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ABSTRACT 
Modeling and simulation tools are more and more closed to 
the software engineering capabilities. Since decades 
modeling and simulation frameworks try to take advantage 
of software engineering evolvement such as functional 
programming, logic programming, object oriented 
programming. Moreover, since 1990s, design patterns as a 
new paradigm of object oriented programming tools, 
becomes an efficient solution to request some design and 
development issues. Each one provides a way of 
programming, resolving modeling and simulation issues 
usually related to specific domains. We are interested in 
discrete event modeling and simulation paradigm, especially 
in DEVS (Discrete Event System specification) which is a 
sound mathematical based framework with a hierarchical 
representation. DEVS based modeling and simulation 
frameworks integrate design patterns in designing and 
building models in specific domains in order to take 
advantage of their capabilities. This paper describes the use 
of design patterns in the modeling and simulation 
implementation tool. We describe how the design patterns 
can be utilized inside the DEVS abstract simulator in order 
to facilitate the reuse of DEVS entities. 

1. INTRODUCTION 
The modeling and simulation methods and tools become 
obviously crucial in analysing, diagnosing and representing 
complex dynamic systems. Several proposed formalisms 
depend of the models representation or especially of 
modelling and simulation expert interests (linear, non linear, 
discrete time, real time, discrete event, etc.). These last 
decades, discrete event modeling formalisms emerge as a 
practical way to represent, analyse and diagnose complex 
dynamic systems (Cassandra and Lafortune 1999) (Zeigler et 
al. 00). In this research, we are interested in DEVS (Discrete 
EVent System specification) formalism, a mathematically 
sound framework (Zeigler 1976) that was introduced in 
1976 by Zeigler. It provides two systems representing ways; 
the basic/atomic model which presents the high resolution 
level of the system dynamic behavior, and the 
coupled/network model which describes the interaction 
between different submodels (Zeigler 1984). 

The DEVS formalism as described in (Zeigler et al. 00) 
supports modelling of discrete event systems in hierarchical 
and modular manner. Nowadays, DEVS based frameworks 
utilize the object-oriented programming languages (LSIS-

DME (Hamri and Zacharewicz 2007, Baati et al. 2007a), 
DEVSJAVA (ACIMS 2001), CD++ (Wainer 2002), JDEVS 
(Filippi and Bisgambiglia 2004), VLE (Ramat and Preux 
2002), etc.) in order to take advantage of their capabilities 
(encapsulation, inheritance, modularity, reusability, 
maintainability, flexibility, fidelity to the real world, etc.). 
The Object-oriented languages evolve to more flexibility by 
providing to express several design patterns capabilities 
adapted to specific situations. 

Design patterns represent a high level well-defined way of 
thinking that can be applied to a recurrent and specific 
problem in order to give a high efficiency solution. The 
pattern describes deeply the appropriate abstract solution, 
which can be applied to this problem/issue in several 
different contexts with the same success (Alexander 1977). 
Design patterns are a generic solution adapted in many 
domains (architecture, anthropology, art history, design, 
software engineer, etc.). It becomes famous through the 
work of Christopher Alexander on the pattern language 
(Alexander 1977), where he explains that each pattern 
represents a recurrent “problem/issue” in the 
environment.your own material. 

The GOF (Gang Of Four) introduces the design patterns 
concept into the software engineering domain, especially in 
the object oriented modeling concept (Gamma et al. 1995). 
Design patterns provide an intermediate way of solving 
software problems, it allows a high level description of a 
sub-process that can be validated by different experts. They 
provide a common vocabulary for designers to use, 
communicate, document, and explore design alternatives 
(Gamma et al. 1995). According to the advantages of 
reusing high level solution of design patterns, the modeling 
and simulation approaches try to give more reusable and 
modular models. They aim to reach a high level 
representation of a complex system, which can help 
including more ideas of heterogeneous participants. 
According to (Ferayorni and Sarjoughian 2007), the use of 
design pattern provides the capability to the end models to 
become more flexible, and easily evolve to the environment 
needs/requests. 

