
Component-based Discrete Event Simulation Using
the Fractal Component Model

Olivier Dalle MASCOTTE project
I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis
B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE.

E-mail: Olivier.Dalle@sophia.inria.fr

Abstract— In this paper we show that Fractal, a generic
component model coming from the Component-Based Software
Engineering (CBSE) community, meets most of the functional
expectations identified so far in the simulation community for
component-based modeling and simulation. We also demonstrate
that Fractal offers additional features that have not yet been
identified in the simulation community despite their potential
usefulness. Eventually we describe our ongoing work on such a
new simulation architecture built on top of the Fractal model,
the Open Simulation Architecture (OSA).

Index Terms— Discrete-event Simulation, Simulation Method-
ology, Component-based Modeling, Component-based Software
Engineering, Fractal Component model.

I. INTRODUCTION

From an historical perspective, the component-based ap-
proach was first popular in the Modeling and Simulation
(M&S) community for its descriptive good properties. Indeed,
an interesting property of the component-based approach is
its ability to model complex systems by dividing the initial
system, recursively, into smaller sub-systems. This hierarchical
modeling approach was first introduced by Zeigler with the
DEVS formalism[1] and later in other formalisms, such as
Harel’s State Charts[2]. However, it is worth stressing that a
formalism like DEVS is a specification language, that is a non-
ambiguous formal language for describing both the behavior
and structure of dynamic systems[3]; DEVS is not a program-
ming language and does not address the implementation issues
of computer simulations1.

In the Software Engineering (SE) community, the
component-based approach emerged more recently (in the
90’s) as an evolution of the object-oriented programming
(OOP) paradigm. Indeed, the component approach solves one
of the major pitfalls of OOP, sometimes referred to as the
hyper-spaghetti objects and subsystems phenomenon[4]. A
side-effect of solving this pitfall is that it enables or makes eas-
ier many interesting SE good practices, such as reusing code or
making validation and (unit-)testing of code easier. However,
it is interesting to note that the descriptive good property of
components that was identified in the simulation context was
not the main concern addressed by the components in the SE
context. Indeed, the first component architectures and models

1As a matter of facts, the implementation concerns of the DEVS formalism
are currently being discussed within the SISO DEVS-SG discussion group
(hosted on http://www.sisostds.org/).

proposed for SE, such as CORBA[5], COM[6] or JavaBeans[7]
do not support hierarchical composition.

In this paper we will show that the Fractal[8] component
model is a convenient mean of implementing the component-
based approach in discrete-event simulation. In section II, we
we first identify the usual M&S activities. Then, in section III,
we give a short list of the main motivations and expectations
for components in both M&S and SE, before we describe the
benefits of the Fractal model in section IV. Finally, in section
V we describe how this is applied in the OSA architecture.

II. COMPONENT MODELING & SIMULATION ACTIVITIES

Studying a system using discrete-event computer simula-
tions implies several activities. These activities need to be
clearly identified in order to establish a classification of the
Roles and Concerns in simulation, two major concepts of
CBSE that will be discussed in the next section. Hereafter,
we propose a possible classification of these activities:

• Conceptual model specification: this first modeling step
consists in describing the model the system expert has
in mind. Depending on the system expert habits, this
description may range from the informal ones (textual,
manual drawings) to the more formal ones (based on var-
ious formalisms such as DEVS, PetriNets[9], UML[10],
SDL[11], Data Flow Diagrams[12],. . . ).

• Software model architecture description: this is the
translation of the conceptual model architecture into a
software architecture compliant with the targeted com-
puter simulation software. This description usually com-
bines a list of components and a topological descrip-
tion of their interactions (bindings). The “shape” of the
components depends on the underlying software compo-
nent model and may range from the most generic ones
like DEVS JavaBeans (eg. SimBeans[13]), or Agents
(eg. Swarms[14]) to the most domain-specific ones,
such as the Opnet elements (networks, nodes, modules,
processes)[15]. The topological description may be either
programmed in-line (using binding primitives), or by
means of an Architecture Description Language, such as
the one found in CD++[16] or OMNet++[17], or both,
such as in Fractal.

