
turbance rejection and the sensitivity to parameters variations of a con-
trol system can be significantly improved by reducing the control sys-
tem bandwidth ωB taking into account the plant response uncertainty
bounds.

A very important finding is that the tuning of controller parameters
may have a more significant impact on system robustness than the
intrinsic controller properties. Even for a simple PID controller, the
proposed robust design method achieves very good results.

A further finding is that a careful analysis of system nonlinearity
and unmodeled dynamic is necessary for avoiding a poor control per-
formance or stability problems even for well established robust control
design methods such H∞. This is particularly important for power con-
trol systems because its limited control action may lead to a strongly
nonlinear behavior. This reinforces the value of the modeling methods
proposed in chapters 3 and 5 for supporting robust design methodolo-
gies which stepwise refine the controller design.

The Buck converter control design analysis carried out in section 6.7
confirms that the robustness of several designs can be reliably charac-
terized in terms of the mixed sensitivity robustness indexφR. Moreover,
the proposed index is well suited for the fine tuning of nonlinear con-
trol systems. As only few parameters and constraints are necessary for
guiding the design, the proposed method is well suited for automatic
robust controller synthesis.

A weak point of the mixed sensitivity robustness index φR is that
the statistical computation approach is very time demanding. For this
reason, the next chapter investigates range arithmetic based behavior
computation methods for uncertain analog systems.

Taking into account that the proposed robust design method leads to
very satisfactory results and provides a notable speed-up and reliability
compared to heuristic methods (which are often proposed to cope with
the control of complex systems), the contribution of this chapter is
significant from a practical point of view.

137

Chapter 7

Analysis and Verification of AMS Systems

Range arithmetic simulation is becoming popular for the inclusion of
parameter uncertainties in the analysis and verification of analog sys-
tem designs. The accuracy and efficiency of current interval and affine
arithmetic based circuit response computation methods limit the sim-
ulation of uncertain analog systems. The uncertainty analysis of large
analog systems requires faster and more accurate computation meth-
ods. This chapter presents a novel range arithmetic method called or-
thogonal interval arithmetic that keeps the correlation between parame-
ters in vectorial form and extends the operational computation methods
based on orthogonal signals to enable the fast and direct evaluation of
the analog system’s behavior under parameter variations. In order
to carry out faster semi-symbolic robust design optimizations in the
time domain, a novel operational method that computes the multipli-
cation of signal expansions is proposed. Thus, the evaluation of signals
at many time points for the computation of performance indexes is
avoided during the control system design optimization.

This chapter is organized as follows. After the presentation of the re-
search motivation and related work in section 7.1 and 7.2 respectively,
the contributions of this chapter are summarized in section 7.3. The
existing range arithmetic methods for parameter uncertainty modeling
are briefly reviewed in section 7.4. Section 7.5 presents the orthogonal
interval arithmetic. Section 7.6 introduces the application of the opera-
tional methods for time domain analysis, verification and robustness
evaluation of analog systems. The novel method for the operational
computation of performance indexes is derived in section 7.6.3 and the
methodology proposed for robust control design optimization in the
time domain is described in section 7.7. The simulation environment
developed for design and analysis of range computation methods is
briefly described in section 7.8. The evaluation of the accuracy, perfor-
mance and stability of the presented methods for tolerance analysis is
carried out in section 7.9. Finally, section 7.10 summarizes the contri-
bution and the most relevant findings of the research activities.

138 7 Analysis and Verification of AMS Systems

7.1 Motivation

Semiconductor device scaling allows a higher circuit density and faster
devices in electronic chips. This leads to a functionality increase and
performance improvement but at the same time, the circuit behavior is
affected by processes variations the more the devices are scaled down
[10]. Unknown parameters may have a significant impact on the analog
circuit performance. Therefore, the inclusion of parameter tolerances in
the analysis and verification of analog circuits is a requisite for reliable
system design. As measurement based design verification increases
the product cost and time-to-market, there is a growing demand for
simulation tools that include uncertainty parameters in the system de-
sign verification [24]. The behavior verification of large circuits under
uncertainty variations is currently a challenge. Monte-Carlo statistical
analysis and corner case analysis are utilized to estimate the impact of
manufacturing variations on circuit behavior. Circuit simulators such
as PSpice provide tools for tolerance analysis based on the Monte-Carlo
(MC) method. It represents parameter variations as random processes.
Due to the fact that a large number of simulation runs are necessary
to obtain accurate results, the simulation time of the MC based toler-
ance analysis becomes prohibitive for large circuits. Furthermore, both
tolerance analysis methods do not guarantee the worst case coverage.

7.2 Related Work

Interval arithmetic methods were introduced for the efficient tolerance
analysis of linear [63] [62] and nonlinear electrical circuits [61] [59] [60]
[58]. Parameter uncertainty modeling based on affine arithmetic was
proposed by Heupke et al. for fast tolerance analysis of analog system
designs [48]. This approach allows to keep parameter correlation during
system behavior computation and can achieve more accurate results
than interval arithmetic. Grimm et al. show that the affine arithmetic
based semi-symbolic computations are well suited for coping with the
simulation of linear control and signal processing systems [43].

Grabowski et al. extended the Backward Euler multi-step integration
method for affine arithmetic based circuit parameter tolerance analy-
sis [40]. They prove that the well-known Newton-Raphson iterative

7.2 Related Work 139

method for the solution of nonlinear differential algebraic equations
can be utilized to compute the response of slightly nonlinear uncertain
circuits.

In order to reduce the over-approximation error introduced in non-
affine computation operations, Grabowski et al. proposed an extension
of affine arithmetic called ”quadratic arithmetic” [41]. The observed
accuracy improvement was moderate compared to affine arithmetic
and the additional terms introduced for the representation of nonlinear
uncertainty significantly increased the computation time. A linear de-
pendence between the computation time and the number of parameters
was reported.

To tackle the performance issues of semi-symbolic simulations for
system level tolerance analysis, Freisfeld et al. modeled circuit equa-
tions in a piecewise linear form [31] and solved the resulting Linear
Complementary Problem (LCP) by applying the Katzenelson algorithm
[57].

Femia et al. [29] utilized averaged state space models to obtain a lin-
ear formulation of power electronic circuit equations. They computed
the circuit response using a Taylor approximation of the state transition
matrix in affine form and utilized genetic algorithms to improve the
accuracy of the simulation results.

Although tolerance analysis methods based on range arithmetic
computations show a significantly better performance than the Monte
Carlo method, over-approximation errors and the large simulation time
limit their application for system level analysis. In particular, the accu-
racy of the range arithmetic methods for circuit tolerance analysis in the
frequency domain is strongly limited due to the nonlinear characteris-
tics of circuit transfer functions [25]. Moreover, the accuracy and stabil-
ity of circuit response computation methods for time domain tolerance
analysis were not rigorously investigated. This is an important research
topic because the desired system properties are usually specified in the
time domain. Furthermore, computation methods that enable the fast
analysis of large systems in the time domain are needed to cope with
robust design optimization problems.

140 7 Analysis and Verification of AMS Systems

7.3 Contribution to Uncertain Analog Circuit Analysis

The aim of the research work presented in this chapter was the investi-
gation of the operational computation methods’ accuracy and stability
properties to carry out range arithmetic based time domain tolerance
analysis of linear and nonlinear analog circuits as well as to develop
range arithmetic computation methods that reduce the accuracy prob-
lems in the frequency domain circuit tolerance analysis. The main re-
search activities carried out to achieve these goals were the following:

• To investigate the limitations of several range arithmetic methods.
• To derive more accurate range computation methods.
• To analyze the sensitivity of the orthogonal signal coefficients to

over-approximation errors in range arithmetic computations.
• To examine the stability properties of the range arithmetic based

operational computation methods.
• To compare the accuracy and performance properties of several com-

putation methods using range arithmetic computations.
• To develop computational methods for the fast system design ro-

bustness and performance analysis.

In order to carry out fast robust analog circuit design optimizations at
several abstraction levels, a parameter sensitivity index was defined and
formulated in terms of uncertain orthogonal signals. Furthermore, a
novel method for the operational multiplication of polynomial orthogo-
nal signal expansions was derived, which enables the direct compu-
tation (using only signal coefficients) of common system performance
indexes (nonlinear cost functions) and leads therefore to a considerable
improvement of the simulation performance during design optimiza-
tion.

Moreover, this dissertation proposes a novel range arithmetic mod-
eling and computation method that carries out linearization in a box for
keeping correlated non-linear terms in range arithmetic computation
chains which reduces over-approximation errors.

As both the proposed range arithmetic and the uncertain circuit
behavior computation methods reduce the approximation error, per-
formance and stability limitations of existing range arithmetic based
computation and simulation approaches, they constitute an important
contribution to the field of analog circuit tolerance analysis and verifi-
cation.

7.4 Parameter Uncertainty Modeling 141

7.4 Parameter Uncertainty Modeling

Parameter uncertainty in analog systems caused by tolerances and vari-
ations in the environmental conditions can be efficiently modeled us-
ing bounded intervals [48]. Modeling systems with range arithmetic
means to replace system variables and parameters by expressions in
range form. Interval and affine arithmetic are widely utilized for range
computations. The following sections explain their properties and lim-
itations.

7.4.1 Interval Arithmetic

Interval arithmetic allows the computation of the system behavior
range. An interval variable x̄ is defined by its lower xlb and upper xub

bound as follows:

x̄ = [xlb , xub] = {x |xlb ≤ x ≤ xub} , x ∈R (7.1)

For convenience, real value variables are considered in this chapter.
The four basic interval arithmetic operations are defined in terms of the
interval bounds [3]:

x̄+ ȳ = [xlb+ ylb , xub+ yub] (7.2a)

x̄− ȳ = [xlb− yub , xub− ylb] (7.2b)

x̄ · ȳ = [min(xlb · ylb, xlb · yub, xub · ylb,xub · yub) ,

max(xlb · ylb, xlb · yub, xub · ylb, xub · yub)]
(7.2c)

x̄/ȳ = [xlb , xub] · [1/yub , 1/ylb] , 0 < [ylb , yub] (7.2d)

The range or width w of an interval variable is given by:

w(x̄) = xub−xlb (7.3)

and the absolute value |x̄| is given by:

|x̄| =max(|xub|, |xlb|) (7.4)

142 7 Analysis and Verification of AMS Systems

Other useful properties of an interval variable are the center or midpoint
m defined as follows:

m(x̄) =
xlb+xub

2
(7.5)

and the radius r defined as follows:

r(x̄) =
xub−xlb

2
=

1

2
·w(x̄) (7.6)

Any interval variable x̄ can be represented in centered interval form by
the following expression:

x̄ = [m(x̄),m(x̄)]+ [-r(x̄), r(x̄)] =m(x̄) · [1, 1]+ r(x̄) · [-1, 1] (7.7)

Fig. 7.1 shows the centered interval representation.

��� ���

� �̅

0 	 �̅

Fig. 7.1: Center and radius of interval variables

The main weakness of interval arithmetic is the loss of correlation in
the arithmetic operations. Interval variables are defined as independent
intervals which leads to over-estimation of the interval bounds if the
variables are related. For example, the subtraction of the same interval
variable is different from zero.

Example 7.1. Consider x̄ = [1, 3], then x̄− x̄ = [−2, 2] , [0, 0].

This problem affects all interval arithmetic operations and leads to a
bound error explosion in a long computation chain. In such case, the
total relative accuracy of the interval bounds tends to be the product
of the relative accuracies of each single interval operation in the chain
[110]. For this reason, interval arithmetic is not really well suited for the
behavior computation of uncertain analog circuits.

7.4 Parameter Uncertainty Modeling 143

7.4.2 Affine Arithmetic

In order to overcome the limitations of the interval arithmetic, Stolfi et
al. proposed a range arithmetic form called affine arithmetic [110]. An
affine variable is defined as follows [43]:

x̂ = x0+

n∑

i=1

xi ·ǫi , ǫi ∈ [−1 , 1] (7.8)

where x0 is the nominal or central variable value and the values xi, called
noise symbols, represent the variation of the variable value due to the
tolerance of the ith system parameter. The symbolic real variables ǫi are
introduced to capture correlated parameter variations. This first-degree
polynomial representation is better suited for parameter tolerance model-
ing in analog systems than interval arithmetic.

�

��

� ��

0

�

Fig. 7.2: Center and radius of affine variables

As shown in Fig. 7.2, each value xi contributes to the radius r of an
affine variable. It is given by the formula:

r(x̂) =

n∑

i=1

|xi| (7.9)

The affine operations are defined as follows [43]:

x̂± ŷ = (x0± y0)+

n∑

i=1

(xi± yi) ·ǫi , ǫi ∈ [−1 , 1] (7.10a)

c · x̂ = c ·x0+

n∑

i=1

c ·xi ·ǫi , ǫi ∈ [−1 , 1] (7.10b)

144 7 Analysis and Verification of AMS Systems

The symbolic variables ǫi allow to keep the the correlation between
uncertain parameters. The subtraction of the same affine variable is, as
expected, zero.

Example 7.2. Consider x̂ = 2+1 ·ǫ1 ∈ [1, 3], then x̂− x̂ = 0+0 ·ǫ1 ∈ [0, 0].
The correct result is obtained using affine arithmetic.

Note that any affine variable can be easily converted to the interval
form as follows:

x̄ = [x0− r(x̂), x0+ r(x̂)] (7.11)

7.4.2.1 Non-Affine Operations

The nonlinear mathematical operations, such as multiplication, divi-
sion, square root, etc., are approximated by affine expressions.

The multiplication of two affine variables x̂ and ŷ is defined as fol-
lows:

x̂ · ŷ ≈ x0 · y0+

n∑

i=1

(x0 · yi+xi · y0) ·ǫi+ zn+1 ·ǫn+1 (7.12a)

zn+1 ≔

(
n∑

i=1

|xi|
)

·
(

n∑

i=1

|yi|
)

(7.12b)

Note that the residual terms in the affine arithmetic multiplication are
bound using the following inequality:

(
n∑

i=1

xi ·ǫi
)

·
(

n∑

i=1

yi ·ǫi
)

≤
(

n∑

i=1

|xi|
)

·
(

n∑

i=1

|yi|
)

·ǫn+1 (7.13)

The cancellation of common symbols in the multiplication of two affine
variables may produce more accurate results, than the interval multi-
plication. It is shown in the following example.

Example 7.3. Consider the multiplication of x̂ = 10+ 2 · ǫ1 + 1 · ǫ2 ∈
[7, 13] and ŷ = 10−2 ·ǫ1+1 ·ǫ3 ∈ [7, 13].

x̂ · ŷ = 100+10 ·ǫ2+10 ·ǫ3+ (2 ·ǫ1+ǫ2) · (-2 ·ǫ1+ǫ3)
x̂ · ŷ ≃ 100+10 ·ǫ2+10 ·ǫ3+9 ·ǫ4 ∈ [71, 129]

7.4 Parameter Uncertainty Modeling 145

Using interval arithmetic, the upper and lower bounds of the
multiplication are over-approximated.

x̄ · ȳ = [49, 169]

The division of two affine variables x̂ and ŷ is transformed into a mul-
tiplication by inverting the denominator.

x̂

ŷ
= x̂ ·

(
1

ŷ

)

(7.14)

Therefore, a good affine approximation for the function 1/ŷ is needed.

f (ŷ) =
1

ŷ
=

1

y0+
∑n

i=1 yi ·ǫi
(7.15)

Assuming that f (ŷ) is a bounded twice differentiable function whose
second derivative does not change the sign in the interval [ylb, yub], then
the minimax affine approximation is given by:

f (ŷ) ≈ α · (y0+

n∑

i=1

yi ·ǫi)+ζ+δ ·ǫn+i (7.16)

The resulting affine variable is proportional to the input variable. Thus,
this approximation requires a minimum number of parameters.

