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Abstract

Model-Driven Development (MDD) is used for reducing the complexity of a software

development process. One of the principal features of MDD which can make it very

effective is the support for automatically generating code from the modeling artifacts.

An example of MDD is the development of complex real time embedded software

systems using the real time profile of UML (UML-RT). Development of this software

is difficult mainly due to the requirement to satisfy timing constraints in a resource-

constrained environment. Determining the correctness of this requirement is very

important for ensuring the integrity and reliability of a real time software system.

This research focuses on examining the correctness of timing information related to

UML-RT models. The Linux Trace Toolkit: next generation (LTTng) is used for

monitoring an executable real-time application, where the code is generated from

UML-RT models using the open-source Papyrus-RT tool. Some of the key research

outcomes include the ability to trace a user application, to read a trace file, display

the trace results on the model level and display associated timestamps in textual

form through the implementation of an Eclipse plugin. In addition, support is also

provided to verify the actual timing information of a trace file against the desired

user input. This feature enables users to find out the occurrence of any timing delay.

Finally, three case studies are conducted using the prototype Eclipse plugin.
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Chapter 1

Introduction

1.1 Motivation

Modern software systems can be extremely large and complex (e.g., [9]). It is hard

to develop efficient software applications using traditional code based processes. The

amount of difficulties increases when it comes to test the software and refine possibly

millions of lines of code after finding bugs in a product. These challenges have moti-

vated the development of model driven development (MDD). A major benefit of using

MDD is the possibility of developing large, efficient software systems without having

to code millions of lines. This advantage encourages software developers to use MDD

as the means of developing and refining large and complex software systems [31].

Similar to other software systems, proper quality assurance of modern real-time

embedded systems (RTES) is important. Software systems in telecommunications,

aerospace and defense are usually very large and extremely complex. This makes the

quality assurance of these systems very difficult. Missing a time interval or experienc-

ing a slight delay can cause extreme problems in RTES. As Bran Selic, the creator of

the real-time profile of UML (UML-RT), mentioned in [61], “The only characteristic



1.2. PROBLEM STATEMENT 2

common to all real-time software systems is timeliness; that is, the requirement to

respond correctly to inputs within acceptable time intervals”. As an example, in a

telecommunication system, any violation in timing requirements can cause very poor

user satisfaction. In hard real-time systems, for example, in aerospace or medical de-

vices, the consequence can be fatal as such violations can lead to significant injuries,

or even to loss of human lives.

This research focuses on quality assurance of RTES developed using UML-RT.

Quality assurance typically has two phases: detecting the source of the problem and

providing a solution to the problem. We have worked on the detection of problems

via runtime monitoring.

1.2 Problem statement

One of the main advantages of developing real-time embedded systems using MDD

is the automatic generation of code using MDD tools. But quality assurance of these

real-time systems can be challenging. This is because if a user faces an issue in a real-

time system, it is hard to find out the exact location in the model where the problem

has occurred. It is almost impossible to modify the generated code for solving a

problem without possibly introducing a wide number of new problems because the

automatically generated code is usually not easy to understand. Therefore, it is

important to find the source of problem on the model level. One way to do this

is by tracing the generated code while running a real-time system. There are some

real-time modeling tools which provide tracing facilities. For instance, IBM Rational

RoseRT [6] and IBM RSA-RTE [5] are tools for creating models for real-time systems,

and automatically generate traces after executing models. But these are proprietary
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tools and not suitable for non-commercial purposes such as research and academic

usage. Recently, an open-source tool Papyrus-RT has been introduced for developing

models of real-time embedded systems [59]. This research is conducted to contribute

to the development of Papyrus-RT through providing support for run-time monitoring

of UML-RT model execution.

1.3 Overview of the Proposed Approach

While conducting this research, we have focused on validating the timing requirements

of a real-time system. The goal is to find out if there is any timing delay in the system

that violates the requirements. We propose an approach for monitoring runtime

information of real-time embedded systems using the LTTng tool [10].

Figure 1.1: Proposed approach overview
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Fig. 1.1 shows an overview of the proposed approach. We have used the Papyrus-

RT tool for designing a model and generating code from it. We have used the LTTng

tool to detect any timing delay or latency by monitoring the execution of the generated

code. This gives us traces with timing information which we can display on the model

level. Thus, with this approach we can detect if there is any delay and we can view

the associated model element where the problem occurs.

1.4 Hypothesis

We hypothesize that it is possible to use open source monitoring tools such as LTTng

to monitor the execution of code generated from models and to display the resulting

trace on the model level.

1.5 Organization of Thesis

Chapter 2 presents some background discussion. We discuss Model-driven devel-

opment (MDD), real-time embedded systems, the modeling language UML-RT, the

MDD tool Papyrus-RT, the tracing tool LTTng and the language Xtend.

Chapter 3 discusses some related work. We present similarities and differences

between our work and the existing works.

We start Chapter 4 by giving an overview of the whole project. Then we present

a brief description of the first two parts of the project: monitoring configuration and

code generation. This is followed by a detailed description of our work, i.e., “Tracing

using LTTng and Trace Display.”

Chapter 5 shows the proof of concept of our work by presenting three case studies.
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Finally, in Chapter 6, we summarize our work, followed by discussing its limita-

tions. We also present some possible future work.
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Chapter 2

Background

This chapter discusses some background materials regarding MDD, real-time embed-

ded systems, UML-RT, Papyrus-RT, LTTng and Xtend.

2.1 Definitions of Model-Driven Development and Relevant Terminology

The term model-driven development (MDD) is defined in a number of ways in the

current state of the art.

The ability of MDD to transform a conceptual model into a working real world

application is captured in the definition provided in [57]. According to the authors

in [57], “Model-driven development is simply the notion that we can construct a model

of a system that we can then transform into the real thing”.

The power of MDD in dealing with the complexity of software development is

highlighted in the definition provided by Atkinson and Kuhne. As they mentioned

in [30], “Today’s object-oriented languages let programmers tackle problems of a

complexity they never dreamed of in the early days of programming. Model-driven

development is a natural continuation of this trend. Instead of requiring developers

to spell out every detail of a system’s implementation using a programming language,
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it lets them model what functionality is needed and what overall architecture the

system should have”.

On the other hand, the definition provided by Brent et al. in [50] talks about

the shifting of software development abstraction with the advent of MDD. Accord-

ing to them, “Model-driven development (MDD) is a software-engineering approach

consisting of the application of models and model technologies to raise the level of

abstraction at which developers create and evolve software, with the goal of both

simplifying (making easier) and formalizing (standardizing, so that automation is

possible) the various activities and tasks that comprise the software life cycle” [50].

As a summary of these different viewpoints, MDD is a development process where

models are the primary artifacts of development rather than code. A model in this

context is a reasonable set of consistent elements to describe something (e.g., a net-

work, bank, automobile, or telecommunication system) built for some purpose that

is consistent with a particular form of analysis. For example, models can be used for

communicating ideas between people and machines, checking of completeness, anal-

ysis of concurrent systems with respect to race conditions, generation of test cases,

analyzing the viability in terms of estimating the cost of development and the fea-

sibility of transformation into an implementation [57]. In MDD, developers do not

need to write thousands of lines of code for implementing complex software systems

because of the possibility of generating code and documentation automatically from

the models with the help of the MDD process [37, 51, 52, 62].

There exist some other acronyms closely related to MDD, i.e. MDA, MDE and

MBE. The definitions of these acronyms are as follows:
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Figure 2.1: Relationship between the different MD* acronyms [37]

• Model Driven Architecture (MDA): MDA is a subset of MDD because, by def-

inition, MDA is the particular vision of MDD which has been proposed by the

Object Management Group (OMG) [14, 15] and also depends on the use of

OMG standards [37].

• Model Driven Engineering (MDE): MDE contains a number of model-based

tasks of a complete software engineering process including model-based evolu-

tion of the system, model-driven reverse engineering of a legacy system and so

on. Therefore, MDE can be regarded as a superset of MDD [37].

• Model Based Engineering (MBE): MBE is known as a softer version of MDE.

It is a process where software models play an important role even though they

are not necessarily the key artifacts of the development process. For example,

the designers specify the domain models of the system in the analysis phase of

a development process; but then these models are directly handed out to the

programmers as blueprints to manually write the code. Therefore, in this case,
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although models still play an important role, they are not the central artifacts

of the development process. MBE is considered as a superset of MDE [37].

Fig. 2.1 shows a graphical overview of the relations among different model based

development processes.

