
DEVSView: A tool for visualizing CD++ simulation models

Wilson Venhola Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

wvenhola@connect.carleton.ca gwainer@sce.carleton.ca

Abstract: We present an application to visualize simulation
results executed using the CD++ modeling and simulation
toolkit. DEVSView allows users to create visualizations
from the simulation log files outputted by the CD++ toolkit.
DEVSView has implicit support for Cell models and uses
OpenGL and the OpenGL Utility Toolkit for hardware ac-
celerated rendering. DEVSView provides a graphical user
interface and a text file format for the creation of visualiza-
tions. visualizations, in DEVSView, consist of visual mo d-
els that translate CD++ log files into animations. Each vis-
ual model corresponds directly to an atomic or coupled
model from a CD++ simulation. These visual models con-
tain visual states and event animations which are used to
represent the simulation graphically. The user can set up the
rules, to trigger state changes and event animations, within
the GUI or in the visualization file, and the user can use the
GUI to playback the visualization.

Keywords: DEVS, Cell-DEVS, simulation visualization,
CD++, OpenGL

1. INTRODUCTION

In recent years, the Discrete Event Systems Specification
(DEVS) formalism [1] has gained popularity to model a va-
riety of problems. DEVS is a framework for the construc-
tion of discrete-event hierarchical modular models, in which
behavioral models (atomic) can be integrated together form-
ing a hierarchical structural model (coupled). The Cell-
DEVS formalism [2] extended the DEVS formalism allo w-
ing the simulation of discrete-event cellular models. The
CD++ toolkit [3] allows implementing DEVS and Cell-
DEVS models while providing remote access to a high per-
formance DEVS simulation server [4]. The end user tools
were organized as a simulation client applied to the CD++
simulator. Using these facilities, the users can now develop
and test their models in local workstations, and submit them
to be simulated in a remote CD++ server executing in a high
performance platform. Then, they can receive, visualize and
analyze the results on a local computer, improving model
definition and execution. These simulations produce com-

plicated results, and can depict interactions that occur in
three dimensions. These results sometimes require extensive
interpretation and reconstruction to clearly see what is oc-
curring during the simulation.

Originally, CD++ only provided results on text files, making
it difficult to study execution results of the model. visualiza-
tion tools are crucial in helping to understand better the be-
havior of the system of interest, thus, different visualization
facilities were incorporated [4]. A 3D GUI built using
VRML enabled sophisticated visualization of Cell-DEVS
models. Unfortunately, VRML technology became obsolete,
and applets use Java3D libraries are no longer actively de-
veloped. Hence, we have recently focused on new exten-
sions that can be applied to both DEVS and Cell-DEVS, and
which are able to run on OpenGL-based environments [5],
including a new interface [6], and based on Maya [7]. Alias
Maya is an excellent tool for creating environments and ob-
jects to visualize simulations; however the installation size,
workstation requirements, and licensing issues of the Maya
software prevent it from being the optimal viewer.

Here, we describe the desing and implementation of DEVS-
view, a visualization tool developed to improve the avail-
able options for visualizing DEVS simulations executed in
the CD++ toolkit environment. Although all CD++ simula-
tions conform to the DEVS specifications, the results they
produce often require different interpretation. For example,
some simulations output values over a continuous range,
while others may output a sequence of discrete states.
Therefore visualizing simulation results requires a tool
which provides a flexible methodology to visualize the vari-
ous simulations appropriately. The proposed solution, the
DEVSView visualization tool, provides several constructs to
enable visualizing the results of DEVS simulations. The
models from the simulation are directly translated to visual
models. These visual models each contain a visual state
transition system and an event animation creation system
that allow the simulation to be visualized appropriately.
DEVSView provides the graphical user interface to define
and playback visualizations in three dimensions.

The DEVSView visualization tool provides basic services
that enable simple visualizations. The following lists the
services the tool provides:
1) Graphical user interface based on the OpenGL Utility

Toolkit [8]: The windowing system provides buttons,
text fields, list boxes, resizable windows, and other con-
trols necessary for a GUI. The rendering of the controls
is accelerated by OpenGL [9].

2) Visual state transition, and event animation systems:
The visual state transition system is a collection of vis-
ual states and transition rules defining what simulation
events trigger state changes. The event animation sys-
tem is a collection of rules to define which events trig-
ger certain animations.