• Software development: this consists mainly in imple-
menting the behavior of model components using a
programming language and developments tools (eg. the



Eclipse IDE[18]), but may also include other develop-
ments, such as the sampling policies used to collect the
simulation data or the topological description mentioned
just above.

• Simulation scenarios configuration: this mainly consists
in setting up the initial parameters of the components in
order to reach the initial state of the system (eg. location
of vehicles on a map or initial value of a random seed).

• Instrumentation of simulation scenarios: this activity
consists in instrumenting the model with probes that will
collect data samples during the simulation run. This may
also include more complex tasks, such as defining aggre-
gation policies for samples collected by several probes or
computing statistical indicators during execution instead
of gathering and saving large amounts of data samples.

• Experiment planning: studying a system using computer
simulations often turns into comparing the behavior and
performances of the considered system using several vari-
ations of a same basic scenario. These variations consist
in using different values for some of the initial parameters
in the basic scenario. In order to avoid a combinatorial
explosion of the number of parameters combinations,
and consequently, of the number of simulation runs,
various policies exists[19]. An experiment plan is built
by applying such policies.

• Configuration of computational resources: this activ-
ity consists in setting-up deployment parameters for a
distributed execution or the scheduling of a batch of
simulation runs on a pool of computers.

• Execution control: depending on the mode of execution
selected (animated, debug, batch), several kind of controls
may or may not be available to the end user: start, stop,
resume execution, step one event, dump the scheduler’s
pending event list, and so on.

• Post-processing and analysis: this consists in preparing
the data collected during the simulation runs (merging
and formatting the data of several simulation runs) and
running computations on these data (eg. statistical com-
putations, graph plotting, . . . ).

• Validation and verification: this consists in verifying
that the software model behaves as expected. This may
be achieved in several ways, such as using a debugging
mode of execution or comparing the data collected during
the simulation (or obtained after post-processing) with the
data produced by the real system. The latter technique
may be automated[20].

III. COMPONENTS: MAIN MOTIVATIONS AND
EXPECTATIONS

In [21], Oses, Pidd and Brooks already gave an in-
depth analysis of the critical issues in the development of
component-based discrete simulation. They conclude that in
many cases, technical solutions already exist to address the
issues they identified, such as validation and verification,
interoperability of existing models, and component or software
reuse for example. However, we think that in the latter case,
concerning software reuse, the issue is still pending and that

new enabling techniques, such as the separation of concerns,
presented in section III-C, should be applied. Prior to this,
we first recall in the two following sections the very first
motivations of the component-based approach, from a M&S
point of view first, and then, from the SE point of view.

A. Reflect Systems structural organization

For M&S, the main motivation for using components is
to reflect the structural organization of the System to sim-
ulate. For example, in [3], the main motivation presented
for the DEVS component model is to provide a formalism
for discrete-event modeling that conforms with the Systems
Theory principles. In Systems Theory, the observable outputs
of a system or sub-system should only result from its external
inputs and its internal behavior. Following, in DEVS, compo-
nents are used to model such self-contained systems; they are
often compared to “black-boxes”, meaning that when standing
out of the box, one is not supposed to access what is inside
the box. Furthermore, in order to better reflect the structural
organization of Systems and ease the modeling process, the
component models proposed for M&S are usually hierarchical.
As already mentioned in our introduction, this is not always
the case for the component models proposed for SE.

B. Software reuse

Reuse is certainly the most stated expected benefit of the
component-based approach in SE. However, this good property
was also clearly identified in the M&S context: as soon as
the modeling components result in self-contained entities,
one can reasonably expect that these self-contained modeling
entities will result in self-contained software components.
Unfortunately, as we will show in the next section, these self-
contained software components may not be easily reusable,
especially when they mix several concerns.