In our research, among these approaches we have focused on model-driven develop-

ment approach where MDD has been used to generate code for a real-time embedded

system. The following section provides background on real-time embedded systems.

2.2 Real-Time Embedded System

To talk about real-time embedded systems, we should present the definitions of em-

bedded system and real-time system.

In the computing world, the term “embedded system” means an electronic system

that is designed for performing a dedicated function and is often embedded within a

larger system [46]. The computing power of an embedded system is a fragment of a

larger system and it does not provide some standard computing service to users as its

primary job. For example, a desktop computer is not an embedded system (unless it

is within a device) because it can be used for multiple purposes and provides standard

computing services. However, a computerized microwave oven or a VCR is an example

of an embedded system as the embedded computing power of these systems is part

of a larger system and dedicated for a specific function [44].

If a system needs to respond to a service request within a certain amount of

time, it can be considered a real-time system [46, 38, 53]. In a real-time system, a

real-time computing constraint gets attached to all the tasks imposed by each of the

incoming service requests. The associated real-time computing constraint is known
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as the timing constraint of the related task. The timing constraint of a task is usually

specified in terms of its deadline, the time instant by which the execution of the task

needs to be completed. A timing constraint can be either a hard or a soft constraint

depending on the consequences of missing a task deadline. The consequence of a

missed deadline in a hard timing constraint is fatal. A late response in hard real-

time systems, i.e., in automobile systems or medical devices, is usually unacceptable

and becomes useless. In contrast, in a soft real-time system, i.e., in an audio-video

chatting software, the consequence of a missed deadline is undesirable but tolerable.

Although it would result in degraded quality, a late response in these systems is still

useful as long as it is received within some acceptable range of time. An actual system

may have both soft and hard timing constraints. In a soft real-time system, all the

tasks have soft timing constraints, whereas, for a hard real-time system, the key tasks

of the system need to have hard timing constraints [46].

Therefore, a real-time embedded system means a real-time system which is de-

signed to be embedded within some larger system [46].

Figure 2.2: System Classification (Adapted from [46])



2.3. UML-RT AND PAPYRUS-RT 11

Fig. 2.2 shows a classification of the above mentioned systems where real-time

embedded systems lie in the intersection between the real-time and embedded system.

A comprehensive definition of real-time embedded system is given by the authors

of [48]. According to them, “Real-time and embedded systems are computer-based

systems that interact with the physical world. This means that they are not only

coupled to the physical world but that they are also constrained by the physical

capacities of their underlying hardware and/or software platforms”.

Developing large real-time embedded systems is a difficult task especially when

it comes to manual coding because it increases the risk of bugs and failure. On the

other hand automatic code generation from models could be a solution for this kind

of problem. Thus, model-driven development (MDD) has been proposed to facilitate

the development of real-time embedded systems (e.g., [31, 36]).

There is a number of modeling languages used for MDD, for instance, UML,

SysML, SDL, ORM [12].

In our research we have used the real-time profile of UML (UML-RT) for capturing

the structure and behaviour of an embedded real-time system.

The following section will discuss UML-RT and Papyrus-RT, a tool that we have

used for developing UML-RT models.

2.3 UML-RT and Papyrus-RT

2.3.1 UML-RT

UML (Unified Modeling Language) is a graphical language to specify, visualize, con-

struct, and document software systems [24]. A profile in UML is used for customizing

UML models for particular domains and platforms by providing a generic extension
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mechanism. Extension mechanisms allow the refinement of the standard semantics in

a strictly additive manner and it prevents them from contradicting standard seman-

tics [60, 18, 29]. UML-RT is the real-time profile of UML. UML-RT provides a unified

framework to model and analyze real-time systems. To be precise, for facilitating the

modeling of run-time structures, UML-RT adds five stereotypes to standard UML,

where a stereotype is a mechanism to classify or brand a model element and intro-

duce a new type of modeling element [29, 23]. The five stereotypes are: capsule, port,

protocol, protocol role and connector [40]. We present a brief discussion of these

stereotypes in the following paragraphs.

Figure 2.3: UML-RT capsule and class notation on class diagrams [17]

A UML-RT model consists of passive classes and capsules.

Passive classes are similar to classes in any object-oriented language, i.e., Java.

Passive classes can be used as properties of a UML-RT capsule. They can also be

used for message data parameters. In addition to defining operations, the behaviour

of a passive class can also be represented using a state-machine. A state-machine is

a graph of states and transitions that is used for describing the response of an object

of a given class to the receipt of outside stimuli [17, 13]. Fig. 2.3 shows a passive

class named “IdProvider” connected with a capsule through a dotted arrow which

indicates that “IdProvider” is used by the capsule.
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In contrast, capsule elements in UML-RT are used to represent independent flows

of control in a system. They are known as the fundamental modeling element in

UML-RT development. Capsules have some similar properties as classes [32] of UML

diagrams. For instance, capsules can contain operations and attributes. They can

also contain properties like dependency, generalization, and association relationships.

Capsules can also contain one or more sub-capsules [13].

An attribute is a variable which can be specified with a type, an initial value

and multiplicity. In Fig. 2.3 “myId” is a variable having integer type and also is an

attribute of the TrafficLight capsule.

Figure 2.4: Structure diagram of a UML-RT capsule

In addition to these properties, a capsule can also contain a structure diagram

and a behavioural diagram. A discussion of these capsule properties is presented in

the following subsections.

Structure diagram

The structural aspects of a capsule are represented in a structure diagram, which

depicts the elements that the capsule owns along with their inter-connections (see

Fig. 2.4). A capsule can have capsule parts, ports and connectors.
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A capsule part is an instance of a capsule which is contained by another capsule

(see Fig. 2.4).

Ports are objects for sending and receiving messages to and from capsule instances.

They are owned by the capsule instance because they are created and destroyed along

with the owner capsule. Each port has its identity, which is distinct from the identity

and state of its owning capsule instance. The main benefit of having message-based

interfaces in UML-RT is the separation of the capsule instance from the outside

environment. A capsule has no knowledge of its context outside the message interfaces

which makes it much more flexible and robust than regular objects [13]. An example of

a message port is shown in Fig. 2.4 where Pinger capsule has a port named “PingPort”

and Ponger capsule’s port is named as “PongPort”.

Types of port can be categorized in multiple ways depending on the visibility, the

connector types and the message termination points.

Visibility:

• Public - Ports that are part of a capsule interface are known as public ports.

In a capsule structure diagram these ports are shown as located on the capsule

boundary. Public ports may be visible from both outside and inside of a capsule

instance.

• Protected - Protected ports are used for connecting capsules to the contained

capsule roles. In contrast to their public counterparts, these ports are not visible

from the outside of a capsule since they are not part of the capsule interface.

Connector type:

• Wired - Wired ports must be connected by a connector to other ports for com-

municating messages. In a capsule structure diagram, these are the ports that
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are graphically connected to other ports.

• Non-wired - Non-wired ports are used for modeling dynamic communication

channels. In contrast to wired ports, graphical connectors are not used for

connecting these ports to other port instances. Rather, non-wired connectors

are created and destroyed dynamically during run-time.

Message Termination Point:

• Relay - Relay ports are by nature public and wired implicitly. They are used

for modeling connections that pass signal events directly to protected capsule

components without being processed by the capsule itself. All the signal events

arriving at a relay port can be lost if the port is not connected to an internal

component. In general, relay ports can be used for exporting the interfaces of

the contained capsule roles.

• End - Unlike relay ports, end ports can be public or protected, wired or non-

wired. Messages sent to an end port are intended to be processed directly by

the capsule behaviour. End ports are the final destination of all signal events

communicated in UML-RT.

For the specification of messages that can be sent to and from a capsule port, a

port is associated with a protocol role. A protocol role is the specification of a set

of messages that can be received (in) and sent (out) from the port. Essentially, a

protocol role defines a port type.

Protocol: A protocol is a communication pattern that represents a set of messages

that can be exchanged between two capsule instances. Basically, it is a contractual

agreement portraying the valid types of messages that can be communicated among
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Figure 2.5: UML-RT protocol description (class diagram) [17]

the participants in the protocol. A set of participants, each of which plays a specific

role, can be associated with a protocol. Each such protocol role is represented by a

unique name and a specification of messages that can be received by that role as well

as a specification of the messages that can be sent by that role (either set could be

empty).