3) Design and Implementation of an octtree scene data-
base to enable efficient view culling: The visual models
are stored in an octary space partitioning tree. This data
structure recursively divides the scene extents into eight
regions, which enables efficient algorithms for render-
ing scenes, object selection, and other frequently used
scene operations.

The tool was implemented using C++ and OpenGL.
OpenGL is supported by many platforms, and is actively
developed and extended to accommodate the advancing
field of computer graphics. GLUT provides simple window-
ing services, and does not reduce OpenGL rendering per-
formance. This approach also produces a small installation
size, and no licensing issues.

2. VISUALIZATION METHODOLOGY

Each DEVS simulation result consists of several atomic
and/or coupled models communicating with each other over
ports using messages, which represent events in the simu-
lated system. The DEVSView tool provides a general
method of mapping simulation results to a visual representa-
tion. The method and data used to map the results are called
a visualization in DEVSView, which consists of a set of
visual models, and a set of events that manipulate them. The
set of events used in the visualization corresponds directly
to the external and output events from a CD++ simulation
log file. A vis ualization progresses by sending these events
to the visualization models for processing. Events are sent to
both the source model and destination model for this proc-
essing. The visual model’s transition rules specify how an
event affects the visual representation of the model, and the
event animation creation rules specify whether an event
produces certain event animations.

Cell visualization models extend the regular models by add-
ing a three dimensional array of cells. The cells store their
own current visual state, position, orientation and size; but

they all use a common set of visual states, visual state
transition rules, and event animation rules.

Both the visual state transition system and the event anima-
tion system described following operate on the events
passed to visual models as the visualization progresses
through simulation time. When the visualization reaches the
time an event occurred during the simulation, it is processed
by both models involved in the exchange. Each event con-
tains information about the source/destination visual model
name, the time of the event, the port the value is sent
through, and the value of the event. The source and destina-
tion visual models use this information to process the event.
Typically, this involves comparing the port and value with
behavioural rules such as transition rules or event animation
rules. These rules use the concept of a DEVSView Value
rule to operate. A Value rule is a procedure which accepts a
real value, typically the event value, and returns a Boolean
indicating whether the value passes the rule or whether it
fails.

The visual state transition system of the DEVSView tool as-
signs a simple state machine to each visualization model.
The state machine consists of visual states, and transitions
between these states, which are triggered by events in the
simulation. The current state defines the visual appearance
of the model in three dimensions. Transition rules specify
when the model changes state during the visualization. A
transition between states occurs when a transition rule is in-
voked. When an event is processed by the visual model,
each of the transition rules for the current state are evaluated
to check if any transitions should be invoked. As well as
transition rules for the current state a separate list of transi-
tion rules which apply for all states, are checked. A transi-
tion rule is invoked when the transition rule port name and
direction match the event port name and direction, and the
value rule passes given the event value as input. The event
animation system allows visual models to create animations
which visualize the processing of certain events. Event an-
imations can produce any sort of visual effect, and are trig-
gered to occur when specific events arrive at a visual model.
The only event animation currently provided by the tool is
the text animation. A text animation is a three dimensional
piece of text which travels from one location to another.

When an event is processed by the visual model, the event
animation rules are evaluated to check if any event anima-
tions should be created. An animation is created if the cur-
rent visual state equals the rule source state, the rule port
name and direction match the event port name and direction,
and the value rule passes given the event value as input.
Event animation rules create animations and specify their
properties based on the event value and other variables in-
ternal to the visual model.

3. OVERVIEW OF DEVSVIEW SYSTEM DESIGN

DEVSView was developed considering the visualization re-
quirements briefly discussed in Section 1, providing the
ability to display the output of a DEVS simulation in an ap-
propriate graphical format. To achieve the goals presented
earlier, DEVSView functionality was organized as two
separate entities:
• A parser for CD++ log files: extracts DEVS mo dels

which may require visual models, and any events asso-
ciated with the extracted visual models

• The User Interface: Specifies the graphical representa-
tion of the visual models, Provides controls for starting,
stopping, and pausing the visualization. Provides speed
control and seeking to a specific time in the visualiza-
tion, and for loading and saving visualizations

A Scene database provides structure for organizing visual
models efficiently in three dimensions. These components
were organized following the Use Cases in Figure 1.

Figure 1: Use case diagram for DEVSView

The actors involved in the use cases are the User, and the
CD++ Link . The Simulation Log File actor is a generaliza-
tion of a CD++ Link . CD++ Link represents a general link
to a CD++ simulation through whichever interfaces CD++
supports. The use cases demonstrate the capabilities of the
user to initiate a link to the simulation through a log file, as
well as view, edit, load, and save the visualizations.

