
On using Design Patterns for DEVS Modeling and Simulation Tools

M. Hamri and L. Baati

LSIS UMR CNRS 6168

Université Paul Cézanne

ABSTRACT
Modeling and simulation tools are more and more closed to
the software engineering capabilities. Since decades
modeling and simulation frameworks try to take advantage
of software engineering evolvement such as functional
programming, logic programming, object oriented
programming. Moreover, since 1990s, design patterns as a
new paradigm of object oriented programming tools,
becomes an efficient solution to request some design and
development issues. Each one provides a way of
programming, resolving modeling and simulation issues
usually related to specific domains. We are interested in
discrete event modeling and simulation paradigm, especially
in DEVS (Discrete Event System specification) which is a
sound mathematical based framework with a hierarchical
representation. DEVS based modeling and simulation
frameworks integrate design patterns in designing and
building models in specific domains in order to take
advantage of their capabilities. This paper describes the use
of design patterns in the modeling and simulation
implementation tool. We describe how the design patterns
can be utilized inside the DEVS abstract simulator in order
to facilitate the reuse of DEVS entities.

1. INTRODUCTION
The modeling and simulation methods and tools become
obviously crucial in analysing, diagnosing and representing
complex dynamic systems. Several proposed formalisms
depend of the models representation or especially of
modelling and simulation expert interests (linear, non linear,
discrete time, real time, discrete event, etc.). These last
decades, discrete event modeling formalisms emerge as a
practical way to represent, analyse and diagnose complex
dynamic systems (Cassandra and Lafortune 1999) (Zeigler et
al. 00). In this research, we are interested in DEVS (Discrete
EVent System specification) formalism, a mathematically
sound framework (Zeigler 1976) that was introduced in
1976 by Zeigler. It provides two systems representing ways;
the basic/atomic model which presents the high resolution
level of the system dynamic behavior, and the
coupled/network model which describes the interaction
between different submodels (Zeigler 1984).

The DEVS formalism as described in (Zeigler et al. 00)
supports modelling of discrete event systems in hierarchical
and modular manner. Nowadays, DEVS based frameworks
utilize the object-oriented programming languages (LSIS-

DME (Hamri and Zacharewicz 2007, Baati et al. 2007a),
DEVSJAVA (ACIMS 2001), CD++ (Wainer 2002), JDEVS
(Filippi and Bisgambiglia 2004), VLE (Ramat and Preux
2002), etc.) in order to take advantage of their capabilities
(encapsulation, inheritance, modularity, reusability,
maintainability, flexibility, fidelity to the real world, etc.).
The Object-oriented languages evolve to more flexibility by
providing to express several design patterns capabilities
adapted to specific situations.

Design patterns represent a high level well-defined way of
thinking that can be applied to a recurrent and specific
problem in order to give a high efficiency solution. The
pattern describes deeply the appropriate abstract solution,
which can be applied to this problem/issue in several
different contexts with the same success (Alexander 1977).
Design patterns are a generic solution adapted in many
domains (architecture, anthropology, art history, design,
software engineer, etc.). It becomes famous through the
work of Christopher Alexander on the pattern language
(Alexander 1977), where he explains that each pattern
represents a recurrent “problem/issue” in the
environment.your own material.

The GOF (Gang Of Four) introduces the design patterns
concept into the software engineering domain, especially in
the object oriented modeling concept (Gamma et al. 1995).
Design patterns provide an intermediate way of solving
software problems, it allows a high level description of a
sub-process that can be validated by different experts. They
provide a common vocabulary for designers to use,
communicate, document, and explore design alternatives
(Gamma et al. 1995). According to the advantages of
reusing high level solution of design patterns, the modeling
and simulation approaches try to give more reusable and
modular models. They aim to reach a high level
representation of a complex system, which can help
including more ideas of heterogeneous participants.
According to (Ferayorni and Sarjoughian 2007), the use of
design pattern provides the capability to the end models to
become more flexible, and easily evolve to the environment
needs/requests.