Therefore, a set of valid signals can be specified along with their directions using

a UML-RT protocol. A signal in this context is a message that can be sent either

synchronously, or asynchronously. Protocols consist of a list of incoming (provided)

and outgoing (required) signals as well as any associated data parameters [13]. Fig. 2.5

shows a class diagram of protocols having a number of incoming/outgoing signals

where the left two arrows indicate incoming signals and the two arrows on the right

hand side mean outgoing signals.

The purpose of connectors is to capture the key communication relationships

between capsule roles. They interconnect capsule roles that have similar public inter-

faces, a.k.a. ports. A key feature of connectors is their ability to interconnect only
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the compatible ports. In Fig. 2.4, a connector is shown with a solid line connecting

two ports.

State-machine diagram

A state-machine [61, 63] and its components are used for describing the behavioural

aspects of a UML-RT capsule. The diagram that contains a UML-RT state-machine

is called a state-machine diagram (see Fig. 2.6).

Figure 2.6: UML-RT Capsule State-machine Diagram [17]

In other words, a state-machine diagram is used for describing the life history of

objects of a capsule. A state-machine can be comprised of states, transitions and
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action code for model execution.

States:

A state represents a situation during the life time of an object where certain

incoming events can be processed. A state-machine is usually composed of a top

state, which can itself contain any number of other states. A state can have the

following elements:

Name - A name must be associated with a state so that it can be distinguished

from other states in the same context.

Entry/Exit actions - An entry action is executed whenever a state is entered,

regardless of which incoming transition has been triggered. Similarly, an exit action

is executed whenever we leave the state using any outgoing transition.

The entry point of a state-machine is represented using an initial state which can

have only one outgoing transition, the initial transition. An initial state is represented

using a small filled circle (see Fig. 2.6).

A state can be composed of a number of other states, called substates. This allows

modelers to handle the complexity of a capsule state-machine by abstracting away

detailed behaviour into multiple levels. If a state does not have any substate inside,

it is called a simple state. In contrast, a composite state can have any number of

substates. State elements can be nested to any hierarchical level [60, 13]. Fig. 2.6

shows a capsule state-machine diagram with three states in addition to the initial

state. Among these three states, “State1” is a composite state as it consists of a

number of other states.

Transitions: A transition represents a relationship between two states: a source

state and a destination state. When an object in the source state receives a specified
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event and certain conditions are met, the behaviour will move from the source state to

the destination state through the execution of the associated transition [13]. Fig. 2.6

depicts a number of transitions that are represented by a solid line with an arrow.

For instance, in Fig. 2.6, “onSig1” is a transition which can be executed if the capsule

receives the specified message while it is in the “State1.1” state and the execution

will take the system to the “State1.2” state.

To summarize, UML-RT is a standard language for modelling real-time embedded

systems. There are several tools for developing UML-RT models. IBM RoseRT and

IBM RSA-RTE are well-known proprietary tools for UML-RT development. In our

research we have worked with an open source tool called Papyrus-RT.

2.3.2 Papyrus-RT

Papyrus-RT is an industrial-scale, complete modeling environment for developing

complex, large real-time embedded cyber-physical software systems [17].

It is a new open-source implementation of a complete UML-RT development en-

vironment including a graphical modelling environment, a code generator and a run-

time system. Papyrus-RT allows UML-RT community to develop models that are

executable. Papyrus-RT is implemented on top of Papyrus, a well-known UML mod-

elling environment on Eclipse [16] [59].

In our research we have worked with a tool called “LTTng” to monitor the execu-

tion of code generated from UML-RT models. We will talk about LTTng in the next

section.
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Figure 2.7: Screenshot of Papyrus-RT tool

2.4 LTTng Tracing Tool

LTTng stands for “Linux Trace Toolkit: next generation” [10]. It is used for tracing

runtime information of a software application. Tracing is a method used for under-

standing the execution behaviour of a running software system. Any software used

for tracing is known as a tracer and is theoretically similar to a tape recorder. It

may be possible to trace both the user application and the operating system at the

same time. This can create an opportunity to detect a wide range of problems. Often

tracing is being compared to logging. While there are differences between tracers and

loggers, tracers are designed for recording very low-level events that happen much

more frequently than log messages. Logging is suitable for very high-level analysis of

less frequent events [10].

LTTng is a highly efficient open source software package used for tracing the Linux
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kernel, user applications and libraries at the same time [10, 64]. While other tracing

tools can slow down the traced software significantly, LTTng is known for keeping

the runtime overhead to a minimum [64, 43].

2.4.1 Core Concepts of LTTng

This section discusses four primary concepts that need to be dealt with while using

the LTTng tool: Tracing session, domain, channel and event.

Tracing Session

A tracing session is just like any other session e.g., an website session. While tracing

using LTTng everything happens in the scope of a tracing session. It is also known

as a container of domains, channels and events [10].

Table 2.1 presents commands for managing a session lifecycle.

Table 2.1: Commands for managing tracing session [4]

Command Description

create NAME To create a session with a given NAME.

set-session NAME Used for switching between sessions, setting current to

NAME.

start To start tracing

stop To stop tracing

destroy NAME To destroy the session with NAME. The option -a or –all can

be used to destroy all the sessions.

list NAME Used to show information regarding the session with a given

NAME or to list all the sessions if NAME is already omitted
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The number of tracing sessions is not limited. A user can create as many tracing

sessions as he/she wants [10].

Domain

Essentially, a domain means a type of tracer. The LTTng project uses a tracing

domain as the official term for designating a tracer category. At present, there are

five known domains: Linux kernel, user space, java.util.logging (JUL), log4j and

Python. All the five domains support some unique features that are not available in

their counterparts. For example, the dynamic function entry/return instrumentation

is currently supported only in the kernel domain but yet to be added in the other

domains [10].

Channel

A channel is known as a set of events with a fixed set of parameters and some potential

context information. Within a tracing session, for each domain, channels have unique

names. A given event is always registered to one or more channels. It is also possible

to individually enable or disable channels. Any event that occurs in a disabled channel

would never be recorded. An underlying role of a channel is to maintain a shared ring

buffer where events are finally recorded by the tracer and consumed by a consumer

daemon. An internal ring buffer has many sub-buffers of equal size [10].

Event

The term event in LTTng can have three different meanings depending on the context

it is used in. While tracing, an event is like a point in space-time. In the context of
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tracing, the term space is a collection of all executable positions of a compiled appli-

cation that can be used by a logical processor. An event occurs if an instrumentation

point is encountered while the program is executed by the processor. In contrast,

when the term event is used in the context of a recorded trace, it means a recorded

event. In a third context which involves the configuration of a tracing session, enabled

events refer to a set of specific rules which may lead to the transformation of actually

occurring events to recorded events. As discussed in the previous section, an event

is always registered to at least one channel and can be willingly enabled or disabled.

Even though the channel an event is registered to is enabled, if the event itself is

disabled, it would never be recorded [10].

Figure 2.8: Overview of the core concepts of LTTng [10]
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Fig. 2.8 shows the overview of the core concepts of LTTng. As we can see in this

figure, a tracing session can contain a number of domains, channels and events.

2.4.2 Tracepoint

The concept of tracing is similar to have printf() commands at some locations in the

source code. Instead of using printf commands, LTTng uses tracepoints which are

quite faster and more flexible. A tracepoint represents a probe that needs to be placed

manually in the source code for enabling the tracing capability where a probe [7] is

like a sensor that can be placed in the code [10].

The format of a tracepoint must have to be defined before using it in the source

code. For doing this, a tracepoint provider needs to be created which consists of two

files: a tracepoint provider header file and a tracepoint provider definition file. To be

valid, each of the tracepoints needs to have the following fields:

• A provider name, which is called the “scope” of the tracepoint

• A tracepoint name

• A each argument of the tracepoint call, the name and type of the argument

• A list of fields, which will be the actual fields of the recorded events for the

tracepoint

LTTng uses static tracepoints which can be activated at runtime for recording infor-

mation about a program execution. The connected probe is called when the program

execution hits an active tracepoint and the execution continues when the probe com-

pletes execution. A key advantage of using static tracepoints is the ability to extract

a huge amount of data with the lowest possible overhead [64].
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2.4.3 Instrumentation

Instrumentation is the procedure of adding probes in source code. As mentioned

previously, this can be done manually by writing tracepoint commands in the source

code, or by automatically using dynamic probes. Users can also trace some-thing

that is already instrumented. For example, the Linux kernel is comprehensively in-

strumented; therefore, users can trace it without caring about placing probes into

it [10].