Figure 2: DEVSView package diagram

The User’s ability to manipulate the visual representation of
the simulation is represented by the Edit Visual Models use
case. The CD++ Link can interact with the visual models in
the same manner when the User links to a simulation. Con-
sequently, the system has been divided into the four concep-
tual packages shown in figure 2. The DEVSViewerDisplay
package is responsible for processing input and converting it
to commands for the ViewerControl package. The DEVS-
ViewDisplay package also controls output to the application
window for rendering the user interface and three dimen-
sional graphics. This package depends on the services of the
ViewerDisplay package for the event driven GUI functional-
ity. The SimulationLink package is responsible for interact-
ing with simulation results and reporting the necessary re-
sults to the ViewerControl package. The responsibilities of
the SimulationLink include parsing simulation log files and
notifying the ViewerControl package about new events and
new visual models. The ViewerControl package processes
the requests from both the DEVSViewerDisplay and Simula-
tionLink packages. The Viewer Control interprets simple
commands from both of these packages and then translates
them into the proper sequence of interactions with the Simu-
lationDatabase package. The SimulationDatabase package
stores the information necessary for the visualization. The
events, visual models, and all corresponding data are stored
in the SimulationDatabase. The SimulationDatabase pack-
age also stores the visual models in an octtree data structure
to cull objects efficiently. The packages communicate with
each other by passing data types which are in the set of
common interface types. The interface types allowed in-
clude 1) the standard C++ types 2) several basic structures
for position and time information and 3) property sets which
contain variables of any interface type, including other
property sets. A detailed specification of these data struc-
tures can be found in the Appendix. The following sections
will describe the internal design of each package. The fol-
lowing sections present a generic design of the application
packages; detailed information about the design and the im-
plementation of each of the packages can be found in [11].

4. PACKAGES DESIGN

The ViewerDisplay package provides a framework for de-
veloping graphical user interfaces on top of GLUT. The
package has support for event driven programming using
commonly required interface controls, such as buttons, text
boxes, scroll bars, list boxes, message boxes, etc. Although
this package has been developed solely for DEVSView, it is
not dependant on the other packages and can be easily in-
corporated into another application which uses GLUT. The
controls supplied by this package are all subclasses of the
VDWindow class. Figure 3 contains an UML diagram,
showing the several controls that subclass the VDWindow
class and implement specific functionality. Note that any

VDWindow subclass can contain any number of other child
windows. User interfaces are created by nesting controls,
such as VDButton, VDLabel, VDListBox, etc, in a VDPanel
class.

Figure 3: VDWindow class and various controls which

subclass it.

Figure 4 shows the implementation of this class, which is
represented as a panel with nested window controls, includ-
ing text buttons, a number selector, and a scrollbar.

Figure 5: Visualization playback options panel from the

DEVSView tool.

Each subclass of VDWindow is required to process GUI
events. For example, the VDTextButton class processes but-
ton press events to determine when the button has been
pressed. Figure 6 shows the class structure of the DEVS-
View event handling mechanism.

Figure 6: The DEVSView event classes.

As seen in Figure 6, VDEventGenerator objects send events
up the hierarchy to the parent listener or down the hierarchy
to the child listeners. VDEvent objects may hold mouse, key
or other necessary information. There are many types of

events which subclass VDEvent but are not shown here for
space reasons (details can be found in [11]), including
VDMouseDownEvent, VDMouseUpEvent, VDMouse-
MoveEvent, VKeyDownEvent , etc. An event is passed to the
ViewerDisplay package by GLUT, and then it is processed
by the root VDWindow object. The VDWindow class inherits
from VDEventListener and VDEventGenerator so that any
VDWindow object can receive and send events. When an
event listener receives an event, it can forward the event to
the child windows, process the event type and contents, and
send a new event in response. Depending on the type of
event created, it may travel up the window hierarchy to the
parent window or travel down to the child windows. After
processing the event, the VDWindow object returns a Boo-
lean value to indicate whether the event has been consumed
or not. If the event is consumed, the parent window will not
pass the event to any other child windows.

DEVSViewerDisplay implements the user interface of
DEVSView. This package contains several ViewerDisplay
panels which provide the user interfaces required to interact
with the user during each use case. The portion of the
DEVSViewerDisplay class diagram shown in Figure 7 d is-
plays the structure of the various panels in the user interface.

