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Currently, as a result of the increase of computational capabilities, internal structures of models 
describing large (spatial) distributed systems can be refined. This results in a high number of 
interacting sub-models requiring exploiting efficiently computational resources. Furthermore, 
refining the structure of a model requires the modeler to deal with design decisions (modularity, 
identification of model structures, algorithms, etc). To achieve this goal, specification frameworks 
(like Discrete-Event System Specification) can be used and developed. The more generic and 
reusable are the structures provided by these frameworks, the more these structures can be 
implemented easily by modelers. Nevertheless, the more these structures are generic and reusable, 
the more they produce simulation overhead. To reduce simulation overhead, efficiency is usually 
considered as an implementation issue, whereas genericity and reusability are discussed at a more 
theoretical level, the framework one. However, improving efficiency at the implementation level 
reversely decreases the reusability advantages provided by frameworks. Integrating and comparing, 
at a theoretical level, interactions between reusability and efficiency better describes the choices to 
be achieved by modelers. This is the first objective of this study (reusability being reduced to 
modularity aspects of the sub-models composing the whole simulation model). Another 
fundamental aspect for the modeling and simulation of large (spatial) distributed systems is related 
to the stochastic aspect of information diffusion. During the simulation, causal discrete-events are 
exchanged randomly between distant and neighboring sub-models. The second objective of this 
study is to discuss the importance of stochastic aspects in the modeling of large (spatial) distributed 
systems. This point is illustrated through a fire spread application.  
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Introduction 

Developing computational models of large (spatial) distributed systems is usually achieved to 
implement and simulate: (i) original mathematical models [obtained by other disciplines 
(physics, biology, etc).], or (ii) fully computational models. In the first perspective, mappings are 
defined between the structures of the mathematical models and the computational ones. The 
modeling capabilities of computers are thus constrained by the modeling assumptions of other 
disciplines or by the discretization methods used to implement the model. This chapter focuses 
on the second perspective. Only discrete computational models are used to specify and simulate 
both structure and behavior of systems. 
 Both structure and behavior of systems can be modeled deterministically or 
stochastically. Determinism presupposes actual mechanisms to be modeled in such a way that 
they do not depend on probability. To one input (corresponding to context and initial conditions) 
corresponds one output. However, human knowledge about large (spatial) distributed systems is 
far from complete and actually uncertain (notably because human abilities are limited). Under 
uncertainty, Monte Carlo techniques can be used to design approximated models (Fishman, 
2000). Probabilities and distribution laws assigned to parameter values. Investigation of state 
spaces through parameter changes can be automatically achieved using experimental plans 
(Kleijnen, 1997; Amblard et al., 2003). 

Another aspect of large (spatial) distributed systems relates to the design of simulation 
models. A fine-grain design of internal structures necessitates then computational resources to be 
sufficient to account for many message exchanges, computations and systems. Hence, a trade-off 
between modularity and performances has to be done. 

Considering large (spatial) distributed systems, this study discusses: 
1. Design strategies as a trade-off between modularity and performances, 
2. Stochastic modeling approaches, based on a pure algorithmic specification, over physics-

based ones, in the context of discrete and distant interactions with random occurrences. 
Fire spreading (including distant interactions through firebrands) is used for illustration. 

 
 Both objectives are used to discuss further strategies to be included in Discrete Event 
System Specification (DEVS) (Zeigler et al., 2000) for modeling and simulating efficiently large 
(spatial) distributed systems. 
 
 The study is organized as follows: in section 2, the material and methods are developed; 
in section 3, the simulation results, modeling and design assumptions are described; finally, a 
conclusion and perspectives are drawn in section 4. 
 

Material and methods 

Design and stochastic modeling tools are presented here. Evidences are given that in many 
domains, stochastic and spatial interactions have to be considered. A comparison between 
modeling and design techniques is given in the context of fire spreading.  
 



