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Abstract—SARS-CoV-2 is a new and highly contagious virus
that has expanded worldwide reaching the most distant places. In
March 23rd (2020), the first case of COVID-19 was reported in
the city of Iquique, northern Chile. Later, in May 15th authorities
declared a city lockdown that has lasted for more than 14 weeks
and counting. Using Agent Based Modeling and Simulation, we
study the effects on COVID-19 transmission during a tsunami-
threat evacuation in the lockdown of the city of Iquique. Five
different scenarios were simulated, considering different amounts
of infected agents with capacity to spread the disease, different
distribution of agents across the city and two different rates of
contagion among agents. Results showed that most contagions
occur within the first 15 minutes of the evacuation, while agents
are fleeing to the safe zone. The effect on transmission rates
resulted highly dependent on the spatial distribution of infected
population.

Index Terms—COVID-19, Agent-Based Simulation, Evacua-
tion, Tsunami, City Lockdown

I. INTRODUCTION

SARS-CoV-2 (COVID-19) is a rather new kind of Coro-
navirus [1]. It is a highly contagious viral disease that has
spread worldwide in less than 4 months, quickly becoming a
major health threat. It was first discovered in Wuhan, China
in December (2019) [2], and the first case outside China was
confirmed in Thailand [3]. According to data reported by the
COVID-19 Dashboard by the Center for Systems Science and
Engineering at Johns Hopkins University [4], as of August 31st
(2020), there were more than 25 million cases globally and
over 846.985 deaths caused by the virus. Authorities in each
country have taken different measures in an attempt to control
contagions, some with more success than others. Airborne
transmission (in indoor as well as outdoor spaces) [5]–[8] is
one the most accepted modes of COVID-19 contagion. Thus,
among the main methods to prevent the spread of COVID-19
is social distancing and wearing face masks [9].

Computer simulations are proven to be a powerful tool, and
are considered of paramount importance in the development
of strategies to tackle the spread of contagious diseases. Most
simulation models to study contagion disease transmission are
based on: i) Cellular Automata (CA), ii) Ordinary Differential
Equations (ODE) or iii) Agent-Based Simulations.

ODE models simulate disease transmission focusing in the
spread of the disease considering a homogeneous population
[10], most of them through an epidemiological SEIR approach
and its several variations [11], [12]. Agent-based simulations
allow to model disease contagion as an emerging effect of
individual agent behavior interaction with other agents and/or
with its environment [13]. On the other hand, CA permit to
model the population as a whole but focusing in subsets of
the population, in a discrete fashion.

Many models about epidemic disease contagions have been
developed so far [10], [11], [14]–[16], however, few have
considered the case where natural catastrophes strike during
the occurrence of a pandemic disease like COVID-19.

In this paper, we address such a problem, by focusing on
population individual behavior during a city-wide evacuation
– due to a tsunami threat – in a city lockdown because of the
COVID-19 pandemic. Using agent-based simulation (ABS) we
study the effects on the disease transmission among individuals
of the city’s population. Our case of study takes place in
Iquique (northern Chile).

The rest of this paper is organized as follows. In section II
we will provide some background information about the city
of Iquique, with its always-present tsunami risk and current
COVID-19 cases, about ABS and the epidemiological model
SEIR. In section III we review related works about ABS
and its applications in emergency evacuations and infectious
disease transmission. Also, we discuss COVID-19 epidemi-
ological models in outdoor scenarios. Later, in section IV,
we formally define our proposed ABS model for city-wide
evacuation scenarios. Section V presents our case of study and
the obtained experimental results. Finally, in section VI, we
present the conclusions about this work and the possibilities
it pose for future work.

We provide reproducible simulation models available in
our GitHub repository [17]. Also, videos of the simulated
evacuation scenarios are available in YouTube [18].



II. BACKGROUND

A. Iquique

Iquique is a coastal city located in northern Chile. It is
set on a platform sitting on the rim of the so-called “Pacific
Fire Ring”, and is surrounded by the Pacific Ocean and the
cliffs of the Coast Mountain range. Because of its location
and topology, Iquique has a high risk of being flooded in
the event of a tsunami. Government authorities are frequently
trained to quickly respond to such events, and evacuation drills
– involving the population – are realized in (almost) a yearly
basis. In the event of a tsunami alert, people located in the
flooding risk area (between the coast and the security zone)
must quickly evacuate to the security zone (depicted as a green
line in Figure 1).

