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Abstract -- Dynamic Structure DEVS (DSDEVS) is an advanced modeling formalism 
that allows DEVS models and their couplings to be dynamically changed. The modeling 
power and advantages of DSDEVS have been well studied. However, the performance 
aspect of DSDEVS is generally overlooked. This paper provides a comprehensive 
performance measurement of DSDEVS for a large scale cellular space models. We 
consider both the modeling layer and simulation layer for performance analysis, and 
carry out performance measurement based on a token ring model and a fire spread model. 
The results shows that DS modeling can improve simulation performance for large scale 
cellular space models, due to the fact that it makes the simulation focus only on those 
active models, and thus be more efficient than when the entire cellular space is loaded. 
On the other hand, the DS overhead cannot be ignored and can become significant and 
even dominant when large number of cells are dynamically added/deleted.  
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1. Introduction 
Dynamic Structure (DS) modeling and simulation refers to the capability of a simulation 
to dynamically change its model structure as the simulation proceeds. The Dynamic 
Structure DEVS (DSDEVS) [1] is a specification for dynamic structure modeling based 
on the DEVS formalism [2]. The capability of DS modeling makes it possible to naturally 
model complex systems, such as living autonomous systems that change their 
interactions, compositions and behavior patterns to adapt to their environments, or those 
self-organizing, self-reconfiguring engineered systems, where the structures of the 
systems adapt to changed requirements [3]. Many applications have been developed 
using the concept of DS modeling, including adaptive computer architecture [4], wildfire 
spread simulation [5, 6], and dynamic team formation of robots [7], to name a few. In 
general, dynamic structure change can refer to dynamically changing the couplings 
between existing models or dynamically adding/removing models. This paper mainly 
concerns the later where models are dynamically added and removed.  

The modeling power and advantages of DSDEVS has been well studied especially 
when it is applied to cellular space models. However, existing work generally overlooked 
the performance aspect of DSDEVS for large scale cellular space models. Intuitively, one 
would think dynamically adding/removing (loading/unloading) models during the 
runtime of a simulation introduces runtime overhead, thus will result in slower simulation 
speed as compared to a nonDS implementation. On the other hand, by using dynamic 
structure modeling, a simulation does not need to create all the models in the beginning. 
Instead, it maintains only a subset of the models by dynamically adding the needed 
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models and removing unneeded models as a simulation proceeds. This allows a 
simulation to focus its computation power only on those “active” models and results in 
less memory requirement as well. Here an “active” model means the model that has 
scheduled next event, i.e., whose next event time is not infinity. This potentially speeds 
up the simulation performance for simulations with a large number, e.g., up to millions, 
of models but only a small portion of them are active. The above observations motivate 
us to measure the performance gains and loss of dynamic structure modeling and 
simulation. 

The idea of focusing on the “active” models for improving simulation performance 
can be fulfilled in different ways. Dynamic structure modeling achieves this by 
manipulating the models, i.e., dynamically loading/unloading models so only the active 
models are maintained in a simulation. Alternatively, advanced simulation algorithms and 
data structures can be developed to achieve efficient computation focusing on the active 
models only. For example, a discrete event simulation engine can utilize a heap data 
structure to keep track of the current imminent models (the models with smallest next 
event time, also referred to as imminents in the remainder of the paper), and then asks 
only those models to go through the simulation cycles. In a discrete event simulation, one 
can view these two different approaches belong to two different layers of a simulation 
system: a modeling layer and a simulation layer. Dynamic structure modeling lies in the 
modeling layer by manipulating the simulation model directly. The heap based simulation 
engine lies in the simulation layer. It drives the execution of a model but does not modify 
the model’s structure and behavior. As will be discussed later, the similarities and 
differences between these two different approaches have important impacts on simulation 
performance. Each of them has its own gain and loss from the simulation performance 
point of view. It is the intension of this paper to take account of both the modeling layer 
and simulation layer in carrying out the performance measurement of dynamic structure 
DEVS.  

Cellular space model represents an important modeling paradigm and is commonly 
used to model complex dynamical systems with spatial-temporal behaviors (see 
discussions in e.g., [8, 9]). It supports simulations of various systems, such as urban 
environment simulation, disease spread simulation, and ecological system simulation. An 
important feature of large scale cellular space models is that even though a large number 
of cells exist, only a relatively small portion of them may participate in the simulation at 
any time. This makes it attractive to apply dynamic structure modeling, i.e., dynamically 
adding the cells if needed and remove them if not needed, for large scale cellular space 
simulations. To carry out  performance measurement, this paper uses two examples: the 
first one is a one-dimensional cellular space model of token ring simulation; the second 
one is a two-dimensional cellular space model of forest fire spread simulation. Both 
examples are developed in the DEVSJAVA [11] simulation environment. We note that 
even though the performance results presented in this paper are based on a specific 
simulation environment, the performance analysis and conclusions drawn from these 
results are generic and apply to DEVS-based dynamic structure models in general.   

The remainder of the paper is organized as follows. In section 2, DSDEVS 
background and related works are introduced. Section 3 describes the modeling layer and 
the simulation layer that lead to four different simulation approaches considered in this 
paper: nonDS-std, nonDS-heap, DS-std and DS-heap. Section 4 gives a detailed 
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performance analysis of the four approaches. Section 5 presents performance 
measurement results based on the token ring model. Section 6 presents performance 
measurement results based on five measurement metrics for the forest fire spread model. 
Finally, section 7 discusses and section 8 concludes this work.  
 
2. Related Work 
The DEVS (Discrete Event System Specification) [2] formalism is derived from generic 
dynamic systems theory and has been applied to both continuous and discrete 
phenomena. It provides a formal modeling and simulation (M&S) framework with well-
defined concepts of coupling of components, and hierarchical modular model 
construction. The classic DEVS model has been extended to support dynamic structure 
modeling, where DEVS models and their couplings can be dynamically added/removed 
as a simulation proceeds. Barros presented a formalism for dynamic structure DEVS 
whose basic models are classic DEVS models, but the structure of a coupled model can 
be changed by a network executive model [1]. Uhrmacher proposed a formalism based on 
DEVS that emphasizes the reflective nature of variable structure models [3]. Dynamic 
structure modeling has been applied to different applications, such as modeling a 
complex adaptive computer architecture [4], simulating forest fire spread [5, 6], dynamic 
team formation of robots [7], and supporting simulation-based design of a DoDAF 
architecture [12]. An implementation of dynamic structure based on the DEVSJAVA 
environment was developed in [7] and supports the work in this paper. None of the above 
works investigated the performance aspect of dynamic structure modeling and 
simulation. Some preliminary performance results of dynamic structure DEVS were 
presented in [13].  

Performance is an important consideration when simulating large scale cellular space 
models. The high computational cost of large scale cellular space models has motivated 
research from both the modeling aspect and simulation aspect for improving simulation 
performance.  On the modeling aspect, the work [6] developed a method to predict 
whether a cell will possibly change state or will be left unchanged, thus helping a 
simulation to keep track of the actives cells as a simulation proceeds. In another work 
[20], the author proposed a non-modular formalism by combining multiple cells into one 
cell for fast simulation. This formalism uses DEVS’ closure under coupling property to 
ensure equivalency of the models to their modular counterparts. The speedup was gained 
by efficient scanning of active cells and eliminating inter-cell messages as multiple cells 
are combined into a single atomic model. Adaptive mesh refinement (AMR) [16] can be 
considered as another example that dynamically adjust the grid resolution of a 
mathematic model to achieve computation saving. It improves the performance by 
assigning high resolutions for resolving developing features, while leaving less 
interesting parts of the domain at lower resolutions. On the simulation aspect, many 
different event scheduling algorithms (see, e.g., [33-40]) have been developed in order 
for a discrete event simulation to focus on the “active” models in an efficient manner. 
The efficient processing of event is especially needed for large scale simulations that 
involve large number of events. Lazy queue [36] is a multi-list data structure that divides 
the events into several parts and keep only a small portion of the near future events 
sorted. The far future events are unsorted. As time advances, part of the far future is 
sorted and transferred into the near future. Splay tree [41] uses a balancing technique to 
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move frequently used nodes upwards, thus achieve more efficient search for self-
balancing data but it can become worse for a uniform distributed data. In [43] a calendar 
queue was introduced to hold references to the head and tail of event list. It is suitable for 
approximately distributed calendar data and the performance is worse for unbalanced 
data. Another priority queue called twol-amalgamated priority queue [49] uses three 
efficient Henriksen’s queue, skew heap, and splay tree, to achieve efficient operations. 
The large number of events can also be minimized using techniques that manipulate the 
statistical properties of the model to reduce the size of events [50].  