Note that the decomposition of the affine variable division in two
non-affine operations generates two additional independent symbols.

There are several algorithms for computing the coefficients α, ζ and
δ. The Chebyshev approximation, proposed in [30] for the computation of
f (ŷ), minimizes the error across the affine interval. This approximation
is optimal in the sense that it minimizes the area of the polytope defined
by the affine terms. The coefficient α is set to be the slope of the line r(y)
that interpolates the bounds of f (ŷ).

α =
f (yub)− f (ylb)

yub− ylb
(7.17)

The independent term ζ is computed as follows:

146 7 Analysis and Verification of AMS Systems

ζ =
f (yα)+ r(yα)

2
−α · yα (7.18a)

r(yα) = α · (yα− ylb)+ f (ylb) (7.18b)

d

dy
f (yα) =

-1

y2

∣
∣
∣
∣
∣
yα

= α ⇒ yα =

√

ylb− yub

f (yub)− f (ylb)
(7.18c)

The maximum absolute error δ occurs twice at the end points of the affine
variable interval, ylb and yub. Therefore, it can be computed as follows:

δ =
1

2
· | f (yα)− r(yα)| (7.19)

Fig. 7.3a shows the geometrical interpretation of the Chebyshev ap-
proximation. The terms ζ and 2 · δ correspond to the center and width
of the polytope defined by the outer parallel lines with slope α. This
approximation encloses the function f (ŷ) with a minimum error, but
introduce an over-estimation of the lower function bound f (ŷub) for the
inversion operation. The magnitude of this bound error is twice the
value of the error term δ (which corresponds to the polytope width).

In order to exactly compute the range of the enclosed function, the
minimum range approximation is often utilized for linearization in non-
affine operations [24]. It based on the slope α of the tangent line at the
end-point yub of the interval. This method is easier to compute than the
Chebyshev approximation. The slope α is obtained by evaluating the
derivative of f (ŷ) at the end-point yub of the range variable interval.

α =
d

dy
f (yub) =

-1

y2

∣
∣
∣
∣
∣
yub

=
-1

y2
ub

(7.20)

The independent term ζ and the maximum absolute error δ are computed
as follows:

ζ =
1

2
·
(

1

ylb
+

1

yub
−α · (ylb+ yub)

)

(7.21a)

δ =
1

2
·
(

1

ylb
− 1

yub
+α · (yub− ylb)

)

(7.21b)

7.4 Parameter Uncertainty Modeling 147

��

� ��

��

����

ξ

δ

��
˗���

������
�

(a)

��

� ��

��

��

ξ

δ

(b)

Fig. 7.3: Affine variable inversion: a) Chebyshev approximation
b) Minimum range approximation

Example 7.4. Consider the inversion of ŷ= 15+2 ·ǫ1+3 ·ǫ2 ∈ [10, 20].
Using the Chebyshev approximation, the slope α of the line r(y)
that interpolates the bounds of the affine variable ŷ is α = −0.005.
At the interior point yα = 14.1421 the slope of the tangent line is
also α. The independent term ζ = 0.14571 is the middle value of
both curves at the point yα. The error term δ = 0.0042893 is also
computed using the points f (yα) and r(yα).

Using the minimum range approximation, the slope α of 1/ŷ at
the end bound yub is α=−0.0025. The independent term ζ= 0.1125
is the middle value of the bounding lines at the point y0. The error
term δ = 0.0125 is also computed using the bounding lines at the
point y0. The obtained upper and lower bounds are the same as
those computed using interval arithmetic.

Note that the relative uncertainty introduced by the error term δ
is 100 ·δ/(|y1|+ |y2|) = 100%. This value is considerable greater than
17,16% which is relative uncertainty for the Chebyshev approxi-
mation.

Note that the interval arithmetic computation shows a smaller range
for the inversion operation than the affine arithmetic.

148 7 Analysis and Verification of AMS Systems

7.4.3 Limitations of Affine Arithmetic

The conservative approximation of the higher order terms in Eq. (7.13)
leads to over-approximation errors in the multiplication of two affine
variables. It is shown in the following example.

Example 7.5. Consider the multiplication of x̂ = 10+ 1 · ǫ1 + 2 · ǫ2 ∈
[7, 13] and ŷ = 10+1 ·ǫ1+3 ·ǫ3 ∈ [6, 14].

x̂ · ŷ = 100+20 ·ǫ1+20 ·ǫ2+30 ·ǫ3+ (1 ·ǫ1+2 ·ǫ2) · (1 ·ǫ1+3 ·ǫ3)
x̂ · ŷ ≃ 100+20 ·ǫ1+20 ·ǫ2+30 ·ǫ3+12 ·ǫ4 ∈ [18, 182]
Using interval arithmetic, the following upper and lower bounds

are obtained: x̄ · ȳ = [42, 182]

Another issue in non-affine operations is that the multiplication and
division operations are not reciprocal operations, i. e. x̂ · (1/x̂) , 1.

Example 7.6. Consider the division of x̂ = 15+2 ·ǫ1+3 ·ǫ2 ∈ [10, 20]
by itself. Using the Chebyshev approximation for the inversion of
x̂, the following result is obtained:

x̂/x̂ = (10+2 ·ǫ1+3 ·ǫ2) · (0.070−0.01 ·ǫ1−0.015 ·ǫ2+0.0042 ·ǫ3)
x̂/x̂= 1.06−0.0085 ·ǫ1−0.012 ·ǫ2+0.064 ·ǫ3+0.14 ·ǫ4 ∈ [0.82, 1.29]
Using the minimum range approximation for the inversion of

x̂, a larger bound error is obtained:
x̂/x̂ = (10+2 ·ǫ1+3 ·ǫ2) · (0.075−0.005 ·ǫ1−0.0075 ·ǫ2+0.0125 ·ǫ3)
x̂/x̂ = 1.12+0.075 ·ǫ1+0.18 ·ǫ2+0.12 ·ǫ3+0.14 ·ǫ4 ∈ [0.62, 1.62]
Using interval arithmetic, a worst result is obtained:
x̄/x̄ = [10, 20] · [0.05, 0.1] = [0.5, 2]
The tracking of dependent terms leads to tighter bounds for

affine arithmetic computations.

The additional independent symbol ǫn+1, introduced for enclosing the
residual terms of non-affine operations, increases the uncertainty in
computation chains (see example 7.6). An other problem is that the
number of independent terms grow at each time step during time do-
main circuit tolerance analysis which leads to prohibitive simulation
times.

Appendix B contains a survey of methods that were proposed for
coping with the affine arithmetic limitations. The next section presents
the most suitable method for circuit tolerance analysis.

7.4 Parameter Uncertainty Modeling 149

7.4.4 Generalized Interval Arithmetic

The generalized interval arithmetic was proposed by Hansen to achieve
sharper error bounds in the interval solution of a system of nonlinear
equations f ([xi]N) [45]. He represented the N equation variables xi using
the centered interval form as follows:

x̄i = x̄mi+ x̄ri , x̄mi = [m(x̄i),m(x̄i)] , x̄ri = [-r(x̄i), r(x̄i)] (7.22)

In order to improve the convergence of the slope method or the interval
Newton method 14 for the solution of the interval equation system
f ([x̄i]N), Hansen proposed the computation of a linear interval enclosure
L j([x̄i]N) that satisfies the following relation [45]:

f j([xi]N) ∈ L j([x̄i]N)∀xi ∈ x̄i (7.23a)

L j([x̄i]N) =

n∑

i=1

a ji · x̄ri+ b̄ j (7.23b)

It is assumed that f ([x̄i]N) can be represented as a factorable function,
i.e. a recursively defined function relative to a collection of elementary
operations (addition, subtraction, multiplication or division) on other
factorable functions f j([x̄i]N). The affine interval function L j([x̄i]N) is then
defined in terms of a linear combination of symmetric intervals x̄ri, which
are multiplied by the scalar coefficients a ji, and an independent interval

b̄ j, that bounds the higher order terms of f j([xi]N). Thus, the function
f j([xi]N) is enclosed in a box [x̄i]N by the interval function L j([x̄i]N). This

enclosure is denominated optimal if the independent interval b̄ j has a
minimum width.

Kolev proposed a linear interval enclosure, that can be directly applied
to the whole interval equation system f ([x̄i]N) [61] and presented gen-
eral computation methods for the elementary operations with generalized
intervals [60]. A generalized interval x̃ in normal form is defined as follows:

x̃ = x0+

n∑

i=1

xi · ǭi+xb · ǭb , ǭi = ǭb = [-1 , 1] (7.24)

14 For more details about the solution of nonlinear interval equations see [89]

150 7 Analysis and Verification of AMS Systems

The scalar value x0 determines the interval center and the coefficients
xi scale the corresponding interval ǭi. The independent interval ǭb that
bounds the higher order terms in nonlinear interval computations, is
explicitly defined in Eq. (7.24).

The generalized intervals proposed by Kolev utilize unit symmetrical
intervals ǭi and the resulting interval arithmetic can be considered as
a generalization of the affine arithmetic. There is however a concep-
tual difference between both types of range arithmetic. The aim of the
affine arithmetic is to minimize the volume of the zonotope enclosing
a function while the generalized interval arithmetic tries to minimize
the width of the enclosing intervals.

In order to minimize the over-estimation error in the multiplication
of dependent generalized intervals, Kolev derived optimal multipli-
cation rules [65] [66]. He computed the multiplication of generalized
intervals in the following way:

x̃ · ỹ =
f ([ǫub

i
])+ f ([ǫlb

i
])

2
+

n∑

i=1

(xlb · yi+xi · ylb) · ǭi+ (|xlb| · yb+ |ylb| ·xb+ zb) · ǭb (7.25a)

zb =
f ([ǫub

i
])− f ([ǫlb

i
])

2
−

n∑

i=1

|xlb · yi+xi · ylb| − |xlb · yb| − |ylb ·xb| (7.25b)

f ([ǫi]) =

(

x0+

n∑

i=1

xi · ǭi+xb · ǭn+1

)

·
(

y0+

n∑

i=1

yi · ǭi+ yb · ǭn+2

)

(7.25c)

The vectors [ǫub
i

] and [ǫlb
i

] correspond to the value that maximizes and
minimizes the function f ([ǫi]). Note that the coefficients xb and yb are
considered independent from one another in the function bound’s com-
putation. The linear operations for generalized intervals are [113] [114]:

x̃± ỹ = (x0± y0)+

n∑

i=1

(xi± yi) · ǭi+ (xb+ yb) · ǭb (7.26a)

c · x̃ = (c ·x0)+

n∑

i=1

(c ·xi) · ǭi+ |c| ·xb · ǭb (7.26b)

c± x̃ = (c±x0)±
n∑

i=1

xi · ǭi+ |xb| · ǭb (7.26c)

Note that Messine’s first arithmetic form is utilized for the common
error term computations (see appendix B).

7.5 Orthogonal Interval Arithmetic 151

7.5 Orthogonal Interval Arithmetic

The modeling of tolerances as affine expressions or generalized inter-
vals instead of simple intervals leads to more accurate results, particu-
larly for the behavior computation of feedback systems. However, the
additional term generated in nonlinear operations needs to be handled
as a common error term or be distributed over the existing affine terms
in order to avoid a symbol explosion in long chain computations. As
the correlation existing between the linear terms and the higher order
terms is not properly considered in both cases, an over or under approx-
imation of the computed system behavior bounds takes always place.
With the aim of reducing these accuracy issues, this dissertation pro-
poses a novel range arithmetic that represents uncertain parameters in

a vectorial interval spaceRN. Thereby, a geometrical interpretation of the
interval arithmetic operations becomes possible. An orthogonal interval

vector
⊥
x is defined as the inner product between the coefficient vector

[xi]N and the intervals vector [ǭi]N:

⊥
x = [xi]N • [ǭi]N =

N−1∑

i=0

xi · ǭi = [xi]
T
N · [ǭi]N , ǭi =





[1 , 1] if i = 0

[−1 , 1] if i > 0
(7.27)

Fig. 7.1 shows the geometrical representation of orthogonal interval
variables. Each value xi is assigned to a dimension in an orthogonal
interval space.

��

��

0

��

Fig. 7.4: Geometric representation of orthogonal interval variables

The linear or affine operations are defined by the vector properties:

c · (⊥x± ⊥y) = [c · (xi± yi)]
T
N · [ǭi]N (7.28)

152 7 Analysis and Verification of AMS Systems

The multiplication of two orthogonal intervals is defined in terms of
the outer or Kronecker product as follows:

⊥
x · ⊥y =

(

[xi]
T
N ⊗ [yi]

T
N

)

·
(

[ǭi]N ⊗ [ǭi]N

)

(7.29)

In order to avoid the dimension explosion in nonlinear orthogonal
interval operations, the concept of linearization in a box is applied to
Eq. (7.29). Under monotonicity conditions, the linear representation of the
orthogonal interval resulting from Eq. (7.29) is computed as follows:

w(
⊥
x · ⊥y) = w([pi+ qi]

T
N · [ǭi]N)⇔

∣
∣
∣
∣
∣
∣

∂(
⊥
x · ⊥y)

∂ǭi

∣
∣
∣
∣
∣
∣
> 0∀xi, yi , 0 (7.30a)

pi =





x0 · y0 if i = 0

x0 · yi+ y0 ·xi if i > 0
(7.30b)

qi =





∑

j>0
(x j · y j) ·ǫmj +

∑

k> j>0
(x j · yk+xk · y j) ·ǫmjk if i = 0

|xi · yi| ·ǫci +
1
2 ·

∑

j,i , j>0
|xi · y j+x j · yi| ·ǫci j

if i > 0
(7.30c)

ǫmj =
1

2
· |ǫub

j −ǫ
lb
j | , ǫ

m
jk =

1

4
·
(

(ǫub
j −ǫ

lb
j) · (ǫub

k −ǫ
lb
k)

)

(7.30d)

ǫci =
1

2
· |ǫub

i +ǫ
lb
i | , ǫ

c
i j =

1

4
·
(

(ǫub
i +ǫ

lb
i) · (ǫub

j +ǫ
lb
j)

)

(7.30e)

where the operator w() computes the range between the function bounds
in the N-dimensional box. Otherwise, Eq. (7.25) is applied.

There is a important difference with respect to the generalized interval
arithmetic proposed by Kolev. The correlation between the quadratic
and the linear terms is considered in Eq. (7.30). The novel multiplication
rule is derived by seeking the monotonicity conditions associated to the
function bounds. If the monotonicity conditions hold, the points ǫlb

i
and

ǫub
i

correspond to the lower and upper multiplication bounds. It reveals
that under monotonicity conditions all known affine arithmetic forms
always introduce errors in multiplication chains.

The presented methodology based on the concept of linearization
in a box and on the consideration of the correlation between linear
and higher order terms (vector qi in Eq. (7.30)) can be applied for the
computation of any nonlinear continuous function if the monotonicity
conditions hold.

7.5 Orthogonal Interval Arithmetic 153

Example 7.7. Consider the following multiplication of orthogonal
interval variables:

⊥
z =

⊥
x · ⊥y = ([5, 1, 0, -3]T

4
· [ǭi]4) · ([10, -1, 2, 0]T

4
· [ǭi]4).

As ǫub
i
= -ǫlb

i
= [1, 1, -1], using Eq. (7.30) the following result is ob-

tained
⊥
z ≡ [54, 5, 10, -30]T

4
· [ǭi]4 ∈ [9, 99].