Fig. 1: Tsunami evacuation map of Iquique – Main evacuation
routes are depicted as red lines, and the security zone marked
by green line – based on [19].

According to the Chilean census of 2017 [20] Iquique
has a population of 191.468 inhabitants. With the help of a
GIS software, combining census information and the ONEMI
tsunami flooding risk map, it was estimated that the population

that live in the risk zone of Iquique reaches a total of 99.193
inhabitants.

The first case of COVID-19 reported in Chile occurred in
March 3rd, but in Iquique the first case is reported in march
23rd. The natural isolation of cities in northern Chile, mostly
placed in the coast surrounded by the Atacama desert, was the
main factor to this late begin. However, once the pandemic
arrived to these cities, it spread rapidly (see Figure 2). The
nearest cities to Iquique, Arica (310km) and Antofagasta
(416km), started the lockdown before than Iquique (April 17th
and May 6th, respectively). In the middle of social unhappiness
by, in the judgment of the citizens, a slow reaction of their
authorities, the number of contagions in the Tarapacá region
grew up to 779 cases (440 cases in Iquique), with 425 active
cases (293 cases in Iquique) and 2 deaths before the city
lockdown was declared (May 16th), in a region with only one
hospital and 15 ICU beds (at the beginning of pandemic) to
treat a population of 330.558 people.

Fig. 2: Number of active cases reported in Iquique between
April 13th and August 28th (Source: Science, Technology,
Knowledge and Innovation Ministry, Government of Chile.).

B. Agent-based Modeling and Simulation

Agent-based simulation corresponds to an individual ori-
ented modeling (IOM) technique suitable to simulate au-
tonomous entities [21]. Agents are described by their own
state variables and rules of behavior, they may be located in
an environment – formed by a uniform n-dimensional lattice –
where they can move and interact (in the form of cooperation
or competition) with other agents and/or the environment.

Agents are programmed to react according to a set of
predefined rules, that – based on the modeler needs – may
range from simple binary or stochastic decisions up to highly
detailed complex behaviors [22], [23]. These rules govern
individual agents behavior, and can be defined in relation to
other agents and/or to their environment.

ABS are step-driven, meaning that the state of each agent
and the environment evolve in discrete time steps. At each step,



Fig. 3: Transition state diagram for SEIR model.

the rules of every agent are evaluated and its state variables
are updated in a synchronous manner.

An ABS model is able to describe the emergent behavior of
a real-life system derived solely from the interactions among
its agents [24].

Due to this characteristics, ABS models have long proven
to be useful for modeling spatially explicit models such
as individuals interaction social dynamics [25], emergency
evacuations [26], [27] and infectious disease transmission and
mitigation strategies [14], [28]–[31].

C. SEIR Models

In a SEIR model, population is divided into four classes,
namely: Susceptible (S, those able to to contract the disease),
Exposed (E, those who have been infected, but not yet
infectious and possibly asymptomatic), Infectious (I , those
able to transmit the disease) and Recovered (R, those who have
recovered and become immune). Their dynamics is described
by the graph in Figure 3. The nodes (labeled S, E, I and R)
represent the class where each person can be in. The arcs are
labeled with the functions associated to the change from one
stage to another. They can be summarized as:

Λ: Increase rate of population.
β: Exposing rate.
α1: Morbidity COVID-19 rate.
α2: Recovery COVID-19 rate.
ρ: Immunity loss rate.
µ: Mortality rate by other causes than COVID-19.
δ: Mortality rate by COVID-19.

As in earlier works about SEIRS [32], [33], considering this
system in function of time, t, an ordinary differential equations
(ODE) can be derived:

dS
dt = Λ + ρ− β − µ
dE
dt = β − α1 − µ
dI
dt = α1 − α2 − µ− δ
dR
dt = α2 − ρ− µ

(1)

With the initial conditions: S(0) = S0, E(0) = E0, I(0) =
I0 and R(0) = R0.

Since dynamics of the modeled situation (a city-wide evac-
uation) happens in less than one hour timescale, our rate of
interest during the simulated event is β, since the remaining:
α1, α2, ρ and δ, change in a greater timescale, and Λ and µ
don’t depend on the illness evolution.

III. RELATED WORK

In this section, we discuss the use of ABS to model
emergency evacuations and epidemic disease transmission.
Also, we review research work about outdoors COVID-19
transmission.

