
 1

Performance Measurement of Dynamic Structure DEVS for Large
Scale Cellular Space Models

Yi Sun, Xiaolin Hu
Department of Computer Science
Georgia State University, Atlanta, GA 30303
syish@hotmail.com, xhu@cs.gsu.edu

Abstract -- Dynamic Structure DEVS (DSDEVS) is an advanced modeling formalism
that allows DEVS models and their couplings to be dynamically changed. The modeling
power and advantages of DSDEVS have been well studied. However, the performance
aspect of DSDEVS is generally overlooked. This paper provides a comprehensive
performance measurement of DSDEVS for a large scale cellular space models. We
consider both the modeling layer and simulation layer for performance analysis, and
carry out performance measurement based on a token ring model and a fire spread model.
The results shows that DS modeling can improve simulation performance for large scale
cellular space models, due to the fact that it makes the simulation focus only on those
active models, and thus be more efficient than when the entire cellular space is loaded.
On the other hand, the DS overhead cannot be ignored and can become significant and
even dominant when large number of cells are dynamically added/deleted.

Keywords: DEVS, dynamic structure DEVS (DSDEVS), Large scale cellular space
model, Performance measurement, Forest fire spread simulation.

1. Introduction
Dynamic Structure (DS) modeling and simulation refers to the capability of a simulation
to dynamically change its model structure as the simulation proceeds. The Dynamic
Structure DEVS (DSDEVS) [1] is a specification for dynamic structure modeling based
on the DEVS formalism [2]. The capability of DS modeling makes it possible to naturally
model complex systems, such as living autonomous systems that change their
interactions, compositions and behavior patterns to adapt to their environments, or those
self-organizing, self-reconfiguring engineered systems, where the structures of the
systems adapt to changed requirements [3]. Many applications have been developed
using the concept of DS modeling, including adaptive computer architecture [4], wildfire
spread simulation [5, 6], and dynamic team formation of robots [7], to name a few. In
general, dynamic structure change can refer to dynamically changing the couplings
between existing models or dynamically adding/removing models. This paper mainly
concerns the later where models are dynamically added and removed.

The modeling power and advantages of DSDEVS has been well studied especially
when it is applied to cellular space models. However, existing work generally overlooked
the performance aspect of DSDEVS for large scale cellular space models. Intuitively, one
would think dynamically adding/removing (loading/unloading) models during the
runtime of a simulation introduces runtime overhead, thus will result in slower simulation
speed as compared to a nonDS implementation. On the other hand, by using dynamic
structure modeling, a simulation does not need to create all the models in the beginning.
Instead, it maintains only a subset of the models by dynamically adding the needed

 2

models and removing unneeded models as a simulation proceeds. This allows a
simulation to focus its computation power only on those “active” models and results in
less memory requirement as well. Here an “active” model means the model that has
scheduled next event, i.e., whose next event time is not infinity. This potentially speeds
up the simulation performance for simulations with a large number, e.g., up to millions,
of models but only a small portion of them are active. The above observations motivate
us to measure the performance gains and loss of dynamic structure modeling and
simulation.

The idea of focusing on the “active” models for improving simulation performance
can be fulfilled in different ways. Dynamic structure modeling achieves this by
manipulating the models, i.e., dynamically loading/unloading models so only the active
models are maintained in a simulation. Alternatively, advanced simulation algorithms and
data structures can be developed to achieve efficient computation focusing on the active
models only. For example, a discrete event simulation engine can utilize a heap data
structure to keep track of the current imminent models (the models with smallest next
event time, also referred to as imminents in the remainder of the paper), and then asks
only those models to go through the simulation cycles. In a discrete event simulation, one
can view these two different approaches belong to two different layers of a simulation
system: a modeling layer and a simulation layer. Dynamic structure modeling lies in the
modeling layer by manipulating the simulation model directly. The heap based simulation
engine lies in the simulation layer. It drives the execution of a model but does not modify
the model’s structure and behavior. As will be discussed later, the similarities and
differences between these two different approaches have important impacts on simulation
performance. Each of them has its own gain and loss from the simulation performance
point of view. It is the intension of this paper to take account of both the modeling layer
and simulation layer in carrying out the performance measurement of dynamic structure
DEVS.

Cellular space model represents an important modeling paradigm and is commonly
used to model complex dynamical systems with spatial-temporal behaviors (see
discussions in e.g., [8, 9]). It supports simulations of various systems, such as urban
environment simulation, disease spread simulation, and ecological system simulation. An
important feature of large scale cellular space models is that even though a large number
of cells exist, only a relatively small portion of them may participate in the simulation at
any time. This makes it attractive to apply dynamic structure modeling, i.e., dynamically
adding the cells if needed and remove them if not needed, for large scale cellular space
simulations. To carry out performance measurement, this paper uses two examples: the
first one is a one-dimensional cellular space model of token ring simulation; the second
one is a two-dimensional cellular space model of forest fire spread simulation. Both
examples are developed in the DEVSJAVA [11] simulation environment. We note that
even though the performance results presented in this paper are based on a specific
simulation environment, the performance analysis and conclusions drawn from these
results are generic and apply to DEVS-based dynamic structure models in general.

The remainder of the paper is organized as follows. In section 2, DSDEVS
background and related works are introduced. Section 3 describes the modeling layer and
the simulation layer that lead to four different simulation approaches considered in this
paper: nonDS-std, nonDS-heap, DS-std and DS-heap. Section 4 gives a detailed

 3

performance analysis of the four approaches. Section 5 presents performance
measurement results based on the token ring model. Section 6 presents performance
measurement results based on five measurement metrics for the forest fire spread model.
Finally, section 7 discusses and section 8 concludes this work.

2. Related Work
The DEVS (Discrete Event System Specification) [2] formalism is derived from generic
dynamic systems theory and has been applied to both continuous and discrete
phenomena. It provides a formal modeling and simulation (M&S) framework with well-
defined concepts of coupling of components, and hierarchical modular model
construction. The classic DEVS model has been extended to support dynamic structure
modeling, where DEVS models and their couplings can be dynamically added/removed
as a simulation proceeds. Barros presented a formalism for dynamic structure DEVS
whose basic models are classic DEVS models, but the structure of a coupled model can
be changed by a network executive model [1]. Uhrmacher proposed a formalism based on
DEVS that emphasizes the reflective nature of variable structure models [3]. Dynamic
structure modeling has been applied to different applications, such as modeling a
complex adaptive computer architecture [4], simulating forest fire spread [5, 6], dynamic
team formation of robots [7], and supporting simulation-based design of a DoDAF
architecture [12]. An implementation of dynamic structure based on the DEVSJAVA
environment was developed in [7] and supports the work in this paper. None of the above
works investigated the performance aspect of dynamic structure modeling and
simulation. Some preliminary performance results of dynamic structure DEVS were
presented in [13].

Performance is an important consideration when simulating large scale cellular space
models. The high computational cost of large scale cellular space models has motivated
research from both the modeling aspect and simulation aspect for improving simulation
performance. On the modeling aspect, the work [6] developed a method to predict
whether a cell will possibly change state or will be left unchanged, thus helping a
simulation to keep track of the actives cells as a simulation proceeds. In another work
[20], the author proposed a non-modular formalism by combining multiple cells into one
cell for fast simulation. This formalism uses DEVS’ closure under coupling property to
ensure equivalency of the models to their modular counterparts. The speedup was gained
by efficient scanning of active cells and eliminating inter-cell messages as multiple cells
are combined into a single atomic model. Adaptive mesh refinement (AMR) [16] can be
considered as another example that dynamically adjust the grid resolution of a
mathematic model to achieve computation saving. It improves the performance by
assigning high resolutions for resolving developing features, while leaving less
interesting parts of the domain at lower resolutions. On the simulation aspect, many
different event scheduling algorithms (see, e.g., [33-40]) have been developed in order
for a discrete event simulation to focus on the “active” models in an efficient manner.
The efficient processing of event is especially needed for large scale simulations that
involve large number of events. Lazy queue [36] is a multi-list data structure that divides
the events into several parts and keep only a small portion of the near future events
sorted. The far future events are unsorted. As time advances, part of the far future is
sorted and transferred into the near future. Splay tree [41] uses a balancing technique to

 4

move frequently used nodes upwards, thus achieve more efficient search for self-
balancing data but it can become worse for a uniform distributed data. In [43] a calendar
queue was introduced to hold references to the head and tail of event list. It is suitable for
approximately distributed calendar data and the performance is worse for unbalanced
data. Another priority queue called twol-amalgamated priority queue [49] uses three
efficient Henriksen’s queue, skew heap, and splay tree, to achieve efficient operations.
The large number of events can also be minimized using techniques that manipulate the
statistical properties of the model to reduce the size of events [50].