In practice, we may distinguish two levels of component
reuse: reuse at source level and reuse at execution level (pre-
compiled components and components libraries). The first
level offers enough flexibility to allow reusing with modifica-
tions of the sources while the second prohibits modifications.
And while open source modeling is a common practice,
there are situations in which it may not be possible. This is
typically the case in a competitive industrial context where
disclosing the internals of a proprietary system or technology
to concurrent companies may not be acceptable.

It is also worth stressing that in SE, the component models
are often linked to an OOP language, which probably explains
why the need for hierarchical support at component level is
less critical, and therefore less often supported (most OO
languages are intrinsically hierarchical).

C. Separation of roles and concerns

The activities identified in section II correspond mainly
to the different steps of a computer-based simulation study
life-cycle. Notice that the simulationist may iterate several
times over each of these steps. In other words, the complete
life-cycle may contain several loops. For example, if the



verification and validation step fails, the cycle will loop back to
the development step if the failure is due to an implementation
error, or to the modeling step, if it is due to a modeling error.

Each of these activities has relatively independent objectives
and may requires different kinds of knowledge and expertise.
When the end-user of the simulation software practises these
different activities, we say he plays different roles. In the pro-
cess of building a modular simulation software architecture, it
looks reasonable to try decompose the simulation architecture
in software modules according to these roles. Indeed, because
of the relative independence of the activities, the specifications
of the services offered to support the user in each role should
be able to vary independently over the time in each role.

The separation of concerns concept is somehow similar to
the previous separation of roles concept, except that it is not
necessarily linked to the classification of the user activities.
Indeed, concerns are usually separated into two kinds: func-
tional concerns and non-functional concerns2. In the case of a
component-based software, the functional concerns are related
to the functional (or business) specification of the component
itself (eg. the functional concerns of a cashier component
are related to the specification of the cashier); non functional
concerns are the remaining concerns that apply to a component
but are not specific to that component. Non functional concerns
include for example the following ones: life-cycle (start/stop
a component), introspection services (self-description of the
component), binding (coupling of components), persistence
(save/restore the state of a component into a data-base), and
so on.

In the case of modeling and simulation, as stated in sec-
tion I, the component-based approach may be used both for
specifying a model (using a formalism such as DEVS) and
for implementing it in a software simulator (using JavaBeans
for example). Unfortunately, in many simulators, roles and
concerns are not fully separated. For example, in some cases,
the code for instrumenting the models may be mixed together
with the code of the models. This kind of concern mixing
was also observed with the code needed to establish network
connections between components in a distributed environment
or simply with the code needed to establish bindings (or
couplings) between components.

IV. BENEFITS OF THE FRACTAL MODEL

A. Separation of roles and concerns

Fractal provides means of applying the separation of con-
cerns and separation of roles in two ways.

First, it provides an Architecture Description Language
(ADL) and sophisticated mechanisms for building component
architectures, such as factories and template components.
Thanks to the ADL, the concern of building the topological
description of the hierarchy of components is separated from
other concerns. Factories are special components that can
dynamically instantiate new components. Therefore, the way
components are instantiated may be implemented in a self
contained component, which is a mean of separating the

2Functional concerns may also be referred to as business concerns and
non-functional concerns referred to as technical concerns.

instantiation concern from others. As a matter of facts, the
default Fractal ADL parser is a factory component. Further-
more, the factory component that implements the Fractal ADL
parser is a hierarchical component whose content may be
partly or totally reused for building new specialized ADL
parsers. Template components are special factory components
that may be used to build a generic model of (hierarchical)
components. Such template models may then be used to
instantiate homomorphic copies of the model.