A. Agent Based Models

1) Emergency Evacuations: Emergency evacuations imply
the rapid displacement of part of a population from a place
under threat to a safe zone. Most efforts for large scale city-
wide evacuations simulations have been done using Cellular
Automata approaches [15] due to its ability to represent
aggregated population with few computational resources. In
this sense, Cell-DEVS (a simulation formalism that implement
the concept of CA) has been extensively used to model
crowd evacuations [34], [35]. Most ABS evacuation models
are focused in the evacuation of indoor spaces [36]. To the
best of our knowledge, there are only few evacuation research
– using ABS – that assume a large population [37]. The work
in [38] present a flooding risk management simulator in the
city of Towyn (North Whales), the tool consider individuals
daily patterns of mobility as well as a flooding model of the
city and was validated using information of the 1990 flooding.
The simulations performed in this work consider a population
of barely 90.000 individuals.

2) Epidemic Disease Transmission: Epidemiology is an
important area of study that uses ABS. Many researches uses
it as a tool for simulating and studying outbreaks of epidemic
diseases and mitigation strategies. Proven to be a powerful
tool, ABS has been used to model contagious diseases [39]
– such as the Influenza virus – spread in urban areas [40].
Authors in [41] proposed a multi-agent model to simulate
H1N1 influenza contagions in Egypt. They adapted a SIR
model in order to describe different kinds of agents. Data
from the 2006 Egyptian Census was analyzed to determine
simulation parameters such as population distribution and also
social relations (e.g., sibling, child, other families, coworker,
etc.) were considered. The developed model allowed the
authors to predict infections peaks and mortality rates for
different scenarios. The work in [14] presents an artificial town
with a population just 1.500 agents. The authors focused their
study in modeling the propagation of a viral disease in a place
were agents are densely connected, such as the public trans-
portation system. Experiments were performed exploring dif-
ferent control strategies: from individuals personal protection
measures and closing of gathering places to epidemic control
surveillance, showing that prevention measures are effective.
In both studies, there was a small amount of simulated agents.
Authors in [30] developed an ABS model and concluded
that mitigation strategies (such as school closure and travel
restrictions) help to delay the spread of an influenza pandemic
in the U.S considering a population of 281 million individuals.
An ABS model to study COVID-19 risks of transmission in
indoor spaces is proposed in [13]. The model present simple
rules to describe the contagions dynamic among agents and
also to describe their displacement within the environment.



the proposed rules are based on simple probabilities to define
their activation. In [42] authors developed a fine-grained
ABS model calibrated to reproduce the main transmission
characteristics of COVID-19 in Australia, used to compare dif-
ferent contention strategies. As can be inferred, most research
on epidemic disease transmission ignore population mobility
patterns and/or the geographic demographic distribution. An
exception would be the work of [31], that present a large-
scale model to study seasonal influenza outbreaks in Zurich,
Switzerland. In order to have a realistic approach to COVID-
19 transmission dynamics we considered an epidemiological
model SEIR in our ABS model.

B. COVID-19 Outdoors Transmission

Despite the lack of knowledge on details about COVID-
19 transmission, the main reported mechanisms – which are
common to respiratory diseases – are in the form of aerosols,
emitted by infected persons when coughing or sneezing. These
airborne droplets can be directly inhaled or touched from
surfaces where they have been deposited, by exposed receptors
( [5], [7], [43], [44]). For the exposure due to the evacuation
event simulated in this article, the relevant mechanism is
related with the close-range aerosol transmission. This have
been observed in about 6 feet (1.8 meters) close to the “source”
[44]. However, punctual sneezing or coughing events would
deserve a modeling based on real measurements with a local
dispersion pattern.

Due to the relative stability and calm near the ground level
– common in northern and central Chile by the influence of
the South Pacific High – which means stable atmospheric
conditions, quite similar to closed spaces, being marginal the
main factors considered in dispersion models [45] specially in
short time periods, we consider the rate of transmission to a
susceptible person, S, in function of the number of infected
persons, I , near him or her within a given radius r. We have
considered for r a “social distance” of 1.8 meters [9] in despite
of reported 7.5 meters [7], considered the maximum span of a
cloud of droplets around a sneezing or coughing person. This
could be expressed in an extra rule, in further works.

IV. PROPOSED AGENT-BASED EVACUATION AND
CONTAGION MODEL

In this section we present our spatially explicit ABS model
for disease contagion during a city-wide evacuation.

