UsiNG L'T'T'NG FOR RUNTIME MONITORING OF MODELS
OF REAL-TIME EMBEDDED SYSTEMS

NONDINI DAS

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

October 2016

Copyright (© Nondini Das, 2016

Abstract

Model-Driven Development (MDD) is used for reducing the complexity of a software
development process. One of the principal features of MDD which can make it very
effective is the support for automatically generating code from the modeling artifacts.
An example of MDD is the development of complex real time embedded software
systems using the real time profile of UML (UML-RT). Development of this software
is difficult mainly due to the requirement to satisfy timing constraints in a resource-
constrained environment. Determining the correctness of this requirement is very
important for ensuring the integrity and reliability of a real time software system.
This research focuses on examining the correctness of timing information related to
UML-RT models. The Linux Trace Toolkit: next generation (LTTng) is used for
monitoring an executable real-time application, where the code is generated from
UML-RT models using the open-source Papyrus-RT tool. Some of the key research
outcomes include the ability to trace a user application, to read a trace file, display
the trace results on the model level and display associated timestamps in textual
form through the implementation of an Eclipse plugin. In addition, support is also
provided to verify the actual timing information of a trace file against the desired
user input. This feature enables users to find out the occurrence of any timing delay.

Finally, three case studies are conducted using the prototype Eclipse plugin.

Acknowledgments

First and foremost, I would like to extend my sincerest gratitude to my supervisor, Dr.
Juergen Dingel, for giving me the opportunity to work in an excellent atmosphere. His
proper guidance and insightful comments on my work throughout this thesis showed
me the right direction. This thesis would not have been possible without his constant
support.

Then I would like to extend my sincere appreciation to my husband Tuhin Das
for staying by my side all the time and giving me all the support and mental strength
I needed during the stressful time.

I would also like to thank my project partners Leo Juwaidah and Suchita Ganesan
who were very supportive, co-operative and friendly throughout the project period.

Next, I would like to thank Ernesto Posse, who is an employee at Zeligsoft, Canada.
Whenever we have an issue with the Papyrus-RT tool, Ernesto was there to help us.

I would also like to thank my lab mates David Andrews, Amal Khalil, Mark Fis-
cher, Mojtaba Bagherzadeh, Reza Ahmadi and Raquel Oliveira for their insightful
feedback during the group meetings. I would like to extend special thanks to my col-
league Nicolas Hili whose assistance helped me solve a number of technical problems
during the completion of the thesis.

I would also like to thank my other lab mates Eric Rapos, Doug Martin and Nafisa

11

Kahani from the Software Technology Lab for making the lab environment very nice
and enjoyable.

Last but not least, I would like to thank my family members, my mother, in-laws,
relatives and friends for giving me constant support throughout my graduate life at

Queen’s.

111

Contents

Abstract

Acknowledgments

Contents

List of Tables

List of Figures

List of Listings

List of Acronyms

Chapter 1: Introduction

1.1
1.2
1.3
1.4
1.5

Motivation L
Problem statement L.
Overview of the Proposed Approach
Hypothesis
Organization of Thesis

Chapter 2: Background

2.1
2.2
2.3

2.4

2.5

Definitions of Model-Driven Development and Relevant Terminology .
Real-Time Embedded System
UML-RT and Papyrus-RT
23.1 UML-RT
2.3.2 Papyrus-RT
LTTng Tracing Tool
24.1 Core Concepts of LTTng
2.4.2 Tracepoint
2.4.3 Instrumentationo 0oL
Xtend

v

ii

iv

vi

vii

xi

> s WO N~ e

Chapter 3: Related Work

Chapter 4: Using LTTng to check real-time specifications of models
of real-time embedded systems

4.1 Project Overview
4.2 Monitoring Configuration
4.2.1 Monitoring Profile 0L
4.2.2 Creating pair of model elements
4.3 Code Generation
4.4 Tracing using LTTng and Trace Display
4.4.1 Offline Tracing
4.4.2 Online/Live Tracing
4.5 Implementation
4.5.1 Implementation overview
4.5.2 Script Generation Lo
4.5.3 Reading of Trace
4.5.4 Display Traces o
4.5.5 Time constraint validation

Chapter 5: Proof of Concept

5.1 PingPong
5.2 Widget Production
5.3 Rover
5.3.1 Offline Tracing
5.3.2 Online/Live Tracing
Chapter 6: Conclusion
6.1 Summary
6.2 Limitations
6.3 Future Work
6.4 Conclusion
Bibliography

Appendix A: Sources for Generating Scripts

27

32
33
34
36
38
40
42
46
A7
48
49
o1
52
o4
54

56
56
62
69
79
79

81
81
82
82
83

84

92

List of Tables

2.1 Commands for managing tracing session [4]

vi

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

Proposed approach overview 3
Relationship between the different MD* acronyms [37] 8
System Classification (Adapted from [46]) 10
UML-RT capsule and class notation on class diagrams [17] 12
Structure diagram of a UML-RT capsule 13
UML-RT protocol description (class diagram) [17] 16
UML-RT Capsule State-machine Diagram [17] 17
Screenshot of Papyrus-RT tool 20
Overview of the core concepts of LTTng [10] 23

Part of a textual representation of a scenario-based trace of PacMan [55] 27

Part of a textual representation of a state-based trace of PacMan [55] 28

Monitoring Overview [41] L 33
Class diagram of monitoring configuration 35
LTTng Profile 37

The Running state and properties before adding monitoring information 37
The Running state and properties after adding monitoring information 38

UI for supporting monitoring configuration 38

vii

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

4.16
4.17

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11

Dialog for inputting a time interval between two selected model elements 39

Tracing of generated code 43
Running a script to stop tracingo 43
Display of traces in textual form 44
Display of traces in Model level 45
Display of offline trace 46

Display of time difference through selecting two lines from trace details 47
Live tracing 48
Implementation overview of “TraceDisplay” plug-in (Left column rep-

resents the classes inside the plug-in, right column represents the im-

ported packages in the associated classes) 50
Screenshot of a generated script for Rover model 52
Time constraint validation 54
Structure diagram of PingPong model 57
State-machine diagram of Pinger Capsule o7
State-machine diagram of Ponger Capsule 58
Trace display of the PingPong model 59
Trace display by highlighting a transition of the PingPong model . . . 60
Time difference between two traced events in the PingPong model . . 61
Structure diagram of the Widget production model 62
Statemachine diagram of the ControlSoftware capsule 63
Statemachine diagram of the Workstation capsule 63
Statemachine diagram of the Robot capsule 64
Trace display in the Widget Production model 65

Viil

5.12

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

5.25

5.26
5.27

Trace display in the Widget Production model by highlighting the Pro-
ducing state
Time constraint validation in the Widget Production model
Violation of time constraint in the Widget Production model
The Rover
Rover Architecture
Raspberry-pi GPIO Pin [19]
Rover Wiring Diagram [19]
Structure diagram of Rover Top capsule
Control Software state-machine diagram of the Rover model
Detection state-machine diagram of the Rover model
State-machine diagram of Engine Controller
Trace display in the Rover model
Trace display of the Rover model by highlighting the “MovingBack-
ward” stateo
Trace display of the Rover model by highlighting the “TurnRight”
transition
Violation of a time constraint in the Rover model

Screenshot of live traces of the Rover model

X

List of Listings

2.1
2.2
4.1
4.2
Al
A2

A simple hello world program in Xtend [25] 25
Generated hello world program in Java [25], 26
Sample code generated from model 40
Generated Code with Tracepoints 41
Start Trace Script Generator 92
Stop Trace Script Generator 93

List of Acronyms

CTF Common Trace Format.

GPIO General Purpose Input/Output.

JDK Java Development Kit.

LTTng Linux Trace Toolkit: next generation.

MBE Model Based Engineering.
MDA Model Driven Architecture.
MDD Model-Driven Development.
MDE Model Driven Engineering.
Papyrus-RT Papyrus for Real-Time.
RTES Real-Time Embedded System.

SDK Software Development Kit.

UML-RT UML for Real-Time.

x1

Chapter 1

Introduction

1.1 Motivation

Modern software systems can be extremely large and complex (e.g., [9]). It is hard
to develop efficient software applications using traditional code based processes. The
amount of difficulties increases when it comes to test the software and refine possibly
millions of lines of code after finding bugs in a product. These challenges have moti-
vated the development of model driven development (MDD). A major benefit of using
MDD is the possibility of developing large, efficient software systems without having
to code millions of lines. This advantage encourages software developers to use MDD
as the means of developing and refining large and complex software systems [31].
Similar to other software systems, proper quality assurance of modern real-time
embedded systems (RTES) is important. Software systems in telecommunications,
aerospace and defense are usually very large and extremely complex. This makes the
quality assurance of these systems very difficult. Missing a time interval or experienc-
ing a slight delay can cause extreme problems in RTES. As Bran Selic, the creator of

the real-time profile of UML (UML-RT'), mentioned in [61], “The only characteristic

1.2. PROBLEM STATEMENT 2

common to all real-time software systems is timeliness; that is, the requirement to
respond correctly to inputs within acceptable time intervals”. As an example, in a
telecommunication system, any violation in timing requirements can cause very poor
user satisfaction. In hard real-time systems, for example, in aerospace or medical de-
vices, the consequence can be fatal as such violations can lead to significant injuries,
or even to loss of human lives.

This research focuses on quality assurance of RTES developed using UML-RT.
Quality assurance typically has two phases: detecting the source of the problem and
providing a solution to the problem. We have worked on the detection of problems

via runtime monitoring.

1.2 Problem statement

One of the main advantages of developing real-time embedded systems using MDD
is the automatic generation of code using MDD tools. But quality assurance of these
real-time systems can be challenging. This is because if a user faces an issue in a real-
time system, it is hard to find out the exact location in the model where the problem
has occurred. It is almost impossible to modify the generated code for solving a
problem without possibly introducing a wide number of new problems because the
automatically generated code is usually not easy to understand. Therefore, it is
important to find the source of problem on the model level. One way to do this
is by tracing the generated code while running a real-time system. There are some
real-time modeling tools which provide tracing facilities. For instance, IBM Rational
RoseRT [6] and IBM RSA-RTE [5] are tools for creating models for real-time systems,

and automatically generate traces after executing models. But these are proprietary

1.3. OVERVIEW OF THE PROPOSED APPROACH 3

tools and not suitable for non-commercial purposes such as research and academic
usage. Recently, an open-source tool Papyrus-RT has been introduced for developing
models of real-time embedded systems [59]. This research is conducted to contribute
to the development of Papyrus-RT through providing support for run-time monitoring

of UML-RT model execution.

1.3 Overview of the Proposed Approach

While conducting this research, we have focused on validating the timing requirements
of a real-time system. The goal is to find out if there is any timing delay in the system
that violates the requirements. We propose an approach for monitoring runtime

information of real-time embedded systems using the LTTng tool [10].

Design

Model

., \
Display ;_.-f’/ Code
Result / \ Generation

W

Generated

Trace file Code

—

Execution
& Monitor

Figure 1.1: Proposed approach overview

1.4. HYPOTHESIS 4

Fig. 1.1 shows an overview of the proposed approach. We have used the Papyrus-
RT tool for designing a model and generating code from it. We have used the LT Tng
tool to detect any timing delay or latency by monitoring the execution of the generated
code. This gives us traces with timing information which we can display on the model
level. Thus, with this approach we can detect if there is any delay and we can view

the associated model element where the problem occurs.

1.4 Hypothesis

We hypothesize that it is possible to use open source monitoring tools such as LTTng
to monitor the execution of code generated from models and to display the resulting

trace on the model level.

1.5 Organization of Thesis

Chapter 2 presents some background discussion. We discuss Model-driven devel-
opment (MDD), real-time embedded systems, the modeling language UML-RT, the
MDD tool Papyrus-RT, the tracing tool LTTng and the language Xtend.

Chapter 3 discusses some related work. We present similarities and differences
between our work and the existing works.

We start Chapter 4 by giving an overview of the whole project. Then we present
a brief description of the first two parts of the project: monitoring configuration and
code generation. This is followed by a detailed description of our work, i.e., “Tracing
using LTTng and Trace Display.”

Chapter 5 shows the proof of concept of our work by presenting three case studies.

1.5. ORGANIZATION OF THESIS 5

Finally, in Chapter 6, we summarize our work, followed by discussing its limita-

tions. We also present some possible future work.

Chapter 2

Background

This chapter discusses some background materials regarding MDD, real-time embed-

ded systems, UML-RT, Papyrus-RT, LTTng and Xtend.

2.1 Definitions of Model-Driven Development and Relevant Terminology

The term model-driven development (MDD) is defined in a number of ways in the
current state of the art.

The ability of MDD to transform a conceptual model into a working real world
application is captured in the definition provided in [57]. According to the authors
in [57], “Model-driven development is simply the notion that we can construct a model
of a system that we can then transform into the real thing”.

The power of MDD in dealing with the complexity of software development is
highlighted in the definition provided by Atkinson and Kuhne. As they mentioned
in [30], “Today’s object-oriented languages let programmers tackle problems of a
complexity they never dreamed of in the early days of programming. Model-driven
development is a natural continuation of this trend. Instead of requiring developers

to spell out every detail of a system’s implementation using a programming language,

2.1. DEFINITIONS OF MODEL-DRIVEN DEVELOPMENT AND
RELEVANT TERMINOLOGY 7

it lets them model what functionality is needed and what overall architecture the
system should have”.

On the other hand, the definition provided by Brent et al. in [50] talks about
the shifting of software development abstraction with the advent of MDD. Accord-
ing to them, “Model-driven development (MDD) is a software-engineering approach
consisting of the application of models and model technologies to raise the level of
abstraction at which developers create and evolve software, with the goal of both
simplifying (making easier) and formalizing (standardizing, so that automation is
possible) the various activities and tasks that comprise the software life cycle” [50].

As a summary of these different viewpoints, MDD is a development process where
models are the primary artifacts of development rather than code. A model in this
context is a reasonable set of consistent elements to describe something (e.g., a net-
work, bank, automobile, or telecommunication system) built for some purpose that
is consistent with a particular form of analysis. For example, models can be used for
communicating ideas between people and machines, checking of completeness, anal-
ysis of concurrent systems with respect to race conditions, generation of test cases,
analyzing the viability in terms of estimating the cost of development and the fea-
sibility of transformation into an implementation [57]. In MDD, developers do not
need to write thousands of lines of code for implementing complex software systems
because of the possibility of generating code and documentation automatically from
the models with the help of the MDD process [37, 51, 52, 62].

There exist some other acronyms closely related to MDD, i.e. MDA, MDE and

MBE. The definitions of these acronyms are as follows:

2.1. DEFINITIONS OF MODEL-DRIVEN DEVELOPMENT AND
RELEVANT TERMINOLOGY 8

Figure 2.1: Relationship between the different MD* acronyms [37]

e Model Driven Architecture (MDA): MDA is a subset of MDD because, by def-
inition, MDA is the particular vision of MDD which has been proposed by the
Object Management Group (OMG) [14, 15] and also depends on the use of
OMG standards [37].

Model Driven Engineering (MDE): MDE contains a number of model-based
tasks of a complete software engineering process including model-based evolu-
tion of the system, model-driven reverse engineering of a legacy system and so

on. Therefore, MDE can be regarded as a superset of MDD [37].

Model Based Engineering (MBE): MBE is known as a softer version of MDE.
It is a process where software models play an important role even though they
are not necessarily the key artifacts of the development process. For example,
the designers specify the domain models of the system in the analysis phase of
a development process; but then these models are directly handed out to the

programmers as blueprints to manually write the code. Therefore, in this case,

2.2. REAL-TIME EMBEDDED SYSTEM 9

although models still play an important role, they are not the central artifacts

of the development process. MBE is considered as a superset of MDE [37].

Fig. 2.1 shows a graphical overview of the relations among different model based
development processes.

In our research, among these approaches we have focused on model-driven develop-
ment approach where MDD has been used to generate code for a real-time embedded

system. The following section provides background on real-time embedded systems.

2.2 Real-Time Embedded System

To talk about real-time embedded systems, we should present the definitions of em-
bedded system and real-time system.

In the computing world, the term “embedded system” means an electronic system
that is designed for performing a dedicated function and is often embedded within a
larger system [46]. The computing power of an embedded system is a fragment of a
larger system and it does not provide some standard computing service to users as its
primary job. For example, a desktop computer is not an embedded system (unless it
is within a device) because it can be used for multiple purposes and provides standard
computing services. However, a computerized microwave oven or a VCR is an example
of an embedded system as the embedded computing power of these systems is part
of a larger system and dedicated for a specific function [44].

If a system needs to respond to a service request within a certain amount of
time, it can be considered a real-time system [46, 38, 53]. In a real-time system, a
real-time computing constraint gets attached to all the tasks imposed by each of the

incoming service requests. The associated real-time computing constraint is known

2.2. REAL-TIME EMBEDDED SYSTEM 10

as the timing constraint of the related task. The timing constraint of a task is usually
specified in terms of its deadline, the time instant by which the execution of the task
needs to be completed. A timing constraint can be either a hard or a soft constraint
depending on the consequences of missing a task deadline. The consequence of a
missed deadline in a hard timing constraint is fatal. A late response in hard real-
time systems, i.e., in automobile systems or medical devices, is usually unacceptable
and becomes useless. In contrast, in a soft real-time system, i.e., in an audio-video
chatting software, the consequence of a missed deadline is undesirable but tolerable.
Although it would result in degraded quality, a late response in these systems is still
useful as long as it is received within some acceptable range of time. An actual system
may have both soft and hard timing constraints. In a soft real-time system, all the
tasks have soft timing constraints, whereas, for a hard real-time system, the key tasks
of the system need to have hard timing constraints [46].

Therefore, a real-time embedded system means a real-time system which is de-

signed to be embedded within some larger system [46].

Embedded System

Real-Time Embedded System

Real-Time System

Figure 2.2: System Classification (Adapted from [46])

2.3. UML-RT AND PAPYRUS-RT 11

Fig. 2.2 shows a classification of the above mentioned systems where real-time
embedded systems lie in the intersection between the real-time and embedded system.

A comprehensive definition of real-time embedded system is given by the authors
of [48]. According to them, “Real-time and embedded systems are computer-based
systems that interact with the physical world. This means that they are not only
coupled to the physical world but that they are also constrained by the physical
capacities of their underlying hardware and/or software platforms”.

Developing large real-time embedded systems is a difficult task especially when
it comes to manual coding because it increases the risk of bugs and failure. On the
other hand automatic code generation from models could be a solution for this kind
of problem. Thus, model-driven development (MDD) has been proposed to facilitate
the development of real-time embedded systems (e.g., [31, 36]).

There is a number of modeling languages used for MDD, for instance, UML,
SysML, SDL, ORM [12].

In our research we have used the real-time profile of UML (UML-RT) for capturing
the structure and behaviour of an embedded real-time system.

The following section will discuss UML-RT and Papyrus-RT, a tool that we have

used for developing UML-RT models.

2.3 UML-RT and Papyrus-RT

2.3.1 UML-RT

UML (Unified Modeling Language) is a graphical language to specify, visualize, con-
struct, and document software systems [24]. A profile in UML is used for customizing

UML models for particular domains and platforms by providing a generic extension

2.3. UML-RT AND PAPYRUS-RT 12

mechanism. Extension mechanisms allow the refinement of the standard semantics in
a strictly additive manner and it prevents them from contradicting standard seman-
tics [60, 18, 29]. UML-RT is the real-time profile of UML. UML-RT provides a unified
framework to model and analyze real-time systems. To be precise, for facilitating the
modeling of run-time structures, UML-RT adds five stereotypes to standard UML,
where a stereotype is a mechanism to classify or brand a model element and intro-
duce a new type of modeling element [29, 23]. The five stereotypes are: capsule, port,
protocol, protocol role and connector [40]. We present a brief discussion of these

stereotypes in the following paragraphs.

