
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/90/7/759
The online version of this article can be found at:

DOI: 10.1177/0037549714532960

 2014 90: 759 originally published online 12 June 2014SIMULATION
Kyung-Min Seo, Changbeom Choi, Tag Gon Kim and Jung Hoon Kim

DEVS-based combat modeling for engagement-level simulation

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://sim.sagepub.com/content/90/7/759.refs.htmlCitations:

 What is This?

- Jun 12, 2014OnlineFirst Version of Record

- Jun 30, 2014Version of Record >>

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/90/7/759
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/90/7/759.refs.html
http://sim.sagepub.com/content/90/7/759.full.pdf
http://sim.sagepub.com/content/early/2014/06/12/0037549714532960.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://sim.sagepub.com/
http://sim.sagepub.com/

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2014, Vol. 90(7) 759–781

� 2014 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549714532960

sim.sagepub.com

DEVS-based combat modeling
for engagement-level simulation

Kyung-Min Seo1, Changbeom Choi2, Tag Gon Kim2

and Jung Hoon Kim3

Abstract
This paper presents a modeling method to demonstrate engagement-level military simulation which includes few combat
objects, or entities. To this end, the paper, on the basis of the discrete event system specification (DEVS) formalism, cen-
ters on two ideas: (1) a combat entity’s model structure at the composition level; and (2) behavioral delineation of the
entity’s elementary component. In detail, we classify the combat entity model into platform and weapon models and cre-
ate six groups of the model categorized by two dimensions: three activities and two abstractions. And the elementary
component in the group interprets an engagement scenario as a flow of executable tasks, which are expressed by DEVS
semantics. The stated structures and semantics provide intuitive appeal, reducing the effort required to read and under-
stand the model’s behavior. From the combat experiments, we can gain interesting experimental results regarding
engagement situations employing underwater weapons and their tactical operations. Finally, we expect that this work
will serve an immediate application suited to various engagement situations.

Keywords
Defense, combat entity, discrete event system, formalism, model design, model implementation, compositional reusabil-
ity, effectiveness analysis

1. Introduction

As modeling and simulation (M&S) has been widely uti-

lized in the defense communities,1,2 the defense M&S

field has developed various levels of combat models (i.e.

the theater-, the mission-, the engagement-, and the engi-

neering-level models), which are determined by modeled

objects and scenarios of interests.3 Out of these, the

engagement-level model, which is our interest in this

study, focuses on duel level or few-on-few engagement,

e.g., missile versus warship or aircraft versus aircraft.

Improvement of existing tactics or new tactical develop-

ment of combat entities is decided and evaluated on the

engagement-level; many modeling activities in the recent

decade have focused on this level.4–6

In most M&S development, a modeler chooses the

modeling formalism that fits the system context and the

modeling objective due to advantages of the formal

method.7 The formal method, which has a mathematical

basis, provides the means of precisely defining notions

like consistency, completeness, correctness, and verifica-

tion.8 Therefore, with the formal method, the modeler can

specify, develop, and verify the modeled system in a sys-

tematic, rather than an ad hoc manner.9,10 Among various

types of formalisms, the discrete event system specifica-

tion (DEVS) formalism, introduced by Zeigler,11 is a set-

theoretic specification of discrete event systems. As com-

bat systems are characterized as discrete event systems

according to the system taxonomy,12 and the DEVS form-

alism also has many particular features to specify discrete

event systems, it has been widely used for engagement-

level combat modeling.7,13,14 In this respect, DEVS-based

combat modeling is a key issue of this study.

In recent years, we have conducted several studies on

engagement-level combat modeling using the DEVS form-

alism. DEVS-based combat modeling for underwater

1S3I R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd,

Republic of Korea
2Department of Electrical Engineering, Korea Advanced Institute of

Science and Technology, Republic of Korea
3Naval Systems R&D Institute, Agency for Defense Development,

Republic of Korea

Corresponding author:

Kyung-Min Seo, S3I R&D Institute, Daewoo Shipbuilding Marine

Engineering Co., Ltd, 26, Eulji-ro 5-gil, Jung-gu, Seoul 100-210, Republic of

Korea.

Email: kmseo.kumsung@gmail.com

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

warfare was proposed in 2010,15 and a three-part model

design of underwater vehicles and effectiveness analysis

of an anti-torpedo warfare was conducted in 2011.16 In

spite of our efforts for DEVS-based modeling, these stud-

ies need some improvements. Specifically, the previous

models assumed that all the combat entities, which corre-

sponded to complete vehicles or machines participating in

an engagement scenario, had identical structures and beha-

viors regardless of their different types. Besides, the mod-

els only targeted at a specific engagement – namely,

underwater warfare. Accordingly, this study aims to refine

these problems of our previous models and generalize

them to various engagement scenarios.

Leaving aside our previous studies, many other

researchers have developed their own engagement-level

combat models using the DEVS formalism. For example,

some researchers studied human behavior for computer-

generated forces;17 others developed unmanned aerial

vehicle (UAV) models for developing a route tactic.18

Also, several researchers designed underwater warfare

models.19,20 Notwithstanding their practical contributions,

there remain some shortcomings. In other words, they did

not strengthen particular advantages of the DEVS formal-

ism when they utilized the formalism. Some researchers

disregarded hierarchical and compositional model design

for combat entities, while others oversimplified their tacti-

cal behaviors despite the fact that the above-mentioned

expressions can be formulated with the DEVS formalism.

The focus of this study, therefore, is to suggest a theo-

retical basis of DEVS-based combat modeling and to

develop it in a formal and effective way. The central issue

of engagement-level combat modeling is how we abstract

and represent a combat entity, such as an aircraft, a sub-

marine, a missile, or a torpedo. Due to the different tacti-

cal behaviors, we sort the combat entity into two types:

(1) a platform, which is a vehicle on which weapons are

mounted, such as a tank, a submarine, or an aircraft; and

(2) a weapon that is loaded onto the platform, such as a

missile, a torpedo, or a decoy.

The combat entity, which can be either structurally or

behaviorally categorized, is modeled by the DEVS formal-

ism. From a structural perspective, since the combat entity

has three kinds of common and core activities, i.e., move-

ment, detection, and decision (or command and control),7

we classify it into three separate components: maneuver,

sensor, and controller models. With hierarchical expres-

sions and coupling schemes provided by the DEVS

coupled model, the combat entity model are organized

hierarchically and interacts with component models intern-

ally or other entity models externally. As another perspec-

tive, i.e., a behavioral view, we regard an engagement

scenario as a flow of executable tasks, and the task flow is

expressed by semantics of the DEVS atomic model. This

behavioral semantics provide intuitive appeal, reducing

the effort required to read and understand the component

model. Moreover, our DEVS-based modeling enhances

compositional reusability, which means that component

models can be composed to create larger models. For

example, a well-described maneuver model of a torpedo

model can be reused to create other warship or submarine

models.

In summary, the objective of this study is to propose a

DEVS-based modeling for engagement-level combat

simulation. To this end, we propose three factors for mod-

eling technique: (1) overall model description, (2) model

design with the DEVS formalism, and (3) model imple-

mentation. To prove the efficiency of the proposed DEVS

modeling method, we illustrated compositional reusability

within a specific engagement scenario – namely, anti-

submarine warfare of a friendly warship. In addition,

simulation results of various experiments show effective-

ness analysis, such as how the factors influence the mea-

sures of effectiveness (MOEs) of the engagement.7 The

successful execution of this study greatly describes combat

entities with the DEVS formalism, and finally it offers an

immediate practical application for testing new tactical

development or analyzing weapon performance with vari-

ous combat scenarios.

This study contains seven sections. Section 2 describes

two theoretical grounds: taxonomy of an engagement-level

combat system and advantages of the DEVS formalism.

Section 3 introduces previous studies and compares them

as part of a literature review. Sections 4–6 explain the pro-

posed combat modeling method in the following order:

overall model structure, DEVS-based model design, and

model implementation. Section 7 illustrates the experimen-

tal results to prove the efficiency of this work and discuss

them, and we conclude our study in Section 8.

2. Problem definition

Before moving to the central part of our work, it is impera-

tive to clarify two key points for developing our argu-

ments: which taxonomy engagement-level combat systems

belong to and what formal modeling method expresses the

systems effectively.

2.1. Taxonomy of engagement-level combat system

There are several types of systems distinguished by time

and state spaces: continuous, discrete time, digital, and

discrete event systems.21 We start our arguments with an

engagement scenario, which represents a battle with a few

combat entities, to distinguish the system type of engage-

ment-level combat systems.

Figure 1 illustrates a simplified scenario in a flow chart

form. If a platform detects some threats on a scout, it stays

in contact with the threat to identify whether it is a target

or not. If the threat is regarded as a target, the platform

comes up to the target. When the target is within striking

760 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

distance, the platform fires and guides its weapons, and

finally, it makes a detour operation. Such engagement sce-

nario can be summarized by defining several tasks neces-

sary to fulfil the engagement mission.