Some efforts were conducted by DEVS community to 
embed design patterns into DEVS modeling and simulation 
tools in order to enhance the domain specific models such as 
well depicted in (Ferayorni and Sarjoughian 2007, 
Jammalamadaka and Zeigler 2007). Some related efforts 



were conducted to propose a way of introducing design 
patterns into DEVS modeling and simulation process in 
order to enhance the end models and their interoperability 
(Dalle and Wainer 2007). Indeed, using design patterns in a 
modeling and simulation environment for a specific domain 
improves software development by speeding up software 
design specification. Hence, this strategy minimizes the 
software development effort, and related maintainability 
(Ferayorni and Sarjoughian 2007). These efforts are focused 
on how to enhance DEVS models in a specific domain. Our 
work consists of including design patterns into the DEVS 
modeling and simulation tool kernel. In this paper we 
present how to take advantage of the design patterns 
philosophy to increase reusability and facilitate the models 
and simulators implementation. 

This paper presents a DEVS review in section 2. Section 3 
gives an overview on design patterns and section 4 
arguments their use in discrete event simulation. In sections 
5 and 6 we describe our DEVS design patterns. Finally, we 
conclude in section 7 and expose our future work. 

2. DEVS REVIEW 

DEVS (Zeigler 1976) is a modular formalism for 
deterministic and causal systems’ modeling. A DEVS atomic 
model has a continuous time base, inputs, states, outputs and 
functions (output, transition, lifetime of states). Larger 
models are built from atomic models connected together in a 
hierarchical fashion. Interactions are mediated through input 
and output ports. That allows for modularity. We propose a 
related approach that supports variable structure model, and 
preserves the DEVS formalism. 

2.1 Formal specification of an atomic DEVS model 
 

〉〈= ltSYXAtomicDEVS ext ,,,,,, int λδδ  

- The time base is continuous and not explicitly mentioned: 
T= IR. 

- X is the set of (external) inputs of the model. They 
interrupt its autonomous behavior by the activation of the 
external transition function δext. 
- Y is the set of outputs. 
- S represents the set of sequential states. 
- δint is the internal transition function, allowing the system 
to go from one state to another autonomously. 
- λ is the output function. 
- lt(s) is the lifetime function. 

The system reaction to an external event depends on its 
current state, the input value and the elapsed time. 

2.2 Formal specification of a coupled DEVS model 
The coupled DEVS formalism describes a discrete 

events system in terms of a network of coupled components. 
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Self stands for the model itself. 
- Xself is the set of possible inputs of the coupled model. 
- Yself is the set of possible outputs of the coupled model. 
- D is a set of names associated to the model components, 
self is not in D. 
- {Md/d∈D} is the set of the coupled model components, 
with d being in D. These components are either atomic or 
coupled DEVS model. 
- EIC, EOC and IC define the coupling structure in the 
coupled system. 
- EIC is the set of external input coupling, which connects 
the inputs of a coupled model to components inputs. 
- EOC is the set of external output coupling, which 
connects the outputs of a coupled model to components 
outputs. 
- IC defines the internal coupling, transforming a 
component output into another component’s input within 
the coupled model. 

2.3 Simulation 
The interpretation of the behavior of a DEVS model is given 
with the DEVS conceptual simulator. It consists of 
processors that represent a root coordinator, coordinators 
that are associated to DEVS coupled models and basic 
simulators that simulate the behavior of DEVS atomic 
models. 

  A set of messages are exchanged between processors, 
grouped into rising and falling messages. These messages 
are: 

- i-message that activates the init state and actions, 
- x-message that informs the simulator about an external 
event arriving and allows the fire of an external 
transition, 

- *-message is a scheduled message according to the life 
time of the current state that causes the execution of the 
output function and the corresponding internal transition 
change, 

- y-message that specifies the output function result, and 
- d-message that expresses the fact that x-message or *-
message was handled by the simulator. 

To enhance the simulation process, (Kim et al., 2004) and 
(Zacharewicz et al., 2005) proposed to flatten the simulation 
processor by transforming DEVS hierarchical models into 
non-hierarchical ones. 

 



3. Design patterns in software engineering 

3.1 Definition 
A pattern is a solution to a recurrent design problem. A 
pattern gives us guidelines to resolve a problem in particular 
context. The GOF popularized this concept when they edited 
the first book in the field “Design Patterns: Elements of 
Reusable Objects-Oriented Software” (Gamma et al., 1995). 
Then, many scientific books and research works were born. 
They try to formalize software development experiences 
through frameworks called design patterns.  

