
Interfacing and Coordination for a DEVS Simulation
Protocol Standard

Khaldoon Al-Zoubi Gabriel Wainer

Department of Systems and Computer Engineering

Carleton University Centre for Visualization and Simulation (V-Sim)
Ottawa, ON K1S-5B6 Canada

kazoubi@connect.carleton.ca , gwainer@sce.carleton.ca

ABSTRACT

The DEVS formalism has been adopted and developed
independently by many research teams, which led to various
DEVS implementation versions. Consequently, different DEVS
implementations currently vary at many levels such as in the type
of simulation (parallel, distributed, embedded, etc.) or in the used
programming language or computer platform. Interfacing various
DEVS implementations becomes a necessity, particularly in
today’s world where sharing resources in distributed fashion have
been rapidly gaining momentum. Here, we propose a mechanism
enable interfacing and coordination between different DEVS
implementations to cooperate among each other, towards a
standardization effort. The proposed DEVS protocol is
implemented using Web-Services technology as the
communication framework to exchange control and simulation
messages (contained by SOAP messages). This will allow
executing simulations for the same model hierarchy in an open grid
distributed environment. Therefore, the main objective of the
proposed protocol is to enable different DEVS implementations to
interface and coordinate among each other to simulate the same
model structure across their domains. The protocol objective is
achievable with minimum design changes to each DEVS
implementation, mainly by hiding the detailed implementation
behind a wrapper and focusing only on the exchanged messages.
Further, the simulation cycle is greatly simplified by enclosing all
diverse models across domains by outer coupled model, hence
simulating single distributed coupled model. Furthermore, the
proposed protocol is flexible enough to adjust to any new
coordination schemes or communication framework may be used
in the future.

Keywords
DEVS Standard, Distributed Simulation, Web-services.

1. INTRODUCTION
Modeling and simulation (M&S) plays an important role in

studying complex natural and artificial systems. Discrete Event
System Specification (DEVS) [13] is a modeling and simulation
formalism that has been used to study such discrete event
systems. It provides means for modeling the system as hierarchal

components, each of which has input and output ports to interact
with other components and with the external environment. The
success using DEVS in the field of M&S has inspired researchers
to define DEVS-based extensions (e.g. Cell-DEVS [11] is an
extension that allows for representing each cell in the cell space as
a DEVS model that is only activated when it receives external
inputs from its neighboring cells).

Over the years, the DEVS formalism has evolved from its
original discrete-event conception, and it has been adapted and
modified independently by many research teams. Various DEVS
implementations exist (see [10] for a list). Each of them vary in
aspects such as the programming language used, underlying
computer platforms, simulation extensions (e.g. standalone,
parallel, distributed) and modeling extensions (each DEVS
implementation uses different ways to write/construct models).
The need to overcome incompatibilities between different DEVS
implementation becomes a necessity as a result of today’s world
where interoperability issues must be resolved before resources
integration and coordination becomes achievable in an open
marketplace sharing grid environment (where resources can be
deployed and consumed over the WWW). Here, we outline a
proposal for a DEVS simulation protocol standard, which enables
interfacing and coordination between different DEVS
implementations to cooperate to carry out simulation (in discrete
virtual time) for the same distributed model hierarchy. The
protocol aims mainly on achieving interoperability with minimum
required changes to the internal design and software
implementation of each DEVS version. Therefore, it increases the
protocol success chances since various DEVS teams are not
expected to change their internal design and implementation in a
way that jeopardizes their existing DEVS tools integrity.

The paper is organized as follows: Section 2 introduces the
P-DEVS formalisms and provides brief background about web
services (WS) and commonly used WS technologies. It also
discusses the differences between the proposed protocol and other
related DEVS works. Section 3 outlines the main objective and
requirements of the proposed DEVS protocol. Section 4 describes
the overall communication framework. Section 5 describes the
DEVS protocol messages and their format, simulation coordination
among different DEVS domains and the main simulation cycle.