Figure 7: Structure of the DEVSView user interface.

The main viewer window contains the panel for controlling
the visualization as well as the panel for editing the visual
models (i.e. the VDDEVSModelListPanel). The VDDEVS-
ViewerWindow contains the model list panel and the visual-
ize panel. The VDDEVSViewerWindow also contains a
panel with various controls to start various common tasks,
and a command console. The console is used for logging er-
rors, viewing debug/command information, and entering
simple commands. The implementation of the toolbar panel
and the console are shown in figure 8. As we can see in Fig-
ure 8, the main DEVSView window contains two panels.

The toolbar panel has commands for saving/loading/creating
a visualization and showing/hiding other panels. The con-
sole can execute commands and display the results. The
console also displays logging information from DEVSView.

Figure 8: Main DEVSView window.

The VDDEVSVisualizePanel is in charge of implementing
the controls to enable starting, stopping, pausing, seeking to
a specific time (with the scrollbar), and slowing down or
speeding up the visualization. VDDEVSModelListPanel, and
VDDEVSModelEditPanel are shown in figure 9.

Figure 9: Model list and the model edit panels.

In the example presented on Figure 9, the mo del list panel
shows the visual models of the visualization. The auth
model is currently being edited. The visual states and the

transition rules are shown in the model edit panel. States and
rules can be added, edited and removed from the visual
model using the model edit panel. Also the location of the
model can be edited using the ‘Edit Location…’ button.

The VDDEVSModelListPanel is built from a VDListBox and
a VDTextButton. The list box contains the list of visual
models for the current vis ualization. The text button creates
a VDDEVSModelEditPanel, which is created from list boxes
and text buttons, for editing the currently selected visual
model. The visual states and transition rules are managed
from the model edit panel. The panel includes three controls
1) A Visual state type list 2) A Label, and 3) A Visual state
properties panel. Depending on the type of the visual state
selected, the appropriate properties panel will be shown.
The transition rules are edited using the VDDEVSRuleEdit-
Panel, in which the rule properties are selected from the list
boxes shown. Depending on the value rule type selected (i.e.
All Values, Equals Value, etc), the appropriate value rule
panel will be shown.

For each visual state type and value rule type, there should
be a corresponding properties panel that subclasses
VDDEVSVSTypeEditPanel and VDValueRuleEditPanel re-
spectively. These panels provide the required controls to de-
fine the properties of their intended objects. The DEVS-
ViewerDisplay package eventually translates all requests
from the GUI into commands for ViewerControl.

Figure 10: ViewerControl and SimulationDatabase.

The ViewerControl package is divided into classes which
wrap a corresponding SimulationDatabase class. The re-
quests to modify and/or use the simulation database are
channeled through these classes and to the appropriate des-
tination. Each request to the ViewerControl package is ini-

tially routed through the VCSimulation class, which trans-
lates the requests into the more detailed and complicated in-
teractions with the database. The ViewerControl classes are
shown, along with the SimulationDatabase classes they in-
teract with, in figure 10.

As we can see, the VCSimulation class encapsulates the
SDvisualization class as well as the other ViewerControl
classes.The commands received from the DEVSViewerDis-
play package are processed by the VCSimulation class. The
VCSimulation class forwards these requests to the appropri-
ate control classes or handles them directly. For example, a
request to save the visualization is directly handled by the
VCSimulation class, while a request to link to a simulation
log file is forwarded to the VCSimulationLink class. Various
navigable associations exist between the VCSimulationLink
class and other ViewerControl classes so that visual models
and events can be created and setup without calling the
VCSimulation class methods. The VCModelList class has a
navigable association to the VCSceneGraph class so that
whenever a visual model is modified the appropriate
changes to the scene graph can be made efficiently. The
main responsibilities of the ViewerControl package are de-
coupling and simplifying the interface between the user in-
terface and the visualization functionality.

The SimulationLink package implements the SLBase inter-
face. This interface defines the minimum interface required
to connect to the ViewerControl package and submit data
for visualization. This interface requires for each medium
that provides information about a DEVS simulation, a sepa-
rate class which implements it . The classes which have been
created for this package are shown in figure 11.

Figure 11: The SimulationLink classes.

The SLBase in Figure 11 defines the interface over which
information is added to the visualization from the various
simulation link types. The SLLogFile class loads the events
and visual models from a CD++ log file, while the SLMa-
File class loads cell models and their starting states
(SLPlanFile class is reserved for future functionality).