Using the affine and interval arithmetic the following results are
obtained: x̂ · ŷ = 50+5 ·ǫ1+10 ·ǫ2−30 ·ǫ3+12 ·ǫ4 ∈ [-7, 117] and
x̄ · ȳ = [7, 117] respectively. The generalized interval arithmetic leads
to the following result: x̃ · ỹ = 54+6 · ǭ1+2 · ǭ2−21 · ǭ3+16 · ǭb ∈ [9, 99]

Note that the range obtained using orthogonal interval arith-
metic and generalized interval arithmetic is the same: w(

⊥
z) = 90 and

w(z̃) = 90. It is significantly tighter than the range obtained using
the other range arithmetic forms: w(ẑ) = 114 and w(z̄) = 110. The or-
thogonal interval arithmetic avoids the independent interval ǭb.

Example 7.8. Consider now the power operation for the orthogo-
nal interval

⊥
x = [0, 3]T

2
· [ǭi]2. The following result, which has a range

w(
⊥
x2) = 9, is obtained:

⊥
x2 = [4.5, 4.5]T

2
· [ǭi]2. Using generalized inter-

val arithmetic the following result is obtained: x̃2 = 4.5+4.5 · ǭb. It
has a range (w(x̃2) = 9). Note that, in both cases, there is no over-
approximation but the generalized interval arithmetic produces a
new uncorrelated symbol ǭb.

The division of two orthogonal interval variables
⊥
x and

⊥
y is trans-

formed into a multiplication by inverting the denominator.

⊥
x
⊥
y
=
⊥
x ·

(
1
⊥
y

)

(7.31)

To find a linear approximation for the function 1/
⊥
y, the slope method

is applied. The center and the radius of the interval function can be
computed using the interval bounds ylb and yub.

m

(

1
⊥
y

)

=
1

2
·
(

1

ylb
+

1

yub

)

=
y0

y2
0
− r(

⊥
y)2

(7.32)

r

(

1
⊥
y

)

=
1

2
·
(

1

ylb
− 1

yub

)

=
r(
⊥
y)

y2
0
− r(

⊥
y)2

(7.33)

154 7 Analysis and Verification of AMS Systems

Considering Eq. (7.32) and Eq. (7.33), the function 1/
⊥
y is computed

under monotonicity conditions as follows:

1
⊥
y
= [pi]

T
N · [ǭi]N , pi =





y0

y2
0
−r(
⊥
y)2

if i = 0

−yi

y2
0
−r(
⊥
y)2

if i > 0
(7.34)

Otherwise, the Chebyshev approximation is utilized for the inversion
operation (see section 7.4.2.1).

7.5.1 Considerations for Orthogonal Interval Arithmetic

A relevant property of the orthogonal interval arithmetic is that under
monotonicity conditions, the interval bounds of the multiplication and
addition operations always correspond to the minimum and maximum
function values. This property holds for computation chains and does
not depend on the computation order as shown in example 7.9.

Example 7.9. Consider the multiplication of
⊥
x = [10, 1, 2]T

3
· [ǭi]3 ,

⊥
y = [10, 1, 3]T

3
· [ǭi]3 and

⊥
z = [8, 2, 2]T

3
· [ǭi]3. Although the multiplication

order leads to different results, the interval bounds of the several
multiplication results are the same and correspond to the function
minimum and maximum values (no approximation error).
⊥
w = (

⊥
x · ⊥y) · ⊥z = ([1176, 384, 624]T

3
· [ǭi]3) ∈ [168, 2184]

⊥
w = (

⊥
x · ⊥z) · ⊥y = ([1176, 372, 636]T

3
· [ǭi]3) ∈ [168, 2184]

⊥
w = (

⊥
y · ⊥z) · ⊥x = ([1176, 376, 632]T

3
· [ǭi]3) ∈ [168, 2184]

If there are no monotonicity conditions in any computation of a chain,
a proper approximation of the higher order terms is required for safely
bounding the computation results. For this reason, this work handles
the vector [qi] generated in the multiplication of two orthogonal inter-
val variables (see Eq. (7.30)) as a common N-dimensional error term.
It allows the handling of the linearized higher order terms as an inde-
pendent interval. In case of a non-monotone multiplication operation
this work utilizes the Chebyshev approximation for the computation
of the error term which is then properly distributed across the several
interval dimensions (see appendix section B.2).

7.5 Orthogonal Interval Arithmetic 155

For the addition and subtraction operations, the handling of the
linearized error vector [qi]N as independent term may be necessary if
there is an interval overlapping (ylb ≤ xlb ≤ yub or ylb ≤ xub ≤ yub) as
shown in the following example.

Example 7.10. Consider the uncertain function
⊥
w = (

⊥
x)2− ⊥x where

⊥
x = [0.5, 0.5]T

2
· [ǭi]2. As the function operands are defined in the same

range [0, 1], a cancellation of linear terms (even function terms)
takes place after the subtraction which leads to a change of the
power term monotonicity conditions. It demands that the odd part
of the linearized error vector (which is represented as offset) is han-
dled as a common error term for obtaining correct results. Thus,
the cancellation of the odd error part is avoided and the expected
result obtained (instead of zero):

⊥
w = ([-0.125, 0.125]T

2
· [ǭi]2) ∈ [-0.25, 0]

After any non-monotone operation, a redistribution of the indepen-
dent error terms into the orthogonal dimensions is needed. This in-
troduces a small under-approximation error in a computation chain.
Furthermore, the linearization of the higher order terms may produce
additional errors during the addition or subtraction of power terms.

Taking into account that the linear representation of the uncertain
parameters corresponds to the first two terms of a polynomial expan-
sion, modeling the uncertainty behavior of the circuit parameters as
orthogonal signals is a natural extension of the methodology defined
in this chapter based on the linearization in a box. Thus, the accuracy
of the range computations is determined by the number of polynomial
coefficients. Moreover, it enables the representation of time-varying
parameters and the computation of the time-varying system behavior
using operational approaches. The operational matrix of multiplica-
tion defined in section 7.6.3 allows the multiplication of such nonlinear
orthogonal interval variables in matrix form.

The scope of this dissertation is limited to linear uncertain param-
eters (affine form). It investigates the impact that uncorrelated higher
order terms have on the accuracy of range computations for improv-
ing analog circuit tolerance analysis. For this reason, the focus of the
next sections is the determination of the influence of different behavior
computation methods on the circuit tolerance analysis accuracy.

156 7 Analysis and Verification of AMS Systems

7.6 Analysis and Verification of Uncertain Circuits

In order to analyze and verify the behavior of analog circuit designs
under parameter uncertainties, the time domain analog circuit behav-
ior computation methods presented in chapter 5 may by extended for
including uncertain parameters which are modeled using range arith-
metic. This allows the computation of all possible system responses in
a single simulation run.

As mentioned in section 3.4.1, the most commonly utilized method
for the formulation of circuit equations is the modified nodal analysis
(MNA). It describes an analog circuit by a set of differential algebraic
equations (DAEs). Representing the equation variables and parame-
ters in range form, e.g. using orthogonal intervals, circuit simulators
such as PSpice or Saber may be extended for computing the impact
of parameter tolerances on the circuit behavior [10]. Linear multi-step
(LMS) integration methods are able to satisfactorily solve such uncer-
tain circuit equations (see section 7.2). The implicit tradeoff between
accuracy and performance of these stepwise integration methods leads
however to slow simulations. As the computational efficiency of range
arithmetic methods is relatively low once the number of parameters
increases [29], more efficient computation methods are necessary for
tolerance analysis of large uncertain circuits.

As explained in section 5.4.1, representing the circuit equations in
state space form enables the analytical computation of the circuit be-
havior. The behavior of the uncertain analog circuit which results from
introducing range arithmetic variables into the corresponding set of or-
dinary differential equations (ODEs) requires the evaluation of the un-

certain circuit’s state transition matrix [
⊥
Φ(t)] at the desired time points.

If the forced system response (integral part in Eq. (5.2)) is expressed in
terms of the state transition matrix, the accuracy of the solution does
not depend on the time step size. Therefore, large time step sizes can be
utilized for the computation of the uncertain circuit behavior. Although
the analytical behavior computation method is able to cope with the
performance problems in circuit tolerance analysis, the intrinsic non-
linear characteristics of the state transition matrix produces stability
and accuracy issues which limit the reliable computation of uncertain
analog circuits. Most methods utilized for the reduction of the system
matrix norm such as scaling and squaring do not properly work with
range arithmetic (due to the error introduced in non-affine operations).

7.6 Analysis and Verification of Uncertain Circuits 157

In order to decrease the above mentioned performance, accuracy and
stability issues that take place in the range arithmetic based behavior
computation methods proposed in the literature for circuit tolerance
analysis, the operational computation methods derived in chapter 5 for
the fast simulation of analog circuits (see section 5.5) were extended in
this dissertation for the response analysis of uncertain analog circuits.
As these methods compute the system behavior using simple algebraic
mathematical operations, they can be applied at different abstraction
levels (transfer function, state space equations, linear and nonlinear
circuit equations). Moreover, as only the orthogonal signal coefficients
need to be expressed in range form i.e. the orthogonal polynomials ma-
trix [Qn(σ)] is not affected by range operations, the operational behavior
computation methods can be efficiently implemented.

7.6.1 Operational Time Domain Robustness Evaluation

In order to evaluate the robustness of analog circuits to parameter un-
certainties in the time domain, the upper and lower boundaries of the
uncertain circuit response may be utilized. As shown in chapter 6, the
area defined by both curves describes the sensitivity of the circuit to
parameter variations. Furthermore, it is a good indicator of the circuit
design robustness. For this reason, this dissertation proposes the fol-
lowing parameter sensitivity index for solving robust design optimization
problems in the time domain:

ρS =

∫ T

t0

([yub(t)]R− [ylb(t)]R) ·dt (7.35)

where [yub(t)]R and [ylb(t)]R are the upper and lower system response
signal vectors. Opposite to the method proposed by Barke (see section
6.2), Eq. (7.35) does not depend on the system specification. It can be
solved by applying any numerical integration method, e.g.the Simpson
rule. As the integration of an orthogonal signal can be approximated
by a simple matrix multiplication (see chapter 5), the proposed cir-
cuit parameter sensitivity index ρS is computed in operational form as
follows:

ρS ≃ ([cyub
]T
RP− [cylb

]T
RP) · [P]PP · [Q(σb)]P (7.36)

158 7 Analysis and Verification of AMS Systems

where [cyub
] and [cylb

] are the coefficient vectors of the orthogonal signals
corresponding to the upper and lower system response respectively.
Note that opposite to the classical computation methods, only a single
evaluation at the final time point σb is necessary for the operational
computation of the parameter sensitivity index ρS. This leads to a faster
evaluation of the analog circuit robustness in the time domain.

As explained in [37], the orthogonal signal representation enables
the direct verification of the system behavior on its signal coefficients.
Therefore, the operational computation methods are well suited for the
simultaneous robust circuit design optimization and verification.

7.6.2 Behavior Verification of Uncertain Analog Circuits

As the assertion of signal properties can be directly carried out on their
coefficients, the orthogonal signal representation introduced in section
4.5 can be exploited for the efficient behavior verification of analog
circuits. Opposite to the stepwise circuit behavior verification, signal
evaluations at a large number of time points are not necessary. For
signals expanded in terms of Chebyshev polynomials, it is possible
to efficiently verify that the circuit response is enclosed within certain
safety or performance bounds (behavior constraints). As explained in
section 4.7, the value of the corresponding signal expansion is enclosed
in an interval which is defined by the relation:

c0−
N−1∑

n=1

|cn| ≤ s(σ) ≤ c0+

N−1∑

n=1

|cn| (7.37)

The possible maximum and minimum values of the signal s(σ) are
given by its coefficients cn. Using polynomial root finding methods,
bound crossing points may be accurately computed. In order to enable
a faster signal bounds verification, the operational method for signal
subdivision presented in chapter 4 is applied for the identification of
bound crossing free signal intervals as well as for the reduction of
the orthogonal polynomials’ order. Thus, after finding small intervals
that possibly contain bound crossing points, a low order polynomial
approximation is used for the analytical computation of the bound
crossing points.

7.6 Analysis and Verification of Uncertain Circuits 159

Both the nominal circuit behavior as well as the circuit behavior
under parameter variations may be verified using the proposed or-
thogonal interval arithmetic. Other circuit behavior properties such as
the settling time are defined in term of signals and may be also directly
computed from the coefficients of orthogonal signals.

7.6.3 Operational Computation of Performance Indexes

Although the analytical behavior computation methods enable slightly
faster simulations than the operational computation methods for linear
analog circuits, it is not possible to take profit from large simulation
steps when the overall system design performance needs to be opti-
mized. As common performance indexes are strongly non-linear, small
step sizes or a step error control are required for accurate simulation-
based performance index computations. Thus, even if the analytical be-
havior computation based on the state transition matrix may in many
cases be successfully carried out for fast tolerance analysis of some ana-
log circuit, its key advantage disappears when the whole analog system
is being optimized.

Widely utilized performance indexes for control system design op-
timization are the integral of the squared error (ISE) and the integral of
the time weighted absolute error (ITAE). They are given by the following
expressions:

ISE =

∫ T

ti

e2(t)dt (7.38)

ITAE =

∫ T

ti

t · |e(t)|dt (7.39)

where e(t) is the error signal. The final time T shall be large enough, i.e.
the steady state response must be reached.

The time evaluation of the signals involved in the ISE and ITAE index
computations can be avoided if the product of two signals is expressed
in an operational way. It is derived in the following. As explained
in chapter 4.5, any orthogonal polynomial Qn(σ) can be expressed in
matrix form as follows:

160 7 Analysis and Verification of AMS Systems

Qn(σ) = [xn]T
N · [BQ]N2 · [cn]N (7.40)

The basis of the polynomial is represented by a matrix [BQ]N2 in terms of
the power vector [xn]N = [xN . . . x2 x 1]. This orthogonal polyno-
mial formulation allows the generalization of the operational compu-
tations for any orthogonal polynomial set. For simplicity, Chebyshev
polynomials are considered in the following. Due to the recurrence
properties, the multiplication of two Chebyshev polynomials of order
i and j may be computed as follows:

Ti(σ) ·T j(σ) =
1

2
·Ti+ j(σ)+

1

2
·Ti− j(σ) (7.41)

Taking profit from equation (7.41) and the Kronecker product, this
work proposes the computation of the multiplication of two signal
expansions in terms of the Chebyshev polynomials coefficients in the
following manner:

[cnc]N = [MQ](2N−1)(N2) · ([cna]N ⊗ [cnb]N) (7.42)

Eq. (7.42) defines an operational computation method for the mul-
tiplication of two orthogonal signals without calculating the power
functions of the polynomial representation. For 2nd order Chebyshev
polynomials (N = 3), the operational matrix of multiplication MT is given
by:

[MT]532 =





1 0 0 0 1
2 0 0 0 1

2
0 1 0 1 0 1

2 0 1
2 0

0 0 1 0 1
2 0 1 0 0

0 0 0 0 0 1
2 0 1

2 0

0 0 0 0 0 0 0 0 1
2





(7.43)

Using eq. (7.42), it is possible to compute the performance indexes ISE
and ITAE applying only algebraic operations in the following way:

ISE ≃ [MQ](2P−1)(P2) · ([ce]
T
RP⊗ [ce]

T
RP) · [P]P · [Q(σb)]PP (7.44)

ITAE ≃ [MQ](2P−1)(P2) · ([ct]
T
RP⊗ [c|e|]

T
RP) · [P]P · [Q(σb)]PP (7.45)

The coefficients [c|e|]RP are fast and accurately computed using the signal
subdivision method presented in chapter 4.5.

7.6 Analysis and Verification of Uncertain Circuits 161

7.6.4 Operational Computation of Response Overshoot

The overshoot Mp of the step response is related to the frequency re-
sponse. Decreasing the overshoot introduces a robustness margin and
avoids the amplification of noise at high frequencies.