Parallel discrete event simulation (PDES) [45] is another strategy for performance 
improvement that reduces execution time by using multiple processors. P-DEVS [46] is a 
parallel discrete event simulation approach based on the DEVS formalism. It provides 
means of handling simultaneous scheduled events, while keeping all the major properties 
of standard DEVS. Since parallel DEVS eliminates serialization constraints, it enables 
improved execution of models in parallel and distributed environments. The research [47] 
developed techniques to reduce the overhead of distributed DEVS and get significant 
improvement in performance. A risk-free optimistic simulation algorithm was presented 
in [25] to simulate models using shared memory multi-processor machines. In [26], the 
author investigated hierarchical model partition algorithms that could be used in a 
distributed/parallel simulation to achieve load balance when simulating complex models. 

Performance evaluation and measurement play important roles in system 
development. It concerns the different aspects of a system performance and provides 
quantitative and/or qualitative results. According to [51], there are three basic techniques 
through which performance evaluation can be performed: 1) Analytical modeling: 
consists in using abstract model based on mathematical notions to describe certain 
aspects of the system; 2) Simulation: consists in implementing a model that reproduces 
the system behavior in software; 3) Measurement: consists in fitting the system with 
specific instruments that allow picking up the relevant values in order to measure the 
system’s performance. The development of performance measurement metrics is system 
dependent and requires understanding the system and its usage well [52]. Furthermore, 
the measurement results are typically platform and execution environment dependent. A 
performance measurement methodology in the field of computer systems engineering 
was presented in [53]. For DEVS-based simulations, the work [48] developed DEVStone 
which is a synthetic benchmark devoted to automate the evaluation of DEVS-based 
simulations. DEVStone facilitates performance analysis for successive versions (e.g., 
upgrades or fixes) of the same simulation engine, and provides a common metric to 
compare different M&S environments. In this paper, we focus on performance 
measurement of dynamic structure DEVS for large scale cellular space models. Both 
complexity analysis and experiment measurement results are carried out. 

 
3. Dynamic Structure (DS) Model, nonDS Model and their Simulators 
As indicated in section 1, the DEVS modeling and simulation framework treats a model 
and its simulator (the simulation engine) as two distinct components: a model captures 
the structure/behavior of a system, and a simulator is the algorithm that executes the 
model. Within this framework, the same model can be simulated by different simulators; 
similarly, the same simulator can simulate different models [2]. Therefore it is necessary 
to consider both the model and its simulator when carrying out the performance 
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measurement. In this work, in order to show the performance gains and loss of dynamic 
structure modeling, for the same cellular space model we develop a nonDS 
implementation and a DS implementation. They are referred to as the nonDS model and 
the DS model in the rest of this paper. Note that the nonDS and DS models share the 
same model behavior. They differ only in when/how they add or remove cells. To 
simulate these models, we employ the standard DEVS simulation engine (referred to as 
standard coordinator) and a binary heap-based simulation engine (referred to as the 
heap-based coordinator). Figure 1 shows these two models and two simulators in a 
layered structure. The nonDS and DS models belong to the modeling layer as they 
describe the implementations of the cellular space model. The standard and heap-based 
coordinators belong to the simulation layer as they are in charge of how to execute the 
models. As mentioned before, the heap-based coordinator is chosen because it 
implements the idea of focusing on the “active” models. This allows us to compare with 
the dynamic structure modeling, which also has the effect of focusing on the “active” 
models when simulation performance is concerned. We note that many advanced heap-
based simulation algorithms have been developed over the years. However this paper 
chooses a basic binary heap-based simulation engine because it is relatively easy to 
analyze and straightforward for comparing with the dynamic structure modeling.  
 

 DEVS model
( nonDS model, DS model )

DEVS simulator
( standard coordinator, heapbased coordinator )

modeling layer 

simulation layer 
 

Figure 1. The modeling layer and simulation layer 
 

From Figure 1 one can see there exist four combinations of simulation approaches: 
simulate a nonDS model using the standard coordinator (referred to as nonDS-std later); 
simulate a DS model using the standard coordinator (referred to as DS-std later); simulate 
a nonDS model using the heap-based coordinator (referred to as nonDS-heap later); and 
simulate a DS model using the heap-based coordinator (referred to as DS-heap later). 
This paper analyzes the performance of all these four approaches but pays more attention 
to the dynamic structure model when carrying out performance measurement. Next we 
describe the two models and the two simulators respectively and discuss their 
performance issues for large scale cellular space models.  

 
3.1 NonDS Model and DS Model  
The nonDS and DS models differ in when/how they add or remove cells. Implementation 
of the nonDS model is straightforward: all cells are added into the cell space and coupled 
to their neighbor cells when the cell space is constructed. These cells and their couplings 
do not change throughout the simulation. For example, if a cell space has 1,000,000 cells, 
all those cells are created and loaded before a simulation starts. This is shown by the 
following pseudo code. 

// happen in the beginning of the simulation 
for (all cells) { 
    create cell mi; 
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    addModel (mi); 
    addCouplings (mi, mi.outport, mj, mj.inport); 
} 

The DS implementation exploits the fact that cells not participating in the simulation 
need not to be loaded, thus it starts with only the “active” cells. As the simulation 
proceeds, other cells are dynamically created and added into the cell space when needed. 
Meanwhile, when a cell is not needed, that is, after transitioning from active to an 
inactive state, it is removed from the cell space. As the result, the dynamic structure 
implementation keeps only the models that are active in the system. To implement the 
dynamic structure features described above, an atomic model (corresponding to the 
network executive model in [1]) is needed to manage the dynamic structure changing. 
This model is responsible for adding and removing the models when needed, e.g., when 
receiving request inputs from some cells. This is shown by the following pseudo code. 

// happen in the middle of the simulation 
if (need to add cell) { 
       create the cell mi; 
      addModel(mi);  
      addCoupling(mi, mi.outport, mj, mj.inport);     
} 
if (need to remove cell)  

           removeModel(mi); 

As can be seen in the nonDS model all cells and their couplings are created and added 
in the beginning before the simulation starts. This results in longer initialization time (the 
time it takes before a simulation can starts) than the DS model. In the DS model cells are 
gradually created and added at different steps of the simulation. Meanwhile, the DS 
model allows the inactive cells to be dynamically removed as the simulation proceeds. It 
is important to note that for a same cell that is added in the nonDS and DS models, the 
computation cost is different. Specifically, for the DS model, dynamically adding the cell 
in the middle of the simulation through a network executive model introduces some 
overhead. Dynamically removing a cell introduces overhead too because the nonDS 
model does not invoke the remove operation at all. On the other hand, the DS model adds 
the cells only needed, thus is likely to create far less cells as compared to the nonDS 
model because many simulations do not end up with all cells being activated. Meanwhile, 
by dynamically adding/removing cells, the DS model maintains only a subset of cells in 
the simulation. This results in some performance advantage when compared to the nonDS 
model because it makes it more efficient to find the global smallest tN due to the 
relatively small collection that needs to be searched.  

 
3.2 Standard Coordinator and Heap-Based Coordinator 
The simulation protocol of the DEVS standard coordinator is described in [2]. In the 
standard coordinator, a simulation moves forward cyclically based on the time of next 
event, denoted by tN, which is the earliest next event time among all its subcomponents. 
The pseudo code below describes the major steps in one simulation cycle. Specifically, in 
every cycle the coordinator first requests each component simulator send its next event 
time and then finds the minimum of the returned values to obtain the global time of next 
event: tN. After that it asks each simulator to compute the output. The simulators (called 
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imminents) whose next event times equal to tN invoke the models’ output functions to 
obtain the outputs. Other simulators simply return an empty message. Then the 
coordinator requests each simulator to send its output to its destination simulators based 
on models’ coupling information. Finally it asks each simulator to apply its DeltFunc 
method that invokes the model’s corresponding state transition function based on if 
external messages are received and/or if internal event time elapses. This ends one 
simulation cycle and the next cycle repeats. 

simulators.AskAll(“nextTN”)  
tN = compareAndFindSmallestTN(); 
simulators.tellAll("computeOutput“,tN) 
simulators.tellAll("sendOutput") 
simulators.tellAll("ApplyDelt“,tN) 

This standard coordinator follows closely the semantic of DEVS models. Thus it is 
easy to understand and implement. It also serves as a benchmark to test the correctness of 
other simulation engines. However, the standard coordinator is not efficient when 
simulating models that have a large number of components. This is because in every 
simulation cycle, all the simulators, no matter if they are imminent or not, have to go 
through the simulation steps described above. For a cellular space model that has only a 
few active models, there exists a lot of unnecessary computation.  