 

 

3

 

Importance of stochastic aspects in (spatial) distributed systems 

In many domains, stochastic aspects of spatial spreading have to be considered. At the beginning 
of the millennium, colleagues, like Lewis, were surprised that despite the recognized importance 
of stochastic factors, recent models for ecological invasions were almost exclusively formulated 
using deterministic equations (Lewis, 2000). In forestry, the forest growth can rely for instance 
on the distant spread of seeds. It has been shown that pioneering trees, whose seeds were 
propagated by heavy winds, do have an impact on the colonization of landscapes by particular 
species (Coquillard and Fain, 1995; Coquillard, 1995). In oceanography, the spreading of a 
tropical alga, Caulerpa taxifolia, introduced by mistake in the Mediterranean Sea is based on the 
spatial spreading of cuttings. This spreading is by essence stochastic, and occurs at a stochastic 
and discrete distance from an original point of settlement. Only stochastic models under spatial 
constraints were able to reproduce maps of the spreading of this alga (Hill et al., 1998).  

In fundamental domains like physics, a stochastic and spatial modeling allows to 
understand phenomena in which determinism does not offer the same precision [e.g., the 
spreading of spiral waves (Jung and Mayer Kress 1995)]. In this study, the effects observed can 
be understood as a generalization of the concept of stochastic resonance in spatially extended 
systems. In (Falcke et al., 2000) a study presents that intracellular spreading of calcium-induced 
calcium release with the stochastic DeYoung-Keizer-model. The system under study presents a 
state characterized by backfiring. The backfiring occurs because the steadily propagating pulse 
solution undergoes a global heteroclinic bifurcation. The use of spatial stochastic modeling was 
also used to argue that quantum-gravitational fluctuations in the space-time background give the 
vacuum non-trivial optical properties that include diffusion and consequent uncertainties in the 
arrival times of photons, causing stochastic fluctuations in the velocity of light in vacuo (Ellis et 
al., 2000). In nuclear medicine, we have shown that the precise detection of small tumors with an 
error less than 10% can currently only be achieved by spatial Monte Carlo simulations (ElBitar 
et al., 2006).   
 After a discussion dealing with the implementation techniques of discrete simulations, a 
state of the art of fire spread modeling is provided.  
 

Modularity and performance balance 

 
There are four common types of strategies to implement the kernels of discrete event simulations 
(Balci, 1998). These strategies, also called world views, consist of: event-scheduling, activity-
scanning (including the three phases optimization), and process-oriented strategy introduced by 
the Simula language (Dahl and Nygaard, 1966). A strategy makes certain forms of model 
description more naturally expressible than others. In all of these world-views, an event 
corresponds to an instantaneous change in the state of a system at a particular time. Event 
scheduling models work with pre-scheduling of all events without provision for activating 
events. In contrast, in the activity scanning approach, events can be conditioned on a contingency 
test in addition to being scheduled. A model is said to be active when its scheduling time has 
occurred and when its contingency test is satisfied. An optimization of the activity scanning 
strategy is named the three phases approach (Pidd, 1992; Coquillard and Hill, 1997). The 
interaction process world view is a combination of both event-scheduling and activity scanning 
strategies. 
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An additional classification consists of considering the two kinds of time management: 
discrete-time and discrete-event simulations. In discrete-time simulations, a clock is advancing 
the simulation by a fixed time step. At every time step, states are computed. In discrete-event 
time based management, events drive the simulation. The simulation time advances from on 
event time-stamp to another according to the events scheduled. 

All these techniques and strategies focus on particular concepts (events, activities, 
processes) and simulation time managements. On the other hand, source systems are also usually 
described through a system-based decomposition. According to interactions and autonomy of 
systems, systems are identified and connected. DEVS is the soundest framework aiming at 
tackling computational systems, discrete-events and simulation time managements. Through its 
specification hierarchy, according to the observed behavior of the whole system, the internal 
structure is progressively described until the definition of interfaces (or ports), in a modular way. 
At the last specification level, a sub-model is fully modular. At the anterior level, the states of 
sub-models can influence directly the transitions of other sub-models. The choice of 
specification level is crucial in terms of reusability and efficiency. Currently, three kinds of 
approaches discuss both modularity and efficiency of DEVS models: 

1. At the simulation level, (Wainer and Giambiasi, 2001) propose to flatten the hierarchy of 
cellular models. (Hu and Zeigler, 2004) aim at taking advantage of spatially distributed 
causal events in cellular models. (Muzy and Nutaro, 2005) suggest activity tracking 
mechanisms only focusing on active components, reducing the data structure overheads 
resulting from discrete-event managements. 