A pattern resolves a technical problem at conceptual level. 
Details were discussed in the solution but they do not 
constitute its heart. To illustrate the design patterns concept, 
let us consider the pattern Observer as discussed in (Gamma 
et al., 1995). 

Name: Observer pattern. 

Intent: define a one-to-many dependency between objects 
so that when one object changes state, all its dependencies 
are notified and updated automatically. 

Also known: Dependants, Publish-Subscribe 

Structure: 

 
Figure 1. The observer pattern 

 

Participants: 

Subject: provides a method that notifies all observers. It 
should    know its observers. 

Observable: defines the interface update() for object that 
should be notified of changes in a subject. 

ConcreteSubject: is a concrete class that extends the class 
subject to allow storing data that interest the set of 
concrete observers. It sends a notification to inform the 
concrete observers about an occurred change state. Also it 
holds the list of observers and it is responsible on updating 
this list. 

ConcreteObserver: it maintains a reference on a 
ConcreteSubject object, stores the data of the observable 
object that should be consistent with its data. 

We remark for this pattern, the authors use an organized 
structure to expose it. This structure is a form of language 
pattern that designers use to formalize their patterns. 

4. Why we should use design patterns in discrete event 

simulation? 

 

1) A summarized description 

Due to many software developments in discrete event M&S, 
the design pattern language could be an alternative for 
documenting M&S applications without technical details. 
We know all for viewing a technical document of a software 
tool is a hard task and consumes an important time. The 
reader must look at this document (often hundreds of pages) 
to realize the underlying modification which is difficult to 
identify the concerned module and whether it is possible to 
implement this modification. 

For instance a motivation simulationist is to conduct a 
simulation with an animation of the DEVS model. One of 
the possible solutions is to link for each state of model an 
icon and change the current one when a state change occurs. 
However the state of DEVS model in almost tools is mapped 
to the integer type. This fact pushes the programmer to 
amend the code which structured through if-else statement 
and inserts other statements to make the animation. Hence, a 
DEVS model coded using the state pattern makes easy the 
request animation. It is realized by extending the class State 
to StateWithIcon in which we add the attribute Icon. Still to 
redefine the method that realizes the state change to make 
also the change of the icon according to the current state. 

2) A well-known vocabulary 

Increasing communication between M&S developers by 
using a common vocabulary to share experiences structured 
through a design pattern language. For instance the 
simulation in DEVS is conducted using two techniques: 1) 
the hierarchical simulator that inherits its structure from 
modeling design (DEVS models) or 2) the flattened 
simulator which consists of only the root coordinator, one 
coordinator and the simulators. Therefore we can imagine 
the dialog below between two simulation developers in 
design patterns: 

Simulationist 1: I want to speed up the simulation 

Simulationist 2: did you use a hierarchical simulator 

pattern 

Simulationist 1: yes! 

Simulationist 2: use the flattened simulator pattern and 

see the result. 

Simulationist 1: a good idea, I completely forgot it. 



Imagine now the same discussion without skills on design 
pattern or simulation vocabulary. 

Simulationist 1: I want to speed up the simulation process 

Simulationist 2: did you optimize the simulation by 

reducing the number of messages sending/receiving 

messages between coordinators. 

Simulationist 1: how I can do it? 

Simulationist 2: ….. ! 

We can remark the difference between the two discussions 
above as follows: in the first discussion the simulationists 
communicate easily and without ambiguous. In fact the 
simulationist 1 identifies the problem and gives the adequate 
solution in brief time. However the second discussion is 
ambiguous and no issue is proposed. Thus we conclude on 
the importance of the vocabulary. 

3) A catalogue of design patterns 

Providing M&S developers with a catalogue of design 
patterns that handle each particular M&S design problem in 
a particular context, should reduce the cost of development. 
For instance a flyweight pattern could be combined with the 
DEVS hierarchical simulator to optimize its structure and 
reduce the heap memory. The major difficulty is to have a 
consensus in naming the proposed patterns and making them 
known and available to the developers. A task requiring 
enough time! 