2. Background and Related Works
Discrete Event System Specification (DEVS) [13] is M&S

specification that is aimed to study discrete event systems. The
model consists of components connected together through external
port(s), as shown in Figure 2, where events are exchanged among
models via those ports. Obviously as in any discrete-event
simulation, the models being simulated changes state only at
discrete points in time, upon the occurrence of an event. The P-
DEVS formalism [4] expresses a system as a number of connected
behavioral (atomic) and structural (coupled) components. The
basic building component of DEVS models is the atomic DEVS
model. A P-DEVS atomic model is formally defined as:

M = <X, Y, S, dint, dext, dcon, ?, ta>

At any given time, an atomic model is in some state s S. It stays
in state s for the time period specified by the state time advance
function ta(s). Now when the atomic model state life time expires,
the model then outputs value ?(s) Y, and changes its state as
indicated by the internal transition function dint(s). A P-DEVS
model uses bag of inputs (Xb) to exploit parallelism in the system,
hence execute multiple concurrent events simultaneously.
Nevertheless, the model also changes its state as defined by the
external transition function dext(s, e, Xb), if the atomic model
receives one or more external events x X before the expiration of
ta(s), merging the functionality of multiple external transitions into
a single one. A confluent transition function (dcon) is used to
conclude the model’s next state via resolving the collisions when
receiving external events and internal transitions simultaneously. A
P-DEVS coupled model is formally defined as:

N = <X, Y, D, {Md | d D}, EIC, EOC, IC>

The external input coupling (EIC) specifies the connections
between external and component inputs, while the external output
coupling (EOC) describes the connections between component
and external outputs. The connections between the components
themselves are defined by the internal coupling (IC).

All of the various DEVS versions share in common that there
is a coordinator (coupled simulator) to simulate a coupled model
and an atomic simulator to simulate an atomic model. Thus, DEVS
separates simulation layer from the modeling layer. However, each
DEVS version provides different software design and
implementation for the same notion. For example Figure 1 shows
simplified portion of the DCD++ [10] coordinators/simulators
hierarchy where the Simulator simulates an atomic model and the
Coordinator simulates a coupled model.

Figure 1: Simplified DCD++ Model/Simulators
hierarchy

Web services are group of standards and languages aiming to
facilitate developing, publishing, and discovering web-enabled
applications. In other words, a web service is a software system
designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-
understandable format (specifically Web Service Description
Language WSDL [5]). Client systems interact with the web service
in a manner prescribed by its description using SOAP [6]
messages, typically conveyed using HTTP with XML
serialization in conjunction with other web-related standards [2].
WSDL [5] documents include information for the web service
clients to know the operations it offers, parameters required to
invoke an operation, and return type. The major elements of any
WSDL document are type, message, portType, binding, port, and
service elements. SOAP [6] plays an important role in any web
service transaction. It is the messaging protocol used to convey
information to and from the web service. It was designed to
decentralized communication among multiple parties. The
structure of SOAP messages is based on XML. Once the web
server receives the HTTP request containing the SOAP message
(i.e. as in the case of any other HTTP request), the SOAP message
is extracted from the HTTP request and forwarded to SOAP
engine, which is responsible for processing messages and
converting the request(s) into a method call(s) that the service
implementation code can understand.

The basic abstract simulator presented in [13] has been
extended into varied parallel/distributed versions, a full list is
provided in [10]. Further, the presented standard proposal here
differs from the one presented in [7] in a number of ways
summarized as follows: the proposal in [7] was based on the
design and implementation that underlie the DEVSJAVA [7] tool.
In other words, it defines how java interfaces (i.e. equivalent to
C++ abstract classes) are structured and implemented. Further, the
work in [7] does not define a number of important issues that is
necessary in order to implement the standards for example: what
the required coordination messages are needed, how models are
distributed across different domains, how messages are passed
through the network, how messages are formatted, etc. In contrast,
the presented proposal here not only answers (with reasonable
details) the above issues, but also hides specific DEVS
implementation behind wrappers, focuses only on exchanged

messages (better for scalability and portability), and simplified
simulation by enclosing all inter-domain models in one outer model
(hence it becomes an issue of simulation one distributed coupled
model).

3. Objective and Requirements
The main objective for developing a standardized DEVS
simulation protocol is to enable different DEVS implementations
to coordinate among each other to carry out simulation for the
same model hierarchy that is partitioned between various DEVS
version domains. Therefore, the simulation protocol proposes an
answer to the following question: How to coordinate/synchronize
simulation for the same DEVS model structure that is distributed
over diverse DEVS implementation domains? In short, the answer
is by coordinating via exchanging standardized DEVS messages.