I E] «capsule» E]
«capsule» -

TrafficLight ;
E Intersection E E IdProvider E
+ timerld: UMLRTTimerld [1]
(=] + myld: int [1]
[=3] + idProvider: IdProvider [1]

|x___‘# # trafficLight_NS: TrafficLight [1] |1___‘# # nextld: int [1]

|1__—‘f_IL # trafficLight_EW: TrafficLight [1]

ﬁ + get(): int

Figure 2.3: UML-RT capsule and class notation on class diagrams [17]

A UML-RT model consists of passive classes and capsules.

Passive classes are similar to classes in any object-oriented language, i.e., Java.
Passive classes can be used as properties of a UML-RT capsule. They can also be
used for message data parameters. In addition to defining operations, the behaviour
of a passive class can also be represented using a state-machine. A state-machine is
a graph of states and transitions that is used for describing the response of an object
of a given class to the receipt of outside stimuli [17, 13]. Fig. 2.3 shows a passive
class named “IdProvider” connected with a capsule through a dotted arrow which

indicates that “IdProvider” is used by the capsule.

2.3. UML-RT AND PAPYRUS-RT 13

In contrast, capsule elements in UML-RT are used to represent independent flows
of control in a system. They are known as the fundamental modeling element in
UML-RT development. Capsules have some similar properties as classes [32] of UML
diagrams. For instance, capsules can contain operations and attributes. They can
also contain properties like dependency, generalization, and association relationships.
Capsules can also contain one or more sub-capsules [13].

An attribute is a variable which can be specified with a type, an initial value
and multiplicity. In Fig. 2.3 “myld” is a variable having integer type and also is an

attribute of the TrafficLight capsule.

«Capsules
E Top
~ timerPort: Timing [1]
«RTPort=
=" l«RTPort> + PongPort: ~PingPongProtocol [1] —
«CapsulePart» [] | | «capsulepart»

i # pinger: Pinger [1] «RTPort»| c; # ponger: Ponger [1]

+ PingPort: PingPongProtocol [1]

Figure 2.4: Structure diagram of a UML-RT capsule

In addition to these properties, a capsule can also contain a structure diagram
and a behavioural diagram. A discussion of these capsule properties is presented in

the following subsections.

Structure diagram

The structural aspects of a capsule are represented in a structure diagram, which
depicts the elements that the capsule owns along with their inter-connections (see

Fig. 2.4). A capsule can have capsule parts, ports and connectors.

2.3. UML-RT AND PAPYRUS-RT 14

A capsule part is an instance of a capsule which is contained by another capsule
(see Fig. 2.4).

Ports are objects for sending and receiving messages to and from capsule instances.
They are owned by the capsule instance because they are created and destroyed along
with the owner capsule. Each port has its identity, which is distinct from the identity
and state of its owning capsule instance. The main benefit of having message-based
interfaces in UML-RT is the separation of the capsule instance from the outside
environment. A capsule has no knowledge of its context outside the message interfaces
which makes it much more flexible and robust than regular objects [13]. An example of
a message port is shown in Fig. 2.4 where Pinger capsule has a port named “PingPort”
and Ponger capsule’s port is named as “PongPort”.

Types of port can be categorized in multiple ways depending on the visibility, the
connector types and the message termination points.

Visibility:

e Public - Ports that are part of a capsule interface are known as public ports.

In a capsule structure diagram these ports are shown as located on the capsule
boundary. Public ports may be visible from both outside and inside of a capsule

instance.

e Protected - Protected ports are used for connecting capsules to the contained
capsule roles. In contrast to their public counterparts, these ports are not visible

from the outside of a capsule since they are not part of the capsule interface.
Connector type:

e Wired - Wired ports must be connected by a connector to other ports for com-

municating messages. In a capsule structure diagram, these are the ports that

2.3. UML-RT AND PAPYRUS-RT 15

are graphically connected to other ports.

e Non-wired - Non-wired ports are used for modeling dynamic communication
channels. In contrast to wired ports, graphical connectors are not used for
connecting these ports to other port instances. Rather, non-wired connectors

are created and destroyed dynamically during run-time.
Message Termination Point:

e Relay - Relay ports are by nature public and wired implicitly. They are used
for modeling connections that pass signal events directly to protected capsule
components without being processed by the capsule itself. All the signal events
arriving at a relay port can be lost if the port is not connected to an internal
component. In general, relay ports can be used for exporting the interfaces of

the contained capsule roles.

e End - Unlike relay ports, end ports can be public or protected, wired or non-
wired. Messages sent to an end port are intended to be processed directly by
the capsule behaviour. End ports are the final destination of all signal events

communicated in UML-RT.

For the specification of messages that can be sent to and from a capsule port, a
port is associated with a protocol role. A protocol role is the specification of a set
of messages that can be received (in) and sent (out) from the port. Essentially, a
protocol role defines a port type.

Protocol: A protocol is a communication pattern that represents a set of messages
that can be exchanged between two capsule instances. Basically, it is a contractual

agreement portraying the valid types of messages that can be communicated among

2.3. UML-RT AND PAPYRUS-RT 16

«protocol»

..+ ProtocolNotation

«Interface» «Interface» «Interface»
@ ProtocolNotation @ ProtocolNotationSym @ ProtocolNotation~

83 +inSignal() 83 +inOutSignal(3 + outSignal)

Figure 2.5: UML-RT protocol description (class diagram) [17]

the participants in the protocol. A set of participants, each of which plays a specific
role, can be associated with a protocol. Each such protocol role is represented by a
unique name and a specification of messages that can be received by that role as well
as a specification of the messages that can be sent by that role (either set could be
empty).

Therefore, a set of valid signals can be specified along with their directions using
a UML-RT protocol. A signal in this context is a message that can be sent either
synchronously, or asynchronously. Protocols consist of a list of incoming (provided)
and outgoing (required) signals as well as any associated data parameters [13]. Fig. 2.5
shows a class diagram of protocols having a number of incoming/outgoing signals
where the left two arrows indicate incoming signals and the two arrows on the right
hand side mean outgoing signals.

The purpose of connectors is to capture the key communication relationships
between capsule roles. They interconnect capsule roles that have similar public inter-

faces, a.k.a. ports. A key feature of connectors is their ability to interconnect only

2.3. UML-RT AND PAPYRUS-RT 17

the compatible ports. In Fig. 2.4, a connector is shown with a solid line connecting

two ports.

State-machine diagram

A state-machine [61, 63] and its components are used for describing the behavioural
aspects of a UML-RT capsule. The diagram that contains a UML-RT state-machine

is called a state-machine diagram (see Fig. 2.6).

4 «rTStateMachines N
Capsule StateMachine

«FTRegion:

. - urTStates)

State1

Figure 2.6: UML-RT Capsule State-machine Diagram [17]

In other words, a state-machine diagram is used for describing the life history of

objects of a capsule. A state-machine can be comprised of states, transitions and

2.3. UML-RT AND PAPYRUS-RT 18

action code for model execution.

States:

A state represents a situation during the life time of an object where certain
incoming events can be processed. A state-machine is usually composed of a top
state, which can itself contain any number of other states. A state can have the
following elements:

Name - A name must be associated with a state so that it can be distinguished
from other states in the same context.

Entry/Exit actions - An entry action is executed whenever a state is entered,
regardless of which incoming transition has been triggered. Similarly, an exit action
is executed whenever we leave the state using any outgoing transition.

The entry point of a state-machine is represented using an initial state which can
have only one outgoing transition, the initial transition. An initial state is represented
using a small filled circle (see Fig. 2.6).

A state can be composed of a number of other states, called substates. This allows
modelers to handle the complexity of a capsule state-machine by abstracting away
detailed behaviour into multiple levels. If a state does not have any substate inside,
it is called a simple state. In contrast, a composite state can have any number of
substates. State elements can be nested to any hierarchical level [60, 13]. Fig. 2.6
shows a capsule state-machine diagram with three states in addition to the initial
state. Among these three states, “Statel” is a composite state as it consists of a
number of other states.

Transitions: A transition represents a relationship between two states: a source

state and a destination state. When an object in the source state receives a specified

2.3. UML-RT AND PAPYRUS-RT 19

event and certain conditions are met, the behaviour will move from the source state to
the destination state through the execution of the associated transition [13]. Fig. 2.6
depicts a number of transitions that are represented by a solid line with an arrow.
For instance, in Fig. 2.6, “onSigl” is a transition which can be executed if the capsule
receives the specified message while it is in the “Statel.1” state and the execution
will take the system to the “Statel.2” state.

To summarize, UML-RT is a standard language for modelling real-time embedded
systems. There are several tools for developing UML-RT models. IBM RoseRT and
IBM RSA-RTE are well-known proprietary tools for UML-RT development. In our

research we have worked with an open source tool called Papyrus-RT.

2.3.2 Papyrus-RT

Papyrus-RT is an industrial-scale, complete modeling environment for developing
complex, large real-time embedded cyber-physical software systems [17].

It is a new open-source implementation of a complete UML-RT development en-
vironment including a graphical modelling environment, a code generator and a run-
time system. Papyrus-RT allows UML-RT community to develop models that are
executable. Papyrus-RT is implemented on top of Papyrus, a well-known UML mod-
elling environment on Eclipse [16] [59].

In our research we have worked with a tool called “LTTng” to monitor the execu-
tion of code generated from UML-RT models. We will talk about LTTng in the next

section.

2.4. LTTNG TRACING TOOL 20

(R 2D E-EABE DS BedvhrErReH v o SRR I N il v ey y G D - H v QuickAccess (trte3)) || @8 & (D)
(5 Project Explorer 5 5 % ¥ = B 7 *IncGeninheritance.di &t =B
~@ IncGeninheritance & Palette b
peGeninheritance “RTStateMachine» L®a: -8

(3 READ_ME txt StateMachinel

© Initial
@ Finalstate
@ shallowHis...
® DeepHistory
B Fork

3 Join

$: Choice

% Model Explorer 52 =0 & Junction

o : © Entrypoint
EE@Bres v

® Exitpoint
#a Diagram Class Diagram X.Jerminate
ETop 3 Edges
:psu:a; % Transition
B capsule N
it :’. = % Link
8a Diagram Structure Stereotypes n 7 ContextLink
8a Diagram Capsule constraints diagram @ welcome | %g SmDiagram 2
@8 Diagram Other stereotype constraints diagram
X - ==
Diagram General stereotypes = i = s
Diagram Protocol Stereotypes Diagram © StateMachinel
BaDiagram Stereotypes
Ba Diaaram Constraints uML Name StateMachine1
& Outline 22 @ = o G’""["““ Is abstract true © false s active true © false
Profile
= style Is leaf true © false Is reentrant O true false
.‘ﬁ1j Appearance visibility public e
General
RulersAnd Grid | SPecification <Undefined> =) (&
[Advanced Use case %))~

Figure 2.7: Screenshot of Papyrus-RT tool
2.4 LTTng Tracing Tool

LTTng stands for “Linux Trace Toolkit: next generation” [10]. It is used for tracing
runtime information of a software application. Tracing is a method used for under-
standing the execution behaviour of a running software system. Any software used
for tracing is known as a tracer and is theoretically similar to a tape recorder. It
may be possible to trace both the user application and the operating system at the
same time. This can create an opportunity to detect a wide range of problems. Often
tracing is being compared to logging. While there are differences between tracers and
loggers, tracers are designed for recording very low-level events that happen much
more frequently than log messages. Logging is suitable for very high-level analysis of
less frequent events [10].

LTTng is a highly efficient open source software package used for tracing the Linux

2.4. LTTNG TRACING TOOL 21

kernel, user applications and libraries at the same time [10, 64]. While other tracing
tools can slow down the traced software significantly, LTTng is known for keeping

the runtime overhead to a minimum [64, 43].

2.4.1 Core Concepts of LTTng

This section discusses four primary concepts that need to be dealt with while using
the LTTng tool: Tracing session, domain, channel and event.

Tracing Session

A tracing session is just like any other session e.g., an website session. While tracing
using LTTng everything happens in the scope of a tracing session. It is also known
as a container of domains, channels and events [10].

Table 2.1 presents commands for managing a session lifecycle.

Table 2.1: Commands for managing tracing session [4]

Command Description

create NAME To create a session with a given NAME.

set-session NAME | Used for switching between sessions, setting current to

NAME.
start To start tracing
stop To stop tracing

destroy NAME To destroy the session with NAME. The option -a or —all can

be used to destroy all the sessions.

list NAME Used to show information regarding the session with a given

NAME or to list all the sessions if NAME is already omitted

2.4. LTTNG TRACING TOOL 22

The number of tracing sessions is not limited. A user can create as many tracing

sessions as he/she wants [10].

Domain

Essentially, a domain means a type of tracer. The LTTng project uses a tracing
domain as the official term for designating a tracer category. At present, there are
five known domains: Linux kernel, user space, java.util.logging (JUL), log4j and
Python. All the five domains support some unique features that are not available in
their counterparts. For example, the dynamic function entry/return instrumentation
is currently supported only in the kernel domain but yet to be added in the other

domains [10].

Channel

A channel is known as a set of events with a fixed set of parameters and some potential
context information. Within a tracing session, for each domain, channels have unique
names. A given event is always registered to one or more channels. It is also possible
to individually enable or disable channels. Any event that occurs in a disabled channel
would never be recorded. An underlying role of a channel is to maintain a shared ring
buffer where events are finally recorded by the tracer and consumed by a consumer

daemon. An internal ring buffer has many sub-buffers of equal size [10].

Event

The term event in LTTng can have three different meanings depending on the context

it is used in. While tracing, an event is like a point in space-time. In the context of

2.4. LTTNG TRACING TOOL 23

tracing, the term space is a collection of all executable positions of a compiled appli-
cation that can be used by a logical processor. An event occurs if an instrumentation
point is encountered while the program is executed by the processor. In contrast,
when the term event is used in the context of a recorded trace, it means a recorded
event. In a third context which involves the configuration of a tracing session, enabled
events refer to a set of specific rules which may lead to the transformation of actually
occurring events to recorded events. As discussed in the previous section, an event
is always registered to at least one channel and can be willingly enabled or disabled.
Even though the channel an event is registered to is enabled, if the event itself is

disabled, it would never be recorded [10].

Tracing session my-session

Domain userspace

Channel userspace Domain log4j

Event myApp:readCfg

‘ Event org.app.Factory ‘

Disabled event

Event myApp:startup ‘ Event org.app.HtHandler ‘

Event myDb:onQuery

Event com.server.ReqHdl

Domain kernel

Channel low_throughput Channel high_throughput

Event sched_switch ‘ ‘ Event usb_control_msg ‘ -

Event gpio_direction ‘ Event sys_open ‘

Figure 2.8: Overview of the core concepts of LTTng [10]

2.4. LTTNG TRACING TOOL 24

Fig. 2.8 shows the overview of the core concepts of LTTng. As we can see in this

figure, a tracing session can contain a number of domains, channels and events.

2.4.2 Tracepoint

The concept of tracing is similar to have printf() commands at some locations in the
source code. Instead of using printf commands, LTTng uses tracepoints which are
quite faster and more flexible. A tracepoint represents a probe that needs to be placed
manually in the source code for enabling the tracing capability where a probe [7] is
like a sensor that can be placed in the code [10].

The format of a tracepoint must have to be defined before using it in the source
code. For doing this, a tracepoint provider needs to be created which consists of two
files: a tracepoint provider header file and a tracepoint provider definition file. To be

valid, each of the tracepoints needs to have the following fields:
e A provider name, which is called the “scope” of the tracepoint
e A tracepoint name
e A each argument of the tracepoint call, the name and type of the argument

e A list of fields, which will be the actual fields of the recorded events for the

tracepoint

LTTng uses static tracepoints which can be activated at runtime for recording infor-
mation about a program execution. The connected probe is called when the program
execution hits an active tracepoint and the execution continues when the probe com-
pletes execution. A key advantage of using static tracepoints is the ability to extract

a huge amount of data with the lowest possible overhead [64].

gt W N =

2.5. XTEND 25

2.4.3 Instrumentation

Instrumentation is the procedure of adding probes in source code. As mentioned
previously, this can be done manually by writing tracepoint commands in the source
code, or by automatically using dynamic probes. Users can also trace some-thing
that is already instrumented. For example, the Linux kernel is comprehensively in-
strumented; therefore, users can trace it without caring about placing probes into

it [10).

2.5 Xtend

Xtend is a statically-typed programming language which can be compiled into human
readable Java code [25]. Xtend code can access all the Java libraries. This feature
allows users to take the advantage of using Xtend and Java together [33]. The library
of Xtend is just a small layer that can provide useful utilities and extensions on top
of the Java Development Kit (JDK) [25]. In addition, comprehensive tool support
available in Eclipse that includes a number of useful features such as refactoring and

debugging reduces the user effort of development using Xtend [3].

Listing 2.1: A simple hello world program in Xtend [25]

class HelloWorld {
def static void main(String[] args) {
println (” Hello World”)
}
}

Listing 2.1 represents an example of the simple “Hello world” program written in
Xtend language. Here, the keyword def is used to declare a method. Similar to Java
it is mandatory to define a class and a main method as the indication of the entry

point for an application.

=

oIS e

2.5. XTEND 26

Listing 2.2: Generated hello world program in Java [25]

// Generated Java Source Code

import org.eclipse.xtext.xbase.lib.InputOutput;
public class HelloWorld {

public static void main(final String|[] args) {

InputOutput.<String>println (” Hello World”) ;

Eclipse automatically translates all the Xtend classes to Java source code after
installing the SDK in the system [25]. Listing 2.2 shows an example of generated

Java source code from an Xtend program.

Chapter 3

Related Work

27

In this chapter, we present a number of related works along with their similarities

and dissimilarities with our research.

In [55], the author introduces model based traces and presents two types of model-

based traces: inter-object scenario-based traces (see Fig. 3.1) and intra-object state-

based traces (see Fig. 3.2). Model-based traces focus on providing insight into an

execution of a program at an abstraction level defined by a model. This enables the

use of dynamic analysis in model-driven engineering.