Parallel discrete event simulation (PDES) [45] is another strategy for performance
improvement that reduces execution time by using multiple processors. P-DEVS [46] is a
parallel discrete event simulation approach based on the DEVS formalism. It provides
means of handling simultaneous scheduled events, while keeping all the major properties
of standard DEVS. Since parallel DEVS eliminates serialization constraints, it enables
improved execution of models in parallel and distributed environments. The research [47]
developed techniques to reduce the overhead of distributed DEVS and get significant
improvement in performance. A risk-free optimistic simulation algorithm was presented
in [25] to simulate models using shared memory multi-processor machines. In [26], the
author investigated hierarchical model partition algorithms that could be used in a
distributed/parallel simulation to achieve load balance when simulating complex models.

Performance evaluation and measurement play important roles in system
development. It concerns the different aspects of a system performance and provides
quantitative and/or qualitative results. According to [51], there are three basic techniques
through which performance evaluation can be performed: 1) Analytical modeling:
consists in using abstract model based on mathematical notions to describe certain
aspects of the system; 2) Simulation: consists in implementing a model that reproduces
the system behavior in software; 3) Measurement: consists in fitting the system with
specific instruments that allow picking up the relevant values in order to measure the
system’s performance. The development of performance measurement metrics is system
dependent and requires understanding the system and its usage well [52]. Furthermore,
the measurement results are typically platform and execution environment dependent. A
performance measurement methodology in the field of computer systems engineering
was presented in [53]. For DEVS-based simulations, the work [48] developed DEVStone
which is a synthetic benchmark devoted to automate the evaluation of DEVS-based
simulations. DEVStone facilitates performance analysis for successive versions (e.g.,
upgrades or fixes) of the same simulation engine, and provides a common metric to
compare different M&S environments. In this paper, we focus on performance
measurement of dynamic structure DEVS for large scale cellular space models. Both
complexity analysis and experiment measurement results are carried out.

3. Dynamic Structure (DS) Model, nonDS Model and their Simulators
As indicated in section 1, the DEVS modeling and simulation framework treats a model
and its simulator (the simulation engine) as two distinct components: a model captures
the structure/behavior of a system, and a simulator is the algorithm that executes the
model. Within this framework, the same model can be simulated by different simulators;
similarly, the same simulator can simulate different models [2]. Therefore it is necessary
to consider both the model and its simulator when carrying out the performance

 5

measurement. In this work, in order to show the performance gains and loss of dynamic
structure modeling, for the same cellular space model we develop a nonDS
implementation and a DS implementation. They are referred to as the nonDS model and
the DS model in the rest of this paper. Note that the nonDS and DS models share the
same model behavior. They differ only in when/how they add or remove cells. To
simulate these models, we employ the standard DEVS simulation engine (referred to as
standard coordinator) and a binary heap-based simulation engine (referred to as the
heap-based coordinator). Figure 1 shows these two models and two simulators in a
layered structure. The nonDS and DS models belong to the modeling layer as they
describe the implementations of the cellular space model. The standard and heap-based
coordinators belong to the simulation layer as they are in charge of how to execute the
models. As mentioned before, the heap-based coordinator is chosen because it
implements the idea of focusing on the “active” models. This allows us to compare with
the dynamic structure modeling, which also has the effect of focusing on the “active”
models when simulation performance is concerned. We note that many advanced heap-
based simulation algorithms have been developed over the years. However this paper
chooses a basic binary heap-based simulation engine because it is relatively easy to
analyze and straightforward for comparing with the dynamic structure modeling.

 DEVS model
(nonDS model, DS model)

DEVS simulator
(standard coordinator, heapbased coordinator)

modeling layer

simulation layer

Figure 1. The modeling layer and simulation layer

From Figure 1 one can see there exist four combinations of simulation approaches:
simulate a nonDS model using the standard coordinator (referred to as nonDS-std later);
simulate a DS model using the standard coordinator (referred to as DS-std later); simulate
a nonDS model using the heap-based coordinator (referred to as nonDS-heap later); and
simulate a DS model using the heap-based coordinator (referred to as DS-heap later).
This paper analyzes the performance of all these four approaches but pays more attention
to the dynamic structure model when carrying out performance measurement. Next we
describe the two models and the two simulators respectively and discuss their
performance issues for large scale cellular space models.

3.1 NonDS Model and DS Model
The nonDS and DS models differ in when/how they add or remove cells. Implementation
of the nonDS model is straightforward: all cells are added into the cell space and coupled
to their neighbor cells when the cell space is constructed. These cells and their couplings
do not change throughout the simulation. For example, if a cell space has 1,000,000 cells,
all those cells are created and loaded before a simulation starts. This is shown by the
following pseudo code.

// happen in the beginning of the simulation
for (all cells) {
 create cell mi;

 6

 addModel (mi);
 addCouplings (mi, mi.outport, mj, mj.inport);
}

The DS implementation exploits the fact that cells not participating in the simulation
need not to be loaded, thus it starts with only the “active” cells. As the simulation
proceeds, other cells are dynamically created and added into the cell space when needed.
Meanwhile, when a cell is not needed, that is, after transitioning from active to an
inactive state, it is removed from the cell space. As the result, the dynamic structure
implementation keeps only the models that are active in the system. To implement the
dynamic structure features described above, an atomic model (corresponding to the
network executive model in [1]) is needed to manage the dynamic structure changing.
This model is responsible for adding and removing the models when needed, e.g., when
receiving request inputs from some cells. This is shown by the following pseudo code.

// happen in the middle of the simulation
if (need to add cell) {
 create the cell mi;
 addModel(mi);
 addCoupling(mi, mi.outport, mj, mj.inport);
}
if (need to remove cell)

 removeModel(mi);

As can be seen in the nonDS model all cells and their couplings are created and added
in the beginning before the simulation starts. This results in longer initialization time (the
time it takes before a simulation can starts) than the DS model. In the DS model cells are
gradually created and added at different steps of the simulation. Meanwhile, the DS
model allows the inactive cells to be dynamically removed as the simulation proceeds. It
is important to note that for a same cell that is added in the nonDS and DS models, the
computation cost is different. Specifically, for the DS model, dynamically adding the cell
in the middle of the simulation through a network executive model introduces some
overhead. Dynamically removing a cell introduces overhead too because the nonDS
model does not invoke the remove operation at all. On the other hand, the DS model adds
the cells only needed, thus is likely to create far less cells as compared to the nonDS
model because many simulations do not end up with all cells being activated. Meanwhile,
by dynamically adding/removing cells, the DS model maintains only a subset of cells in
the simulation. This results in some performance advantage when compared to the nonDS
model because it makes it more efficient to find the global smallest tN due to the
relatively small collection that needs to be searched.

3.2 Standard Coordinator and Heap-Based Coordinator
The simulation protocol of the DEVS standard coordinator is described in [2]. In the
standard coordinator, a simulation moves forward cyclically based on the time of next
event, denoted by tN, which is the earliest next event time among all its subcomponents.
The pseudo code below describes the major steps in one simulation cycle. Specifically, in
every cycle the coordinator first requests each component simulator send its next event
time and then finds the minimum of the returned values to obtain the global time of next
event: tN. After that it asks each simulator to compute the output. The simulators (called

 7

imminents) whose next event times equal to tN invoke the models’ output functions to
obtain the outputs. Other simulators simply return an empty message. Then the
coordinator requests each simulator to send its output to its destination simulators based
on models’ coupling information. Finally it asks each simulator to apply its DeltFunc
method that invokes the model’s corresponding state transition function based on if
external messages are received and/or if internal event time elapses. This ends one
simulation cycle and the next cycle repeats.

simulators.AskAll(“nextTN”)
tN = compareAndFindSmallestTN();
simulators.tellAll("computeOutput“,tN)
simulators.tellAll("sendOutput")
simulators.tellAll("ApplyDelt“,tN)

This standard coordinator follows closely the semantic of DEVS models. Thus it is
easy to understand and implement. It also serves as a benchmark to test the correctness of
other simulation engines. However, the standard coordinator is not efficient when
simulating models that have a large number of components. This is because in every
simulation cycle, all the simulators, no matter if they are imminent or not, have to go
through the simulation steps described above. For a cellular space model that has only a
few active models, there exists a lot of unnecessary computation.