Some efforts were conducted by DEVS community to
embed design patterns into DEVS modeling and simulation
tools in order to enhance the domain specific models such as
well depicted in (Ferayorni and Sarjoughian 2007,
Jammalamadaka and Zeigler 2007). Some related efforts

were conducted to propose a way of introducing design
patterns into DEVS modeling and simulation process in
order to enhance the end models and their interoperability
(Dalle and Wainer 2007). Indeed, using design patterns in a
modeling and simulation environment for a specific domain
improves software development by speeding up software
design specification. Hence, this strategy minimizes the
software development effort, and related maintainability
(Ferayorni and Sarjoughian 2007). These efforts are focused
on how to enhance DEVS models in a specific domain. Our
work consists of including design patterns into the DEVS
modeling and simulation tool kernel. In this paper we
present how to take advantage of the design patterns
philosophy to increase reusability and facilitate the models
and simulators implementation.

This paper presents a DEVS review in section 2. Section 3
gives an overview on design patterns and section 4
arguments their use in discrete event simulation. In sections
5 and 6 we describe our DEVS design patterns. Finally, we
conclude in section 7 and expose our future work.

2. DEVS REVIEW

DEVS (Zeigler 1976) is a modular formalism for
deterministic and causal systems’ modeling. A DEVS atomic
model has a continuous time base, inputs, states, outputs and
functions (output, transition, lifetime of states). Larger
models are built from atomic models connected together in a
hierarchical fashion. Interactions are mediated through input
and output ports. That allows for modularity. We propose a
related approach that supports variable structure model, and
preserves the DEVS formalism.

2.1 Formal specification of an atomic DEVS model

〉〈= ltSYXAtomicDEVS ext ,,,,,, int λδδ

- The time base is continuous and not explicitly mentioned:
T= IR.

- X is the set of (external) inputs of the model. They
interrupt its autonomous behavior by the activation of the
external transition function δext.
- Y is the set of outputs.
- S represents the set of sequential states.
- δint is the internal transition function, allowing the system
to go from one state to another autonomously.
- λ is the output function.
- lt(s) is the lifetime function.

The system reaction to an external event depends on its
current state, the input value and the elapsed time.

2.2 Formal specification of a coupled DEVS model
The coupled DEVS formalism describes a discrete

events system in terms of a network of coupled components.

{ }

〉

∈〈=

ICEOCEIC

DdMDYXSCoupledDEV dselfself

,,

,/,,,

Self stands for the model itself.
- Xself is the set of possible inputs of the coupled model.
- Yself is the set of possible outputs of the coupled model.
- D is a set of names associated to the model components,
self is not in D.
- {Md/d∈D} is the set of the coupled model components,
with d being in D. These components are either atomic or
coupled DEVS model.
- EIC, EOC and IC define the coupling structure in the
coupled system.
- EIC is the set of external input coupling, which connects
the inputs of a coupled model to components inputs.
- EOC is the set of external output coupling, which
connects the outputs of a coupled model to components
outputs.
- IC defines the internal coupling, transforming a
component output into another component’s input within
the coupled model.

2.3 Simulation
The interpretation of the behavior of a DEVS model is given
with the DEVS conceptual simulator. It consists of
processors that represent a root coordinator, coordinators
that are associated to DEVS coupled models and basic
simulators that simulate the behavior of DEVS atomic
models.

 A set of messages are exchanged between processors,
grouped into rising and falling messages. These messages
are:

- i-message that activates the init state and actions,
- x-message that informs the simulator about an external
event arriving and allows the fire of an external
transition,

- *-message is a scheduled message according to the life
time of the current state that causes the execution of the
output function and the corresponding internal transition
change,

- y-message that specifies the output function result, and
- d-message that expresses the fact that x-message or *-
message was handled by the simulator.

To enhance the simulation process, (Kim et al., 2004) and
(Zacharewicz et al., 2005) proposed to flatten the simulation
processor by transforming DEVS hierarchical models into
non-hierarchical ones.

3. Design patterns in software engineering

3.1 Definition
A pattern is a solution to a recurrent design problem. A
pattern gives us guidelines to resolve a problem in particular
context. The GOF popularized this concept when they edited
the first book in the field “Design Patterns: Elements of
Reusable Objects-Oriented Software” (Gamma et al., 1995).
Then, many scientific books and research works were born.
They try to formalize software development experiences
through frameworks called design patterns.