2. At the compilation level, (Lee and Kim, 2003) only account for active event paths. Sub-
systems which will not receive events or compute transitions during the simulation are 
not compiled previously. 

3. At the modeling level, wrapping and modularity are compared in terms of reusability and 
efficiency (Muzy et al., 2003; Shighina, 2006; Sun and Hu, 2008). Modularity reduces 
performances (because of discrete-event managements) and improves reusability. A 
weaker modularity (reducing state encapsulation) reduces the reusability of atomic 
systems, while improving performances. 
 

More recently the activity tracking paradigm has been introduced (Muzy and Zeigler, 2008). 
This paradigm describes and proposes structures focusing on active sub-systems. Usual time 
flows and world-views are embedded. The formal description of DEVS models is discussed 
through activity-based simulation algorithms and new structures accounting for dynamic 
structures.  

Using the activity-tracking paradigm, components can be modeled and simulated in two 
steps: 

1. The propagation activity is tracked. Information exchanged between components is 
routed and computed. The current set of active component is scanned. Events are routed 
and output transitions are computed. Final receivers are detected in the hierarchy using a 
recursive routing function (Muzy and Nutaro, 2005). The active set is then updated 
including imminent components for external transitions. Order of the active set depends 
on a tie-breaking function of imminent components (Zeigler et al., 2000). 

2. According to current states and to new inputs, new states are computed. External and 
internal transitions (due to external and internal events) of active components are 
computed. Components changing state significantly are marked to be added to the new 
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(ordered) active set. In a discrete-event driven simulation, the new active set corresponds 
to a scheduler and active components are marked to execute further their internal 
transition function (corresponding to an internal event occurrence). In this case, the 
current active (ordered) set is a sub-set of the scheduler, which corresponds to 
components active at the current simulation time. 

 
 DEVS is a powerful framework. However, its structures have to be exploited to map 
activity of systems. Sub-systems are modeled as active or inactive, the whole simulation directly 
tracking and computing activity, whereas ignoring inactivity. This approach seems obvious; 
however it allows merging fine-grain usual world views with larger grain system-based 
approaches, explicitly accounting for reusability and efficiency. Moreover, simulation resources 
can be characterized through activity. Observing activity allows choosing the level of modularity 
according to the overhead induced. 
 

Fire spread modeling 

 
Fire spread models are usually categorized into forest and urban fire spread models. This study 
focuses on forest fire spread models. Forest fire models can be separated into stochastic and 
deterministic models. Stochastic models aim at predicting the most probable fire behavior in 
average conditions.  On the contrary, in analytical models, the fire behavior is usually deduced 
from the physical laws driving the evolution of the system. Recently, several sophisticated 
models were proposed (Barros and Mendes, 1997; Karafyllidis and Thanailakis, 1997; 
Hernández Encinas et al., 2007; Yassemia et al., 2008) and successfully validated by comparison 
with real fires. All these models use either simple or Dynamical Structure Cellular Automata 
(DSCA).  

With reference to deterministic models, based on Weber’s classification (Weber 1990), 
three kinds of mathematical models for fire propagation can be identified according to the 
methods used in their construction. The first type of models are statistical models (McArthur 
1966), which make no attempt to include specific physical mechanisms, being only a statistical 
description of test fires. The results can be very successful in predicting the outcome of fires 
similar to the test fires. However, the lack of a physical basis means that the statistical models 
must be used cautiously outside the test conditions. The second category of models is composed 
of semi-empirical models (Rothermel, 1972) based on the principle of energy conservation but 
which do not distinguish between the different mechanisms of heat transfer. Rothermel’s 
stationary model is a one-dimensional model, in which a second dimension can be obtained 
using propagation algorithms (Richards, 1990) integrating wind and slope. Finally, physical 
models (Albini, 1985) integrate wind and slope effects in a more robust manner by describing the 
various mechanisms of heat transfer and production. Physical mechanisms are described using a 
chemical, thermal and mechanical definition of basic fire phenomena. Hence, physical and semi-
empirical models use the definition of basic fire phenomena to physically describe fire 
propagation. 