2.5 Xtend

Xtend is a statically-typed programming language which can be compiled into human

readable Java code [25]. Xtend code can access all the Java libraries. This feature

allows users to take the advantage of using Xtend and Java together [33]. The library

of Xtend is just a small layer that can provide useful utilities and extensions on top

of the Java Development Kit (JDK) [25]. In addition, comprehensive tool support

available in Eclipse that includes a number of useful features such as refactoring and

debugging reduces the user effort of development using Xtend [3].

Listing 2.1: A simple hello world program in Xtend [25]

1 class HelloWorld {

2 de f stat ic void main ( St r ing [ ] args ) {

3 p r i n t l n ( ”He l lo World” )

4 }

5 }

Listing 2.1 represents an example of the simple “Hello world” program written in

Xtend language. Here, the keyword def is used to declare a method. Similar to Java

it is mandatory to define a class and a main method as the indication of the entry

point for an application.
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Listing 2.2: Generated hello world program in Java [25]

1 // Generated Java Source Code

2 import org . e c l i p s e . xtext . xbase . l i b . InputOutput ;

3

4 public class HelloWorld {

5 public stat ic void main ( f i n a l S t r ing [ ] args ) {

6 InputOutput.<Str ing>p r i n t l n ( ”He l lo World” ) ;

7 }

8 }

Eclipse automatically translates all the Xtend classes to Java source code after

installing the SDK in the system [25]. Listing 2.2 shows an example of generated

Java source code from an Xtend program.
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Chapter 3

Related Work

In this chapter, we present a number of related works along with their similarities

and dissimilarities with our research.

In [55], the author introduces model based traces and presents two types of model-

based traces: inter-object scenario-based traces (see Fig. 3.1) and intra-object state-

based traces (see Fig. 3.2). Model-based traces focus on providing insight into an

execution of a program at an abstraction level defined by a model. This enables the

use of dynamic analysis in model-driven engineering.

Figure 3.1: Part of a textual representation of a scenario-based trace of PacMan [55]
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Figure 3.2: Part of a textual representation of a state-based trace of PacMan [55]

Similar to this work, our research involves run-time monitoring of automatically

generated code from models and representation of traces in textual form. However,

our work focuses on collecting traces during the execution of real-time models, i.e.,

UML-RT models. Timing is a very important aspect of real-time software modeling.

Therefore, the traces we generated contain timing information which enables us to

detect even very small latency issues. One of the important challenges mentioned

in [55] for model-based trace generation is the minimization of runtime overhead. For

our research we have used the LTTng tool which has the advantage of having low

runtime-overhead [64, 43].

Automated transformation of models into executable code for enabling rapid sys-

tem development is becoming increasingly common. In [49], an architecture has

been proposed for debugging models that execute on target systems or in dedicated

rapid-prototyping environments. This allows the definition of various debugging per-

spectives and views independent of the actual execution platform. Similar to their
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approach, we have also used automated model transformation for generating exe-

cutable code. However, while our work focuses on using traces to monitor the execu-

tion of generated code and to verify the timing requirement specifications, their effort

involves animating model execution in the context of model debugging.

A self-adaptive software (SAS) system needs to modify its behaviour at runtime

in order to respond to the changes within the system or in its execution environ-

ment. One of the key challenges related to the development of these systems is

quality assurance. In contrast to traditional software development where correctness

of the software can be assured through a variety of activities and processes per-

formed at development time such as, design analysis and testing, developing SAS

may need additional assurance tasks at runtime with little or no human intervention.

A promising approach for managing complexity in a runtime environment is using

adaptation mechanisms that exploit software models. This approach is referred to as

models@run.time, a.k.a. M@rt [34]. The authors in [39] present a research agenda

regarding quality assurance using M@rt. As they point out, a key challenge for the

software engineering community is to develop runtime assurance techniques for SAS

that provide high performance, high confidence, and reconfigurable operation in the

presence of uncertainties. They present a review of the relevant works that focus

on the use of models at runtime during the adaptation process. In our work, we

have also used models for quality assurance. However, we have mainly used models

for generating executable code with monitoring features. In addition, we have used

models for displaying trace results through animating the model elements.

In [35], the authors introduce an approach to utilize runtime models for reflecting

the state of an interactive system and modifying its underlying configuration. The
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use of executable models allows them to build systems that are aware of context in-

formation in addition to their own state. The approach has been applied for building

adaptive user interfaces by integrating a task and a context model with a set of ad-

ditional user interface models. This approach creates a feedback loop between model

and UI where external stimulations influence the model execution, thus allowing the

dynamic alteration of the user interfaces. Our work has some similarities with this

effort in the sense that our UI also communicates with the underlying model and

exchanges information. This mechanism allows us to map the trace results back to

the model by highlighting the relevant modeling elements.

In another related work [54], a discussion on runtime verification is presented. In

addition to defining the terminology, the authors present a comparison of runtime

verification with well-known verification techniques, i.e., model checking and testing.

According to their discussion, runtime verification is a process of dealing with ver-

ification techniques that allow us to check if an execution of a system satisfies or

violates a given correctness property.

There is also some work done that involves highlighting, animating and simulat-

ing of model elements. In [47] [45] [58], several techniques have been proposed for

animating and simulating a process. Similar to these efforts, our work also involves

highlighting and animating model elements. However, our research is based on “LT-

Tng” traces that have been collected during code execution. We only highlight a

model element that is being traced.

There is also some recent work done on model execution. For instance, Moka [27]

and Moliz [56] are recent tools for model debugging and animating model execution.
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Both of the environments have an fUML-based customizable model execution en-

gine [26]. Our method is different from their work due to the distinct nature of the

executable models. In our work, we have generated code from models and then the

generated code has been executed rather than executing the model itself. And our

animation process depends on the traces we retrieve from the executing code. This

allows users to visualize only the states or transitions they want to monitor.

There are also a number of industrial tools available for modeling, monitoring,

simulating and visualizing electronic control systems in, e.g., the automotive and

aerospace domains. For instance, IBM Rational RoseRT [6], IBM RSA-RTE [5],

National Instruments (LabVIEW) [8], MathWorks (Simulink) [21] and dSPACE [2].

Among these tools, [5] and [6] can be used for developing UML-RT models and

support runtime monitoring of these models to a certain extent. But these tools

are proprietary software and it makes their use limited for academic and research

purposes. In contrast, our research is completely based on an open source platform,

and thus, highly customizable.

In a related work, we have discussed the monitoring of real-time embedded systems

along with animation, simulation and integrated debugging [41]. In another related

work [28], we have described a case study of our work for runtime monitoring of a

Rover.
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Chapter 4

Using LTTng to check real-time specifications of

models of real-time embedded systems

As mentioned in previous chapters, one of the key factors in the design of a real-time

embedded system (RTES) is the proper implementation of timing requirements. Once

a problem occurs in a RTES, it is not easy to find out the source of the problem. In

MDD, it is possible to generate code for RTES automatically from conceptual models

using a number of UML-RT development tools. For this research, we have focused

on a particular tool called Papyrus-RT and have added support for tracing UML-RT

models in Papyrus-RT. With the provision of this support, it is now feasible to detect

timing violations.

In the beginning of this chapter we present an overview of the project. This is

followed by a brief discussion of two of the three main sections of this project which

have been carried out by two other members. Then, in Section 4.4, we present a

detailed discussion on the part we have worked on, tracing using the LTTng tool along

with trace display. Finally, in Section 4.5, we discuss the implementation details.



4.1. PROJECT OVERVIEW 33

4.1 Project Overview

This section gives an overview of the project we have worked on. This project com-

prises three distinct, but related sections:

• Monitoring Configuration

• Generating code from models

• Tracing of automatically generated code and displaying trace results

Figure 4.1: Monitoring Overview [41]

Each of these sections has one or more subsections. Among the structural and

behavioural properties of a UML-RT model, this research focuses on monitoring only
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the behavioural components. Fig. 4.1 presents an overview of this project. As we

can see in this figure, the project cycle begins with a UML-RT model named M in

Papyrus-RT. With the addition of monitoring information related to, for instance,

a particular state or transition of M, an updated model M’ is generated. Then, a

modified code generator is used for generating code from the M’ model using the

Papyrus-RT tool. As monitoring information is added in the first step, we get code

with tracepoint files, which are necessary for tracing the generated code with LTTng.