A. Model Description

The purpose of this work is to study the effects of a
city-wide evacuation – during a lockdown – on COVID-
19 transmission. As the evacuation takes place, it would be
common for the evacuees to ignore – or at least not to
completely fulfill – contagion prevention measures such as:
social distancing and wearing face masks among others. Also,
we consider the fact that it would be difficult for the evacuees
to maintain social distancing once they reach the security zone.

Based on the ideas of the SEIR model [11], our simulation
considers four different kind of agents, described in Table I.

TABLE I: COVID-19 Infection Stages for Agents.

Stage Name Description
s′ Susceptible The individual is not infected by COVID-19.

e′ Exposed
An individual that has been infected with
COVID-19 but is in the incubation stage,
presents no risk to infect other persons.

i′ Infectious
An individual that has finished the incubation
period and may infect other people, may or
may not present symptoms.

r′ Recovered
The individual was infected by the disease,
survived and is no longer infectious. It has
developed a natural immunity to the virus.

It is worth to mention that there are variations of the SEIR
model (such as [16]) that consider more stages of the disease,
in which a person may take several days to transit from one
stage to the next. However, since our simulations focus in a
short time span, there are no transitions among stages, so they
can be obviated.

The proposed model is formally defined as:

M =< A,C,R, T >

Where:
A is the set of agents a, with a = {(ac, ap)|ac ∈ C, ap ∈ P}.
C = {s′, e′, i′, r′} is the set of COVID-19 infection stages
(as described in Table I).
R is the set of rules to be applied to each agent a ∈ A.
Rules are defined over each agent and/or its surrounding
environment.
P ⊆ T is the set of geographical locations that are accessible
(such as streets/roads) for any agent a ∈ A.
T is the territory or environment space, a set of geographical
locations within the limits of the city of Iquique.
The distinction among P and T is made because, initially,

agents are located within their homes (represented by city
blocks within the territory), but once the evacuation starts
they only move along the streets/roads, P , in direction to the
security zone.

Since our proposal consider that agents belong to different
COVID-19 infection stages, we also define the following
disjoint subsets of A:
S ⊆ A where {a = s, s ∈ S | ac = s′} is the set of
susceptible agents.
E ⊆ A where {a = e, e ∈ E | ac = e′} is the set of exposed
agents.
I ⊆ A where {a = i, i ∈ I | ac = i′} is the set of infected
agents.
R ⊆ A where {a = r, r ∈ R | ac = r′} is the set of
recovered agents.

B. Model Rules

In ABS, a set of rules is defined in order to model the be-
havior of individual agents. These rules allow agents to change
their state, to move, and to interact with its environment and/or
with other agents.

In this model, the set of rules is defined in order to model
the agents displacement during the city evacuation and, also,



to model COVID-19 contagion among individuals:

1) Contagion Rule: This rule permit to model the transmis-
sion of COVID-19 from infected individuals to susceptible
persons. For our model, we have assumed an exposing rate
for a susceptible person, s, distributed according the number
NI of infected ones (i) within a circle around s, distributes
according the probability distribution function f , given by the
additive rule for independent probabilities:

NI∑
i1=1

pi1 +

NI
NI−1∑
i1=1

i2=i1+1

pi1pi2 + ...+ (−1)NI−1p1p2p3...pNI
(2)

where pk (k ∈ {1, ..., NI}) correspond to the probability of
transmit COVID-19 to the k-esime infected individual near s,
at 1.8 meters or less.

By the other hand, each susceptible person, s ∈ S, will
have a probability of developing the illness, pD according the
contact with infected ones. Assuming independence between
this pD, depending on his or her immunity and also on which
measurements this person adopt, such as mask wearing, keep-
ing a social distance, etc. Since this category isn’t immune,
pD value will be uniformly distributed between 0.2 and 0.9.

2) Evacuation Rule: This rule is defined to represent agents
walking towards the security zone during an evacuation. It
is worth to mention that according to Chilean government
authorities in charge during natural disasters (ONEMI), in the
event of a city evacuation procedure due to a tsunami threat,
the use of vehicles is forbidden in urban areas [46].

Therefore, this rule, force each agent to move to a new place
in P , following a (previously) computed route towards a target
point P ′ located in the security zone of the city (as shown in
Figure 1).