With reference to stochastic models, few works have been achieved. In (Hargrove et al., 
2000), authors explore the results of various stochastic experimental designs (according to 
various classes of moisture and ignition probabilities based on percolation thresholds) of a 
replicated fire spread simulation. No fuel biomass is taken into account. Besides, authors argue 
that “each simulation was replicated five times”, without demonstrating the choice of the number 
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of replications although serious studies of the stochastic variability of results have to be done 
(Kleijnen and Groenendaal, 1992). In (Jimenez et al., 2007), a sensitivity analysis of Rothermel’s 
model using Monte Carlo simulation is provided. In (Gu and Hu, 2008), Monte Carlo simulation 
is used to evaluate the error of fire spread data acquisition during a fire spread simulation. This 
error is then integrated in the fire spread simulation. On stochastic fire spread modeling two 
major approaches need nonetheless to be mentioned. The first is a very precise mathematical 
framework for stochastic fire spread modeling (Vorob’ov, 1996). In the latter a very clear 
presentation of ellipse based stochastic model is presented. An interesting concept of random 
spread process is introduced. However, here too no discussions on the stochastic variability of 
results, neither on biomass modeling, are provided. More recently, in the reference journal 
Combustion and Flame, a very interesting and promising article (Porterie et al., 2007) has been 
introduced (and apparently discussed with the Nobel Prize P.G. de Gennes). Small world 
networks, percolation and stochastic simulations are designed. This demonstrates a new interest 
of the physicist community for computer-based techniques. Long range spotting is modeled and 
analytic physics-based equations are used to predict fire brand distances and numbers. 
Concerning the discrete-event design of fire spreading models, many works can be cited: 

• In (Vasconcelos et al., 1995), a first discrete-event design of Rothermel’s model is 
proposed. Discrete-events correspond to the patch burning times provided by 
Rothermel’s model. An experimental frame is defined. This frame embeds ecological 
data of the usual fuel classes provided by Rothermel’s model. 

• In (Barros and Mendes, 1997), dynamic structure cellular automata are used to upload 
memory only with burning active cells obtained through Rothermel’s model. A dynamic 
structure specification is provided. Memory reductions are discussed. 

• In (Ameghino et al., 2001), a high-level specification of (Vasconcelos, 1995) is 
presented. The specification exemplifies the delay-focused and cell-focused macro-
instructions of the Cell-DEVS formalism. As macro-specifications and instructions are 
automatically embedded in Cell-DEVS, a code reduction is observed. 

• In (Muzy et al., 2005), an intensive fine-grained semi-physical model of fire spread has 
been investigated through discrete-event design. Optimizations (at the implementation 
and specification levels) are investigated in (Muzy, et al. 2003) to account for dynamic 
structures and discrete-time modeling. Recently, in (Muzy et al., 2008), the quantization 
technique has been investigated.  

• In (Ntaimo et al., 2008), previous work achieved in (Vasconcelos, 1995) has been 
detailed and extended to many scenarios including wind, slope and fire fighting. Dynamic 
structures have been investigated in (Sun and Hu, 2007). A stochastic implementation 
comparing experimental data and simulation ones (obtained through Rothermel’s model) 
is described. 

 
The complexity of fire spread modeling induces bottlenecks at both physical and computer 

modeling levels. At the physical level, physicists use concepts (convection, radiation, diffusion) 
and corresponding usual mathematical models (partial differential equations and ordinary 
differential equations) to describe fire spread models. After a discretization through usual 
numerical methods (Euler, Runge-Kunta, etc.), computer-scientists use then design techniques 
(object-oriented, discrete-events, meta-modeling, dynamic structure, etc.) They discuss design 
and execution time advantages of the techniques used. However, many scientific disadvantages 
emerge from this approach. Design issues desperately try to follow the evolutions of discretized 
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physics-based models. A first drawback is that the computer design is totally dependent to 
discretization techniques [except perhaps now with quantization techniques: (Zeigler et al., 
2000)]. A second drawback is that computer scientists usually do not master physics-based 
modeling techniques and physicists do not exploit the full advantages of computer-based 
modeling techniques they sometimes do not know. A third drawback is that the filters constituted 
by both physics-based concepts and discretization techniques result in multidimensional 
parameters, which do not directly represent physical, topological, biological, properties of fire 
fronts and fuels. Modeling levels are not grasped in a single consistent and complete top-down 
approach (from problem to implementation). Using a consistent stochastic framework, 
embedding experimental plans, to model (spatial) distributed systems, scientists are able to 
master and experiment the full modeling and simulation process (even if they need usually expert 
advises). 
 