The heap-based coordinator overcomes the above problem by using a heap to keep
track of the smallest tNs of its component simulators. During a simulation, each simulator
updates its new tN in the heap whenever its tN changes. The global smallest tN and the
imminents can be obtained from the root of the heap. Only those imminents are asked to
go through the simulation cycle. The simulation protocol of this heap-based coordinator
in one simulation cycle is given below. Specifically, the heap-based coordinator first gets
the smallest tN and the imminents from the heap. With these imminents in hand, the
coordinator then asks (only) those imminents to compute output and send output. The
sendOut message will trigger imminents to put their output messages to their destination
simulators, which are called influences. The influences, like the imminents, need to
execute their state transition functions. Thus before imminents.tellAll("ApplyDelt“,tN),
the coordinator adds those influences into imminents by executing imminents =
imminents.addAll(influencees). At the end of the cycle, the coordinator asks all imminents
to update their new tNs in the heap to prepare for the next simulation cycle.

tN = Heap.getMin()
imminents = Heap.getImms()
imminents.tellAll("computeOuput“,tN)
imminents.tellAll("sendOutput")
imminents = imminents.addAll(influencees)
imminents.tellAll("ApplyDelt“,tN)
imminents.tellAll(“updateHeap”)

It is worthy to point out that the computation complexity of finding the smallest tN is
different between the standard coordinator and the heap-based coordinator. The standard
coordinator finds the smallest tN by comparing tNs of all component simulators, which
takes O(N) time, where N is the total number of component simulators. The heap based
coordinator uses a heap structure to find the smallest tN which takes O(log(N)) time. By
finding tN in an efficient way and focusing its computation only on the imminent models,

 8

the heap-based coordinator greatly improves the simulation performance as compared
with the standard coordinator. Nevertheless, the heap-based coordinator still depends on
the model on memory requirement and initialization time (the time needed for a
simulation to start). When simulating a nonDS model with a large scale cells, the heap-
based coordinator still takes long initialization time, and even becomes unable to run the
simulation due to memory constrains.

The above discussion shows that the DS model and the heap-based coordinator each
has its own gains and limitations from the performance point of view. When these two
work together, they compensate to each other: the heap-based coordinator can take
advantage of the DS model’s low memory requirement and quick initialization time; the
DS model can take advantage of the heap-based coordinator’s efficient simulation
protocol. This combination is especially attractive for simulating large scale cellular
space models that have relatively small number of active models. For this type of models,
the DS model reduces the number of loaded models in a simulation and the heap-based
coordinator makes it efficient to go through the simulation cycle.

4. Performance Analysis
Before carrying out performance measurement, a detailed performance analysis is
presented in this section. Without losing generality, the performance analysis is based on
the following simulation protocol that is implemented by both the standard coordinator
and the heap-based coordinator for simulating DEVS models.

Models.Construction();
 While (stop condition is not met){

simulators.AskAll(“nextTN”)
tN = compareAndFindTN();
simulators.tellAll("computeOutput“,tN)
simulators.tellAll("sendOutput")
simulators.tellAll("ApplyDelt“,tN)

 }

From the above simulation protocol, the total execution time can be calculated as the
sum of model construction time and the time for the simulation cycles. The model
construction time depends on how many models need to be constructed and initialized.
The simulation cycle time depends on the total number of simulation cycles and the
execution time of each cycle (referred to as the cycle execution time in this paper). Next
we analyze and compare the execution time for the four approaches described in the
previous section: nonDS-std (simulate the nonDS model using the standard coordinator);
DS-std (simulate the DS model using the standard coordinator); nonDS-heap (simulate
the nonDS model using the heap-based coordinator); and DS-heap (simulate the DS
model using the heap-based coordinator).

4.1 Time Complexity Analysis
In general, the total execution time of a simulation is represented using formula:

T = Tconstruct + ∑
=

stepm

i
iT

_

1

 + Toverhead_add + Toverhead_delete (1)

where T is the total execution time. Tconstruct is the model construction time; Ti is the cycle
execution time at cycle i (excluding the runtime overheads of dynamic structure if they

 9

exist); m_step is the number of simulation cycles. m_step is dependent on the number of
external, internal or confluent transitions, which are the measurement of message
exchanges among models; Toverhead_add refers to the runtime overhead associated with
dynamically adding models; Toverhead_delete is the overhead time spent for removing
models. These two overheads exist only for DS models. We separate them out in order to
make it easier to carry out the analysis. The four elements shown in Formula (1) have
different values for nonDS-std, DS-std, nonDS-heap, and DS-heap as described below.

For nonDS-std, all models are loaded before a simulation begins. Thus Tconstruct
include all models’ construction time. In each simulation cycle, all simulators go through
the simulation steps in the cycle (see section 3.2). However, the execution time for
imminents is different from that of non-imminents. This is because an imminent model
needs to execute its state transition function and/or output function, thus needs longer
execution time than a non-imminent model. For nonDS-std, the total execution time
(denoted as TnonDS-std) can be calculated from formula (1) using the following equations:

Tconstruct = N * tconstruct (2)

 ∑
=

stepm

i
it

_

1

 = ∑ ∑ ∑
=

−

++
stepm

i

n

j
tNsmallest

nN

j

i i

ttijtij
_

1
_)'((3)

Toverhead_add = 0 (4)
Toverhead_delete = 0 (5)

where N is the total number of cellular models, tconstruct is the construction and
initialization time for one model. In formula (3), ni is the number of imminents in cycle i,
tij is the cycle execution time for imminent model j, tij′ is the cycle execution time for
non-imminent model j′. As mentioned before, tij′ < tij. For example, in the forest fire
simulation that will be presented later tij′ is about 30% of tij. The tsmallest_tN is the time to
find the smallest tN in every simulation cycle (referred as find-tN time). For the nonDS
model we assume this time is the same for each cycle. We explicitly separate tsmallest_tN
out in order to compare with the other three approaches. Both Toverhead_add and Toverhead_delete
are 0 in nonDS model. Formula (2) – (5) shows that the execution time of nonDS-std is
heavily influenced by the total number of models N and the number of imminents ∑ in .

For DS-std, the simulation starts with a small set of active models and then adds new
activated models and removes inactive models as the simulation proceeds. Note that the
new added models, even created at different simulation steps, need to go through the
same construction procedure. Thus in the following formulas, the construction time of all
the added models is calculated using Tconstruct. The total execution time (denoted as TDS-std)
for DS-std can be calculated using the following formulas:

 Tconstruct = tconstruct * ncreated (6)

 ∑
=

stepm

i
it

_

1

 =)''(_

_

1

__

tNsmallest

nnn

j

stepm

i

n

j

ttijtij
iideletedicreatedi

++ ∑∑ ∑
−−

=

 (7)

Toverhead_add = tadding * ncreated (8)
 Toverhead_delete = tdeleting * ndeleted (9)

where ncreated and ndeleted are the total number of added and deleted models; ncreated_i and
ndeleted_i are the total number of created and deleted models up to simulation cycle i; tadding

 10

and tdeleting are the overhead time for adding and deleting a model. All other parameters
have the same meanings as before. In formula (7), (ncreated_i - ndeleted_i) represents the
number of exiting models in simulation cycle i. In the following we use nactive_i to denote
it. Note that since models are dynamically added and removed, nactive_i at different
simulation cycles is different and is typically much smaller than N. Because of this, the
find-tN time tsmallest_tN' in DS-std is smaller than that in nonDS-std. For a particular cycle i,
the number of imminents ni in DS-std is the same as that in nonDS-std. One can see that
for DS-std the execution time is influenced by the total number of created models ncreated,
the number of active models in every simulation cycle nactive_i, and the dynamic structure
overheads. Since ncreated is smaller than N, the overall construction time in DS is smaller
than that in nonDS.

For nonDS-heap, the total execution time (denoted as TnonDS-heap) can be calculated
using the following formulas:

Tconstruct = N * tconstruct (10)

 ∑
=

stepm

i
it

_

1

 = ∑ ∑
=

+
stepm

i

n

j
heaptNsmallest

i

ttij
_

1
__)((11)

Toverhead_add = 0 (12)
Toverhead_delete = 0 (13)

As can be seen, Tconstruct is the same as in nonDS-std. Formula (11) shows that the
cycle execution time in nonDS-heap is smaller than that in nonDS-std. This is mainly due
to the following two reasons. First, in nonDS-heap, only the imminents go through the
simulation cycles. Thus, formula (11) does not have tij'. Second, the heap-based
coordinator finds the smallest tN in a more efficient way than the standard coordinator.
For large scale cellular space models (N is large), tsmallest_tN_heap can be much smaller than
tsmallest_tN in nonDS-std. Toverhead_add and Toverhead_delete are 0 due to the nonDS model.