The protocol does not need to know a DEVS tool internal
software design and implementation, and is not attempting to
standardize how a DEVS tool implements its internal modeling
and simulation software. However, the proposed protocol expects
each DEVS tool to react to incoming messages with the expected
messages (with a standardized format constructed as XML
documents) in order to correctly synchronize and carry out
simulation of the overall model (which is spread over different
domains). Hiding internal implementation details, and focusing
only on the information needed has many advantages such as:

• Maintainability: Protocol changes only applied on the
protocol messages rather than on every DEVS
implementation,

• Scalability: Easier to add/remove exchanged messages,
and

• Testing: Easier to perform local testing by each group
before executing integration testing between different
DEVS domains.

The DEVS Protocol not only needs to meet its objective (by
interfacing different DEVS implementations) but also to be
effective and usable by diverse teams (even beyond the DEVS
community). In order to achieve these goals, these requirements
are proposed:

1. Each DEVS implementation should be able to execute its own
specific models. It is impractical to convert the large number
of existing DEVS models to a standard format (however, in
the future, we envision DEVS models that could be defined in
a standard format and executed with different DEVS
implementations). For example, as shown in Figure 2,
coupled #1 model can be specific to DEVSJAVA [1] while
coupled #2 can be specific to DCD++ [10]. In this case, both
DEVSJAVA and DCD++ coordinate between themselves to
interface both coupled models without worrying about how
the other DEVS implementation does it internally. Therefore,
each DEVS implementation, in this case, views other coupled

model as black-box with input/output ports. On the other
hand, it is still possible for a DEVS implementation to know
more details about the model structure (not just one black-
box coupled model) in other DEVS domains. This depends on
the level of details the domains are told when the model
structure is distributed among different domains (to be
discussed in detail in Section 5.1).

Figure 2: A Coupled model partitioned across Two
DEVS Domains

2. Each DEVS implementation uses a single communication
entry point. We this component a DEVS-Wrapper (shown in
Figure 3). Therefore, a coupled model may physically be
partitioned among different machines within a DEVS
implementation domain, but other DEVS domains “believe”
the coupled model actually exist on the machine that it
communicates with. This requirement also simplifies security
issues in a DEVS domain. The DEVS-Wrapper component is
expected to perform the following tasks:

• To translate incoming standardized simulation messages
to specific domain simulation messages.

• To transmit simulation messages to other DEVS
domains according to the DEVS standards, and

• To route incoming simulation messages to the correct
models/ports within its domain.

Figure 3: Connecting Two DEVS Domains

DEVS

Wrapper Simulation

Root

DEVS

Wrapper

Simulation

Coupled 1

OUT

IN1

Coupled 2

IN2

OUT

Coupled 0

3. The simulation protocol should minimize its dependency on
the communication framework as much as possible. In this
way, it should require minimum (or no) changes to the
standardized simulation messages if one needs to move the
simulation protocol to other communication engines in the
future. In our proposal, this requirement is implemented by
sending all simulation messages as XML documents using
SOAP engine that can transmit files as SOAP attachments.
Therefore, if the communication mechanism changes, those
same XML documents can still be transmitted without
changes.

4. Only one Master DEVS domain will be in charge of driving
the overall simulation. This master domain creates and owns
the Root Coordinator as shown in Figure 4 while other DEVS
domains become slaves and only react to messages from the
master or other slave domains. The Master domain is the one
that was selected by the user to initialize and start the
simulation session.

Figure 4: Coupled #0 Split between Two DEVS Versions.

4. Communication Framework
We propose to use Web-services technology to transfer the
standardized simulation messages between different DEVS
domains. All exchanged messages are transmitted through
SOAP/HTTP engines, hence wrapped within SOAP and HTTP
envelopes, as shown in Figure 5.

Figure 5: Connecting DEVS Domains using Web-Services

As we can see, a DEVS-Wrapper communicates with other
DEVS domains by invoking the deployed-service stubs in a
remote procedure call (RPC) style where the simulation messages
are passed into those stubs as SOAP attachments. The Stubs are
constructed from the deployed WSDL document by the service
provider (other DEVS domains in this case). For example, tool
WSDL2Java is used in the Apache AXIS server environment to
convert a deployed WSDL document to the necessary Java classes
including the needed stubs. Therefore, the needed communication
engines for each DEVS domain:

• HTTP Server (Tomcat [3] in our case).