PRocoNEEopRERmEQRORREORED N

: . 1172664020626 64: void pacman.classes.Chost.slowDown()

PowerUpEaten[1] lifeline 6 <- pacman.classes.Chost@7=087=08

: GhostStopsFleeing[7] lifeline 1 <- pacman.classes.Chost@7=087e08

GhostStopsFleeing[T] (0.1) Hot

ChostFleeing[7] (1.3) Hot

1172664020626 €5: void pacman.clazses.fameControl.ghostSlowedDown(Chost) pacman.claszszes.Chost@TelET208
ChostStopsFleeing[7] lifeline 0 <- pacman.classes.CameControl[panel0,0,0,800x600, layout=. ..
ChostStopaFleeing[7] (1.2) Cold

GhostFleeing[7] (2.4) Cold

1172664020526 66: void pacman.classes.GameModel.resetGhostPoints()

PowerUpEaten[1] (1.2.6,1,1,1,1) Cold

PowerUpEaten[1] Completion

: 1172664021387 67: void pacman.classes.Fruit.enterScreen()

PacmanFatsFruit[0] lifeline 2 <- pacman.classes.Fruit@3360336

PacmanFatsFruit[0] (0,0.1,0) Hot

PacmanEatsFruit[0] (0.0,2,0) Cold

1172664023360 €8: void pacman.classes.Chost.collidedW:thPacman()

PacmanEatsChost[2] lifeline 1 <- pacman.classes.Chost@7d047d04

PacmanEatsChost[2] lifeline 0 <- pacman.classes.GameControl[panelQ,0,0,600x600, layout=. ..
PacmanFatsChost[2] (1,1.0,0) Hot

PacmanEatsChost[2] (1,2.0,0) Hot

: GChostEatsPacman[2] (0,1,1,0) Cold
: ChostEatsPacman[2] Vielatieon

Figure 3.1: Part of a textual representation of a scenario-based trace of PacMan [55]

28

45632290 B8T4: Ghost[3].collided

Ghest [3] Exited state Ghost.InGame.InPlay.Play.Running.Free
Ghost [3] Entered state Ghost.InGame.InPlay.Play.Running.Jail
45644272 B8T75: Ghost([2].collided

Ghost [2] Exited state Ghost.InGame.InPlay.Play.Running.Free
Ghost [2] Entered state Ghost.InGame.InPlay.Play.Running.Jail
45844290 8T6: Ghost[3].timer

Ghost [3] Exited state Ghost.InGame.InPlay.Play.Running.Jail
Ghost [3] Entered state Ghost.InGame.InPlay.Play.Running.Free
PacMan[1] 877: Pacman[i].complete

PacMan[1] Exited state PacMan.InPlay.Play

PacMan[1] Entered state PacMan.InPlay.LevelInitalization
45564403 878: Ghost[1].nextLevel

Ghost [1] Exited state Ghost.InGame.InPlay.Play.Running.Free
Ghost [1] Exited state Ghost.InGame.Levels.Basic

Ghost [1] Entered state Ghost.InGame.InPlay.Play.Initalizatiom
Ghost [1] Entered state Ghost.InGame.Levels.Intermediate
45564405 879: Ghost[2].nextLevel

Ghost [2] Exited state Ghost.InGame.InPlay.Play.Running.Jail
Ghost [2] Exited state Ghost.InGame.Levels.Basic

Ghost [2] Entered state Ghost.InGame.InPlay.Play.Initalization
Ghost [2] Entered state Ghost.InGame.Levels.Intermediate

: 45664408 B880: Ghost[3].nextLavel

SEEREORERRIERaBRABR 8RS

Figure 3.2: Part of a textual representation of a state-based trace of PacMan [55]

Similar to this work, our research involves run-time monitoring of automatically
generated code from models and representation of traces in textual form. However,
our work focuses on collecting traces during the execution of real-time models, i.e.,
UML-RT models. Timing is a very important aspect of real-time software modeling.
Therefore, the traces we generated contain timing information which enables us to
detect even very small latency issues. One of the important challenges mentioned
in [55] for model-based trace generation is the minimization of runtime overhead. For
our research we have used the LTTng tool which has the advantage of having low
runtime-overhead [64, 43].

Automated transformation of models into executable code for enabling rapid sys-
tem development is becoming increasingly common. In [49], an architecture has
been proposed for debugging models that execute on target systems or in dedicated
rapid-prototyping environments. This allows the definition of various debugging per-

spectives and views independent of the actual execution platform. Similar to their

29

approach, we have also used automated model transformation for generating exe-
cutable code. However, while our work focuses on using traces to monitor the execu-
tion of generated code and to verify the timing requirement specifications, their effort
involves animating model execution in the context of model debugging.

A self-adaptive software (SAS) system needs to modify its behaviour at runtime
in order to respond to the changes within the system or in its execution environ-
ment. One of the key challenges related to the development of these systems is
quality assurance. In contrast to traditional software development where correctness
of the software can be assured through a variety of activities and processes per-
formed at development time such as, design analysis and testing, developing SAS
may need additional assurance tasks at runtime with little or no human intervention.
A promising approach for managing complexity in a runtime environment is using
adaptation mechanisms that exploit software models. This approach is referred to as
models@run.time, a.k.a. MQrt [34]. The authors in [39] present a research agenda
regarding quality assurance using M@Qrt. As they point out, a key challenge for the
software engineering community is to develop runtime assurance techniques for SAS
that provide high performance, high confidence, and reconfigurable operation in the
presence of uncertainties. They present a review of the relevant works that focus
on the use of models at runtime during the adaptation process. In our work, we
have also used models for quality assurance. However, we have mainly used models
for generating executable code with monitoring features. In addition, we have used
models for displaying trace results through animating the model elements.

In [35], the authors introduce an approach to utilize runtime models for reflecting

the state of an interactive system and modifying its underlying configuration. The

30

use of executable models allows them to build systems that are aware of context in-
formation in addition to their own state. The approach has been applied for building
adaptive user interfaces by integrating a task and a context model with a set of ad-
ditional user interface models. This approach creates a feedback loop between model
and UI where external stimulations influence the model execution, thus allowing the
dynamic alteration of the user interfaces. Our work has some similarities with this
effort in the sense that our UI also communicates with the underlying model and
exchanges information. This mechanism allows us to map the trace results back to
the model by highlighting the relevant modeling elements.

In another related work [54], a discussion on runtime verification is presented. In
addition to defining the terminology, the authors present a comparison of runtime
verification with well-known verification techniques, i.e., model checking and testing.
According to their discussion, runtime verification is a process of dealing with ver-
ification techniques that allow us to check if an execution of a system satisfies or
violates a given correctness property.

There is also some work done that involves highlighting, animating and simulat-
ing of model elements. In [47] [45] [58], several techniques have been proposed for
animating and simulating a process. Similar to these efforts, our work also involves
highlighting and animating model elements. However, our research is based on “LT-
Tng” traces that have been collected during code execution. We only highlight a
model element that is being traced.

There is also some recent work done on model execution. For instance, Moka [27]

and Moliz [56] are recent tools for model debugging and animating model execution.

31

Both of the environments have an fUML-based customizable model execution en-
gine [26]. Our method is different from their work due to the distinct nature of the
executable models. In our work, we have generated code from models and then the
generated code has been executed rather than executing the model itself. And our
animation process depends on the traces we retrieve from the executing code. This
allows users to visualize only the states or transitions they want to monitor.

There are also a number of industrial tools available for modeling, monitoring,
simulating and visualizing electronic control systems in, e.g., the automotive and
aerospace domains. For instance, IBM Rational RoseRT [6], IBM RSA-RTE [5],
National Instruments (LabVIEW) [8], MathWorks (Simulink) [21] and dSPACE [2].
Among these tools, [5] and [6] can be used for developing UML-RT models and
support runtime monitoring of these models to a certain extent. But these tools
are proprietary software and it makes their use limited for academic and research
purposes. In contrast, our research is completely based on an open source platform,
and thus, highly customizable.

In a related work, we have discussed the monitoring of real-time embedded systems
along with animation, simulation and integrated debugging [41]. In another related
work [28], we have described a case study of our work for runtime monitoring of a

Rover.

32

Chapter 4

Using LTTng to check real-time specifications of

models of real-time embedded systems

As mentioned in previous chapters, one of the key factors in the design of a real-time
embedded system (RTES) is the proper implementation of timing requirements. Once
a problem occurs in a RTES) it is not easy to find out the source of the problem. In
MDD, it is possible to generate code for RTES automatically from conceptual models
using a number of UML-RT development tools. For this research, we have focused
on a particular tool called Papyrus-RT and have added support for tracing UML-RT
models in Papyrus-RT. With the provision of this support, it is now feasible to detect
timing violations.

In the beginning of this chapter we present an overview of the project. This is
followed by a brief discussion of two of the three main sections of this project which
have been carried out by two other members. Then, in Section 4.4, we present a
detailed discussion on the part we have worked on, tracing using the LT Tng tool along

with trace display. Finally, in Section 4.5, we discuss the implementation details.

4.1. PROJECT OVERVIEW 33

4.1 Project Overview

This section gives an overview of the project we have worked on. This project com-

prises three distinct, but related sections:

e Monitoring Configuration

e Generating code from models

e Tracing of automatically generated code and displaying trace results

UML-RT
Model M

o Monitoring

Configuration
i
1 Timing constraint _ S
Model M o Models M
. L validation -
with monitoring < with
information @ trace results
9 Code generation Trace result 9
using Papyrus-RT display
Model-level
Code-level
i
Code with © | Generated
tracepoint files Code ezecution & trace | trace files
monitoring using LT Tng

Figure 4.1: Monitoring Overview [41]

Each of these sections has one or more subsections. Among the structural and

behavioural properties of a UML-RT model, this research focuses on monitoring only

4.2. MONITORING CONFIGURATION 34

the behavioural components. Fig. 4.1 presents an overview of this project. As we
can see in this figure, the project cycle begins with a UML-RT model named M in
Papyrus-RT. With the addition of monitoring information related to, for instance,
a particular state or transition of M, an updated model M’ is generated. Then, a
modified code generator is used for generating code from the M’ model using the
Papyrus-RT tool. As monitoring information is added in the first step, we get code
with tracepoint files, which are necessary for tracing the generated code with LTTng.
We compile the generated code using a make file [11], which is customized to compile
code with the LTTng library and tracepoint files. The make file is automatically
generated along with the code. After compilation we run the code and trace it using
LTTng. Once tracing is done, we get the trace file. We read the trace file and display
the trace result on the model level by highlighting the model element. We also display
the traces in a textual form. In addition, we have also implemented live tracing which
can be used for tracing generated code and displaying traces in the model level at the
same time i.e., the execution does not have to have terminated before displaying the
trace in the model can begin. Therefore, if a user identifies a problem in the model
while observing the traces, s/he can modify the model accordingly. This process
allows a model to be refined appropriately. It is also possible to apply this process

multiple times.

4.2 Monitoring Configuration

For tracing code automatically generated from a model, tracing information needs
to be attached to the model. This is done in this project by adding monitoring

information within model elements that are to be traced. With the help of a Ul

35

4.2. MONITORING CONFIGURATION

UOI)RINSYUOD SULIOJUOW JO WRISRIP SSB[) g '§ OIN3Iq

ﬁ apasabibug H _

Eﬂ(m

|

!

TSR] ROnURg + 55

(1] 23E35 el + 9

Fueighees) =

a5 5

|

|

(1] sunpep=ins Bunpewaiels + 3

Faunyaopnors [

=5][

HE __muﬂy..__uam _ _ Fwas 5 _

NN

Aﬁ “un__a?_ﬂ&ﬂm
v

_uunmnzum _ wuﬁ_ﬁ.ﬁm_

H

_v

[1] 1ug2nede?) anided + 3

[T] senquity e «

Junsdo) 5

I

T

(1) awny 2w + B9
1) swey Pwew + 9

“fugnsden saaad + 01
(1] ysuEnsde) Japuas + 3 [1] 28essay 5w + B9
(1] sBessawy Bow + E3 | |~ Wupinsded ansdey + 3
RO | 3ananty 5
FuarunLLe) =

auaeg [

L | Byvobupoymon

4.2. MONITORING CONFIGURATION 36

called the monitoring configuration U, model elements that need to be monitored
can be selected.

The purpose of the monitoring configuration is to collect a list of events that
are intended to be monitored. Fig. 4.2 shows the class diagram of the events that
could be monitored in a model. In this research, we have only worked on monitoring
the behavioural aspects of the model. Therefore we only monitor active states and
triggered transitions of the state-machine of a capsule which is indicated in the red
rectangular box in Fig. 4.2.

To make the generated code traceable we have added monitoring information
within the selected model elements, which is done by adding a monitoring profile to
model elements. The user can also select a pair of model elements and associate a

time value with it which can then be used to validate timing constraints.

4.2.1 Monitoring Profile

To monitor a selected element, the information related to the selected element is
stored in a UML profile. In our case, we call it monitoring profile. Profiles can be
attached to a model. Once a profile is attached to a model, the stereotypes it contains
can be attached to the appropriate elements of the model. These stereotypes can have
attributes which can also be added to the model elements.

In our research, a monitoring profile named “LTTng profile” is used for attaching
monitoring information to model elements. Fig. 4.3 shows the profile we have used to
monitor behavioural elements of a model. Here, the profile contains three stereotypes
for monitoring three types of model elements. Each of the three stereotypes contains

one Boolean attribute named “isMonitored”. When any state/transition is selected

4.2. MONITORING CONFIGURATION 37

«Stereotypes
LTTng5tate
L] [=] + isMonitored: Boolean [1]
«Metaclasss -————————|
State
«Stereotypes
(7] LTTngPseudostate
shetaclasse =] + isMonitored: Boolean [1]
Pseudostate =
«Stereotypes
LT TngTransition
[7] [=] + isMonitored: Boolean [1]
«Metaclass= o
Transition

Figure 4.3: LTTng Profile

for monitoring through the monitoring configuration Ul, the appropriate stereotypes

are attached to the model element and the Boolean attribute “isMonitored” is set to

Pinger SM

«RTPseudostates
«RTP4

«RTStates
Running
fentry OpagueBehavior anntry

Applied stereotypes: 4 | K

onTimeout | timeout...

» EfRTStateMachine (from UMLRealTimeStateMach)

onfiang

pongl...
g J

Figure 4.4: The Running state and properties before adding monitoring information

4.2. MONITORING CONFIGURATION 38

Pinger_SM

«RTPseudostates
«RTP4

«fiTState, LTTngStates
Running
fentry OpagueBehavior onEntry

Applied stereotypes: ELANETSIE D -

RTState (from UMLRealTimeStateMach)
v B LTTngState (from LTTng)
F = isMonitored: Boolean [1] = true

onTimecut | timeout/...

onPaong

pongy...

b v

Figure 4.5: The Running state and properties after adding monitoring information

“true”. This indicates the code generator to generate traceable code for LTTng. For
example, Fig. 4.4 presents a state-machine named “Pinger_SM”.

Fig. 4.5 shows the view of the “Running” state and its applied stereotype prop-
erties. As we can see in this figure, the “LTTngState” stereotype is applied and the
Boolean attribute is set to true. The purple border-color of the “Running” state in-
dicates the attachment of monitoring information to the state. This makes it visually

different from a state which does not have any attached monitoring information.

4.2.2 Creating pair of model elements

Another feature allows the user to validate a desired timing specification. This can
be done by selecting a couple of elements (e.g., a state or a transition) from a state-

machine to be monitored and creating a pair out of the selected elements. The pair

@ Monitoring View = = O

&
I+

Figure 4.6: UI for supporting monitoring configuration

4.2. MONITORING CONFIGURATION 39

SystemFSM

Initiall sendServerld

GetServerld)...

«lTTngStates

e F::i::t.mg,, havior I systemFailure Jentry FunctionBehavior

T timeout/... noOnelsMaster
Jexit FunctionBehavior

NoMaster

o
startup

receiveMasterAnnoncment
IAmMaster/...

" «LTTngStates systemPRecovered
‘ MasterlsUp IAmMaster/...
Jfentry FunctionBehavior
enterMasterlsUP systemFailur
Jexit FunctionBehavior timeout/...

Time Interval

Enter the time interval For the element pair (msec): . 3000|

Ok | | cancel

Figure 4.7: Dialog for inputting a time interval between two selected model elements

can be created with the specification of a time duration in milliseconds. This allows
us to verify if the selected monitoring events occur within the given time difference.
For example, this feature can be used for checking whether transitioning from a
state S1 to another state S2 takes more than 3 seconds or not. The specification
file is added to the model in the same directory and it contains the selected state
and transition names, the name of the owner capsule and the specified time value in
milliseconds. Fig. 4.6 shows the Eclipse Ul of the implemented plugin for creating
a pair of monitored events. Here, a button “Create Pair” is used to generate a
specification file with the information of the selected model elements and the given
time value. Fig. 4.7 shows the dialog allowing the user to input the timing value.
The two states are highlighted with green background to indicate that they have

been selected for verifying a time constraint.

1

© 0 N O Ut s W N

I R T T e
H O © N O A W N R O

4.3. CODE GENERATION 40

4.3 Code Generation

Code generation is the process of generating code from models. The Papyrus-RT code
generator is designed in the way that can be extended. This feature has allowed us
to extend the code generator of Papyrus-RT for generating monitoring information
along with the code of models. As we discussed in Chapter 2, tracepoint files are
necessary for tracing the generated code with LTTng, therefore the code generator is
extended to support tracing using LTTng. The monitoring configuration Ul is used
for selecting elements to be monitored. The selected elements become the user input

for the code generation process.

Listing 4.1: Sample code generated from model

Capsule_Workstation :: State Capsule_Workstation::state_____ top-_Workstation_Producing(const
UMLRTMessage * msg)

~

switch (msg—>destPort—>role ()—>id)
{
case port_-ProductionTimer:
switch(msg—>getSignalld ())
{
case UMLRTTimerProtocol:: signal_timeout:
actionchain_____ top--Workstation_finished_-_ActionChain4 (msg);
return top_-_Workstation_Standby;
default:
this—>unexpectedMessage () ;
break;
}
return currentState;
default:
this—>unexpectedMessage () ;
break;
}

return currentState;

The customized code generator of Papyrus-RT takes a UML-RT model and out-
puts a C/C++ Development Tooling (CDT) project. CDT is known as a set of tools

that is provided by Eclipse to facilitate C and C++ development. The generated

1

2
3

© o N o O

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

4.3. CODE GENERATION 41

code using the customized code generator also contains tracepoint (.tp) files for all
the events that have been selected for monitoring. The tracepoint() calls are added

to the code generated from the selected model elements.

Listing 4.2: Generated Code with Tracepoints

Capsule_Workstation :: State Capsule_-Workstation :: state_____ top--Workstation_Producing (const
UMLRTMessage * msg)
{
tracepoint (ActiveState_._Workstation__Workstation_Producing_provider ,
ActiveState__Workstation_-_-Workstation_-Producing_-tracepoint , ”
ActiveState-_Workstation_._Workstation_-Producing”);
switch (msg—>destPort—>role ()—>id)
{
case port_ProductionTimer:
switch (msg—>getSignalld ())
{
case UMLRTTimerProtocol:: signal_timeout:
tracepoint (MessageReceived__Workstation_._Workstation_finished_provider ,
MessageReceived_-_Workstation_._Workstation_finished_tracepoint , ”
MessageReceived_-_Workstation_._Workstation_finished”);
actionchain_____ top--Workstation_finished_-_ActionChain4 (msg);
return top-_-Workstation_-Standby ;
default:
this—>unexpectedMessage () ;
break;
}
return currentState;
default:
this—>unexpectedMessage () ;
break;
}
return currentState;
¥

For instance, Listing 4.1 shows the code generated for the “Producing” state of
the “Workstation” capsule without having any monitoring information attached. On
the other hand, Listing 4.2 shows the code generated with tracepoint() calls, where
tracepoint() calls are highlighted in red. The first tracepoint() call indicates the
active state and triggers the associated tracepoint file when the state is entered. This

function executes every time this state gets activated. The other tracepoint() call is

4.4. TRACING USING LTTNG AND TRACE DISPLAY 42

placed to indicate the triggered transition and this tracepoint function executes every
time the transition gets triggered. These two tracepoint() calls are added because they
are selected in the monitoring configuration Ul at the very first step. The generated
code is then compiled with the tracing feature using a make (.mk) [11] file, which
is also customized for compiling code with LTTng tracepoints and automatically

generated with the code using the customized code generator of Papyrus-RT.

4.4 Tracing using LTTng and Trace Display

Tracing in RTES is a technique to monitor a running real-time embedded system.
In this section, we describe the steps for tracing generated code and displaying trace
results. Our research focuses on this part of the project.

In addition to the code, two scripts are generated that contain all the LTTng
commands are necessary for tracing and need to be run to monitor the execution.
One of these scripts is used to start tracing and executing the generated code, while
the other one is used to stop tracing. Once the code is generated and compiled, we
execute the code and trace it through the use of the scripts. This makes it very
easy to trace the generated code, because users do not have to give a list of LTTng
commands for tracing.

Fig. 4.8 displays the execution of the code and the use of the script to start tracing.
Here, “startTrace” is the name of the script used to start tracing. The script contains
LTTng commands for starting a session, enabling the associated user space events,
starting the process of tracing and starting the execution of the generated code.

