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Currently, as a result of the increase of componati capabilities, internal structures of models
describing large (spatial) distributed systems banrefined. This results in a high number of
interacting sub-models requiring exploiting effitily computational resources. Furthermore,
refining the structure of a model requires the ned® deal with design decisions (modularity,
identification of model structures, algorithms,)effo achieve this goal, specification frameworks
(like Discrete-Event System Specification) can tsediand developed. The more generic and
reusable are the structures provided by these Wwamks, the more these structures can be
implemented easily by modelers. Nevertheless, tbeerthese structures are generic and reusable,
the more they produce simulation overhead. To reduaulation overhead, efficiency is usually
considered as an implementation issue, whereagigénand reusability are discussed at a more
theoretical level, the framework one. However, iaying efficiency at the implementation level
reversely decreases the reusability advantagesdeby frameworks. Integrating and comparing,
at a theoretical level, interactions between rellisalnd efficiency better describes the choices t
be achieved by modelers. This is the first objectdf this study (reusability being reduced to
modularity aspects of the sub-models composing Wiele simulation model). Another
fundamental aspect for the modeling and simulabiblarge (spatial) distributed systems is related
to the stochastic aspect of information diffusiBuring the simulation, causal discrete-events are
exchanged randomly between distant and neighbautgmodels. The second objective of this
study is to discuss the importance of stochaspeds in the modeling of large (spatial) distriloute
systems. This point is illustrated through a fipeesd application.
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Introduction

Developing computational models of large (spatta$tributed systems is usually achieved to
implement and simulate: (i) original mathematicabdels [obtained by other disciplines
(physics, biology, etc).], or (ii) fully computahal models. In the first perspective, mappings are
defined between the structures of the mathematreadels and the computational ones. The
modeling capabilities of computers are thus comstthby the modeling assumptions of other
disciplines or by the discretization methods usedtplement the model. This chapter focuses
on the second perspective. Only discrete computatimodels are used to specify and simulate
both structure and behavior of systems.

Both structure and behavior of systems can be haddaleterministically or
stochastically. Determinism presupposes actual aresims to be modeled in such a way that
they do not depend on probability. To one inputr@Esponding to context and initial conditions)
corresponds one output. However, human knowledgatdbarge (spatial) distributed systems is
far from complete and actually uncertain (notabfcduse human abilities are limited). Under
uncertainty, Monte Carlo techniques can be usedesign approximated models (Fishman,
2000). Probabilities and distribution laws assigtedarameter values. Investigation of state
spaces through parameter changes can be autortyatichieved using experimental plans
(Kleijnen, 1997; Amblard et al., 2003).

Another aspect of large (spatial) distributed systeelates to the design of simulation
models. A fine-grain design of internal structunesessitates then computational resources to be
sufficient to account for many message exchangespatations and systems. Hence, a trade-off
between modularity and performances has to be done.

Considering large (spatial) distributed systemis, $tudy discusses:

1. Design strategies as a trade-off between modulanitiperformances,

2. Stochastic modeling approaches, based on a pwathigic specification, over physics-
based ones, in the context of discrete and distéetactions with random occurrences.

Fire spreading (including distant interactions thgio firebrands) is used for illustration.

Both objectives are used to discuss further graseto be included in Discrete Event
System Specification (DEVS) (Zeigler et al., 2068)) modeling and simulating efficiently large
(spatial) distributed systems.

The study is organized as follows: in sectionh2, material and methods are developed;
in section 3, the simulation results, modeling aedign assumptions are described; finally, a
conclusion and perspectives are drawn in section 4.

Material and methods

Design and stochastic modeling tools are presehésd. Evidences are given that in many
domains, stochastic and spatial interactions havde considered. A comparison between
modeling and design techniques is given in theeodrdf fire spreading.