Design and modeling prerequisites with simulation results 

Complexity of fire spreading, which necessitates many simulation models interacting in parallel, 
allows investigating and discussing many design, modeling and simulation perspectives. Every 
solution presents drawbacks and advantages the modeler can deal with. Efficiency, error, design 
facilities are the main interdependent parameters the modeler needs to compose with. After, fire 
propagations occurring at a laboratory small scale are used to precisely discuss advantages and 
drawbacks of structure choices of models and simulators. A physics-based model is 
implemented. Lastly, virtual experiments are developed on a personal computer to define a new 
coherent stochastic model of fire spread. 
 

Design of cellular models 

 
Modularity of models and simulators as well as their ability to efficiently detect activity are 
discussed here after.  
 
Modularity of models and simulators 

 
As depicted in Figure 1, various choices of modularity can be done for describing a spatial 
system in a uniform way through cellular models.  

At the modeling level, two levels of modularity can be implemented. A first fully 
modular model level consists of cells whose state is encapsulated. Cells interact through interface 
ports and every cell is designed as receiving and sending events. At a previous weak modularity 
level, cells do not have ports. They directly access the state of influencing neighbors.  

At the simulation level, two levels of aggregation can be implemented. At every level, a 
root can implement the whole simulation loop. At a fully aggregated level, a single simulator is 
piloted by the root. Another solution is to affect one simulator to every cell. This solution 
increases the number of messages exchanged (decreasing efficiency) but enhances reusability. 
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Figure 1. Comparison between modular and non-modular modeling and simulation  

(Muzy et al., 2003) 
 
 

A first full modular implementation at both model and simulator levels has been 
implemented through the Cell-DEVS formalism (Wainer and Giambiasi, 2001) and the 
corresponding CD++ environment (Wainer, 2002). The laboratory experiment consists of a 
combustion table of 30cm long and 60cm wide for a line-ignition, the prediction of spread rate 
(2.96mm/s). For a real propagation of 150s of a 100x100 cell space, the execution time of the 
Cell-DEVS simulation were about 21h20min (with a Pentium III at 500 Mhz). Even if this 
modeling and simulation experiment is elegant and grounded formally, the many messages 
exchanged produce overhead because of data structure management (of schedulers). This results 
in an execution time much greater than the actual propagation time.  

An opposite fully aggregated simulator and non-modular model has been implemented 
then (Muzy et al., 2003). A point-ignition has been simulated by initializing center cells with a 
temperature gradient. For a real propagation of 200s, execution times decreased to 160s. On the 
other hand, the whole modeling and simulation model is less reusable. 
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Activity tracking 
 

Models can be designed for tracking activity during the whole simulation loop. Metaphorically, 
distributed sub-models (constituting the whole model) can be considered as filtering gates 
orienting and computing activity. As depicted in Figure 2, models are activated or not by the 
flows of external events or by scheduled internal events (bottom right corner). This activation 
depends on the adjustment of a sensitivity parameter determining the activation of the model. 
Activity in a network of models depends on: (i) State transitions or internal events, and 
(ii) External events received and sent. 

Concerning finite state propagations, state changes are discrete and no information is 
loss. The types of events are defined before the simulation. For every (external or internal) event 
type, a corresponding state transition is attributed. As in finite state automata, state can then 
remain unchanged or switch to another one. 

Concerning continuous values embedded in discrete events, a threshold filter needs to be 
set to determine the relevance of the discrete-event received and of changes in states. If the value 
received is greater than this threshold, the corresponding component will be activated. 
Otherwise, the event is not taken into account and the component will return inactive. If states do 
not “change enough” to activate the model, the latter can be designed to inform the mdoels it 
influences that it turns inactive (or it can simply not send events). If states “change enough” to 
activate the model, the latter can be designed to inform the components it influences of this 
change (Zeigler et al., 2000). Using such a design mechanism allows reducing computations and 
message exchanges. However, according to the amplitude of this filtering threshold, error is 
induced. The larger is the threshold the greater is the error. Many good results have been 
obtained using activity tracking modeling and simulation of fire spread (Muzy et al., 2008). 
  