V. EXPERIMENTAL RESULTS

In this section, we present three evacuation simulation
scenarios taking place in Iquique during the city lockdown,
modeled using the Gama Simulator [47]. Here, we focus on
the effects of COVID-19 contagions attributed to a city-wide
evacuation.

The model is preset according to official information (when
possible) about Iquique and COVID-19. For each simulation,
the territory and its streets/roads corresponds to the city of
Iquique. The security line is set according to recommendations
of ONEMI (as observed in Figure 1) [19]. A total of 99.193
individual agents are considered in the simulations, being that
the estimated population that live in the tsunami flooding
risk zone of Iquique. The initial geographic distribution of
the agents in the city is defined according to [20]. Finally,
The walking speed of agents during evacuation is attributed
uniformly in the range 0.88 – 1.45 meters per second according
[26], [48].

We consider 5 simulation experiments grouped into 3 sce-
narios. Scenario A corresponds to official reports figures as of

August 28th (2020), whereas scenarios B and C corresponds
to the lowest and greatest amounts of COVID-19 active
cases during the lockdown up to date. For experiments A,
B and C, the amount of infected agents corresponds to an
estimation of official reports [49] in a direct proportion to the
population that live in the flooding risk zone (I0, in terms of
the initial conditions associated to the ODE). The geographical
distribution of infected agents (i.e., active COVID-19 cases) in
scenario A was made according to reports of IDE Chile [50].
In scenarios B and C, infected agents are mainly distributed in
downtown (most densely populated area) and in the southern
suburb of the city (least densely populated), as described in
Table II.

TABLE II: Simulated Scenarios

Scenario
Infected
Agents
(reported)

Infected
Agents
(estimated∗∗)

Distribution
of Infected
Agents

Recovered
Agents
(estimated∗∗)

A 1 367 264 As officially
reported∗ 4.049

B 2 293 211
80% Down-
town – 20%
Suburb

147

3 293 211
50% Down-
town – 50%
Suburb

147

B 4 575 414
80% Down-
town – 20%
Suburb

1623

5 575 414
50% Down-
town – 50%
Suburb

1623

∗Reported in August 28th, 2020 [50].
∗∗Estimated values derived from regional data.

Figure 4, describes the process in which an infected (I)
individual transmits CODIV-19 to a susceptible one. In Figure
4(a), both a susceptible (S) agent and an infected agent are
following the evacuation path towards the security zone at
a safe distance from each other. Next, in Figure 4(b), the
infected agent invades the safe space of the susceptible agent,
the probability of S acquiring the disease from I is evaluated.
Then, in Figure 4(c), the probability of contagion stated that
the susceptible agent acquires the disease, being transformed
into an exposed (E) agent. Finally, in Figure 4(d), both agents
continue walking to the security zone.

In Figure 5, it can be observed a visualization of the
progress of the simulation. Figure 5(a), shows agents at the
beginning the evacuation, fleeing to the security zone. Figure
5(b), shows the evacuation simulation after 12:36 minutes,
where most agents (depicted as black dots) have reached the
security zone.

A. Current Case

The scenario for this simulation is set to have occurred
in August 28th, 2020. At this date, the current amount of
COVID-19 active cases in Iquique is 367, however, only 264
of them live in the tsunami flooding zone. Thus, this simulation
consider 264 infected agents and 98.929 susceptible/exposed,



Fig. 4: Process of a susceptible agent acquiring COVID-19
and being transformed into an exposed agent.

(a) Simulated evacuation (minute 2:16)

(b) Simulated evacuation (minute 12:36)

Fig. 5: Visualization of the evacuation simulation in the Playa
Brava district.

considering 4049 of them as recovered agents. The geograph-
ical distribution of infected agents was configured according
to official reports [50].

B. Fewer Active Cases

This scenario is based on figures reported in May 15th
(2020), the day before the beginning of the city lockdown.
On that day, one of the lowest amounts of active cases
was reported ever since the lockdown started. The simulated
population sums 99.193 agents, and includes the amount of
infected agents in the tsunami flooding zone (211), and an
estimation of the recovered agents (147).

C. Highest Active Cases

This scenario considers reported information for June 19th
(2020), the day with the highest amount of active cases
reported so far in the city of Iquique, even during the city
lockdown. The scenario simulates a population of 99.193
agents, including an amount of 414 estimated infected agents
located in the tsunami flooding zone, and an estimated of 1.623
recovered agents.