Importance of stochastic aspectsin (spatial) distributed systems

In many domains, stochastic aspects of spatiabgdprg have to be considered. At the beginning
of the millennium, colleagues, like Lewis, weresiged that despite the recognized importance
of stochastic factors, recent models for ecologivahsions were almost exclusively formulated
using deterministic equations (Lewis, 2000). Inegiry, the forest growth can rely for instance
on the distant spread of seeds. It has been shbampioneering trees, whose seeds were
propagated by heavy winds, do have an impact orcdlanization of landscapes by particular
species (Coquillard and Fain, 1995; Coquillard, 5)99n oceanography, the spreading of a
tropical algaCaulerpa taxifolia, introduced by mistake in the Mediterranean Sease8 on the
spatial spreading of cuttings. This spreading iebgence stochastic, and occurs at a stochastic
and discrete distance from an original point ofleetent. Only stochastic models under spatial
constraints were able to reproduce maps of theadprg of this alga (Hill et al., 1998).

In fundamental domains like physics, a stochastid apatial modeling allows to
understand phenomena in which determinism doesoffet the same precisiore.§., the
spreading of spiral waves (Jung and Mayer Kres$Y19f this study, the effects observed can
be understood as a generalization of the conceptazhastic resonance in spatially extended
systems. In (Falcke et al., 2000) a study predéatsintracellular spreading of calcium-induced
calcium release with the stochastic DeYoung-Keimedel. The system under study presents a
state characterized by backfiring. The backfirimguws because the steadily propagating pulse
solution undergoes a global heteroclinic bifurcatidbhe use of spatial stochastic modeling was
also used to argue that quantum-gravitational diatoons in the space-time background give the
vacuum non-trivial optical properties that includifusion and consequent uncertainties in the
arrival times of photons, causing stochastic flattans in the velocity of light in vacuo (Ellis et
al., 2000). In nuclear medicine, we have shown tiiafprecise detection of small tumors with an
error less thari0% can currently only be achieved by spatial MontelcCaimulations (ElBitar
et al., 2006).

After a discussion dealing with the implementatiechniques of discrete simulations, a
state of the art of fire spread modeling is progide

Modularity and performance balance

There are four common types of strategies to implerthe kernels of discrete event simulations
(Balci, 1998). These strategies, also called werlvs, consist of: event-scheduling, activity-
scanning (including the three phases optimizatianyl process-oriented strategy introduced by
the Simula language (Dahl and Nygaard, 1966). Atafyy makes certain forms of model
description more naturally expressible than othéms.all of these world-views, an event
corresponds to an instantaneous change in the ctatesystem at a particular time. Event
scheduling models work with pre-scheduling of alemts without provision for activating
events. In contrast, in the activity scanning appio events can be conditioned on a contingency
test in addition to being scheduled. A model isl 4ai be active when its scheduling time has
occurred and when its contingency test is satisfAd optimization of the activity scanning
strategy is named the three phases approach (B88f; Coquillard and Hill, 1997). The
interaction process world view is a combinatiorboth event-scheduling and activity scanning
strategies.



An additional classification consists of considgrthe two kinds of time management:
discrete-time and discrete-event simulations. btmite-time simulations, a clock is advancing
the simulation by a fixed time step. At every tistep, states are computed. In discrete-event
time based management, events drive the simulaliba. simulation time advances from on
event time-stamp to another according to the ewssiteduled.

All these techniques and strategies focus on pd#aticconcepts (events, activities,
processes) and simulation time managements. Ootliee hand, source systems are also usually
described through a system-based decompositionorditg to interactions and autonomy of
systems, systems are identified and connected. DEViBe soundest framework aiming at
tackling computational systems, discrete-eventssamailation time managements. Through its
specification hierarchy, according to the obserbetiavior of the whole system, the internal
structure is progressively described until therdgéin of interfaces (or ports), in a modular way.
At the last specification level, a sub-model idyfuhodular. At the anterior level, the states of
sub-models can influence directly the transitions ather sub-models. The choice of
specification level is crucial in terms of reusdpiland efficiency. Currently, three kinds of
approaches discuss both modularity and efficieidyEVS models:

1. At the simulation level, (Wainer and Giambiasi, 2Ppropose to flatten the hierarchy of
cellular models. (Hu and Zeigler, 2004) aim at ngkadvantage of spatially distributed
causal events in cellular models. (Muzy and Nut&@0)5) suggest activity tracking
mechanisms only focusing on active components,aiaduhe data structure overheads
resulting from discrete-event managements.

2. At the compilation level, (Lee and Kim, 2003) omgcount for active event paths. Sub-
systems which will not receive events or compudmagitions during the simulation are
not compiled previously.