• SOAP Engine (AXIS [12] in our case).

• XML parser: the proposed protocol is not making any
assumptions regarding which XML parser to use.
Simple API for XML (SAX) [9] and Java Architecture
for XML Binding (JAXB) [8] are examples of current
used XML parsers.

Each DEVS implementation is expected to deploy the
following basic services via a WSDL document so that a master
DEVS domain can use them to create/start a simulation session
(other supporting services may be needed):

• CreateNewSession (Master session): To login to a DEVS
domain and create a simulation session. It returns the
opened slave session number. Each DEVS domain needs
to bind its session number with other relevant DEVS
domains session numbers, since the same simulation
session may have different numbers in different domains
(more on this point in section 5).

• StopSimulation (session): To abort current simulation
without closing the session.

• CloseSession (session): To delete a current session.

• ReceiveDEVSML (session, filename, attachment): To
receive XML documents related to the simulation. The
document can be a simulation message used for
synchronization or simulation/modeling configuration.
This message can be sent from any domain to any other
domain without involving the master domain for obvious
performance grounds; hence it actually depends on the
simulation progress as discussed in Section 5.

In addition, each DEVS implementation is expected to create
the necessary services to allow a user to use it as the master
simulation domain (the one driving the whole simulation). For
example, the user is expected to have a service to start the
simulation once all necessary models are spread over different
DEVS domains.

5. Simulation Protocol
The simplest way of structuring a DEVS model is to have one
coupled model at each DEVS domain connected to each other via

Coupled 0

Master

Coupled 1

Coordinato
Coupled 2

Coupled 0

Slave Coordinator

Coupled 2

Coordinator

Root Coordinator

DEVS Protocol
DEVS-Wrapper

Stubs Interfaces

SOAP Engine (AXIS)

HTTP Server (Tomcat)

DEVS-Wrapper

Stubs Interfaces

SOAP Engine (AXIS)

HTTP Server (Tomcat)

their input/output ports where each coupled view other domain
coupled models as black-boxes. Even with this simple scenario,
another outer top coupled model should then be created to wrap
all coupled models across various domains. Therefore, they will be
at least one coupled model partitioned across DEVS domains. By
having one Coordinator to simulate a single coupled model that is
distributed over large distances becomes a performance bottleneck
due to the number of exchanged messages across the network
between the parent Coordinator and its children’s (Coordinators
and/or atomic simulators). For this reason, we propose to adopt a
Master/Slave Coordinator structure [10] (the standards can also
adopt other algorithms, if needed, as it should to meet its
scalability requirement). The Coordinator concept is extended in
two ways:

• Master Coordinator: it is the main Coordinator in charge of
simulating the entire coupled model. It coordinates the
internal models that exist in its DEVS version domain and
(via Slave Coordinators) the other internal models that exist
in other DEVS version domains.

• Slave Coordinator: it is a Coordinator that acts as an agent on
behalf of the Master Coordinator to simulate the internal
models of a coupled model that exist in its DEVS version
domain. A Slave Coordinator passes all unknown messages to
its Master Coordinator; however, a Slave Coordinator usually
passes one message to its Master Coordinator on behalf of
the coupled model internal partitions that exist in its domain
(which possibly distributed among different machines in the
same domain).

Creating a top coupled model to wrap up all coupled models
across various DEVS domains, allows the simulation to be carried
out like if it was performed by one DEVS domain with a single
coupled model where its internal models are distributed locally and
across various DEVS domains. This simplifies simulation
synchronization and logic. Assume, for example (as shown in
Figure 4) Coupled #0 consists of two internal coupled models:
Coupled #1 (exists in a DEVS version domain) and Coupled #2
(exists in another DEVS domain). In this case, one of the DEVS
versions will create the Master Coordinator to simulate the whole
coupled model (coupled 0 in this case), and the other DEVS
version will create the Slave Coordinator to simulate Coupled #2
on behalf of the Master Coordinator. Of course, it is the
responsibility of the Master Coordinator to synchronize the
simulation for both: its internal local models and Slave
Coordinators. For example, if coupled #2 is passive at a specific
simulation time, the Master Coordinator does not need to
communicate with its Slave Coordinator at that time cycle and it
only must simulate Coupled # 1.