We compile the generated code using a make file [11], which is customized to compile

code with the LTTng library and tracepoint files. The make file is automatically

generated along with the code. After compilation we run the code and trace it using

LTTng. Once tracing is done, we get the trace file. We read the trace file and display

the trace result on the model level by highlighting the model element. We also display

the traces in a textual form. In addition, we have also implemented live tracing which

can be used for tracing generated code and displaying traces in the model level at the

same time i.e., the execution does not have to have terminated before displaying the

trace in the model can begin. Therefore, if a user identifies a problem in the model

while observing the traces, s/he can modify the model accordingly. This process

allows a model to be refined appropriately. It is also possible to apply this process

multiple times.

4.2 Monitoring Configuration

For tracing code automatically generated from a model, tracing information needs

to be attached to the model. This is done in this project by adding monitoring

information within model elements that are to be traced. With the help of a UI
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called the monitoring configuration UI, model elements that need to be monitored

can be selected.

The purpose of the monitoring configuration is to collect a list of events that

are intended to be monitored. Fig. 4.2 shows the class diagram of the events that

could be monitored in a model. In this research, we have only worked on monitoring

the behavioural aspects of the model. Therefore we only monitor active states and

triggered transitions of the state-machine of a capsule which is indicated in the red

rectangular box in Fig. 4.2.

To make the generated code traceable we have added monitoring information

within the selected model elements, which is done by adding a monitoring profile to

model elements. The user can also select a pair of model elements and associate a

time value with it which can then be used to validate timing constraints.

4.2.1 Monitoring Profile

To monitor a selected element, the information related to the selected element is

stored in a UML profile. In our case, we call it monitoring profile. Profiles can be

attached to a model. Once a profile is attached to a model, the stereotypes it contains

can be attached to the appropriate elements of the model. These stereotypes can have

attributes which can also be added to the model elements.

In our research, a monitoring profile named “LTTng profile” is used for attaching

monitoring information to model elements. Fig. 4.3 shows the profile we have used to

monitor behavioural elements of a model. Here, the profile contains three stereotypes

for monitoring three types of model elements. Each of the three stereotypes contains

one Boolean attribute named “isMonitored”. When any state/transition is selected
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Figure 4.3: LTTng Profile

for monitoring through the monitoring configuration UI, the appropriate stereotypes

are attached to the model element and the Boolean attribute “isMonitored” is set to

Figure 4.4: The Running state and properties before adding monitoring information
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Figure 4.5: The Running state and properties after adding monitoring information

“true”. This indicates the code generator to generate traceable code for LTTng. For

example, Fig. 4.4 presents a state-machine named “Pinger SM”.

Fig. 4.5 shows the view of the “Running” state and its applied stereotype prop-

erties. As we can see in this figure, the “LTTngState” stereotype is applied and the

Boolean attribute is set to true. The purple border-color of the “Running” state in-

dicates the attachment of monitoring information to the state. This makes it visually

different from a state which does not have any attached monitoring information.

4.2.2 Creating pair of model elements

Another feature allows the user to validate a desired timing specification. This can

be done by selecting a couple of elements (e.g., a state or a transition) from a state-

machine to be monitored and creating a pair out of the selected elements. The pair

Figure 4.6: UI for supporting monitoring configuration
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Figure 4.7: Dialog for inputting a time interval between two selected model elements

can be created with the specification of a time duration in milliseconds. This allows

us to verify if the selected monitoring events occur within the given time difference.

For example, this feature can be used for checking whether transitioning from a

state S1 to another state S2 takes more than 3 seconds or not. The specification

file is added to the model in the same directory and it contains the selected state

and transition names, the name of the owner capsule and the specified time value in

milliseconds. Fig. 4.6 shows the Eclipse UI of the implemented plugin for creating

a pair of monitored events. Here, a button “Create Pair” is used to generate a

specification file with the information of the selected model elements and the given

time value. Fig. 4.7 shows the dialog allowing the user to input the timing value.

The two states are highlighted with green background to indicate that they have

been selected for verifying a time constraint.
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4.3 Code Generation

Code generation is the process of generating code from models. The Papyrus-RT code

generator is designed in the way that can be extended. This feature has allowed us

to extend the code generator of Papyrus-RT for generating monitoring information

along with the code of models. As we discussed in Chapter 2, tracepoint files are

necessary for tracing the generated code with LTTng, therefore the code generator is

extended to support tracing using LTTng. The monitoring configuration UI is used

for selecting elements to be monitored. The selected elements become the user input

for the code generation process.

Listing 4.1: Sample code generated from model

1 Capsule Workstation : : State Capsule Workstation : : s t a t e t op Work s t a t i on Produc i ng ( const

UMLRTMessage ∗ msg )

2 {

3 switch ( msg−>destPort−>r o l e ( )−>id )

4 {

5 case port ProductionTimer :

6 switch ( msg−>ge tS i gna l Id ( ) )

7 {

8 case UMLRTTimerProtocol : : s i gna l t imeou t :

9 a c t i on cha i n t op Work s t a t i on f i n i s h ed Ac t i onCha in4 ( msg ) ;

10 return top Workstat ion Standby ;

11 default :

12 this−>unexpectedMessage ( ) ;

13 break ;

14 }

15 return cur r en tSta t e ;

16 default :

17 this−>unexpectedMessage ( ) ;

18 break ;

19 }

20 return cur r en tSta t e ;

21 }

The customized code generator of Papyrus-RT takes a UML-RT model and out-

puts a C/C++ Development Tooling (CDT) project. CDT is known as a set of tools

that is provided by Eclipse to facilitate C and C++ development. The generated



4.3. CODE GENERATION 41

code using the customized code generator also contains tracepoint (.tp) files for all

the events that have been selected for monitoring. The tracepoint() calls are added

to the code generated from the selected model elements.

Listing 4.2: Generated Code with Tracepoints

1 Capsule Workstation : : State Capsule Workstation : : s t a t e t op Work s t a t i on Produc i ng ( const

UMLRTMessage ∗ msg )

2 {

3 t r a c epo in t ( Act iveState Workstat ion Workstat ion Produc ing prov ider ,

Act iveState Works tat ion Works tat ion Produc ing t racepo int , ”

Act iveState Workstat ion Workstat ion Produc ing ” ) ;

4

5 switch ( msg−>destPort−>r o l e ( )−>id )

6 {

7 case port ProductionTimer :

8 switch ( msg−>ge tS i gna l Id ( ) )

9 {

10 case UMLRTTimerProtocol : : s i gna l t imeou t :

11 t r a c epo in t ( MessageRece ived Works tat ion Works tat ion f in i shed prov ide r ,

Mes sageRece ived Works ta t i on Works ta t i on f in i shed t racepo int , ”

MessageRece ived Workstat ion Workstat ion f in i shed ” ) ;

12 a c t i on cha i n t op Work s t a t i on f i n i s h ed Ac t i onCha in4 ( msg ) ;

13 return top Workstat ion Standby ;

14 default :

15 this−>unexpectedMessage ( ) ;

16 break ;

17 }

18 return cur r en tSta t e ;

19 default :

20 this−>unexpectedMessage ( ) ;

21 break ;

22 }

23 return cur r en tSta t e ;

24 }

For instance, Listing 4.1 shows the code generated for the “Producing” state of

the “Workstation” capsule without having any monitoring information attached. On

the other hand, Listing 4.2 shows the code generated with tracepoint() calls, where

tracepoint() calls are highlighted in red. The first tracepoint() call indicates the

active state and triggers the associated tracepoint file when the state is entered. This

function executes every time this state gets activated. The other tracepoint() call is
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placed to indicate the triggered transition and this tracepoint function executes every

time the transition gets triggered. These two tracepoint() calls are added because they

are selected in the monitoring configuration UI at the very first step. The generated

code is then compiled with the tracing feature using a make (.mk) [11] file, which

is also customized for compiling code with LTTng tracepoints and automatically

generated with the code using the customized code generator of Papyrus-RT.

4.4 Tracing using LTTng and Trace Display

Tracing in RTES is a technique to monitor a running real-time embedded system.

In this section, we describe the steps for tracing generated code and displaying trace

results. Our research focuses on this part of the project.

In addition to the code, two scripts are generated that contain all the LTTng

commands are necessary for tracing and need to be run to monitor the execution.

One of these scripts is used to start tracing and executing the generated code, while

the other one is used to stop tracing. Once the code is generated and compiled, we

execute the code and trace it through the use of the scripts. This makes it very

easy to trace the generated code, because users do not have to give a list of LTTng

commands for tracing.

Fig. 4.8 displays the execution of the code and the use of the script to start tracing.

Here, “startTrace” is the name of the script used to start tracing. The script contains

LTTng commands for starting a session, enabling the associated user space events,

starting the process of tracing and starting the execution of the generated code.