Finally, for the approach of DS-heap, the total execution time (denoted as TDS-heap)
can be calculated using the following formulas:

Tconstruct = tconstruct * ncreated (14)

 ∑
=

stepm

i
it

_

1

 =)'(__

_

1
heaptNsmallest

stepm

i

n

j

ttij
i

+∑ ∑
=

 (15)

Toverhead_add = tadding * ncreated (16)
 Toverhead_delete = tdeleting * ndeleted (17)

In this approach, the Tconstruct, Toverhead_add, and Toverhead_delete are the same as in DS-std.
However, because of the heap-based coordinator, the same two reasons mentioned above
apply here. As a result, the cycle execution time of DS-heap does not have tij', and also
tsmallest_tN_heap' is smaller than the tsmallest_tN' in DS-std. When compared to nonDS-heap, one
can see that the construction time is different. In nonDS-heap, all models are constructed
and initialized. But in DS-heap, only those created models are constructed and initialized.
Furthermore, the find-tN time in DS-heap is smaller than that in nonDS-heap. This is
because the number of active models nactive_i in every simulation cycle is smaller than N,
thus resulting in a smaller heap size. On the negative side, DS-heap introduces overheads
Toverhead_add and Toverhead_delete, which do not exist in nonDS-heap.

 11

4.2 Performance Comparison of Different Approaches
Based on the above formulas, further analysis is carried out to compare the performance
gains and loss of these approaches. From formulas (2) – (9) we calculate the execution
time difference between nonDS-std and DS-std:

TnonDS-std - TDS-std = tconstruct * (N - ncreated) - tadding * ncreated - tdeleting * ndeleted +

∑ ∑
=

−

−+
stepm

i

nN

j
tNsmallesttNsmallest

iactive

tttij
_

1
__

_

)''((18)

Formula (18) shows that the performance difference between nonDS-std and DS-std
comes from three sources: 1) Different from model construction time. Since ncreated < N,
nonDS-std takes longer construction time. 2) Difference from dynamic structure
overhead. This acts against the DS-std and depends on the total number of dynamically
added and deleted models. 3) Difference from cycle execution time. This is due to the
different number of active models in each simulation cycle: N for nonDS-std, and nactive_i
for DS-std. This makes the nonDS-std run slower not only because it has more non-
imminent models to take care of (the tij' part in formula (18)), but also it takes longer
find-tN time in each cycle. For large scale cellular space model that have small number of
active models (nactive_i << N), in the long run, the cycle execution time plays major roles
in the performance difference between nonDS-std and DS-std. However we note that the
dynamic structure overhead cannot be ignored and can become significant when the
number of added and deleted models are large.

A similar comparison can be done between nonDS-heap and DS-heap. Their
difference is given below.

TnonDS-heap - TDS-heap = tconstruct * (N - ncreated) - tadding * ncreated - tdeleting * ndeleted +

∑
=

−
stepm

i
tNsmallesttNsmallest tt

_

1
__)'((19)

Similarly, the difference comes from three sources that are model construction time:
tconstruct * (N - ncreated), DS overhead: tadding * ncreated - tdeleting * ndeleted, and cycle execution
time. What is different is that here the cycle execution time difference is mainly the find-
tN time difference: tsmallest_tN – tsmallest_tN’, which depends on the heap size of the two
approaches. When the heap only add those node with non-infinity next event time, the
heap size of nonDS and DS becomes the same and thus the difference of find-tN time
becomes zero. So the major difference between nonDS-heap and DS-heap is the surplus
construction time of the nonDS model and the dynamic structure overhead time of the DS
model. When the surplus construction time is more than the DS overhead, DS-heap will
have better performance than nonDS-heap, otherwise the opposite.

The next comparison shows the performance impact of the heap-based simulation
engine for DS models. To do this, the DS-std and DS-heap are compared. From formulas
(6)-(9) and formulas (14)-(17), one can calculate the time difference between DS-std and
DS-heap:

TDS-std - TDS-heap = ∑ ∑
=

−

−+
stepm

i
heaptNsmallesttNsmallest

nn

j

tttij
iiactive_

1
___)'''(

_

 (20)

Formula (20) shows that the execution time difference between DS-std and DS-heap
comes from the cycle execution time only. The performance gain of the heap-based
simulation engine is clear, and is due to two reasons mentioned before: first, the heap-
based coordinator asks only the imminents to go through the simulation cycles; second,

 12

the heap-based coordinator is faster than the standard coordinator in find-tN time. A
similar comparison can be done between nonDS-std and nonDS-heap.

To conclude, when the same simulation engine is considered, the DS model have
performance gains by having less construction and initialization time, and faster cycle
execution time. On the negative side, it has runtime overhead that could become
significant when the number of added and deleted models becomes large. When the same
model is considered, the heap-based coordinator is more efficient than the standard
coordinator because of its more efficient simulation protocol.

4.3 Runtime Memory
While the above analysis focuses on the execution time, it is useful to look at the runtime
memory too to compare the DS model and nonDS model. In general, the memory
required to run a simulation depends on the number of loaded models in the simulation.
For nonDS, this number is N because all models are loaded. For DS, this number is
nexsiting_i_max, which is the maximum of nexsiting_i of all simulation cycles. IN almost all
situations, nexsiting_i_max is less than N because inactive models are unloaded or
dynamically removed. Thus for large scale cellular space models, the DS approaches
(DS-std or DS-heap) need less memory than the nonDS approaches (nonDS-std or
nonDS-heap). In fact, as the cellular space size increases, the DS approaches become the
only feasible approaches for simulations on single computers because of the memory
requirement.

5. Performance Measurement on Token Ring Model
We start the performance measurement based on a simple one-dimensional cellular space
model of token ring simulation. The measurement compares the simulation performance
of DS model and nonDS model. Both simulations use the heap-based coordinator. The
experiments (also the experiments for the forest fire spread example in the next section)
were conducted on a Dell PC with Intel Celeron (M) 1.6GHZ processor, 1.0G memory,
and Windows XP OS running DEVSJAVA version 3.0.

The token ring model simulates the process that a token is passed from a cell to a
neighbor cell in a singly linked cell list. Only the cell that holds the token becomes active.
All other cells are in inactive state. The nonDS implementation creates all cells in the
beginning and passes the token from the head cell to the second cell, then from the
second cell to the third cell. This process continues until the token reaches the tail cell or
the simulation stops. In contrast, the DS implementation creates only the head cell and
the second cell initially. When the token is passed to the second cell, the third cell is
dynamically added and the first cell dynamically removed. Again, this continues until the
tail cell is reached or the simulation stops. We define a complete travel of the token as the
token is transferred from the head cell to the tail cell, a partial travel as the token only
reaches some cell in the middle.

In both the nonDS and DS implementation, since at any time there is only one active
cell (this means there is only one node in the heap), the find-tN time is negligible and is
ignored in the following analysis. Based on the complexity analysis in section 4, from
formulas (10) – (13) we have TnonDS-heap = tconstruct * N + tDEVS * ncreated; from formulas
(14) – (17) we have TDS-heap = tconstruct * ncreated + tDEVS * ncreated + (ncreated + ndeleted) *
toverhead, where tDEVS represents the DEVS function execution time for each model, and

 13

toverhead represent the dynamic structure overhead for adding/removing a cell. Note that in
this example for simplicity the overheads of dynamically adding cell and removing cell
are treated as the same. From the above we can see that for a simulation of a complete
travel of the token, ncreated = ndeleted = N, so the DS implementation has worse performance
than nonDS because it has extra overheads for creating and deleting models while the
nonDS has not. However, for a simulation of a partial travel, the DS implementation can
have better performance than the nonDS because it does not need to create all the cells.

We develop two measurement metrics to measure the performance results. The first
metric measures the execution time of nonDS and DS for simulating a complete travel
with different cellular space sizes. The results are depicted in Figure 2(a). Figure 2(a)
shows that the execution time increases linearly with the cell space size for both the
nonDS and DS model, and the DS model consumes more time than the nonDS model for
the same cell space size. This is consistent to the analysis before. The second metric
measures the execution time of nonDS and DS for simulating different partial travels for
the cell space size of 20,000. Specifically, we simulate partial travels where the token is
transferred from the head cell to the 1000th, 5000th, 10000th, and 20000th cell respectively.
Figure 2(b) shows the results, where TDS (experiment) denotes the execution time of the
DS model and TnonDS denotes the execution time of the nonDS model. As can be seen,
when simulating partial travels that end early, the DS model gives better performance
than the nonDS model. After the partial travel increases its ending position up to a certain
point, the nonDS model results in better performance. The intersection point where the
performance of the nonDS model bypasses that of the DS model is marked in Figure 2(b).
We define this as the “threshold” point for this application, which is a dividing point to
measure if the performance of the DS model is superior to the nonDS model or not.
When simulating partial travels whose ending positions are smaller than the threshold
point, the DS model gives better execution time. Otherwise, the nonDS model has better
execution time.