The fast computation of the step response overshoot Mp from or-
thogonal signal coefficients requires the determination of the system re-
sponse inflexion points (possible maximum values) i.e. the time points
at which the response signal derivative becomes zero. The derivative
of the system response signal is obtained multiplying its coefficients by
the operational matrix of derivation [D]PP as follows:

d

dt
[ŷ(t)]N ≃ [ĉy]T

PN · [D]PP · [Q(σ)]P (7.46)

For 3rd order Chebyshev polynomials, [D]PP is given by [112]:

[D]42 =





0 0 0 0

1 0 0 0

0 4 0 0

3 0 6 0





(7.47)

After transforming the orthogonal polynomials’ coefficients ob-
tained using Eq. (7.20) into the corresponding power series coefficients,
the signal inflexion points of the system response are determined from
the roots of the power polynomial. Evaluating the system response at
the computed inflexion points, the peak value ymax, that is the maxi-
mum value of the system response, is found. The response overshoot Mp

is finally computed as follows:

Mp =
ymax− yss

yss
·100 (7.48)

where yss is the steady state response value. It is determined by evalu-
ating the system response signal at the end time point σb.

162 7 Analysis and Verification of AMS Systems

7.7 Time Domain Robust Control Design Refinement

Although the robust design methodology presented in chapter 6 leads
to very good results, it is often necessary to refine the system for ful-
filling design requirements specified in the time domain. The system
properties defined in section 7.6 are often utilized to this end.

In order to obtain a good command signal tracking and load dis-
turbances attenuation, the ISE and ITAE indexes are included in the
optimization cost function. The ISE index penalizes large errors in the
system response y(t). This reduces the rise time Tr. The ITAE index pe-
nalizes response errors that persist for a long time. This reduces the
steady state error ess. Minimizing the response overshoot Mp, the con-
troller bandwidth is limited which attenuates the measurement noise
injected into the system. The parameter sensitivity index ρS should
be minimized for increasing the system robustness to external pertur-
bations and parameter variations. This work proposes the following
cost function for robust control system design optimization in the time
domain:

fd =

√

c1 · ISE2+ c2 · ITAE2+ c3 ·Mp
2+ c4 ·ρS

2 (7.49)

where the coefficients ci are chosen and adjusted to meet the system
requirement specification.

Heuristic optimization methods such as simulated annealing (SA) or
Particle Swarm Optimization (PSO) work well for minimizing Eq. (7.49).
They usually need a large number of simulation runs for finding opti-
mal controller design parameters. In order to speed up the optimization
process, it is divided in two steps. First, the coefficient c4 in Eq. (7.49)
is set to zero and the reduced cost function fr, that mainly penalizes
performance losses, is computed. If the computed cost function value
fr does not improve the system performance, the parameter sensitivity
index ρS in Eq. (7.49) is replaced by a large value and the cost function
fd is computed afterwards. Thus, the time demanding range simula-
tion that is required for computing ρS is avoided. Otherwise, the range
system simulation is carried out and the cost function fd is computed.

7.9 Experimental Results 163

7.8 Implementation

The symbolic solver presented in chapter 5 was extended for including
uncertain parameters in order to analyze the accuracy and stability of
the integration methods described in chapter 3 and 5 for range arith-
metic simulations. The MATLAB optimization toolbox is utilized in
combination with the symbolic solution for determining the upper and
lower uncertain response bounds. Thus, a more reliable method than
Monte Carlo simulations is applied for achieving an accurate analysis
of the experimental results. Moreover, the range arithmetic methods
presented in section 7.4 were implemented as MATLAB classes and
added to the developed numerical solvers for time domain tolerance
analysis.

The SystemC solver implementation presented in chapter 5 was also
extended for the computation of the uncertain circuit response using
affine arithmetic. The uncertain circuit parameters are modeled using
the open source library libaffa. The affine arithmetic class was extended
by a common error term for handling symbol explosion.

As the focus of the research was the accuracy and stability analysis
of the behavior computation methods, all the experiments were car-
ried out using MATLAB for reducing the analysis and validation effort.
The obtained performance results should be considered as an estima-
tion of the possible performance achievement in several programming
languages such as C++.

7.9 Experimental Results

In order to evaluate the accuracy improvement that may be achieved
with the presented orthogonal interval arithmetic, the uncertainty pro-
file describing the worst case plant perturbation of the Buck converter
circuit presented in section 6.7 was computed using common error term
affine arithmetic (AA) and generalized interval arithmetic (GIA). The
error term generated in non-affine operations was bounded (in all cases)
using interval arithmetic for achieving tighter computations. The circuit
parameter values are defined in Tab. 6.1. The upper bound computa-
tion results for ±10% parameter tolerance are shown in Fig. 7.5. As the
frequency response of the Buck converter is directly computed from the
circuit transfer function H(s), it is not affected by the discretization and

164 7 Analysis and Verification of AMS Systems

linear solving (such as the time domain circuit response). Furthermore,
the strongly nonlinear characteristics of this function is very demand-
ing for range computations which ensure the proper validation of the
proposed orthogonal interval arithmetic. All basic arithmetic opera-
tions are required for the computation of its coefficients (see [134] for
more details) which are given by:

H(s) =
s2+ a1 · s+ a0

s2+b1 · s+b0
, a0 =

R ·V
C ·L · (R+RC)

, a1 =
R ·RC

L · (R+RC)
(7.50a)

b0 =
R+RL

C ·L · (R+RC)
, b1 =

R ·RC ·C+R ·RL ·C+RC ·RL ·C+L

C ·L · (R+RC)
(7.50b)

10
2

10
3

10
4

10
5

-20

-15

-10

-5

Frequency (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
)

Worst case tolerance
Affine arithmetic (AA)
Generalized interval arithmetic (GIA)
Orthogonal interval arithmetic (OIA)

Fig. 7.5: Tolerance analysis upper bound for Buck converter circuit

The over-approximation error introduced by non-affine operations
leads to considerably large errors for the affine arithmetic (AA) com-
putations even if the error term is bound using interval arithmetic. The
generalized interval arithmetic (GIA) shows a similar accuracy even
if Kolev’s optimal multiplication rules are applied for minimizing the
over approximation error. Considering the correlation of higher order
terms, the proposed orthogonal interval arithmetic (OIA) produces a
computation result which is really close to the true worst case response
(computed using optimization methods). The OIA computation accu-
racy becomes poor around the response function inflexion point.

The relative range over-approximation error that the several com-
putation methods produce in the computation of the transfer function
coefficients are presented in Tab. 7.1. Although the generalized interval
arithmetic (GIA) presents better results than the affine arithmetic (AA),
the accuracy of both range computation approaches is poor and shows

7.9 Experimental Results 165

a given dependency on the number of computation operations. The
larger error occurs in the computation of the coefficient b1. The orthog-
onal interval arithmetic (OIA) computes all circuit coefficients with a
relative range error smaller than 10% and does not show a dependency
with the number of operations.

Range
arithmetic

Coefficient Interval bounds
Relative

range error

True interval a0 [5.758e9 , 1.052e10] 0.0%

AA a0 [4.716e9 , 1.128e10] 37.67%

GIA a0 [4.716e9 , 1.110e10] 33.87%

OIA a0 [5.555e9 , 1.073e10] 8.49%

True interval a1 [1.191e4 , 1.781e4] 0.0%

BA a1 [1.091e4 , 1.880e4] 33.73%

GIA a1 [1.091e4 , 1.848e4] 28.37%

OIA a1 [1.167e4 , 1.815e4] 9.76%

True interval b0 [5.725e8 , 8.672e8] 0.0%

AA b0 [5.021e8 , 9.131e8] 39.45%

GIA b0 [5.021e8 , 8.964e8] 33.78%

OIA b0 [5.601e8 , 8.672e8] 4.21%

True interval b1 [2.103e4 , 2.629e4] 0.0%

AA b1 [1.845e4 , 2.942e4] 108.59%

GIA b1 [1.845e4 , 2.837e4] 88.63%

OIA b1 [2.103e4 , 2.629e4] 0.0%

Table 7.1: Range arithmetic relative range error

The tolerance analysis in the time domain is less demanding for
range computations. Fig. 7.6 shows the time domain uncertain response
of the Buck converter circuit computed using bounded affine arithmetic
and Monte Carlo simulations for comparison purposes. The parameter
tolerances are ±10% (the same tolerance range as before). It validates
that for linear circuits, the tolerance analysis carried out using semi-
symbolic simulations in a single run is close to the true response bounds.

166 7 Analysis and Verification of AMS Systems

1 simulation run

10% tolerance

Time in [s]

O
u
tp

u
t
v
o
lt
a
g
e
 i
n
 [

V
]

(a)

100 simulation runs (samples)

Time in [s]

O
u
tp

u
t
v
o
lt
a
g
e
 i
n
 [

V
]

10% tolerance

(b)

Fig. 7.6: Tolerance analysis: a) Affine arithmetic b) Monte Carlo

In order to analyze the impact of the several integration methods
investigated in chapter 5 on the accuracy, performance and stability of
the range arithmetic based time domain tolerance analysis, the average
Buck converter circuit shown in Fig. 5.4 was simulated using orthogonal
interval arithmetic for several tolerance values (±5% and ±10%) of the
passive components. Tab. 7.2 shows the computation accuracy of the
several range arithmetic solver implementations when they are used to
compute the area between the upper and lower bounds of the system
response (which indicates the sensitivity of the circuit to parameter
variations). As the impact of approximation errors was investigated,
GIA was utilized (instead of OIA) for all computations.

The computation error increases considerably with the parameter
tolerances for all integration methods. The operational computation
method using Chebyshev (COM) or Legendre polynomials (LOM) is
always more accurate than the LMS and the state transition matrix
(STM) integration methods. The operational methods require that the
size of the integration interval is kept smaller for achieving conver-
gence to the circuit behavior in range computations. For the proposed
circuit, the number of coefficients was reduced to 10 and the integration
interval was divided in 5 parts (denoted in brackets in Tab. 7.2). Thus,
both a good simulation performance and accuracy was achieved. The
performance of the operational methods is also very good for range
computations. It is very close to the performance obtained using the
analytical method (STM).

7.9 Experimental Results 167

Solver
Absolute
error

(tol=±5%)

Absolute
error

(tol=±10%)

Execution
Time in s

LMS (BE) 3.0939e−2 1.0261e−1 30.4203

LMS (BDF2) 2.7234e−3 4.5757e−2 40.3107

LMS (TR) 2.7652e−3 4.5840e−2 49.6297

STM (B) 4.3427e−3 4.3985e−2 10.2291

COM (10/5) 1.3643e−4 2.1686e−2 10.6521

LOM (10/5) 1.2001e−4 2.1892e−2 10.9325

Table 7.2: Accuracy of time domain range computations

In order to validate the Chebyshev polynomials based operational
computation method for nonlinear circuit range simulations, the non-
linear circuit shown in Fig. 5.5 was simulated and the simulation results
were compared with those obtained applying corner cases simulations.
As shown in Fig. 7.7, the operational computation method is also well
suited for time domain tolerance analysis of nonlinear circuits.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

D
io

d
e

 V
o

lt
a

g
e

 i
n

 V
o

lt
s

Time in s

Chebyshev-Picard iteration
Corner Cases

Fig. 7.7: Nonlinear circuit tolerance analysis

168 7 Analysis and Verification of AMS Systems

Robust Performance Optimization

In order to estimate the performance improvement which may be
achieved using the presented operational analysis methods for ana-
log systems, the methodology proposed for robust design refinement
in section 7.7 was carried out on a linear control system similar to
the Buck converter control presented in chapter 6 (see [36]). An ap-
proximated PID controller was initially tuned for obtaining a design
that shows a good set-point tracking and disturbance rejection charac-
teristics. The ISE and ITAE indexes were minimized to this end. The
controller parameters were then improved using Eq. (7.49). The param-
eter sensitivity index ρS and the response overshoot Mp were properly
weighted for considering the impact of parameter variations on the
design as well as for improving the closed loop control system stability
and robustness. In both cases, simulated annealing was applied. Fig.
7.8 shows the system step response after design optimization (using
only the ISE and ITAE indexes) and after robust design optimization
(using also the parameter sensitivity index ρS).

Fig. 7.8: Time domain robust optimization results

7.10 Chapter Summary and Conclusions 169

After 1000 iterations a very good robust performance design was
found. The execution time needed for the controller parameter opti-
mization is presented in Tab. 7.3. The operational method using Cheby-
shev polynomials (COM) was around 50 times faster than the Trape-
zoidal Rule (TR) method. Due to stability problems, it was not possible
to apply the state transition matrix based behavior computation method
in range form.

Solver: LMS (TR) COM (35)

Execution time: 11 h. 24 min. 14 min. 34 sec.

Table 7.3: Optimization execution time

7.10 Chapter Summary and Conclusions

This chapter proposed range arithmetic based operational computa-
tion methods for the efficient analysis, optimization and verification
of uncertain system designs. Furthermore, a novel range computation
method that represents uncertain parameters as orthogonal intervals
and avoid approximation errors in monotone non-affine computations
was presented. The results obtained in the experiments show that:

• Over-approximation errors in range arithmetic computations do not
limit the operational behavior computation methods.

• Range arithmetic modifies the stability properties of the operational
computation methods (smaller integration intervals are needed).

• The operational behavior computation methods enable more accu-
rate range arithmetic based circuit tolerance analysis than the step-
based (LMS) and the analytical (STM) methods.

• The performance of the range arithmetic based operational computa-
tion methods is as good as the performance shown by the analytical
method for circuit response computations.

• Range arithmetic methods are suitable for the robustness optimiza-
tion of control system designs.

• The operational computation methods allow a very significant re-
duction of the robust design optimization time.

170 7 Analysis and Verification of AMS Systems

The very good accuracy, performance and stability properties to-
gether with the possibility of avoiding system response evaluations for
system design analysis and verification are important advantages of the
operational computation methods. They overcome the performance,
accuracy, and stability issues of the LMS and analytical integration
methods for range arithmetic based tolerance analysis. The capabil-
ity of the operational method to carry out nonlinear circuit tolerance
analysis using a simple behavior computation algorithm rounds off its
advantages leading to a significant contribution to the fast and reliable
analog system design analysis and verification.

The proposed orthogonal interval arithmetic shows a high poten-
tial for accuracy improving in range arithmetic based circuit tolerance
analysis. The experimental results put in evidence that the reduction
of the over approximation error in non-affine operations (GIA instead
of AA) does not enough improve the accuracy of range arithmetic
computation methods for circuit tolerance analysis applications. Fur-
thermore, the loss of higher order terms’ correlation in non-affine op-
erations may produce large errors in range arithmetic based circuit
behavior computations. Unfortunately, the error term redistribution af-
ter non-monotone computations does not enable guaranteed accuracy
for the current OIA implementation which limits its application for
circuit analysis. The consideration of monotonicity changes in range
arithmetic computations is a relevant topic leading to possible future
work for minimizing approximation errors in large computation chains.

Although common error term range arithmetic methods always in-
clude the worst case uncertainty profile in the frequency domain, this
is not true for the dynamic behavior computation in the time domain.
For this reason, the extension of the parameter modeling methodology
for including orthogonal uncertain signals (see consideration in section
7.5.1) would be an important future contribution for the efficient and
accurate uncertain circuit response analysis in the time domain.

171

Chapter 8

Conclusions and Future Work

Considering that both, system design methodologies and tools, con-
tribute significantly to the reduction of the time-to-market and to the
minimization of design errors, the system design platform model presented
in chapter 2 enables the development of powerful design and analysis
tools for AMS systems based on the better understanding of system
design principles. This abstract unified view:

1. organizes the essential steps of the model based system design
2. captures the key characteristics of the design activities
3. allows the reasoning about design activities dependencies

Applying a systematical analysis, several aspects were identified and
considered in the first and second part of this dissertation to achieve a
more efficient and seamless AMS system design chain, among others:

• A careful selection and formal specification of design properties and
constraints are essential for guiding the design refinement.