In Figure 1, the simplified scenario has five kinds of

engagement tasks: reconnaissance, identification,

approach, attack, and evasion. Therefore, the engagement

scenario in the real world can comprise the sequential and

concurrent execution of these tasks. From a systematic

view, tasks are seen as finite and discrete state variables of

the combat system; conversions and executions of tasks

are regarded as state transitions; and causes and effects of

task executions and conversions are expressed as unex-

pected input/output (I/O) events of the system, which are

interchanged with other combat entities. In this context,

engagement-level combat systems are regarded as discrete

event systems with discrete state variables for engagement

tasks and I/O events that can occur at any time. In like

manner, many researchers have considered the engage-

ment-level combat systems as discrete event systems.22,23

As illustrated in our introduction, there are various

types of formalisms, including the DEVS formalism, the

finite state machine, the cellular automata, the Petri-Net,

the system dynamics, etc. Of these, the DEVS formalism

describes discrete event systems with sound semantics

founded on a system theoretic basis.24 The formalism pro-

vides two types of specifications: an atomic model from

which larger ones are built and a coupled model for the

hierarchy structure of overall models. From the combat

modeling perspective, two types of the DEVS formalism

are suitable for modeling the engagement scenario between

two opposing combat entities. For example, the

engagement scenario is decomposable into two opposing

combat entities, and each combat entity is also decomposa-

ble into multiple sub-entities, depending on the modeling

objectives. This decomposition of the scenario resembles

the hierarchy structure of the system modules, i.e., the

DEVS coupled model; the sub-entities behaves basically,

which is the atomic model of the DEVS formalism. This is

the primary reason that we use the DEVS formalism for

engagement-level combat modeling.

2.2. Combat modeling with the DEVS formalism

As the DEVS formalism is a general formal method, it

fundamentally satisfies common advantages of the formal

method, such as consistency,25 completeness26 or verifica-

tion.27 We shall now summarize and explain several par-

ticular advantages of the DEVS formalism. For a more

clear understanding, we classify the advantages in terms

of two aspects: theoretical and applicable perspectives,

which are depicted in Figure 2.

In the theoretical perspective, the DEVS formalism,

first, enables the modular and hierarchical design by using

I/O ports and coupling schemes on the basis of system the-

oretic principles. This allows very complex models to be

built by connecting different DEVS models, either atomic

or coupled models, in a hierarchical manner. Also, it sup-

ports scalability and reusability through the use of a DEVS

model as a component in another DEVS model.28 For

example, Kwon et al. expanded existing DEVS models by

adding new jammer DEVS models to develop a mixed tac-

tic with decoys and jammers.29

Figure 1. System taxonomy of engagement-level combat system regarding engagement scenario.

Seo et al. 761

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Next, the DEVS formalism provides simple but clear

semantics for the basic model behavior. The basic model,

or the DEVS atomic model, relies on only three sets and

four functions. With these semantics, the formalism can

specify a specific state at any point of time as well as

interact with other models with I/O events which are

caused by state transitions. Thus, the formalism provides

a complete and transparent representation of an object to

be modeled, reducing the effort required to read and

understand it. Due to the expressive power of the DEVS

formalism, many researchers have attempted to apply

the DEVS formalism to a specific simulation environ-

ment or transduce other formal methods to the DEVS

formalism.30–32

Furthermore, the DEVS formalism supports an open

approach to formalism development, allowing the

researcher to explore extended or specialized formalism.25

For example, Barros proposed the dynamic structure

DEVS (DSDEVS) formalism,33 which allows changes in

model structure during execution. Chow proposed the par-

allel DEVS (P-DEVS) for parallel execution benefits.34

Hong et al. proposed the real time DEVS (RT-DEVS) for

executing DEVS models within a real-world environ-

ment.35 From a combat modeling perspective, Sung and

Kim’s study represents a formalism extension for a practi-

cal application.36 Combat modeling is difficult because it

requires complex knowledge backgrounds, e.g., defense

domain knowledge and M&S skills. They proposed a col-

laborative modeling methodology to develop a domain-

specific discrete event system,36 and their study forms the

foundation of our DEVS-based combat modeling.

Finally, the DEVS formalism presents an explicit

separation between model specification and its implemen-

tation, or simulation development. In other words, imple-

menting DEVS models is easily achievable by utilizing an

implementation framework supporting the DEVS formal-

ism, such as DEVSim++,37 DEVSJava,38 or CD++,39 etc.

Among them, the proposed DEVS models in this study

will be implemented in the DEVSim++. In addition, many

DEVS implementations also mean that the DEVS formal-

ism has become universally recognized for discrete event

systems.

Synthetically, the above-mentioned advantages indicate

that the DEVS formalism gives not only the power of for-

mal rigor but also enables models’ practical application to

real-world discrete event systems. Moreover, modeling a

discrete event system is a key of combat modeling, and the

DEVS formalism, which specializes in expressing a dis-

crete event system, is well-suited for describing combat

models. In the following section, we introduce some previ-

ous works for DEVS-based combat modeling and discuss

their strengths and weaknesses.

3. Literature review

Some commercial tools for engagement-level combat

modeling, e.g., ODIN,40 virtual maritime system,41 or

BRAWLER,42 are already available in the market. The

greatest advantage of such tools is that they realize detailed

physical modeling of combat entities, such as kinetics,

acoustic signal modeling, or shape modeling. Nonetheless,

the problems with these tools are that a user can only uti-

lize them within the scope of their provided functions.43

Therefore, the creation of various engagement scenarios

and environments is only performed within a limited

scope. This is in contrast to DEVS-based model develop-

ment, which supports clear model semantics from struc-

tural and behavioral aspects. Since these commercial tools

are not our comparative targets in this study, we focus on

the DEVS-based combat models in academic areas and

compare them.

Table 1 describes several previous studies for engage-

ment-level combat modeling using the DEVS formalism.17–

20 We summarize their characteristics concerning DEVS

Figure 2. Particular advantages of DEVS formalism from two perspectives.

762 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

advantages illustrated in Figure 2. The common strength of

these studies, though not stated in Table 1, is that they drew

meaningful simulation results in each military domain, e.g.,

UAVs’ path planning or a submarine’s evasive capability. All

the studies concentrate on entity-level modeling that describes

an individual combat entity rather than unit-level modeling to

aggregate several entities into a higher object. Since an

engagement-level combat modeling focuses on duel level or

few-on-few engagement, most studies prominently featured

utilizations and interactions of individual combat entities.

Despite these contributions, their studies still warrant

some improvements. From the structural perspective,

Andrien et al. and Cho et al. took a combat entity to be a

whole physical and cognitive part.17,19 Specifically, mod-

eling of a combat entity is not decomposable any further;

this means that the combat entity model performs all activ-

ities, such as moving, sensing, or decision making, in one

integrated model. In this case, each activity is processed in

one state of the combat entity model. Since the model can

simulate only one state at a certain time and processes all

the states sequentially, it cannot perform multiple activi-

ties concurrently. Moreover, this unified modeling method

for a combat entity has a weakness in flexibility of model

composition. For instance, if a modeler wants to improve

an alternative evasive tactic for a submarine, he/she must

modify the submarine DEVS model wholly, not partially.

This is the typical misuse of the DEVS formalism. In con-

trast, Moreno et al. divided an air defense unit model into

detection radar, tracking radar, and missile models,18 and

Park et al. departmentalized a combat entity depending on

physical and logical attributes.20

In terms of the model behavior, some researchers could

not tactically describe a combat entity. Engagement-level

combat modeling needs to describe logical activities such

as decision, command, and control as well as physical

activities. However, unfortunately, Moreno et al. over-

simplified a combat entity model – their DEVS model

did not explain how to approach the target or how to

launch weapons.18 Park et al. also modeled a combat

entity with minimum-level tactical activities despite

separation of a logical part from the whole model.20 As

a consequence of oversimplifying descriptions, the com-

bat entity model can simulate only a very low variability

of the engagement scenarios, which gives rise to some

insufficiencies related to the realism of an engagement

scenario. Additionally, it is difficult for anyone but the

modeler to understand oversimplified models exactly.

On the other hand, Andrien et al. and Cho et al. proposed

good modeling approaches for describing model beha-

viors.17,19 The former defined a set of tasks allowing the

goal, and their execution is represented by a DEVS

atomic model; the latter described an engagement sce-

nario using the unified modeling language (UML) before

DEVS modeling.9

To sum up, the previous studies suffer from either inef-

ficient structural model design or insufficient representa-

tion of an engagement scenario despite the use of the

DEVS formalism. Due to the weaknesses of the studies,

their studies have a better chance of becoming one-time

research, remaining underutilized. Therefore, the focus of

this study is to make the best use of the DEVS formalism,

and to overcome these disadvantages and suggest some

empirical results.

4. Overall model structure

In this section, as a top-down approach for effective

description, we begin our proposed work from an overall

model structure.

Table 1. Comparison with previous works for engagement-level combat modeling using the DEVS formalism.