(a) (b)

Figure 2. (a) Execution Time of Token Ring Model for Different Model Sizes
(b) Execution Time of Token Ring at Different Number of Models

To further analyze the amount of dynamic structure overhead for this application, we

calculate toverhead from the measurement results. To do this, we first calculate tconstruct and

Execution Time

0
5

10
15
20
25
30
35
40
45
50

0 10000 20000 30000 40000 50000

Models Size

Ti
m

e
(s

)

TnonDS

TDS

Execution Time

0

5

10

15

20

25

0 5000 10000 15000 20000 25000

Number of Models

Ti
m

e(
s)

TDS (computed)

TDS (experiment)

TnonDS(experiment with 20000 models)

threshold

 14

tDEVS based on the measurement result of the nonDS simulation of a complete travel with
20000 cells. Specifically, tconstruct is calculated using the measured construction time of
the simulation: tconstruct = Tconstrut_nonDS / N; then tDEVS is calculated based on the formula
TnonDS-heap = tconstruct * N + tDEVS * ncreated, where ncreated =N. Finally, toverhead is calculated
using the measurement results of the DS simulation of the same model according to TDS-

heap = tconstruct * ncreated + tDEVS * ncreated + (ncreated + ndeleted) * toverhead, where ncreated = ndeleted
= N since this is a complete travel. The calculation shows that tconstruct, tdevs and toverhead are
0.205ms, 0.591ms, and 0.409ms respectively. Using these values, we also compute the
“analytic” execution time TDS (computed) for the simulations of partial travels shown in
Figure 2(b). As can be seen, the computed execution time for these simulations matches
very well with the measurement results.

This example shows that the execution time of DS and nonDS follows the time
complexity analysis presented in section 4. Due to the simplicity of this token ring model
that has only one active cell in the simulation all the time, we were able to calculate the
amount of dynamic structure overhead for adding/deleting one cell. Computation results
based on this dynamic structure overhead for partial travel simulations matches well with
the measured results. The results show that the DS overhead cannot be ignored and will
play a significant role as the number added/deleted cells increases. Next we carry out
performance measurement using a more complex model: the forest fire spread model.

6. Performance Measurement on Forest Fire Spread Model
The forest fire spread model is a two-dimensional cell-space model composed of
individual forest cells coupled together according to their relative geometric locations.
Each cell represents a sub-area in the forest and is implemented as a DEVS atomic
model. A cell is coupled to its eight neighbors corresponding to the N, NE, E, SE, S, SW,
W, and NW directions respectively. Accordingly, for each cell, eight fire spreading
directions are defined. Fire spreading is modeled as a propagation process when burning
cells ignite their unburned neighboring cells. Each cell can be in one of the following
states: unburn, burning, and burned. When a cell is ignited, the maximum fire spread
speed and direction of a cell is calculated using Rothermel’s semi-empirical model [32]
that takes into account factors such as fuel model, slope, and wind speed and direction.
This maximum rate of spread is then decomposed into eight spreading directions
according to an ellipse shape. More descriptions of this model can be found in [10].

Compared to the token ring model in the previous section, the forest fire spread
model has complex spatial-temporal behaviors and thus are more difficult to analyze the
performance results. In order to carry out comprehensive performance measurement, we
developed five metrics that cover both the runtime memory and execution time of the
simulations as listed below.

• Memory usage
• Initialization time for different cellular space sizes
• Execution time for different cellular space sizes
• Execution time of different simulation stages
• Execution time for different model behaviors

The first metric compares the memory usage of nonDS and DS models. The second

one compares the initial construction time of different cellular space sizes. Here the

 15

initialization time includes the time to construct the model and to set up the simulators
before going through any simulation cycles. The third metric compares the total
execution time (including the initial construction time) under various cellular space sizes.
The fourth metric shows the execution time at different stages of simulations using DS-
std and DS-heap. This allows us to see how the dynamically added/deleted cells in
different stages of a simulation affect the simulation execution time in those stages. The
fifth metric measures the execution time with different model behaviors. This
measurement aims to show the significance of the dynamic structure overhead for models
whose behavior resulting in large number of added/deleted cells. It provides guidelines
for selecting DS or nonDS models based on the model behavior.

6.1 Memory Usage
Memory usage is an important aspect to measure the simulation performance. Our
previous analysis shows that the DS approach is superior to nonDS approach for memory
usage. Figure 3 presents the comparison of memory usage between nonDS-heap and DS-
heap. We note that for the same type of model, the difference of using a standard
coordinator or using a heap-based coordinator is insignificant. Figure 3(a) shows the
memory usage at different simulation stages when simulating a 200*200 cellular space
model up to next event time tN=20000 second. As can be seen, in nonDS-heap the
number of loaded cells always equals to the total cellular space size, so the memory usage
stays on the top and does not change during the simulation. In DS-heap, the number of
loaded cells (listed in Table 1) increases gradually as the simulation proceeds, so the
memory usage increases accordingly. However, overall the DS-heap uses much less
memory than the nonDS-heap does. This is because in the forest fire spread simulation,
the number of active cells (i.e., the cells that belong to the fire front) is only a small
portion of the total number of cells. Figure 3(b) shows the memory usage for different
cell space sizes at the simulation time tN=20000. It shows that the memory usage for
nonDS-heap “linearly” increases as the cell space size increases. But the memory usage
for DS-heap does not change much because it depends on the number of loaded cells
instead of the total number of cells in the cell space.

To summarize, the memory usage is closely related to the number of loaded cells in
the simulation. DS model can result in much less memory usage than nonDS model
because it does not load all the cells into the simulation at the same time. This feature
makes the DS approach attractive for large scale cell space models. In such cases, the DS
approach may become the only feasible approach because of its memory advantage.

Table 1. Number of Active Cells and Memory Use in DS-heap (200*200 Cell Space)
Simulation
time (tN)

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of
active cells

89 210 340 459 577 711 819 958 1081 1185

Memory Use
(Mbytes)

17 25 38 48 58 81 110 137 147 189

 16

(a) (b)

Figure 3. Memory Usage for nonDS-heap and DS-heap
(a) 200*200 Memory Usage (b) Comparison of Different Cell Space Size

6.2 Initialization Time for Different Cellular Space Sizes

Table 2. Initialization Time (sec.) of Different Cell Space Size
Tinitial (s) 40*40 60*60 80*80 100*100 250*250 500*500 1000*1000 2000*2000
TnonDS-std 3.4 13.2 38.5 91.2 N/A N/A N/A N/A
TnonDS-heap 3.4 13.1 38.6 91.4 N/A N/A N/A N/A
TDS-std 0.4 0.4 0.4 0.4 0.5 0.6 1.1 2.2
TDS-heap 0.4 0.4 0.4 0.4 0.5 0.7 1.3 2.2

The initialization time of a simulation provides a direct measurement of how fast a
simulation can start. In this experiment, we run simulations of forest fire spread model
and measure the initialization time with different cell space sizes. Table 2 shows the
results for models with sizes of 40*40, 60*60, 80*80, 100*100, 250*250, 500*500,
1000*1000 and 2000*2000. The data “N/A” means no result was collected because of the
memory limitation due to the very large cellular space size. From Table 2 one can see
that the initialization time of nonDS-std and nonDS-heap increases with the increase of
cellular space size. This is because they need to initialize all the models at the beginning
of the simulation. But for DS-std and DS-heap, the initialization time is little and
increases slowly with the increase of cellular space size. This slight increase is because
the DS model uses a 2D array to keep track of each cell’s loading status. Therefore, with
the increase of cellular space size, the setup time of this 2D array increases accordingly.
Overall, the trend of initialization time matches with memory usage. Table 2 shows that
the DS based approaches are much faster than the nonDS based approaches to start a
simulation.

6.3 Execution Time for Different Cell Space Sizes
According to the time complexity analysis in section 4, the total execution time includes
initialization time as well as the cycle execution time. In this measurement we run
simulations with different cell space sizes and measure their execution time up to the
simulation time tN = 12000. Table 3 records the results and Figure 4 illustrates them for
nonDS-heap, DS-std and DS-heap. Similarly, the data “N/A” means no result was
collected because of the memory limitation due to the large cell space size.

Memory Usage (200*200)

0

200

400

600

800

1000

1200

tN
=20

00

tN
=60

00

tN
=10

00
0

tN
=14

00
0

tN
=18

00
0

Simulation Stage

M
by

te
s

DS
nonDS

Memory Usage

0

200

400

600

800

1000

1200

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0

of Cells in Cellular Space

M
B

yt
es

DS
nonDS

 3.6K 6.4K10K 40K

 17

Table 3. Execution Time (sec.) (tN = 12000) for Different Cellular Space Sizes
 40*40 60*60 80*80 100*100 250*250 500*500 1000*1000 2000*2000

TnonDS-std 21.4 67.4 149.6 278.8 N/A N/A N/A N/A
TnonDS-heap 7.1 20.8 52.2 118.4 N/A N/A N/A N/A

TDS-std 11.1 20.8 29.5 34.6 35.5 34.9 34.7 34.5
TDS-heap 9.2 16.0 22.7 25.5 26.3 25.9 25.9 26.1

Execution Time on Different Cellular Space

Sizes

0

20
40

60
80

100
120

140

40
* 4

0

60
*60

80
*80

10
0*1

00

25
0*2

50

50
0*5

00

10
00

*10
00

20
00

*20
00

Cellular Space Size

Ti
m

e
(s

ec
.)