The master/slave structure may require some changes in some
of the existing DEVS implementation particularly the ones that do
not support distributed simulation. However, for those that
already support distribute simulation they may just need to map
standard messages to their internal ones. Further, the standard

assumes that other synchronization algorithms may be supported
in the future other than the Master/Slave.

We also need to decide which domain must create a Master
Coordinator, and which one is expected to create a Slave
Coordinator. The proposed solution is that the domain that owns
the first listed internal model locally (as assembled in the model
structure XML document discussed in section 5.1) of a coupled
model creates the Master Coordinator and the rest of the DEVS
domains create the Slave Coordinators.

A typical scenario for a user (to start the simulation) is to

1. Collect diverse DEVS model descriptions,

2. Construct an XML document to describe the structure of the
overall model, including port connections,

3. Open a session with the master DEVS domain which then
opens a session with all relevant DEVS domains (using the
interface method CreateNewSession). Once the master
domain opens/collects all session numbers from slave
domains, it passes the information to slave domains in one
XML document (using the interface ReceiveDEVSML). This
is important in a sense that a simulation message may sent
from a model in a slave domain to a model in another slave
domain. In this case, the receiver slave domain can figure out
its correct internal simulation session for the incoming
message. The simulation session XML document contains
the following information: Master domain session, and slave
URIs paired with their session number, as in the following
example:

<DomainSessions>
<Session Type=”Master”>

<Number>123</Number>
<URI>http://…</URI>

</Session>
<Session Type=”Slave”>

<Number>1000</Number>
<URI>http://…</URI>

</Session>
…

</DomainSessions>

4. Submits the model structure XML document (section 5.1) to
the master DEVS domain which then sends it to all slave
domains (using interface ReceiveDEVSML), and

5. Starts the simulation from the master DEVS domain.

5.1 Model Structure XML Document
The Model structure XML document is initially submitted by the
user to the master DEVS domain to describe how the overall
model is structured so that each DEVS version knows which
models that belong to its domain. The master DEVS domain
passes this document (as SOAP attachment) to other domains via
invoking service interface ReceiveDEVSML. At this point we

assume that each domain already has the models that it will
simulate (i.e. its specific domain models). The model structure
document will contain enough information to allow different
DEVS domains to create all of their local models, Coordinators and
atomic simulators and how they will relate to other models in
different DEVS domains. Afterward, all slave DEVS domains will
be waiting for the first simulation message from the master DEVS
domain (which is the Init message to initialize all models).

The model structure XML document also serves as an
agreement contract between various implementations on the used
synchronization schemes. For example element
COUPLED_SYNC in the XML document can be set to the used
coordination scheme to simulate a distributed coupled model
across various domains. In this way, the standard is not limited to
one idea or algorithm version and can easily adopt any new
schemes may appear in the future.

Some of the model structure XML document information are:
Model names, types (coupled or atomic), input/output ports,
internal models and their descriptions (e.g. nested coupled
models), ports connections, model’s domain URI, used
synchronization algorithms (e.g. Master/Slave Coordinator
structure discussed previously in this section) and the model
original specific DEVS tool.

The DEVS models hierarchy can easily be mapped into XML
document. For example assume two models connected with each
other as shown in Figure 2 across two DEVS domains where each
model is specific to its domain implementation. According to the
adopted approach here the two models will be enclosed with
another outer model (coupled #0 in this example). In this example
the model structure XML document can be structured as follows.
Note that the domain that owns first internal model (“Coupled1”
in this example) will create the Master coordinator for parent
“Coupled0” where other domains create slave coordinators for it:

<MODEL_STRUCTURE>
 <COUPLED_SYNC>
 <scheme ver=”1.0”>MasterSlave</scheme>
 </COUPLED_SYNC>
 <Models>
 <Model Type=”Coupled”>
 <Name> Coupled0 </Name>
 <Components>
 <Name Type=”Coupled”>Coupled1</Name>
 <Name Type=”Coupled”>Coupled2</Name>
 </Components>
 <URI>http://… </URI>
 <LINKS>
 <LINK>
 <FROM>
 <Component>Coupled1</Component>
 <Port>OUT1</Port>
 </FROM>
 <TO>
 <Component>Coupled2</Component>
 <Port>IN2</Port>