Second, Fractal offers a versatile and extensible framework
to support non-functional concerns. This framework consists
in embedding each component into a software membrane: the
content part of the component implements its functional con-
cerns, and the membrane part implements its non-functional
concerns. The membrane consists of several controllers, each
of which being responsible for a non-functional concern
(figure 1). The framework allow the construction of new
membranes by assembling new or existing controllers. The
selection of which membrane to associate with which content
may be specified using the ADL.

introspection binding life−cycle

functionnal code

content
membrane

functionnal

controllers

interface(s)

non−functionnal interface(s)

Fig. 1. Anatomy of a Fractal component. In this example, the membrane
contains three controllers that offers the introspection, binding and life-cycle
non-functional services.

B. Shared components

In a hierarchical component model, a shared component is a
component that have more than one parent in the component
hierarchy. To the author’s knowledge, very few component
models do effectively support the shared component fea-
ture: the Fractal component model does explicitly support
sharing[8] while some others, like JainSLEE[22] provide
proxying techniques which is a practical way of implementing
sharing.

Regarding DEVS, for example, the formal definition of a
Coupled System Specification given by Zeigler et al. in [3] (p.
128), forbids shared components in the general case, because
it defines that for a component d ∈ D(N), where D(N) is
the set of components referenced by a coupled structure N ,
the set of influencers Id of the component d is such that Id ⊆
D(N) ∪ {N}. In the case of shared components, the set of
influencers of d includes the influencers of d in the set CS(d)



of all the coupled structures that reference d instead of just N :
Id/shared ⊆ D(N) ∪ CS(d) where CS(d) = {n|d ∈ D(n)}.

The DEVS formalism provide a rigorous way of describing
systems, hierarchically, with strong mathematical properties,
such as closure under coupling. Unfortunately, the fact that
this rigorous modeling framework cannot support the concept
of shared components does mean that, semantically, shared
components are a modeling non-sense.

For example, let’s consider the case of a communication
network. the usual way of modeling the architecture of a
network of communicating nodes is to follow the OSI flat
layered view: a node is made of an application layer, itself
connected to session layer, and so on, until the lowest level
at which the nodes are physically connected thanks to the
network medium.

However, modeling often consists in finding the right trade-
off between an exact representation of the system and a
reasonable simulation time. In our case study, if the analyst
want to study the behavior of an application protocol over
a long period, it is certainly not reasonable to model all the
layers of the OSI protocol but only focus on the higher ones,
which may lead to the model depicted on figure 2 where the
transport network component is used to model a virtual
link that operates at the transport level between the two nodes.

transport

session

presentation

application
node

transport

session

presentation

application
node

system

transport
network

Fig. 2. Hierarchical decomposition of a two nodes network: a partial OSI
layered decomposition.

Unfortunately, despite its conceptual correctness, the hierar-
chical model depicted on figure 2 is not easily reusable. First,
notice that there is a dependency between the node composite
component and the transport network component: the
primer cannot be reused without the later. Second, and far
more annoying, is the fact that these component may not
easily be plugged in a more complex architecture. Assume for
example that we want to model a road traffic network in which
some of the vehicles, not all, are equipped with the nodes of
the previous example. Assume also that we want to reuse the
already exiting hierarchical model of the vehicle depicted on
figure 3.

Given the model of the vehicle depicted on figure 3, the
correct place where to plug the node component should be
somewhere in the electronics component of the vehicle,

electronics

command

mechanics

vehicle

road

Fig. 3. Hierarchical decomposition of a simple vehicle model.

as illustrated on figure 4.
Figure 4 also emphasizes the fact that in order to plug

the node component in the vehicle component, the later
one needs to be modified, in order to allow the node to
reach the network (grayed area). In practice, this modification
make reusing the vehicle component more difficult, or even
impossible. Indeed, if the simulation software architecture
used to implement this model requires an in-line programming
of the coupling between components, then this modification
may not be possible if the source code of the vehicle
component is not available.

command

mechanics

node

other
interconnected

elements

vehicle

electronics

road

network

Fig. 4. Hierarchical model of a communicating vehicle obtained by reusing
the node and vehicle components of figures 2 and 3. The grayed area
indicates the parts of the original vehicle model that need to be modified.