A pattern resolves a technical problem at conceptual level.
Details were discussed in the solution but they do not
constitute its heart. To illustrate the design patterns concept,
let us consider the pattern Observer as discussed in (Gamma
et al., 1995).

Name: Observer pattern.

Intent: define a one-to-many dependency between objects
so that when one object changes state, all its dependencies
are notified and updated automatically.

Also known: Dependants, Publish-Subscribe

Structure:

Figure 1. The observer pattern

Participants:

Subject: provides a method that notifies all observers. It
should know its observers.

Observable: defines the interface update() for object that
should be notified of changes in a subject.

ConcreteSubject: is a concrete class that extends the class
subject to allow storing data that interest the set of
concrete observers. It sends a notification to inform the
concrete observers about an occurred change state. Also it
holds the list of observers and it is responsible on updating
this list.

ConcreteObserver: it maintains a reference on a
ConcreteSubject object, stores the data of the observable
object that should be consistent with its data.

We remark for this pattern, the authors use an organized
structure to expose it. This structure is a form of language
pattern that designers use to formalize their patterns.

4. Why we should use design patterns in discrete event

simulation?

1) A summarized description

Due to many software developments in discrete event M&S,
the design pattern language could be an alternative for
documenting M&S applications without technical details.
We know all for viewing a technical document of a software
tool is a hard task and consumes an important time. The
reader must look at this document (often hundreds of pages)
to realize the underlying modification which is difficult to
identify the concerned module and whether it is possible to
implement this modification.

For instance a motivation simulationist is to conduct a
simulation with an animation of the DEVS model. One of
the possible solutions is to link for each state of model an
icon and change the current one when a state change occurs.
However the state of DEVS model in almost tools is mapped
to the integer type. This fact pushes the programmer to
amend the code which structured through if-else statement
and inserts other statements to make the animation. Hence, a
DEVS model coded using the state pattern makes easy the
request animation. It is realized by extending the class State
to StateWithIcon in which we add the attribute Icon. Still to
redefine the method that realizes the state change to make
also the change of the icon according to the current state.

2) A well-known vocabulary

Increasing communication between M&S developers by
using a common vocabulary to share experiences structured
through a design pattern language. For instance the
simulation in DEVS is conducted using two techniques: 1)
the hierarchical simulator that inherits its structure from
modeling design (DEVS models) or 2) the flattened
simulator which consists of only the root coordinator, one
coordinator and the simulators. Therefore we can imagine
the dialog below between two simulation developers in
design patterns:

Simulationist 1: I want to speed up the simulation

Simulationist 2: did you use a hierarchical simulator

pattern

Simulationist 1: yes!

Simulationist 2: use the flattened simulator pattern and

see the result.

Simulationist 1: a good idea, I completely forgot it.

Imagine now the same discussion without skills on design
pattern or simulation vocabulary.

Simulationist 1: I want to speed up the simulation process

Simulationist 2: did you optimize the simulation by

reducing the number of messages sending/receiving

messages between coordinators.

Simulationist 1: how I can do it?

Simulationist 2: ….. !

We can remark the difference between the two discussions
above as follows: in the first discussion the simulationists
communicate easily and without ambiguous. In fact the
simulationist 1 identifies the problem and gives the adequate
solution in brief time. However the second discussion is
ambiguous and no issue is proposed. Thus we conclude on
the importance of the vocabulary.

3) A catalogue of design patterns

Providing M&S developers with a catalogue of design
patterns that handle each particular M&S design problem in
a particular context, should reduce the cost of development.
For instance a flyweight pattern could be combined with the
DEVS hierarchical simulator to optimize its structure and
reduce the heap memory. The major difficulty is to have a
consensus in naming the proposed patterns and making them
known and available to the developers. A task requiring
enough time!

4) Re-using formal design solutions

By extending the use of design patterns in M&S, designers
and developers re-use validated design solutions instead of
code in formal way. In fact there are a lot of works that show
how the design patterns could be formalized due to their
informal representation based on text and graphics. The
works of (Taibi et al., 2003) propose a balanced approach
consisting on supplying possible design patterns with a
formal semantics as they showed it for the observer pattern.
Therefore, developers could re-use solutions tested, verified
and validated by means of formal methods.