3. At the modeling level, wrapping and modularity acenpared in terms of reusability and
efficiency (Muzy et al., 2003; Shighina, 2006; Samd Hu, 2008). Modularity reduces
performances (because of discrete-event managemamts improves reusability. A
weaker modularity (reducing state encapsulatiomuces the reusability of atomic
systems, while improving performances.

More recently the activity tracking paradigm hasrmétroduced (Muzy and Zeigler, 2008).
This paradigm describes and proposes structurassifog on active sub-systems. Usual time
flows and world-views are embedded. The formal dpson of DEVS models is discussed
through activity-based simulation algorithms andwnstructures accounting for dynamic
structures.
Using the activity-tracking paradigm, components ¢& modeled and simulated in two
steps:
1. The propagation activity is tracked. Informationckeanged between components is
routed and computed. The current set of active corapt is scanned. Events are routed
and output transitions are computed. Final receiaee detected in the hierarchy using a
recursive routing function (Muzy and Nutaro, 200%jhe active set is then updated
including imminent components for external trawsif. Order of the active set depends
on a tie-breaking function of imminent componesigler et al., 2000).

2. According to current states and to new inputs, séates are computed. External and
internal transitions (due to external and intereaknts) of active components are
computed. Components changing state significantynaarked to be added to the new



(ordered) active set. In a discrete-event drivemugation, the new active set corresponds
to a scheduler and active components are markeexégute further their internal

transition function (corresponding to an internakem occurrence). In this case, the
current active (ordered) set is a sub-set of theedwler, which corresponds to

components active at the current simulation time.

DEVS is a powerful framework. However, its strueti have to be exploited to map
activity of systems. Sub-systems are modeled ageaat inactive, the whole simulation directly
tracking and computing activity, whereas ignorimgadtivity. This approach seems obvious;
however it allows merging fine-grain usual worldews with larger grain system-based
approaches, explicitly accounting for reusabilibdafficiency. Moreover, simulation resources
can be characterized through activity. Observirtyyigg allows choosing the level of modularity
according to the overhead induced.

Fire spread modeling

Fire spread models are usually categorized intestoand urban fire spread models. This study
focuses on forest fire spread models. Forest fioglats can be separated into stochastic and
deterministic models. Stochastic models aim at iptied) the most probable fire behavior in
average conditions. On the contrary, in analytinallels, the fire behavior is usually deduced
from the physical laws driving the evolution of tsgstem. Recently, several sophisticated
models were proposed (Barros and Mendes, 1997; fWlads and Thanailakis, 1997;
Hernandez Encinas et al., 2007; Yassemia et d@8)28nd successfully validated by comparison
with real fires. All these models use either simpteDynamical Structure Cellular Automata
(DSCA).

With reference to deterministic models, based orb&Ve classification (Weber 1990),
three kinds of mathematical models for fire propimgacan be identified according to the
methods used in their construction. The first tgbemodels are statistical models (McArthur
1966), which make no attempt to include specifiggital mechanisms, being only a statistical
description of test fires. The results can be \&rgcessful in predicting the outcome of fires
similar to the test fires. However, the lack ofteygical basis means that the statistical models
must be used cautiously outside the test conditibhe second category of models is composed
of semi-empirical models (Rothermel, 1972) basedhenprinciple of energy conservation but
which do not distinguish between the different natbms of heat transfer. Rothermel’s
stationary model is a one-dimensional model, inclwhat second dimension can be obtained
using propagation algorithms (Richards, 1990) iraggg wind and slope. Finally, physical
models (Albini, 1985) integrate wind and slope etffen a more robust manner by describing the
various mechanisms of heat transfer and producBbgsical mechanisms are described using a
chemical, thermal and mechanical definition of bdse phenomena. Hence, physical and semi-
empirical models use the definition of basic firaepomena to physically describe fire
propagation.