4) Re-using formal design solutions 

By extending the use of design patterns in M&S, designers 
and developers re-use validated design solutions instead of 
code in formal way. In fact there are a lot of works that show 
how the design patterns could be formalized due to their 
informal representation based on text and graphics. The 
works of (Taibi et al., 2003) propose a balanced approach 
consisting on supplying possible design patterns with a 
formal semantics as they showed it for the observer pattern. 
Therefore, developers could re-use solutions tested, verified 
and validated by means of formal methods. 

Thus, we believe that M&S design patterns could be 
employed to further software developments of new 
formalism extensions as we will show it in later sections. 

Knowing that we discover design patterns through software 
developments and we are able to invent them, we believe 
that GOF design patterns could be extended and/or 
generalized to satisfy M&S requirements.  

5. Patterns of GOF to design DEVS models 
Recall that patterns are not invented but discovered via 
coding experiences, we will give in this section and 
following one issues of design DEVS models and the 
simulation kernel without evoking detail of coding (thread, 
event queue, etc.). In fact we would obtain abstract diagrams 

of classes documented using pattern language. However if 
the proposed design pattern should be detailed to solve the 
problem, we should include the required details in the 
solution. 

In the literature of design patterns related to design behavior, 
we found several research works and papers that could 
interest developers. These patterns handle different 
problems from a technical point of view like structuring the 
code, produce a maintainable code, increase confidence in 
code by proposing a clear mapping of behavioral concepts 
into object programming paradigm, etc. Henney (Henney 
2003) addresses a list of patterns from the literature that 
implement behavior. Each one answers to a particular 
requirement (see the table below). 

 

Table1. Design patterns known in software engineering for 
finite state machine 

According to our requirements that consist on getting a 
structured code, easy to maintain and reusable for other 
simulations, we privilege the objects for states pattern. 

Name Problem Solution 

Collections 
for states 

A number of objects are 
managed and held in a 
collection, and operated 
on according to their 
common state. What is a 
suitable expression of 
the state with respect to 
each object? 

Represent each state of 
interest with a separate 
collection that refers to all 
objects in that state. 
State transitions become 
transfers between 
collections. 

Double 
Dispatch 

How can you select a 
method based on the 
type of the target and the 
type or value of one 
other variable without 
hardwiring the selection 
as a conditional 
statement? 

Delegate the selection of the 
actual method via a helper 
object that then calls back 
on the main object. The type 
of the helper object 
determines which method is 
selected. The helper object is 
normally the other variable 
in the interaction. 

Flags for 
states 

How can an object 
significantly change its 
behavior for only a  
couple of methods based 
on only one or two 
alternative internal 
states? 

Represent the behavioral 
state of the object explicitly 
using a flag. In each of the 
history-sensitive methods, 
use a conditional to check 
the flag and act accordingly. 

Objects for 
states 

How can an object 
significantly change its 
behavior, depending on 
its internal state, without 
hardwired multi-part 
conditional code? 

Separate the behavior from 
the main class, which holds 
the context, into a separate 
class hierarchy where each 
class represents the behavior 
in a particular state. Method 
calls on the context are 
forwarded to the mode 
object. 



However, the design patterns of GOF include a version of 
this pattern under name state pattern. So we recall this 
behavioral pattern in the next section. 

5.1 The state pattern 
Usually the state pattern is adopted to code automata. This 
pattern suggests coding every state of the automaton with 
class. This is very useful in a way that programmers use the 
statement if-then, switch case or matrix to code automata. 
With these statements, the code is centered in a piece of 
code that is difficult to read and maintain. 
The state pattern, a well-known one to code finite state 
machine, suggests to code states with classes in which 
variables and methods are defined. However transitions are 
coded with methods and the code assimilates an event 
occurrence to the corresponding method calls. The manager 
(main program) has the responsibility to call a correct 
method of the current state when an event occurs. In 
(Gamma et al., 2005) the authors discuss some variant of the 
state pattern and gives advantages and lacks of every one. 
The common feature is that states are mapped into classes 
and transitions into methods. All made state classes inherit 
from an abstract state class. Furthermore methods describe 
transitions by returning an instance class that represents the 
future state. 

Now we conduct some modifications to extend the state 
pattern to  

Context: How we implement a DEVS model using the state 
pattern? 
Problem: The output function of DEVS λ depends on the 
kind of state. It is defined only for active states. 