Thus, we believe that M&S design patterns could be
employed to further software developments of new
formalism extensions as we will show it in later sections.

Knowing that we discover design patterns through software
developments and we are able to invent them, we believe
that GOF design patterns could be extended and/or
generalized to satisfy M&S requirements.

5. Patterns of GOF to design DEVS models
Recall that patterns are not invented but discovered via
coding experiences, we will give in this section and
following one issues of design DEVS models and the
simulation kernel without evoking detail of coding (thread,
event queue, etc.). In fact we would obtain abstract diagrams

of classes documented using pattern language. However if
the proposed design pattern should be detailed to solve the
problem, we should include the required details in the
solution.

In the literature of design patterns related to design behavior,
we found several research works and papers that could
interest developers. These patterns handle different
problems from a technical point of view like structuring the
code, produce a maintainable code, increase confidence in
code by proposing a clear mapping of behavioral concepts
into object programming paradigm, etc. Henney (Henney
2003) addresses a list of patterns from the literature that
implement behavior. Each one answers to a particular
requirement (see the table below).

Table1. Design patterns known in software engineering for
finite state machine

According to our requirements that consist on getting a
structured code, easy to maintain and reusable for other
simulations, we privilege the objects for states pattern.

Name Problem Solution

Collections
for states

A number of objects are
managed and held in a
collection, and operated
on according to their
common state. What is a
suitable expression of
the state with respect to
each object?

Represent each state of
interest with a separate
collection that refers to all
objects in that state.
State transitions become
transfers between
collections.

Double
Dispatch

How can you select a
method based on the
type of the target and the
type or value of one
other variable without
hardwiring the selection
as a conditional
statement?

Delegate the selection of the
actual method via a helper
object that then calls back
on the main object. The type
of the helper object
determines which method is
selected. The helper object is
normally the other variable
in the interaction.

Flags for
states

How can an object
significantly change its
behavior for only a
couple of methods based
on only one or two
alternative internal
states?

Represent the behavioral
state of the object explicitly
using a flag. In each of the
history-sensitive methods,
use a conditional to check
the flag and act accordingly.

Objects for
states

How can an object
significantly change its
behavior, depending on
its internal state, without
hardwired multi-part
conditional code?

Separate the behavior from
the main class, which holds
the context, into a separate
class hierarchy where each
class represents the behavior
in a particular state. Method
calls on the context are
forwarded to the mode
object.

However, the design patterns of GOF include a version of
this pattern under name state pattern. So we recall this
behavioral pattern in the next section.

5.1 The state pattern
Usually the state pattern is adopted to code automata. This
pattern suggests coding every state of the automaton with
class. This is very useful in a way that programmers use the
statement if-then, switch case or matrix to code automata.
With these statements, the code is centered in a piece of
code that is difficult to read and maintain.
The state pattern, a well-known one to code finite state
machine, suggests to code states with classes in which
variables and methods are defined. However transitions are
coded with methods and the code assimilates an event
occurrence to the corresponding method calls. The manager
(main program) has the responsibility to call a correct
method of the current state when an event occurs. In
(Gamma et al., 2005) the authors discuss some variant of the
state pattern and gives advantages and lacks of every one.
The common feature is that states are mapped into classes
and transitions into methods. All made state classes inherit
from an abstract state class. Furthermore methods describe
transitions by returning an instance class that represents the
future state.

Now we conduct some modifications to extend the state
pattern to

Context: How we implement a DEVS model using the state
pattern?
Problem: The output function of DEVS λ depends on the
kind of state. It is defined only for active states.

Solution: The state pattern may be used in its basic form to
implement a DEVS behavior. Only a slight modification
should be taken into account and which consists on
extending the class state to two classes ActiveState and
PassiveState. This extension allows to code output function
with a method put in the class ActiveState and excluded from
the class PassiveState.

Inconvenient: The behavior is centralized on states only.
However transitions are a part of the behavior.

5.2 The state/transition pattern
The state/transition pattern consists on the state one but
instead of including transitions in state classes, it proposes to
map transitions with independent classes. The benefit is that
we get a code for DEVS behavior more clear than using the
state pattern.