With reference to stochastic models, few works Hasen achieved. In (Hargrove et al.,
2000), authors explore the results of various sstib experimental designs (according to
various classes of moisture and ignition probaesditbased on percolation thresholds) of a
replicated fire spread simulation. No fuel biomassaken into account. Besides, authors argue
that “each simulation was replicated five timesithout demonstrating the choice of the number



of replications although serious studies of thetsagtic variability of results have to be done
(Kleijnen and Groenendaal, 1992). In (Jimenez.eR807), a sensitivity analysis of Rothermel’s
model using Monte Carlo simulation is provided(Gu and Hu, 2008), Monte Carlo simulation
is used to evaluate the error of fire spread datpiaition during a fire spread simulation. This
error is then integrated in the fire spread simoatOn stochastic fire spread modeling two
major approaches need nonetheless to be mentidiedfirst is a very precise mathematical
framework for stochastic fire spread modeling (Mbow, 1996). In the latter a very clear
presentation of ellipse based stochastic modelaesgmted. An interesting concept of random
spread process is introduced. However, here todismussions on the stochastic variability of
results, neither on biomass modeling, are providddre recently, in the reference journal
Combustion and Flame, a very interesting and promising article (Pogegt al., 2007) has been
introduced (and apparently discussed with the Ndbete P.G. de Gennes). Small world
networks, percolation and stochastic simulatiomsd@signed. This demonstrates a new interest
of the physicist community for computer-based témives. Long range spotting is modeled and
analytic physics-based equations are used to prigdidorand distances and numbers.
Concerning the discrete-event design of fire sgregachodels, many works can be cited:

* In (Vasconcelos et al.,, 1995), a first discretemeveesign of Rothermel's model is
proposed. Discrete-events correspond to the patomidg times provided by
Rothermel’s model. An experimental frame is defingétis frame embeds ecological
data of the usual fuel classes provided by Rothismedel.

* In (Barros and Mendes, 1997), dynamic structurtuleel automata are used to upload
memory only with burning active cells obtained thgh Rothermel’s model. A dynamic
structure specification is provided. Memory redoict are discussed.

* In (Ameghino et al.,, 2001), a high-level specifioat of (Vasconcelos, 1995) is
presented. The specification exemplifies the déaysed and cell-focused macro-
instructions of the Cell-DEVS formalism. As macmesifications and instructions are
automatically embedded in Cell-DEVS, a code reducts observed.

* In (Muzy et al., 2005), an intensive fine-graineins-physical model of fire spread has
been investigated through discrete-event desigrin@ations (at the implementation
and specification levels) are investigated in (Muetyal. 2003) to account for dynamic
structures and discrete-time modeling. Recentlf{Mnzy et al., 2008), the quantization
technigue has been investigated.

* In (Ntaimo et al., 2008), previous work achieved (Wasconcelos, 1995) has been
detailed and extended to many scenarios includind,vélope and fire fighting. Dynamic
structures have been investigated in (Sun and BHQ7)2 A stochastic implementation
comparing experimental data and simulation onetafjo&d through Rothermel’s model)
is described.

The complexity of fire spread modeling induces leottcks at both physical and computer
modeling levels. At the physical level, physiciatse concepts (convection, radiation, diffusion)
and corresponding usual mathematical models (padiféerential equations and ordinary
differential equations) to describe fire spread eied After a discretization through usual
numerical methods (Euler, Runge-Kunta, etc.), caempscientists use then design techniques
(object-oriented, discrete-events, meta-modelingachic structure, etc.) They discuss design
and execution time advantages of the techniques. lid@vever, many scientific disadvantages
emerge from this approach. Design issues despetayetio follow the evolutions of discretized



physics-based models. A first drawback is that ¢cbenputer design is totally dependent to
discretization techniques [except perhaps now wiantization techniques: (Zeigler et al.,
2000)]. A second drawback is that computer scientisually do not master physics-based
modeling techniques and physicists do not explb& full advantages of computer-based
modeling techniques they sometimes do not knowhil tdrawback is that the filters constituted
by both physics-based concepts and discretizatewhniques result in multidimensional
parameters, which do not directly represent phystopological, biological, properties of fire
fronts and fuels. Modeling levels are not grasped single consistent and complete top-down
approach (from problem to implementation). Using cansistent stochastic framework,
embedding experimental plans, to model (spatiadjributed systems, scientists are able to
master and experiment the full modeling and sinmgbrocess (even if they need usually expert
advises).