DS-std
DS-heap
nonDS-heap

Figure 4. Execution Time of Different Cell Space Sizes

Table 3 shows that for the same cell space size, DS-heap is the most efficient and

nonDS-std is the least efficient. This can be explained from formulas (18) - (20). In
particular, formula (19) computes the difference between DS-heap and nonDS-heap. It
shows that DS-heap has better performance than nonDS-heap when the DS overhead of
the DS-heap is less than the surplus construction time of nonDS-heap. This is what we
see in Table 3 for all cases except for 40*40, where nonDS-heap gives better
performance result than DS-heap. For this case, the number of added cells ncreated almost
reaches N when tN=12000. So the surplus construction time of nonDS-heap is small.
Overall in this measurement because the simulations end early (tN = 12000), only
relatively small number of cells have been dynamically added/removed, thus the DS
overhead is relatively small. This makes the DS approaches have better performance than
the nonDS approaches as shown in Table 3 and Figure 4. We note that because of the
model construction time, both TnonDS-heap and TnonDS-std increases when the cellular space
size increases. However this is not true for TDS-heap and TDS-std. After a certain point,
further increase of the cell space size will have no effect on the number of
added/removed cells and thus the execution time of DS-std and DS-heap will remain
unchanged. This is because in this particular forest fire application, the spread speed of
fire front keeps constant after the simulation proceeds to a certain point. So the increase
of the cellular space size does not affect the execution time.

6.4 Execution Time at Different Simulation Stages
This section provides a performance measurement on DS-std and DS-heap to show how
the dynamically added/deleted cells in different stages of a simulation affect the

 18

simulation execution time. Figure 5 displays the relationship between the execution time
and ncreated/ndeleted/nactive/nimminent for DS-std and DS-heap on a 200*200 cell space. In this
experiment, we divide the entire simulation into multiple stages. Each stage consists of
2000 simulation steps (referred to as m_step in formulas (2) – (17)). For example, stage
6000-8000 represents the simulation stage from simulation step 6000 to 8000. In the
figure, ncreated and ndeleted represents the number of created and deleted models
respectively during a stage; nactive represents the number of existing models at the end
point of a stage, which is calculated by adding the change of number of cells in this stage
(ncreated - ndeleted) to the nactive in the previous stage; and nimminent is the total number of cells
that are imminent in a stage. We note here that nimminent is used as the measurement of
event transitions or activity during a stage. The left y-axis denotes the execution time for
TDS-std and TDS-heap, while the right y-axis denotes the number of cells for
ncreated/ndeleted/nactive/nimminent.

Figure 5 shows that ncreated at different stages maintains about the same and decreases
very slowly, whereas ndeleted increases slowly. The ncreated is larger than ndeleted before tstep
= 52000, and becomes smaller after that. As a result, nactive increases in the beginning and
then decreases after tstep = 52000. One can see that TDS-std follows the same trend as the
number of active cells nactive. This can be explained as follows. As shown in formulas (6)-
(9), the execution time of DS-std includes three parts: 1) tconstruct * ncreated, 2) active
models’ cycle execution time, which is dependent on nactive and m_step, and 3) DS
overheads tadding * ncreated and tdeleting * ndeleted. In this experiment, each stage has 2000
cycles and the number of active cells is large. So the stage execution time is mainly
determined by the active cells’ execution time, thus shows the same trend of the number
of active cells. There lie differences between these two lines as shown in Figure 5. This is
due to the overheads of adding/deleting cells, which cause, for example, the execution
time to increase faster than the number of active cells does.

Figure 5. Execution Time at different stages for DS-std and DS-heap

From Figure 5 one can also see the number of imminent cells nimminent keeps almost
the same for different stages. Note that the heap-based coordinator asks only imminents to

TDS-heap vs. TDS-std at Different Steps

0

500

1000

1500

2000

2500

3000

0-
2k

6k
-8

k

 1
2k

-1
4k

 1
8k

-2
0k

 2
4k

-2
6k

 3
0k

-3
2k

 3
6k

-3
8k

 4
2k

-4
4k

 4
8k

-5
0k

 5
4k

-5
6k

 6
0k

-6
2k

 6
6k

-6
8k

 7
2k

-7
4k

 7
8k

-8
0k

 8
4k

-8
6k

 9
0k

-9
2k

 9
6k

-9
8k

Simulaton Steps

Ti
m

e
(s

)

0

500

1000

1500

2000

2500

3000

C
el

l N
um

be
r

TDS-heap(*30) TDS-std(*50) n_created
n_deleted n_active n_imminent (*10)

 19

go through the simulation cycles. This explains why TDS-heap does not follow the trend of
nactive. Instead, it “smoothes” out by following the trend of nimminent that is almost constant
along all stages. On the other hand, nactive still plays a role there because it affects the
find-tN time in the heap-based coordinator (see formula (15)). The results of DS-heap and
nonDS-heap shown in Figure 5 are consistent with the analysis in Section 4.

6.5 Execution Time for Different Model Behaviors (Multiple Ignition Points)
In the above metrics, the overheads of dynamic structure are not very obvious because
ncreated and ndeleted are relatively small. In this experiment, we intend to show that the DS
overheads can become significant. To do this we set up simulations that use multiple
ignition points to ignite multiple fires at the same time.

Figure 6 and Table 4 show the performance results when 5 sparse ignitions and 5
close ignitions are used separately in a 100*100 cellular space for nonDS-heap and DS-
heap. Here we differentiate two situations: a sparse ignition situation where the five
ignition points are far away from each other; and a close ignition situation where the five
ignition points are close to each other. In the sparse ignition situation, five fires are
started and spread independently for a long time, whereas in the close ignition situation
the five fires quickly merge into a single fire. We measure the execution time (the time
from when the simulation starts) every 2000 simulation time point along the entire
process of the simulation (up to tN = 20000). The measurement results are recorded in
Table 4 and depicted in Figure 6 for both the sparse and close ignition situations. From
the results, one can see that because the sparse ignition situation has more ncreated, ndeleted
and nactive (ncreated - ndeleted), its execution time is more than that for the close ignition
situation. This is true for both DS-heap and nonDS-heap. In the case of nonDS-heap, the
execution time difference between the sparse and close ignition situations is small. But in
the case of DS-heap, their execution time difference is much larger. This large difference
is partially due to the large number of active cells in the sparse ignition situation. More
importantly, it is due to the DS overheads. Because a lot more cells are dynamically
added and deleted in the sparse ignition situation, thus a lot more DS overheads exist,
which leads to larger execution time.

 (a) (b)
Figure 6. (a) Execution Time of Sparse Multiple Ignitions

(b) Execution Time of Close Multiple Ignitions

Close Ignition Behavior on 100*100 Cell
Space

0

20

40

60

80

100

120

tN
=2

00
0

tN
=4

00
0

tN
=6

00
0

tN
=8

00
0

tN
=1

00
00

tN
=1

20
00

tN
=1

40
00

tN
=1

60
00

tN
=1

80
00

tN
=2

00
00

Simulation Stage

Ex
ec

ut
io

n
Ti

m
e

DS-heap
nonDS-heap

Sparse Ignition Behavior on 100*100 Cell
Space

0

50

100

150

200

250

300

350

400

tN
=20

00

tN
=40

00

tN
=60

00

tN
=80

00

tN
=10

00
0

tN
=12

00
0

tN
=14

00
0

tN
=16

00
0

tN
=18

00
0

tN
=20

00
0

Simulation Stage

E
xe

cu
tio

n
Ti

m
e

DS-heap
nonDS-heap

 20

Table 4. (a) Sparse Ignitions (100*100 Cell Space)
tN 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ncreated 455 1360 2737 4322 5858 6718 7392 7922 8280 8484

ndeleted 10 310 1095 2325 3859 5501 6427 7141 7697 8116
TDS-heap 2.4 12.6 48.6 120.7 218.8 296.8 325.9 345.7 357 362.8

TnonDS-heap 97.8 100.3 103.8 108.2 113.3 117 119.5 121.6 123.2 124.1

Table 4. (b) Close Ignitions (100*100 Cell Space)

tN 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ncreated 195 449 812 1255 1794 2318 2801 3279 3752 4187

ndeleted 10 150 380 708 1138 1655 2168 2657 3118 3582

TDS-heap 1.6 3.7 7.7 14.4 24.3 36.9 48.8 59.7 69.8 80.1

TnonDS-heap 97.5 98.3 99.5 100.9 102.7 104.6 106.3 108 109.7 111.3

The significance of DS overheads can also be illustrated when comparing DS-heap

and nonDS-heap for the same model behavior, for example, the sparse ignition behavior
shown in Figure 6(a). As can be seen, at the beginning of the simulation DS-heap uses
less time than nonDS-heap because the nonDS model needs to loads all the cells before
the simulation starts. However as the simulation proceeds TDS-heap bypasses TnonDS-heap (at
tN = 8000). According to formulas (10)-(17), the reason that can cause this bypass is the
dynamic structure overheads, which depend on ncreated and ndeleted. As ncreated and ndeleted
increases, the DS overheads increase too. Eventually the execution time of DS-heap
becomes larger than that of nonDS-heap as shown in Figure 6(a). For the close ignition
situation shown in Figure 6(b), until tN = 20000 DS-heap is still better than nonDS-heap.
This is because ncreated and ndeleted are not large enough to make the DS overheads become
dominant. However based on the trend of TnonDS-heap and TDS-heap, if the simulation
continues further, these two lines will intersect and TDS-heap will bypass TnonDS-heap
eventually.