Let us now detail the state/transition pattern.

Name: state/transition pattern

Problem: DEVS encapsulates behaviors in atomic model
thanks to the concept of port. This concept allows to two or
more DEVS models to communicate via exchanged events.
However the state pattern suggests to code events with
methods. Considering event occurrences with method calls
does not allow any handling on events. That is to say, when
an event occurs we could not verify if the event belongs to
the domain of a specified port before causing any firing of
transition.

Solution: An object representation of events can solve the
problem. This leads to code also transitions with classes.
This fact has an impact in simulation performances but we
get a clear code easy to read and maintain which is our first
concern. In the following we discuss how DEVS elements
should be implemented.

State: the class State is an abstract one. It possesses common
attributes: Name to identify a state of the DEVS
specification, and Duration to express the life time of the
corresponding state D(s). If the user extends the state
variable s to other state variables s= s0x xsi xsn-1xsn, the
class State stores those variables with their types or domain
as attributes.

Event: the class Event implements input and output events (x
∈ X, y ∈ Y). By creating instances of the class Event we
create occurrences of events. The attribute Date stores the
occurrence time of an occurred or a planned event. Knowing
that an event carries an informational message noted in the
form of symbols, character, integer, etc. are possible entities
to define such symbols. Thus we use an object variable to
implement the event value, and the user should specify the
type of event to be more precise in code; or may use
particular methods to cast these events in the desired type.

Transition: the class Transition implements a transition of
DEVS in abstract form. It centralizes common features of
internal and external transition functions (δint,δext):

- The variable TargetState identifies the future state
when a transition of DEVS is fired (it may be
useful to add a method that returns this state to
respect the well-practices of programming).

- The method guards which is a Boolean, should be
verified before firing the target transition.

- The method actions that describes the basic
operations on state variables. This method is called
when a valid transition is being fired. Note that
actions are not output events which their
occurrences depends on states (life time).

Figure 2. State/transition pattern expressed with UML

Based on these rules of mapping and
statements, we obtain the pattern shown
in figure 1 for DEVS. This pattern
extends the patterns discussed in the
literature to implement finite state
machines (mapping transition with class,
event with class, etc.). These extensions
are conducted to allow the
implementation of DEVS due to its
particular features (time, autonomous
changes, actions, etc.). We remark that
two relations exist in the proposed class
diagram. The first one associates a state
to many classes ExtTransition and
constraints a class ExtTransition to be
associated to only one class State.
However the second relation is a DEVS
constraint that recalls the programmer for
each class ActiveState, he should define
at least the own class IntTransition.

Advantages:

+) get a safe code easy to maintain when the modeler
modifies the definition of its models by adding or deleting
states and transitions in the mathematical (conceptual)
definition. So modifications can be conducted in structured
way.

++) modifications can be conducted during simulation to
satisfy requirements of DEVS models that change structure.
That means new behaviors can be defined by updating only
the code at real time.

Inconvenient:

-) simulation is delayed due to the fact that
transitions are not fired immediately but the
simulator should identify the firing transition.

--) the size of heap memory is more important
due to the instances to manage for each state
and transition.

5.2.1 Applying the state/transition pattern for

DEVS atomic

In DEVS, behavior is encapsulated through
atomic models. The port concept allows
interactions with other models. The
encapsulated model receives events via input
ports and sends out other events through output
ports. To design these atomic models, we
should keep the specified behavior through the
state/transition pattern (figure 2) and insert to

it the class port to encapsulate behavior and allow reuse of
models.

Figure 3. DEVS atomic design pattern

5.2.2 Design DEVS coupled models

Making a DEVS coupled model consist on reusing defined
DEVS model that the user saved in top up way. Next he
defines connections (oriented ones) among reused DEVS
models by specifying external input, external output and
internal couplings (EIC, EOC and IC respectively).