Design and modeling prerequisites with simulation @sults

Complexity of fire spreading, which necessitatesiynsimulation models interacting in parallel,
allows investigating and discussing many designdeting and simulation perspectives. Every
solution presents drawbacks and advantages thelena@da deal with. Efficiency, error, design
facilities are the main interdependent parametezgriiodeler needs to compose with. After, fire
propagations occurring at a laboratory small seateused to precisely discuss advantages and
drawbacks of structure choices of models and sitorda A physics-based model is
implemented. Lastly, virtual experiments are depetbon a personal computer to define a new
coherent stochastic model of fire spread.

Design of cellular models

Modularity of models and simulators as well as rthadility to efficiently detect activity are
discussed here after.

Modularity of models and simulators

As depicted in Figure 1, various choices of modtyacan be done for describing a spatial
system in a uniform way through cellular models.

At the modeling level, two levels of modularity cére implemented. A first fully
modular model level consists of cells whose swatnicapsulated. Cells interact through interface
ports and every cell is designed as receiving andiag events. At a previous weak modularity
level, cells do not have ports. They directly asdbe state of influencing neighbors.

At the simulation level, two levels of aggregatican be implemented. At every level, a
root can implement the whole simulation loop. Aully aggregated level, a single simulator is
piloted by the root. Another solution is to affemte simulator to every cell. This solution
increases the number of messages exchanged (degreticiency) but enhances reusability.
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Figure 1. Comparison between modular and non-modular maglalma simulation
(Muzy et al., 2003)

A first full modular implementation at both modehda simulator levels has been
implemented through the Cell-DEVS formalism (Wain@nd Giambiasi, 2001) and the
corresponding CD++ environment (Wainer, 2002). Télgoratory experiment consists of a
combustion table o80cm long and60cm wide for a line-ignition, the prediction of spreeate
(2.96mmVs). For a real propagation d60s of a 100x100 cell space, the execution time of the
Cell-DEVS simulation were abow1h20min (with a Pentium 1l at 500 Mhz). Even if this
modeling and simulation experiment is elegant armmurgded formally, the many messages
exchanged produce overhead because of data seunturagement (of schedulers). This results
in an execution time much greater than the actiggdamation time.

An opposite fully aggregated simulator and non-n@dmodel has been implemented
then (Muzy et al., 2003). A point-ignition has besmulated by initializing center cells with a
temperature gradient. For a real propagatioB00k, execution times decreased1®0s. On the
other hand, the whole modeling and simulation melkdss reusable.



Activity tracking

Models can be designed for tracking activity durihg whole simulation loop. Metaphorically,
distributed sub-models (constituting the whole mpdman be considered as filtering gates
orienting and computing activity. As depicted irgliie 2, models are activated or not by the
flows of external events or by scheduled internedngs (bottom right corner). This activation
depends on the adjustment of a sensitivity parantgtermining the activation of the model.
Activity in a network of models depends on: (i) t8taransitions or internal events, and
(ii) External events received and sent.

Concerning finite state propagations, state charmrgesdiscrete and no information is
loss. The types of events are defined before thelation. For every (external or internal) event
type, a corresponding state transition is attribuiks in finite state automata, state can then
remain unchanged or switch to another one.

Concerning continuous values embedded in discregrtg, a threshold filter needs to be
set to determine the relevance of the discreteteeeeived and of changes in states. If the value
received is greater than this threshold, the cpameding component will be activated.
Otherwise, the event is not taken into accounttaaccomponent will return inactive. If states do
not “change enough” to activate the model, theetatbin be designed to inform the mdoels it
influences that it turns inactive (or it can simplgt send events). If states “change enough” to
activate the model, the latter can be designedhfirm the components it influences of this
change (Zeigler et al., 2000). Using such a desigonhanism allows reducing computations and
message exchanges. However, according to the alivf this filtering threshold, error is
induced. The larger is the threshold the greatethés error. Many good results have been
obtained using activity tracking modeling and siatign of fire spread (Muzy et al., 2008).

\V/

Figure 2. Active components

Design choices

Many choices can be achieved at the modeling andlation levels for enhancing efficiency.

First according to the degree of reusability retgetsmodularity can be modulated at the
modeling and/or simulation levels. Obviously, reidgcthe degree of modularity, reduces the
degree of reusability of components. Full modulamponents are designed in an autonomous
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way. Reducing this modularity, the internal struetwf models depends of other models.
Another solution to enhance efficiency is to dedilga models to automatically track activity.
The efficiency here is inversely proportional te tirecision and depends on the amplitude of the
filtering threshold chosen [more details aboutéher induced in (Muzy et al., 2008)].