• The system structure should be captured by the modeling approach
to enable a more efficient behavior analysis and computation.

• The component behavior representation should enable the efficient
computations as well as the simple and direct interaction between
heterogeneous components for supporting the fast AMS system sim-
ulation at the several stages in the design process.

• A clear and complete specification of the simulation platform as well
as the choice and customizing of the methods utilized for behavior
computation, mapping between several abstractions or MoCs and
optimization of design parameters are necessary to guarantee a high
design productivity.

• The automatic computation and estimation of a rich set of met-
rics which characterize the design performance and implementation
characteristics are key tool features needed to define efficient system
design refinement and validation methodologies.

• Design tools based on efficient modeling and simulation methods
that support several MoCs and levels of abstraction are necessary
for the early and complete verification of AMS system designs.

172 8 Conclusions and Future Work

• Methods which include parameter uncertainties in the system de-
sign and verification are of central importance for improving the
robustness and reliability of AMS system.

8.1 Part I: Efficient System Modeling and Simulation

The MoCs provided by design tools usually present a poor behavior
abstraction support for modeling analog components. The available
behavior abstractions are too simple or too detailed which make diffi-
cult the automatic refinement and the system level design verification.
As shown in chapter 6, simplified circuit models do not provide the
necessary accuracy for designing robust power systems. For improved
low-power embedded system design, chapter 3 introduced a model-
ing abstraction based on ideal switches which enables the system level
simulation of power electronic circuits. This MoC is particularly useful
for the modeling of power electronic circuits containing a large number
of switches.

The proposed graph based method for finding inconsistencies and
predicting electrical impulses after topology switching enables a more
efficient and flexible implementation of the switched linear electri-
cal network MoC because it allows the clustering of multiple topolo-
gies and it does not require a particular representation of the circuit
equations. The evaluation results of the SystemC AMS extension for
the simulation of DC-DC power converters at system level encourage
the development of new modeling abstractions. Behavior computation
methods for switched electrical networks that take advantage of cir-
cuit properties and of the inherent repetitive operation mode of power
electronic systems could be considered in future work.

The novel signal modeling formalisms proposed in chapter 4 con-
stitute a key contribution to the field of embedded system modeling.
As explained in section 2.5.4, the orthogonal signal model eliminates the
major drawbacks of the existing approaches for modeling and handling
heterogeneous embedded systems. As it does not require multiple sig-
nal representations for different MoCs, it does not impose restrictions
in the way in which heterogeneous MoCs are connected or composed.
Both hierarchical and flat heterogeneous models are possible. Further-
more, this mathematical model of signals do not force the mapping

8.1 Part I: Efficient System Modeling and Simulation 173

of heterogeneous MoCs into a common MoC, e.g. continuous time or
discrete event. As the proposed signal model includes timing (or event
order) information, it enables the direct support of different time ab-
straction levels. Taking advantage of these properties, each AMS system
component may be represented with the best suited MoC improving
the simulation performance and enabling a better heterogeneous sys-
tem validation and verification.

The key advantage of the orthogonal signal representation is that
continuous time signals are efficiently and accurately described by a
finite vector of coefficients. It enables a behavior description accuracy
which is near to symbolic expressions while maintaining the simplicity
and efficiency of numerical computation methods. As was mentioned
in section 1.5, this dissertation proposes a paradigm change in the sys-
tem behavior modeling which applies the orthogonalization principle
to both system signals and parameters for enabling more efficient and
accurate behavior computation methods as shown in Fig. 8.1. Taking
advantage of the proposed orthogonal signal model demands the de-
velopment of new behavior computation methods.

����

��

��

��

	�

	�

	�

�
�
�
�

�

�

��

0

��

�

�����

	�

	�

	�

��

��

��

��
�

��
��

0

��

Functional signal Vectorial signal

Affine arithmetic Orthogonal interval arithmetic

Fig. 8.1: Modeling methods for efficient system behavior computation

The general operational signal subdivision matrix presented in section
4.6 is an important contribution that enables the efficient sampling of
signals and the fast handling of threshold crossing events. The set of
computation methods derived in chapter 5 allow the operational behav-

174 8 Conclusions and Future Work

ior computation at several levels of abstraction for linear and nonlinear
analog circuits. As shown by the experimental results, these methods
are computationally as accurate as the analytical methods based on the
state transition matrix and achieve a similar simulation performance.
However, they overcome the practical limitations of the analytical meth-
ods. They are directly applicable to any circuit equation representation
and do not impose strong restrictions on the input signals (only con-
tinuity is necessary). Therefore, the proposed operational computation
methods for analog circuits constitute a valuable alternative to the an-
alytical behavior computation methods for speeding up simulations.
They present the flexibility of the traditional stepwise behavior com-
putation methods, however are considerably more efficient. Both the
integration interval and the number of coefficients may be adjusted for
balancing simulation accuracy and performance. As the proposed oper-
ational computation methods do not require the linearization of circuit
equations to cope with nonlinear circuits, they are well suited for AMS
system simulation. They also enable the fast and accurate handling of
the interaction between analog and digital circuits. The possibility of
extending the analog circuit operational computation methods for a
large variety of systems such as time-varying and time-delay systems
is an additional relevant advantage.

The state based modeling and computation method for digital sys-
tems presented in section 5.6 is the counterpart to the operational com-
putation methods for analog systems and provides the necessary com-
putational properties to enable the efficient simulation of mixed analog
and digital systems based on orthogonal signals. This modeling method
which is similar to the state space representation of continuous time sys-
tems copes efficiently with event sequences and time delays in digital
components, enabling efficient process communication (multiple event
in one transaction). It contributes thereby to the development of novel
system level computation methods such as the proposed iterative com-
putation method for heterogeneous analog and digital circuits. The
experimental results corroborate that the proposed behavior computa-
tion methods allow a significant improvement of the simulation speed
for AMS systems. For the analyzed PLL system which contains several
MoCs and abstraction levels, a simulation execution time reduction of
50% was obtained. The simulation speed-up is even more significant if
analog signal monitoring is performed for system design analysis and
verification purposes (greater than 10x).

8.2 Part II: Robust System Design and Verification 175

8.2 Part II: Robust System Design and Verification

The proposed set of circuit behavior modeling and computation meth-
ods promise a better support for a seamless system level design. As
shown in chapter 6, a stepwise analog circuit design refinement from
higher to lower abstraction level is necessary for obtaining optimal
robust performance designs of AMS systems. Furthermore, a set of
suitable metrics are necessary for guiding the design during refine-
ment and exploration. The proposed mixed sensitivity robustness index
constitutes a significant contribution to this topic because it enables the
simple evaluation and comparison of several control system designs.
Furthermore, it is applicable to linear and nonlinear analog circuits.
This dissertation takes advantage from the orthogonal signal represen-
tation to enable the accurate linearization of the nonlinear circuit be-
havior at different working points (see appendix A). Moreover, several
working points and parameter tolerance ranges are characterized by
an occurrence probability to avoid that conditions which are unlikely
to occur lead to a poor performance or significantly more expensive
design (over-conservatism).

As there is always a compromise between the sensitivity to perturba-
tions and the stability properties of a system, designing a system to be
robust based on simplified models leads to a poor stability robustness.
Modeling accuracy is essential for a correct system robustness evalua-
tion. In particular, system nonlinear characteristics should be properly
captured for ensuring a robust design.

The verification of the system design robustness to parameter uncer-
tainty is also necessary. For the efficient computation of the worst-case
uncertain circuit behavior, range arithmetic methods were investigated
in chapter 7. The experimental results have shown that the affine arith-
metic (or generalized interval arithmetic) based operational behavior
computation methods are well suited for fast and reliable tolerance
analysis of linear and nonlinear analog circuits. They achieve a con-
siderably better accuracy than LMS and analytical integration methods
while remaining stable and presenting high computational efficiency.

Range arithmetic behavior computation methods have the drawback
that over-approximation errors may unnecessarily introduce larger ro-
bustness margins in the system design. The proposed orthogonal interval
arithmetic considers monotonicity conditions for a proper linearization
and handling of higher order terms in the arithmetic operations. It

176 8 Conclusions and Future Work

achieves significantly tighter bounds than affine arithmetic, however
a better handling of monotonicity changes is still necessary for avoid-
ing under-approximation errors. This topic will be considered in future
work for enabling a range arithmetic based mixed sensitivity index
computation.

In order to further exploit the orthogonal signal representation for
speeding up system design, a set of operational computation methods
were proposed in chapter 7 which enable the faster system design anal-
ysis and verification. A novel operational matrix of multiplication was pre-
sented and utilized for the direct computation from signal coefficients
of common control system performance metrics. This was exploited in
combination with the previously mentioned range arithmetic based op-
erational behavior computation methods for enabling very fast robust
design optimization in the time domain. It is useful for improving the
frequency domain system design obtained with the proposed robust
design method. Avoiding system response evaluations a speed-up of
50x was observed. As both proposed robust system design methods
consider manufacturing tolerances and do not impose restrictions on
the controller structure, they are helpful for improving circuit design
quality and reducing manufacturing costs.

The significant simulation performance improvement for AMS sys-
tems as well as the flexibility and stability achieved with the proposed
operational computation methods reinforce the value of this disserta-
tion and encourage to continue researching modeling and computa-
tion methods that take advantage from the proposed orthogonal signal
model. As pointed out in chapter 5, the development of more effi-
cient and stable algebraic methods is mandatory to fully profit from
the operational computation methods. In particular, solving poor con-
ditioned equations systems and minimizing rounding errors need to
be considered in future work. A very interesting topic for future work
is the development of concurrent operational behavior analysis and
computation methods which fully exploit the computational power of
parallel computer architectures. The intrinsic properties of the orthog-
onal signals promise novel methods for parallel analog circuit behavior
computation which cope with the current scalability issues.

177

References

[1] H. Al-Aljunaid and T. J. Kazmierski. “SEAMS - a SystemC environment with
analog and mixed-signal extensions”. In: 2004 IEEE International Symposium
on Circuits and Systems. Vol. 5. 2004, pp. V–281–V–284.

[2] H. Al-Junaid and T. J. Kazmierski. “Analogue and mixed-signal extension
to SystemC”. In: IEEE Proceedings - Circuits, Devices and Systems 152.6 (2005),
pp. 682–690.

[3] Goetz Alefeld and Guenter Mayer. “Interval analysis: theory and applica-
tions”. In: Journal of Computational and Applied Mathematics 121.1-2 (2000),
pp. 421–464.

[4] J. H. Allmeling and W. P. Hammer. “PLECS-piece-wise linear electrical cir-
cuit simulation for Simulink”. In: Power Electronics and Drive Systems, 1999.
PEDS ’99. Proceedings of the IEEE 1999 International Conference on. Vol. 1. 1999,
355–360 vol.1.

[5] S. F. Alyaqout, P. Y. Papalambros, and A. G. Ulsoy. “Combined Robust Design
and Robust Control of an Electric DC Motor”. In: IEEE/ASME Transactions
on Mechatronics 16.3 (2011), pp. 574–582. issn: 1083-4435.

[6] Liliana Andrade et al. “Time Step Control and Threshold Crossing Detection
in SystemC AMS 2.0”. In: Actes du huitième colloque du GDR SOC-SIP du
CNRS. CNRS. 2013, p. 3.

[7] K. J. Astrom and B. M. Bernhardsson. “Comparison of Riemann and
Lebesgue sampling for first order stochastic systems”. In: Proceedings of the
41st IEEE Conference on Decision and Control, 2002. Vol. 2. 2002, 2011–2016
vol.2.

[8] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton, NJ, USA: Princeton University Press,
2010.

[9] S.H. Attarzadeh Niaki et al. “Formal heterogeneous system modeling with
SystemC”. In: Specification and Design Languages (FDL), 2012 Forum on. 2012,
pp. 160–167.

[10] Amin Baraka. “USING INTERVAL ARITHMETIC FOR ELECTRONIC CIR-
CUITS SIMULATION”. MA thesis. Cairo: Faculty of Engineering at Cairo
University, 2015.

[11] M. Barke et al. “Robustness validation of integrated circuits and systems”.
In: Quality Electronic Design (ASQED), 2012 4th Asia Symposium on. 2012,
pp. 145–154.

[12] D. Bedrosian and J. Vlach. “Time-domain analysis of networks with inter-
nally controlled switches”. In: 1991., IEEE International Sympoisum on Circuits
and Systems. 1991, 846–849 vol.2.

[13] D. Bedrosian and J. Vlach. “Time-domain analysis of networks with inter-
nally controlled switches”. In: IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications 39.3 (1992), pp. 199–212.

178 References

[14] Hans-Georg Beyer and Bernhard Sendhoff. “Robust optimization - A com-
prehensive survey”. In: Computer Methods in Applied Mechanics and Engineer-
ing 196.33-34 (2007), pp. 3190–3218.

[15] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr. A Dictionary
of Computer Science. 7th. Oxford, UK: Oxford University Press, 2016.

[16] Ukrit Chaiya and Somyot Kaitwanidvilai. “Fixed-Structure Robust DC Mo-
tor Speed Control”. In: Proceedings of the International Multi Conference of
Engineers and Computer Scientists, Hong Kong (2009).

[17] H. Chung, S. V. Cheong, and A. Ioinovici. “Computer-aided analysis of
power electronics converters based on monitoring the internally controlled
switches”. In: 1993 IEEE International Symposium on Circuits and Systems.
1993, 2359–2362 vol.4.

[18] A. Cirillo, N. Femia, and G. Spagnuolo. “An interval mathematics approach
to tolerance analysis of switching converters”. In: PESC Record. 27th Annual
IEEE Power Electronics Specialists Conference. Vol. 2. 1996, 1349–1355 vol.2.

[19] Olivier Dalle. “Component-based Discrete Event Simulation Using the Frac-
tal Component Model”. In: AI, Simulation and Planning in High Autonomy Sys-
tems (AIS)-Conceptual Modeling and Simulation (CMS) Joint Conference. Buenos
Aires, AR, 2007.

[20] Olivier Dalle. “OSA: an Open Component-based Architecture for Discrete-
Event Simulation”. In: 20th European Conference on Modeling and Simulation
(ECMS). Bonn, Germany, 2006, pp. 253–259.

[21] Olivier Dalle. “The OSA Project: an Example of Component Based Software
Engineering Techniques Applied to Simulation”. In: Proc. of the Summer
Computer Simulation Conference (SCSC’07). Ed. by H. Vakilzadian. Invited
paper. San Diego, CA, USA, 2007, pp. 1155–1162.

[22] Olivier Dalle and Gabriel Wainer. “An Open Issue on Applying Sharing
Modeling Patterns in DEVS”. In: Proc. of the DEVS Workshop of the Summer
Computer Simulation Conference (SCSC’07). San Diego, CA, 2007.

[23] Kalyanmoy Deb and Himanshu Gupta. “Introducing Robustness in Multi-
Objective Optimization.” In: Evolutionary Computation 14.4 (Mar. 21, 2007),
pp. 463–494.

[24] T. Ding and Politecnico di Torino. Dipartimento di elettronica e telecomu-
nicazioni. Worst-case Analysis of Electrical and Electronic Equipment Via Affine
Arithmetic: Tesi Di Dottorato. 2015.

[25] T. Ding et al. “How Affine Arithmetic Helps Beat Uncertainties in Electrical
Systems”. In: IEEE Circuits and Systems Magazine 15.4 (2015), pp. 70–79. issn:
1531-636X.

[26] Z. Doulgeri et al. “Robust proportional integral derivative controller tuning
with specifications on the infinity-norm of sensitivity functions”. In: IET
Control Theory Applications 1.1 (2007), pp. 263–272.