Solution: The state pattern may be used in its basic form to 
implement a DEVS behavior. Only a slight modification 
should be taken into account and which consists on 
extending the class state to two classes ActiveState and 
PassiveState. This extension allows to code output function 
with a method put in the class ActiveState and excluded from 
the class PassiveState. 

Inconvenient: The behavior is centralized on states only. 
However transitions are a part of the behavior. 

5.2 The state/transition pattern 
The state/transition pattern consists on the state one but 
instead of including transitions in state classes, it proposes to 
map transitions with independent classes. The benefit is that 
we get a code for DEVS behavior more clear than using the 
state pattern. 

Let us now detail the state/transition pattern.  

Name: state/transition pattern 

Problem: DEVS encapsulates behaviors in atomic model 
thanks to the concept of port. This concept allows to two or 
more DEVS models to communicate via exchanged events. 
However the state pattern suggests to code events with 
methods. Considering event occurrences with method calls 
does not allow any handling on events. That is to say, when 
an event occurs we could not verify if the event belongs to 
the domain of a specified port before causing any firing of 
transition. 

Solution: An object representation of events can solve the 
problem. This leads to code also transitions with classes. 
This fact has an impact in simulation performances but we 
get a clear code easy to read and maintain which is our first 
concern. In the following we discuss how DEVS elements 
should be implemented.  

State: the class State is an abstract one. It possesses common 
attributes: Name to identify a state of the DEVS 
specification, and Duration to express the life time of the 
corresponding state D(s). If the user extends the state 
variable s to other state variables s= s0x   xsi xsn-1xsn, the 
class State stores those variables with their types or domain 
as attributes. 

Event: the class Event implements input and output events (x 
∈ X, y ∈ Y). By creating instances of the class Event we 
create occurrences of events. The attribute Date stores the 
occurrence time of an occurred or a planned event. Knowing 
that an event carries an informational message noted in the 
form of symbols, character, integer, etc. are possible entities 
to define such symbols. Thus we use an object variable to 
implement the event value, and the user should specify the 
type of event to be more precise in code; or may use 
particular methods to cast these events in the desired type.  

Transition: the class Transition implements a transition of 
DEVS in abstract form. It centralizes common features of 
internal and external transition functions (δint,δext ):  

- The variable TargetState identifies the future state 
when a transition of DEVS is fired (it may be 
useful to add a method that returns this state to 
respect the well-practices of programming). 

- The method guards which is a Boolean, should be 
verified before firing the target transition. 

- The method actions that describes the basic 
operations on state variables. This method is called 
when a valid transition is being fired. Note that 
actions are not output events which their 
occurrences depends on states (life time). 



 

Figure 2. State/transition pattern expressed with UML 

Based on these rules of mapping and 
statements, we obtain the pattern shown 
in figure 1 for DEVS. This pattern 
extends the patterns discussed in the 
literature to implement finite state 
machines (mapping transition with class, 
event with class, etc.). These extensions 
are conducted to allow the 
implementation of DEVS due to its 
particular features (time, autonomous 
changes, actions, etc.). We remark that 
two relations exist in the proposed class 
diagram. The first one associates a state 
to many classes ExtTransition and 
constraints a class ExtTransition to be 
associated to only one class State. 
However the second relation is a DEVS 
constraint that recalls the programmer for 
each class ActiveState, he should define 
at least the own class IntTransition. 

Advantages: 

+)  get a safe code easy to maintain when the modeler 
modifies the definition of its models by adding or deleting 
states and transitions in the mathematical (conceptual) 
definition. So modifications can be conducted in structured 
way. 

++)  modifications can be conducted during simulation to 
satisfy requirements of DEVS models that change structure. 
That means new behaviors can be defined by updating only 
the code at real time. 

Inconvenient:  

-) simulation is delayed due to the fact that 
transitions are not fired immediately but the 
simulator should identify the firing transition. 

--) the size of heap memory is more important 
due to the instances to manage for each state 
and transition.  

5.2.1 Applying the state/transition pattern for 

DEVS atomic 

In DEVS, behavior is encapsulated through 
atomic models. The port concept allows 
interactions with other models. The 
encapsulated model receives events via input 
ports and sends out other events through output 
ports. To design these atomic models, we 
should keep the specified behavior through the 
state/transition pattern (figure 2) and insert to 

it the class port to encapsulate behavior and allow reuse of 
models. 