The trace is written to a file on a specific path. Once tracing is started, we can stop

tracing at any point. We use the generated script to stop tracing and to destroy the

4.4. TRACING USING LTTNG AND TRACE DISPLAY 43

ndas@jding004: ~/papyrus-rt-master/runtime-papyrusrt/Failover_ CDTProject/src
ndas@jding004:~/papyrus-rt-master/runtime-papyrusrt/Failover_CDTProject/src$ sh
startTrace
Session Failover_208160829_172139 created.
Traces will be written in fhome/ndas/lttng-traces/Failover_20168829_172139-20160
829-172139
UST event RT__* created in channel channel®
Tracing started for session Failover_ 20166829 172139
Press any key to continue...startTrace: 30: read: arg count
Controller "DefaultController” running.
Info: The Capsule System is Satring
Info: The System Entered to State [Waiting]
Info: Capsule Server is starting
Info: the Server Capsule entering state [GetServerId]
Info: Capsule Server is starting
Info: the Server Capsule entering state [GetServerId]
Info: Server Capsule requested for ID
Info: The assigned ID is 2
Info: The System Entered to State [Waiting]

: Server Capsule requested for ID

: The assigned ID is 1

: The System Entered to State [Waiting]

: the server with id: 2 is Started

I am Slave, My Id is :2
: one of the capsules entered to State [Slave]

Figure 4.8: Tracing of generated code

current session (see Fig. 4.9). Once the trace file is generated, we use it to display the
trace results on the model level. There is different information that can be displayed.
There are also many ways to display trace results. In our research we have used two
types of visualization. One is to display the traces in textual form and the other one

is to display traces through the highlighting of model elements.

ndas@jding®04:~/papyrus-rt-master/runtime-papyrusrt/Failover_CDTProject/src$ sh
stopTrace
Waiting for data availability

Tracing stopped for session Failover_20160829_ 172139
Session Failover_20160829_ 172139 destroyed

Figure 4.9: Running a script to stop tracing

4.4. TRACING USING LTTNG AND TRACE DISPLAY 44

Trace File Name Trace Details

Rover-20160503-2059 1610 3
Rover-20160503-190532 1462323610313959699
Rover-20160503-190018 1462323610314343030

AcCCivestlale cngineControliel Movingrorward
ActiveState_ EngineController__MovingBackward
MessageReceived__EngineController__turnRight

. _ N Display Trace Start Live Trace
Rover-20160503-185836 1462323612333929890 ActiveState__EngineController__MovingForward d
Rover-20160503-185605 1462323612334751135 ActiveState_ EngineController__MovingBackward Step Stop Live Trace
Rover-20160503-182912 1462323612335171393 MessageReceived__EngineController__turnRight

Reset Clear
1462323613453249395

1462323613454291681

1462323613454661470
1462323614334094162
1462323614334604888
14A2323R14334R44417

ActiveState_ EngineController__MovingForward
ActiveState__EngineController__MovingBackward Validate Time
MessageReceived__EngineController__turnRight -
ActiveState_ EngineController__MovingForward

ActiveState_ EngineController__MovingBackward

MessaneRereived FnnineCnntraller burnRinht

Figure 4.10: Display of traces in textual form

Textual form of trace display

An LTTng trace contains a wide range of information, e.g., a timestamp, start time,
end time, string field and so on. In our work, we have displayed the timestamp value
along with the string field, which contains information about monitored element, i.e.,
the type and name of the monitored element.

We have developed an Eclipse based plugin which displays three columns. The
leftmost column shows the names of the trace files after selecting a model in the
Eclipse project explorer window. Fig. 4.10 shows the trace display in textual format.
Upon selecting any particular trace from the leftmost column, the middle column
shows the details of that trace file. Information presented in the middle column gives
us an idea about the currently active model element at any particular time. The
timestamp information represents the exact time when the event occurred, e.g., when
a state became active or when a transition was taken. The timestamp information is
represented in nanoseconds. The rightmost column contains buttons for user interac-
tion. The “Display Trace” button is used to start displaying traces in textual format
and on the model level by highlighting corresponding elements. Then user can go

through the trace and display the events in it one by one by using the “Step” button.

4.4. TRACING USING LTTNG AND TRACE DISPLAY 45

The “Reset” button is used for going to the initial position which does not have any
elements highlighted. The “Validate Time” button is used for checking the validity
of a given time constraint. In our research, we have also worked on live tracing where
the user can see traces as they are being collected. To start viewing live traces we
have added the “Start Live Trace” button. The “Stop Live Trace” button is used to

stop the display of live traces and the “Clear” button is used to clear the text area.

; ™

SystemF5SM

sendServerld
GetServerld/...

Initiall

Waiting NoMaster

fentry FunctionBehavior systemFailure Lentry FunctionBehavior

runningEntry ; noOnelsMaster
Jexit FunctionBehavior J timeout/... L

CancelTimer

IAmMester... receiveMasterAnnoncment

V

MasterlsUp systemFailur
fentry FunctionBehavior timeout/...

enterMasterlsUP . systemRecovered
Jexit FunctionBehavior — IAmMastery...

systempFailure

""“ |lAmMastery...
RecieveMasterAnnounce

Figure 4.11: Display of traces in Model level

Model level Display of Traces

To make the display more user friendly we show traces on the model level by high-
lighting the model elements involved in the events in the trace. Fig. 4.11 shows the

state-machine of a capsule where the “Waiting” state is highlighted in Red color to

4.4. TRACING USING LTTNG AND TRACE DISPLAY 46

indicate that the trace file contains information about the “Waiting” state. The tex-
tual and the model level view are synchronized. Therefore, when a user selects the
“Display Trace” button, both textual and model level elements get highlighted.

<9 *FailoverPro.di 2 |

SystemFSM

sendServerld

GetServerld)...

Waiting NoMaster

Initiall

Jentry FunctionBehavior systemFailure __|/entry FunctionBehavior
(! Ty ti noOnelsMaster
startup Jexit FunctionBehavior imeout...

CancelTimer

|AmMaster/... receiveMasterAnnoncment

MasterisUp systemFailur
Jentry FunctionBehavior timeout/...

enterMasterisUP systemRecovered
Jexit FunctionBehavior |AmMaster/...

systemFailure

IAmMaster;...

RecieveMasterAnnounce

- vy

T3 systemFSM 52 testSystem | [@ serverCapsule| %s ServerFsm

[Properties #® TraceDisplay 52

Trace File Name Trace Details

Failover-20160520-163529 1463776542948145098

Failover-20160413-153542 1463776542948157460

ActiveState__testSystem__Waiting
MessageReceived__testSystem__sendServerld

1463776542948198666 ActiveState__testSystem_ Waiting

1463776542948199504 MessageReceived__testSystem_ sendServerld Display Trace Start Live Trace
1463776542948253142 ActiveState__testSystem_ Waiting Step Stop Live Trace
1463776542948255446 MessageReceived__testSystem__receiveMasterAnnoncment ——————

1463776552958452886 ActiveState__testSystem__MasterlsUp Reset Clear
1463776552958467972 MessageReceived__testSystem__RecieveMasterAnnounce

1463776562963569715 ActiveState_testSystem_ MasterlsUp Validate Time

1463776562963582705 MessageReceived__testSystem__RecieveMasterAnnounce

1463776572971856300 ActiveState__testSystem__MasterisUp

1463776572971878650 MessageReceived__testSystem__RecieveMasterAnnounce

1463776582978084359 ActiveState__testSystem__MasterlsUp

1463776582978106010 MessageReceived__testSystem__RecieveMasterAnnounce

1463776592986262616 ActiveState__testSystem__MasterisUp

Figure 4.12: Display of offline trace

4.4.1 Offline Tracing

Offline tracing means tracing that is not live, i.e., that the execution of the monitored
code and the collection of traces is completed before the display of the trace. While
tracing offline, traces cannot be seen at the time of arrival. Consequently, execution

and tracing need to be stopped through user interaction for viewing the offline trace

4.4. TRACING USING LTTNG AND TRACE DISPLAY 47

results. Fig. 4.12 shows the display of traces in offline mode where user can see traces
both textually and on the model level by using related buttons. It is also possible
to select any row from the middle column of the textual view which associates the

model element with the row highlighted.

Trace File Name Trace Details Time Difference : 20015.437568 msec

Failover-20160520-163529 1463776542948145098

Failover-20160413-153542 1463776542948157460

ActiveState__testSystem_ Waiting
MessageReceived__testSystem__sendServerld

1463776542948198666 ActiveState__testSystem_ Waiting

1463776542948199504 MessageReceived__testSystem__sendServerld Display Trace Start Live Trace
1463776542948253142 ActiveState__testSystem__Waiting G T (s
1463776542948255446 MessageReceived__testSystem__receiveMasterAnnoncment

1463776552958452886 ActiveState__testSystem__MasterlsUp Reset Clear
1463776552958467972 MessageReceived__testSystem__RecieveMasterAnnounce

1463776562963569715 ActiveState_ testSystem_ MasterlsUp Validate Time

1463776562963582705 —— MessageReceived__testSystem__ RecieveMasterAnnounce

1463776572971856300 ActiveState__testSystem__MasterlsUp
1463776572971878650 MessageReceived__testSystem__RecieveMasterAnnounce
1463776582978084359 ActiveState__testSystem__MasterlsUp
1463776582978106010 MessageReceived__testSystem__RecieveMasterAnnounce
1463776592986262616 ActiveState__testSystem__MasterlsUp

Figure 4.13: Display of time difference through selecting two lines from trace details

Also, selecting two rows from the trace details (i.e., middle column of the textual
view) allows us to view the time difference between the selected trace lines. Fig. 4.13
shows the time difference between two selected trace lines. The timestamp shown
here was originally in nanoseconds. To make it more user friendly we converted it to

milliseconds while displaying the time difference.

4.4.2 Online/Live Tracing

In online/live tracing users can view traces while trace elements are arriving. In
our research, we have implemented a feature to start live tracing and read live traces.
Similar to the representation of offline traces, we display the live traces both in textual
form and on the model level.

Live traces can also be remote traces where users can send trace data from one

machine to another. To do this, users need to start a LTTng relay daemon [10] in the

4.5.

IMPLEMENTATION

48

~¥ *FailOverPro.di &2

SystemFSM

Initiall

..
startup

sendServerld

‘Waiting
Jentry FunctionBehavior
runningEntry
fexit FunctionBehavior
CancelTimer

IAmMaster/...|

MasterisUp
fentry FunctionBehavior
enterMasterisUP
Jexit FunctionBehavior
systemFailure

systemPFailure

timeout/...

receiveMasterAnnoncment

systemFailur

NoMaster

Jentry FunctionBehavior
noOnelsMaster

timeout/...

systemRecovered

IAmMaster/...

: The System Ente
: one of the capsules entered
: one of the capsules entered

Ta systemFSM 2 testSystem serverCapsule s ServerFsM

O Properties | @ TraceDisplay =

: The System Ente
: The slave is Alive

: Master Announcment

Master id is :1

: The System Entered to State
: The Slave is Alive

: one of the capsules entered
: one of the capsules entered
: one of the capsules entered
: The Slave is Alive

: one of the capsules entered
: The Master is Alive

: one of the capsules entered
: Master Announcment

Master id is :1
d to State

The Master is Alive

: one of the capsules entered
: Master Announcment

Master id is :1
d to State

one of the capsules entered

[MasterIsup]

to State [Master]
to State [Slave]
to State [Master]
to State [Master]
to State [Slave]
[MasterIsup]

to State [Master]

to State [Slave]

to State [Slave]

[MasterIsup]

to State [Master]

Stop Live Trace

Clear

ndas@jding004: ~
ndas@jding004:~% lttng-relayd -d

64275626232639 ActiveState__testSystem__MasterlsUp

64275626262454 —— MessageReceived__testSystem__RecieveMasterAnnounce
64285633968227 —— ActiveState__testSystem__MasterisUp

64285633981646 MessageReceived__testSystem__RecieveMaskerAnnounce
64295635456038 —— ActiveState__testSystem__MasterisUp

64295635472335 MessageReceived__testSystem__RecieveMasterAnnounce
64305641892024 ——— ActiveState__testSystem__MasterisUp

64305641908285 MessageReceived__testSystem__RecieveMasterAnnounce

64315652025310 —— ActiveState__testSystem_ MasterisUp Validate Time
64315652036412 MessageReceived__testSystem__RecieveMasterAnnounce

64325661568120 —— ActiveState__testSystem__MasterisUp -
64325661578840 MessageReceived__testSystem_ RecieveMasterAnnounce

64335668796790 —— ActiveState__testSystem__MasterisUp ndas@jding0o4:~S
64335668806696 MessageReceived__testSystem__ RecieveMasterAnnounce

Figure 4.14: Live tracing

receiver machine. Fig. 4.14 illustrates live tracing. In this figure, the bottom right

console is for starting the LTTng relay daemon in the receiver part. The top right

console shows the starting of live traces. Here, “localhost” is used as the destination

of traces, which means the traces are being sent to the same machine. The Eclipse

view starts showing the traces as they arrive after clicking the “Start Live Trace”

button.

4.5 Implementation

This section describes our implementation of tracing using LTTng and trace display.

4.5. IMPLEMENTATION 49

4.5.1 Implementation overview

In the beginning, we have implemented a method to automatically generate two
script files along with the code. We have created an Eclipse plug-in (TraceDisplay,
in Fig 4.15) to read and display the trace files. Our plug-in is basically an Eclipse
view which can be visualized in an Eclipse instance. It is possible to list all the trace
file names and traced events for a selected model element in the implemented Eclipse
view. We have also implemented support for validating the traced information in
accordance with a given time constraint.

For creating the Eclipse plug-in view we have written a class (EclipseView, in

Fig 4.15) which inherits from the following class in Eclipse framework:
e org.eclipse.ui.part.ViewPart

A form has been created inside the Eclipse view for listing traces and to support
user interaction. For the creation of the form and to add buttons and labels for user

interaction, we have used the following packages:
e org.eclipse.swt.widgets
e org.eclipse.ui.forms.widgets

For selecting a particular model in the Eclipse project explorer window and get

the full path of it, we have used:
e org.eclipse.core.runtime.[Path
e org.eclipse.jface.viewers

e org.eclipse.ui.ISelectionListener

4.5. IMPLEMENTATION 50

_/"" org.eclipse.ui.part.ViewPart
R org.eclipse.swt.widgets

EclipseView \
org.eclipse.ui.forms.widgets

1 org.eclipse.core.runtime.lPath

org.eclipse.jface.viewers

y

ProjectSelector

ﬁ‘ org.eclipse.ui.lSelectionListener

- org.eclipse.tracecompass.ctf.core.trace

\ org.eclipse.tracecompass.interna

|.ctf.core.event.EventDefinition
/ Org-edipse-pa pyrus_infra
- org.eclipse.uml2.uml
\ Org-ed i pse.emf.transa ction

org.eclipse.gmf.runtime.notation

TraceAnalyzer

DisplayTrace

Figure 4.15: Implementation overview of “TraceDisplay” plug-in (Left column repre-
sents the classes inside the plug-in, right column represents the imported
packages in the associated classes)

For extracting trace event details from a trace file we have written a class “Trace-
Analyzer” (see Fig. 4.15) using the “Trace Compass” library for reading the generated

traces. We have used the following packages while writing this class:
e org.eclipse.tracecompass.ctf.core.trace
e org.eclipse.tracecompass.internal.ctf.core.event. Event Definition

Once all the trace events are enlisted on the eclipse view, we need to retrieve the

4.5. IMPLEMENTATION 51

exact model element for showing the traces on the model. We have collected the exact
model element using the “org.eclipse.papyrus.infra” and the “org.eclipse.uml2.uml”

packages. To change the color of the model element we have used following packages:

e org.eclipse.emf.transaction

e org.eclipse.gmf.runtime.notation

An overview of the packages we have used for doing some particular tasks is

presented in Fig. 4.15.

4.5.2 Script Generation

We have used Xtend to generate scripts automatically along with the code. Initially
we have prepared a shell script [20] with all the LTTng commands to start and stop
tracing. Then, we have used Xtend for generating the script with all the required
LTTng commands (see Appendix A). Fig. 4.16 shows a screenshot of an automatically
generated script for the Rover model. Here, the “lttng create” command is used for
creating a tracing session. This is followed by the specification of the session name.
We have used the model name for naming the session. Command line parameter
“-0” followed by a path indicates the output path of the trace. The output path is
automatically generated by our plugin from the path of the selected model. We have
used user input for live and network tracing. Once a session is created, all the events
that are marked for tracing become enabled by the use of the appropriate LTTng
command. Then, tracing is started using the “lttng start” command and it can be
used to trace the program that is being executed. It is worth noting here that we
start tracing before executing the generated code. This protects us from missing any

event that can occur between the start of the tracing and the execution.

4.5. IMPLEMENTATION 52

ft1 /bin/bash
Script for executing LTTng Commands
network=
ip=
live=
while [S# -gt 0]
do
case "51" in
_n)
network="--set-url net://"
ip="5%2";
shift;;
-1
Tive="--1live";;
--) shift; break;;
_i—)
echo =&2 "usage: $0 [-1] [-n] [ip address]”
exit 1;;
*) break;; # terminate while loop
esac
shift
done

NOW=S({date +"%Y%m¥%d_%H%M%S")
lttng create Rover -o ..[../RoverfRover_SNOW Slive SnetworkS$Sip

lttng enable-event -u 'RT__*'

lttng start

read -p "Press any key to continue...”
. /TopMain

Figure 4.16: Screenshot of a generated script for Rover model

We have also generated a script named “stopTrace” to stop tracing. This script
contains only two commands. One is “lttng stop” to stop tracing and the other one

is “lttng destroy” to destroy the current LT Tng session.

4.5.3 Reading of Trace

Reading a trace file is the process of reading offline and online traces. Initially it has
been done by selecting the path of the trace file by the user. This allowed us to read
only offline traces. Later, we have extended our plugin to read both offline and online

traces without requiring the user to specify the path manually.

4.5. IMPLEMENTATION 53

Offline

To read offline traces, the path of the model directory is retrieved by selecting the
model name in the project explorer within the Eclipse instance. Once the path of the
model directory is specified, we analyze if the directory contains any trace files. If
any trace file is found, we display the name of the trace file in the leftmost column of
the plugin view. Then, upon selecting of a trace file name from the leftmost column
we get the exact path of the trace file.

LTTng relies on the Common Trace format (CTF) [42], an optimized format for
producing and analyzing large amounts of data, to produce trace files with a low
overhead [43]. We have used the “Trace Compass” [22] library to read these trace
files. To read the traces of a selected trace file we go through the events one by one and
read the timestamp of that event. We also read the “String field” attribute which
contains the type of trace, the capsule name and the name of the model element
involved (e.g., the state or transition). We merge the timestamp and string field

information and store it in a list.

Online

For reading online traces first we need to start the relay daemon on the receiving
end. This is done with the “lttng-relayd -d” command. Here, “-d” is used to run
the relay daemon in the background. After starting relay daemon, we have used
“Babeltrace” [1] to read live traces. We use the “Start Live Trace” button in the
plugin UI for reading live traces. Similar to offline traces, we read the timestamp

value and the string field and then we merge both and store them in a list.

4.5. IMPLEMENTATION 54

4.5.4 Display Traces

Once trace files are read, the next part is to display traces. Displaying traces in
the textual view is done by printing all the traced information in the middle text
area of the view part. In contrast, displaying traces on the model level is done by
highlighting the associated model elements. At first, we implemented the latter by
changing the contents of the “notation” file which is associated with the model. That
was not user-friendly as it requires reloading the Eclipse window to show the changes.
Later, for improving the user experience, we have used the setFillColor property of

the model element to highlight it.