Fire spread modeling through a virtual laboratory

In Physics, physicists use equation-based strigtoreepresent fundamental identified physical
mechanisms involved in both fire and diffusion meses. Parameters of equations have been (or
are) identified through laboratory experiments. Sehparameters do not correspond directly to
the parameters intuitively identified as influergithe fire spread (slope, wind, biomass,
humidity). The latter parameters are split in mg@ayameters, which aim at describing very
finely physicochemical mechanisms (gas dynamiasperature radiation, etc.) These models
are more adapted to fine-grain physics-based l&fgraxperiments than actual fire spread.

Computer scientists have a different approacht Fiesr laboratory consists only of one
or many computers. They directly build models amdutate them. Then, they verify if the
model behavior fits their expectations describingsistent dynamics. They calibrate their model
adjusting parameters exploring parameter valuesugir experimental plans. After, the first
constructive experiments designed by computer 8sterare described.

Experimental model 1: Near-to-near propagation including firebrands

Because of the numerous phenomena (entangled atidllgpdistributed) occurring uniformly
and in parallel in a fire spread, cellular auton@iastitute an appropriate paradigm to model and
simulate them. A first very simple programGr+ with a textual interface is sufficient to draw a
first fire spread model.

Cells of the cellular automaton hold a discretéestanstituted of symbols as follows:
‘" : The cell is unburned,
“*’: The cell is burning,
‘X’ : The cell is burnt.

Fire propagation is twofold:

1. Near-to-near propagation: Every burning cell gete chance over eight (for the eight
neighbors) to ignite a neighbor. In case of wingighbors are selected according to the
strength and direction of the wind.

2. Firebrand propagations: Every burning cell produmes firebrand in the direction of the
wind. The distance depends on the wind strengtistaDces of the firebrand are
calculated as follows:

{dx =i+ w,[B(s+ T)]
dy = j+w,[8(z +9)]

Where,dx anddy are the distances of firebrand projection in dices x andy, 8¢[0,1]
is a random real numbe(i,j) are the coordinates of cellw, and w, are the wind
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directions,? is the wind strength angdis a parameter adjusted to observe modification of
fire spread.

This very simple model allows obtaining consistessults as represented in Figure 3.
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Figure 3. Fire spread under a wind of force 2 in South-Weéstction

Experimental model 2: Pseudo-random distributions of firebrands

Here, cells have two states: unburned and burifagameters correspond to: (i) The strength of
the wind, and (ii) The wind direction. The directicorresponds to the angle value respect to a
horizontal wind. Fire propagates only by firebran@ise distanc® of projection is determined
through a negative exponential law whose mean apgstional to wind strength. Thus, the
greater is the wind strength, the more distant ddnd the firebrand. The direction is calculated
according to wind direction and to a noise param@#}—1.1] through a Gaussian law of mean
equal to zero and deviation inversely proporticiaD. Thus, when the distance is large, the
firebrand direction corresponds to the wind dimctif is minimum). When the distance is
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small, the firebrand is projected in whatever ditet This latter case corresponds to a near-to-
near propagation.

Results are presented in Figure 4. Some imperfectal the model can be observed.
Some cells inside the fire front remain unburned@wigver, the firebrand method provides
acceptable results. The model is sensible to tbpgotions chosen between wind strength and
the mean of the exponential law.
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Le tison de départ :

Ligne = 25 Colonne = 25

Direction du vent 7 (N. NE. E, SE. 8. 80. 0. NO> NO
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Le tison de départ :
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Puissance du vent 7 (en kmsh)> 38

After 20 iterations After 35 iterations

Figure 4. Fire spread under a wind of 30 km/h in North-Wesgation
Final Experiment

These simple models allowed to design and impleradintal simulator. The finite states used
can be refined using a biomass decrease in catlsording to the level of degradation of cells,
corresponding states are selected (unburned, heatexding and burned). Another difficulty
relates to the number of parameters to calibratés umber needs to be limited to be able to
explore the full state space of the final modele Tdtter implements the near-to-near propagation
of model 1 and firebrand propagation of model 2.
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Implementation

A design pattern Model-View-Controller is used. §design pattern mixes the Observer and
Strategy ones (Gamma et al., 1994). It allows:

» Separating variable aspects from static aspedteedmplementation,

» Favoring the composition against inheritance,

* Programing interfaces,

* Reducing couplings between objects.