 

Figure 3. DEVS atomic design pattern 

5.2.2 Design DEVS coupled models 

Making a DEVS coupled model consist on reusing defined 
DEVS model that the user saved in top up way. Next he 
defines connections (oriented ones) among reused DEVS 
models by specifying external input, external output and 
internal couplings (EIC, EOC and IC respectively). 

All the elements of DEVS coupled appear on the class 
diagram. The ports are mapped into class Port within 
references to other ports. In fact, these references define the 
possible couplings EIC, EOC and IC. The class DEVS 
coupled consists of other classes that implement DEVS 
coupled and atomic models. The class AbstractModel plays 



the role of intermediary allowing saving them in a unique 
object (vector, list, etc.) by the cast technique. Still the last 
element, the function select which is encapsulated like a 
method in the class DEVS coupled and should define the 
priority between DEVS components at the same level with 
the same parent. 

Name: DEVS coupled model 

Context: How to design a set of DEVS components inter-
related via port 

Problem: first get only the structure of the DEVS coupled 
model, the dynamics will given by the simulator. So only the 
data and functions (select) are designed at this level. 
Secondly get the recursive form of the structure in which a 
DEVS component consists of other ones. 

Solution: the composite pattern perfectly fit to the problem 
of DEVS coupled. We have to supply this pattern with some 
amendments to get the entire definition of a DEVS coupled 
model. 

AbstractModel: is an abstract class to refractory the common 
attributes of DEVS atomic and coupled that consists of 
ports. 

DEVSCoupled: a class that gets the subcomponents which 
are atomic and new coupled. 

DEVSAtomic: defined above. 

Port: an abstract class that should be extended to create 
input and output ports. The diagram shows how the different 
couplings IC, EIC and EOC are conducted on port classes. 

 

Figure 4. DEVS coupled design pattern 

6. Patterns of GOF to design DEVS simulator 
The observer pattern of GOF is a behavioral one that 
consists of a subject (observable) and observers. The subject 
is an observable entity by a list of observers. If observers 
register to get information from a subject, he must notify this 
information once its state change is confirmed. Otherwise, 
the observers ignore the sent information. In the state of the 
art of design patterns, we find several applications that 
adopted this pattern. A well-known application is the MVC 

(Model-View-Control) that provides a distribute architecture 
to get independent components safe and easy to maintain. 
Therefore, we believe that the observer pattern fit to the 
classic DEVS simulator in which the interaction between the 
root, sub-coordinators and simulators consists on sending 
and receiving events. Another advantage is enhancing and 
making easy the design of further DEVS extension tools. 

Designing the DEVS simulator of Zeigler in its first version 
using the observer pattern, leads to an interesting design in 
which the notification of events is conducted in inverse-V 
way. In addition the components in DEVS simulator are at 
once subject who should notify events and observer who 
listens notified events from subjects. Consequently the 
number of events to manage is important due to the tree 
structure of the simulation. So we should take care when we 
design the DEVS simulator to avoid synchronization errors 
that could be fatal on the simulation and causing behavior 
errors. These problems will be noted and discussed in our 
solution design. 

To design the abstract DEVS simulator of Zeigler we should 
combine the observer and composite patterns. The 
composite pattern keeps the hierarchical structure of the 
simulator which is a tree. At high level represented with the 
root will correspond to the root coordinator, then the sub-
coordinators fit to the nodes of the tree. At the low level, the 
leafs correspond to atomic simulators. In conclusion, the 
composite pattern well fit to hierarchical structure of the 
abstract simulator. It remains to specify the messages 
exchange through the different nodes. This is possible, by 

making each node as a subject observed by the 
parent to get the done- and y- events in case of an 
upcoordinator or only the done-event in the case of 
root coordinator; and by child (sub-coordinators 
and/or simulators) to get  the x-, i- and *- events. 
Thus, we remark that each coordinator has two 
observers: the parent and sub-coordinators that 
should listen and react to each event arriving from 
the subject. However, the abstract simulator 
classifies the notified events into two classes: up and 
down events. The first class consists of x-, i- and *-
events and the second one consists of done- and y-

events. 

This statement allows the observers to handle correctly the 
received events by the cast technique according to the event 
classes noted above. Therefore, we design the following 
pattern for the abstract DEVS simulator of Zeigler. 