The above analysis shows that the number of added and deleted cells plays an
important role to decide if a DS model outperforms or underperforms a nonDS model.
Similar to what has been discussed in the token ring model, there exists a “DS-threshold”
for the forest fire spread model. This “DS-threshold” indicates when the DS model will
become underperformed than the nonDS model. For a forest fire simulation, we can
roughly compute the ratio of the number of added and deleted cells (ncreated+ndeleted) over
the total number of cells N and then check if it reaches the “DS-threshold”. A simulation
whose (ncreated+ndeleted)/N is smaller than the “DS-threshold” will give better performance
result when using the DS model. Otherwise the nonDS model will give better
performance result.

The concept of the “DS-threshold” is further illustrated by another experiment that
takes 100 randomly generated ignition points in a 100*100 cell space up to tN=20000.
Same as before, we compare the nonDS-heap and DS-heap approaches. Figure 7 presents
the performance results. It can be seen that in this experiment, the DS-threshold is easily
reached because there are 100 ignition points, which quickly result in a large number of

 21

added and deleted cells (and thus reaches the “DS-threashold”). Therefore, the DS model
quickly underperforms the nonDS model from the execution time point of view.

Figure 7. 100 Sparse Ignition for DS-heap and nonDS-heap

7. Discussions
The measurement results from both the token ring example and the forest fire spread
example show that dynamic structure modeling has important impact on the simulation
performance for large scale cellular space models. By dynamically adding and removing
cells as needed, a DS model maintains only the active cells instead of loading the entire
cell space. This has positive influences to the simulation performance from three aspects.
First, it reduces the memory requirement as compared to a nonDS model. Second, it
results in fast initialization time for models that have small number of active cells in the
beginning. Third, maintaining only the subset of active cells reduces the search space for
the simulation engine and allows the simulation engine to focus its computation power on
the active cells in a more effective manner. However, on the negative size, the overhead
of dynamically adding/removing cells at runtime cannot be ignored and can become
significant (even dominant) for simulations that activate most of the cells in the cell
space. In these cases, the advantage of not constructing all the cells in the cell space
diminishes and the disadvantage of DS overhead becomes dominant. It is important to
note that these performance gains and loss of DS modeling become significant only for
large scale cellular space models, which is what this paper focuses on.

The performance gains and loss of DS modeling results in an effect of “DS-
threshold” that was demonstrated in both the token ring simulation example and the fire
spread simulation example. Specifically, for a given cellular space size, the DS model
gives better performance if a simulation ends with small number of cells being activated.
This could happen either the simulation terminates early (for example, simulating only 10
minutes of fire spread) or the number of cells involved in the simulation is small (for
example, a fire spread simulation where most of the cells are unburnable). As the number
of activated cells increases, the overhead of dynamically adding/deleting cells increases
and eventually the DS model underperforms the nonDS model. This happens either
because the simulation lasts for enough long time or the model behavior activates large

100 Sparse Ignition on 100*100 Cell Space

0

50

100

150

200

250

300

350

400

450

tN
=20

00

tN
=40

00

tN
=60

00

tN
=80

00

tN
=10

00
0

tN
=12

00
0

tN
=14

00
0

tN
=16

00
0

tN
=18

00
0

tN
=20

00
0

Simulation Stage

Ex
ec

ut
io

n
Ti

m
e

(s
)

DS-heap
nonDS-heap

 22

number of cells in a short time like in the multiple ignitions experiment presented before.
In the extreme case where all cells are activated, the DS model will definitely results in
slower execution time than the nonDS model. Because this effect of “DS-threshold” is
due to the inherent performance gains and loss of DS modeling, it is general for all DS
models, and can be used as a guideline for deciding if a DS model gives better or worse
performance than a nonDS model. However, we note that the specific value of the “DS-
threshold” is application dependent, and may be difficult to calculate for models with
complex behavior such as the fire spread model. This is because the runtime overhead of
dynamically adding/deleting models is closely related to the specific implementation of
the model and simulator, as well as the programming language (such as object creation
and garbage collection in JAVA).

Based on the above discussions, we suggest DS modeling be used for the following
situations: 1) the system to be modeled is dynamic structure in nature. In this case, the
motivation is not on the performance aspect but on the modeling power of DS model; 2)
large scale models that require excessive amount of memories if loading all the models
all at once. In this case, the DS modeling (if it can be applied) can help to load only a
subset of the models in a dynamically manner; 3) simulations have massive number of
models but only a relatively “small” portion of them are active. In this case, DS modeling
significantly saves model construction time by introducing relatively small DS overhead.
As mentioned before, for larges scale cellular space models, this could be either the
simulation terminates early or the number of cells involved in the simulation is small in
nature.

8. Conclusions
Dynamic Structure DEVS (DSDEVS) is an advanced modeling technique that allows
DEVS models and their couplings to be dynamically changed for modeling complex
systems. In this paper, we focus on the performance aspect of dynamic structure DEVS,
and carry out comprehensive performance analysis and performance measurement based
on a token ring model and a large scale forest fire spread model. Approaches of
simulating DS model and nonDS model using a standard coordinator and a heap-based
coordinator are considered. The analysis and measurement results show that dynamic
structure modeling has both positive and negative impacts on the simulation performance
for large scale cellular space models. Discussions about DS modeling’s applicability in
different situations are provided

Acknowledgements
This research was supported by grants CNS-0540000 and CNS-0720675 from the
National Science Foundation.

References:
[1] Barros, F.J. 1997. Modeling Formalisms for Dynamic Structure Systems. ACM

Transactions on Modeling and Computer Simulation 7(4), 501-515.
[2] Zeigler, B.P., T.G. Kim, and H. Praehofer. 2000. Theory of Modeling and Simulation,

2nd edition. Academic Press, New York, USA.

 23

[3] Uhrmacher, A.M. 2001. Dynamic Structures in Modeling and Simulation - A
Reflective Approach. ACM Transactions on Modeling and Simulation 11(2), 206-
232.

[4] Zeigler, B.P., T.G. Kim and C. Lee. 1991. Variable structure modelling methodology:
An adaptive computer architecture example. Trans. Sot. Comput. Simulation 7(4),
291-319.

[5] Barros, F. J. and M. T. Mendes. 1997. Forest fire modelling and simulation in the
DELTA environment. Simul. Pr. Theory 5(3), 185-197.

[6] Muzy, A., E. Innocenti, D.R.C. Hill, A. Aïello, J.F. Santucci, and P.A. Santoni. 2004.
Dynamic structure cellular automata in a fire spreading application. Proceedings
of the First International Conference on Informatics in Control, Automation and
Robotics, IEEE/CSS/IFAC/ACM/AAAI/APPIA, Setubal, Portugal. 143–151.

[7] Hu, X., B. P. Zeigler, and S. Mittal. 2005. Variable Structure in DEVS Component-
Based Modeling and Simulation. Simulation: Transactions of The Society for
Modeling and Simulation International 81(2), 91-102.

[8] Wainer, G. and N. Giambiasi. 2002. N-Dimensional Cell-DEVS. Discrete Events
Systems: Theory and Applications 12(1), 135–157.

[9] Wainer, G. A. Modeling and simulation of complex systems with Cell-DEVS. 2004.
Proceedings of the 36th conference on winter simulation 1, 45-56.

[10] Ntaimo, L., B. Khargharia, B. P. Zeigler and M. J. Vasconcelos. 2004. Forest fire
spread and suppression in DEVS, SIMULATION, 80 (10), 479-500.