[27] John Comstock Doyle, Bruce A. Francis, and Allen R. Tannenbaum. Feedback
Control Theory. Prentice Hall Professional Technical Reference, 1990.

[28] N. Femia and G. Spagnuolo. “Genetic optimization of interval arithmetic-
based worst case circuit tolerance analysis”. In: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 46.12 (1999), pp. 1441–
1456.

References 179

[29] N. Femia and G. Spagnuolo. “True worst-case circuit tolerance analysis using
genetic algorithms and affine arithmetic”. In: IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications 47.9 (2000), pp. 1285–1296.

[30] Luiz Henrique de Figueiredo and Jorge Stolfi. “Affine Arithmetic: Concepts
and Applications”. In: Numerical Algorithms 37.1 (2004), pp. 147–158.

[31] M. Freisfeld, M. Olbrich, and E. Barke. “Circuit simulations with uncertain-
ties using affine arithmetic and piecewise affine statemodels”. In: Solid-State
and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Confer-
ence on. 2008, pp. 496–499.

[32] D. D. Gajski and R. H. Kuhn. “Guest Editors’ Introduction: New VLSI Tools”.
In: Computer 16.12 (1983), pp. 11–14.

[33] D. Garcia, A. Karimi, and R. Longchamp. PID CONTROLLER DESIGN WITH
SPECIFICATIONS ON THE INFINITY-NORM OF SENSITIVITY FUNC-
TIONS. 2005.

[34] D. Garcia, A. Karimi, and R. Longchamp. “Robust proportional integral
derivative controller tuning with specifications on the infinity-norm of sen-
sitivity functions”. In: IET Control Theory Applications 1.1 (2007), pp. 263–
272.

[35] A. Gerstlauer et al. “Electronic System-Level Synthesis Methodologies”. In:
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
28.10 (2009), pp. 1517–1530.

[36] L. Gil and M. Radetzki. “Optimized Disturbance Weighting for Robust
System Design under Parameter Uncertainties”. In: ANALOG 2016; 15.
ITG/GMM-Symposium. 2016, pp. 1–6.

[37] L. Gil and M. Radetzki. “Orthogonal signal modeling and operational com-
putation of AMS circuits for fast and accurate system simulation”. In: 2016
Design, Automation Test in Europe Conference Exhibition (DATE). 2016, pp. 499–
504.

[38] L. Gil and M. Radetzki. “SystemC AMS power electronic modeling with
ideal instantaneous switches”. In: Specification and Design Languages (FDL),
2014 Forum on. Vol. 978-2-9530504-9-3. 2014, pp. 1–8.

[39] A. Girault, Bilung Lee, and E. A. Lee. “Hierarchical finite state machines
with multiple concurrency models”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18.6 (1999), pp. 742–760.

[40] D. Grabowski, C. Grimm, and E. Barke. “Semi-symbolic modeling and sim-
ulation of circuits and systems”. In: 2006 IEEE International Symposium on
Circuits and Systems. 2006, 4 pp.–986.

[41] D. Grabowski, M. Olbrich, and E. Barke. “Analog circuit simulation using
range arithmetics”. In: 2008 Asia and South Pacific Design Automation Confer-
ence. 2008, pp. 762–767.

[42] C. Grimm, A. Barnasconi M. Vachoux, and K Einwich. An Introduction to
Modeling Embedded Analog/Mixed-Signal Systems using SystemC AMS Exten-
sions. Tech. rep. Open SystemC Initiative, 2008.

[43] C. Grimm, W. Heupke, and K. Waldschmidt. “Refinement of mixed-signals
systems with affine arithmetic”. In: Design, Automation and Test in Europe
Conference and Exhibition, 2004. Proceedings. Vol. 1. 2004, 372–377 Vol.1.

180 References

[44] Christoph Grimm et al. “AnalogSL: A C++ - Library for Modeling Analog
Power Drivers”. In: Extended Papers: Best of FDL’01 and HDLCon’01. Kluwer
Academic Press, Apr. 2002.

[45] E. R. Hansen. “A generalized interval arithmetic”. In: Interval Mathematics:
Proceedings of the International Symposium Karlsruhe, West Germany, May 20–
24, 1975. Ed. by Karl Nickel. Berlin, Heidelberg: Springer Berlin Heidelberg,
1975, pp. 7–18.

[46] Thomas A Henzinger. “Two challenges in embedded systems design: pre-
dictability and robustness”. In: Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 366.1881 (2008),
pp. 3727–3736.

[47] Thomas A. Henzinger and Joseph Sifakis. “The Discipline of Embedded
Systems Design”. In: IEEE Computer 40.10 (2007), pp. 32–40.

[48] Wilhelm Heupke, Christoph Grimm, and Klaus Waldschmidt. “A New
Method for Modeling and Analysis of Accuracy and Tolerances in Mixed-
Signal Systems”. In: In Proceedings of the Forum on Specification and Design
Languages (FDL’03. 2003.

[49] S. Hoelldampf et al. “Efficient generation of analog circuit models for accel-
erated mixed-signal simulation”. In: 2012 IEEE International SOC Conference.
2012, pp. 104–109.

[50] S. Hoelldampf et al. “Fast mixed-signal simulation using SystemC”. In: 2011
IEEE International Systems Conference. 2011, pp. 527–530.

[51] S. Hoelldampf et al. “Using analog circuit behavior to generate SystemC
events for an acceleration of mixed-signal simulation”. In: 2011 IEEE 29th
International Conference on Computer Design (ICCD). 2011, pp. 108–112.

[52] M. H. Hung et al. “A Novel Intelligent Multiobjective Simulated Anneal-
ing Algorithm for Designing Robust PID Controllers”. In: IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans 38.2 (2008),
pp. 319–330.

[53] A. Jantsch and P. Bjureus. “Composite signal flow: a computational model
combining events, sampled streams, and vectors”. In: Proceedings Design, Au-
tomation and Test in Europe Conference and Exhibition 2000 (Cat. No. PR00537).
2000, pp. 154–160.

[54] A. Jantsch and I. Sander. “Models of computation and languages for em-
bedded system design”. In: Computers and Digital Techniques, IEE Proceedings
152.2 (2005), pp. 114–129.

[55] Keiichiro Kashiwagi. “An algorithm to reduce the number of dummy vari-
ables in affine arithmetic”. In: Magdeburg, Germany, 2012.

[56] Keiichiro Kashiwagi. “Studies on Numerical Verification of Ordinary Dif-
ferential Equations Using Affine Arithmetic and Mean Value Form”. PhD
thesis. 2013.

[57] J. Katzenelson. “An algorithm for solving nonlinear resistor networks”. In:
The Bell System Technical Journal 44.8 (1965), pp. 1605–1620.

[58] L. Kolev. “Worst-case tolerance analysis of linear DC and AC electric cir-
cuits”. In: IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 49.12 (2002), pp. 1693–1701.

References 181

[59] L. Kolev and V. Mladenov. “Worst-Case Tolerance Analysis of Non-Linear
Circuits Using an Interval Method”. In: Proc. of the X International Symp. on
Theoretical Electrical Eng. (1999), pp. 621–623.

[60] L. Kolev and I. Nenov. “A General Interval Method for Tolerance Analysis”.
In: Proceedings of the ISTET-2001 (2001), pp. 379–382.

[61] L. V. Kolev. “An efficient interval method for global analysis of non-linear
resistive circuits”. In: International Journal of Circuit Theory and Applications
26.1 (1998), pp. 81–92.

[62] L. V. Kolev. “Approximate solution of a transient tolerance problem for
linear circuits”. In: IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 39.8 (1992), pp. 666–673.

[63] L. V. Kolev, V. M. Mladenov, and S. S. Vladov. “Interval mathematics algo-
rithms for tolerance analysis”. In: IEEE Transactions on Circuits and Systems
35.8 (1988), pp. 967–975.

[64] Lubomir V. Kolev. “An Improved Interval Linearization for Solving Non-
linear Problems”. In: Numerical Algorithms 37.1 (2004), pp. 213–224. issn:
1572-9265.

[65] Lubomir V. Kolev. “New Formulae for Multiplication of Intervals”. In: Reli-
able Computing 12.4 (2006), pp. 281–292. issn: 1573-1340.

[66] Lubomir V. Kolev. “Optimal Multiplication of G-intervals”. In: Reliable Com-
puting 13.5 (2007), pp. 399–408. issn: 1573-1340.

[67] I.I. Lazaro et al. “Analysis of Time Varying Power System Loads via Cheby-
shev Polynomials”. In: Electronics, Robotics and Automotive Mechanics Confer-
ence, 2008. CERMA ’08. 2008, pp. 332–337.

[68] E. A. Lee. “Computing for embedded systems”. In: IMTC 2001. Proceedings
of the 18th IEEE Instrumentation and Measurement Technology Conference. Re-
discovering Measurement in the Age of Informatics (Cat. No.01CH 37188). Vol. 3.
2001, pp. 1830–1837.

[69] E.A. Lee and A. Sangiovanni-Vincentelli. “A framework for comparing mod-
els of computation”. In: Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on 17.12 (1998), pp. 1217–1229.

[70] E.A. Lee and A. Sangiovanni-Vincentelli. “Comparing models of computa-
tion”. In: Computer-Aided Design, 1996. ICCAD-96. Digest of Technical Papers.,
1996 IEEE/ACM International Conference on. 1996, pp. 234–241.

[71] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A
Cyber-Physical Systems Approach. Second Edition. http://leeseshia.org, 2015.

[72] H. S. L. Lee et al. “Automated generation of hybrid system models for
reachability analysis of nonlinear analog circuits”. In: The 20th Asia and South
Pacific Design Automation Conference. 2015, pp. 725–730.

[73] D. Li and R. Tymerski. “Time-domain simulation of switched networks using
the Chebyshev series”. In: Power Electronics Specialists Conference, 1995. PESC
’95 Record., 26th Annual IEEE. Vol. 2. 1995, 823–829 vol.2.

[74] Duwang Li, R. Tymerski, and T. Ninomiya. “Chebyshev series integration
method for transient simulation of switched networks”. In: IEEE Transactions
on Industrial Electronics 47.2 (2000), pp. 305–314.

182 References

[75] Jie Liu et al. “A hierarchical hybrid system model and its simulation”. In:
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on. Vol. 4.
1999, 3508–3513 vol.4.

[76] A. M. Luciano and A. G. M. Strollo. “A fast time-domain algorithm for the
simulation of switching power converters”. In: IEEE Transactions on Power
Electronics 5.3 (1990), pp. 363–370.

[77] J. D. Ma and R. A. Rutenbar. “Fast interval-valued statistical modeling of
interconnect and effective capacitance”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25.4 (2006), pp. 710–724.

[78] James D. Ma and Rob A. Rutenbar. “Fast Interval-valued Statistical Inter-
connect Modeling and Reduction”. In: Proceedings of the 2005 International
Symposium on Physical Design. ISPD ’05. San Francisco, California, USA:
ACM, 2005, pp. 159–166.

[79] A. Massarini and M. K. Kazmierczuk. “A new representation of Dirac im-
pulses in time-domain computer analysis of networks with ideal switches”.
In: 1996 IEEE International Symposium on Circuits and Systems. Circuits and
Systems Connecting the World. ISCAS 96. Vol. 1. 1996, 565–568 vol.1.

[80] A. Massarini and U. Reggiani. “Computer-aided time-domain large-signal
analysis of networks with switches”. In: Proceedings of IEEE International
Symposium on Industrial Electronics. Vol. 2. 1996, 567–572 vol.2.

[81] A. Massarini, U. Reggiani, and M. K. Kazimierczuk. “Analysis of networks
with ideal switches by state equations”. In: IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 44.8 (1997), pp. 692–697.

[82] Frederic Messine. Extensions of Affine Arithmetic: Application to Unconstrained
Global Optimization. 2002.

[83] Frédéric Messine and Ahmed Touhami. “A General Reliable Quadratic
Form: An Extension of Affine Arithmetic”. In: Reliable Computing 12 (2006),
pp. 171–192.

[84] S. Miyajima. “On the Improvement of the Division of the Affine Arithmetic”.
Bachelor thesis. Japan: Kashiwagi Laboratory, Waseda University, 2000.

[85] Shinya Miyajima and Masahide Kashiwagi. “A dividing method utilizing
the best multiplication in affine arithmetic”. In: IEICE Electronics Express 1.7
(2004), pp. 176–181.

[86] Shinya Miyajima, Takatomi Miyata, and Masahide Kashiwagi. “A new di-
viding method in affine arithmetic”. In: IEICE Transactions E86-A.9 (2003),
pp. 2192–2196.

[87] Shinya Miyajima, Takatomi Miyata, and Masahide Kashiwagi. “On the best
multiplication of the affine arithmetic”. In: IEICE Transactions J86-A.2 (2003),
pp. 1150–159.

[88] Cleve Moler and Charles Van Loan. “Nineteen Dubious Ways to Compute
the Exponential of a Matrix, Twenty-Five Years Later”. In: SIAM Review 45.1
(2003), pp. 3–49.

[89] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to
interval analysis. 2009.

[90] Farid N. Najm. Circuit Simulation. Wiley-IEEE Press, 2010.
[91] James Joseph Nutaro. Parallel discrete event simulation with application to con-

tinuous systems. 2003.

References 183

[92] O.A. Palusinski et al. “Accelerated simulation of integrated circuits using
Chebyshev series”. In: Circuits and Systems, 1992. ISCAS ’92. Proceedings.,
1992 IEEE International Symposium on. Vol. 1. 1992, 89–92 vol.1.

[93] P. Paraskevopoulos. “Legendre series approach to identification and analysis
of linear systems”. In: IEEE Transactions on Automatic Control 30.6 (1985),
pp. 585–589.

[94] P.N. Paraskevopoulos. “Chebyshev series approach to system identification,
analysis and optimal control”. In: Journal of the Franklin Institute 316.2 (1983),
pp. 135–157. issn: 0016-0032.

[95] M. Petkovski, S. Bogdanova, and M. Bogdanov. “A simple adaptive sam-
pling algorithm”. In: 14th Telecomunications Forum TELFOR 2006. Belgrade,
Serbia, 2006, pp. 329–332.

[96] Roger Peyret. “Chebyshev method”. In: Spectral Methods for Incompressible
Viscous Flow. New York, NY: Springer New York, 2002, pp. 39–100.

[97] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific
Computing. 3rd ed. New York, NY, USA: Cambridge University Press, 2007.

[98] Martin Radetzki. “Synthesis of digital circuits from object oriented specifi-
cations”. PhD thesis. University of Oldenburg, Germany, 2000.

[99] Daniel E. Rivera, Manfred Morari, and Sigurd Skogestad. “Internal model
control: PID controller design”. In: Industrial & Engineering Chemistry Process
Design and Development 25.1 (1986), pp. 252–265.

[100] I. Sacevski and J. Veseli. “Introduction to Model Driven Architecture
(MDA)”. In: (June 2007).

[101] I. Sander and A. Jantsch. “System modeling and transformational design
refinement in ForSyDe [formal system design]”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 23.1 (2004), pp. 17–
32.

[102] I. Sander, A. Jantsch, and Zhonghai Lu. “Development and application of
design transformations in ForSyDe [high level synthesis]”. In: 2003 Design,
Automation and Test in Europe Conference and Exhibition. 2003, pp. 364–369.

[103] A. Sangiovanni-Vincentelli. “Is a Unified Methodology for System-Level
Design Possible?” In: IEEE Design Test of Computers 25.4 (2008), pp. 346–357.

[104] A. Sangiovanni-Vincentelli. “Quo Vadis, SLD? Reasoning About the Trends
and Challenges of System Level Design”. In: Proceedings of the IEEE 95.3
(2007), pp. 467–506. issn: 0018-9219.