All the elements of DEVS coupled appear on the class
diagram. The ports are mapped into class Port within
references to other ports. In fact, these references define the
possible couplings EIC, EOC and IC. The class DEVS
coupled consists of other classes that implement DEVS
coupled and atomic models. The class AbstractModel plays

the role of intermediary allowing saving them in a unique
object (vector, list, etc.) by the cast technique. Still the last
element, the function select which is encapsulated like a
method in the class DEVS coupled and should define the
priority between DEVS components at the same level with
the same parent.

Name: DEVS coupled model

Context: How to design a set of DEVS components inter-
related via port

Problem: first get only the structure of the DEVS coupled
model, the dynamics will given by the simulator. So only the
data and functions (select) are designed at this level.
Secondly get the recursive form of the structure in which a
DEVS component consists of other ones.

Solution: the composite pattern perfectly fit to the problem
of DEVS coupled. We have to supply this pattern with some
amendments to get the entire definition of a DEVS coupled
model.

AbstractModel: is an abstract class to refractory the common
attributes of DEVS atomic and coupled that consists of
ports.

DEVSCoupled: a class that gets the subcomponents which
are atomic and new coupled.

DEVSAtomic: defined above.

Port: an abstract class that should be extended to create
input and output ports. The diagram shows how the different
couplings IC, EIC and EOC are conducted on port classes.

Figure 4. DEVS coupled design pattern

6. Patterns of GOF to design DEVS simulator
The observer pattern of GOF is a behavioral one that
consists of a subject (observable) and observers. The subject
is an observable entity by a list of observers. If observers
register to get information from a subject, he must notify this
information once its state change is confirmed. Otherwise,
the observers ignore the sent information. In the state of the
art of design patterns, we find several applications that
adopted this pattern. A well-known application is the MVC

(Model-View-Control) that provides a distribute architecture
to get independent components safe and easy to maintain.
Therefore, we believe that the observer pattern fit to the
classic DEVS simulator in which the interaction between the
root, sub-coordinators and simulators consists on sending
and receiving events. Another advantage is enhancing and
making easy the design of further DEVS extension tools.

Designing the DEVS simulator of Zeigler in its first version
using the observer pattern, leads to an interesting design in
which the notification of events is conducted in inverse-V
way. In addition the components in DEVS simulator are at
once subject who should notify events and observer who
listens notified events from subjects. Consequently the
number of events to manage is important due to the tree
structure of the simulation. So we should take care when we
design the DEVS simulator to avoid synchronization errors
that could be fatal on the simulation and causing behavior
errors. These problems will be noted and discussed in our
solution design.

To design the abstract DEVS simulator of Zeigler we should
combine the observer and composite patterns. The
composite pattern keeps the hierarchical structure of the
simulator which is a tree. At high level represented with the
root will correspond to the root coordinator, then the sub-
coordinators fit to the nodes of the tree. At the low level, the
leafs correspond to atomic simulators. In conclusion, the
composite pattern well fit to hierarchical structure of the
abstract simulator. It remains to specify the messages
exchange through the different nodes. This is possible, by

making each node as a subject observed by the
parent to get the done- and y- events in case of an
upcoordinator or only the done-event in the case of
root coordinator; and by child (sub-coordinators
and/or simulators) to get the x-, i- and *- events.
Thus, we remark that each coordinator has two
observers: the parent and sub-coordinators that
should listen and react to each event arriving from
the subject. However, the abstract simulator
classifies the notified events into two classes: up and
down events. The first class consists of x-, i- and *-
events and the second one consists of done- and y-

events.

This statement allows the observers to handle correctly the
received events by the cast technique according to the event
classes noted above. Therefore, we design the following
pattern for the abstract DEVS simulator of Zeigler.

Using this architecture, the elements of the simulator root:
sub-coordinators and simulators are independent
components. Each component communicates with the others
by exchanging events instead of calling their services
(methods). Since a component is notified it should react by
executing the corresponding (private) method which is

implemented inside and called through the method update().
Therefore, the implementation of each component is
encapsulated in its own class. Consequently we obtain a safe
code that guaranties the absence of method call conflicts.
We note also that this architecture could be easily extended
to allow distribute simulations. By regarding the web
services patterns, the author proposes a version of the
observer pattern for web services (Monday 2003).
Therefore, the proposed DEVS simulator could be
dispatched through the web with little modifications.