4.5.5 Time constraint validation

The main focus of this research is to discover time constraint violations. To do this,
we have read the specification file containing user-specified timing value for any two
elements (state/transition) from a state-machine. The specification file is made avail-
able in a directory similar to the model. Therefore, we get the path of the specification
file by selecting the model in the project explorer window in Eclipse. The format of

the contents of the specification file is “type of element(state or transition)_capsule

Trace File Name Trace Details Given Time: 1000.0 msec
1462323610313178193 —— ActiveState__EngineController_ MovingForward Actual Time Diff: 2019.970304 msec
Rover-20160503-190532
Rover-20160503-190018 1462323610314343030 MessageReceived__EngineController__turnRight .
= = = Display Trace Start Live Trace

Rover-20160503-185605 1462323612334751135 ActiveState_ EngineController__MovingBackward Step Stop Live Trace
Rover-20160503-182912 1462323612335171393 MessageReceived__EngineController__turnRight = — Clear

1462323613453249395 —— ActiveState__EngineController__MovingForward

1462323613454291681 ActiveState__EngineController__MovingBackward Validate Time

1462323613454661470 MessageReceived__EngineController__turnRight

1462323614334094162 ActiveState__EngineController__MovingForward

1462323614334604888 ActiveState__EngineController__MovingBackward

14A2373R14334R44417 MeccaneRersived FnnineCnntraller FurnRinht

Figure 4.17: Time constraint validation

4.5. IMPLEMENTATION 55

name_state/transition name”. For checking the violation of a time constraint, we
retrieve the particular lines of trace using the names of the capsule and the state/-
transition of the model element. After calculating the time difference, we compare it
with the given time value. If the actual time difference does not exceed the given time
value, we display “Validated”. Otherwise, we display the given time difference and
actual time difference in milliseconds. If there is a violation of the time constraint,
we also highlight the associated trace lines in the textual view. Fig. 4.17 shows the

view of the trace display after finding a violation for a given time constraint.

56

Chapter 5

Proof of Concept

This chapter presents an proof of concept of our implementation through conducting
three case studies. We have used two Papyrus-RT models, the PingPong and the
Workstation, for exercising two features of our implementation: offline tracing and
trace display. In addition, we have used another Papyrus-RT model, namely the
Rover model, to apply the live tracing feature of the implemented plugin on a larger
model. We present a brief discussion of the structural and behavioural design of the
three models in the following three sections. We also present the result of tracing

these models using our plugin.

5.1 PingPong

Pingpong is a very simple model available in the sample model repository of the
Papyrus-RT distribution. It has a Top capsule which contains two other capsules:
Pinger and Ponger. Fig. 5.1 shows the structure diagram of the Top capsule of the
PingPong model. As we can see in this figure, the Pinger and the Ponger capsules can
communicate with each other through a protocol named “PingPongProtocol”. They

send signals to each other using the real-time ports they own.

5.1. PINGPONG

57

«Capsules

E Top

~ timerPort: Timing [1]
«RTPorts=

«CapsulePart»
i # pinger: Pinger [1]

«RTPort=

[]

+ PongPort: ~PingPongProtocol [1]

+ PingPort: PingPongProtocol [11]

«RTPorts

«CapsulePart=
£ # ponger: Ponger [1]

Figure 5.1: Structure diagram of PingPong model

Both Pinger and Ponger have their own state-machine behaviour. Fig. 5.2 shows

the state-machine diagram of the Pinger capsule. Pinger has a state named “Running”

and can send a “onPing” signal to the Ponger capsule when it is in the ”Running”

state. The “Running” state has a self transition which can be triggered if it receives

the “onPong” signal from the Ponger capsule. It has another self-transition which

«RTstateMachines
Pinger SM

«RTPs
Initial

«ATPseudostates

states

e

«RT5tates
Running

fentry OpaqueBehavior
anentry

~,

onTimeout

timeout/...

T onPong

pong/...

Figure 5.2: State-machine diagram of Pinger Capsule

5.1. PINGPONG 58

'f =ATStataMaching =)
Pongar_5M
=RTPzeudostats=-
«~HTP 2
I ‘I||
d =RTState= N
Running
b v
onPing
ping/._.
L% vy

Figure 5.3: State-machine diagram of Ponger Capsule

can be triggered through the receipt of a timeout signal from a stop-timer intended
to cease the signal interactions (see Fig. 5.2).

On the other end of the signal communication, we have the Ponger capsule. The
behaviour of Ponger is defined in a state-machine which also has a state named
“Running”. Ponger expects a signal named “onPing” from the Pinger capsule. Once
it receives it when it is in the “Running” state, the “onPing” self-transition gets
triggered and Ponger sends out the “onPong” signal to the Pinger capsule. Fig. 5.3
shows the state-machine behaviour of the Ponger capsule.

As part of the proof of concept, we have monitored the states and transitions of the
Ponger state-machine in the PinPong model. Fig. 5.4 shows the display of traces in the
plugin for the PingPong model with the associated state element and corresponding

trace event at a particular point being highlighted. Clicking on the “Step” button

59

PINGPONG

5.1.

[aunrarepnen
183D ,_ _. 1953y]
P I-»-nnnn
2oeyj anr dois | daxs

3e1] AAIT YIS ,_ _‘ adey) Aejdsig

[opowr SuoJsurq oy} jo Ar[dsip ooel], :§°G oInsI

Buuuny 1abuod” 231E3SIAIDY ———
Buid ™ 1abuod™ paaldayabessay ——
Buuny Jabuod™ 21R153AIDY ———
Buid 1abuod ™ paslmdayabessay ——
Buuny ™ 1abuod™ 318353AIDY —m
buid™ Jabuod™ panadayabessapy ——
Buuny ™ 1abuod” 23B3SAAIDY ———
Buid— sabuod™ panidayabessapy ——
Buuny ™ 1abuod” 23B3SAAIDY ———
Buid1abuod™ pandayabessapy ——
Buluuny™ J3buod™ a1PISAAIDY ——

buid Jabuod pasladayabessay ——
Buuny Jabuod™ 21R153AIDY ———
buid™ Jabucd™ pandayabessapy ——
Buuny ™ 13bucd™ 218353AIDY

£9¥S0958PSSSBEVEIYL
BBBIBSSBLSSSBEVELYL
6.028558FSSSBEVERYL
LBSYZSSBESSSBERERRL
CTLIETSSBRSSSBEVEYYL
€5r99¥58YSSSBEPEPYL
FE9S9PSBYSSSBEREPY L
L2980¥S8FSS98EREPY L
F0LL0PSBYSSSBEREPY L
60P0SESBLSSSBEVEY L
PESEVESBESSSBEVEYYL
€81Z6Z58HSSSBEVEYYL
LBELETSBLSSSBERELYL
900/2258FSSSBEVEREL
SZPOZZSBLSSSBEPEYYL

BIEECEMITN

#5291-20Z15102-Buodbuld
v0E9L-20ZL5L0Z-Bucdbuid
l06+91-00Z 15 L0Z-Buodbuid

£20/1-90Z15L0Z-Buodbuld
550.1-00Z15L02-Bucdbuly
08tL1-11ZL510Z-Bucdbuld

awen aji4 aeiL

3)osuod = Tm Aejdsiganest .._ maiA bunojuow @ sepuadosd 0

_ 57 SUIydeWaIe1S Jabuod -w_ aunpewaels Jabulg -.h_ 3Jn7pnus Buodbuld ﬂ i awolam @

«uomysuel Bug [»
Buid Buiguo

Buluumny
«23e356uLI ‘2383518

~

wWs Jabuog

“aUIYOEBIeIS

53 IpBuodbuids ¢

o = @ g ?uc__u_._omm
WoIDDIP 5JUiDI]SU0I 9)Nsao) WoJpoig ey
sadA30as8]5 8/n32n135 woubp)g ER
wpubpiq 8)ijoid woibpiq BE
wesbeiqus ey
ainpnns Jebuod{l
2ain1ana35 13buy, _ﬂ
m_.___._umZmumumem:nn_ﬂw
aulyrewa1e1s 1abuid Sy
2in1pnns buodbuld weibeig &l
J020301dbuodbuld weibeiq 8g
Buodbuid weibeigdg
mainsang Buodbuld weibeig g

~ &3 % 2H

0 = _ £q Ja101dx3 jopow 7

uoIINPOI4ISBPIME «
s1ajjosu0x-do) F
Xy3awpead E
1qybuAdod §
Buodbuid €.«
808%L1-11Z1510Z-Buodbuld =) ¢
2550£1-90Z1510Z-buodbuld <3 «
£420.1-90Z15L0Z-Buodbuld <2 «
606+91-90Z15L0Z-Buodbuld <2 ¢
1b0E91-20ZL510Z-Buodbuld < «

1puoANpPoId1BpIMs €.

2¢5291-20ZL5102-Buadbuid <«

0= a &0 52 Ja10]d>x3 123f01d

60

PINGPONG

5.1.

[opouwr SuoJsurd o) Jo uonisuer) v sunysysy Aq Aefdsip ooelJ,

3wi] 3jeplea

Je3

aoel] anr dois

1953y

—

dais |

30BJ] 3AIT RIS

3dey] Aejdsiq

Buluuny ™ 1abuod 23R3SAAIDY ———
Buid™ JeBuod™ panianayabessayy ——
Buluuny ™ Jabuod 231R153AIDY ———
Buid™ JsBuod ™ panianayabessay ——
Buluuny ™ Jabuod 231R153AIDY ———
Buid™ JsBuod ™ panianayabessay ——
Buluuny ™ Jabuod™ 231R153AIDY —m
Buid™ J3buod™ panladsyabessayy ——
Buluuny ™ J3buod™ 23183S3AIDY

Buid™ sabuod™ paniadayabessapy ——
Buuuny ™ J3buod™ 3383S3AIDY ——
Buid™ sabuod™ paniadayabessapy ——
Buuuny™ 1abuod™ =23R3SAAIDY ———
Buid™ sabuod™ paniadayabessapy ——
Buuuny ™ 1abuod =3R3SAAIDY ———

€£5¥50058b5558EVERYL
BBBZBISBYSSSBEVERYL
6.0Z8598VSSSBEVEYYL
L8SYZSS8ESSSBEREL YL
CTLLIETSSBYSSSBEVEYYL
25P99PSBESSSBEVEYTL
FE959FS8FSSSBEREL YL
1 2580FS8FSSSBERELYL
+0.L0vS8PSSSBEREYYL
60F0SESBYSSSBERERYL
P6S6FESBPSSSBEROR YL
€81Z6758PSSSREVOYTL
1BEL6ES8YSSSBEROR YL
900L2258PS558EPORYIL
SZPOTTSBPSSSREVOYTL

BILEREITH

#5291-20Z 15 L0z-Buodbu
+0E91-20Z L5 L0g-Buodbul
06t91-90Z 15 L0Z-Buodbuld

+20£1-90Z 15 Log-Buodbuld
1S50£1-90Z 15 Log-Buodbuld
108t 1 1-1 1215 Log-Buodbuld

3WeN 3)14 adeiL

:G°G 2INJIYq

3)osuod & Tm Aeydsiganest ‘_ m3IA Buouow @ sansadoid =

_ 51 aupewalels Jabuegd -w_ aulpepwaels Jabulg -imh_.zu_._bm\mcnn_m:_n_ ﬂ IwodEm @

eibul

Buuumy
«ale1sbuln ajelsiye

«31E]S!
«3]e150pN

Y

WS Jabuog

«@UIY DB BIeIS >

53 Ip-Buodbulds ¢

0 =|a8
WOIDDIP 5JUiDij5U0J Sis00) WLIUDIQ ug
sadfjoasa)s amnionns wosboiq Bg
woJbpiq ajifold wosboig B

wesbeiqus Sy

21nynas ssbuod i

2unnns sebuid @

aulyewazels Jebuod &y
aulpewaiels J2buid 8y

2inpanis buodbuld wesbeig g
1020301dbuodbuld wesbeig Bg
Buodbuid weisbeiq g

M31nIaA0 Buodbuld weibeiq Bg

- B 0% AH

52 3UINO =3

0 = 7 53 Jasojdx3 |epon

:a_ﬂsnokzmm_u_g@ q

sJafjonuoddo) E

1awpead

1x3y6uAdod

Buodbuld €. ¢

808¥L1-11215102-Buodb
2550£1-90Z15102-Buodb
Lb20L1-0021510g-Buodbuld < 4
606+91-00Z15102-Buodbuld < «
Lb0£91-2021510Z-Buodbuld <7 ¢
2¢5291-20Z15102-Buodbuld <14

1p"UOIINPOIdISBPIM: €.

Buodbuid = -

0 =a &0 52 Ja10jdxa afoid O

61

PINGPONG

5.1.

[opouw 8uoJ3Ul o} Ul SIUOAD PIORI} OM]} UMD dOUSILPIP dWIL], :9°G 2131

_\ swil aepiepn |

183D

_ 1959y _

aoey) an dois

_ dais _

ERITIENTR RIS

_\ aoell Aeydsig |

235W 8885070 : 2JUJ24JIQ WL

Buwuny 12buod™ ajeisani oy ———

BuidJabuod ™ panladayabessaw

Buwuny 12buod™ ajeisani oy ———
BuidJabuod ™ panladayabessaw
Buuuny™ Jabuod™ a1elSaNIIY ——
Buid Jabuod ™ panlmdayabessay ——
Buwuny 12buod™ ajeisani oy ———
BuidJabuod ™ panladayabessaw
Buwuny 12buod™ ajeisani oy ———

E£5FS0958FS9SBEREFYL

——— 8BBZ8S9BrSSSBErebtL
Buwuny 12buod™ ajeisani oy ———
Buid Jabuod ™ panlmdayabessay ——
Buwuny 12buod™ ajeisani oy ———
Buid Jabuod ™ panlmdayabessay ——
Buwuny 12buod™ ajeisani oy ———
Buid™ 13buod™ panizdayabessaw ——

6L02BSS8YSSSBEVEYRL
185¥ZeS8FSSSBERERYL
CLLETSS8FSaSBERErYL
Z5F99¥S8FSaSBErErYL
PEOSOPS8YSSSBEYEY L
LZ580¥58FSSSBERERYL
POLLOVSBYSSSBEYEYL

————60F0SESBFSSSBErEFYL

PES6YESBYSSSBEYETTL
E£8126298FS9SBEVEPYL
LBELBZSBYSSSBERERYL

————-000.L2258FS55BEVEFFL

SZr0Za8rSasSBEreryL

HIEESEITN

$5291-20Z15102-buodbuid
#0£91-Z0Z1510Z-buodbuld
l06%91-00Z1510Z-buodbuid

$20.1-90Z15102-buodbuid
§50/1-00Z1510Z-buodbuld
08t11-11Z15102-buodbuld

Jwen 314 el

5.2. WIDGET PRODUCTION 62

allows us to see the next trace event along with the highlighted element being updated
(see Fig. 5.5). Fig. 5.6 shows the time difference after selecting two events from the

middle column of the textual display.

5.2 Widget Production

The Widget Production model is the second model we designed to test our imple-
mentation features. The Top capsule of this model contains four other capsules: Con-
trolSoftware, ProductionLine, Workstation and Robot. Fig. 5.7 shows the structure

diagram of the Top capsule of this model.

«Capsule, CapsuleProperties»
& Top
RTPort»
o + CStoR: RobotProtocol [1 “
+ PLtoCS: RDbOtP:\E'IEPD:rCt'l [11] «RTPorts m + StopTimer: Timing [1]
« »
[«RTConnector» $ 1.t
«CapsulePart» - RTConnectorl ’—I «CapsulePart» f.—-
& # productionLine: ProductionLine [Iz # controlSoftware: ControlSoftware 1
t «RTPort=
T 0 “g“ > + CSLog: Log [11]
B «RTConnectors=
LA, 1|
__«RTPort» RTConnector2 «RTPort» + StartTimer: Timing [11]
+ PLtoWS: ~WorkstationProtocol [1] + CStoWS: WorkstatienProtecol [1]

Figure 5.7: Structure diagram of the Widget production model

The ControlSoftware capsule is the heart of the widget production system. It
coordinates the activities on the production line by directing when to produce a
widget and when to deliver a widget by sending signals through protocols. The
ProductionLine capsule is a container capsule which encapsulates the structure and
behaviour of the Workstation and Robot capsules. The Workstation capsule controls
the actual manufacturing of widgets (see Fig. 5.9) and the Robot capsule controls the

delivery of robots (see Fig. 5.10).

5.2. WIDGET PRODUCTION 63

i «RTStateMachine» N
Control Software SM
«RTPseudostates «RT5tates
«ATPs states ControlSoftware_StartUp
Control_Yoftware_initial fentry OpagueBehavior null
Control_Software_init
Control_Software_start
timeout
RTStat ~, widgetDelivered d «RTStates
B goftw:rgxProduce Control Software_goAgain Control_Software_Deliver
Jentry OpagueBehavior null widgetPreduced fentry OpaqueBehavior null
P, Control_Software_deliverMe ~
timeout Control_Software_shutdown
Control_Software_shutdown2 «RTStates timeout
Control_Software_shutDow
fentry OpagueBehavier null
. J

Figure 5.8: Statemachine diagram of the ControlSoftware capsule

Fig. 5.8 shows the state-machine diagram of the ControlSoftware capsule having
four states. Initially it waits in the “ControlSoftware_StartUp” state to initialize other

elements and startup the system. At this point, the “Workstation” and the “Robot”

4 «RTStateMachines»
WorkStation_Behaviour

«RTPseudostates

WorkStation_finished
«RT5tate=

«RT5tates T
WorkStation_Standby WorkStation_Producing

Jentry OpagueBehavior init| WorkStation_begin
/ produceWidget _

fentry OpagqueBehavior begin

Figure 5.9: Statemachine diagram of the Workstation capsule

5.2. WIDGET PRODUCTION 64

a «RTStateMachine» A
Robot_Behaviour
«RTPseudostates
«RTPs state»
Robot_initial
Robot_init | ;...
«RTState») Robot finished ™ prsiate, ITTngstates
Robot_Standby timeouty... Robot_Delivering
Jentry OpaqueBehavior null | Robot_begin ~|/entry OpaqueBehavior null
/ deliverWidget \

- A

Figure 5.10: Statemachine diagram of the Robot capsule

state-machines wait in their respective Standby states for a signal from the Control-
Software state-machine for proceeding to operating mode. Once the startup timer of
the ControlSoftware capsule fires, it enters the “Control_Software_Produce” state and
sends a signal to the Workstation to produce widgets. After producing the widget,
the Workstation sends a signal back to the ControlSoftware where the “widgetPro-
duced” transition gets triggered for taking it to the “Control_Software _Deliver” state.
Then the ControlSoftware sends a signal to the Robot state-machine to deliver the
widget and then it waits for a signal from the Robot state-machine. Once it receives

.

the signal, the “widgetDelivered” transition gets triggered and the ControlSoftware
enters the “Control_Software_Produce” state again. The whole system ends after the
ControlSoftware receives a shut down signal which gets triggered after a predefined
time interval.

The trace display of the Workstation state-machine is demonstrated in Fig. 5.11

and Fig. 5.12. Fig. 5.13 and Fig. 5.14 show two cases demonstrating the conformance

65

WIDGET PRODUCTION

5.2.