The trace is written to a file on a specific path. Once tracing is started, we can stop

tracing at any point. We use the generated script to stop tracing and to destroy the
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Figure 4.8: Tracing of generated code

current session (see Fig. 4.9). Once the trace file is generated, we use it to display the

trace results on the model level. There is different information that can be displayed.

There are also many ways to display trace results. In our research we have used two

types of visualization. One is to display the traces in textual form and the other one

is to display traces through the highlighting of model elements.

Figure 4.9: Running a script to stop tracing
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Figure 4.10: Display of traces in textual form

Textual form of trace display

An LTTng trace contains a wide range of information, e.g., a timestamp, start time,

end time, string field and so on. In our work, we have displayed the timestamp value

along with the string field, which contains information about monitored element, i.e.,

the type and name of the monitored element.

We have developed an Eclipse based plugin which displays three columns. The

leftmost column shows the names of the trace files after selecting a model in the

Eclipse project explorer window. Fig. 4.10 shows the trace display in textual format.

Upon selecting any particular trace from the leftmost column, the middle column

shows the details of that trace file. Information presented in the middle column gives

us an idea about the currently active model element at any particular time. The

timestamp information represents the exact time when the event occurred, e.g., when

a state became active or when a transition was taken. The timestamp information is

represented in nanoseconds. The rightmost column contains buttons for user interac-

tion. The “Display Trace” button is used to start displaying traces in textual format

and on the model level by highlighting corresponding elements. Then user can go

through the trace and display the events in it one by one by using the “Step” button.
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The “Reset” button is used for going to the initial position which does not have any

elements highlighted. The “Validate Time” button is used for checking the validity

of a given time constraint. In our research, we have also worked on live tracing where

the user can see traces as they are being collected. To start viewing live traces we

have added the “Start Live Trace” button. The “Stop Live Trace” button is used to

stop the display of live traces and the “Clear” button is used to clear the text area.

Figure 4.11: Display of traces in Model level

Model level Display of Traces

To make the display more user friendly we show traces on the model level by high-

lighting the model elements involved in the events in the trace. Fig. 4.11 shows the

state-machine of a capsule where the “Waiting” state is highlighted in Red color to
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indicate that the trace file contains information about the “Waiting” state. The tex-

tual and the model level view are synchronized. Therefore, when a user selects the

“Display Trace” button, both textual and model level elements get highlighted.

Figure 4.12: Display of offline trace

4.4.1 Offline Tracing

Offline tracing means tracing that is not live, i.e., that the execution of the monitored

code and the collection of traces is completed before the display of the trace. While

tracing offline, traces cannot be seen at the time of arrival. Consequently, execution

and tracing need to be stopped through user interaction for viewing the offline trace
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results. Fig. 4.12 shows the display of traces in offline mode where user can see traces

both textually and on the model level by using related buttons. It is also possible

to select any row from the middle column of the textual view which associates the

model element with the row highlighted.

Figure 4.13: Display of time difference through selecting two lines from trace details

Also, selecting two rows from the trace details (i.e., middle column of the textual

view) allows us to view the time difference between the selected trace lines. Fig. 4.13

shows the time difference between two selected trace lines. The timestamp shown

here was originally in nanoseconds. To make it more user friendly we converted it to

milliseconds while displaying the time difference.

4.4.2 Online/Live Tracing

In online/live tracing users can view traces while trace elements are arriving. In

our research, we have implemented a feature to start live tracing and read live traces.

Similar to the representation of offline traces, we display the live traces both in textual

form and on the model level.

Live traces can also be remote traces where users can send trace data from one

machine to another. To do this, users need to start a LTTng relay daemon [10] in the
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Figure 4.14: Live tracing

receiver machine. Fig. 4.14 illustrates live tracing. In this figure, the bottom right

console is for starting the LTTng relay daemon in the receiver part. The top right

console shows the starting of live traces. Here, “localhost” is used as the destination

of traces, which means the traces are being sent to the same machine. The Eclipse

view starts showing the traces as they arrive after clicking the “Start Live Trace”

button.

4.5 Implementation

This section describes our implementation of tracing using LTTng and trace display.



4.5. IMPLEMENTATION 49

4.5.1 Implementation overview

In the beginning, we have implemented a method to automatically generate two

script files along with the code. We have created an Eclipse plug-in (TraceDisplay,

in Fig 4.15) to read and display the trace files. Our plug-in is basically an Eclipse

view which can be visualized in an Eclipse instance. It is possible to list all the trace

file names and traced events for a selected model element in the implemented Eclipse

view. We have also implemented support for validating the traced information in

accordance with a given time constraint.

For creating the Eclipse plug-in view we have written a class (EclipseView, in

Fig 4.15) which inherits from the following class in Eclipse framework:

• org.eclipse.ui.part.ViewPart

A form has been created inside the Eclipse view for listing traces and to support

user interaction. For the creation of the form and to add buttons and labels for user

interaction, we have used the following packages:

• org.eclipse.swt.widgets

• org.eclipse.ui.forms.widgets

For selecting a particular model in the Eclipse project explorer window and get

the full path of it, we have used:

• org.eclipse.core.runtime.IPath

• org.eclipse.jface.viewers

• org.eclipse.ui.ISelectionListener
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Figure 4.15: Implementation overview of “TraceDisplay” plug-in (Left column repre-
sents the classes inside the plug-in, right column represents the imported
packages in the associated classes)

For extracting trace event details from a trace file we have written a class “Trace-

Analyzer” (see Fig. 4.15) using the “Trace Compass” library for reading the generated

traces. We have used the following packages while writing this class:

• org.eclipse.tracecompass.ctf.core.trace

• org.eclipse.tracecompass.internal.ctf.core.event.EventDefinition

Once all the trace events are enlisted on the eclipse view, we need to retrieve the
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exact model element for showing the traces on the model. We have collected the exact

model element using the “org.eclipse.papyrus.infra” and the “org.eclipse.uml2.uml”

packages. To change the color of the model element we have used following packages:

• org.eclipse.emf.transaction

• org.eclipse.gmf.runtime.notation

An overview of the packages we have used for doing some particular tasks is

presented in Fig. 4.15.

4.5.2 Script Generation

We have used Xtend to generate scripts automatically along with the code. Initially

we have prepared a shell script [20] with all the LTTng commands to start and stop

tracing. Then, we have used Xtend for generating the script with all the required

LTTng commands (see Appendix A). Fig. 4.16 shows a screenshot of an automatically

generated script for the Rover model. Here, the “lttng create” command is used for

creating a tracing session. This is followed by the specification of the session name.

We have used the model name for naming the session. Command line parameter

“-o” followed by a path indicates the output path of the trace. The output path is

automatically generated by our plugin from the path of the selected model. We have

used user input for live and network tracing. Once a session is created, all the events

that are marked for tracing become enabled by the use of the appropriate LTTng

command. Then, tracing is started using the “lttng start” command and it can be

used to trace the program that is being executed. It is worth noting here that we

start tracing before executing the generated code. This protects us from missing any

event that can occur between the start of the tracing and the execution.
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Figure 4.16: Screenshot of a generated script for Rover model

We have also generated a script named “stopTrace” to stop tracing. This script

contains only two commands. One is “lttng stop” to stop tracing and the other one

is “lttng destroy” to destroy the current LTTng session.

4.5.3 Reading of Trace

Reading a trace file is the process of reading offline and online traces. Initially it has

been done by selecting the path of the trace file by the user. This allowed us to read

only offline traces. Later, we have extended our plugin to read both offline and online

traces without requiring the user to specify the path manually.
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Offline

To read offline traces, the path of the model directory is retrieved by selecting the

model name in the project explorer within the Eclipse instance. Once the path of the

model directory is specified, we analyze if the directory contains any trace files. If

any trace file is found, we display the name of the trace file in the leftmost column of

the plugin view. Then, upon selecting of a trace file name from the leftmost column

we get the exact path of the trace file.

LTTng relies on the Common Trace format (CTF) [42], an optimized format for

producing and analyzing large amounts of data, to produce trace files with a low

overhead [43]. We have used the “Trace Compass” [22] library to read these trace

files. To read the traces of a selected trace file we go through the events one by one and

read the timestamp of that event. We also read the “String field” attribute which

contains the type of trace, the capsule name and the name of the model element

involved (e.g., the state or transition). We merge the timestamp and string field

information and store it in a list.