 </TO>
 </LINK>
 …
 …
 </LINKS>
 …
 …
 </Model>
 <Model Type=”Coupled”>
 <Name> Coupled1 </Name>
 <Ports>
 <Port Type=”in”>IN1</Port>
 <Port Type=”out”>OUT1</Port>
 </Ports>
 <URI>http://… </URI>
 …
 …
 </Model>
 <Model Type=”Coupled”>
 <Name> Coupled2 </Name>
 <Ports>
 <Port Type=”in”>IN2</Port>
 <Port Type=”out”>OUT2</Port>
 </Ports>
 <URI>http://… </URI>
 …
 …
 </Model>

 </Models>
 …
 …
</MODEL_STRUCTURE>

5.2 Messages Format and Contents
Once all DEVS implementations receive the model structure

document and create the necessary software structures and
processes, the simulation starts by the master DEVS domain by
sending the Init simulation message to the highest coupled model
which then propagates downward throughout the model hierarchy
across DEVS.

All of the simulation messages are constructed as XML
documents which sent to other domains as SOAP attachment
using the AXIS stub (interface) ReceiveDEVSML. Therefore any
future changes in the simulation messages will be done to the
message XML document rather than to the input/output
parameters of the AXIS stub, hence increase protocol scalability
and portability. The messages XML document contains the
following information (note that “Time” indicates the simulation
virtual time):

• Session ID: The receiver domain session Id. This enables
various DEVS domains to run multiple simulation
sessions simultaneously with other DEVS domains.

• Simulation Message Type (Init, Collect, Internal,
External, Output and Done as discussed in section 5.3)

• Next Change Time: is only used by “Done” messages
type to inform parent Coordinator of the next expected
internal change (where in turn a parent Coordinator
passes one “Done” message to its parent with the
minimum next change of its internal local/other domains
model children). Eventually only one “Done” message is
received by the Root Coordinator (in the master domain)
which then starts another simulation phase as discussed
section 5.3. All Coordinators (including the Root) use
this message to know which children branches should be
involved in each simulation cycle, consequently
prevents many unnecessary message transmissions
across the network.

• Message sending Time.

• Source Model.

• Destination Model.

• Source Port.

• Destination Port.

• Value.

• IsFromSlaveDomain: True if the message is sent from a
slave domain.

The following XML description shows an example of
constructing an Init message from port “out” of Coupled0 to port
“in” of coupled2 during the simulation session #123. It is the
responsibility of the sending DEVS domain to pack the correct
session number of the receiver domain as described earlier in this
section.

<SimulationMessage Type=”Init”>
 <Session>123</Session>
 <Time>…</Time>
 <Source Port=”out”>Coupled0</Source>
 <Destination Port=”in”>Coupled2
 </Destination>
 …
 …
</SimulationMessage>

5.3 Coordination: Messages and Phases
The Parallel-DEVS (P-DEVS) algorithms [4] were mainly

introduced to solve the serialization problem with the original
DEVS algorithm. The main additions in P-DEVS are the message
bags (used to hold multiple input messages arriving to the model
and multiple output messages generated by the model), and the
confluent transition function (dconf) (which defines the behavior
of the model when it receives an external message while being

scheduled for internal transition). Therefore, the simulation can be
divided into three phases:

• Initialization: it only happens at the first simulation
cycle (usually at time Zero) and starts when the highest
coupled model receives the Init message (e.g. coupled #0
in Figure 4). Afterwards, the Init message propagates
downward in the model hierarchy until it executes every
initialization method of every atomic model. In
response, a “Done” message propagates upward in the
model hierarchy where each Coordinator (coupled
simulator) calculates the minimum next change of its
children and passes it in one “Done” message to its
parent. Once all “Done” messages arrive at the highest
coupled model (e.g. coupled #0 in Figure 4), it passes it
to the Root Coordinator which updates the simulation
clock as required and starts the simulation “Collection”
phase.