Previous study Military
force

Level of
model

Theoretical perspective
(model structure)

Theoretical perspective
(model behavior)

Practical application

Andrien et al.17 Armed
force

Entity-level All activities for a combat
entity model were
integrated in only one
model.

Model behaviors for a
composite mission were
classified with course of
tasks.

It has flexibility due to
separation between a
scenario and a combat
entity.

Moreno et al.18 Air
force

Entity-level An air defense unit was
divided into detection
radar, tracking radar, and
missile models.

Decision making and
moving behaviors were
ignored.

It seems to be underused
except as a specific
engagement.

Cho et al.19 Naval
force

Entity-level All activities for a combat
entity model were
integrated in only one
model.

A combat entity model
covered detailed
behaviors for a mission.

It seems to be underused
except in a specific
engagement.

Park et al.20 Naval
force

Entity-level Two kinds of components
were proposed for a
combat entity: physical
and logical parts.

Detailed tactical
descriptions were not
expressed in the combat
entity model.

Physical and logical parts
of the combat entity
model can be reused for
other applications.

Seo et al. 763

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Figure 3 represents the decomposition tree for the over-

all model structure which systematically organizes a family

of models. In Figure 3, shaded solid-line boxes are practi-

cally designed models; transparent dotted-line boxes indi-

cate notional models for easy comprehension. For example,

a combat entity is a conceptual model and it is realized as a

platform or a weapon model. In addition, the left-most side

box is the superordinate category of the overall model,

which means that a combat system model is outermost and

the top layer of the overall model structure. The combat

system model is decomposed into sub-models that perform

the specific roles, keeping to the right side.

The combat system model is basically divided into an

experimental frame and a simulation model. The simula-

tion model represents a target system that a modeler is

interested in modeling; the experimental frame specifies

the conditions under which the simulation model is

observed or experimented with, e.g., generation of the

simulation models’ inputs or collection of the model’s out-

puts.24 A clear separation of the simulation model and the

experimental frame enables the application of alternative

engagement scenarios without amendment of the simula-

tion model. Since our focus in this study is the simulation

model, and the engagement-level battle is usually focused

on combat entities’ tasks and accomplishments, we con-

centrate on the simulation model, especially a combat

entity model.

In a hierarchical fashion, the simulation model also con-

sists of several lower models: two or more combat entity

models, a damage assessment model, and an environment

model. The damage assessment model evaluates the engage-

ment situation, (e.g., the offensive combat entity model

attacks the target or the defensive model defends against the

attack); the environmental model reflects environmental

effects such as weather patterns, ambient temperature, artifi-

cial features and more. As mentioned above, since most

engagement-level combat modeling features utilization and

interactions of combat entity models, effective modeling of

the combat entity is the central issue of our study.

Basically, the combat entity has three kinds of core

activities: movement and detection for physical activities

and decision for a logical activity. Since these activities are

performed simultaneously as well as sequentially during

engagement, we horizontally classify the model into three

separate components: a maneuver, a sensor, and a controller

models. This three-part modeling method was proposed in

our previous work already,16 and we refine the basic con-

cept of the previous work to fit the context of this study.

The sophisticated point compared with our previous work is

that we classify a combat entity model into two types prac-

tically: a platform model for a tank, a submarine, or an air-

craft and a weapon model that is for a missile, torpedo, or

decoy loaded on the platform model. The principle reason

for two types of categorization is logical behavioral

Figure 3. Overall model structure of combat system model.

764 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

difference. The platform model decides tactical operation,

commands the order, and controls launched weapons if nec-

essary, while the weapon model executes preset tactical

rules or it can be controlled by the controllable platform.

This causes different model behaviors between them even

though the modeling structures of both are identical.

Next, we move the focus to the model abstraction levels

affected by the collaborative modeling method.36 The

combat modeling is difficult because the modeling requires

complex knowledge background: that is, the defense-

domain knowledge as well as the M&S knowledge at the

same time.7 To be specific, each sub-model, i.e. the man-

euver, the sensor, and the controller model, is modeled into

two levels in terms of a layered structure: (1) a discrete

event model (DEM) layer for the M&S knowledge and (2)

an object model (OM) layer for the defense-domain knowl-

edge. The DEM layer represents the abstract behavior of

an object using the DEVS formalism, and it is suitably

employed to describe models macroscopically. For micro-

scopic modeling, we develop the OM layer to represent

detailed behavior of the same object,44 which is non-

decomposable and alternative. For example, the DEMs of

the controller model perform the engagement tasks,

described in Figure 1, according to the event sequences,

whereas the OMs conduct detailed and individual actions

to fulfill the tasks such as identification function or weapon

control algorithm.

To sum up, we suggest a model structure of a combat

situation to support an understanding of the brief model

construction and implied relationships between upper

models and their components. Naturally, there is no infor-

mation concerning how to map the upper model on its

components or detailed model descriptions about how it

works. We will describe these viewpoints with the formal

specification, i.e., the DEVS formalism, in the following

section.

5. DEVS-based model design

This section explains DEVS representations of the combat

system model. As DEVS models represented by the set-

theoretic specification can be easily turned into graph dia-

grams, we use DEVS diagrams for more straightforward

understanding (from now on, in the text we use italics for

overall DEVS specifications expressed in the following

notation and figures). Further information on the DEVS

diagram can be found in Song et al.’s study.45

Figure 4 is the top-level diagram for the Combat system

model. For modeling of an engagement scenario, one or

more friendly and hostile combat entities, specified as plat-

forms or weapons, are necessary; therefore, the Combat

system model contains multiple combat entity models. In

Figure 4, several Platform and Weapon models are com-

prised in combat entities with the unique subscript behind

the word ‘Platform’ or ‘Weapon’. In comparison of the

two models, some I/O ports differ due to their particular

behaviors. For example, the Platform model needs I/O

ports for launching weapons and guiding them (i.e. gui-

dance_info, wp_launch, and wp_guidance); the weapon

model has different I/O ports to be controlled by the plat-

form (i.e. entity_gen, wp_guidance, and guidance_info). In

this context, we inform that the Combat system model in

Figure 4 includes weapon models for being controlled, not

fire-and-forget. The focus of this study is to represent the

Simulation model that contains several combat entities, a

Damage assessment, and an Environment models with the

DEVS formalism. With these issues in mind, in the follow-

ing sub-section, we first take a look at the Platform model

design which is a type of the combat entity.

5.1. Platform model design

Suppose the situation in which the Platform model tracks

a target. The Platform Controller model decides the appro-

priate tactic for tracking and sends a command order (e.g.

how to approach to the target) to the Platform Maneuver

model. The Maneuver model receives the command order

and maneuvers depending on the command. Separately,

the Platform Sensor model detects the target and sends the

detected information to the Platform Controller model.

The Controller model takes a new decision operation on

the basis of the detected information. This process is

repeated in the Platform model during simulation. It is

only influenced by other models through interfaces that

mean I/O relations. Accordingly, this feature leads to

enhanced modularity and encapsulation of the sub-model.

The following notations represent the DEVS coupled

description of the Platform model, and Figure 5 shows its

diagram.

Notation 1. DEVS Coupled description of Platform model:

CMPlatform = \ X, Y, {Mi}, EIC, EOC, IC, Sel . ,

X = {‘‘scen_info’’, ‘‘engage_result’’, ‘‘move_result’’,

env_info’’,‘‘guidance_info’’}

Y = {‘‘move_result’’, ‘‘wp_launch’’, ‘‘wp_guidance’’}

{Mi} = {Sensor, Controller, Maneuver}

EIC = {(CMPlatform.scen_info, Sensor.scen_info),

(CMPlatform.scen_info, Maneuver.scen_info),

(CMPlatform.engage_result, Sensor.engage_result),

(CMPlatform.engage_result, Controller.engage_result),

(CMPlatform.engage_result, Maneuver.engage_result),

(CMPlatform.move_result, Sensor.move_result),

(CMPlatform.env_info, Sensor.env_info),

(CMPlatform.env_info, Controller.env_info),

(CMPlatform.env_info, Maneuver.env_info),

(CMPlatform.guidance_info, Controller.guidance_info)}

EOC = {(Maneuver.move_result, CMPlatform.move_result),

(Controller.wp_launch, CMPlatform. wp_launch),

(Maneuver.wp_guidance, CMPlatform.wp_guidance)}

Seo et al. 765

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

IC = {(Sensor.threat_info, Controller.threat_info),

(Controller.move_cmd, Maneuver.move_cmd),

(Maneuver.move_finished, Controller.move_finished),

(Maneuver.fuel_exhausted, Sensor.fuel_exhausted),

(Maneuver.fuel_exhausted, Controller.fuel_exhausted)}

Sel({Sensor, Controller}) = Controller

In the following sub-sections, we describe the three com-

ponent models, i.e., the Controller, the Maneuver, and the

Sensor models, in detail.

5.1.1. Controller model design. The Controller model per-

forms tactical decision-making processes. It takes on the

role of dynamic decision making under some uncertainty.