Entities of the fire spread simulator accordingh® Model-View-Component are:
1. Model: which contains the whole simulator,
2. View: which provides the window interface,
3. Controller: which manages events from the windoterfiace and transfers changes from
view to model.

The pseudo-random generator used is the MersenmgterwMatsumoto and Nishimura,
1997) from SSJ java library (L’Ecuyer and Buist03) Figure 5 depicts the main diagram of
the whole implementation. The class Simulator isngosed of Tree(s) and Shrub(s) and
replications are used for representing spectrdlyses (Hill, 1997). By replicating simulations,
the whole span of exponential and Gaussian lawseaxplored. Every replication is saved. At
the end of the simulation, spectral analyses angpated. Spectral analyses correspond to a sum
of probabilities of fire spread. In the Simulatolags a method for image analysis is
implemented. This method converts an image in Ete(ae(burnable and unburnable).

Simulator

1

1.7 10

Fhztzct Element Replizalions

Py

1
utilise

1

SavaTofile

adialraut e Slered HulFited Ele nenl

T

Chrub | | Tree |

Figure 5. Simulator class diagram
Interface and simulation results

Parameters of the interface are: Strength andtairecof the wind, as well as the real-time
simulation speed. Actual aerial pictures can beaghd ¢f. Figure 6).
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Figure 6. Interface parameters

Figure 7 depicts a fire spreading. It can be ndtitteat the unburnable elements constituted of
the road are not burned.
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Figure 7. After 141 iterations, with a wind set to West directiontatation120.

Figure 8 presents the replication results of fi@pagation.

%} Simulation avec réplications E

ombre de réplications : 10 | HNombre de tours par réplication : 400 | Vent : 0.0 kmh E | Foyer initial en (50,50)

(@)




—

s Simulation avec réplications E;

ombre de réplications : 10 | Hombre de tours par réplication : 400 | Vent : 50.0 kmmvh E | Foyer initial en (50,50)

(b)

Figure 8. (a) Ignition on the top left corner aft#d replications o#00 iterations each without
wind (b) Ignition on the top left corner aftéd replications o#00 iterations each with a wind of
50 km/h in East direction

Last, Figure 9 represents possible fire propag&tio8D in a virtual environment (near ISIMA
building).
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Fi'gure 9. Wind in East direction 11 "k-m/h.

Conclusion and perspectives

In this study advantages of stochastic modelingrfgglementing spatial constraints have been
presented. In several cases, stochastic modelitigei®nly strategy available to represent the
distant and discrete interactions. The formalizatio DEVS of stochastic modeling is possible.
In (Zeigler, 1976), a formal specification of pseudndom generators is described. Pseudo-
random generators being deterministic, DEVS dessr#tochastic models in terms of systems
embedding pseudo-random generators. Recently, of{&n and Castro, 2006), a formal
extension of DEVS has been provided. A DEVS-basetiiption of stochastic models through
STDEVS would allow the modeling and simulation coumity to explicitly explore this
powerful domain. DEVS popularity denotes a righteleof definition. It is abstract enough to
allow the development of new concepts and strustutes precise enough to avoid ambiguities
and guide modelers. Since its first book definiti@eigler, 1976), many developments have
been achieved. A constant critical evaluation esthdevelopments is necessary to enhance the
whole framework. However, these developments havbet at the right level of abstraction.
Because of the increasing complexity of hardwaré software architectures, metalevels (and
automatic mappings from higher to lower levels)thée be designed. Considering complex
systems as multilevel and highly composed, detgcéind mapping simulation structures on
activity will be more and more necessary. Activitgcking mechanisms will allow improving
DEVS efficiency and abstraction.

Integrating explicitly modularity and efficiencysiges, as well as experimental plans and
stochastic modeling strategies in DEVS, (compwgegntists will gain freedom and dispose of a
more complete and powerful modeling and simulatiamework.
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