SLBase notifies VCSimulationLink class about new events
and new visual models which may be added to the visualiza-
tion. The VCSimulationLink may choose to reject the mo d-
els or events if they already exist, or if they do not contain
valid information. In some instances, such as loading from a
log file, model information is identified in pieces. For ex-
ample, a CD++ log file is a record of events and each event
has a source model, a destination model, and a port name,
among other things. Any event indicates that the source
model has an output port, and the destination model has an
input port. The SLLogFile object, when reading an event,
will notify the VCSimulationLink about the new visual mo d-
els (the source model and the destination model). The
VCSimulationLink is responsible for merging the provided
visual models with the previously existing database. This
usually involves adding new input ports and output ports to
models identified in events. Other times it requires convert-
ing a DEVS model to a Cell-DEVS model or expanding the
cell space of a Cell-DEVS model.

The SimulationDatabase package is divided into several
singleton classes, shown in Figure 12.

Figure 12: Singletons of SimulationDatabase package.

These singletons provide the main structure for storing the
data necessary for visualization. The SDvisualization object
holds the information for the visual models. The
SDResourceList holds the data used for rendering the visual
models (fonts, geometry, etc). The SDAnimationController
holds the current animations. The main singleton is the
SDvisualization class, which contains the scene graph, vis-
ual model list, event list, current time, and scene node list.
The octtree data structure is contained in the scene graph,
and a visual state transition system is stored in each visual
model of the model list. The animations currently active in
the visualization are stored and animated by the SDAnima-
tionController object. The SDResourceList object contains
the resources used for rendering the visual models. The list
contains 3d fonts, geometry, textures, and other resources
which may be used by many different visual models.

The structural properties of the visual model classes are
shown in figure 13. The SDDevsModel class encapsulates
the information for each visual model. SDCELLDevsModel
subclasses the SDDevsModel class to reuse its functionality.
The SDDevsModel encapsulates the information represent-
ing a visual model. The SDCELLDevsModel is a subclass of
SDDevsModel to reuse functionality. Each visual model
contains a list of visual states, a list of transition rules, and a

list of event animation creation rules. The scene graph and
scene node list implement the octtree database.

Figure 13: Visual model classes.

The classes corresponding to these components are shown
in Figure 14. The SDSceneGraph contains the root
SDTreeNode, which is the root node of the Octtree. The
SDNodeList class contains a list of SDSceneNodeInfo ob-
jects which wrap scene node objects and store the locations
of the scene node in the Octtree. Each SDTreeNode may
contain many scene nodes. The SDNodeList object contains
every SDSceneNode object, which is wrapped with a
SDSceneNodeInfo object. The SDSceneNodeInfo class holds
the locations of their scene node in the scene graph. When
the SDvisualization object adds objects to the scene graph,
the objects are wrapped with a SDSceneNodeInfo object and
added to one or more SDOctTreeNode objects.

Figure 14: Scene database classes.

4. VISUALIZATION EXAMPLES

We used DEVSView to visualize different existing models.
In this case, we show the results obtained when visualizing

the results of a simulation of an ATM banking machine
[12]. This model represents a simple ATM machine, de-
scribed in the following figure:

Figure 15: ATM DEVS model.

The components of this ATM and their functions are:
• Card Reader: accepts the input card into the machine

and reads customer information. It also returns the card
to the customer (end or failed transaction).

• Cash dispenser: responsible to dispense the required
and approved amount of money to the customer.

• Authorization and balance verification module: receives
a PIN, validates it, receives the amount to be dispensed,
checks available funds, and sends approved amount to
be dispensed. It is composed of three comp onents:

o User Interface: an interface with a customer who en-
ters the PIN and amount of money to be withdrawn.
These two values are generated with a uniform ran-
dom variable here to simulate customer input.

o PIN verifier: verifies the received PIN from the cus-
tomer. It checks the received PIN and randomly de-
cides if it is valid. If valid it returns to User Interface
to get the amount, else it asks again for a new PIN.

o Balance verifier: verifies that the customer has funds
at his/her account to cover the required amount. If
not, it would ask the user Interface for a new amount.

Figure 16: ATM DEVS model.