The major tasks to be performed or achieved for engage-

ment are illustrated in Table 2.

As described in Figure 1, these tasks are carried out

concurrently or sequentially, and continuative execution of

tasks can be represented by the discrete event model. To

be specific, tasks are described by single state or an inte-

grated state variable, and the transitions between states

indicate conversion of tasks. In addition, execution of tasks

is performed within the relevant state. We accomplish

these operations by DEM and OM layers. The DEM layer

describes an arrangement of tasks and tasks’ conversion;

the OM layer represents detailed execution of tasks. The

following notations describe the DEM and the OM layers

of the Controller model. In this study, we do not describe

detailed operations of the OM layer, which means that we

do not explain how the task can be performed. Since OMs

could be designed variously in accordance with the type or

resolution of the combat entity model, we just explain the

role and interface of the OMs.

Notation 2. DEVS Coupled model description of Platform

model:

DEM Layer - AMUpdater, AMActor

AMController_Updater = \ X, Y, S, dext, dint, l, ta . ,

X = {‘‘threat_info’’, ‘‘scen_info’’}

Y = {‘‘target_info’’}

S = {WAIT, IDENTIFICATION}

dext : WAIT 3 ‘‘scen_info’’! WAIT

WAIT 3 ‘‘threat_info’’! IDENTIFICATION

IDENTIFICATION 3 ‘‘threat_info’’

! IDENTIFICATION

dint : IDENTIFICATION! WAIT

l : IDENTIFICATION!‘‘target_info’’

ta : WAIT!N
IDENTIFICATION! tIDNTFY

(Response time for identification operation)

AMController_Actor = \ X, Y, S, dext, dint, l, ta . ,

X = {‘‘move_finishied’’, ‘‘engage_result’’,

‘‘scen_info’’, ‘‘target_info’’, ‘‘guidance_info’’}

Figure 4. Graphical notation of Combat system model using DEVS diagram.

766 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Y = {‘‘move_cmd’’, ‘‘wp_launch’’, ‘‘wp_guidance’’}

S = {IDLE, RECONNNAISSANCE, APPROACH, COMBAT,

EVASION, CONTROL, END}

dext : IDLE 3 ‘‘scen_info’’! RECONNAISSANCE

IDLE 3 ‘‘move_finished’’! RECONNAISSANCE

IDLE 3 ‘‘target_info’’! APPROACH

IDLE 3 ‘‘move_finished’’! IDLE! APPROACH

COMBAT 3 ‘‘target_info’’! ATTACK!COMBAT

EVASION 3 ‘‘target_info’’! EVASION

IDLE 3 ‘‘move_finished’’! EVASION

IDLE 3 ‘‘guidance_info’’! CONTROL

CONTROL 3 ‘‘target_info’’! CONTROL

IDLE 3 ‘‘target_info’’! IDLE

IDLE 3 ‘‘engage_result’’! END

CONTROL 3 ‘‘engage_result’’! END

dint : RECONNAISSANCE! IDLE

APPROACH! IDLE

APPROACH! COMBAT

COMBAT! EVASION

EVASION! IDLE

CONTROL! IDLE

l : RECONNAISSANCE!‘‘move_cmd’’

APPROACH!‘‘move_cmd’’

COMBAT!‘‘wp_launch’’

EVASION!‘‘move_cmd’’

CONTROL!‘‘wp_guidance’’

ta : IDLE!N

RECONNAISSANCE! tRECON

APPROCH! tAPPRCH

COMBAT! tCOMBAT

EVASION! tEVASION

CONTROL! tCTRL

END!N

Figure 5. DEVS diagram of Platform coupled model.

Table 2. Engagement tasks and model representation.

Task Task description State representation

Reconnaissance Decision of tactical maneuver and detection within an operating area RECONNAISSANCE
Identification Target evaluation and identification based on detected threats from the sensors IDENTIFICATION
Approach Target tracking with estimation of range, bearing, course, and velocity of the target APPROACH
Combat Combat planning such as weapon assignment COMBAT
Control Guidance and control of the launched weapon for effective utilization CONTROL
Evasion Tactical evasion after a fight EVASION

Seo et al. 767

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

OM Layer

OMIdentification: Behavior description for target identification

Target data = Identification(Threats data)

OMRecon: Behavior description for reconnaissance

Next search-pattern method = Recon(Current method)

OMApprch: Behavior description for approach to target

Approach method = Apprch(Targets/own data)

OMAttack: Behavior description for combat planning

Engagement order = Attack(Targets/own data)

OMEvasion: Behavior description for evasive action

Evasion order = Evasion(Targets/own data)

OMCtrl: Behavior description for weapon control

Control order = Ctrl(Targets/own weapon data)

Now, we shall explain the DEVS representations of the

Platform Controller model in detail. Depending on the char-

acteristics of tasks and the I/O properties of the Controller

model, we classify the model into two sub-models: an

Updater model and an Actor model. The Updater model

receives threat information entering the Controller model,

and updates and identifies whether it is a target or not. Then

the Actor model operates proper tactical processes from tar-

get tracking to tactical evasion with identified target infor-

mation. Therefore, the DEM layer has two DEMs (i.e., the

Updater and the Actor models), and they are designed by

the DEVS atomic models. On the other hand, OMs basi-

cally present detailed behaviors for executing above tasks.

Equally to the DEVS coupled model, we can graphi-

cally represent above-mentioned textual specification as a

diagram of a DEVS atomic model. Figure 6 shows DEVS

model diagrams of the Controller model: Figure 6(a)

shows a DEVS diagram of the Controller coupled model,

whereas Figure 6(b) and (c) illustrate diagrams of two

atomic models that are the components of the Controller

coupled model. Since the atomic model diagrams are

somewhat more complicated than that of the coupled

model, we provide explanatory notes shown in the middle

box in Figure 6(b). The bottom box shows all OMs and

their interfaces that are connected to the relevant DEMs.

From now on, we only describe the model with the DEVS

diagram without using DEVS textual notations.

The Actor atomic model conducts a task about identifi-

cation and the Updater model accomplishes all tasks

except identification. These executable tasks explained in

Table 2 are represented by states in the DEVS atomic

models. For instance, the IDENTIFICATION state in the

Updater atomic model performs target identification, and

the APPROACH state in the Actor model conducts a task

for target approach.

Let us explain the process of the two atomic models’

state transitions more specifically. The Updater model in

the WAIT state receives threatening information, threat_

info, from the Sensor model and turns into the

IDENTIFICATION state recording the information. In the

IDENTIFICATION state, the model identifies whether

the threat can be a target or not, and sends the target infor-

mation, target_info, if necessary, and then transits the

WAIT state. In this case, execution of the task, identifica-

tion, is performed by the OM named by Identification().

Next, the Actor model carries out behaviors in two situa-

tions: when a target is found and when no targets are dis-

covered. At the beginning of the engagement, since there is

no target, the Actor model in the IDLE state receives the

initial model information, scen_info, and transits the

RECONNAISSANCE state. The RECONNAISSANCE state

in the model manifests decisions of the roving patrol type

through the OMRecon. With the result of OMRecon, it sends

the maneuver order, move_cmd, to the Maneuver model,

and turns into the IDLE state. If the model receives the

completion event, move_finished, from the Maneuver

model, it repeats the above process.

When the Actor model receives the target information,

target_info, at the IDLE state, it turns into the APPROACH

state. And then, it performs three tasks (i.e., approach,

combat, and evasion) by state transitions from the

APPROACH to the EVASION state. In the APPROACH

and EVASION states, the Actor model determines the tacti-

cal moving order and send move_cmd to the maneuver

model, whereas, in the ATTACK state, the model formu-

lates combat plans by OMAttack and send wp_launch. If

guiding launched weapons is practicable, the model in the

CONTROL state sends the control event, wp_guidance to

the associated Weapon model. When guided weapons are

not available in the engagement scenario, the Actor model

does not conduct state transitions regarding the CONTROL

state due to the absence of an input event, guidance_info.

Finally, the Actor model turns into the END state if it

receives the input event, engage_result, which means that

it is killed or the simulation terminates.

5.1.2 Maneuver model design. The Maneuver model repre-

sents the movement of the combat entity model to execute

tasks physically. As noted before, the DEM layer describes

abstract behaviors with state transitions and controls the

overall event messages, whereas the OM layer is in charge

of concrete and specific behaviors such as a maneuver

algorithm. In the same way as with the Controller model,

the Maneuver model consists of an Updater model and an

Actor model.

Figure 7 shows DEVS diagrams of the Maneuver

model. Initially, the Updater model receives the command

event, move_cmd in the WAIT state and changes the state

to the INTERPRETATION state. In the INTERPRETATION

state, the model converts the command to physical informa-

tion for dynamics through the OMCmd_Inerpreter. Thereafter it

sends the information, cmd_info, to the Actor model and

turns into the WAIT state. On the other hand, the Actor

model receives the initial information, scen_info, in the

IDLE state and prepares for actions. There are largely two

768 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

states of the Actor model for actions: the MOVE state and

the FUEL state.