This example is also a typical illustration of the hyper-
spaghetti phenomenon introduced in section I. Indeed, after
the modification, the resultant vehicle component has a more
complex external interface. This is a perfectly right modeling
according to the Systems Theory principles, since the behavior
of the vehicle may depend on the network activity. On the
contrary, from a SE point of view, this is probably not the
case, because the exposed interface of a component should
be restricted to its functional concerns (in this case, network
interaction is a functional concern of the node but not of the
car).

C. Multi-programming language support

Unlike most other component models, Fractal is not linked
to a particular programming language. Indeed, Fractal is a
generic specification that may be implemented in many dif-
ferent languages. Hence, several implementations are already
available or under development, in different languages, such
as Java, C++, C or SmallTalk for example. Despite no ac-
tual middle-ware implementation currently exist for coupling



Fractal components developed in these various languages,
the Fractal specification mention this possibility. However,
the specification states that an implementation in a particular
language may optionally be built on top of an Interface
Definition Language, and to our knowledge, none of the
current implementation does support this optional feature.

D. Distributed execution

Several Java-based implementations of the Fractal specifi-
cation are available. The ProActive one[23] does not support
some of the Fractal features, such as shared components, but
it provides a total support for Grid Computing, including de-
ployment and live process migration. For the other Java-based
implementations that implement all the features of the Fractal
specification, a distributed mode of execution is available using
an extension called FractalRMI. However this extension does
not include the powerful deployment and migration facilities
found in ProActive.

E. Soon expected functionalities

The Fractal specification is supported by the ObjectWeb
Consortium3 and benefits from the support and contributions
of an active community. Some of the issues currently ad-
dressed in this community already look promising in the sim-
ulation context, such as adding support for checking contracts,
an abstraction that allows to specify the conditions according
to which the bindings between components may be considered
valid and accepted[24].

V. THE OSA ARCHITECTURE

The Open Simulation Architecture (OSA)[25], [26] is a
new open source software architecture intended to support the
simulationists in a wide number of the activities identified in
section II (figure 5).

Deployment

Administration

Simulation

Modeling

Instrumentation

Experimentation

Analysis

Validation & Verification

External
Tools

Simulation runs scheduling
Middleware settings

Users mamangement
Functionnal extensions, plugins 

Simulation engin configuration
Simulation engine development

Model architecture specification
Data probe definition

Scenario definition

Model component development

Data aggregation and collection

Scenario parameters setting

Plotting, visualisation, animation
Statistical analysis

Outputs comparison
Conformance testing

Eclipse
IDE

Integration

Functionnal ConcernsUser Interface Typical tasks

Functionnal extensions ...

Fig. 5. OSA functional architecture.

At the time of writing this paper, only a few elements of
this architecture have been actually implemented. However,
the software architecture itself relies on the CBSE principles,

3Web site at http://www.objectweb.org/.

which means that it is designed to allow the reuse of compo-
nents developed for other architectures or in other contexts.

These first elements of the architecture are based on the
Java programming language, and one of its derivative for As-
pect Oriented Programming (AOP)[27], the AspectJ language.
Since Fractal is only a specification, we also rely on one its
available implementations for Java named AOKell[28].

In OSA, we applied the CBSE principles by combining
two complementary technologies: the Eclipse IDE[18] and the
Fractal component model. This already allows the reuse of
existing components, such as a Fractal graphical component
editor developed within the Fractal community. We also reused
and enriched the default Fractal ADL parser with simulation
concerns.

The key elements that have been specifically developed for
the OSA architecture are a generic modeling API and a sim-
ulation engine prototype implementation. Both are combined
in a new controller plugged in the membrane of the Fractal
components (figure 6). Hence, we applied the separation of
concerns principle to the modeling API and engine imple-
mentation. Separating these two parts from each other means
that any or both may be replaced without compromising the
other. As a matter of facts, in the current implementation, the
selection of the actual engine implementation to be used for
a simulation is done using a configuration file.