Using this architecture, the elements of the simulator root: 
sub-coordinators and simulators are independent 
components. Each component communicates with the others 
by exchanging events instead of calling their services 
(methods). Since a component is notified it should react by 
executing the corresponding (private) method which is 



implemented inside and called through the method update(). 
Therefore, the implementation of each component is 
encapsulated in its own class. Consequently we obtain a safe 
code that guaranties the absence of method call conflicts. 
We note also that this architecture could be easily extended 
to allow distribute simulations. By regarding the web 
services patterns, the author proposes a version of the 
observer pattern for web services (Monday 2003). 
Therefore, the proposed DEVS simulator could be 
dispatched through the web with little modifications. 

A description of this design pattern using the pattern 
language leads to the following specification: 

Name: Hierarchical DEVS simulator 

Problem: How to implement a hierarchical DEVS simulator 
with respect to the abstract of Zeigler in which the structure 
is organized in form of tree and its elements (root, 
coordinators and simulators) communicate through 
sending/receiving messages. 

Solution: Combine the composite pattern with the observer 
one to get the structure of the simulator and insure the 
synchronization mechanism respectively. 

 

Figure 5. The abstract simulator using observer pattern 

Advantages: The structure of the abstract simulator is 
completely distributed through different classes that code the 
simulator elements. Each class manages the received events, 
execute the related instructions and sends the appropriate 
output events. Moreover this structure could be updated 
during the execution of simulation (except the root class) in 
case of Dynamic DEVS in which the DEVS model in which 
the DEVS model changes by deleting and/or adding nodes 

on the simulator structure. This pattern could constitute a 
basis for extension of DEVS in which we should consider 
specific requirements (PDEVS, GDEVS, etc.). 

The wide well-documented and used design patterns, is well 
known by developers and provide easier communication 
between utilized objects. The observer design pattern 
became a standard and it is well known by developers. The 
proposed DEVS based design pattern provides a generic 
way of thinking, that can be adopted by DEVS community 
to design and perform their specific models. Otherwise, this 
proposed DEVS based design pattern is flexible and could 
be adapted to the specific requirements of the wide and 
diverse DEVS community (dynamic hierarchical DEVS 
structure (Baati et al. 2006), Cell-DEVS (Wainer 2002), 
PDEVS (Chow and Zeigler 1994), DSDE (Barros 1998), 
ρDEVS (Uhrmacher et al. 2006), dynDEVS (Uhrmacher 
2001), etc.). 

7. Conclusion 
In this paper we proposed an approach to conduct DEVS 
models and simulators based on design patterns paradigm 
from software engineering. In fact we chose the observer an 
composite patterns to design the DEVS conceptual simulator 
of Zeigler and we propose generalized patterns to design 
DEVS behavior. Thanks to its event-oriented architecture, 
the sending/receiving process of messages is clearly and 
well designed according to simulator requirements. The 
exchanged messages are mapped into object messages and 
not with methods calls which is a limited solution to resolve 
complex and growing requests. By using the Observer 
pattern, the components of the designed simulator are less 
coupled due to the fact that the coupling is realized at run-
time through the exchange of messages except the first 
coupling to define the set of observers (call the method 
addObservers()). 

Therefore, two main advantages induce from this pattern for 
the design of DEVS simulator. Firstly, the implementation 
of simulator components is encapsulated through classes 
that communicate through the exchange of messages. 
Secondly, the structure of the simulator could be updated at 
run-time. This point allows adding and deleting sub-
coordinators and/or simulators. This facility is useful to 
design simulators for DEVS models with variable structure. 
The characteristic of these models is that they modify their 
own structure dynamically once particular events occur. 
These events lead the model to change its structure. 
Consequently, the corresponding simulator should be 
updated according to the current structure of the target 
model instead of re-constructing this simulator from the 
beginning. This should be shown in the near future. 

Our future direction is to propose a DEVS toolkit (platform) 
easy to re-use by designers developing further simulators of 



DEVS extensions. In fact we imagine a toolkit in form of a 
DEVS kernel to which the DEVS community turns. Still to 
develop the solution by combining design patterns or 
discover new ones. That is the way we specify to reduce the 
DEVS-based and extended DEVS-based tools gap. 
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