The Actor model performs the movement at the MOVE

state with the physical information, cmd_info, from the

Updater model, thus this state handles the maneuver algo-

rithm through the OMMotion_Equation. For example, the DEM

for action can utilize different maneuver algorithms to con-

nect with the OM, which may be the basic equation that

velocity equals velocity 3 time, or the advanced equation,

which takes environment effects into consideration.

Therefore, we adapt various kinetic algorithms or tactical

operations more flexibly, minimizing the need for modifica-

tion of models. During the model staying at the MOVE

state, it can reflect the environment effect from the input

event, env_info. After the model completes the moving

command with the OMCmd_Check, it sends move_finsished to

the Controller model.

In addition, the model checks the platform’s endurance

which is defined as the number of the days the platform

remains at the engagement. The Actor model in the FUEL

state computes the operating time for the platform’s endur-

ance in accordance with the OMFuel_Check, and send the

output event, fuel_exausted, if the entire elapsed time

exceeds the operating time. Similar to the Controller

model, the Maneuver model turns into the IDLE state if it

receives the input event, engage_result, which means that

it was killed.

5.1.3 Sensor model design. Detection and homing of other

combat entities is one of the main activities of combat

entity modeling. The Sensor model is a part of the platform

detecting maneuvering threats according to its own algo-

rithm. Similar to the Controller and Maneuver models, the

Sensor model is also classified into two groups, and all of

the DEVS diagrams of the Sensor model are illustrated in

Figure 8. To put it briefly, we design the Sensor model to

perform the periodic scan of all the other combat entities

and detect a threat solving various detection algorithms.

Therefore, the Updater model stores the scanned informa-

tion, and the Actor model solves the detection algorithm.

Let us give a full explanation about the model descrip-

tions. The Updater model receives other platforms’ physi-

cal information as well as its own one through the input

Figure 6. DEVS diagrams of Platform Controller model.

Seo et al. 769

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

event, move_result, and stores them using the

OMData_Integrator. When the model receives the request for

the stored information from the Actor model, it delivers it

to the Actor model.

In the Actor model, it receives the initial information,

scen_info, and changes the current IDLE state to the

PERIOD state. In the PERIOD state, the model holds on the

periodic time for scanning while updating the input events.

After the periodic time, tCYCLE, the model sends the output

event, request, for requesting the scanned data and turns into

the REQUEST state. The model in the REQUEST state waits

for the response from the Updater model. When the input

event, response, enters the model, it changes the REQUEST

state to the DETECT state. In the DETECT state, the Actor

model conducts the detection algorithm designed in the

OMDetection_Algorithm. Since the combat entity has several

detection systems for detecting various frequency sounds,

the Sensor model can contain multiple OMs for sensing.

Until now, we have explained the three component mod-

els of the Platform model – the Controller, the Maneuver,

and the Sensor models – for moving, sensing, and deciding

activities, respectively. Just like the Platform model, the

Weapon model, also, conducts the same activities. There are,

however, some differences between the two types of combat

entity model, which come from different tactical behaviors.

Fundamentally, the Weapon model undertakes simple

engagement tasks, e.g., search, identification, and approach,

which are regarded as a basic type of the Weapon model. In

addition, as information technologies develop, it enables that

launched weapons are being controlled, which is an optional

task for the Weapon model. This optional task depends on

whether the Weapon model is a basic type for fire-and-forget

or an advanced type for being guided. Therefore, fundamen-

tal tasks are comprised in a basic type of DEVS model, and

the existing DEVS semantics can be reused for an advanced

type, which is the additional advantage of the DEVS formal-

ism. The detailed DEVS specification of the Weapon model

can be seen in Appendices A and B.

5.2. Model relation between controller and
maneuver models

From the previous sub-section, we have examined the

detailed DEVS-based design of the combat entity model.

Figure 7. DEVS diagrams of Platform Maneuver model.

770 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

During model execution, or simulation, the components of

the model fulfill their roles, which have connections with

other components. In this section, we explain these con-

nections partially to understand the relationships of the

component models more easily.

Figure 9 shows simplified DEVS diagrams of a com-

bat entity, which is regardless of a platform or a weapon.

In Figure 9, we use bold lines and characters to highlight

event sequences that we intend to explain. Let us begin

our viewpoint at the occurrence of the event, target_info,

in the DEMController_Updater. The DEMController_Actor

receives the input event, target_info, and changes the

current state to the APPROACH state. After the

tAPPRACH, which is the time advance value of the

APPROACH state, elapses, the DEMController_Actor calls

the OMApprch to obtain a maneuver pattern for target

approach. In the case of a submarine, combinations of

three kinds of approach pattern, i.e., point, lead, and

lag,46 are formulated in the OMApprch. In this example,

the OMApprch decides Pattern 1 based on the target and

own data, and returns the command to the

DEMController_Actor. With this returned message, the

DEMController_Actor sends the output event for moving

order, move_cmd, to the DEMManeuver_Updator.

The DEMManeuver_Updator turns the current WAIT state

into the INTERPRETATON state upon receiving

move_cmd. In the INTERPRETATON state, it summons

the OMCmd_Interpreter to convert the command to the physi-

cal data such as angles, velocity, or distance. Then the

DEMManeuver_Updater sends these data to the

DEMManeuver_Actor. After the DEMManuever_Actor receives

the input event, cmd_info, it changes to the MOVE state.

Finally, in the MOVE state, the model solves the actual

maneuver equation through the OMMotion_Equation and

transmits the result to the external model. In the case of

the MOVE state, the time step size for solving the maneu-

ver equation is represented by the time advance value of

the MOVE state, tMOVE, and this value can vary according

to the command type. For instance, in the

RECONNAISSANCE state, the time step is a large value

because there is not actual engagement. Otherwise, if an

engagement situation occurs and the target is identified,

we can utilize the very small time steps for the

APPROACH and ATTACK states for more accurate simu-

lation. This is the additional advantage of the proposed

modeling design.

Now, we leave two atomic models for the Simulation

model. These models are simpler than the other models

Figure 8. DEVS diagrams of Platform Sensor model.

Seo et al. 771

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

described. Therefore, we describe these two models briefly

and move on to model implementation.

5.3. Damage assessment & environment
model design

The Damage assessment model investigates the effect that

weapons damage targets. This model receives physical

information of all the combat entities and processes the

mechanisms by which weapons can inflict damage at an

interval of a periodic cycle, tPERIOD. Thereafter the engage-

ment result is transferred to the combat entity models.

Figure 10 shows these processes with a DEVS diagram of

the Damage assessment atomic model.

During engagement, the enemy detection probability

and one’s own movement are dependent on environmental

effects such as terrain features and weather patterns. Thus,

these environmental effects affect the combat entities’

physical components such as the Maneuver and the Sensor

models. Figure 11 illustrates how the Environment model

is modeled by the DEVS formalism. The Environment

model sends time varying information about environment

effects to all platform and weapon models.

So far, we examined modeling of the Combat system

model from a macroscopic perspective as well as a micro-

scopic view, which are focused on DEVS-based modeling

method. The way we model combat entities, such as their

interactions based on core activities and events and state

transitions for engagement tasks, plays a pivotal role for

engagement-level combat M&S. The purpose of this mod-

eling is to execute the models eventually for the simula-

tion, which represents how to effectively communicate

information between the inside and outside of combat enti-

ties. In the following section, we introduce implementation

of the designed model for simulation.

6. Model implementation

After the DEVS modeling, we need to implement the

DEVS model for simulation. This section introduces sev-

eral implementation frameworks for DEVS-based models

and shows how we implement our DEVS models.

6.1. Technical implementation of DEVS-based
combat model

Implementing models that are specified with the DEVS

formalism is easily achievable by utilizing an implementa-

tion framework supporting the formalism. For example,

the DEVS models are implementable using DEVSim++,37

DEVSJava,38 CD++,39 or SiMA,47 etc. As far as a model

is implemented by following the template of the

DEVSim++ library, the implemented model is executable

by a general simulation engine provided by DEVSim++.

Figure 9. Relation between Controller and Maneuver models.

772 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

This means that a modeler is freed from implementing the

same model repeatedly for multiple simulations.

The DEVSim++, which has been widely used to imple-

ment various areas of DEVS models, is the implementa-

tion framework that realizes the DEVS formalism in the

C++ language.48 In this study, the Combat system model

is implemented by using the DEVSim++ for model simu-

lation. All the DEMs of the Combat system model are

implemented using the DEVSim++, and the detailed algo-

rithms and equations of the OMs are realized using the

C++ language. Commonly, the DEM layer could contain

more than one DEM according to the need, and each indi-

vidual DEM would also link up with one or several OMs

in the OM layer by sharing interfaces between the two

layers. This is a natural situation for flexible simulation to

change detailed behaviors in OMs.