Fig. 6. OSA model component.

Since the modeling API itself may be replaced, OSA could
theoretically emulate other existing discrete-event simulators.
Furthermore, given that the specification of the component
membrane may be provided on a per component basis in
the Fractal ADL, this means that OSA theoretically allows
the interoperability of heterogeneous model components (ie.
components developed for different simulators with different
proprietary API). We are currently investigating this kind of
interoperability by developing a new API to emulate the YANS
network simulator, that was recently adopted to implement
the core of NS3, the next generation of the popular network
simulator NS[29]. This way, we expect to be able to reuse
YANS existing network components as well as be ready
to reuse the future NS3 components. Given that the OSA
current implementation is Java-based and that YANS is C++-
based, this will also demonstrate the feasibility of reusing
components implemented in various programming languages,
another challenging issue of re-usability.



VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that the Fractal component
model is a convenient mean of applying the component-based
approach in discrete-event simulation. We first identified the
usual M&S activities and the main motivations and expecta-
tions of the component-based approach from both the M&S
point of view and the SE point of view. Indeed, we pointed
out that because the initial motivations were not the same, the
resulting expectations are slightly different in the two cases: in
M&S, the component-based approach was primarily intended
for describing the structural organization of the System to
simulate, while in SE the component-based approach was
primarily used to facilitate software reuse.

Then we introduced and discussed some of the key features
of the Fractal component model. Separation of concerns is still
very little used in M&S despite its increasing and now well
established audience in the SE community. On the contrary,
shared components is a feature provided by Fractal that is very
uncommon. We strongly believe that shared component could
noticeably alleviate the modeling process, by avoiding the
hyper-spaghetti phenomenon that occur when two component
deeply buried in two hierarchical components needs to interact
together. Furthermore, it makes component reuse easier. How-
ever, supporting the shared components feature raises several
issues. First this feature is complex to implement, especially
in a distributed execution context. And last, but not least, it
contradicts some of the very fundamental principles of the
Systems Theory, which in turn prevent using it with popular
formalisms such as DEVS.

Eventually, we described how the previous concepts, and
especially the separation of concerns are currently being
applied in the OSA architecture. The development of this
new architecture is still in the early ages. However, we hope
that the very modular architecture we propose, combined
with a collaborative approach of development, will favor new
contributions in the OSA architecture. Indeed, OSA is not
only an open platform, it is also designed to be a versatile
simulation environment that users should be able to adapt or
enrich according to their needs, using a similar philosophy as
the one used in Eclipse.

In the near future, we plan to extend the work presented in
this paper in two directions. First we want to further investigate
the theoretical issue raised by shared components. Indeed, we
are convinced of the usefulness of such components for mod-
eling, especially for communication networks and protocols
where crosscutting connections are potentially numerous.

Second, we want to investigate the technical issue of
providing a full-featured model component packaging and
distribution system for OSA. Ideally, this system should rely
on OSGi “bundles” and repositories (the packages used for the
Eclipse plugs-in) and have a content inspired from the SISO
BOMS specification.

VII. ACKNOWLEDGMENTS

This work is partly co-supported by the IST-FET “AEO-
LUS” project, the ANR “OSERA” grant and INRIA.

REFERENCES

[1] B. P. Zeigler, Theory of Modelling and Simulation. Wiley, 1976.
[2] D. Harel, “Statecharts: A visual formalism for complex systems,”

Science of Computer Programming, vol. 8, pp. 231–274, 1987.
[3] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and

Simulation, 2nd ed. Academic Press, 2000.
[4] B. F. Webster, Pitfalls of Object Oriented Development. M & T Books,

1995.
[5] Corba Components. Revision 3.0., Object Management Group, March

1999, OMG TC Document orbos/99-02-05.
[6] R. Sessions, COM and DCOM: Microsoft Vision for Distributed Objects.