[105] A. Sangiovanni-Vincentelli and G. Martin. “Platform-based design and soft-
ware design methodology for embedded systems”. In: IEEE Design Test of
Computers 18.6 (2001), pp. 23–33.

[106] A. Sangiovanni-Vincentelli and P. Nuzzo. System Level Design: a Platform-
Based Approach. UC Berkeley, 2010.

[107] Luiz Santos et al. “Electronic System Level Design”. In: Electronic System Level
Design: An Open-Source Approach. Ed. by Sandro Rigo, Rodolfo Azevedo, and
Luiz Santos. Dordrecht: Springer Netherlands, 2011, pp. 3–10.

[108] Iwona Skalna and Milan Hladı́k. “A new algorithm for Chebyshev minimum-
error multiplication of reduced affine forms”. In: Numerical Algorithms (2017),
pp. 1–22.

184 References

[109] Sigurd Skogestad and Ian Postlethwaite. Multivariable Feedback Control: Anal-
ysis and Design. John Wiley & Sons, 2005.

[110] Jorge Stolfi and Luiz Henrique De Figueiredo. Self-Validated Numerical Meth-
ods and Applications. Brazil: IMPA: Brazilian Mathematics Colloquium Mono-
graph, 1997.

[111] S. Sumsurooah et al. “Robust Stability Analysis of a DC/DC Buck Converter
Under Multiple Parametric Uncertainties”. In: IEEE Transactions on Power
Electronics 33.6 (2018), pp. 5426–5441.

[112] K. C. Tam, S. C. Wong, and C. K. Tse. “Fast analytical approach to find-
ing steady-state waveforms for power electronics circuits using orthogonal
polynomial basis functions”. In: 2006 IEEE International Symposium on Cir-
cuits and Systems. 2006, 4 pp.–.

[113] Balavelan Thanigaivelan, Tara Julia Hamilton, and Adam Postula. “15th Bi-
ennial Computational Techniques and Applications Conference CTAC2010”.
In: (2010).

[114] Balavelan Thanigaivelan, Tara Julia Hamilton, and Adam Postula. “A com-
parison of interval methods in symbolic circuit analysis applications”. In:
ANZIAM Journal 52.0 (2012), pp. 1084–1101.

[115] M. Thornton. “Simulation and Implication using a Transfer Function Model
for Switching Logic”. In: Computers, IEEE Transactions on PP.99 (2015), pp. 1–
1.

[116] R. Tymerski. “A fast time domain simulator for power electronic systems”.
In: Proceedings Eighth Annual Applied Power Electronics Conference and Exposi-
tion, 1993, pp. 477–483.

[117] T. Uhle and K. Einwich. “A SystemCAMS extension for the simulation of
non-linear circuits”. In: 23rd IEEE International SOC Conference. 2010, pp. 193–
198.

[118] A. Vachoux, C. Grimm, and K. Einwich. “Extending SystemC to support
mixed discrete-continuous system modeling and simulation”. In: 2005 IEEE
International Symposium on Circuits and Systems. 2005, 5166–5169 Vol. 5.

[119] A. Vachoux, C. Grimm, and K. Einwich. “Towards analog and mixed-signal
SOC design with systemC-AMS”. In: Proceedings. DELTA 2004. Second IEEE
International Workshop on Electronic Design, Test and Applications. 2004, pp. 97–
102.

[120] Jiérâi Vlach and Kishore Singhal. Computer Methods for Circuit Analysis and
Design. 2nd. New York, NY, USA: John Wiley & Sons, Inc., 1993.

[121] Xuan-Ha Vu. “Rigorous Solution Techniques for Numerical Constraint Satis-
faction Problems”. PhD thesis. Switzerland: Swiss Federal Institute of Tech-
nology in Lausanne (EPFL), 2005.

[122] W. Wang et al. “Multi-Objective Robust Optimization Using a Postoptimality
Sensitivity Analysis Technique: Application to a Wind Turbine Design”. In:
Journal of Mechanical Design, American Society of Mechanical Engineers 137
(2015), 011403–1–011403–11.

[123] Tao Xu et al. “A precise SystemC-AMS model for Charge Pump Phase Lock
Loop with multiphase outputs”. In: ASIC, 2009. ASICON ’09. IEEE 8th Inter-
national Conference on. 2009, pp. 50–53.

References 185

[124] J. Yang et al. “Optimized Active Disturbance Rejection Control for DC-DC
Buck Converters With Uncertainties Using a Reduced-Order GPI Observer”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 65.2 (2018),
pp. 832–841.

[125] M. Yasoobi, A. Khosravi, and A. Lari. “Mixed H2/H∞ fixed structure speed
control of DC motor using IPSO algorithm”. In: Control, Instrumentation and
Automation (ICCIA), 2011 2nd International Conference on. 2011, pp. 451–456.

[126] D. Zaum et al. “An accelerated mixed-signal simulation kernel for SystemC”.
In: 2010 Forum on Specification Design Languages (FDL 2010). 2010, pp. 1–6.

[127] D. Zaum et al. “SystemC mixed-signal and mixed-level simulation using an
accelerated analog simulation approach”. In: 2010 XIth International Work-
shop on Symbolic and Numerical Methods, Modeling and Applications to Circuit
Design (SM2ACD). 2010, pp. 1–4.

[128] D. Zaum et al. “The PRAISE approach for accelerated transient analysis
applied to wire models”. In: 2009 IEEE Behavioral Modeling and Simulation
Workshop. 2009, pp. 120–125.

[129] B. P. Zeigler et al. “DEVS-C++: a high performance modelling and simu-
lation environment”. In: Proceedings of HICSS-29: 29th Hawaii International
Conference on System Sciences. Vol. 1. 1996, 350–359 vol.1.

[130] B.P. Zeigler. Theory of Modelling and Simulation. A Wiley-Interscience Publi-
cation. John Wiley, 1976.

[131] L. Zhang et al. “Bridging algorithm and ESL design: Matlab/Simulink model
transformation and validation”. In: Proceedings of the 2013 Forum on specifica-
tion and Design Languages (FDL). 2013, pp. 1–8.

[132] Jianwen Zhu and Nikil Dutt. “{CHAPTER} 5 - Electronic system-level design
and high-level synthesis”. In: Electronic Design Automation. Ed. by Laung-
Terng Wang et al. Boston: Morgan Kaufmann, 2009, pp. 235 –297.

[133] Jun Zhu, I. Sander, and A. Jantsch. “HetMoC: Heterogeneous modelling in
SystemC”. In: Specification Design Languages (FDL 2010), 2010 Forum on. 2010,
pp. 1–6.

[134] Yiyu Zhu. “Robust Dynamic Voltage Scaling Design for Low-Power Embed-
ded Systems”. MA thesis. University of Stuttgart, 2017, p. 86.

[135] Yi Zou et al. “Minimum error based affine arithmetic for variational timing
analysis”. In: 2005 6th International Conference on ASIC. Vol. 2. 2005, pp. 978–
981.

187

Appendix A

Parameter Identification Algorithm

Paraskevopoulos has been introduced a method for the identification
of linear system parameters that relies on the operational matrix of
integration [94]. Zhu extended this algorithm so that the parameters of
a linear system whose transfer function has both zeros and poles can
be identified [134].

Assuming that the system to be identified is a single-input single-
output linear time-invariant system, it is described by the following
differential equation (canonical form):

x(n)(τ)+αn−1 ·x(n−1)(τ)+ · · ·+α1 ·x(1)(τ)+α0 ·x(τ)= β0 · r(τ)+β1 · r(1)(τ)+ · · ·+βm · r(m)(τ)
(A.1)

where the parameters α0, α1, . . . , αn−1, β0, β1, . . . , βm are unknowns and
the input signal r(τ) and output signal x(τ) are constrained to the time
interval τ ∈ [τa,τb]. As the orthogonal polynomials are defined on the
time interval t ∈ [σa ,σb], a transformation of the independent variable
id needed. After variable mapping, the following equation is obtained:

y(n)(σ)+an−1 · y(n−1)(σ)+ · · ·+a1 · y(1)(σ)+a0 · y(σ)= b0 ·u(σ)+b1 ·u(1)(σ)+ · · ·+bm ·u(m)(σ)
(A.2)

This differential equation is converted into an integral one through
multiple integration (n times on both sides of Eq. (A.2)).

∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

n times

y(n)(σ) · (dσ)n+ an−1 ·
∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

n times

y(n−1)(σ) · (dσ)n+ · · ·

+ a0 ·
∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

n times

y(σ) · (dσ)n = b0 ·
∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

n times

u(σ) · (dσ)n

+b1 ·
∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

n times

u(1)(σ) · (dσ)n+ · · ·+bm ·
∫ σb

σa

· · ·
∫ σb

σb
︸ ︷︷ ︸

n times

u(m)(σ) · (dσ)n

(A.3)

188 A Parameter Identification Algorithm

Expanding the input and output signals in terms of orthogonal poly-
nomials Qn(σ):

y(σ) ≈
N−1∑

n=0

yn ·Qn(σ) = [yi]
T
N · [Qn(σ)]N (A.4)

u(σ) ≈
N−1∑

n=0

un ·Qn(σ) = [ui]
T
N · [Qn(σ)]N (A.5)

the following relationship can be applied for the conversion of the
integral equation into an algebraic one:

∫ σb

σa

· · ·
∫ σb

σa
︸ ︷︷ ︸

k times

[Qn(σ)]N · (dσ)k ≈
(

[P]N2

)k
· [Qn(σb)]N (A.6)

where [P]N2 is the N×N operational matrix of integration.
Replacing the previous expressions (Eq. (A.4) to Eq. (??)) into equa-

tion (A.3), the following algebraic equation is obtained:

[yi]
T
N + an−1 · [yi]

T
N · [P]N2 + an−2 · [yi]

T
N ·

(

[P]N2

)2
+ · · ·+ a1 · [yi]

T
N ·

(

[P]N2

)n−1

+ a0 · [yi]
T
N ·

(

[P]N2

)n
+ f0 · [g]T

N ·
(

[P]N2

)n−m
+ · · ·+ fm−1 · [g]T

N ·
(

[P]N2

)n−1

= b0 · [ui]
T
N ·

(

[P]N2

)n
+ · · ·+ bm · [ui]

T
N ·

(

[P]N2

)n−m

en−1 · [g]T
N ·

(

[P]N2

)n−1
+ · · ·+ e1 · [g]T

N · [P]N2 + e0 · [g]T
N

(A.7)

where [g]T
N
= [1, 0, 0, . . . , 0] and the coefficients e0, e1, . . . , en−1, f0, . . . , fm−1

are given by the initial conditions. Eq. (A.8) is finally expressed as a

linear system of R equations with 2 ·n+2 ·m+1 unknowns1.

[Q]N·R · [θ]R = [yi]N (A.8)

where

[θ]T
R = [an−1, an−2, . . . , a0, bm, . . . , b0, en−1, . . . , e0, fm−1, . . . , f0]

[Q]N·R =
[

-[P]T
N2 · [yi]N

∣
∣
∣ -
(

[P]T
N2

)2
· [yi]N

∣
∣
∣ . . .

∣
∣
∣ -
(

[P]T
N2

)n
· [yi]N

∣
∣
∣

(

[P]T
N2

)n
· [ui]N

∣
∣
∣ . . .

∣
∣
∣

(

[P]T
N2

)n−m
· [ui]N

∣
∣
∣

(

[P]T
N2

)n−1
· [g]N

∣
∣
∣ . . .

∣
∣
∣ [g]N

∣
∣
∣-
(

[P]T
N2

)n−1
· [g]N

∣
∣
∣ . . .

∣
∣
∣ -
(

[P]T
N2

)n−m
· [g]N

]

1 It must be ensured that R ≥ 2 ·n+2 ·m+1

189

Appendix B

Survey of Affine Arithmetic Modifications
and Extensions

B.1 Modified Affine Arithmetic

In order to reduce the over-estimation error that the dependent terms
produce in the affine multiplication, Kolev proposed the following cor-
rection [64]:

x̂ · ŷ ≈ x0 · y0+
1

2
·

n∑

i=1

xi · yi+

n∑

i=1

(x0 · yi+xi · y0) ·ǫi+ zn+1 ·ǫn+1 (B.1a)

zn+1 =
(

n∑

i=1

|xi|
)

·
(

n∑

i=1

|yi|
)

− 1

2
·

n∑

i=1

|xi · yi| (B.1b)

Since a new term that it is not multiplied by a symbolic variable is added
to the affine multiplication, the center of the interval does not coincide
with the nominal multiplication value. Furthermore, the error term zn+1

becomes smaller if there are common symbols in the affine operands.
Thus the over-estimation of the interval bounds can be significantly
reduced for power operations.

In order to consider the over-estimation that is introduced by inde-
pendent terms in the affine multiplication Vu modified the computation
of the error term zn+1 [121]:

zn+1 =
1

2
·

n∑

i=1

|xi · yi|+
∑

1≤i, j≤n; i, j

|xi · y j| (B.2)

Miyajima presented a computation of the error term zn+1 which con-
siders the over-estimation that is introduced by both dependent and
independent terms in the affine multiplication [87]:

zn+1 =
1

2
·

n∑

i=1

|xi · yi|+
∑

1≤i< j≤n

|xi · y j+x j · yi| (B.3)

190 B Survey of Affine Arithmetic Modifications and Extensions

The following two affine multiplication examples illustrate the impact
of the error term zn+1 on the result accuracy.

Example B.1. Consider the multiplication of x̂ = 10+ 1 · ǫ1 + 2 · ǫ2 ∈
[7, 13] and ŷ = 10+ 1 · ǫ1 − 3 · ǫ2 ∈ [6, 14]. Since the common affine
arithmetic multiplication defined in Eq. (7.12) does not take into
account dependencies on the variable terms for the computation
of the error term, the following range is obtained:
x̂ · ŷ = 100+20 ·ǫ1−10 ·ǫ2+12 ·ǫ3 ∈ [58, 142]

The modified affine arithmetic (MAA) shifts the center value to
cope with dependencies on the higher order affine terms. Com-
puting the error term as proposed by Kolev or Vu, the following
range is obtained: x̂ · ŷ = 97.5+20 ·ǫ1−10 ·ǫ2+8.5 ·ǫ3 ∈ [59, 136]

Note that Eq. B.1 and Eq. B.2 leads to the same results if there are
no independent terms in the multiplication. Computing the error
term with the formula proposed by Miyajima, the over-estimation
is further reduced: x̂ · ŷ = 97.5+20 ·ǫ1−10 ·ǫ2+4.5 ·ǫ3 ∈ [63, 132]

Example B.2. Consider the multiplication of x̂ = 10+ 1 · ǫ1 + 2 · ǫ2 ∈
[7, 13] and ŷ = 10+1 · ǫ1−3 · ǫ3 ∈ [6, 14]. The terms associated with
the symbols ǫ2 and ǫ3 are now independent.

Using the common affine arithmetic multiplication, the follow-
ing range is obtained: x̂ · ŷ = 100+20 ·ǫ1+20 ·ǫ2−30 ·ǫ3+12 ·ǫ4 ∈ [18, 182]

Note that the independence of the terms x2 and y3 increase the
computed range, compared to the previous example.

The range improvement obtained with Eq.(B.1) is in this case
negligible: x̂ · ŷ = 100.5+20 ·ǫ1+20 ·ǫ2−30 ·ǫ3+11.5 ·ǫ4 ∈ [19, 182]

Computing the error term with the formulas proposed by Vu
and Miyajima, the over-estimation is reduced:
x̂ · ŷ = 100.5+20 ·ǫ1+20 ·ǫ2−30 ·ǫ3+5.5 ·ǫ4 ∈ [25, 176]

Eq. (B.2) and Eq. (B.3) leads in this case to the same results.
Using interval arithmetic, the following upper and lower bounds

are obtained: x̄ · ȳ = [42, 182]

Note that the resulting lower bound after the interval multipli-
cation is larger than the previously computed. Therefore, even if
the presented modifications in the affine arithmetic multiplication
leads to less over-estimation, the over-approximation error caused
by the independent terms is not completely eliminated.