To support linking between two layers effectively, we

use a shared library technique such as the dynamically

linked library (DLL), which enables the modeler to switch

the algorithms or dynamic equations in OMs during simu-

lation without recompiling.16 That is, the OM provides

various algorithm candidates, which is implemented with

the DLL; and linking the DEM to the corresponding OM

is based on a communication interface called function pro-

totype in the C++ language.

Figure 12 shows an implementation example of a DEM

and an OM for the Controller Actor model. Whenever the

DEM is in the APPROACH state, it calls the Apprch() to

the OM. The Apprch() can be changeable as the modeler

applies alternative algorithms. In Figure 12, each alterna-

tive function is developed as a separate DLL, and we

express it in different patterned blocks. The DEM can pick

a proper OM in the DLL pool if it knows inputs, outputs,

and the name of the function prototype. Inversely, the OM

is available for other DEMs if they are implemented using

the same function prototype and the same I/O.16 This

enhances reusability in terms of the various behaviors of

the developed models.

7. Case study

In this section, we introduce a case study about a specific

engagement scenario. The scenario is anti-submarine war-

fare (ASW), which is one-to-one engagement—that is, a

friendly warship versus a hostile submarine.16 The goals

of the case study are twofold: (1) to determine how factors

are improved when we use the proposed modeling tech-

niques; and (2) to determine what results of the simulation

analysis can give better information to the M&S users,

such as decision makers.

7.1. Engagement scenario

In the ASW, the warship is attacked by an anti-surface tor-

pedo fired by the submarine. The brief scenario illustrated

in Figure 13 is as follows (italic words in parenthesis and

Figure 13 mean engagement tasks that the warship should

perform):

1. A friendly warship makes a reconnaissance within

an operating area. (Reconnaissance)

2. A hostile submarine launches a torpedo to the

friendly warship after detection.

3. The launched torpedo explores some targets with

its own searching rule.

4. The warship identifies an approaching threat, the

torpedo. (Identification)

5. The warship decides combat planning with multi-

ple decoy systems. (Combat)

6. After operating decoy systems, the warship makes

a detour to be far from the torpedo. (Evasion)

7. The torpedo is deceived by the decoys and repeats

re-search.

In Figure 13, the submarine fires a single torpedo

against the warship and the warship operates four decoys

with a certain tactical pattern. Thus, this engagement

Figure 10. DEVS diagram of Damage assessment atomic model.

Figure 11. DEVS diagram of Environment atomic model.

Seo et al. 773

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

scenario requires seven combat entity models: two

Platform models and five Weapon models.

7.2. M&S development and experimental design

Before the model implementation, we first set up the sur-

vival rate of the friendly warship as a measure of effec-

tiveness (MOE). Key variables for the initial param are

provided in our previous work.16 Thereafter, we imple-

mented an Experimental frame and the Simulation model

using DEVSim++. The brief model structure of the

Simulation model is depicted in Figure 14. We implemen-

ted the two Platform models with the same DEM struc-

tures, though they are distinguished by different OMs and

initial param. This is the same with the case of five

Weapon models. This compositional reusability is to

achieve the first goal of the case study, which is described

in the following sub-section.

Table 3 illustrates an experimental design with four

experiments to accomplish the second goal, i.e., effective-

ness analysis. The first two experiments in Table 3 are easily

accomplished to change just the model parameters. On the

other hand, the two backward experiments are not related to

the model parameters but the model behaviors, which mean

that modification of the designed model is inevitable. In

these cases, the proposed modeling technique demonstrates

its advantage in minimizing model revision due to the well-

classified model design. For example, for the third case of

Figure 13, we only redesign the OMCombat of the Controller

model of the warship rather than the whole part, preserving

the interfaces between the two layers. Similarly, we only

implement the alternative OMTactical_Search of the Controller

model of the torpedo for the fourth case.

7.3. Experimental results

Now we describe our experimental results in two ways.

The first way is to show compositional reusability in the

model development process, which is an advantage of the

proposed modeling. Second, we analyze simulation results,

varying the four experimental cases in Table 3.

7.3.1. Compositional reusability in model development.
Biggerstaff and Richter categorize reusability techniques

into two types49: generational reusability and

Figure 12. Implementation example of Controller model (taken from Sung and Kim).36

Figure 13. Brief engagement scenario of anti-submarine
warfare (ASW) (taken from Seo et al.).16

774 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

compositional reusability. The generational reusability is

the pattern of generating software; the compositional reu-

sability is composing multiple entities to create a larger

model. Since simulation model reuse is more composition

technology than generation technology,50 we focus on

compositional reusability, or hierarchical reusability, that

occurs during model implementation in this study.

Figure 14 shows the brief model structure of the

Simulation model for the case study. Shaded boxes in Figure

14 represent models to be reused just once. This means that

multiple reuse can occur at any time. All the DEMs of com-

bat entity models except the torpedo’s DEMSensor are reused,

and furthermore, decoy models are reused entirely. On the

other hand, OMs are not frequently reused compared to

DEMs, this is caused by the fact that a combat entity model

is characterized as its distinct OMs.

Even though we just provide schematic information for

compositional reusability instead of quantitative data, we

assure readers to understand that the proposed model

design has a well-defined structure divided into common

and characterized parts: common parts mean DEMs and

characterized parts correspond to OMs. Therefore, this

well-structured model design guarantees multi-level reusa-

bility, which will be explained in the next discussion

section.

7.3.2. Effectiveness analysis: regression analysis of experimental
results. For effectiveness analysis, this sub-section statisti-

cally analyzes which factors contribute to the MOE, i.e.,

the survival rate of the friendly warship, as well as how

strongly and robustly they are contributing. To do this, we

built a linear regression model for the experimental results

with standardized coefficients and p-values for indepen-

dent experiments (see Table 4).

In Table 4, we identify three major findings: The first is

the regression coefficient of each experiment. The experi-

ment with a higher coefficient value has a greater influence

on the MOE than the experiment with a lower value. For

instance, the detection range of the warship is the most sig-

nificant among the four, and it implies that the most impor-

tant point is detecting the enemy as quickly as possible.

The second finding is the R2 of the experiment. The R2 has

a value between 0 and 1, and it measures how well the

resulting line in the regression model matches the original

data points. Since the R2 value is 0.831 in these experi-

ments, we can predict the output sufficiently with this

regression model. The third finding is the p-value of each

experiment. With the p-value, we determine which input

variables are directly related to the output variable. As we

see in Table 4, all experiments are relevant to significant

input variables for the output variable.

Figure 14. Brief model structure of Simulation model and reusability representation.

Seo et al. 775

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

7.3.3. Effectiveness analysis: trend of specific experimental
cases. Now, we explain a changing trend of the MOE.

Since total experiments contain 400 cases, we cannot inter-

pret all the cases in this study. Therefore, we chose certain

cases, especially the first and the second experiments, and

analyzed them.

Figure 15 shows simulation results according to the

first and the forth experiments in Table 3. The x-axis rep-

resents the detection range of the warship which is the

most influencing factor among four experiments, and the

y-axis shows the probability of the warship’s survival, i.e.,

the MOE. Four lines in the graph are for one straight-

running and three pattern-running torpedo models that are

relevant to the forth experiment.

For modeling of pattern-running torpedoes, we used

three different moving types composed of two or more

moving segments. Three kinds of segments, i.e., straight,

winding, and circular segments, were used in our experi-

ment, which differently influence on the torpedo’s obser-

vation angle and velocity. For example, the straight

segment is the fastest among the three, but it has the nar-

rowest angle of sensing in the forward direction. On the

other hand, the circular segment can sense in all directions

with the lowest velocity. Lastly, the winding segment is a

compromise between the straight and the circular seg-

ments. Three moving types integrating with these segments

differently were developed in the OMTactical_Search of the

torpedo model separately, and it can interconnect with the

DEMController_Actor through the same interface. Therefore,

we developed alternative OMTactical_Search to evaluate vari-

ous straight-running and pattern-running torpedoes.

In Figure 15, we fist can see that the warship should

have the ability of at least 3000 m for detection to achieve

more than 90 percent of survivability. That is, if the war-

ship detects some threat out of 3000 m, it could secure

enough time to employ decoy systems and make a detour.

This is a typical example to determine a required opera-

tional capability (ROC) of the warship. Next, from the side

of the torpedo, we can find that Type 4 is the most threa-

tening moving type among four types because it results in

the lowest survivability of the warship. On the contrary,

Table 3. Four experimental designs for case study (extended from Seo et al.).16

Experimental design Variation cases Implications

Detection range of
warship
(Experiment 1)

2000, 2500, 3000, 3500,
4000 m (5 cases)
default : 3000 m

This experiment is achieved by varying an initial parameter.
The parameter is used in the Sensor model of the warship.

Velocity of mobile decoy
(Experiment 2)

3, 6, 9, 12, 15 knots (5
cases)
default : 12 knots

This experiment is achieved by varying an initial parameter.
The parameter is used in the Maneuver model of the decoy

Operating pattern of
decoys
(Experiment 3)

Pattern 1, 2, 3, 4 (4 cases)
default : Pattern 3

This experiment is achieved by varying the OMCombat that is used in the
Controller model of the warship.