The heap-based coordinator overcomes the above problem by using a heap to keep 
track of the smallest tNs of its component simulators. During a simulation, each simulator 
updates its new tN in the heap whenever its tN changes. The global smallest tN and the 
imminents can be obtained from the root of the heap. Only those imminents are asked to 
go through the simulation cycle. The simulation protocol of this heap-based coordinator 
in one simulation cycle is given below. Specifically, the heap-based coordinator first gets 
the smallest tN and the imminents from the heap. With these imminents in hand, the 
coordinator then asks (only) those imminents to compute output and send output. The 
sendOut message will trigger imminents to put their output messages to their destination 
simulators, which are called influences. The influences, like the imminents, need to 
execute their state transition functions. Thus before imminents.tellAll("ApplyDelt“,tN), 
the coordinator adds those influences into imminents by executing imminents = 
imminents.addAll(influencees). At the end of the cycle, the coordinator asks all imminents 
to update their new tNs in the heap to prepare for the next simulation cycle.  

tN = Heap.getMin() 
imminents = Heap.getImms() 
imminents.tellAll("computeOuput“,tN) 
imminents.tellAll("sendOutput") 
imminents = imminents.addAll(influencees) 
imminents.tellAll("ApplyDelt“,tN) 
imminents.tellAll(“updateHeap”) 

It is worthy to point out that the computation complexity of finding the smallest tN is 
different between the standard coordinator and the heap-based coordinator. The standard 
coordinator finds the smallest tN by comparing tNs of all component simulators, which 
takes O(N) time, where N is the total number of component simulators. The heap based 
coordinator uses a heap structure to find the smallest tN which takes O(log(N)) time. By 
finding tN in an efficient way and focusing its computation only on the imminent models, 
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the heap-based coordinator greatly improves the simulation performance as compared 
with the standard coordinator. Nevertheless, the heap-based coordinator still depends on 
the model on memory requirement and initialization time (the time needed for a 
simulation to start). When simulating a nonDS model with a large scale cells, the heap-
based coordinator still takes long initialization time, and even becomes unable to run the 
simulation due to memory constrains.    

The above discussion shows that the DS model and the heap-based coordinator each 
has its own gains and limitations from the performance point of view. When these two 
work together, they compensate to each other: the heap-based coordinator can take 
advantage of the DS model’s low memory requirement and quick initialization time; the 
DS model can take advantage of the heap-based coordinator’s efficient simulation 
protocol. This combination is especially attractive for simulating large scale cellular 
space models that have relatively small number of active models. For this type of models, 
the DS model reduces the number of loaded models in a simulation and the heap-based 
coordinator makes it efficient to go through the simulation cycle.  

 
4. Performance Analysis 
Before carrying out performance measurement, a detailed performance analysis is 
presented in this section. Without losing generality, the performance analysis is based on 
the following simulation protocol that is implemented by both the standard coordinator 
and the heap-based coordinator for simulating DEVS models. 

Models.Construction(); 
 While (stop condition is not met){ 

simulators.AskAll(“nextTN”) 
tN = compareAndFindTN(); 
simulators.tellAll("computeOutput“,tN) 
simulators.tellAll("sendOutput") 
simulators.tellAll("ApplyDelt“,tN) 

 } 

From the above simulation protocol, the total execution time can be calculated as the 
sum of model construction time and the time for the simulation cycles. The model 
construction time depends on how many models need to be constructed and initialized. 
The simulation cycle time depends on the total number of simulation cycles and the 
execution time of each cycle (referred to as the cycle execution time in this paper). Next 
we analyze and compare the execution time for the four approaches described in the 
previous section: nonDS-std (simulate the nonDS model using the standard coordinator); 
DS-std (simulate the DS model using the standard coordinator); nonDS-heap (simulate 
the nonDS model using the heap-based coordinator); and DS-heap (simulate the DS 
model using the heap-based coordinator). 

 
4.1 Time Complexity Analysis  
In general, the total execution time of a simulation is represented using formula: 

T = Tconstruct + ∑
=

stepm

i
iT

_

1

 + Toverhead_add + Toverhead_delete                                 (1) 

where T is the total execution time. Tconstruct is the model construction time; Ti is the cycle 
execution time at cycle i (excluding the runtime overheads of dynamic structure if they 
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exist); m_step is the number of simulation cycles. m_step is dependent on the number of 
external, internal or confluent transitions, which are the measurement of message 
exchanges among models; Toverhead_add refers to the runtime overhead associated with 
dynamically adding models; Toverhead_delete is the overhead time spent for removing 
models. These two overheads exist only for DS models. We separate them out in order to 
make it easier to carry out the analysis. The four elements shown in Formula (1) have 
different values for nonDS-std, DS-std, nonDS-heap, and DS-heap as described below.  

For nonDS-std, all models are loaded before a simulation begins. Thus Tconstruct 
include all models’ construction time. In each simulation cycle, all simulators go through 
the simulation steps in the cycle (see section 3.2). However, the execution time for 
imminents is different from that of non-imminents. This is because an imminent model 
needs to execute its state transition function and/or output function, thus needs longer 
execution time than a non-imminent model. For nonDS-std, the total execution time 
(denoted as TnonDS-std) can be calculated from formula (1) using the following equations:  

Tconstruct  = N * tconstruct               (2) 

 ∑
=

stepm

i
it

_

1

 = ∑ ∑ ∑
=

−

++
stepm

i

n

j
tNsmallest

nN

j

i i

ttijtij
_

1
_ )'(                            (3) 

Toverhead_add = 0                       (4) 
Toverhead_delete = 0               (5) 

  
where N is the total number of cellular models, tconstruct is the construction and 
initialization time for one model. In formula (3), ni is the number of imminents in cycle i, 
tij is the cycle execution time for imminent model j, tij′ is the cycle execution time for 
non-imminent model j′. As mentioned before, tij′  < tij. For example, in the forest fire 
simulation that will be presented later tij′ is about 30% of tij. The tsmallest_tN is the time to 
find the smallest tN in every simulation cycle (referred as find-tN time). For the nonDS 
model we assume this time is the same for each cycle. We explicitly separate tsmallest_tN 
out in order to compare with the other three approaches. Both Toverhead_add and Toverhead_delete 
are 0 in nonDS model. Formula (2) – (5) shows that the execution time of nonDS-std is 
heavily influenced by the total number of models N and the number of imminents ∑ in . 

For DS-std, the simulation starts with a small set of active models and then adds new 
activated models and removes inactive models as the simulation proceeds. Note that the 
new added models, even created at different simulation steps, need to go through the 
same construction procedure. Thus in the following formulas, the construction time of all 
the added models is calculated using Tconstruct. The total execution time (denoted as TDS-std) 
for DS-std can be calculated using the following formulas: 

 Tconstruct = tconstruct * ncreated                               (6)  

 ∑
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stepm
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tNsmallest
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stepm

i

n

j

ttijtij
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                            (7) 

Toverhead_add = tadding * ncreated                   (8) 
 Toverhead_delete = tdeleting * ndeleted                           (9) 
 
where ncreated and ndeleted are the total number of added and deleted models; ncreated_i and 
ndeleted_i are the total number of created and deleted models up to simulation cycle i; tadding 



 10

and tdeleting are the overhead time for adding and deleting a model. All other parameters 
have the same meanings as before. In formula (7), (ncreated_i - ndeleted_i) represents the 
number of exiting models in simulation cycle i. In the following we use nactive_i to denote 
it. Note that since models are dynamically added and removed, nactive_i at different 
simulation cycles is different and is typically much smaller than N. Because of this, the 
find-tN time tsmallest_tN' in DS-std is smaller than that in nonDS-std. For a particular cycle i, 
the number of imminents ni in DS-std is the same as that in nonDS-std. One can see that 
for DS-std the execution time is influenced by the total number of created models ncreated, 
the number of active models in every simulation cycle nactive_i, and the dynamic structure 
overheads. Since ncreated is smaller than N, the overall construction time in DS is smaller 
than that in nonDS.  