B.1 Modified Affine Arithmetic 191

For the division in affine form, Kolev [64] and Miyajima [84] [86] [85]
formulated the Chebyshev approximation as follows:

α =
-1

ylb · yub
(B.4a)

ζ =
1

2
·
(

1

ylb
+

1

ys
−α · (ylb+ yub)

)

(B.4b)

δ =
1

2
·
(

1

ylb
− 1

ys
−α · (ylb− ys)

)

(B.4c)

ys =





√
ylb · yub if ylb > 0

-
√

ylb · yub if yub < 0
(B.4d)

Eq. (B.4) is valid for positive and negative affine variables.
In order to satisfy the relation x̂/x̂ = 1 Kolev proposed the following

formula for the division of two affine expressions [64]:

x̂

ŷ
=

x0

y0
+

(n∑

i=1

(xi−
x0

y0
· yi) ·ǫi

)

· 1
ŷ

(B.5)

Unfortunately, Eq. (B.5) does not avoid the over-approximation error in
the affine division. In order to reduce the over-approximation errors in
the affine multiplication and division, Miyajima [85] used the Chebyshev
approximation to linearize the binomial functions. The resulting affine
variable has the following form:

f (x̂, ŷ) ≈ ẑ = α · x̂+β · ŷ+ζxy+δxy (B.6)

The coefficients α and β correspond to the nominal values y0 (or 1/y0

for the division) and x0 respectively. The maximum approximation error
δxy in the domain D, which is the joint range of the range of x̂ and the
range of ŷ, is given by:

δxy = max
(x,y)∈D

| f (x, y)−α ·x+β · y+ζxy| (B.7)

In order to minimize the maximum approximation error δxy, the best linear
approximation in the joint range d, which is a 2 ·n polygon symmetrical
with respect to the nominal point (x0, y0), is calculated as follows:

192 B Survey of Affine Arithmetic Modifications and Extensions

ζxy =
dmax+dmin

2
, δxy =

dmax−dmin

2
(B.8a)

dmax = max
(x,y)∈D

d(x, y), dmin = min
(x,y)∈D

d(x, y) (B.8b)

d(x, y) = f (x, y)−α ·x+β · y (B.8c)

Since this method requires to solve two linear program problems for
each non-affine operation, the computation time becomes too large for
system simulation.

B.2 Handling of Independent Error Terms

As mentioned in section 7.4.3, the additional symbols generated by each
non-affine operation continuously grow during dynamical system sim-
ulation. To cope with this issue, Kashiwagi proposed an algorithm to
reduce the number of independent terms in affine computations but
this approach only mitigates the problem [55] [56]. A more efficient ap-
proach to handle the error terms is to distribute the maximum error term
δ into the linear terms, as proposed by Ma in [78] and [77]. The resulting
affine variable ẑ in non-affine operations is computed as follows:

ẑ ≈ z0+ zi ·
(

1+
δ

∑n
i=1 |zi|

·
)

·ǫi (B.9)

The distribution of the error term does not modify the affine variable
range and avoids the generation of additional independent terms.

Eq. (B.9) distributes the error uniformly, which is not necessarily
the best distribution. In order to minimize the maximum error in long
computation chains, Zou proposed to distribute the error term into the
n existing symbols as follows [135]:

ẑ ≈ z0+

n∑

i=1

(

zi+hi ·δ
)

·ǫi ,
n∑

i=1

hi = 1 (B.10)

The coefficients hi are found solving the error minimization problem for
the whole computation chain, which is computationally very expensive.

B.3 Extensions to Affine Arithmetic 193

B.3 Extensions to Affine Arithmetic

In order to avoid the growth of affine terms, Messine introduced a
common error symbol ǫn+1 for all multiplication operations in a computa-
tion chain [82]. Furthermore, he introduced two additional common error
symbols ǫn+2 ∈ [0, 1] and ǫn+3 ∈ [-1, 0] which cope with over-estimation
errors in power operations. Thus, an extended affine variable x̆ is defined
by:

x̆ = x0+

n∑

i=1

xi ·ǫi+xn+1 ·ǫn+1+xn+2 ·ǫn+2+xn+3 ·ǫn+3 (B.11)

The upper and lower bounds of the corresponding uncertain interval
[xlb, xub] are therefore given by:

xub = x0+

n∑

i=1

|xi|+xn+1+xn+2 (B.12a)

xlb = x0−
n∑

i=1

|xi| −xn+1−xn+3 (B.12b)

Note that the center of the interval m(x̆) differs from x0.

m(x̆) = x0+
xn+2−xn+3

2
(B.13)

The extended affine operations are defined as follows:

x̆± y̆ = (x0± y0)+

n∑

i=1

(xi± yi) ·ǫi+
3∑

j=1

(xn+ j+ yn+ j) ·ǫn+ j (B.14a)

c · x̆ = (c ·x0)+

n∑

i=1

(c ·xi) ·ǫi+
3∑

j=1

(|c| ·xn+ j) ·ǫn+ j (B.14b)

c± x̆ = (c± c0)±
n∑

i=1

xi ·ǫi+
3∑

j=1

xn+ j ·ǫn+ j (B.14c)

194 B Survey of Affine Arithmetic Modifications and Extensions

Note that the values xn+1, xn+2 and xn+3 in the additional common error
terms remain always positive. The multiplication of two extended affine
variables is defined as follows:

x̆ · y̆ = (x0 · y0)+

n∑

i=1

(x0 · yi+xi · y0) ·ǫi+
3∑

j=1

K j ·ǫn+ j (B.15a)

K1 = |x0| · yn+1+ |y0| ·xn+1+

n+3∑

i=1

n+3∑

j=1; j,i

|xi · y j|,

K2 = K0
2 +

n+3∑

i=1;xi·yi>0

xi · yi, K3 = K0
3 +

n+3∑

i=1;xi·yi<0

|xi · yi|
(B.15b)

K0
2 =





x0 · yn+2+ y0 ·xn+2 if x0 > 0 and y0 < 0

x0 · yn+2− y0 ·xn+3 if x0 > 0 and y0 > 0

-x0 · yn+3+ y0 ·xn+2 if x0 < 0 and y0 > 0

-x0 · yn+3− y0 ·xn+3 if x0 < 0 and y0 < 0

(B.15c)

K0
3 =





x0 · yn+3+ y0 ·xn+3 if x0 > 0 and y0 < 0

x0 · yn+3− y0 ·xn+2 if x0 > 0 and y0 > 0

-x0 · yn+3+ y0 ·xn+2 if x0 < 0 and y0 > 0

-x0 · yn+2− y0 ·xn+2 if x0 < 0 and y0 < 0

(B.15d)

Note that the values K0
2

and K0
3

depend on the signs of the nominal
values. As shown in the following example, the presented formula
improve the accuracy of the affine multiplication when the operands
have common affine terms, such as in the power operation case.

Example B.3. Consider the multiplication of x̆= 10+1 ·ǫ1+2 ·ǫ2+0 ·
ǫ3+0 ·ǫ4+0 ·ǫ5 ∈ [7, 13] and y̆= 10+1 ·ǫ1−3 ·ǫ2+0 ·ǫ3+0 ·ǫ4+0 ·ǫ5 ∈
[6, 14]. Using the common affine arithmetic multiplication a range
[58, 142] is obtained. Computing the multiplication using Eq. (B.15)
the following extended affine value is obtained:

x̂ · ŷ = 100+20 ·ǫ1−10 ·ǫ2−0 ·ǫ3+1 ·ǫ4+6 ·ǫ5 ∈ [64, 131]
Note that the common error term is zero if there are no common

affine terms in the multiplication. Furthermore, Eq. (B.15) result
in a tighter range than the modified affine arithmetic formulas
proposed by Kolev, Vu and Miyajima.

B.3 Extensions to Affine Arithmetic 195

The following example considers the cases, in which there are indepen-
dent affine terms in the multiplication operation.

Example B.4. Consider the multiplication of x̆ = 10+ 1 · ǫ1 + 2 · ǫ2 +
0 ·ǫ3+0 ·ǫ4+0 ·ǫ5+0 ·ǫ6 ∈ [7, 13] and y̆ = 10+1 ·ǫ1+0 ·ǫ2−3 ·ǫ3+0 ·
ǫ4+0 ·ǫ5+0 ·ǫ6 ∈ [6, 14]. The terms associated with the symbols ǫ2
and ǫ3 are now independent. Using the common affine arithmetic
multiplication a range [18, 182] is obtained. Computing the mul-
tiplication using Eq. (B.15) the following extended affine value is
obtained:

x̂ · ŷ = 100+20 ·ǫ1+20 ·ǫ2−30 ·ǫ3+11 ·ǫ4+1 ·ǫ5+0 ·ǫ6 ∈ [19, 182]
The obtained range improvement is in this case negligible. The

formulas proposed by Vu and Miyajima are better to cope with the
over-estimation problem for independent affine terms.

In order to improve the accuracy in the multiplication of extended affine
forms, for the independent affine term case, Skalna et al. extended Eq.
(B.3) to handle error term propagation [108].

x̆ · y̆ = (x0 · y0)+
1

2
·

n∑

i=1

xi · yi+

n∑

i=1

(x0 · yi+xi · y0) ·ǫi+ zn+1 ·ǫn+1 (B.16a)

zn+1 = xn+1 · yn+1+ (|x0|+
n∑

i=1

|xi|) · yn+1+ (|y0|+
n∑

i=1

|yi|) ·xn+1+

1

2
·max

{ n∑

i=1;xi·y j>0

xi · yi+

n∑

i=1;xi·yi<0

|xi · yi|
}

+
∑

1≤i< j≤n

|xi · y j+x j · yi|
(B.16b)

They applied the following property to reduce the positive and negative
error terms to a single term that is added to the common error term:

K2 · [0, 1]+K3 · [-1, 0] ⊆max
{

K2+K3

}

· [-1, 1] (B.17a)

K2 =

n∑

i=1;xi·y j>0

xi · yi, K3 =

n∑

i=1;xi·y j>0

|xi · yi| (B.17b)

196 B Survey of Affine Arithmetic Modifications and Extensions

B.4 Quadratic Arithmetic

In order to reduce the over-approximation error in computation chains
that contain power operations, Messine also proposed to keep the in-
formation about the square terms in non-affine computations [82]. The
general quadratic form is defined as follows [83]:

˘̆x= x0+

n∑

i=1

xi ·ǫi+
n∑

i, j=1

xi j ·ǫi ·ǫ j+xn+1 ·ǫn+1+xn+2 ·ǫn+2+xn+3 ·ǫn+3 (B.18)

Grabowski et al. presented later a simplified quadratic form, that intro-
duces a new set of symbolic variables ǫi j defined as follows [41]:

ǫi j ∈




[0, 1] if i = j

[-1, 1] if i , j
(B.19)

For simplicity, they neglected the correspondence between ǫi and ǫi j.
Since quadratic arithmetic does not provide a way to compute the
exact interval bounds, it only achieves a poor accuracy improvement
in computation chains. Therefore, it is not worth the increment of the
complexity and computation time for circuit tolerance analysis and
verification problems.

B.5 Uncertainty Interval Partitioning (UIP)

In order to reduce the over-approximation error in interval [18] [28]
and affine arithmetic [29] based circuit tolerance analysis, Femia et
al. proposed the partitioning of tolerance intervals. This method divides
the uncertainty intervals into smaller sub-intervals and computes the
bounds of all possible interval combinations in order to find a tighter
range. Since the computational cost exponentially increases with the
number of partitions, this method is only suitable for the tolerance
analysis of circuits that have a small number of uncertainty parameters.
Furthermore, a proper algorithm that selects the number of partitions
according to the local non-linearity is required.

	Introduction
	Motivation
	Dissertation Goal and Objectives
	Dissertation Outline
	Contributions to AMS System Design
	Paradigm Change in AMS System Simulation

	Methodological Background
	Motivation
	Related Work
	Representing a Seamless System Design Chain
	Embedded System Design Methodologies
	The Design Productivity Gap for AMS Systems

	Layered System Design Platform Model
	Model Requirements Layer
	Model Constraints Layer
	Model Structure Layer
	Model Behavior Layer
	Model Implementation Layer
	Model Refinement Layer
	Model Platform Layer
	Model Execution Layer
	Model Analysis Layer
	Model Verification Layer

	Chapter Summary and Conclusions

	Electrical Network Modeling and Simulation
	Motivation
	Related Work
	Contribution to Power Electronic Modeling
	Circuit Modeling and Simulation
	Formulation of Circuit Equations
	Numerical Integration
	Numerical Linearization
	Numerical Solution of Linear Algebraic Equations

	Power Electronic Modeling with Ideal Switches
	Topology Analysis of Switched Electrical Networks
	Implementation
	Experimental Results
	Chapter Summary and Conclusions

	Signal Modeling for AMS Systems
	Motivation
	Related Work
	Contribution to Formal Signal Modeling
	The Tagged Signal Model
	The Mixed Orthogonal Signal Model
	Representing Timed Signals in Vector Spaces
	Coding Signals in a Signal Space
	Parameterizing Signals in a Vector Space

	Operational Subdivision of Analog Signals
	Computing Threshold Crossing Events
	Sampling Analog Signals
	Periodic Sampling
	Event Based Sampling
	Adaptive Sampling

	Implementation
	Chapter Summary and Conclusions

	Modeling and Simulation of AMS Systems
	Motivation
	Related Work
	Contribution to AMS Circuit Simulation
	Efficient Computation of Analog Circuits
	State Transition Matrix Based Circuit Computation
	Chebyshev Series Based Circuit Computation

	Operational Computation of Analog Circuits
	Operational Computation of Linear Circuits
	Operational Computation of Non-Linear Circuits

	Sequential Computation of Digital Circuits
	Iterative Data Flow Computation of AMS Circuits
	Implementation
	Experimental Results
	Chapter Summary and Conclusions

	Robust AMS System Design Optimization
	Motivation
	Related Work
	Contribution to Robust System Design Optimization
	Robust System Design
	System Robustness Evaluation
	Robust System Design Optimization
	Robust Control Design

	Control System Robustness Evaluation
	Robust Design Optimization of AMS Systems
	Modeling Parametric Uncertainty
	Fixed Structure Robust Controller Design

	Experimental Results
	Chapter Summary and Conclusions

	Analysis and Verification of AMS Systems
	Motivation
	Related Work
	Contribution to Uncertain Analog Circuit Analysis
	Parameter Uncertainty Modeling
	Interval Arithmetic
	Affine Arithmetic
	Limitations of Affine Arithmetic
	Generalized Interval Arithmetic

	Orthogonal Interval Arithmetic
	Considerations for Orthogonal Interval Arithmetic

	Analysis and Verification of Uncertain Circuits
	Operational Time Domain Robustness Evaluation
	Behavior Verification of Uncertain Analog Circuits
	Operational Computation of Performance Indexes
	Operational Computation of Response Overshoot

	Time Domain Robust Control Design Refinement
	Implementation
	Experimental Results
	Chapter Summary and Conclusions

	Conclusions and Future Work
	Part I: Efficient System Modeling and Simulation
	Part II: Robust System Design and Verification

	References
	Parameter Identification Algorithm
	Survey of Affine Arithmetic Modifications and Extensions
	Modified Affine Arithmetic
	Handling of Independent Error Terms
	Extensions to Affine Arithmetic
	Quadratic Arithmetic
	Uncertainty Interval Partitioning (UIP)