A description of this design pattern using the pattern
language leads to the following specification:

Name: Hierarchical DEVS simulator

Problem: How to implement a hierarchical DEVS simulator
with respect to the abstract of Zeigler in which the structure
is organized in form of tree and its elements (root,
coordinators and simulators) communicate through
sending/receiving messages.

Solution: Combine the composite pattern with the observer
one to get the structure of the simulator and insure the
synchronization mechanism respectively.

Figure 5. The abstract simulator using observer pattern

Advantages: The structure of the abstract simulator is
completely distributed through different classes that code the
simulator elements. Each class manages the received events,
execute the related instructions and sends the appropriate
output events. Moreover this structure could be updated
during the execution of simulation (except the root class) in
case of Dynamic DEVS in which the DEVS model in which
the DEVS model changes by deleting and/or adding nodes

on the simulator structure. This pattern could constitute a
basis for extension of DEVS in which we should consider
specific requirements (PDEVS, GDEVS, etc.).

The wide well-documented and used design patterns, is well
known by developers and provide easier communication
between utilized objects. The observer design pattern
became a standard and it is well known by developers. The
proposed DEVS based design pattern provides a generic
way of thinking, that can be adopted by DEVS community
to design and perform their specific models. Otherwise, this
proposed DEVS based design pattern is flexible and could
be adapted to the specific requirements of the wide and
diverse DEVS community (dynamic hierarchical DEVS
structure (Baati et al. 2006), Cell-DEVS (Wainer 2002),
PDEVS (Chow and Zeigler 1994), DSDE (Barros 1998),
ρDEVS (Uhrmacher et al. 2006), dynDEVS (Uhrmacher
2001), etc.).

7. Conclusion
In this paper we proposed an approach to conduct DEVS
models and simulators based on design patterns paradigm
from software engineering. In fact we chose the observer an
composite patterns to design the DEVS conceptual simulator
of Zeigler and we propose generalized patterns to design
DEVS behavior. Thanks to its event-oriented architecture,
the sending/receiving process of messages is clearly and
well designed according to simulator requirements. The
exchanged messages are mapped into object messages and
not with methods calls which is a limited solution to resolve
complex and growing requests. By using the Observer
pattern, the components of the designed simulator are less
coupled due to the fact that the coupling is realized at run-
time through the exchange of messages except the first
coupling to define the set of observers (call the method
addObservers()).

Therefore, two main advantages induce from this pattern for
the design of DEVS simulator. Firstly, the implementation
of simulator components is encapsulated through classes
that communicate through the exchange of messages.
Secondly, the structure of the simulator could be updated at
run-time. This point allows adding and deleting sub-
coordinators and/or simulators. This facility is useful to
design simulators for DEVS models with variable structure.
The characteristic of these models is that they modify their
own structure dynamically once particular events occur.
These events lead the model to change its structure.
Consequently, the corresponding simulator should be
updated according to the current structure of the target
model instead of re-constructing this simulator from the
beginning. This should be shown in the near future.

Our future direction is to propose a DEVS toolkit (platform)
easy to re-use by designers developing further simulators of

DEVS extensions. In fact we imagine a toolkit in form of a
DEVS kernel to which the DEVS community turns. Still to
develop the solution by combining design patterns or
discover new ones. That is the way we specify to reduce the
DEVS-based and extended DEVS-based tools gap.

REFERENCES

 (Alexander 1977) Alexander, C. 1977. A Pattern Language.
Oxford University Press.

(Baati et al. 2006) Baati, L., C. Frydman, and N. Giambiasi. 2006.
Simulation Semantics for Dynamic Hierarchical Structure
DEVS Model DEVS06. In Proceedings of DEVS’06-
SpringSim’06. Huntsville Alabama.

 (Barros 1998) Barros, F. 1998. Multimodels and Dynamic
Structure Models: An Integration of DSDE/DEVS and OOPM.
In Proceedings of the 1998 Winter Simulation Conference: pp.
413-419.

(Cassandra and Lafortune 1999) Cassandra, C.G., and S.
Lafortune. 1999. Introduction to discrete event systems.
Kluwer Academic Publishers.