[11] DEVS-Java Reference Guide, www.acims.arizona.edu.
[12] Mittal, S., E. Mak, and J.J. Nutaro. 2006. DEVS-Based Dynamic Model

Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process.
Journal of Defense Modeling and Simulation (JDMS) 3(4), 239-267.

[13] Sun, Y. and X. Hu. 2007. Performance measurement of DEVS dynamic structure on
forest fire spreading simulation. Proc.14th AI, Simulation and Planning in High
Autonomy Systems (AIS 2007) 12.

[14] Finney, M.A. 1998. FARSITE: Fire area simulator – Development and Evaluation.
Research Paper RMRS-RP-4. US Dept. of Agriculture, Forest Service, 52.

[15] Filippi, J-B. and P. Bisgambiglia. 2002. Enabling large scale and high definition
simulation of natural systems with vector models and JDEVS. Proceedings of the
2002 Winter Simulation Conference. 1964-1970.

[16] Berger, M. J. and P Colella. 1989. Local Adaptive Mesh Refinement for Shock
Hydrodynamics. J. Comput. Phys. 82, 64-84.

[17] Hu, X. and L. Ntaimo. 2006. Dynamic Multi-resolution Cellular Space Modeling for
Forest Fire Simulation. Proc. DEVS Integrative M&S Symposium (DEVS’06),
Spring Simulation Multiconference, April 2-5, 95-102.

[18] Hu, X. and B. P. Zeigler. 2004. A High Performance Simulation Engine for Large-
Scale Cellular DEVS Models. High Performance Computing Symposium
(HPC'04), Advanced Simulation Technologies Conference, April, 3-8.

[19] Hall, S. B., S. M. Venkatesan, and D. B. Wood. 2003. A Faster Implementation of
DEVS in the Joint MEASURE Simulation Environment. In Proc. of Summer
Computer Simulation Conference, Montreal, July.

 24

[20] Shiginah, F. A. and B. P. Zeigler. 2006. Transforming DEVS to non-modular form
for faster cellular space simulation. In Proceedings of 2006 DEVS Symposium,
86-91.

[21] Zeigler, B., D. Kim, and S. Buckley. 1999. Distributed supply chain simulation in a
DEVS/CORBA execution environment. In Pro-ceedings of the 1999 Winter
Simulation Conference, Phoenix, AZ. 1333-1340.

[22] Zeigler, B., and H. S. Sarjoughian. 1999. Support for hierarchical modular
component-based model construction in DEVS/HLA. Simulation Interoperability
Workshop, March 14-19, Orlando, FL.

[23] Zhang, M., B. Zeigler, and P. Hammonds. 2006. DEVS/RMI – An auto-adaptive and
reconfigurable distributed simulation environment for engineering studies. Spring
Simulation Multiconference – DEVS Integrative M&S Symposium, Huntsville, AL.

[24] Mittal, S., J.L. Risco-Martín, and B.P. Zeigler. 2007. DEVSML: Automating DEVS
Execution Over SOA Towards Transparent Simulators. DEVS Symposium,
Spring Simulation Multiconference, March, 287-295, Norfork, Virginia.

[25] Nutaro, J. 2004. Risk-free optimistic simulation of DEVS models. Advanced
Simulation Technologies Conference – Military, Government, and Aerospace
Simulation Symposium, 113-118, Arlington, VA.

[26] Sunwoo, P. 2003. Hierarchical Model Partitioning for Distributed Simulation of
Hierarchical and Modular DEVS Models. Ph.D. Dissertation, Univ. of Arizona,
May.

[27] Foster, I., C. Kesselman, and S. Tuecke. 2001. The Anatony of the Grid: Enabling
Scalable Virtual Organizations. Int’l J. High-Performance Computing
Applications 15(3), 200-222.

[28] Foster, I. 1998. Computational Grids. Reprinted by permission of Morgan Kaufmann
Publishers from The Grid: The Blueprint for a Future Computing Infrastructure.

[29] Song, H. J., X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien.
2000. The MicroGrid: a Scienti_c Tool for Modeling Computational Grids.
Scientific Programming 8(3), 127-141.

[30] http://www.Globus.org
[31] Seo, C., S. Park, B. Kim, S. Cheon, and B. P. Zeigler. 2004. Implementation of

Distributed high-performance DEVS Simulation Framework in the Grid
Computing Environment. In Proceedings of the 2004 Advanced Simulation
Technologies Conference (ASTC '04) — High Performance Computing
Symposium 2004 (HPCS 2004), 9-15, Arlington, VA.

[32] Rothermel, R. 1972. A mathematical model for predicting fire spread in wildland
fuels. Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture,
Forest Service, Intermountain Forest and Range Experiment Station.

[33] Wyman, F. P. 1975. Improved event-scanning mechanisms for discrete event
simulation. Commun. ACM, 18, 350-353.

[34] Vaucher, J. G. and P. Duval. 1975. A comparison of simulation event list algorithms.
Commun. ACM, 18, 223-230.

[35] Steinman, J. S. 1996. Discrete-event simulation and the event horizon part 2: Event
list management. In PADS '96: Proceedings of the Tenth Workshop on Parallel
and Distributed Simulation, 170-178.

 25

[36] Rönngren, R., J. Riboe and R. Ayani. 1991. Lazy queue: An efficient
implementation of the pending-event set. In ANSS '91: Proceedings of the 24th
Annual Symposium on Simulation, 194-204.

[37] McCormack, W. M. and R. G. Sargent. 1981. Analysis of future event set algorithms
for discrete event simulation. Commun. ACM, 24, 801-812.

[38] Jones, D. W. 1986. An empirical comparison of priority-queue and event-set
implementations. Commun. ACM, 29, 300-311.

[39] Chung, K., J. Sang and V. Rego. 1993. A performance comparison of event calendar
algorithms: an empirical approach. Softw. Pract. Exper., 23, 1107-1138.

[40] Bahr, H. and R. DeMara. 2004. Smart priority queue algorithms for self-optimizing
event storage. Simulation Modeling Practice and Theory, 12 (April), 15-40.

[41] SLEATOR, D. D. AND TARJAN, R. E. 1985. Self-adjusting binary search trees. J.
ACM 32, 3 (July), 652–686.

[42] Vaucher, J. and G. P. Duval. 1975. A comparison of simulation event list algorithms,
Communications of the ACM 18(4), 223-230.

[43] Brown, R. and Calendar queue. 1988. A fast O(1) priority queue implementation for
the simulation event set problem. Communication of the ACM 31(10), 1220-1227.

[44] Zeigler B. P. and H. Sarjoughian. 2002. Introduction to DEVS Modeling and
Simulation with JAVA: A Simplified Approach to HLA-Compliant Distributed
Simulations, The University of Arizona, Tucson, Arizona, USA,
http://www.acims.arizona.edu.

[45] Fujimoto, R. M. Parallel and Distribution Simulation Systems. Wiley. 1999.
[46] Glinsky, El. and G. Wainer. 2005. Abstract simulation algorithms for Parallel CD++.

Technical Report SCE-05-11. Carleton University. 2005.
[47] Zacharewicz, G., N. Giambiasi, and C. Frydman. 2005. Improving the Lookahead

Computation in G-DEVS/HLA Environment. Proceedings of the 9th IEEE
International Symposium on Distributed Simulation and Real-Time Applications.
273-282, Montreal, Canada 2005.

[48] Glinsky, E. and G. A. Wainer. 2005. DEVStone: a Benchmarking Technique for
Studying Performance of DEVS Modeling and Simulation Environments, 9th
IEEE International Symposium on Distributed Simulation and Real Time
Applications. 273-282, Montreal, Canada 2005.

[49] RICK SIOW MONG GOH and IAN LI-JIN THNG. 2005. Twol-Amalgamated
Priority Queues. ACM Journal of Experimental Algorithmics, 9(1.6), 1–45.

[50] L’Ecuyer, P. and Y. Champoux. 2001. Estimating small cell-loss ratios in ATM
switches via importance sampling. ACM Trans. Model Computer Simulation.
11(1) (Jan.), 76-105.

[51] Willig, A. 2005. Performance Evaluation Techniques, Fundamentals and Big
Picture. Telecommunication Networks Group, Technical University Berlin.

[52] Le Boudec, J. Y. 2007. Performance Evaluation of Computer and Communication
Systems. EPFL.

[53] Jain, R. 1991. The Art of Computer Systems Performance Analysis. John Wiley &
Sons, England.

 26

YI SUN is a Ph.D. candidate in the Computer Science Department at Georgia State
University. Her research interests include performance improvement of discrete event
systems.

XIAOLIN HU is an assistant professor in the Computer Science Department at Georgia
State University. His research interests include modeling and simulation, agents, and
simulation-based design.