For nonDS-heap, the total execution time (denoted as TnonDS-heap) can be calculated 
using the following formulas:  

Tconstruct  = N * tconstruct                       (10) 

 ∑
=

stepm

i
it
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+
stepm
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_
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__ )(                   (11) 

Toverhead_add = 0                   (12) 
Toverhead_delete = 0             (13)  
 

As can be seen, Tconstruct is the same as in nonDS-std. Formula (11) shows that the 
cycle execution time in nonDS-heap is smaller than that in nonDS-std. This is mainly due 
to the following two reasons. First, in nonDS-heap, only the imminents go through the 
simulation cycles. Thus, formula (11) does not have tij'. Second, the heap-based 
coordinator finds the smallest tN in a more efficient way than the standard coordinator. 
For large scale cellular space models (N is large), tsmallest_tN_heap can be much smaller than 
tsmallest_tN in nonDS-std. Toverhead_add and Toverhead_delete are 0 due to the nonDS model. 

Finally, for the approach of DS-heap, the total execution time (denoted as TDS-heap) 
can be calculated using the following formulas: 

Tconstruct = tconstruct * ncreated             (14)  

 ∑
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                              (15) 

Toverhead_add = tadding * ncreated                      (16) 
 Toverhead_delete = tdeleting * ndeleted              (17) 
 

In this approach, the Tconstruct, Toverhead_add, and Toverhead_delete are the same as in DS-std. 
However, because of the heap-based coordinator, the same two reasons mentioned above 
apply here. As a result, the cycle execution time of DS-heap does not have tij', and also 
tsmallest_tN_heap' is smaller than the tsmallest_tN' in DS-std. When compared to nonDS-heap, one 
can see that the construction time is different. In nonDS-heap, all models are constructed 
and initialized. But in DS-heap, only those created models are constructed and initialized. 
Furthermore, the find-tN time in DS-heap is smaller than that in nonDS-heap. This is 
because the number of active models nactive_i in every simulation cycle is smaller than N, 
thus resulting in a smaller heap size. On the negative side, DS-heap introduces overheads 
Toverhead_add and Toverhead_delete, which do not exist in nonDS-heap.  
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4.2 Performance Comparison of Different Approaches 
Based on the above formulas, further analysis is carried out to compare the performance 
gains and loss of these approaches. From formulas (2) – (9) we calculate the execution 
time difference between nonDS-std and DS-std: 

TnonDS-std  - TDS-std = tconstruct * (N - ncreated) - tadding * ncreated - tdeleting * ndeleted + 

∑ ∑
=

−

−+
stepm

i

nN

j
tNsmallesttNsmallest

iactive

tttij
_

1
__

_

)''(                            (18) 

Formula (18) shows that the performance difference between nonDS-std and DS-std 
comes from three sources: 1) Different from model construction time. Since ncreated < N, 
nonDS-std takes longer construction time. 2) Difference from dynamic structure 
overhead. This acts against the DS-std and depends on the total number of dynamically 
added and deleted models. 3) Difference from cycle execution time. This is due to the 
different number of active models in each simulation cycle: N for nonDS-std, and nactive_i 
for DS-std. This makes the nonDS-std run slower not only because it has more non-
imminent models to take care of (the tij' part in formula (18)), but also it takes longer 
find-tN time in each cycle. For large scale cellular space model that have small number of 
active models (nactive_i << N), in the long run, the cycle execution time plays major roles 
in the performance difference between nonDS-std and DS-std. However we note that the 
dynamic structure overhead cannot be ignored and can become significant when the 
number of added and deleted models are large.  

A similar comparison can be done between nonDS-heap and DS-heap. Their 
difference is given below. 

TnonDS-heap  - TDS-heap = tconstruct * (N - ncreated) - tadding * ncreated - tdeleting * ndeleted + 

∑
=

−
stepm

i
tNsmallesttNsmallest tt

_

1
__ )'(                   (19) 

Similarly, the difference comes from three sources that are model construction time: 
tconstruct * (N - ncreated), DS overhead: tadding * ncreated - tdeleting * ndeleted, and cycle execution 
time. What is different is that here the cycle execution time difference is mainly the find-
tN time difference: tsmallest_tN – tsmallest_tN’, which depends on the heap size of the two 
approaches. When the heap only add those node with non-infinity next event time, the 
heap size of nonDS and DS becomes the same and thus the difference of find-tN time 
becomes zero. So the major difference between nonDS-heap and DS-heap is the surplus 
construction time of the nonDS model and the dynamic structure overhead time of the DS 
model. When the surplus construction time is more than the DS overhead, DS-heap will 
have better performance than nonDS-heap, otherwise the opposite.  

The next comparison shows the performance impact of the heap-based simulation 
engine for DS models. To do this, the DS-std and DS-heap are compared. From formulas 
(6)-(9) and formulas (14)-(17), one can calculate the time difference between DS-std and 
DS-heap: 

TDS-std  - TDS-heap = ∑ ∑
=

−

−+
stepm

i
heaptNsmallesttNsmallest

nn

j

tttij
iiactive_

1
___ )'''(

_

                  (20) 

Formula (20) shows that the execution time difference between DS-std and DS-heap 
comes from the cycle execution time only. The performance gain of the heap-based 
simulation engine is clear, and is due to two reasons mentioned before: first, the heap-
based coordinator asks only the imminents to go through the simulation cycles; second, 
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the heap-based coordinator is faster than the standard coordinator in find-tN time. A 
similar comparison can be done between nonDS-std and nonDS-heap.  

To conclude, when the same simulation engine is considered, the DS model have 
performance gains by having less construction and initialization time, and faster cycle 
execution time. On the negative side, it has runtime overhead that could become 
significant when the number of added and deleted models becomes large. When the same 
model is considered, the heap-based coordinator is more efficient than the standard 
coordinator because of its more efficient simulation protocol. 

 
4.3 Runtime Memory 
While the above analysis focuses on the execution time, it is useful to look at the runtime 
memory too to compare the DS model and nonDS model. In general, the memory 
required to run a simulation depends on the number of loaded models in the simulation. 
For nonDS, this number is N because all models are loaded. For DS, this number is 
nexsiting_i_max, which is the maximum of nexsiting_i of all simulation cycles. IN almost all 
situations, nexsiting_i_max is less than N because inactive models are unloaded or 
dynamically removed. Thus for large scale cellular space models, the DS approaches 
(DS-std or DS-heap) need less memory than the nonDS approaches (nonDS-std or 
nonDS-heap). In fact, as the cellular space size increases, the DS approaches become the 
only feasible approaches for simulations on single computers because of the memory 
requirement.  

 
5.  Performance Measurement on Token Ring Model 
We start the performance measurement based on a simple one-dimensional cellular space 
model of token ring simulation. The measurement compares the simulation performance 
of DS model and nonDS model. Both simulations use the heap-based coordinator. The 
experiments (also the experiments for the forest fire spread example in the next section) 
were conducted on a Dell PC with Intel Celeron (M) 1.6GHZ processor, 1.0G memory, 
and Windows XP OS running DEVSJAVA version 3.0. 

The token ring model simulates the process that a token is passed from a cell to a 
neighbor cell in a singly linked cell list. Only the cell that holds the token becomes active. 
All other cells are in inactive state. The nonDS implementation creates all cells in the 
beginning and passes the token from the head cell to the second cell, then from the 
second cell to the third cell.  This process continues until the token reaches the tail cell or 
the simulation stops. In contrast, the DS implementation creates only the head cell and 
the second cell initially. When the token is passed to the second cell, the third cell is 
dynamically added and the first cell dynamically removed. Again, this continues until the 
tail cell is reached or the simulation stops. We define a complete travel of the token as the 
token is transferred from the head cell to the tail cell, a partial travel as the token only 
reaches some cell in the middle. 

In both the nonDS and DS implementation, since at any time there is only one active 
cell (this means there is only one node in the heap), the find-tN time is negligible and is 
ignored in the following analysis. Based on the complexity analysis in section 4, from 
formulas (10) – (13) we have TnonDS-heap = tconstruct * N + tDEVS * ncreated; from formulas 
(14) – (17) we have TDS-heap = tconstruct * ncreated + tDEVS * ncreated + (ncreated + ndeleted) * 
toverhead, where tDEVS represents the DEVS function execution time for each model, and 
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toverhead represent the dynamic structure overhead for adding/removing a cell. Note that in 
this example for simplicity the overheads of dynamically adding cell and removing cell 
are treated as the same. From the above we can see that for a simulation of a complete 
travel of the token, ncreated = ndeleted = N, so the DS implementation has worse performance 
than nonDS because it has extra overheads for creating and deleting models while the 
nonDS has not. However, for a simulation of a partial travel, the DS implementation can 
have better performance than the nonDS because it does not need to create all the cells. 