[opow uo1}onpoiJ 38pIAN oY)} ul Ae[dsip 9ovl], 11°G 0InS1

£QpueISTUOIIRISHIOM UOIIRISHIOM ™ 21BISIAIY ——— S0+ILOSSETZLEESESY
|E1IUIUOIIBISHIOM ™ UOIBISHIOM 2]BISOPNISdIAIIY —— £18S65ESB0ZLEESESY L
PaYsIuly UONEISHIOM UOIRISYIOM PanIRIayabessa —— 658FH0VB8LE L LOVESHL
BUPNPOI4TUONRISHIOM UOIIRISHIOM 31RISIAIIY ——— LOLEEOLBBLZLLOVESEL
uibaq uonelsyIom UONEISHIOM panizdayabessa —— 5 /480628807 L LOPESHL
AqpueISTUOIIRISHIOM UONRISHIOM 318ISAIY ——— BLLSO6ZBBOZLLOVESHL
g P3YsIUY UONRISYIOM UONRISYIOM ™ PaAadayabessaw ——— /26£2/088bZL LOVESEL NEENH:a_ﬂ:nE%mm M ————
) ; . BuPNPOI4TUONRISHIOM ™ UOIIRISHIOM 31RISIAIIY —— EZLBLLOBBFZLLOPESEL| ZL5L0Z UCIPNPoIdIsbpim (= =e=m |
1e3p P53y wIB3q UONEISHIOM™ UONRISHIOM PaAIZIAYA6RSSIN ——— pOOPESELBEZLLOPESYL| ZLSL0Z UoIPNPoId1bpim ==l f
fqpue)sTUOIRISHIOM ™ UOIIRISHIOM 238ISAAIIDY ——— 98S0656/8EZLLOV6SYL| E09LOZ UOIANPOIdIBpIM |
ZCNEICEE { d=1s _ Paysiuly UONEISHIOM UONRISHIOM PRAIaIaYabessaN —— BL6E6ELL81ZLIOPESYL | SUNTTANLIE eI T e
ey aa RS | [ey fedsig | Buanpoid”uonesy oM UonEIS oM 211SRNAY ——— OZ/0BELLIBIZLLOPESEL | bOSLOZ UORINPOIdIBPIM e
ulb2q UORISHIOM ™ UOIEISHIOM Pan1dayabessaw —— S2pL520L80Z1LOV6SEL| F09LOZ UoIIdNpOIdIRbpIm 0 -8 £ 3UMNO =5
AQpuejsTuoIIeISHIOM UOIIRISHIOM 21BISPAIDY —— 21875292802 | LOb6St | Y TR FATLIRRLTLINAE LT WOIUDIP S{UIDITSU03 9N [0eia s 19410 WoIvoid g
TUOIeISHIOM UONRISHIOM 91BISOPNSJAAIDY ——— OZEQLLL88LLIOFESYL| FO9L0Z uoANpoIdIabpim wouBDIp $1U1D4ISU0I 3)NsdDI WDIBDI EE
sadfjoaials ainioniis woibpig Eg
BIL=AET ERLIT awen 3)i4 3deJ) wniboiq 3)1Joid WoIbDIC BE
WS 10904 S

3josuo) m—x Aejdsigasel] .._ maip Bunojuow @ sansadoldy [

2JeM1JOS|01U0D H _ WS 1090y = _ dojl ﬂ i WS 3Jem1jos |0uod = WS uoneIsyom =%

«uoiysuel buj »
w@bpimaanpoad

uibaq soineyeganbedo Aus/ wbag uonieIsop [Hul Joineyaganbedo Anua/|

Agpueis” uoiieISHIoM
«21e356ul 17 '=1e1S 1M

Buionpoud uoneIs oM

“[AN0aWI;
«s3e356uL) sje3SIN» 4 5!

PaYSIUY UONEISH oM

AR

Ui uoREIS oM.
«aje1s0pnasdbu iy aieisopnasd 1y

«ajesopnasdbul 7 ‘ajeisopnasd iy
INCINBYSE UCLIEISHIOMN
«aUIYIBNIEIS >

52 IPUOINPOIdEBpIMa €. B = o 5 H

WS 21em3yos josjuod$
ws uopeisjiom ey
10904 E
uopeysyiomE
auruonanpold g
aJemyjos|osjuod &g
dop &5

[]l |- 8% RaE

53 Ja10]dx3 j2po

Buodbuid = «

53 J310)dxg P2foid o

66

WIDGET PRODUCTION

5.2.

1e3p

adel] an dols

£QpueisTuoneISHIOM ™ UOIIEISHIOM 2IRISBAIY ——— S0bILOSSBTZLEESEST |
|eRIUITUORISHIOM ™ UOIIRISHIOM 2]1eJSOPNAsdBnIDY ——— ELBSESESBOZLEESESTL
PaysiuyTuoIIRISHIOM ™ UoREISHIOM paniRdayebessay ——— 658rH0Fe8LZLIIPEST L
BuPNpOId UCIEISHIOM UOIIRISHIOM 21eISAAIY ——— LOLEEOFEBLZLIITESHL
ulbag uoneISHIOM UCIRISHIOM pani2dayabessaiy ——— S .r8062889Z LLITESTL
fgpuelsTUOEISHIOM T UOIIEISHIOM 23BISANIIY ——— BLLS06Z8BIZLLIVESY L
g, Paysiuy uoIeISHIOM UOHRISHIOM paniadsyabessaw ——— /Z6E2/088rZLLOP6SYL | £L5L0Z UonINpoIdI=bpim
. BupnpoId UOREISHIOM ™ UOIIRISHIOM 23BISANIIY ——— EZLBLLOBBYZLLIVESYL| £L5L0Z UenINpoIdIbpim
1953y uibiag uoeISHIOM UONERISHIOM pani@dayabessaiy —— p00b656L8E2LLOP6STL| ELSLOZ UOIINPOIdIbpIm

AgpueisTuoneIs}IoMT UOIJEISHIOM 21BISBMIY 9850656/8ECL19P6SPL £0910Z uomanpoidizbpim

da1s | paysiulyuoIeISIoM UoReISH oM panadayabessam 8L6E6EL/8LZLLOPESTL

adeJ] Al Jels

aoey] Aejdsia | BupNpoid UONRISYIOM ™ UOIRISYIOM 31BISBAIY 9¢/98E//812Z119%65FL b0910Z uoINpoIdIzbpim
STPLISZ9/80ZL1L9v6SEL b0910Z uonanpoidIzbpim
Z18¥529/80ZL19t6SHL b0910Z uonanpoidIzbpim
9ZE9/1L¥/88LLLOVESEL b0910Z UonInpoidIzbpim

uibaq uoneisyiom UcneIsylom paniadayabessaw
AqpueisTuonRISHIOM ™ UOIBISHIOM 21RISSAIDY
2N UOINRISHIOM UOIIRISHIOM S1BISOPNISIIAIY

BIEERERCIT SWeN 3)i4 adeJL

3)05U0) m—m Aeydsiganesy ‘; M31A Bulolluow @ S31Iadoids =

aJem1josjonuod £ Ws Jogey Sy |dol) | WS 2.em1os]oaquod B[iz WS UoneISyIom By

«uoisuel buj j»
wbpimaanpoad

ubaq Joineysganbedg Anjus/ ull

Agpueis uoneis}iom
«aje3shull] ‘3ieIsiy»

Buianpoid uoneIs}iom
«ane1sbul) ‘sleisiy»

e
PaysIuY UoRERISHIOM

AR
[ERuluoEIS oM
«ajeysopnasdbu, 3JBISOPNISdLY>
«ajejsopnasdbul] ‘a3ejsopnasdiye»
INOIAEYSE UOIIEISHION
«3UIYIBWDILIS >

57 IP'UONINPOIAISBPIMS £

99R)S SUIONPOIJ 93 SUIIYSIYSIY Aq [opOUW UOTIONPOIJ JPSPIA\ oY} Ul Ae[dSIp 90RIT, :Z]°C 9IN3I

O = @ & 52 BUNINO =
WoJDDp SJUIDIJ5U0T dUNJ0Sld]s J8y]0 WoluD|| e
wpibpp s3uipJIsU02 3)nsdpD woibpig BE
sadAjoa1a3s 21n3on.3s woibpig BF
wpsbp)qg a)lfosd woibpig BE
Ws 30904 8y
WS 21emijos |osquod &
ws uoneisyiom
J0q0u g
uoneIsyiomE
auruonanpoid g
3Jem1jos)ojucd 5
dor £Q

2 BEHAESR

O = 53 J2101dx3 |opow F

uonINpoIdIabpim =

Buodbuid =«

O o -~ 53 Jaojdxg paleid oy

JF

67

WIDGET PRODUCTION

5.2.

[Ppow uo13dNPOIJ JOSPIAN Y} Ul UOTJRPI[eA JUTRIISUOD JWIL], €'G 9INnSI]

| awi a3epnen
1IR30] (1959y
aey) aa dojs dajs

301 BAIT WIS ey Aeydsig

pajepne

PaysIul UOIIEISHIOM ™ UOIIRISHIOM panadayabessapy ——
Bunpold UCNEISYIOM UCIRISHIOM 31BISIAIDY ———
uibaq uoneIsyIoM uoneIsyIom paaladayabessapy ———
AqpuUeIS UCNEISHIOM UOIIRISHIOM 21RISIAIY ———
Paysiuly uCeISHIOM UoeISjiom paniadayabessap ——
Budnpoid uoneIS}IoM T UCIEISHIOM 21BISIAIDY ———
uibag uonelsyjiom uoneIsyiom panadayabessapw ——
AgQpuelsTUOREISHIOM UOIIBISHIOM 31BISIAIPY ———
Paysiuy uUoIeISHIOM UOIeISHIOM paniadayabessapw ——
BuidNpold UOREISYIOM UOIRISHIOM 3]1BISIAIDY ———
uibaq uoleIsyiom uoneIsyIiom paaladayabessapy ——
AqpuUeIS UCNEISHIOM UOIIRISHIOM 21RISIAIY ———
1BIIUI UOITRISHIOM UOITRISHIOM 31BISOPN3S3AIY ——

0ET0ZE6VBBEI10E6STL
¥BrOLE6VBBEILIEESHL
1109028+v8.6919£65F1
B8L100Z8vBL6919E65F1L
S0.¥965PBS691L9E65TL
Z168565P856919E65TL
6068¢8rrBPEIL9E6STI
08S¢E8rrBreaLItastl
619LE9ZYBEEILIERST]
£0LF79ZF8Z6910E65T L
LebLESIPBLEOLOEGSL
L9¥STS1PBLEILIEESHL
6L¥SOPEEBEBILIEESHL

BISEEREIT

L5102 uo1pPnpoidibpim
L5102 uo1pnpoidizbpim
15102 uo1NpoIdibpim
09102 U013dNpoIdI=bpim

£09102 U013INPOoIdIbpim
09102 U011dNPOIdI2BpIM
F0910Z Uo1INpoIdI1Bpim
09102 U0NINpoIdI1abpIM
09102 U0NINpoId1abpim

SWweN 3 el

3)0suod m—m Reydsigasesp ‘._ M3l Bunojuow @ sapJadolds [0

21eM3J05]013U0D §H) | WS 30goy B4 |doL) | WS 31eM1J05T|0.3u0D By [53 WS UoREISYIoM B

«uoiysuel buj 1»
1ebpimaonpoad

“ynoawny

B2 UOREISAHOM

Agpuels” uoeIsyiom

Buranpouid” uonelsiom
«31e15hul] SIS)|

PAYSILY UONEISHIOM

buln s1eIsiy»

G

«33eIs0pnasdbu

«a1e150presdbu L[B1E1S0pNasd 1>

Ul UoNEISHIOM
'91E1S0PNaSdLY>

INOIABYSE UOIEISHIOM
«3UIYIBNIIEISIH>

52 IP'UCHINPOIAIBPIM €.

P ————
e W

a

53 3UIIANO =5
WOJODIP S]UjDIsU07 dUAJ0SIS]5 19Y]0 WoIDDI(el
woibpip suIpi3su0I)nsdpD wpibpig B
sadAj0a1235 2/n1onJ3s woibig BR
woibpiq a)tfold woibpiq BE
ws 10904 Sy
WS 2Jemijos jenuod ﬂp
WS ueneIsyiomey
10904)
uonelsyiom g
uo1INpoId

ajemyjosjonuod &
do &g

& B % A
= 53 12101dx3 |2po

x2adsawi) F

uoINPoIdIBpIME «
1020417 ZL¥0910Z uo1anpoidIzbpim e«
8212¢L” L0F09 102 uoI3aNpPoIdIbpIm a4
Pr6LEL LOP09L0Z UoIIINPOIdIBpPIM T 4
+061¥1L” LOF09L0Z UoI3INPOIdIBpPIM T 4
851541 LEE0OL0Z U0IIINPOILIBPIM T 4
6¥FLPL 0EE0910Z UOIIINPRIdIABPIM] 4
BO9ELL L0ZLSLOZ UOIPNPOIIZBPIM ST «
ZOYS9L L0ZLSLOZ UoIdNPOoIdIabpim<d ¢
6€£/05L7/0ZL5L0Z U01INpoIdI1zbpim < ¢

uoINpoIdIabpIm = -

]

Buodbuid 1 ¢

i

=] 53 JaJo)dx3 323ledd oy

= A

68

WIDGET PRODUCTION

5.2.

[epowt

—

| swiaepnen |
Je3d , , 19594 ,_
27ey) an dois dals

ERLITIETR BUL=ATS , , ey Aeydsig ,_

J2sW 0LL64°200L Y41 3WIL|ENIDY

335W 0°000S :BWIL USAID

UO13ONPOIJ JOSPIAA 9} Ul JUIRIISUOD SUII} JO UOIJR[OIA FT°C 9INSI]

Paysiuy uoeIS}IoM ™ uoneIsjiom paniadayabessaw

0EZ0ZE6YBBEILIELSTL

BuIdNpOIdTUCHEISHIOM UDIIEISHIOM 2183SaAIIY —— vBFILE6YBBE9LIE6STL
uib2q uonIeISHI0M UoEISHIOM panRdayabessaW ——— £109028v8L69 L9E6STL
AqpueisTuocneISIOM UOIIRISHIOM 21RISAMIDY ——— 8L L00ZBHBLEILIEESHE
PRYSIUYTUOIIRISHIOM UOIIBISHIOM PRAIddyabessa ——— S0.PO65H856010E65F 1

Bupnpold ucEISYIOM UOIIRISHIOM 2]BISAMIY Z168565Y856010£6511
ulbaq uoIIRISYIOM ™ UOIIEISYIOM paAladayabessa 6068Z8vLBYE9LOEESHL I
AqpueisTuoneIsyIiom T UOIRISHIOM 218IS3MIY 085ZZBYHBYE0L9E6STL 09102 UOI1INpoid1bpim
PaYsIUY UOIEISHIOM ™ UoeISYIOM paaizdayabessa 6LOLEOZLBZEOLOEESYL| EO9LOZ UOIINPOIHIRBPIM
Bupnpoid uoneIsyIoM ™ UCIRISYIOM T 3IRISIAIY £0.4292vBZ6OL9E65PL | b09LOZ UOIINpEIdIzbpIM
uib2q uoizeIsiIoM” UoeIs IoM pandayabessa —— LZPLESLEBLEILOEESYL| b09L0Z uolianpoldizbpim

AqpueISTUCEISHIOM UOIJRISHIOM 21BISAMIDY —— [OPSES LyBLE9LIEESHL

p0910Z uoi3anpoIdIzbpim
p0910Z"u013INPOIdIbpIM

ITUCIIEISHIOM UOIIRISHIOM 21eISOPNISIAINY ——— 6LHSOF6EB689 LIE6ST L

BIGECERIY SWweN 314 32ell

3josucd m—m Keydsigases) .._ M3IA BuLojuoW @ Sa1iadolds =

31emyjos|ouod §g is_mlunn_um = _ doy) is_mlmhmzﬁuml_nhcnu ln_ 52 WS uoneisyiom Sy

«uoipsuel buy s

uibeq UONEISHIoM

Aqpuels” uoneisiom

«ale1sbul I ‘eelsiy»

Buianpoid” uoneIsiom
«age1sbul I ‘slesin»

iR
=DIYSIUY UOIRISHIOM

I UoIEISHIOM
«a1e50pnasgbufffsiersopnasdiy»
«3]eIS0pNasdbul 1 ‘a1e350pNasdly»

InoineyRg UOIEISHIOM
«3UIYIBWIIBIS [H>

53 IPU0IINPOIdI3BpIMs €.

o= (=
WoIopip sJUIpi]su0 eUnjoala]s ioy]O WoioDi() e
wouBpip $3UID435U0D 2)nsdD) WoIbDI BE
sadfj0a1215 21n1onu3s woiboiq EE

woibpiqg ajtfold woiboig Bg

WS 10qou Fy

WS 2.emijos |onuod Y

Ws uoneIsjiom ey

1090y]

uopjeIsyIomEs

auruonanpold g

_ 5 3UIPNO =5

3Jem1Jos)|0ued)
n_n_hﬂ

-~ 58 % @BA[E
O o 33 JaJo)dx3 |2po "

1:322dsawil
uoIaNpPoIdIEbpIME «
1020L1” 21109102 U013INPOIdI3BPIM] ¢
8Z1ZbL LOPO9LOZ UOIDNPOIdIRBPIMED «
tr6LELLOF09LOZ UOIINPOIdIZBpIM < «
0611 LOF09LOZ UOIINPOIdIZBpIM ST «
851521 LEE09LOZ UOIIINPOI4IRBPIM D ¢«
6tPLEL OEE09L0Z UOIIINPOIHIRBPIM ST ¢
809ELLL0ZLSL0Z UoIIINPOIdIBPIM T 4
Z0¥S91LL0ZLS10Z UOIIINPOIdIRBPIM D ¢
6EL0SLL0ZLSL0Z uoI3INPOIdIbpIm T ¢
uonINpoId1abpim o -
Buodbuld <) 4

53 Ja10)dx3 3loid O

5.3. ROVER 69

and violation of a timing requirement specification in our plugin.

5.3 Rover

We have created the Rover model in Papyrus-RT to test live and remote monitoring
of real-time embedded systems. The rover we have is a small vehicle with two motors
that can move in different directions. It is built using a Raspberry-Pi platform running
a Linux OS. Fig. 5.15 shows the physical Rover we have used for testing the live tracing

concept.

Figure 5.15: The Rover

The Rover behavior is represented using UML-RT state-machine in Papyrus-RT.
Following the behavior specification, Rover moves forward until detecting an obstacle.
Once it detects an obstacle, it tries to avoid the collision by making a turn of 90 degrees
and then it starts moving in forward direction again. The code is generated using the

Papyrus-RT tool and Raspberry-Pi is used for executing the code.

5.3. ROVER 70

Control Software

Rover Library

GPIO Class

Hardware

Figure 5.16: Rover Architecture

Now, let us go through the architecture of the Rover (see Fig. 5.16). The Rover
architecture consists of 5 different layers. In the bottom-most, we have the hardware
layer. A Raspberry Pi having 26 GPIO pins is used for representing this layer. 17 of

these pins are used for connecting external devices such as sensors and actuators (see

°
: 199h
sp11cso i1
28| Reserved |
GofnD |
= w— 32[GPIO 12 |
= Galono |
14393 14393 36/GP10 16 |
[’ J] 38[P11 MOsTI |
2 . 40[SP11 SCLK]

Figure 5.17: Raspberry-pi GPIO Pin [19]

5.3. ROVER 71

AA Battery

),—J faaneg v

AA Battery

fritzing

Figure 5.18: Rover Wiring Diagram [19]

Fig. 5.17). On top of the hardware layer, the Rover architecture has a file system
which is powered by a real-time version of Linux. GPIO pins in the Raspberry Pi
are used for providing users read/write access to the file system. These GPIO pins
are controlled using a C++ wrapper class which represents the GPIO Class layer in
Fig. 5.16. The wrapper class consists of the "set” and ”get” methods which are used
for setting and retrieving the pin values respectively. On top of the wrapper class,
we have the Rover library layer. This library comprises different components of the
physical Rover in the form of a number of UML-RT capsules. Finally, the Control
Software layer, the topmost layer of the Rover architecture, represents the business
logic of the application.

The assembly of the Rover platform is shown in Fig. 5.18. An important step of
assembling the physical platform of the Rover is the proper selection of components.

As we can see in Fig. 5.18, two step motors that are attached to wheels are embedded

5.3. ROVER 72

in the core component, the Raspberry Pi 3. A motor controller connected to the
Raspberry Pi ensures the control of the Rover. Distance measurement with obstacles
is done using an ultrasonic distance sensor. Different components are connected using
a breadboard. Power is provided using two sets of batteries, whereas the receipt of 5
volts in the Raspberry Pi, which it needs to be powered on, is ensured with the use
of a voltage regulator.

The composite structure diagram of the Top capsule is shown in Fig. 5.19. This
capsule connects two other capsules: the ControlSoftware and the Rover capsule.

Fig. 5.20 shows the state-machine diagram of the ControlSoftware capsule. It is
a key aspect of the model behavior as it represents the logic of the rover system. In-
structions are designed to be sent from this capsule behavior to the Engine Controller
to move forward until the distance between the rover and an obstacle is no more than
one foot. Once the rover reaches such a point, it moves back, turns and goes back to
a position where it moves forward again and checks the distance.