• Collection: The Root Coordinator starts this phase by
sending a Collect message to the highest coupled model,
which in turn, passes it to all of its children. In this
phase all of the output messages are triggered and may
be passed by internal Coordinators to their destined
models as external messages (i.e. only inserted in
message bags in this phase). This phase ends when the
Root Coordinator receives a “Done” message from the
highest coupled model.

• Transition: The Root Coordinator starts this phase by
sending an Internal message to the highest coupled
model, which in turn, passes it to all of its children. In
this phase, all of the collected external messages in the
message bags (which done in the previous collect phase)
are passed downward in the model hierarchy. Once the
atomic models level is reached, the appropriate atomic
operations are executed by their simulators, based on:

o An Internal event was scheduled or not, and

o External messages exist in the bag or not.

 As the above phases show that simulation is carried out in
the same manner regardless of models distribution across domains
as soon as each DEVS domain reacts to the simulation messages
with the expected messages. This is achieved mainly because all
model fragments across various DEVS domains have been enclosed
by a single coupled model, which is treated by the master domain
as a single coupled model that is partitioned across the network.

The simulation messages are listed as follow:

• Init: To initialize all models. The simulation starts when
Init message is passed to the highest coupled model
Coordinator which then pushes it downward to its
children. In response, a “Done” message is triggered
with the minimum next internal change time.

• Collect: Used by the Root Coordinator to start the
collection phase by passing this message to the highest
coupled model Coordinator which then propagates it
downward. In response a “Done” message is expected to
indicate the end of the collection phase.

• Internal: Used by the Root Coordinator to start the
transition phase. In response a “Done” message is
expected to indicate the end of the transition phase.

• Done: Used for synchronization by Coordinators to
identify which children need to be simulated at current
phase. Also, used by the Root Coordinator to advance
the simulation time and switch simulation phases.

• External Message: Messages from simulation
environment or as a result of output messages. No
“Done” message is expected in response to this message.

• Output Message: Generated during the collection phase.
No “Done” message is expected in response to this
message.

The main simulation is quite simple, since the real work is
distributed among internal Coordinators of the coupled models. A
possible implementation is as follows (assuming all simulation
messages get queued first in a global queue):

While (simulation is running)
{
 If (unprocessed messages exist in queue)
 {
 Get first message from queue;
 If (message belongs to my DEVS domain)
 {
 // Destination is either Root
 // Coordinator, coupled Coordinator
 // or atomic simulator
 Send message to its Destination;
 }
 Else
 {// going to another DEVS domain
 Send message to my CPP-Wrapper;
 }
 }
}

Based on the above simulation loop, the Root Coordinator
(which exists only in the master DEVS domain) receives
simulation messages like any other Coordinator. The main
function of the Root Coordinator is performed when it receives
the “Done” message: it advances the simulation clock (i.e. the
received “Done” message contains the next change time), starts the
collection/transition phase or stops the entire simulation. The
Root Coordinator will receive its first “Done” message to indicate
the end of the initialization phase. A possible implementation of
the Root Coordinator is as follows (note that Root simulation
Next Phase is initialized to Collect):

Root Coordinator::ReceiveDoneMessage ()
{
 If (Next Phase == Transition)
 {// Start transition phase
 Next Phase = Collect;
 Send Internal Msg to highest model;
 }
 Else
 {
 If (next Time <= STOP_TIME)
 {
 Send Stop to all;
 }
 Else
 {
 While (envExternal == NextEventTime)
 {// to be executed at this time
 Send environment external event;
 }
 If (Next Event is NOT external)
 {// Start the Collect Phase
 Next Phase = Transition;
 Send Collect Msg to highest model;
 }
 Else
 {// Start transition phase
 Next Phase = Collect;
 Send Internal Msg to highest model;
 }
 }
 }
}

The proposed protocol standard here has simplified the
simulation by wrapping all distributed models across various
DEVS domains in one single coupled model; hence it becomes the
responsibility of coupled Coordinators on locating their children
(i.e. internal models) in order to pass to them the needed
simulation messages (perhaps by having a database which stores
each model description along with its domain URI). Further,
simulation messages can be specific to a certain domain when they
are exchanged within the domain itself, but when they need to
leave to another domain, the DEVS-Wrapper (shown in Figure 3)
translates them to the standardized XML message documents and
passes them as SOAP attachments using the AXIS stub
ReceiveDEVSML. For example, as shown Figure 6, a DEVS
domain does not need to use the standards within its domain.
However, when a message needs to travel to another domain, it
must be translated first to the standard format so that it can across
over the DEVS protocol bridge.