D. Results

The proposed model is flexible enough to permit the testing
of several different hypothesis, considering situations that are
impossible to test in real-life conditions. The probability of
contracting the COVID-19 for each susceptible individual pD,
as defined in the contagion rule, has been assigned uniformly
distributed between 0.2 and 0.9. Regarding probability of
transmitting COVID-19, associated to infected ones, two con-
figurations for the contagion rule have been considered. A
first configuration, of “higher rate” (HR), consider a uniform
probability in the range 0.2–0.9. A second configuration of
“lower rate” (LR), more conservative, consider the range 0.2–
0.6.

Figure 6, shows how the most of a stable number of
transmission of COVID-19 happens within the first 15 minutes
(900 seconds, dotted vertical line), when near an 85% of
the final stable values are reached. This trend is consistently
observed, during the trip to the safe zone, having the most of
the transmissions in the early minutes. As could be expected,
the greatest increase of exposed population coincides with
the maximum number of infected cases, at June 19th –414
cases within the area– (red lines), having a 10% of difference
according the geographical distribution of the infected ones,
reaching 8140 when a half of them are in the central part of the
city and the other ones, within the South sector. Near 1000 less
new exposed ones result, if infected population concentrates
in the central sector (80% of them).

While becomes clear that the spatial distribution of the
infected population is relevant for the spreading of COVID-
19, their amount, at least within the observed levels, can’t
predict by itself, an increase of exposed cases. Considering the
beginning of this lockdown –May 15th–, having the minimum
infected cases (211), the simulations of these conditions (in



Fig. 6: Simulated increase of exposed population – during a
city-wide evacuation of Iquique – in several configurations for:
date – spatial distribution of infected population – contagion
probability.

green), reached over 5000 new exposed cases, more than twice
than results for Aug. 28th.

These results were under HR (0.2–0.9 probability of trans-
mission) assigned to infected people. Considering LR (0.2–
0.6), the new exposed cases are one order of magnitude below.
Interestingly, they show the same order than HR simulations,
being the lowest increase with the Aug. 28th data. The spatial
distribution of infected populations, shows a relative greater
effect: Roughly 60% for Jun. 19th and 80% for May 15th.

In order to better understand the spatial distribution of
the infected population effect, simulations were performed
considering the 264 infected ones, reported for Aug. 28th (not
plotted) with similar distributions of simulations for the other
dates, reaching the final new exposed cases as summarized in
III. These values remain below the outcomes for Jun. 19th but
over the May 15th. This reinforces the observed effect of the
spatial distribution of infected population.

VI. CONCLUSIONS

In this work, we proposed an ABS model of a city-wide
evacuation due to a tsunami threat. As a case of study, we
situated the evacuation in the city of Iquique during the
COVID-19 lockdown.

TABLE III: Simulated results for scenario A, considering
different geographical distribution of infected agents.

Distribution of Infected Agents Resulting Exposed Agents
As officially reported∗ 1875
80% Downtown – 20% Suburb 4099
50% Downtown – 50% Suburb 5844
∗Reported in August 28th, 2020 [50].

The proposal was evaluated considering different probabili-
ties of contagion and using real amounts of active cases corre-
sponding to actual dates throughout the lockdown of Iquique.
Results showed the catastrophic effects in new COVID-19
infections that can derive from a city-wide evacuation event
– that lasts less than an hour – spreading the illness even in
the most conservative scenarios in 15 minutes or less. Most
new contagions were observed while individuals were fleeing
to the security zone, that is during the first 15 minutes (85%).
Simulations highlighted the effects on disease spread produced
by the spatial distribution of infected agents during a city
evacuation. Results showed that simulations in which COVID-
19 active cases were more uniformly distributed across the city
generated between 7% to 14% more new contagions for the
case of a higher rate of contagions, and about 27% to 54%
more with a lower rate of contagions.

While the spatial distribution population have consistently
shown a relevant effect of the contagion rates, other factors
should be further investigated and calibrated to better charac-
terize this phenomenon, including not only infected cases, but
also recovered ones.

An unconsidered problem faced during the development
of this research, has been the lack of consistent and precise
official information regarding COVID-19 cases in Chile and
of the Tarapacá region, making this a troublesome task. In
an attempt to tackle this problem, simple linear and naive
estimations were made. Most official data is available with a
granularity to a regional level. This reinforces the capital value
of knowing about the location and contacts of the infected
population.

Simulations of the post tsunami scenario and its effects on
COVID-19 contagion spread is considered for future work.
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