We develop two measurement metrics to measure the performance results. The first 
metric measures the execution time of nonDS and DS for simulating a complete travel 
with different cellular space sizes. The results are depicted in Figure 2(a). Figure 2(a) 
shows that the execution time increases linearly with the cell space size for both the 
nonDS and DS model, and the DS model consumes more time than the nonDS model for 
the same cell space size. This is consistent to the analysis before. The second metric 
measures the execution time of nonDS and DS for simulating different partial travels for 
the cell space size of 20,000. Specifically, we simulate partial travels where the token is 
transferred from the head cell to the 1000th, 5000th, 10000th, and 20000th cell respectively. 
Figure 2(b) shows the results, where TDS (experiment) denotes the execution time of the 
DS model and TnonDS denotes the execution time of the nonDS model. As can be seen, 
when simulating partial travels that end early, the DS model gives better performance 
than the nonDS model. After the partial travel increases its ending position up to a certain 
point, the nonDS model results in better performance. The intersection point where the 
performance of the nonDS model bypasses that of the DS model is marked in Figure 2(b). 
We define this as the “threshold” point for this application, which is a dividing point to 
measure if the performance of the DS model is superior to the nonDS model or not. 
When simulating partial travels whose ending positions are smaller than the threshold 
point, the DS model gives better execution time. Otherwise, the nonDS model has better 
execution time.  
 
      

 
 
 
 
 

 
 
 
 
 

 
(a)              (b) 

Figure 2. (a) Execution Time of Token Ring Model for Different Model Sizes  
(b) Execution Time of Token Ring at Different Number of Models 

 
To further analyze the amount of dynamic structure overhead for this application, we 
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tDEVS based on the measurement result of the nonDS simulation of a complete travel with 
20000 cells. Specifically, tconstruct is calculated using the measured construction time of 
the simulation: tconstruct = Tconstrut_nonDS / N; then tDEVS is calculated based on the formula 
TnonDS-heap = tconstruct * N + tDEVS * ncreated, where ncreated =N. Finally, toverhead is calculated 
using the measurement results of the DS simulation of the same model according to TDS-

heap = tconstruct * ncreated + tDEVS * ncreated + (ncreated + ndeleted) * toverhead, where ncreated = ndeleted 
= N since this is a complete travel. The calculation shows that tconstruct, tdevs and toverhead are 
0.205ms, 0.591ms, and 0.409ms respectively. Using these values, we also compute the 
“analytic” execution time TDS (computed) for the simulations of partial travels shown in 
Figure 2(b). As can be seen, the computed execution time for these simulations matches 
very well with the measurement results.  

This example shows that the execution time of DS and nonDS follows the time 
complexity analysis presented in section 4. Due to the simplicity of this token ring model 
that has only one active cell in the simulation all the time, we were able to calculate the 
amount of dynamic structure overhead for adding/deleting one cell. Computation results 
based on this dynamic structure overhead for partial travel simulations matches well with 
the measured results. The results show that the DS overhead cannot be ignored and will 
play a significant role as the number added/deleted cells increases. Next we carry out 
performance measurement using a more complex model: the forest fire spread model.  
 
6.  Performance Measurement on Forest Fire Spread Model 
The forest fire spread model is a two-dimensional cell-space model composed of 
individual forest cells coupled together according to their relative geometric locations. 
Each cell represents a sub-area in the forest and is implemented as a DEVS atomic 
model. A cell is coupled to its eight neighbors corresponding to the N, NE, E, SE, S, SW, 
W, and NW directions respectively. Accordingly, for each cell, eight fire spreading 
directions are defined. Fire spreading is modeled as a propagation process when burning 
cells ignite their unburned neighboring cells. Each cell can be in one of the following 
states: unburn, burning, and burned. When a cell is ignited, the maximum fire spread 
speed and direction of a cell is calculated using Rothermel’s semi-empirical model [32] 
that takes into account factors such as fuel model, slope, and wind speed and direction. 
This maximum rate of spread is then decomposed into eight spreading directions 
according to an ellipse shape. More descriptions of this model can be found in [10]. 

Compared to the token ring model in the previous section, the forest fire spread 
model has complex spatial-temporal behaviors and thus are more difficult to analyze the 
performance results. In order to carry out comprehensive performance measurement, we 
developed five metrics that cover both the runtime memory and execution time of the 
simulations as listed below.  

• Memory usage 
• Initialization time for different cellular space sizes 
• Execution time for different cellular space sizes 
• Execution time of different simulation stages 
• Execution time for different model behaviors  
 
The first metric compares the memory usage of nonDS and DS models. The second 

one compares the initial construction time of different cellular space sizes. Here the 
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initialization time includes the time to construct the model and to set up the simulators 
before going through any simulation cycles. The third metric compares the total 
execution time (including the initial construction time) under various cellular space sizes. 
The fourth metric shows the execution time at different stages of simulations using DS-
std and DS-heap. This allows us to see how the dynamically added/deleted cells in 
different stages of a simulation affect the simulation execution time in those stages. The 
fifth metric measures the execution time with different model behaviors. This 
measurement aims to show the significance of the dynamic structure overhead for models 
whose behavior resulting in large number of added/deleted cells. It provides guidelines 
for selecting DS or nonDS models based on the model behavior.  
 
6.1 Memory Usage 
Memory usage is an important aspect to measure the simulation performance. Our 
previous analysis shows that the DS approach is superior to nonDS approach for memory 
usage. Figure 3 presents the comparison of memory usage between nonDS-heap and DS-
heap. We note that for the same type of model, the difference of using a standard 
coordinator or using a heap-based coordinator is insignificant. Figure 3(a) shows the 
memory usage at different simulation stages when simulating a 200*200 cellular space 
model up to next event time tN=20000 second. As can be seen, in nonDS-heap the 
number of loaded cells always equals to the total cellular space size, so the memory usage 
stays on the top and does not change during the simulation. In DS-heap, the number of 
loaded cells (listed in Table 1) increases gradually as the simulation proceeds, so the 
memory usage increases accordingly. However, overall the DS-heap uses much less 
memory than the nonDS-heap does. This is because in the forest fire spread simulation, 
the number of active cells (i.e., the cells that belong to the fire front) is only a small 
portion of the total number of cells. Figure 3(b) shows the memory usage for different 
cell space sizes at the simulation time tN=20000. It shows that the memory usage for 
nonDS-heap “linearly” increases as the cell space size increases. But the memory usage 
for DS-heap does not change much because it depends on the number of loaded cells 
instead of the total number of cells in the cell space.  

To summarize, the memory usage is closely related to the number of loaded cells in 
the simulation. DS model can result in much less memory usage than nonDS model 
because it does not load all the cells into the simulation at the same time. This feature 
makes the DS approach attractive for large scale cell space models. In such cases, the DS 
approach may become the only feasible approach because of its memory advantage.  
 

Table 1. Number of Active Cells and Memory Use in DS-heap (200*200 Cell Space) 
Simulation 
time (tN) 

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

Number of 
active cells 

89 210 340 459 577 711 819 958 1081 1185 

Memory Use 
(Mbytes) 

17 25 38 48 58 81 110 137 147 189 
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(a)          (b) 

Figure 3. Memory Usage for nonDS-heap and DS-heap  
(a) 200*200 Memory Usage (b) Comparison of Different Cell Space Size 

 
6.2 Initialization Time for Different Cellular Space Sizes 
 

Table 2. Initialization Time (sec.) of Different Cell Space Size 
Tinitial (s) 40*40 60*60 80*80 100*100 250*250 500*500 1000*1000 2000*2000 
TnonDS-std 3.4 13.2 38.5 91.2 N/A N/A N/A N/A 
TnonDS-heap 3.4 13.1 38.6 91.4 N/A N/A N/A N/A 
TDS-std 0.4 0.4 0.4 0.4 0.5 0.6 1.1 2.2 
TDS-heap 0.4 0.4 0.4 0.4 0.5 0.7 1.3 2.2 

 
The initialization time of a simulation provides a direct measurement of how fast a 
simulation can start. In this experiment, we run simulations of forest fire spread model 
and measure the initialization time with different cell space sizes. Table 2 shows the 
results for models with sizes of 40*40, 60*60, 80*80, 100*100, 250*250, 500*500, 
1000*1000 and 2000*2000. The data “N/A” means no result was collected because of the 
memory limitation due to the very large cellular space size. From Table 2 one can see 
that the initialization time of nonDS-std and nonDS-heap increases with the increase of 
cellular space size. This is because they need to initialize all the models at the beginning 
of the simulation. But for DS-std and DS-heap, the initialization time is little and 
increases slowly with the increase of cellular space size. This slight increase is because 
the DS model uses a 2D array to keep track of each cell’s loading status. Therefore, with 
the increase of cellular space size, the setup time of this 2D array increases accordingly. 
Overall, the trend of initialization time matches with memory usage. Table 2 shows that 
the DS based approaches are much faster than the nonDS based approaches to start a 
simulation.  