DEVS
Protocol Session

Other DEVS
Domain

Session

PCD++

E-CD++

PCD++

E-CD++ Session

Session

User

DCD++ Domain (No need to follow

Figure 6: An Internal Look of a DEVS Domain

6. Conclusions
The main objective of the proposed DEVS standard protocol

is to enable different DEVS implementations to interface and
coordinate among each other to simulate the same model structure
across their domains. The standard has made some requirements
and assumptions in order to make the proposed protocol
achievable and acceptable by different teams. Some of these
requirements that minimum design changes are expected to each
DEVS implementation, mainly by hiding the detailed
implementation behind a wrapper and focusing only on the
exchanged information that is needed to perform simulation and
coordination among distributed models. Further, this proposal has
simplified the simulation logic by enclosing all diverse models by
one single coupled model simulated at the master DEVS domain,
hence it becomes the responsibility of the coupled model
Coordinators to find the models that they want to send them
messages without worrying about other details such as
constructing messages in XML documents or where which
specific DEVS implementation is simulating the other models. In
fact, when we got into section 5 which discusses simulations the
reality of diverse DEVS implementation almost disappeared.

The DEVS simulation protocol was also discussed in
reasonable details to show the exchanged messages format and
contents. Further, we described the overall simulation coordination
showing each DEVS domain role in the phases of each simulation
cycle. In addition, the master/slave structure was proposed to
coordinate a coupled model simulation in the distributed
environment in order to reduce the number of exchanged messages
across the network. However, the standards does not limit itself to
one algorithm, hence more schemes may be added in the future and
used easily by including this information in the exchanged XML
documents.

The proposed protocol assumed the usage of web-services
technology as the communication framework. However, the
proposed protocol takes into account that the DEVS simulation
messages should easily be ported into different communication
architecture in future, if needed to do so. This is accomplished by

constructing all simulation messages in XML documents so that
any changes in the protocol messages will be done to those XML
documents rather than to the web-services specific communication
interfaces.

7. REFERENCES
[1] ACIMS software site:

http://www.acims.arizona.edu/SOFTWARE/software.shtml .

[2] Alonso, G. Web services : concepts, architectures and
applications. Springer. 2003.

[3] Apache Tomcat. Available via http://tomcat.apache.org/ .
[Accessed July, 2008].

[4] Chow, A.; Zeigler, B. “Parallel DEVS: A parallel, hierarchical,
modular modeling formalism”. Proceedings of the Winter
Computer Simulation Conference. Orlando, FL. USA. 1994.

[5] Christensen, E; Curbera, F.; Meredith, G.; Weerawarana, S.”
Web Service Desctiption Language (WSDL) 1.1”. March,
2001. Available via http://www.w3.org/TR/wsdl . [Accessed
July, 2008].

[6] Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.;
Nielsen, H. “SOAP Version 1.2 Part 1: Messaging
Framework”. June, 2003. Available via
http://www.w3.org/TR/soap12-part1/ . [Accessed July,
2008].

[7] Hu, X.; Zeigler B. “A Proposed DEVS Standard: Model and
Simulator Interfaces, Simulator Protocol”. January 2008.

[8] Java Architecture for XML Binding (JAXB). Available at
http://java.sun.com/developer/technicalArticles/WebServices/j
axb/ . [Accessed July, 2008].

[9] Simple API for XML (SAX). Available at
http://www.saxproject.org/ . [Accessed July, 2008].

[10] Wainer, G.; Madhoun, R.; Al-Zoubi, K. “Distributed
Simulation of DEVS and Cell-DEVS Models in CD++ using
Web-Services”. Accepted for publication in Simulation,
Practice and Experience; Elsevier. 2008.

[11] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modeling and
simulation of cell spaces". Invited paper for the book
Discrete Event Modeling & Simulation: Enabling Future
Technologies. Springer-Verlag. 2001

[12] Web Services-Axis. Available via http://ws.apache.org/axis/ .
[Accessed July, 2008].

[13] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press. 2000