The ATM simulation also provides a text animation which
displays “Card Inserted” whenever a bank card is inserted.
The text animation can be seen in Figure 16, which shows a
frame from the visualization right after a customer arrives at
the ATM. The figure shows the visual models of the ATM
visualization and the Octtree regions they were assigned.
The following figure shows the simulation results is the
specification of a model that represents an object in move-
ment that bounces against the borders of a room. This ex-
ample is ideal to illustrate the use of a non toroidal cellu lar
model, where the cells of the border have different behavior
to the rest of the cells. This visualization shows a simulation
of three bouncing balls contained in a 2d grid. Figure 17
shows a composite of the visualization during playback. The
image shows the motion of the balls in the 2d grid.

Figure 17: Composite frames. Bouncing ball simulation.

5. CONCLUSION

CD++ allows the simulation of complex physical based on
the DEVS and Cell-DEVS. To facilitate the users to use the
CD++ simulator, we extended its design to provide a num-
ber of services. The 3D visualization GUI enables sophisti-
cated visualization to better understand the results. DEVS-
View provides facilities for creating visualizations of CD++
simulations, which are based on the Devs formalism. The
tool reads CD++ simulation log files to create the visual
models needed to visualize the simulation. The visual mo d-
els have visual state transition systems which define how the
simulation models are graphically represented during vis u-
alization. The visual models also have event animation rules
to create animations when certain events occur. These con-
structs provide the methodology required to visualize Devs
or Cell-DEVS models. The tool provides a user interface
and file format to create these constructs, and several vis u-
alizations have been successfully created with DEVSView.

The current facilities have highly improved the use of the
previously existing tools, thus enhancing the analysis ex-
perience of the modelers using the toolkit. The DEVSView

tool provides facilities for creating visualizations within an
open-source environment. The visual models have visual
state transition systems, which define how the simulation
models are graphically represented during visualization. The
visual models also have event animation rules to create an-
imations when certain events occur. Future work will in-
clude loading Maya model files for complex objects, and
more advanced model positioning capabilities. DEVSView
could also benefit from many user interface improvements.
The visualization facilities of the DEVSView tool are quite
basic, but provide the beginnings of a powerful tool. The
tools are open source and can be found in
http://www.sce.carleton.ca/faculty/wainer.

REFERENCES
[1] Bernard Zeigler, Tag G. Kim, Herbert Praehofer. Theory
of Modeling and Simulation. Academic Press.2000
[2] Gabriel Wainer, Norbert Giambiasi: "Timed Cell-DEVS: mod-
eling and simulation of cell spaces " Discrete Event Modeling &
Simulation: Enabling Future Technologies. Springer-Verlag, 2001.
[3] Wainer, G. 2002. CD++: A toolkit to develop DEVS
models.Software,Practice and Experience .32(3):1261-1306.
 [4] Wainer G., Chen W. 2003. A Framework for Remote
Execution and visualization of Cell-DEVS Models. SIMU-
LATION, Vol. 79, Issue 11. pp. 626-647
[5] Segal, M.; Akeley, K., “Open GL 2.0 spec”,
http://www.opengl.org/documentation/specs/version2.0/glspec20.p
df [accessed 2005, Apr. 22]
[6] A. Khan, G. Wainer. “A visualization engine based on Maya
for DEVS models”. In Proceedings of SISO Fall Interoperability
Workshop. San Diego, CA. U.S.A. 2005.
[7] ALIAS Corp. "Maya 6 Features in Detail,” [Accessed Oct.
2004],http://www.alias.com/eng/products-services/maya/file/
maya6_features_in_detail.pdf.
[8] Mark J. Kilgard. 1996. “The OpenGL Utility Toolkit
(GLUT) Programming Interface: API Version 3”. [Accessed
Mar 2005]. http://www.opengl.org/resources/librar-
ies/glut/glut-3.spec.pdf

[9] Gil Gribb, and Klaus Hartmann. 2001. “Fast Extraction
of Viewing Frustum Planes from the World-View-
Projection Matrix”. [Online document; Mar 2005] http://
www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
[10] Mark Segal, and Kurt Akeley. 2004. “The OpenGL
Graphics System: A Specification”. [Online document ac-
cessed Mar 2005]. Available: http://www.opengl.org/docu-
mentation/specs/version2.0/glspec20.pdf

[11] Venhola, W.; Wainer, G. “Design and implementation
of the DEVSView visualization tool”. Technical Report
SCE-05-17. Dept. of Systems and Computer Engineering.
Carleton University. 2005.
[12] Saadawi, H. “Implementing a DEVS model of an ATM
machine”. Internal Report. Dept. of Systems and Computer
Engineering. Carleton University. 2004.