 
6.3 Execution Time for Different Cell Space Sizes 
According to the time complexity analysis in section 4, the total execution time includes 
initialization time as well as the cycle execution time. In this measurement we run 
simulations with different cell space sizes and measure their execution time up to the 
simulation time tN = 12000. Table 3 records the results and Figure 4 illustrates them for 
nonDS-heap, DS-std and DS-heap. Similarly, the data “N/A” means no result was 
collected because of the memory limitation due to the large cell space size. 
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Table 3. Execution Time (sec.) (tN = 12000) for Different Cellular Space Sizes 
 40*40 60*60 80*80 100*100 250*250 500*500 1000*1000 2000*2000 

TnonDS-std 21.4 67.4 149.6 278.8 N/A N/A N/A N/A 
TnonDS-heap 7.1 20.8 52.2 118.4 N/A N/A N/A N/A 

TDS-std 11.1 20.8 29.5 34.6 35.5 34.9 34.7 34.5 
TDS-heap 9.2 16.0 22.7 25.5 26.3 25.9 25.9 26.1 
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Figure 4. Execution Time of Different Cell Space Sizes 

 
Table 3 shows that for the same cell space size, DS-heap is the most efficient and 

nonDS-std is the least efficient. This can be explained from formulas (18) - (20). In 
particular, formula (19) computes the difference between DS-heap and nonDS-heap. It 
shows that DS-heap has better performance than nonDS-heap when the DS overhead of 
the DS-heap is less than the surplus construction time of nonDS-heap. This is what we 
see in Table 3 for all cases except for 40*40, where nonDS-heap gives better 
performance result than DS-heap. For this case, the number of added cells ncreated almost 
reaches N when tN=12000. So the surplus construction time of nonDS-heap is small. 
Overall in this measurement because the simulations end early (tN = 12000), only 
relatively small number of cells have been dynamically added/removed, thus the DS 
overhead is relatively small. This makes the DS approaches have better performance than 
the nonDS approaches as shown in Table 3 and Figure 4. We note that because of the 
model construction time, both TnonDS-heap and TnonDS-std increases when the cellular space 
size increases. However this is not true for TDS-heap and TDS-std. After a certain point, 
further increase of the cell space size will have no effect on the number of 
added/removed cells and thus the execution time of DS-std and DS-heap will remain 
unchanged. This is because in this particular forest fire application, the spread speed of 
fire front keeps constant after the simulation proceeds to a certain point. So the increase 
of the cellular space size does not affect the execution time. 

     
6.4 Execution Time at Different Simulation Stages 
This section provides a performance measurement on DS-std and DS-heap to show how 
the dynamically added/deleted cells in different stages of a simulation affect the 
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simulation execution time. Figure 5 displays the relationship between the execution time 
and ncreated/ndeleted/nactive/nimminent for DS-std and DS-heap on a 200*200 cell space. In this 
experiment, we divide the entire simulation into multiple stages. Each stage consists of 
2000 simulation steps (referred to as m_step in formulas (2) – (17)). For example, stage 
6000-8000 represents the simulation stage from simulation step 6000 to 8000. In the 
figure, ncreated and ndeleted represents the number of created and deleted models 
respectively during a stage; nactive represents the number of existing models at the end 
point of a stage, which is calculated by adding the change of number of cells in this stage 
(ncreated - ndeleted) to the nactive in the previous stage; and nimminent is the total number of cells 
that are imminent in a stage. We note here that nimminent is used as the measurement of 
event transitions or activity during a stage. The left y-axis denotes the execution time for 
TDS-std and TDS-heap, while the right y-axis denotes the number of cells for 
ncreated/ndeleted/nactive/nimminent.  

Figure 5 shows that ncreated at different stages maintains about the same and decreases 
very slowly, whereas ndeleted increases slowly. The ncreated is larger than ndeleted before tstep 
= 52000, and becomes smaller after that. As a result, nactive increases in the beginning and 
then decreases after tstep = 52000. One can see that TDS-std follows the same trend as the 
number of active cells nactive. This can be explained as follows. As shown in formulas (6)-
(9), the execution time of DS-std includes three parts: 1) tconstruct * ncreated, 2) active 
models’ cycle execution time, which is dependent on nactive and m_step, and 3) DS 
overheads tadding * ncreated and tdeleting * ndeleted. In this experiment, each stage has 2000 
cycles and the number of active cells is large. So the stage execution time is mainly 
determined by the active cells’ execution time, thus shows the same trend of the number 
of active cells. There lie differences between these two lines as shown in Figure 5. This is 
due to the overheads of adding/deleting cells, which cause, for example, the execution 
time to increase faster than the number of active cells does.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Execution Time at different stages for DS-std and DS-heap 
 

From Figure 5 one can also see the number of imminent cells nimminent keeps almost 
the same for different stages. Note that the heap-based coordinator asks only imminents to 
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go through the simulation cycles. This explains why TDS-heap does not follow the trend of 
nactive. Instead, it “smoothes” out by following the trend of nimminent that is almost constant 
along all stages. On the other hand, nactive still plays a role there because it affects the 
find-tN time in the heap-based coordinator (see formula (15)). The results of DS-heap and 
nonDS-heap shown in Figure 5 are consistent with the analysis in Section 4.  

 
6.5 Execution Time for Different Model Behaviors (Multiple Ignition Points) 
In the above metrics, the overheads of dynamic structure are not very obvious because 
ncreated and ndeleted are relatively small. In this experiment, we intend to show that the DS 
overheads can become significant. To do this we set up simulations that use multiple 
ignition points to ignite multiple fires at the same time. 

Figure 6 and Table 4 show the performance results when 5 sparse ignitions and 5 
close ignitions are used separately in a 100*100 cellular space for nonDS-heap and DS-
heap. Here we differentiate two situations: a sparse ignition situation where the five 
ignition points are far away from each other; and a close ignition situation where the five 
ignition points are close to each other. In the sparse ignition situation, five fires are 
started and spread independently for a long time, whereas in the close ignition situation 
the five fires quickly merge into a single fire. We measure the execution time (the time 
from when the simulation starts) every 2000 simulation time point along the entire 
process of the simulation (up to tN = 20000). The measurement results are recorded in 
Table 4 and depicted in Figure 6 for both the sparse and close ignition situations. From 
the results, one can see that because the sparse ignition situation has more ncreated, ndeleted 
and nactive (ncreated - ndeleted), its execution time is more than that for the close ignition 
situation. This is true for both DS-heap and nonDS-heap. In the case of nonDS-heap, the 
execution time difference between the sparse and close ignition situations is small. But in 
the case of DS-heap, their execution time difference is much larger. This large difference 
is partially due to the large number of active cells in the sparse ignition situation. More 
importantly, it is due to the DS overheads. Because a lot more cells are dynamically 
added and deleted in the sparse ignition situation, thus a lot more DS overheads exist, 
which leads to larger execution time.  
 

 
 
 
 
 
 
 
 
 

       
     
   (a)       (b) 
Figure 6. (a) Execution Time of Sparse Multiple Ignitions 

(b) Execution Time of Close Multiple Ignitions  
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Table 4. (a) Sparse Ignitions (100*100 Cell Space) 
tN 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

ncreated 455 1360 2737 4322 5858 6718 7392 7922 8280 8484 

ndeleted 10 310 1095 2325 3859 5501 6427 7141 7697 8116 
TDS-heap 2.4 12.6 48.6 120.7 218.8 296.8 325.9 345.7 357 362.8 

TnonDS-heap 97.8 100.3 103.8 108.2 113.3 117 119.5 121.6 123.2 124.1 

 
Table 4. (b) Close Ignitions (100*100 Cell Space) 

tN 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 

ncreated 195 449 812 1255 1794 2318 2801 3279 3752 4187 

ndeleted 10 150 380 708 1138 1655 2168 2657 3118 3582 

TDS-heap 1.6 3.7 7.7 14.4 24.3 36.9 48.8 59.7 69.8 80.1 

TnonDS-heap 97.5 98.3 99.5 100.9 102.7 104.6 106.3 108 109.7 111.3 

 
The significance of DS overheads can also be illustrated when comparing DS-heap 

and nonDS-heap for the same model behavior, for example, the sparse ignition behavior 
shown in Figure 6(a). As can be seen, at the beginning of the simulation DS-heap uses 
less time than nonDS-heap because the nonDS model needs to loads all the cells before 
the simulation starts. However as the simulation proceeds TDS-heap bypasses TnonDS-heap (at 
tN = 8000). According to formulas (10)-(17), the reason that can cause this bypass is the 
dynamic structure overheads, which depend on ncreated and ndeleted. As ncreated and ndeleted 
increases, the DS overheads increase too. Eventually the execution time of DS-heap 
becomes larger than that of nonDS-heap as shown in Figure 6(a). For the close ignition 
situation shown in Figure 6(b), until tN = 20000 DS-heap is still better than nonDS-heap. 
This is because ncreated and ndeleted are not large enough to make the DS overheads become 
dominant. However based on the trend of TnonDS-heap and TDS-heap, if the simulation 
continues further, these two lines will intersect and TDS-heap will bypass TnonDS-heap 
eventually.  