A capsule named “Detection” is used for communicating the distance sensor.

«Capsule»
Hop
«CapsulePart» -*| + engine: Engine [1] «CapsulePart» -
E; # controlSoftware: ControlSoftware [1 T ;R’I‘Con:ecltor» «RTPorta 3 # rover: Rover [1]
] e O [engine: ~Engine [11]
+ timer: Timing [1] + detection: Detection [1] «RTHorts
“RTPOL> Connectors
[detection: ~Detection [1]
«RTPort»
«RTConnector»
«RTPort» Connector2
,i| «RTPort» <RTConnectors temperature: ~Temperature [1]
l—l + temperature: Temperature [1] «RTPort»
+ log: Log [11

Figure 5.19: Structure diagram of Rover Top capsule

«RTStateMachines
ControlSoftware
«RTPseudostate» =T [return (distance > threshold) || (distance = 0);] «RTStates
« » :
«RTFss.ustate» Detecting greaterThan StopMovingForward
try O Beh |
entry OpaqueBehavior nul SEUdOStatE”/‘QSS'I'h{ St PR
[return (distance < threshold) && (distance == 0);]
obstacleDetected... Choicel stopped
«RTStatex» obstacleDetected)... «RTState»
Forward Reverse
X obst
entry OpaqueBehavior nul entry OpaqueBehavior nul
timeout
«RTStates
Standby :_RTSéatE: «RTStates
Jentry umRig } StopMovingBackward
OpaqueBehavior null fentry OP?]‘EILIIIEBEhaV'Uj stopped entry OpaqueBehavior nul

Figure 5.20: Control Software state-machine diagram of the Rover model

«RTStateMachine»

initial

DetectionStateMachine
«RT5tates

(Idle

Teee
«RTP'B'E.Lstate»

«RTPseudostates

Lfentr}.r OpaqueBehavior null

startDetection
startDetection

stopDetection/...
stopDetection

«RT5tate»
Detecting

fentry OpagueBehavior
detectingPresence

timeout startDetection

«RTStates
Measuring

fentry OpagueBehavior null

stopDetection

Figure 5.21: Detection state-machine diagram of the Rover model

Fig. 5.21 shows the behavior of the Detection capsule. The distance sensor sends

out a pulse of ultrasonic sound and measuring the time it takes for the signal to

return. It stops sending out the signals once the pulse comes back.

The Engine Controller capsule behavior is shown in Fig. 5.22. As the name implies,

5.3. ROVER 74

this capsule is responsible for controlling the engine. The execution of this capsule
waits in the “Idle” state until an event is received which directs it to either forward or
backward direction. Consequently, the execution moves to either “MovingForward”
or “MovingBackward” state. Once one of these states becomes active, the system
can come back to the “Idle” state only if it receives a stop signal. In the background,
when the execution enters either “MovingForward” or “MovingBackward” state, the
engine controller communicates with the file system through the rover library. This
allows the control of the hardware which directs the actual movement of the physical
component. Similarly, once the Engine Controller receives a signal directing it to
either right or left, the execution goes to the “TurningRight” or “TurninglLeft” state
respectively. In either cases, the rover engine moves the corresponding motors which
causes the actual turn. The transition of the rover engine back to the “Idle” state is
done using the expiration event of a system timer.

We have used the Rover model for both offline and live monitoring.

«RTStateMachine»
EngineControllerStateMachine

«RT5tatex»

«R’I‘P’m.ostate» TurningLeft
RIPseudostat Jentry OpqqueBeha\nor
«RiPseqdostates turningLeft
timeout/...
turnLeft/... | turnLeft stopTurningLeft
J... initial
«RTStaten «RTState» 1 moveForward «RTState»
MevingBackward moveBackward Idle B MovingForward
Jjentry OpagueBehavior - Jfentry OpagueBehavior
movingBackward T (EbviCpateRahaioLE stopMovingForward movingForward
stopMovingBackward stop/...
stop/... timeout/...
turnRight stopTurningRight
turnRighty...

«RTStates
TurningRight
Jentry OpaqueBehavior
turningRight

Figure 5.22: State-machine diagram of Engine Controller

75

ROVER

5.3.

[opout 19A0Y o1 ul Ae[dsip 90el], :£z'G 2Ins1

4BrguIny™ s3jjoaquedauIBUT T panadayabessan ———961502S6FSLYILEZOYL

paemydegbulno J3]|013U0DRUIBUT T 21RISAAIY ——— 9L0b06F6FSLPOLETIYL

piemiogBuiroW Ja|01qu0d3UIBUT 3183S3MIIY —— 6L LLb LIPS IPOLEZOYL

JybryuIny™ J3jj013ucdaUIBUT T PaAIdaYabesSAIN ——— 8/ LSBTLYThIFILETOYL

paemyegbulno ™ I3]|03u0d3UIBUT T 318ISBAIDY ——— bSSH069EZELEILEZOLL

paemsogBuinow ™ Ja]jo1quod2uiBuT 218353MI3Y —— S60 L LBSHTYLYILEEOYL

" awiayepnen | 4BrguIny™ s3jj0aquedRUIBUT T panadayabessan ——— L6 Lr698FFELYOLEZOYL

)) : paemydegbulno J3]|013U0D3UIBUT T 21RISAAIY ——— OE0LFeFFELPOLETOYL

1e3p 1353y plemiodBuInOW T Ja)|0ued3UIBUT T 31R1SINIY —— LLZLO6LEYELFOLEZOVL
. ybruiny~ 13)j0uedauIbul T panadayabessa —— 6L68EFOL0ZLEILEZILL Z1L6281-€050010Z-13A0H
a2e1L 3n7 dois des pJemypegbuinoW T I13]|013u0D2UIBUT T 318153NY ——— 621500902 L6OLEZIYL S00581-E0500 10Z-12A0Y
o0l aAM0e3S | [eveiLhedsia | paemsogBuinow ™ Jayjo1quod2uIBuT T 218353MIIY —— PEEGE6YLOTLYILEEOYL 9£8581-£0509 L0Z-120Y
S ybriuny ™ 19)j013ucd3uIBUT T panizdayabessa —— Zy060LE8Y LLYOLETIYL 810061-£0509 10Z-12004
pemydegbulno J3]|013u0D3UIBUT T 2]1RISAAIDY —— LEZLZEEBY LIPOLETObL Z£5061-€050010Z-12A0H

plemiodbuiro T I3)1013u0I3UIBUT T 31RISBMIY —— bbb LLZLBYLIFOLEZOYL LE6S0Z-E0509102Z-13A0H

BIEERIN 3wen 3)i4 adeuL

3josuod =7 T» Rejdsigasel, ‘.; majA bupojuow @ sepsadold [0

312M)J0S]07U0D::31BMJOS]0J3U0D By weibelgwsuodsiza By | i weibeiqusianonuodauibul Sy swodjam &

~

brybuiuing
Joineyaganbedg Aius/
Wbrybuuin.
- Aybryuwiny
By Butuing doyg By
“finoawun *fdos
-jdols - -~ piemydegbuinopdols
uemiodBuinow 1emi06ul do: e premegbuinow
o>h__wmw_._umn_o s/ P: v_m!ﬂcuw“w_“h = [Inu U bedo Anus/ piemy IAeyBganbedg ALus/
paemiobuinoly alp1 pieamdEganow paemsdegbuinoly
«3]e1S IH» plemiodanow «3Je1SIy» «3]e1S Iy»

ye1buw Yaqwiny
“[noa
ye1buuim
1oineysganbedo Anus/ «21B150pNaSd [H»
ye1buuing «ETS »
«a1eI51Y»

aulyewaleIsialieuedauIbul
«@UIYIBpEIRIS Y

53 IPISAOYHx €.

]
O = @) 52 AUIANO =R

WoJppIp 5JUIDIJ5U00 9jnsur) WoJppi| ey
sadAj0aJ235 aun)anils wolbpig B
3JBM1J0S]0JU0D 3 IBMYJOS|0IUCD B
sJemyjosjesjuod{g

doi g
weibejgwsJaponuodauibuz Y
wesbeiqwsuodalaa®y
welbelgiosuasainiesadwa) By
weibeiqisnoy
weibeigiazswowsayl
weibeiguodzieafE
weibejguanonuodauibuafE

~ &0 A

O - 53 Jaojdx3 jppow

uoINPOIIBPIM) «

Buodbuid) «

0= a &O 32 Ja10]dxa aloid O

76

ROVER

5.3.

9)eIS | PIRMORGSUIAON,, 911 SUNYSIYSIY AQ [pOW ISA0Y o1} JO AR[ASIp 90vRI], :fg G 2InJI]

1yBryuiny ™ J3)j01quodauibug T panadayabessap ——
paemydegbulropw ™ J3))0jucd3UIBUT T 31RISIAIPY ———
piemusodbuinow ™ J3pj0uedsuIBuT T 31RISAAIIY ——
ybryuiny ™ J3)jenuedaulbulT panedayabessap ——
paemydegbuinow™ J3)j0J3ucdauibul T 1e1S3NIdY ———
piemiogbuinow ™ Ja)josquodaulbul a3e1sandY ——
1yBryuiny ™ J3)j01uodaulbul T panedayabessay ——
pJemydegbuinow Ja3)jesjuedauibul 21R1S3AIDY ——

awi] 31epnea

Je3p

aeJ) s dols

13534 piemusodbuinow ™ J3pj0uedsuIBuT T 31RISAAIIY ——
uin)~ J3jjoJquodauibuz T paniedayabessawy ———

EE y

ERLATIEYNR BILA S

ey Aejdsia

paemydegbuinow™ J3)j0J3ucdauibul T 1e1S3nIdY ———
piemiogbuinow ™ Jayjosquodaulbul” a3e3sanI DY ——
ybryuiny ™ J3)j01ucd3ubul T paaledayabessap ——
plemydegbuinow J3)j0sjucdauibul 21R1SINIDY ——

96150256FSLPILECOVL
9L9F06VEPSLPOLETOVL
6LLLErrERSIFOLETOVL
BLLSBLLYTRIFILETOVL
FSSr069rERLFILECOYL
S69L18SPCRLIPOLECOPL
L61LPEOBYYELPOLECOVL
QEOFLEBLFELFILETOVL
LIZLO06LEHELFOLETOYL
6L68EYIL0TLPILECOYL
6ZL¥909L02.LFO1ECOFL
PEEEEEYLOTLYILECOYL
Zr060.28FLLFOLECTOTL
LEZLZEZBYLIPOLEZOL

piemiodbuinow Ja)josuedaulbul” 31e1SAAIY ———r

ajosuc) m—m AejdsiganelL .._ malp Buuojuow @ sansadold =

trrLLZLBELLIPOLECOPL

BISEEREITH

ZL6Z81-E0509L02-13A0Y
S09581-£050910Z-13A0Y
9€8981-£050910Z-13A0Y
BLO0EL-E050910Z-13A0Y

ZES061-€0509102-13A0Y
LE6S0Z-£0509102-13A0Y

3weN ajid el

2JBM1JOS]0J3U0D::2IBMYJOS]|013U0D By i wesbejgwsuoiiaieag By | 53 wesbeiqwsia)joiquodauibug By awodjam

~
yBryBuiiny
Joineysganbedp Anua/
yBrybuluing
«31e1SIY»
fybrguiny
3ubryBurwini doig Jybryguiny
- [3noawn - doys
*(doys - ~, piemyegbuinopdols
pleasuosbuinow paemio4buinopdols piemdegbuinow
Jomeysgenbedo Anus/ I linu Jolneyaganbedo Auaf plemyoeganow ey bedo Anus/
paenuodbuinop alpl piemioegsnow paemegbuinopw
«2]B1S1H> plemiodanow «3]e1S1y» «JRIS 1>
!
yabuluinidoly yaquiny
~fAnoawiy
ya1buuim
soineysganbedo Anus/ “SIRIS0pNSSd Ly»
yeBuiwan, «alels p»
«31EIS 14>
aulysepaleIsialoauedaubul
«BUIYIEWILIS I
52 IPUSAOHx

52 AUIINO =5

Woippip 5JUID1 5000 jisun) WoJowi(y uy
sadfjoas23s an)ani3s wosbpig EE
31eM]1JOS]0J3U0D:21BMIJ0S|0Ju0D By
asemyjos)osjucd{E

doy g
EEmm_n_Em_m:ob:au»:_m:u3.
wesbeiqusuondz1za®y
weibejgiosuasainiesadwa) B
weibeigianoy g
weibejgialawowsayl g
Em_mm_n_:a_uumumn__ﬂ
Em_mm_n:m:ob:au»:_mcu_ﬂ

o 5T A ES

O - 52 Ja101dx3 j3pon F

uoANPoIdISBpIM) «

Buodbuida) «

0= o |- 53 Ja10]dxa aloid 1

77

ROVER

5.3.

awi] 31epljeA

1832

acey] anr dois

13534

days

3DeJLAAITYIRIS

aoey) Aejdsig

ybryuiny ™ J3)j01ucd3uIbulT pandayabessa ——
oW~ Ja)j0nuodauibul 21e1S3ANDY ——
oW~ Ja)j0nuodaubul 21e1S3ANDY ——

1ybryuiny™ JsjenuedaubulT paniayabessay ——
piemydegbuino™ Ja)j0suodsuibug T a1e359ARDY ——
oW~ Jajjosquodauibul 21e1S3nY ———

1yBryuiny ™ Jsj0squodauIbul T panidayabessay ——
piemydegbuino™ Ja)j0suodsuibug T a1eI59ARDY ——
oW~ Jajjosuodauibul 21e1S3AIY ———
nayabessapy ——

plemiodbi

pJemiodbl
1ybryuiny ™ J3)j01ucd3UIBUT T pa.

plemydegbuincin~ J3)]0JU0D3UIBUT T 31RISBAIDY ———
pJemiogbuino J3)j0nuolauIbul T 21R1SIANDY ——
ybryuiny™ Jsponucdauibul” paniadayabessay ——

piemypegbuinow Ja)josuodasuibug T s1eISaNDY ——
paemsodbuino™ Ja)j0auodsubug T a1eISaARDY ——

uoryIsuRI) JYSIYUWIN,, oY) SUNYSI[YSI] Aq [opoul I0A0Y o) Jo Aedsip

96150256FS/FILETORL
9/9t96¥6FS/FILEZORL
611 ivbb6FSIFILEZORL
BLLSBZLFEPIFILECORL
FSSr069FERLFILECOVL
S69118SHEPLiPILECOVI
L6LyEOBFFELFILECITL
9E0rPFBPPELPOLECOVI
LLZI06LEFELFOLEZORL
6L6BEPOLOTLFOLEZOVI
6217909.02/F9LEZOL
F6E666FL02/FILETORL
Zv060.28%1/FILEZOVL
LEZLZELBFLIVILECIVL
FrrLLZL8PLLPOLECOV]

s|ie3aq adelL

ZL6T81-€0509102-13A0Y
509581-£0509102-13n0Y
QEBS81-E050910Z-13A0YH
BLO06L-E050910Z-13A0YH

ZES061-£0509102-Jan0Y
LEGS0Z-£0509102-13n0Y

3wep 34 adeiL

3)osuod B[Tm Aejdsiganelr Q_ maip bunojuow @ sesadold O

318M1J05|0]U03 :3IBMJOS|0.0U0D By |welbeiguisuoi}dalea & | 5 weibeigwsia)onuodauibul By awodjam

plemioibuinow

Joineyaganbedo Agua/
piemiogbuinoly

«3JEIS LY

1ybrybuiuing
Joineyaganbedo Anua/
ybrybulng

“1doxs
=fdo1s piemyzegbuinopdols
[Pl U R [Inu Joineyaganbedg Auaf plEMIEESAOW _._w.-msv‘umm_mw_ﬁ_.c
plenIOSRA0W Joiney; lo Aua/f
3p1 pJEMJEGIA0W paemysegBunoly
pJemuo{anow «3)e1S 1> «3]e1S1H»

RTCR [V yewny | fyeuing
-[noa
yabuumy
Joineysganbedo Anua/
yabuung

«aleIG 14>

«3]e150pNasdiy>

«3]ES! »

3ulydewaIRISIa|0nUodaubug
«BUIYIENSIEIS H»

52 IPISAOYx £

o

90RIT, :GZ G 0INJI

5 UIPNO =5

WoIppIP SJUiDIsuod INsun) Wwoiooig uy
sadfj0a128)s amn3ans)s wosbpiq BR
34eM1J0S|0J3U0D I3 eMYJOS|0IU0D B
ajemyjosjojuoD{E

dol g
weJbeiquwsia)osjuodauibua By
weibeiqusuor}dalag sy
weibeigiosuasainiesadwa) By
EEmm_n:m_;om_ﬂ
wesbeigizrpwouwnay L {
wesbeiquondsizaf@
weibeigiz)ouodauibuafE

28 % B4

- 57 J210]dx3 j3pow 7

uoIINPOIdI3BPIM =) 4

]

Buodbuid = «

= ~ & O 53 Jas01dx3 13ford T

78

ROVER

5.3.

[PPOW I9A0Y] 9} UI JUIRIISUOD dWIT} B JO UOIPR[OIA (97 G 9INSI]

2ybryuiny™ Jajjonuodaulbul” pandayabessay ——

piemydegbuinow J3)josuodauibuaT a1e3sanI DY ——
paemiodBuinow ™ J3)j0nuodauibul T 21e1S3AIDY ———

uBryuIny™ J3jouquodsuIbul” panledayabessay ——

plemydegbuinow J3)josjuodauIBul T 31RISIAIIY ——
piemuodbuinow ™ J3)joJjuodauibul 31e1S3NIY ——

(awil ajepnen | 2ybryuiny™ Jajjonuodaulbul” pandayabessay ——
—_— paemypegbuinow ™ J3)josuodauibua ™ a1e35anIDY ———

Jeap] [1asay | piemiodbuinow J3)j0quodauibul 21eISINIDY ———

96150256FSLPILECOVI
9.L9796¥6FSLPILECOVI
6LLLVYYERSLFOLETOYI
BLLSBILYTRIPILETOPL
¥eat069FZHIFILETORL
S69118SHIRIPILECOPL
LeLyEOBFPELFILECITL
9EOrPrBPPELPILECOVI
LIZI06LEPELFOLETOPL

2oey) a1 do3s [days

30BJL AAIT1IRIS

ybryuiny J3jjonuodaulbul” paadayabessay ——
plemydegbuinow J3)josjuodauIBul T 31RISIAIIY ——
piemsodbuinow ™ J3)joquodauibulT 31RIS3AIDY ———
ybryuiny~ Jajjonuodaulbul” pandayabessay ——
piemypegbuinow ™ Ja)josquodauibua™ ajeIsanioy ——

6L6BEVQL0TLPOLECOVI Z16ZBL-E0509L0T-19A0Y
6Z17909.02/F9LETL 509581-E050910Z-13A0Y
t6E666FL0ZLFPILETORL 9E€BSBL-E050910Z-13A0Y

235W ZEOOBS'S961L JJ1d 3WIL |enPY plemiodbuinow J2]josquodauibul” 23835y ———

235W 0°000L 3Wll UsAID

CP060LZ8FLLIFOLECOTL 810061-E05091L0Z-Ja3n0y
LEZIZEEBYLLFOLECOT Z2£5061-£050910Z-1=n0Y
FrPLLZL8YLLPOLECOYL LE6S0Z-E050910E-JaA0y

BIEERERN 3weN 3)i4 el

3Josuod 7 Tm Keydsigasesy ..; malp Buojuow @ sansadold =

2Jemyjos|o.juoDia emyjos|0.3ued By | welbeiqwisuedaiad By [3 weibeiqwsia)jonuodauibus 84| awodem

ybBrabuiuing

~

ya1buiwin doig
“Anoawin

yaqun

ye1bulm
Joineyaganbedo Asjus/
ye1buwng
«3IEIS1H»

Joneysganbedg Anus/
ybryburuing
«3]eIS >
“Aybrguiny
Jubrybuiuini doig yBryuwiny
“noawn “/doys
*fdols - ~ piemyegbuinopdols
plesuoibuinow piemiogbunopydols plemyoegbuinow
Joineyaganbedo Auuaf pIEMIO4BAOW lInu Joineyaganbedo Anua/ RIENIDEHBATI Ineysganbedo Asjus/
pJemio4bulnop 3lp1 pJemdeganow pJemdegbuinoy
«3]E1S 1H» piesuo{anow «3)E1S1H» «3E1S | H»
fenun

“rfyenuing

«3)E150pMNasdiy»

«3]ES! »

aulydewsIelSIs|0IueDauwbul
«aUIYIBNEIEISIH»

53 IPISAOYHx €.

= 52 UIANO =8
WoIDDIP 5JUiDI)3U0 3)Ns00) WoioDid g
sadA30as83s aun32n11s woibpiq ER
3JEM1J0S]0JIU0DI2IBMIJ0S]03U0D &Y
3Jem1jos5)01uod G
nohﬂ
weibeiqusiajjoyuolsuibul §y
wesbeiqusuondalza §
weibeiglosuasainjesadwal B4
weJbeiqianoy g
weibejgiazawouwsay] §F
welbeiquoidalzq ﬂ
weibeigiajjonuodasuibul ﬂ

o 5O ESE

O o 32 J3101dX3 |2po "

uoiNpoIdIBpIma ¢

O o o & O 53 J2101dx3 123f01d [

5.3. ROVER 79

5.3.1 Offline Tracing

Fig. 5.23 shows the display related to the traces of the “MovingBackward” state,
the “MovingForward” state and the “turnRight” transition of the EngineController
state-machine. Clicking on the ”Step” button results in the display of subsequent
events (see Fig. 5.24 and Fig. 5.25). Fig. 5.26 shows the violation of a given time

constraint for two states of Engine Controller state-machine.