(Chow and Zeigler 1994) Chow, A. C., B. P. Zeigler. 1994.
Parallel DEVS : A parallel, hierarchical, modular modeling
formalism. In Winter Simulation conference Proceedings.
Orlando. Florida.

(Dalle and Wainer 2007) Dalle, O., G. Wainer. 2007. An Open
Issue on Applying Sharing Modeling Patterns in DEVS. In
Proceedings of the 2007 summer computer simulation
conference. Article No.7.

(Ferayorni and Sarjoughian 2007) Ferayorni, A. E., H. S.
Sarjoughian. 2007. Domain driven simulation modeling for
software design. SCSC 2007: 297-304.

(Filippi and Bisgambiglia 2004) Filippi, J. B., P. Bisgambiglia.
2004. JDEVS: an implementation of a DEVS based formal
framework for environmental modelling. Environmental
Modelling and Software 19(3): 261-274.

(Gamma et al. 1995) Gamma, E., R. Helm, R. Johnson, J.
Vlissides, 1995, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

(Hamri and Zacharewicz 2007) Hamri, M., G. Zacharewicz. 2007.
LSIS_DME: An Environment for Modeling and Simulation of
DEVS Specifications. AIS-CMS International modeling and
simulation multiconference. Buenos Aires - Argentina.

(Henney 2003) K. Henney March 2003. Methods for states: A
Pattern for Realizing Object Lifecycles. In Viking plop
conference.

(Jammalamadaka and Zeigler 2007) Jammalamadaka, R., B. P.
Zeigler. 2007. A Generic Pattern for Modifying Traditional
PDE Solvers to Exploit Heterogeneity in Asynchronous
Behavior. PADS 2007:45-52

(Monday 2003) Monday, P. B. 2003. Web services patterns: java
edition. APress.

(Quesnel et al. 2008) Quesnel, G., R. Duboz and É. Ramat. 2008.
The Virtual Laboratory Environment - An Operational
Framework for Multi-Modeling, Simulation and Analysis of
Complex Systems. Simulation Modeling Practice and Theory.

(Ramat and Preux 2002) Ramat, E., P. Preux. 2002. Virtual
laboratory environment (VLE): a software environment
oriented agent and object for modeling and simulation of
complex systems. Simulation Modeling Practice and Theory.

(Sarjoughian and Zeigler 2000) Sarjoughian, H. S., and B. P.
Zeigler. 2000. DEVS and HLA: Complementary paradigms for
M&S. Transactions of the Society for Computer Simulation.
17 (4): 187-97.

(Sarjoughian and Zeigler 1998) Sarjoughian, H., Zeigler, B. 1998.
Devsjava : Basis for a DEVSbased collaborative ms
environment. In Proceedings of 1998 SCS International
Conference on Web-Based Modeling and Simulation. volume
5: p 29.36. San Diego, CA

(Uhrmacher 2001) Uhrmacher, A.M. 2001. Dynamic Structures in
Modeling and Simulation – A Reflective Approach. ACM
Transactions on Modeling and Simulation. Vol.11. No.2: 206-
232.

(Uhrmacher et al. 2006) Uhrmacher, A. M., J. Himmelspach, M.
Röhl, and R. Ewald. 2006. Introducing variable ports and
multi-couplings for Cell biological modeling in DEVS. in
Proceedings of the 2006 Winter Simulation Conference. IEEE.

(Taibi et al., 2003) Toufik Taibi, David Ngo Chek Ling: Formal
specification of design pattern combination using BPSL.
Information & Software Technology 45(3): 157-170 (2003).

(Wainer 2002) Wainer. G. 2002. CD++: a toolkit to develop DEVS
models. in Software, Practice and Experience. Wiley. vol. 32
No.3: pp.1261-1307.

(Zeigler 1976) Zeigler B. P. 1976. Theory of Modelling and
Simulation. Wiley & Sons. New York. NY.

(Zeigler 1984) Zeigler, B. P. 1984. Multifacetted Modelling and
Discrete Event Simulation. Academic Press. London.

 (Zeigler et al. 2000) Zeigler P. B., T. G. Kim, and H. Preahofer.
2000. Theory of Modeling and Simulation, New York, NY,
Academic Press.