The above analysis shows that the number of added and deleted cells plays an 
important role to decide if a DS model outperforms or underperforms a nonDS model. 
Similar to what has been discussed in the token ring model, there exists a “DS-threshold” 
for the forest fire spread model. This “DS-threshold” indicates when the DS model will 
become underperformed than the nonDS model. For a forest fire simulation, we can 
roughly compute the ratio of the number of added and deleted cells (ncreated+ndeleted) over 
the total number of cells N and then check if it reaches the “DS-threshold”. A simulation 
whose (ncreated+ndeleted)/N is smaller than the “DS-threshold” will give better performance 
result when using the DS model. Otherwise the nonDS model will give better 
performance result.  

The concept of the “DS-threshold” is further illustrated by another experiment that 
takes 100 randomly generated ignition points in a 100*100 cell space up to tN=20000. 
Same as before, we compare the nonDS-heap and DS-heap approaches. Figure 7 presents 
the performance results. It can be seen that in this experiment, the DS-threshold is easily 
reached because there are 100 ignition points, which quickly result in a large number of 
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added and deleted cells (and thus reaches the “DS-threashold”). Therefore, the DS model 
quickly underperforms the nonDS model from the execution time point of view.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. 100 Sparse Ignition for DS-heap and nonDS-heap  
 
7. Discussions 
The measurement results from both the token ring example and the forest fire spread 
example show that dynamic structure modeling has important impact on the simulation 
performance for large scale cellular space models. By dynamically adding and removing 
cells as needed, a DS model maintains only the active cells instead of loading the entire 
cell space. This has positive influences to the simulation performance from three aspects. 
First, it reduces the memory requirement as compared to a nonDS model. Second, it 
results in fast initialization time for models that have small number of active cells in the 
beginning. Third, maintaining only the subset of active cells reduces the search space for 
the simulation engine and allows the simulation engine to focus its computation power on 
the active cells in a more effective manner. However, on the negative size, the overhead 
of dynamically adding/removing cells at runtime cannot be ignored and can become 
significant (even dominant) for simulations that activate most of the cells in the cell 
space. In these cases, the advantage of not constructing all the cells in the cell space 
diminishes and the disadvantage of DS overhead becomes dominant. It is important to 
note that these performance gains and loss of DS modeling become significant only for 
large scale cellular space models, which is what this paper focuses on.  

The performance gains and loss of DS modeling results in an effect of “DS-
threshold” that was demonstrated in both the token ring simulation example and the fire 
spread simulation example. Specifically, for a given cellular space size, the DS model 
gives better performance if a simulation ends with small number of cells being activated. 
This could happen either the simulation terminates early (for example, simulating only 10 
minutes of fire spread) or the number of cells involved in the simulation is small (for 
example, a fire spread simulation where most of the cells are unburnable). As the number 
of activated cells increases, the overhead of dynamically adding/deleting cells increases 
and eventually the DS model underperforms the nonDS model. This happens either 
because the simulation lasts for enough long time or the model behavior activates large 
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number of cells in a short time like in the multiple ignitions experiment presented before. 
In the extreme case where all cells are activated, the DS model will definitely results in 
slower execution time than the nonDS model. Because this effect of “DS-threshold” is 
due to the inherent performance gains and loss of DS modeling, it is general for all DS 
models, and can be used as a guideline for deciding if a DS model gives better or worse 
performance than a nonDS model. However, we note that the specific value of the “DS-
threshold” is application dependent, and may be difficult to calculate for models with 
complex behavior such as the fire spread model. This is because the runtime overhead of 
dynamically adding/deleting models is closely related to the specific implementation of 
the model and simulator, as well as the programming language (such as object creation 
and garbage collection in JAVA).  

Based on the above discussions, we suggest DS modeling be used for the following 
situations: 1) the system to be modeled is dynamic structure in nature. In this case, the 
motivation is not on the performance aspect but on the modeling power of DS model; 2) 
large scale models that require excessive amount of memories if loading all the models 
all at once. In this case, the DS modeling (if it can be applied) can help to load only a 
subset of the models in a dynamically manner; 3) simulations have massive number of 
models but only a relatively “small” portion of them are active. In this case, DS modeling 
significantly saves model construction time by introducing relatively small DS overhead. 
As mentioned before, for larges scale cellular space models, this could be either the 
simulation terminates early or the number of cells involved in the simulation is small in 
nature.  

 
8.  Conclusions 
Dynamic Structure DEVS (DSDEVS) is an advanced modeling technique that allows 
DEVS models and their couplings to be dynamically changed for modeling complex 
systems. In this paper, we focus on the performance aspect of dynamic structure DEVS, 
and carry out comprehensive performance analysis and performance measurement based 
on a token ring model and a large scale forest fire spread model. Approaches of 
simulating DS model and nonDS model using a standard coordinator and a heap-based 
coordinator are considered. The analysis and measurement results show that dynamic 
structure modeling has both positive and negative impacts on the simulation performance 
for large scale cellular space models. Discussions about DS modeling’s applicability in 
different situations are provided  

 
Acknowledgements 
This research was supported by grants CNS-0540000 and CNS-0720675 from the 
National Science Foundation. 

 
References: 
[1] Barros, F.J. 1997. Modeling Formalisms for Dynamic Structure Systems. ACM 

Transactions on Modeling and Computer Simulation 7(4), 501-515. 
[2] Zeigler, B.P., T.G. Kim, and H. Praehofer. 2000. Theory of Modeling and Simulation, 

2nd edition. Academic Press, New York, USA. 



 23

[3] Uhrmacher, A.M. 2001. Dynamic Structures in Modeling and Simulation - A 
Reflective Approach. ACM Transactions on Modeling and Simulation 11(2), 206-
232. 

[4] Zeigler, B.P., T.G. Kim and C. Lee. 1991. Variable structure modelling methodology: 
An adaptive computer architecture example. Trans. Sot. Comput. Simulation 7(4), 
291-319. 

[5] Barros, F. J. and M. T. Mendes. 1997. Forest fire modelling and simulation in the 
DELTA environment. Simul. Pr. Theory 5(3), 185-197. 

[6] Muzy, A., E. Innocenti, D.R.C. Hill, A. Aïello, J.F. Santucci, and P.A. Santoni. 2004. 
Dynamic structure cellular automata in a fire spreading application. Proceedings 
of the First International Conference on Informatics in Control, Automation and 
Robotics, IEEE/CSS/IFAC/ACM/AAAI/APPIA, Setubal, Portugal. 143–151.  

[7] Hu, X., B. P. Zeigler, and S. Mittal. 2005. Variable Structure in DEVS Component-
Based Modeling and Simulation. Simulation: Transactions of The Society for 
Modeling and Simulation International 81(2), 91-102. 

[8] Wainer, G. and N. Giambiasi. 2002. N-Dimensional Cell-DEVS. Discrete Events 
Systems: Theory and Applications 12(1), 135–157. 

[9] Wainer, G. A. Modeling and simulation of complex systems with Cell-DEVS. 2004.  
Proceedings of the 36th conference on winter simulation 1, 45-56.  

[10] Ntaimo, L., B. Khargharia, B. P. Zeigler and M. J. Vasconcelos. 2004. Forest fire 
spread and suppression in DEVS, SIMULATION, 80 (10), 479-500.  

[11] DEVS-Java Reference Guide, www.acims.arizona.edu. 
[12] Mittal, S., E. Mak, and J.J. Nutaro. 2006. DEVS-Based Dynamic Model 

Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process. 
Journal of Defense Modeling and Simulation (JDMS) 3(4), 239-267. 

[13] Sun, Y. and X. Hu. 2007. Performance measurement of DEVS dynamic structure on 
forest fire spreading simulation. Proc.14th AI, Simulation and Planning in High 
Autonomy Systems (AIS 2007) 12. 