Online

For reading online traces first we need to start the relay daemon on the receiving

end. This is done with the “lttng-relayd -d” command. Here, “-d” is used to run

the relay daemon in the background. After starting relay daemon, we have used

“Babeltrace” [1] to read live traces. We use the “Start Live Trace” button in the

plugin UI for reading live traces. Similar to offline traces, we read the timestamp

value and the string field and then we merge both and store them in a list.



4.5. IMPLEMENTATION 54

4.5.4 Display Traces

Once trace files are read, the next part is to display traces. Displaying traces in

the textual view is done by printing all the traced information in the middle text

area of the view part. In contrast, displaying traces on the model level is done by

highlighting the associated model elements. At first, we implemented the latter by

changing the contents of the “notation” file which is associated with the model. That

was not user-friendly as it requires reloading the Eclipse window to show the changes.

Later, for improving the user experience, we have used the setFillColor property of

the model element to highlight it.

4.5.5 Time constraint validation

The main focus of this research is to discover time constraint violations. To do this,

we have read the specification file containing user-specified timing value for any two

elements (state/transition) from a state-machine. The specification file is made avail-

able in a directory similar to the model. Therefore, we get the path of the specification

file by selecting the model in the project explorer window in Eclipse. The format of

the contents of the specification file is “type of element(state or transition) capsule

Figure 4.17: Time constraint validation
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name state/transition name”. For checking the violation of a time constraint, we

retrieve the particular lines of trace using the names of the capsule and the state/-

transition of the model element. After calculating the time difference, we compare it

with the given time value. If the actual time difference does not exceed the given time

value, we display “Validated”. Otherwise, we display the given time difference and

actual time difference in milliseconds. If there is a violation of the time constraint,

we also highlight the associated trace lines in the textual view. Fig. 4.17 shows the

view of the trace display after finding a violation for a given time constraint.
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Chapter 5

Proof of Concept

This chapter presents an proof of concept of our implementation through conducting

three case studies. We have used two Papyrus-RT models, the PingPong and the

Workstation, for exercising two features of our implementation: offline tracing and

trace display. In addition, we have used another Papyrus-RT model, namely the

Rover model, to apply the live tracing feature of the implemented plugin on a larger

model. We present a brief discussion of the structural and behavioural design of the

three models in the following three sections. We also present the result of tracing

these models using our plugin.

5.1 PingPong

Pingpong is a very simple model available in the sample model repository of the

Papyrus-RT distribution. It has a Top capsule which contains two other capsules:

Pinger and Ponger. Fig. 5.1 shows the structure diagram of the Top capsule of the

PingPong model. As we can see in this figure, the Pinger and the Ponger capsules can

communicate with each other through a protocol named “PingPongProtocol”. They

send signals to each other using the real-time ports they own.
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Figure 5.1: Structure diagram of PingPong model

Both Pinger and Ponger have their own state-machine behaviour. Fig. 5.2 shows

the state-machine diagram of the Pinger capsule. Pinger has a state named “Running”

and can send a “onPing” signal to the Ponger capsule when it is in the ”Running”

state. The “Running” state has a self transition which can be triggered if it receives

the “onPong” signal from the Ponger capsule. It has another self-transition which

Figure 5.2: State-machine diagram of Pinger Capsule
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Figure 5.3: State-machine diagram of Ponger Capsule

can be triggered through the receipt of a timeout signal from a stop-timer intended

to cease the signal interactions (see Fig. 5.2).

On the other end of the signal communication, we have the Ponger capsule. The

behaviour of Ponger is defined in a state-machine which also has a state named

“Running”. Ponger expects a signal named “onPing” from the Pinger capsule. Once

it receives it when it is in the “Running” state, the “onPing” self-transition gets

triggered and Ponger sends out the “onPong” signal to the Pinger capsule. Fig. 5.3

shows the state-machine behaviour of the Ponger capsule.

As part of the proof of concept, we have monitored the states and transitions of the

Ponger state-machine in the PinPong model. Fig. 5.4 shows the display of traces in the

plugin for the PingPong model with the associated state element and corresponding

trace event at a particular point being highlighted. Clicking on the “Step” button
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allows us to see the next trace event along with the highlighted element being updated

(see Fig. 5.5). Fig. 5.6 shows the time difference after selecting two events from the

middle column of the textual display.

5.2 Widget Production

The Widget Production model is the second model we designed to test our imple-

mentation features. The Top capsule of this model contains four other capsules: Con-

trolSoftware, ProductionLine, Workstation and Robot. Fig. 5.7 shows the structure

diagram of the Top capsule of this model.

Figure 5.7: Structure diagram of the Widget production model

The ControlSoftware capsule is the heart of the widget production system. It

coordinates the activities on the production line by directing when to produce a

widget and when to deliver a widget by sending signals through protocols. The

ProductionLine capsule is a container capsule which encapsulates the structure and

behaviour of the Workstation and Robot capsules. The Workstation capsule controls

the actual manufacturing of widgets (see Fig. 5.9) and the Robot capsule controls the

delivery of robots (see Fig. 5.10).
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Figure 5.8: Statemachine diagram of the ControlSoftware capsule

Fig. 5.8 shows the state-machine diagram of the ControlSoftware capsule having

four states. Initially it waits in the “ControlSoftware StartUp” state to initialize other

elements and startup the system. At this point, the “Workstation” and the “Robot”

Figure 5.9: Statemachine diagram of the Workstation capsule
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Figure 5.10: Statemachine diagram of the Robot capsule

state-machines wait in their respective Standby states for a signal from the Control-

Software state-machine for proceeding to operating mode. Once the startup timer of

the ControlSoftware capsule fires, it enters the “Control Software Produce” state and

sends a signal to the Workstation to produce widgets. After producing the widget,

the Workstation sends a signal back to the ControlSoftware where the “widgetPro-

duced” transition gets triggered for taking it to the “Control Software Deliver” state.

Then the ControlSoftware sends a signal to the Robot state-machine to deliver the

widget and then it waits for a signal from the Robot state-machine. Once it receives

the signal, the “widgetDelivered” transition gets triggered and the ControlSoftware

enters the “Control Software Produce” state again. The whole system ends after the

ControlSoftware receives a shut down signal which gets triggered after a predefined

time interval.

The trace display of the Workstation state-machine is demonstrated in Fig. 5.11

and Fig. 5.12. Fig. 5.13 and Fig. 5.14 show two cases demonstrating the conformance
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and violation of a timing requirement specification in our plugin.

5.3 Rover

We have created the Rover model in Papyrus-RT to test live and remote monitoring

of real-time embedded systems. The rover we have is a small vehicle with two motors

that can move in different directions. It is built using a Raspberry-Pi platform running

a Linux OS. Fig. 5.15 shows the physical Rover we have used for testing the live tracing

concept.

Figure 5.15: The Rover

The Rover behavior is represented using UML-RT state-machine in Papyrus-RT.

Following the behavior specification, Rover moves forward until detecting an obstacle.

Once it detects an obstacle, it tries to avoid the collision by making a turn of 90 degrees

and then it starts moving in forward direction again. The code is generated using the

Papyrus-RT tool and Raspberry-Pi is used for executing the code.
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Figure 5.16: Rover Architecture

Now, let us go through the architecture of the Rover (see Fig. 5.16). The Rover

architecture consists of 5 different layers. In the bottom-most, we have the hardware

layer. A Raspberry Pi having 26 GPIO pins is used for representing this layer. 17 of

these pins are used for connecting external devices such as sensors and actuators (see

Figure 5.17: Raspberry-pi GPIO Pin [19]
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Figure 5.18: Rover Wiring Diagram [19]

Fig. 5.17). On top of the hardware layer, the Rover architecture has a file system

which is powered by a real-time version of Linux. GPIO pins in the Raspberry Pi

are used for providing users read/write access to the file system. These GPIO pins

are controlled using a C++ wrapper class which represents the GPIO Class layer in

Fig. 5.16. The wrapper class consists of the ”set” and ”get” methods which are used

for setting and retrieving the pin values respectively. On top of the wrapper class,

we have the Rover library layer. This library comprises different components of the

physical Rover in the form of a number of UML-RT capsules. Finally, the Control

Software layer, the topmost layer of the Rover architecture, represents the business

logic of the application.

The assembly of the Rover platform is shown in Fig. 5.18. An important step of

assembling the physical platform of the Rover is the proper selection of components.