 
Figure 2. Active components 

 
 
Design choices 

 
Many choices can be achieved at the modeling and simulation levels for enhancing efficiency. 
First according to the degree of reusability requested, modularity can be modulated at the 
modeling and/or simulation levels. Obviously, reducing the degree of modularity, reduces the 
degree of reusability of components. Full modular components are designed in an autonomous 
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way. Reducing this modularity, the internal structure of models depends of other models. 
Another solution to enhance efficiency is to design the models to automatically track activity. 
The efficiency here is inversely proportional to the precision and depends on the amplitude of the 
filtering threshold chosen [more details about the error induced in (Muzy et al., 2008)].  
 

Fire spread modeling through a virtual laboratory 

 
In Physics, physicists use equation-based structures to represent fundamental identified physical 
mechanisms involved in both fire and diffusion processes. Parameters of equations have been (or 
are) identified through laboratory experiments. These parameters do not correspond directly to 
the parameters intuitively identified as influencing the fire spread (slope, wind, biomass, 
humidity). The latter parameters are split in many parameters, which aim at describing very 
finely physicochemical mechanisms (gas dynamics, temperature radiation, etc.) These models 
are more adapted to fine-grain physics-based laboratory experiments than actual fire spread. 

Computer scientists have a different approach. First their laboratory consists only of one 
or many computers. They directly build models and simulate them. Then, they verify if the 
model behavior fits their expectations describing consistent dynamics. They calibrate their model 
adjusting parameters exploring parameter values through experimental plans. After, the first 
constructive experiments designed by computer scientists are described. 
 
Experimental model 1: Near-to-near propagation including firebrands 
 
Because of the numerous phenomena (entangled and spatially distributed) occurring uniformly 
and in parallel in a fire spread, cellular automata constitute an appropriate paradigm to model and 
simulate them. A first very simple program in C++ with a textual interface is sufficient to draw a 
first fire spread model. 
 
Cells of the cellular automaton hold a discrete state constituted of symbols as follows: 

‘.’  : The cell is unburned, 
‘*’ : The cell is burning, 
‘x’ : The cell is burnt. 

 
Fire propagation is twofold: 

1. Near-to-near propagation: Every burning cell gets one chance over eight (for the eight 
neighbors) to ignite a neighbor. In case of wind, neighbors are selected according to the 
strength and direction of the wind. 

2. Firebrand propagations: Every burning cell produces one firebrand in the direction of the 
wind. The distance depends on the wind strength. Distances of the firebrand are 
calculated as follows:  

 

 

 
Where,  and  are the distances of firebrand projection in directions  and ,  
is a random real number, (i,j) are the coordinates of cells,  and  are the wind 
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directions,  is the wind strength and  is a parameter adjusted to observe modification of 
fire spread. 

 
This very simple model allows obtaining consistent results as represented in Figure 3. 
 

 
Figure 3. Fire spread under a wind of force 2 in South-West direction 

 
 
 
Experimental model 2: Pseudo-random distributions of firebrands 
 
Here, cells have two states: unburned and burning. Parameters correspond to: (i) The strength of 
the wind, and (ii) The wind direction. The direction corresponds to the angle value respect to a 
horizontal wind. Fire propagates only by firebrands. The distance D of projection is determined 
through a negative exponential law whose mean is proportional to wind strength. Thus, the 
greater is the wind strength, the more distant would be the firebrand. The direction is calculated 
according to wind direction and to a noise parameter  through a Gaussian law of mean 
equal to zero and deviation inversely proportional to D. Thus, when the distance is large, the 
firebrand direction corresponds to the wind direction (β is minimum). When the distance is 
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small, the firebrand is projected in whatever direction. This latter case corresponds to a near-to-
near propagation. 

Results are presented in Figure 4. Some imperfections of the model can be observed. 
Some cells inside the fire front remain unburned. However, the firebrand method provides 
acceptable results. The model is sensible to the proportions chosen between wind strength and 
the mean of the exponential law. 