5.3.2 Online/Live Tracing

Fig. 5.27 shows the live traces of Rover model where the LT Tng tool is used for tracing
the model elements and for sending traces to the user machine over the network at
the moment they arrive. Our plugin is capable of highlighting the associated model

elements and the textual view at the same time for incoming trace events.

80

ROVER

5.3.

[PPOWL I0AOY] 93} JO SOORI) OAI] JO JOYSUSDIIG :)g G 9INST]

paevuodbuinow sapoiueoauibulT a1eIsaaiay
WbruwIny Jajjonuodauibul” panziayabessaw

SEEGFZESTELOSL
EBELLLSEEZLOSL
— SELLSLVEEZLOSL

paemypegbunow™ Japosuodauibul™ aqejsamidy -

plesuogbuinow sapoiuedaubul T a1e)5aAIY ——— O6B6Z6EEEZLOSL
WEiuIng ™ Janosuodauibul” panadayabessaw OEOEFEVLEOLOSL
premspegbunow Jeposucdsuibul™ aje3samnY 66965S6ELEDLOSS
premsogbunow ™ sajjosuodsuibul T aje15any Y —— E6LBL LELEOLOSL

BISERERLITR

1 fepdsigacelL @ | magn B

2JBMJ05)01JUDD R EMI OS] 0.0UDD By | wesbeiquisuonpalag By | i1 wesbeigwsiayo.

PRUBPISUO B PNOYS yBryBuruing
{"23@ ‘premuny anow oy wiaq pue Jomeyaganbedg Anusf
Buneos smnoa 2y dois 03 ajdwexa JyBrgBunisng
J0j) SIETS UDDMIDG U «2EIE L
| pyBpauimy
yBrgBuiusng do «UonISURLRRAL
~fnoswy < jdogs
< ido1s ey wowch O 0

powosoas | mnninons SN pe——
Jomeyeganbedy Anuaf PIRMIGIINOW - o Anus/ ERENERA & bedg Anuaf ¢

premsoBuASH a1 PUEMYIEFAAOW puesyegbunon
«ajeysbul O] ‘eS| PIEMIO AN “BEISIH esbuln ‘seisis |

=

ey
yaBuyw e yawing

finoa

yaburing
Jomeyaganbedy Kijual PR L=
yabunng =3E 14>

=3EI5IH=

S e s - LTE]
«BU|YIEWRIEIS M

=

3A0Y. L.

ws0) Bul

s/palosdiad 1anoyfspeajumog/~ adAuagdsesd:

13 J210)dx3 |2pOW

Jruoy ¥
Boysuonpavuoa-doy
Yy losuasiajawowiay)
J77J0SURSIATRWOoWIaY)L
yy-amjesadwal ¥
wamnjesadwal 7

asey d

@IRILIIELS
dydywybyuiny™ Japenuodaunbul panadaysbessaw Ly
dydy-piesiodbunow saposuodsubul™ aRISanIoY 1Y
dy dy-premypegbumow sajjonuodaubul™ aesaniny Iy

yyianoy B

1 sauodixa abexyey g

81

Chapter 6

Conclusion

6.1 Summary

The importance of quality management of complex software systems is significant
as it can reduce the software maintenance cost remarkably. This research focuses
on enhancing the quality of existing software models by detecting problems in the
runtime behaviour. The model-driven development tool for real-time embedded sys-
tems Papyrus-RT is of interest to the modeling community because it is open source.
Developers from different regions of world can contribute to the implementation of
this tool. Moreover, LTTng is a great tool for monitoring runtime information with
a minimum overhead. Therefore, we have used these tools for creating models for
RTES and implementing monitoring.

The main goal of this research is to automate tracing of RTES and display trace
results on the model level. We have focused on implementing a plugin to support
monitoring of runtime information of RTES. To summarize our work, we have first
created a plugin for automatically generating scripts with all the LTTng tracing

commands. Support for reading the trace files is provided in the plugin. In addition,

6.2. LIMITATIONS 82

it is capable of displaying both offline and live traces in textual form and graphically
in the model level. This gives us a way to verify any user defined time constraints and
make it possible to find out the source of any delay in a running real-time embedded

system.

6.2 Limitations

In this research, we have just provided a proof of our proposed concept. For real
use of industrial system for validating timing constraints comprehensive observation
of execution is important. Also it is important to know the factor of monitoring
overhead introduced by LTTng.

In this research, we have only worked on two behavioural elements of a UML-RT
model: state and transition. Runtime monitoring of other behavioural elements such
as choice-points and junction-points are out of scope of this work. In addition, as we
can see in Fig. 4.2, there are other model elements, i.e., structural components that
might be monitored as well. Thus, our work will not be able to detect a problem if it

involves structural design of a UML-RT capsule.

6.3 Future Work

There is a range of future work that can be done.

Till now there is no option of generating sequence diagrams in Papyrus-RT. The
traces we collect contain the source and timing information of all the monitored events
which can be used in future to generate a sequence diagram.

As we have mentioned while discussing the limitations of this work, runtime mon-

itoring of only a subset of behavioural elements of a UML-RT capsule is currently

6.4. CONCLUSION 83

supported. This can be enhanced by adding support for monitoring other behavioural
elements as well as the structural components.

In addition, the traces we get can also be used for animating and simulating the
model execution. Therefore, our plugin can be used for both tracing and simulating

a real-time embedded system.

6.4 Conclusion

The importance of runtime monitoring is significant to ensure the correctness of the
runtime behavior of complex real time embedded systems. This research is an attempt
to examine the correctness of timing information related to UML-RT models using
runtime traces generated by the open-source LTTng tool. We provide support for
tracing a user application, reading a trace file, displaying the trace results on the
model level, exploring the associated timestamps in textual form and verifying the
actual timing information of a trace file against the desired user input. Some of
the challenges we faced while doing this research include dealing with the unstable
releases of Papyrus-RT tool as it was in the initial phase of development and managing
Eclipse-based issues such as lack of backward-compatibility for the models created in
an old Eclipse version. This research constitutes a first step to combining MDE and

runtime monitoring and verification of timing constraints.

BIBLIOGRAPHY 84

1]
2]
3]

Bibliography

Babeltrace. http://www.efficios.com/babeltrace. Accessed: 2016-08-25.
dSpace. https://www.dspace.com/en/inc/home.cfm. Accessed: 2016-08-20.

Five Things that make Xtend a great Language
for Java Developers. http://www.sebastianbenz.de/
5-Things-that-make-Xtend-a-great-Language-for-Java-developers.

Accessed: 2016-06-31.

Howto tracing with LTTng. https://www.ibm.com/developerworks/
community/blogs/fe313521-2e95-46£2-817d-44a4f27eba32/entry/howto_

tracing_with_lttng?lang=en. Accessed: 2016-07-09.

IBM: Modeling real-time applications in RSARTE. https://www.ibm.com/
developerworks/community/wikis/home?lang=en#!/wiki/W0c4al4ff363e_
436c_9962_2254bb5cbc60/page/Modeling)20Real-Time)20Applications

20in%20RSARTE. Accessed: 2016-08-20.

IBM: Rational Rose Real Time. ftp://ftp.software.ibm.com/software/

rational/docs/documentation/manuals/rosert.html. Accessed: 2016-08-20.

BIBLIOGRAPHY 85

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Instruments User Guide. https://developer.apple.com/library/ios/
documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/

CreatingCustomInstruments.html. Accessed: 2016-06-19.

LabVIEW System Design Software. http://www.ni.com/labview/. Accessed:
2016-08-20.

Lines of code in Google. http://www.wired.com/2015/09/

google-2-billion-lines-codeand-one-place/. Accessed: 2016-07-18.
The LTTng Documentation. http://1ttng.org/docs/. Accessed: 2016-06-01.
Makefiles. http://mrbook.org/blog/tutorials/make/. Accessed: 2016-08-16.

Modeling language. https://en.wikipedia.org/wiki/Modeling_language.

Accessed: 2016-06-25.

Modeling Language Guide, Rational Rose Realtime - ibm.com. ftp:
//ftp.software.ibm.com/software/rational/docs/v2003/win_solutions/

rational_rosert/rosert_modeling_language.pdf. Accessed: 2016-07-24.
Object management group. http://www.omg.org/. Accessed: 2016-06-24.

Object Management Group. https://en.wikipedia.org/wiki/0Object_

Management_Group. Accessed: 2016-06-24.
Papyrus. https://wiki.eclipse.org/Papyrus. Accessed: 2016-08-01.

Papyrus for Real Time (Papyrus-RT). https://projects.eclipse.org/

projects/modeling.papyrus-rt. Accessed: 2016-07-24.

BIBLIOGRAPHY 86

[18]

[19]

[20]

[21]

[26]

[27]

[28]

Profile (UML). https://en.wikipedia.org/wiki/Profile_(UML). Accessed:

2016-07-18.

Rover. https://www.hackster.io/peejster/rover-c42139. Accessed: 2016-

08-28.

Shell Script. http://linuxcommand.org/writing_shell_scripts.php. Ac-

cessed: 2016-08-25.

Simulink. http://www.mathworks.com/products/simulink/. Accessed: 2016-

08-20.
Trace Compass. http://tracecompass.org/. Accessed: 2016-08-25.

UML Stereotypes. http://www.sparxsystems.com/enterprise_architect_
user_guide/10/standard_uml_models/stereotypedlg.html. Accessed: 2016-

07-23.
Unified modeling language. http://www.uml.org/. Accessed: 2016-06-25.

Xtend. http://www.eclipse.org/xtend/documentation/index.html. Ac-

cessed: 2016-06-01.

Object management group (OMG). Semantics of a foundational subset for exe-

cutable UML models (fUML). http://www.omg.org/spec/FUML/1.2.1, 2016.

Papyrus: Moka overview. http://wiki.eclipse.org/Papyrus/UserGuide/

ModelExecution, 2016.

Reza Ahmadi, Nicolas Hili, Leo Jweda, Nondini Das, Suchita Ganesan, and

Juergen Dingel. Run-time Monitoring of a Rover: MDE Research with Open

BIBLIOGRAPHY 87

[30]

[31]

[32]

[33]

[34]

Source Software and Low-cost Hardware. In 2nd International Workshop on
Open Source Software for Model Driven Engineering (OSS4MDE’16), 2016. To

appear.

Sinan Si Alhir. Guide to Applying the UML. Springer Science & Business Media,
2006.

Colin Atkinson and Thomas Kuhne. Model-driven development: a metamodeling

foundation. IEEE Software, 20(5):36-41, 2003.

Krishnakumar Balasubramanian, Aniruddha Gokhale, Gabor Karsai, Janos Szti-
panovits, and Sandeep Neema. Developing applications using model-driven de-

sign environments. Computer, 39(2):33-40, 2006.

Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on uml

class diagrams. Artificial Intelligence, 168(1):70-118, 2005.

Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing Ltd, 2013.

Gordon Blair, Nelly Bencomo, and Robert B France. Models@ run. time. Com-
puter, 42(10):22-27, 2009.

Marco Blumendorf, Grzegorz Lehmann, and Sahin Albayrak. Bridging models
and systems at runtime to build adaptive user interfaces. In Proceedings of the
2nd ACM SIGCHI symposium on Engineering interactive computing systems,
pages 9-18. ACM, 2010.

BIBLIOGRAPHY 88

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Matteo Bordin and Tullio Vardanega. Automated model-based generation of

ravenscar-compliant source code. In 17th Furomicro Conference on Real-Time

Systems (ECRTS’05), pages 59-67. IEEE, 2005.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering, 1(1):1-182,

2012.

Giorgio Buttazzo. Hard real-time computing systems: predictable scheduling al-

gorithms and applications, volume 24. Springer Science & Business Media, 2011.

Betty HC Cheng, Kerstin I Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A Miiller, Patrizio Pelliccione, Anna Perini, Nauman A Qureshi, Bernhard
Rumpe, et al. Using models at runtime to address assurance for self-adaptive

systems. In Models@ run. time, pages 101-136. Springer, 2014.

Shang-Wen Cheng and David Garlan. Mapping architectural concepts to uml-rt.
2001.

Nondini Das, Suchita Ganesan, Leo Jweda, Mojtaba Bagherzadeh, Nicolas Hili,
and Juergen Dingel. Supporting the model-driven development of real-time em-
bedded systems with run-time monitoring and animation via highly customizable
code generation. In Proceedings of the ACM/IEEE 19th International Confer-
ence on Model Driven Engineering Languages and Systems, pages 36—43. ACM,
2016.

Mathieu Desnoyers. Common trace format (CTF) specification (v1. 8.2). Com-

mon Trace Format GIT repository, 2012.

BIBLIOGRAPHY 89

[43]

[44]

[45]

[46]

[47]

[49]

Mathieu Desnoyers and Michel R Dagenais. The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux. In OLS (Ottawa Linux Sym-

posium), volume 2006, pages 209-224. Citeseer, 2006.

Bruce Powel Douglass. Real time UML: advances in the UML for real-time

systems. Addison-Wesley Professional, 2004.

Ken Edwards and Gabriel Wainer. Gatlas: Google earth visualization for atlas. In
Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS
Integrative MES Symposium, pages 213-220. Society for Computer Simulation

International, 2011.

Xiaocong Fan. Real-time Embedded Systems: Design Principles and Engineering

Practices. Newnes, 2015.

Victor Freire, Sixuan Wang, and Gabriel Wainer. Visualization in 3ds max for
cell-devs models based on building information modeling. In Proceedings of the
Symposium on Simulation for Architecture € Urban Design, page 9. Society for

Computer Simulation International, 2013.

Sébastien Gérard, Huascar Espinoza, Francois Terrier, and Bran Selic. 6 model-
ing languages for real-time and embedded systems. In Model-Based Engineering

of Embedded Real-Time Systems, pages 129-154. Springer, 2010.

Philipp Graf and Klaus D Muller-Glaser. Gaining insight into executable models
during runtime: Architecture and mappings. IEEFE Distributed Systems Online,
8(3):1-1, 2007.

BIBLIOGRAPHY 90

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad,
and the ugly. IBM Systems Journal, 45(3):451, 2006.

Zef Hemel, Lennart CL Kats, Danny M Groenewegen, and Eelco Visser. Code
generation by model transformation: a case study in transformation modularity.

Software €& Systems Modeling, 9(3):375-402, 2010.

Zef Hemel, Lennart CL Kats, and Eelco Visser. Code generation by model
transformation. In International Conference on Theory and Practice of Model

Transformations, pages 183-198. Springer, 2008.

Hermann Kopetz. Real-time systems: design principles for distributed embedded

applications. Springer Science & Business Media, 2011.

Martin Leucker and Christian Schallhart. A brief account of runtime verification.

The Journal of Logic and Algebraic Programming, 78(5):293-303, 2009.

Shahar Maoz. Model-based traces. In International Conference on Model Driven

Engineering Languages and Systems, pages 109-119. Springer, 2008.

Tanja Mayerhofer and Philip Langer. Moliz: A model execution framework for
UML models. In Proceedings of the 2nd International Master Class on Model-

Driwven Engineering: Modeling Wizards, page 3. ACM, 2012.

Stephen J Mellor, Tony Clark, and Takao Futagami. Model-driven development:
guest editors’ introduction. IEEE Software, 20(5):14-18, 2003.

Mohammad Moallemi. Real-Time and Embedded Systems Development based
on Discrete Event Modeling and Simulation. PhD thesis, Carleton University

Ottawa, 2011.

BIBLIOGRAPHY 91

[59] Ernesto Posse. Papyrusrt: Modelling and code generation (invited presentation).

In OSS4MDE@ MoDELS, pages 54—63, 2015.

[60] Ernesto Posse and Juergen Dingel. An executable formal semantics for UML-RT.
Software €& Systems Modeling, 15(1):179-217, 2016.

[61] Bran Selic. Using UML for modeling complex real-time systems. In Languages,

compilers, and tools for embedded systems, pages 250-260. Springer, 1998.

[62] Bran Selic. The pragmatics of model-driven development. IEEE Software,
20(5):19, 2003.

[63] Bran Selic, Garth Gullekson, and Paul T Ward. Real-time object-oriented mod-

eling, volume 2. John Wiley & Sons New York, 1994.

[64] Dominique Toupin. Using tracing to diagnose or monitor systems. [EEE Soft-
ware, 28(1):87, 2011.

92

Appendix A

Sources for Generating Scripts

Listing A.1: Start Trace Script Generator

1 class StartTraceScriptGenerator {

2 def generate(String path, String mainFileName, String folderName)

3
4

5 val file = new File(path);

6

7 val writer = new BufferedWriter (new FileWriter(file));

8 writer . write(doGenerate(mainFileName, folderName).toString)
9 writer . close

10 }

11

12 def private doGenerate(String mainFileName, String folderName) {
13 v

14 #!/bin /bash

15 # Script for executing LTTng Commands

16

17 network=

18 ip=

19 live=

20 while [$# —gt 0]

21 do

22 case 7$1” in

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

co N o Otk W N

93

_n)

es

network="——set—url net://”
ip="%27;
shift ;;
_1)
live="—1ive ”;;
——) shift; break;;
—x)
echo >&2 ”"usage: $0 [—1] [—-n] [ip address]”
exit 1;;
%) break;; # terminate while loop

ac

shift

done

NOW=$ (date +"%Y%rdod THAS”)

Ittn

Ittn
Ittn

read

g create folderName —o ../../ folderName / folderName _-$NOW §live

$network$ip

g enable—event —u 'RT__x’
g start

”

—p ”Press any key to continue...

./ mainFileName

}

LRI

Listing A.2: Stop Trace Script Generator

class StopTraceScriptGenerator {

def generate(String path)

{

val file = new File (path);

val writer = new BufferedWriter(new FileWriter(file));

writer.write(doGenerate().toString)

10
11
12
13
14
15
16
17
18
19
20
21

94

writer.close

def private doGenerate() {

)

#!/bin /bash
Script for

Ittng stop

lttng destroy

)

)

)

stopping LTTng Commands