John Wiley & Sons, 1997.
[7] R. Englander, Developing Java Beans. O’Reilly, 1997.
[8] E. Bruneton, T. Coupaye, and J. Stefani, “The fractal component model

specification,” Available from http://fractal.objectweb.org/specification/,
February 2004, draft version 2.0-3.

[9] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall, N.J., 1981.

[10] Unified Modeling Language: Superstructure, Object Management
Group, July 2005, version 2.0., available at http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

[11] Specicification and Description Language, International Telecommuni-
cations Union, August 2002, standard IUT-T Z.100.

[12] E. Yourdon, Modern Structured Analysis. Prentice-Hall, 1989.
[13] H. Praehofer, J. Sametinger, and A. Stritzinger, “Discrete event sim-

ulation using the JavaBeans component model,” in Proceedings of
the International Conference on Web-based Modelling & Simulation
(Websim’99), San Francisco, CA, January, 17-20 1999.

[14] N. Minar, R. Burkhart, C. Langton, and M. Askenazi, “The swarm
simulation system: a toolkit for building multi-agent simulations,” Santa
Fe Institute, Santa Fe, CA, Tech. Rep. Working Paper 96-06-042, 1996,
available from http://www.swarm.org/archive/overview.ps.

[15] OPNET Modeling Concepts & Manual, OPNET Technologies Inc.,
2001.

[16] G. Wainer, “CD++: a toolkit to develop DEVS models,” Software–
Practice & Experience, vol. 32, no. 13, pp. 1261–1306, November 2002.

[17] A. Varga, “Parametrized topologies for simulation programs,” in Pro-
ceedings of the Western Multi-Conference on Simulation (WMC’98),
Communication Networks & Distributed Systems (CNDS’98), San
Diego, CA., January, 11-14 1998.

[18] S. Holzner, Eclipse. O’Reilly, May 2004.
[19] R. K. Jain, The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and
Modeling. Wiley, 1991.

[20] L. Morihama, V. Pasuello, and G. Wainer, “Automatic verification of
DEVS models,” in Proceedings of the 2002 Spring Simulation Interop-
erability Workshop. Orlando, FL.: SISO, 2002.

[21] N. Oses, M. Pidd, and R. J. Brook, “Critical issues in the development
of component-based discrete simulation,” Simulation Modelling Practice
and Theory, vol. 12, pp. 495–514, 2004.

[22] S. B. Lim and D. Ferry, Jain SLEE 1.0 Specification, Sun Microsys-
tems Inc. & Open Cloud Ltd., 2002, final release, availble from
http://jcp.org/aboutJava/communityprocess/final/jsr022/index.html.

[23] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière, “Interactive
and descriptor-based deployment of object-oriented grid applications,”
in Proc. of the 11th IEEE Intl. Symp. on High Performance Distributed
Computing. Edinburgh, Scotland: IEEE Computer Society, July 2002,
pp. 93–102.

[24] D. Deveaux and P. Collet, “Specification of a contract based built-in
test framework for fractal,” in Fractal CBSE Workshop at ECOOP’06,
Nantes, France, July 2006.

[25] O. Dalle, “OSA: an Open Component-based Architecture for Discrete-
event Simulation,” in Proceedings of of the 20th European Conference
on Modeling and Simulation (ECMS2006). Bonn, Germany: ECMS &
SCS, 2006.

[26] “Open Simulation Architecture (OSA), a collaborative platform
for component-based discrete-event simulation,” Web site at
http://osa.inria.fr/.

[27] G. Kiczales, “Aspect-oriented programming,” ACM Comput. Surv.,
vol. 28, no. 4es, p. 154, 1996.

[28] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye, “Recent de-
velopments in AOKell,” Fractal Workshop @ Middleware’05, Grenoble,
France, Dec. 2005.

[29] K. Fall and K. Varadhan, “The ns maunual,” 2000, available at
http://www.isi.edu/nsnam/ns/doc-stable/index.html.