Pattern 1 uses only static decoys; pattern 2 to 4 mix static and mobile
decoys.
Pattern 1: four static decoys are used.
Pattern 2: four mobile decoys are used.
Pattern 3: two static decoys at the front of warship and two mobile
decoys at the rear are used.
Pattern 4: two mobile decoys at the front of warship and two static
decoys at the rear are used.

Search pattern of torpedo
(Experiment 4)

Type 1, 2, 3, 4 (4 cases)
default : Type 4

This experiment is achieved by varying the OMTactical_Search that is used
in the Controller model of the torpedo
Type 1 means a straight-running torpedo; Types 2 to 4 mean pattern-
running torpedoes.
Type 1: only the straight moving segment is used,
Type 2: straight and winding moving segments are used.
Type 3: winding and circular moving segments are used.
Type 4: all three moving segments are used.

Total 400 (52× 42) cases Number of replications per a case : 100 times

Table 4. Regression coefficient and p-value from the regression
analysis by four experiments (* for p-value < 0.05).

Experiment Regression coefficient p-value

Experiment 1 0.847 1.32 × 10− 57 (*)
Experiment 2 0.091 6.0 × 10− 3 (*)
Experiment 3 0.199 2.59 × 10− 6 (*)
Experiment 4 0.182 2.13 × 10− 6 (*)
R2 0.831

776 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Type 1 (i.e., a straight-running torpedo) has little effect,

which is the principle reason that straight-running torpe-

does are not operating any more in military. In comparison

with Types 2 and 3, when the detection range of the war-

ship is less than 3000 m, Type 3 is more effective than

Type 2. This may come from that the circular segment is

more effective when a target is far away from all direc-

tions rather than nearby at the forward direction.

Note that any moving types for a pattern-running tor-

pedo cannot be effective if the warship has sufficient

detection ability and efficient countermeasure systems. In

this case, the only way for the torpedo to attack a target

successfully is to approach to the target as quickly as pos-

sible without any being discovered.

7.4. Discussion

One of the main advantages of DEVS-based modeling is

the increased reusability of algorithms, models, and

engines (i.e. DEVS implementations).7 The proposed com-

bat modeling is discussed under the DEVS formalism to

provide a basis and rationale for compositional reusability,

which is the goal of the first experimental results. For

instance, one OMMotion_Equation in Figure 14 is reusable in

every combat entity for similar moving behaviors. This

illustrates the algorithm-level reusability. Also, DEMs of a

combat entity model or a combat entity model itself can be

reusable, which is an indication of the model-level reusa-

bility. Finally, the designed DEVS models are reusable for

any DEVS implementation, which is relevant to engine-

level reusability. Illustrations for the algorithm- and

model-level reusability in Figure 14 show the guidelines

for a modeler to improve reusability of DEVS models.

Next, we give a better interpretation for a specific ASW

through statistical analysis. In other words, we provide

several results of effectiveness analysis to gain insights

into the ROC of platforms or tactical operations of

weapons. For example, this experiment shows that how

the effective tactical operation of the weapon affects the

MOE considerably with given capabilities. In the Republic

of Korea navy, mobile decoys and pattern-running torpe-

does, introduced in this case study, have developed as a

product or are being evaluated tactically. We ensure that

the proposed modeling framework provides a guideline

regarding whether to develop combat platforms and weap-

ons or to assess innovative tactical operations.

8. Conclusion

This study has described a fine-grained DEVS modeling

approach for an engagement-level combat system, espe-

cially a combat entity. For effective modeling of a combat

entity, we classify it into platform and weapon models and

broke the combat entity model into three functional sub-

models with two abstraction levels. It provides a model

structure that improves the multi-level compositional reu-

sability of the combat entity model. Also, for straightfor-

ward understanding of an engagement scenario, we

considered the scenario as a flow of executable tasks. The

task flow is expressed by the formal semantics, which pro-

vides intuitive appeal, reducing the effort required to read

and understand the model and reflecting the real-world

scenario effectively.

We realized the above-mentioned points through the

use of the DEVS formalism which delineates model cou-

pling schemes and behaviors through a modular and hier-

archical design. With the use of the proposed modeling

techniques, we can conduct constructive simulations, per-

form various engagement scenarios, and assess the effi-

ciency of weapons, minimizing additional modeling

efforts.

M&S-based development of a combat entity, such as a

warship or a decoy, commonly begins at small-scale

engagement. Subsequently, we limited the abstraction

level of defense M&S to be applied to engagement-level

models in this study. If the proposed model is utilized for

large scale engagement, such as a combined operation, we

need to expand the proposed modeling technique to cover

a broad spectrum of combat situations. In this situation,

we will achieve interoperation with other simulation mod-

els through high-level architecture (HLA) or test- and

training-enabling architecture (TENA), and this develop-

ment process will be addressed in one of our future works.

Under the present conditions, the main beneficiaries of

this study will be the military strategists of the Korean

forces. The Korean Agency for Defense Agency (ADD)

has made full use of the proposed simulation model.

Furthermore, we expect that this work will provide gui-

dance for decisions about purchasing equipment, such as

next-generation weapons and platforms, or developing

innovative tactical operations.

Figure 15. Changes of warship survival rate by varying
Experiments 1 and 4.

Seo et al. 777

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Funding

This work was partially supported by the Agency for Defense

Development under contract (UD090024DD) and the Defense

Acquisition Program Administration and the Agency for

Defense Development under contract (UD110006MD).

References

1. Upadhya KS and Srinivasan NK. A simulation model for

availability under battlefield situations. Simulation 2000; 74:

332–339.

2. Smith RD. Essential techniques for military modeling and

simulation. In: Proceedings of the 1998 winter simulation

conference, Washington, DC, December 13–16, 1998,

pp.805–812.

3. Piplani LK, Mercer JG and Roop RO. Systems acquisition

manager’s guide for the use of models and simulations.

Report of the DSMC 1993–1994. Fort Belvoir, VA: Defense

Systems Management College Press, 1994.

4. Ting SP and Zhou S. Dealing with dynamic changes in time

critical decision-making for MOUT simulations. Comput

Anim Virtual Worlds 2009; 20: 427–436.

5. Liang KH and Wang KM. Using simulation and evolution-

ary algorithms to evaluate the design of mix strategies of

decoy and jammers in anti-torpedo tactics. In: Proceedings

of the 2006 winter simulation conference, Monterey, CA,

December 3–6, 2006, pp.1299–1306.

6. Karasakal O. Air defense missile-target allocation models for

a naval task group. Comput Oper Res 2008; 35: 1759–1770.

7. Tolk A. Engineering principles of combat modeling and dis-

tributed simulation. New Jersey: Wiley, 2012.

8. Wing JM. A specifier’s introduction to formal methods.

Computer 1990; 23(9): 8–24.

9. France R, Evans A, Lano K, et al. The UML as a formal

modeling notation. Comput Stand Interfaces 1998; 19:

325–334.

10. Bohnenkamp H, D’Argenio PR, Hermanns H, et al.

MODEST: A compositional modeling formalism for hard

and softly timed systems. IEEE Trans Software Eng 2006;

32: 812–830.

11. Zeigler BP. Multi-facetted modeling and discrete event simu-

lation. Academic Press, 1984.

12. Hill RH, Miller JO and McIntyre GA. Applications of dis-

crete event simulation modeling to military problems. In:

Proceedings of the 2001 winter simulation conference,

Arlington, VA, December 9–12, 2001, pp.780–788.

13. Sung CH, Hong JH and Kim TG. Interoperation of DEVS

models and differential equation models using HLA/RTI:

hybrid simulation of engineering and engagement level mod-

els. In: Proceedings of the 2009 spring simulation multi-con-

ference, San Diego, CA, March 22–27, 2009, pp.387–392.

14. Hong JH, Seo KM, Seok MG, et al. Interoperation between

engagement-and engineering-level models for effectiveness

analyses. J Defense Model Simul 2011; 8(3): 143–155.

15. Seo KM, Hong JH and Kim TG. DEVS-based underwater

warfare simulation development for effectiveness analysis.

In: Proceedings of the 2010 summer simulation multi-confer-

ence, Ottawa, ON, Canada, July 11–15, 2010.

16. Seo KM, Song HS, Kwon SJ, et al. Measurement of effec-

tiveness for an anti-torpedo combat system using a discrete

event systems specification-based underwater warfare simu-

lator. J Defense Model Simul 2011: 8(3): 157–171.

17. Andrien K, Caussanel J and Giambiasi N. DEVS model for

CGF scenario. In: Proceedings of the 17th IMACS world

congress, Paris, France, July 11–15, 2005.

18. Moreno A, Torre L, Risco-Martin JL, et al. DEVS-based

validation of UAV path planning in hostile environments.