 

 
After 20 iterations 

 

 
After 35 iterations 

 
Figure 4. Fire spread under a wind of 30 km/h in North-West direction 

 
Final Experiment 
 
These simple models allowed to design and implement a final simulator. The finite states used 
can be refined using a biomass decrease in cells. According to the level of degradation of cells, 
corresponding states are selected (unburned, heated, burning and burned). Another difficulty 
relates to the number of parameters to calibrate. This number needs to be limited to be able to 
explore the full state space of the final model. The latter implements the near-to-near propagation 
of model 1 and firebrand propagation of model 2. 
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Implementation 
 
A design pattern Model-View-Controller is used. This design pattern mixes the Observer and 
Strategy ones (Gamma et al., 1994). It allows: 

• Separating variable aspects from static aspects of the implementation, 
• Favoring the composition against inheritance, 
• Programing interfaces, 
• Reducing couplings between objects. 

 
Entities of the fire spread simulator according to the Model-View-Component are: 

1. Model: which contains the whole simulator, 
2. View: which provides the window interface, 
3. Controller: which manages events from the window interface and transfers changes from 

view to model. 
 

The pseudo-random generator used is the Mersenne Twister (Matsumoto and Nishimura, 
1997) from SSJ java library (L’Ecuyer and Buist, 2005). Figure 5 depicts the main diagram of 
the whole implementation. The class Simulator is composed of Tree(s) and Shrub(s) and 
replications are used for representing spectral analyses (Hill, 1997). By replicating simulations, 
the whole span of exponential and Gaussian laws can be explored. Every replication is saved. At 
the end of the simulation, spectral analyses are computed. Spectral analyses correspond to a sum 
of probabilities of fire spread. In the Simulator class a method for image analysis is 
implemented. This method converts an image in Element(s) (burnable and unburnable). 
 

 
 

Figure 5. Simulator class diagram 
 
Interface and simulation results 
 
Parameters of the interface are: Strength and directions of the wind, as well as the real-time 
simulation speed. Actual aerial pictures can be uploaded (cf. Figure 6).  
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Figure 6. Interface parameters 

 
Figure 7 depicts a fire spreading. It can be noticed that the unburnable elements constituted of 
the road are not burned. 
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Figure 7. After 141 iterations, with a wind set to West direction at iteration 120. 

 
Figure 8 presents the replication results of fire propagation. 
 

(a) 
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(b) 
 

Figure 8. (a) Ignition on the top left corner after 10 replications of 400 iterations each without 
wind (b) Ignition on the top left corner after 10 replications of 400 iterations each with a wind of 

50 km/h in East direction 
 
 
Last, Figure 9 represents possible fire propagation in 3D in a virtual environment (near ISIMA 
building). 
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Figure 9. Wind in East direction of 121 km/h. 

 

Conclusion and perspectives 

In this study advantages of stochastic modeling for implementing spatial constraints have been 
presented. In several cases, stochastic modeling is the only strategy available to represent the 
distant and discrete interactions. The formalization in DEVS of stochastic modeling is possible. 
In (Zeigler, 1976), a formal specification of pseudo-random generators is described. Pseudo-
random generators being deterministic, DEVS describes stochastic models in terms of systems 
embedding pseudo-random generators. Recently, in (Kofman and Castro, 2006), a formal 
extension of DEVS has been provided. A DEVS-based description of stochastic models through 
STDEVS would allow the modeling and simulation community to explicitly explore this 
powerful domain. DEVS popularity denotes a right level of definition. It is abstract enough to 
allow the development of new concepts and structures. It is precise enough to avoid ambiguities 
and guide modelers. Since its first book definition (Zeigler, 1976), many developments have 
been achieved. A constant critical evaluation of these developments is necessary to enhance the 
whole framework. However, these developments have to be at the right level of abstraction. 
Because of the increasing complexity of hardware and software architectures, metalevels (and 
automatic mappings from higher to lower levels) need to be designed. Considering complex 
systems as multilevel and highly composed, detecting and mapping simulation structures on 
activity will be more and more necessary. Activity tracking mechanisms will allow improving 
DEVS efficiency and abstraction. 

Integrating explicitly modularity and efficiency issues, as well as experimental plans and 
stochastic modeling strategies in DEVS, (computer) scientists will gain freedom and dispose of a 
more complete and powerful modeling and simulation framework. 
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