[14] Finney, M.A. 1998. FARSITE: Fire area simulator – Development and Evaluation. 
Research Paper RMRS-RP-4. US Dept. of Agriculture, Forest Service, 52. 

[15] Filippi, J-B. and P. Bisgambiglia. 2002. Enabling large scale and high definition 
simulation of natural systems with vector models and JDEVS. Proceedings of the 
2002 Winter Simulation Conference. 1964-1970. 

[16] Berger, M. J. and P Colella. 1989. Local Adaptive Mesh Refinement for Shock 
Hydrodynamics. J. Comput. Phys. 82, 64-84. 

[17] Hu, X. and L. Ntaimo. 2006. Dynamic Multi-resolution Cellular Space Modeling for 
Forest Fire Simulation. Proc. DEVS Integrative M&S Symposium (DEVS’06), 
Spring Simulation Multiconference, April 2-5, 95-102. 

[18] Hu, X. and B. P. Zeigler. 2004. A High Performance Simulation Engine for Large-
Scale Cellular DEVS Models. High Performance Computing Symposium 
(HPC'04), Advanced Simulation Technologies Conference, April, 3-8. 

[19] Hall, S. B., S. M. Venkatesan, and D. B. Wood. 2003. A Faster Implementation of 
DEVS in the Joint MEASURE Simulation Environment. In Proc. of Summer 
Computer Simulation Conference, Montreal, July. 



 24

[20] Shiginah, F. A. and B. P. Zeigler. 2006. Transforming DEVS to non-modular form 
for faster cellular space simulation. In Proceedings of 2006 DEVS Symposium, 
86-91. 

[21] Zeigler, B., D. Kim, and S. Buckley. 1999. Distributed supply chain simulation in a 
DEVS/CORBA execution environment. In Pro-ceedings of the 1999 Winter 
Simulation Conference, Phoenix, AZ. 1333-1340. 

[22] Zeigler, B., and H. S. Sarjoughian. 1999. Support for hierarchical modular 
component-based model construction in DEVS/HLA. Simulation Interoperability 
Workshop, March 14-19, Orlando, FL. 

[23] Zhang, M., B. Zeigler, and P. Hammonds. 2006. DEVS/RMI – An auto-adaptive and 
reconfigurable distributed simulation environment for engineering studies. Spring 
Simulation Multiconference – DEVS Integrative M&S Symposium, Huntsville, AL. 

[24] Mittal, S., J.L. Risco-Martín, and B.P. Zeigler. 2007. DEVSML: Automating DEVS 
Execution Over SOA Towards Transparent Simulators. DEVS Symposium, 
Spring Simulation Multiconference, March, 287-295, Norfork, Virginia. 

[25] Nutaro, J. 2004. Risk-free optimistic simulation of DEVS models. Advanced 
Simulation Technologies Conference – Military, Government, and Aerospace 
Simulation Symposium, 113-118, Arlington, VA. 

[26] Sunwoo, P. 2003. Hierarchical Model Partitioning for Distributed Simulation of 
Hierarchical and Modular DEVS Models. Ph.D. Dissertation, Univ. of Arizona, 
May. 

[27] Foster, I., C. Kesselman, and S. Tuecke. 2001. The Anatony of the Grid: Enabling 
Scalable Virtual Organizations. Int’l J. High-Performance Computing 
Applications 15(3), 200-222. 

[28] Foster, I. 1998. Computational Grids. Reprinted by permission of Morgan Kaufmann 
Publishers from The Grid: The Blueprint for a Future Computing Infrastructure. 

[29] Song, H. J., X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. 
2000. The MicroGrid: a Scienti_c Tool for Modeling Computational Grids. 
Scientific Programming 8(3), 127-141. 

[30] http://www.Globus.org 
[31] Seo, C., S. Park, B. Kim, S. Cheon, and B. P. Zeigler. 2004. Implementation of 

Distributed high-performance DEVS Simulation Framework in the Grid 
Computing Environment. In Proceedings of the 2004 Advanced Simulation 
Technologies Conference (ASTC '04) — High Performance Computing 
Symposium 2004 (HPCS 2004), 9-15, Arlington, VA. 

[32] Rothermel, R. 1972. A mathematical model for predicting fire spread in wildland 
fuels. Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, 
Forest Service, Intermountain Forest and Range Experiment Station. 

[33] Wyman, F. P. 1975. Improved event-scanning mechanisms for discrete event 
simulation. Commun. ACM, 18, 350-353. 

[34] Vaucher, J. G. and P. Duval. 1975. A comparison of simulation event list algorithms. 
Commun. ACM, 18, 223-230. 

[35] Steinman, J. S. 1996. Discrete-event simulation and the event horizon part 2: Event 
list management. In PADS '96: Proceedings of the Tenth Workshop on Parallel 
and Distributed Simulation, 170-178. 



 25

[36] Rönngren, R., J. Riboe and R. Ayani. 1991. Lazy queue: An efficient 
implementation of the pending-event set. In ANSS '91: Proceedings of the 24th 
Annual Symposium on Simulation, 194-204. 

[37] McCormack, W. M. and R. G. Sargent. 1981. Analysis of future event set algorithms 
for discrete event simulation. Commun. ACM, 24, 801-812. 

[38] Jones, D. W. 1986. An empirical comparison of priority-queue and event-set 
implementations. Commun. ACM, 29, 300-311. 

[39] Chung, K., J. Sang and V. Rego. 1993. A performance comparison of event calendar 
algorithms: an empirical approach. Softw. Pract. Exper., 23, 1107-1138. 

[40] Bahr, H. and R. DeMara. 2004. Smart priority queue algorithms for self-optimizing 
event storage. Simulation Modeling Practice and Theory, 12 (April), 15-40. 

[41] SLEATOR, D. D. AND TARJAN, R. E. 1985. Self-adjusting binary search trees. J. 
ACM 32, 3 (July), 652–686. 

[42] Vaucher, J. and G. P. Duval. 1975. A comparison of simulation event list algorithms, 
Communications of the ACM 18(4), 223-230. 

[43] Brown, R. and Calendar queue. 1988. A fast O(1) priority queue implementation for 
the simulation event set problem. Communication of the ACM 31(10), 1220-1227. 

[44] Zeigler B. P. and H. Sarjoughian. 2002. Introduction to DEVS Modeling and 
Simulation with JAVA: A Simplified Approach to HLA-Compliant Distributed 
Simulations, The University of Arizona, Tucson, Arizona, USA, 
http://www.acims.arizona.edu. 

[45] Fujimoto, R. M. Parallel and Distribution Simulation Systems. Wiley. 1999. 
[46] Glinsky, El. and G. Wainer. 2005. Abstract simulation algorithms for Parallel CD++. 

Technical Report SCE-05-11. Carleton University. 2005. 
[47] Zacharewicz, G., N. Giambiasi, and C. Frydman. 2005. Improving the Lookahead 

Computation in G-DEVS/HLA Environment. Proceedings of the 9th IEEE 
International Symposium on Distributed Simulation and Real-Time Applications. 
273-282, Montreal, Canada 2005. 

[48] Glinsky, E. and G. A. Wainer. 2005. DEVStone: a Benchmarking Technique for 
Studying Performance of DEVS Modeling and Simulation Environments, 9th 
IEEE International Symposium on Distributed Simulation and Real Time 
Applications. 273-282, Montreal, Canada 2005. 

[49] RICK SIOW MONG GOH and IAN LI-JIN THNG. 2005. Twol-Amalgamated 
Priority Queues. ACM Journal of Experimental Algorithmics, 9(1.6), 1–45. 

[50] L’Ecuyer, P. and Y. Champoux. 2001. Estimating small cell-loss ratios in ATM 
switches via importance sampling. ACM Trans. Model Computer Simulation. 
11(1) (Jan.), 76-105.  

[51] Willig, A. 2005. Performance Evaluation Techniques, Fundamentals and Big 
Picture. Telecommunication Networks Group, Technical University Berlin. 

[52] Le Boudec, J. Y. 2007. Performance Evaluation of Computer and Communication 
Systems. EPFL. 

[53] Jain, R. 1991. The Art of Computer Systems Performance Analysis. John Wiley & 
Sons, England. 

 



 26

YI SUN is a Ph.D. candidate in the Computer Science Department at Georgia State 
University. Her research interests include performance improvement of discrete event 
systems. 

 
XIAOLIN HU is an assistant professor in the Computer Science Department at Georgia 
State University. His research interests include modeling and simulation, agents, and 
simulation-based design. 