In: Proceedings of the international defense and homeland

security simulation workshop, Vienna, Austria, September

19–21, 2012, pp.135–140.

19. Cho DY, Son MJ, Kang JH, et al. Analysis of a submarine’s

evasive capability against an antisubmarine warfare torpedo

using DEVS modeling and simulation. In: Proceedings of the

2007 spring simulation multi-conference, San Diego, CA,

March 25–29, 2007, pp.307–315.

20. Park SC, Kwon Y, Seong K, et al. Simulation framework for

small scale engagement. Comput Ind Eng 2010; 59: 463–472.

21. Kim TG. Lecture note for discrete event system modeling

and simulation (EE612), http://smslab.kaist.ac.kr/Course/

EE612/2013/ (accessed November 2013).

22. Ho YC. Introduction to special issue on dynamics of discrete

event systems. Proc IEEE 1989; 77(1): 3–6.

23. Page EH and Smith R. Introduction to military training

simulation: a guide for discrete event simulationists. In:

Proceeding of the 1988 winter simulation conference,

Washington, DC, December 13–16, 1998, pp.53–60.

24. Zeigler BP, Praehofer H and Kim TG. Theory of modeling

and simulation. 2nd ed. Academic Press, 2001.

25. Zeigler BP and Vahie S. DEVS formalism and methodology:

unity of conception/diversity of application. In: Proceedings

of the 1993 winter simulation conference, Los Angeles, CA,

December 12–15, 1993, pp.573–579.

26. Zeigler BP, Fulton D, Nutaro J, et al. M&S enabled testing

of distributed systems: Beyond interoperability to combat

effectiveness assessment. In: The 9th annual modeling and

simulation workshop, December 8–11, 2003.

27. Hong GP and Kim TG. A framework for verifying discrete

event models within a DEVS-based system development

methodology. Trans Soc Comput Simul 1996; 13(1): 19–34.

28. Palaniappan S, Sawhney A and Sarjoughian H. Application

of the DEVS framework in construction simulation. In:

Proceedings of the 2006 winter simulation conference,

Monterey, CA, December 3–6, 2006, pp.2077–2086.

29. Kwon SJ, Seo KM, Kim BS, et al. Effectiveness analysis of

anti-torpedo warfare simulation for evaluating mix strategies

of decoys and jammers. Advanced methods, techniques, and

applications in modeling and simulation. Springer, 2012.

30. Seo KM, Sung CH and Kim TG. Realization of the DEVS

formalism in matlab/simulink. In: Proceedings of the grand

challenges in modeling and simulation, Edinburgh, Scotland,

June 16–19, 2008, pp.251–256.

31. Risco-Martın JL,Mittal S, Zeigler BP, et al. FromUML state

charts to DEVS state machines using XML. In: Proceedings

of the workshop on multi-paradigm modeling: concepts and

tools, Nashville, TN, September 30–October 5, 2007.
32. Borland S and Vangheluwe H. Transforming statecharts to

DEVS. In: Proceedings of the summer computer simulation

conference, Montreal, Canada, July 20–24, 2003, pp.154–

159.

778 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

33. Barros FJ. The dynamic structure discrete event system spe-

cification formalism. Trans Soc Comput Simul Int 1996;

13(1): 35–46.

34. Chow ACH. Parallel DEVS: a parallel, hierarchical, modular

modeling formalism and its distributed simulator. Trans Soc

Comput Simul Int 1996; 13(2): 55–68.

35. Hong JS, Song HS, Kim TG, et al. A real-time discrete event

system specification formalism for seamless real-time software

development. Discrete Event Dyn Syst 1997; 7: 355–375.

36. Sung CH and Kim TG. Collaborative modeling process for

development of domain-specific discrete event simulation

systems. IEEE Trans Syst Man Cybern Part C Appl Rev

2012; 42: 532–546.

37. Kim TG, Sung CH, Hong SY, et al. DEVSim++ toolset

for defense modeling and simulation and interoperation.

J Defense Model Simul 2011; 8(3): 129–142.

38. Arinoza Center for Integrative Modeling and Simulation.

DEVSJAVA 2.7, http://acims.asu.edu/software/devsjava

(accessed November 2013).

39. Wainer G. CD++: a toolkit to develop DEVS models.

Software Pract Experience 2002; 32: 1261–1306.

40. Robinson T. ODIN – an underwater warfare simulation envi-

ronment. In: Proceedings of the 2001 winter simulation con-

ference, Arlington, VA, December 9–12, 2001, pp.672–679.

41. Canney S, Best J and Cramp A. Virtual maritime system

architecture description document issue 2.0. Virtual

Maritime System Document, 2002.

42. Kercbner RM and Hughes RG. TAC BRAWLER: an applica-

tion of engagement simulation modeling to simulator visual

system display for air combat maneuvering. In: Proceedings

of the second symposium, April 25–28, 1983, pp.599–606.

43. Fong G. Adapting COTS games for military simulation. In:

Proceedings of the 2004 ACM SIGGRAPH international

conference on virtual reality continuum and its applications

in industry, Singapore, June 15–18, 2004, pp.269–272.

44. Sung CH, Hong SY and Kim TG. Layered approach to

development of OO war game models using DEVS frame-

work. In: Proceedings of the summer computer simulation

conference, Philadelphia, PA, July 24–28, 2005, pp.65–70.

45. Song HS and Kim TG. DEVS diagram revised: a structured

approach for DEVS modeling. In: Proceedings of European

simulation conference, Hasselt, Belgium, October 25–27,

2010, pp.94–101.

46. Bakos G. Submarine approach and attack tactics – simula-

tion and analysis. Masters Dissertation, Naval Postgraduate

School, 1995.

47. Deniz F, Alpdemir M, Kara A, et al. Supporting dynamic

simulations with simulation modeling architecture (SiMA): a

discrete event system specification-based modeling and

simulation framework. Simulation: Trans Soc Comput Simul

Int 2012; 88: 707–730.

48. Kim TG and Park SB. The DEVS formalism: hierarchical

modular systems specification in S++. In: Proceedings of

the 1992 European simulation multi-conference, York, UK,

June 1–3, 1992, pp.152–156.

49. Biggerstaff TJ and Richter C. Reusability framework, assess-

ment, and directions. In: Software reusability. New York:

ACM Press, 1989.

50. Choi YI and Kim TG. Reusability measure of DEVS simula-

tion models in DEVSim++ environment. In: Proceedings of

the AeroSense 97 conference on photonic quantum comput-

ing, Orlando, FL, April 20–25, 1997, pp.244–255.

Author biographies

Kyung-Min Seo received his PhD in electrical engineer-

ing from the Korea Advanced Institute of Science and

Technology (KAIST) in 2014. Currently, he is a research

engineer at Daewoo Shipbuilding & Marine Engineering

(DSME) Co., Ltd. His research interests include combat

modeling and simulation, discrete event system, system of

systems, and effectiveness analysis.

Changbeom Choi received his BS in computer engineer-

ing from Kyung Hee University and his MS in computer sci-

ence from KAIST in 2005 and 2007, respectively. He is

currently a PhD candidate at the Department of Electrical

Engineering, at KAIST. His research interests include discrete

event systems modeling/simulation, verification, validation,

and accreditation (VV&A), and Agent based simulation.

Jung Hoon Kim received the BS degree in

Oceanography from Seoul National University and the MS

degree in Physical Oceanography from Seoul National

University, in 1998 and 2001, respectively. Currently, he is

a senior researcher at Agency for Defense Development

(ADD). His research interests include underwater warfare

modeling and simulation for effectiveness analysis.

Tag Gon Kim received his PhD in computer engineering

with specialization in systems modeling and simulation from

University of Arizona, Tucson, AZ, 1988. He was an

Assistant Professor at Electrical and Computer Engineering,

University of Kansas, Lawrence, Kansas, USA from 1989

to 1991. He joined at Electrical Engineering Department,

KAIST, Daejeon, Korea in fall, 1991 as has been a Full

Professor at EECS Department since fall, 1998. He was the

President of The Korea Society for Simulation (KSS). He

was the Editor-In-Chief for Simulation: Transactions for

Society for Computer Modeling and Simulation

International (SCS). He is a co-author of the text book,

Theory of Modeling and Simulation, Academic Press,

2000. He has published about 200 papers in M&S theory

and practice in international journals and conference

proceedings. He is very active in defense modeling and

simulation in Korea. He was/is a consultant for defense

M&S technology at various Korea government organiza-

tions, including Ministry of Defense, Defense Agency

for Technology and Quality (DTAQ), Korea Institute for

Defense Analysis (KIDA), and Agency for Defense

Development (ADD). He is a Fellow of SCS and a

Senior Member of IEEE.

Seo et al. 779

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Appendix A: DEVS modeling of weapon model (basic type)

780 Simulation: Transactions of the Society for Modeling and Simulation International 90(7)

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Appendix B: DEVS modeling of weapon model (advanced type)

Seo et al. 781

 at KOREA ADV INST OF SCI & TECH on July 16, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