As we can see in Fig. 5.18, two step motors that are attached to wheels are embedded
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in the core component, the Raspberry Pi 3. A motor controller connected to the

Raspberry Pi ensures the control of the Rover. Distance measurement with obstacles

is done using an ultrasonic distance sensor. Different components are connected using

a breadboard. Power is provided using two sets of batteries, whereas the receipt of 5

volts in the Raspberry Pi, which it needs to be powered on, is ensured with the use

of a voltage regulator.

The composite structure diagram of the Top capsule is shown in Fig. 5.19. This

capsule connects two other capsules: the ControlSoftware and the Rover capsule.

Fig. 5.20 shows the state-machine diagram of the ControlSoftware capsule. It is

a key aspect of the model behavior as it represents the logic of the rover system. In-

structions are designed to be sent from this capsule behavior to the Engine Controller

to move forward until the distance between the rover and an obstacle is no more than

one foot. Once the rover reaches such a point, it moves back, turns and goes back to

a position where it moves forward again and checks the distance.

A capsule named “Detection” is used for communicating the distance sensor.

Figure 5.19: Structure diagram of Rover Top capsule
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Figure 5.20: Control Software state-machine diagram of the Rover model

Figure 5.21: Detection state-machine diagram of the Rover model

Fig. 5.21 shows the behavior of the Detection capsule. The distance sensor sends

out a pulse of ultrasonic sound and measuring the time it takes for the signal to

return. It stops sending out the signals once the pulse comes back.

The Engine Controller capsule behavior is shown in Fig. 5.22. As the name implies,
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this capsule is responsible for controlling the engine. The execution of this capsule

waits in the “Idle” state until an event is received which directs it to either forward or

backward direction. Consequently, the execution moves to either “MovingForward”

or “MovingBackward” state. Once one of these states becomes active, the system

can come back to the “Idle” state only if it receives a stop signal. In the background,

when the execution enters either “MovingForward” or “MovingBackward” state, the

engine controller communicates with the file system through the rover library. This

allows the control of the hardware which directs the actual movement of the physical

component. Similarly, once the Engine Controller receives a signal directing it to

either right or left, the execution goes to the “TurningRight” or “TurningLeft” state

respectively. In either cases, the rover engine moves the corresponding motors which

causes the actual turn. The transition of the rover engine back to the “Idle” state is

done using the expiration event of a system timer.

We have used the Rover model for both offline and live monitoring.

Figure 5.22: State-machine diagram of Engine Controller
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5.3.1 Offline Tracing

Fig. 5.23 shows the display related to the traces of the “MovingBackward” state,

the “MovingForward” state and the “turnRight” transition of the EngineController

state-machine. Clicking on the ”Step” button results in the display of subsequent

events (see Fig. 5.24 and Fig. 5.25). Fig. 5.26 shows the violation of a given time

constraint for two states of Engine Controller state-machine.

5.3.2 Online/Live Tracing

Fig. 5.27 shows the live traces of Rover model where the LTTng tool is used for tracing

the model elements and for sending traces to the user machine over the network at

the moment they arrive. Our plugin is capable of highlighting the associated model

elements and the textual view at the same time for incoming trace events.
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Chapter 6

Conclusion

6.1 Summary

The importance of quality management of complex software systems is significant

as it can reduce the software maintenance cost remarkably. This research focuses

on enhancing the quality of existing software models by detecting problems in the

runtime behaviour. The model-driven development tool for real-time embedded sys-

tems Papyrus-RT is of interest to the modeling community because it is open source.

Developers from different regions of world can contribute to the implementation of

this tool. Moreover, LTTng is a great tool for monitoring runtime information with

a minimum overhead. Therefore, we have used these tools for creating models for

RTES and implementing monitoring.

The main goal of this research is to automate tracing of RTES and display trace

results on the model level. We have focused on implementing a plugin to support

monitoring of runtime information of RTES. To summarize our work, we have first

created a plugin for automatically generating scripts with all the LTTng tracing

commands. Support for reading the trace files is provided in the plugin. In addition,
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it is capable of displaying both offline and live traces in textual form and graphically

in the model level. This gives us a way to verify any user defined time constraints and

make it possible to find out the source of any delay in a running real-time embedded

system.

6.2 Limitations

In this research, we have just provided a proof of our proposed concept. For real

use of industrial system for validating timing constraints comprehensive observation

of execution is important. Also it is important to know the factor of monitoring

overhead introduced by LTTng.

In this research, we have only worked on two behavioural elements of a UML-RT

model: state and transition. Runtime monitoring of other behavioural elements such

as choice-points and junction-points are out of scope of this work. In addition, as we

can see in Fig. 4.2, there are other model elements, i.e., structural components that

might be monitored as well. Thus, our work will not be able to detect a problem if it

involves structural design of a UML-RT capsule.

6.3 Future Work

There is a range of future work that can be done.

Till now there is no option of generating sequence diagrams in Papyrus-RT. The

traces we collect contain the source and timing information of all the monitored events

which can be used in future to generate a sequence diagram.

As we have mentioned while discussing the limitations of this work, runtime mon-

itoring of only a subset of behavioural elements of a UML-RT capsule is currently
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supported. This can be enhanced by adding support for monitoring other behavioural

elements as well as the structural components.

In addition, the traces we get can also be used for animating and simulating the

model execution. Therefore, our plugin can be used for both tracing and simulating

a real-time embedded system.

6.4 Conclusion

The importance of runtime monitoring is significant to ensure the correctness of the

runtime behavior of complex real time embedded systems. This research is an attempt

to examine the correctness of timing information related to UML-RT models using

runtime traces generated by the open-source LTTng tool. We provide support for

tracing a user application, reading a trace file, displaying the trace results on the

model level, exploring the associated timestamps in textual form and verifying the

actual timing information of a trace file against the desired user input. Some of

the challenges we faced while doing this research include dealing with the unstable

releases of Papyrus-RT tool as it was in the initial phase of development and managing

Eclipse-based issues such as lack of backward-compatibility for the models created in

an old Eclipse version. This research constitutes a first step to combining MDE and

runtime monitoring and verification of timing constraints.
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Appendix A

Sources for Generating Scripts

Listing A.1: Start Trace Script Generator

1 class Star tTraceScr iptGenerator {

2 de f generate ( S t r ing path , S t r ing mainFileName , S t r ing folderName )

3 {

4

5 va l f i l e = new F i l e ( path ) ;

6

7 va l wr i t e r = new Buf feredWriter ( new Fi l eWr i t e r ( f i l e ) ) ;

8 wr i t e r . wr i t e ( doGenerate ( mainFileName , folderName ) . t oS t r i ng )

9 wr i t e r . c l o s e

10 }

11

12 de f private doGenerate ( S t r ing mainFileName , S t r ing folderName ) {

13 ’ ’ ’

14 #!/bin /bash

15 # Sc r i p t f o r execut ing LTTng Commands

16

17 network=

18 ip=

19 l i v e=

20 whi l e [ $# −gt 0 ]

21 do

22 case ”$1” in
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23 −n)

24 network=”−−set−u r l net ://”

25 ip=”$2 ” ;

26 s h i f t ; ;

27 − l )

28 l i v e=”−− l i v e ” ; ;

29 −−) s h i f t ; break ; ;

30 −∗)

31 echo >&2 ”usage : $0 [− l ] [−n ] [ ip address ] ”

32 e x i t 1 ; ;

33 ∗) break ; ; # terminate whi l e loop

34 esac

35 s h i f t

36 done

37

38 NOW=$( date +”%Y%m%d %H%M%S”)

39 l t t n g c r e a t e f o l d e r N a m e −o . . / . . / f o l d e r N a m e / f o l d e rName $NOW $ l i v e

$network$ip

40

41 l t t n g enable−event −u ’RT ∗ ’

42 l t t n g s t a r t

43 read −p ”Press any key to cont inue . . . ”

44 . / m a i n F i l e N am e

45 ’ ’ ’

46 }

47 }

Listing A.2: Stop Trace Script Generator

1 class StopTraceScr iptGenerator {

2 de f generate ( S t r ing path )

3 {

4

5 va l f i l e = new F i l e ( path ) ;

6

7 va l wr i t e r = new Buf feredWriter ( new Fi l eWr i t e r ( f i l e ) ) ;

8 wr i t e r . wr i t e ( doGenerate ( ) . t oS t r i ng )
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9 wr i t e r . c l o s e

10 }

11

12 de f private doGenerate ( ) {

13 ’ ’ ’

14 #!/bin /bash

15 # Sc r i p t f o r stopping LTTng Commands

16

17 l t t n g stop

18 l t t n g des t roy

19 ’ ’ ’

20 }

21 }


