
TOWARDS A COMPONENT BASED CONCEPTUAL MODELING LANGUAGE
FOR DISCRETE EVENT SIMULATION

Deniz Cetinkaya
Alexander Verbraeck

Mamadou Seck
Systems Engineering Group, Faculty of Technology, Policy and Management

Delft University of Technology
Jaffalaan, 5, 2628BX, Delft, THE NETHERLANDS

email: d.cetinkaya@tudelft.nl, a.verbraeck@tudelft.nl, m.d.seck@tudelft.nl

KEYWORDS
Conceptual modeling, conceptual modeling language,
discrete event simulation, hierarchical modeling

ABSTRACT

Recent studies state the importance of conceptual mod-
eling in simulation life cycles. Proper development of a
conceptual model is critical for expressing the context,
elements, relationships, limitations and purpose of the
simulation study. Surprisingly there are many simula-
tion projects that have no explicit conceptual model,
a poorly or only partially developed conceptual model,
or incomplete documentation of the simulation concep-
tual model. The reason for the deficiency in conceptual
modeling stage is that there does not exist a well de-
fined simulation conceptual modeling method. In this
paper, a brief overview of the conceptual modeling tech-
niques used in simulation field is provided and the need
for a unified simulation conceptual modeling method
is stated. Then, a conceptual modeling approach for
discrete event simulation is proposed and compared to
other modeling techniques.

INTRODUCTION

In general terms, each simulation study has a prob-
lem definition, conceptualization (conceptual modeling),
model building (simulation model construction), and ex-
perimentation stages. Conceptual modeling is probably
the most difficult aspect of a simulation study and recent
studies state the importance of conceptual modeling in
simulation life cycles (Pace 2000, Yilmaz and Oren 2006,
Robinson 2006; 2008). During the simulation conceptual
modeling stage, a modeler makes an abstraction of the
system and prepares the conceptual model for the simu-
lation study. A simulation conceptual model is a simpli-
fied representation of the real system without reference
to the implementation details. It generally describes the
elements, relationships, boundaries and objectives of a
simulation study.
Conceptual modeling not only requires that the mod-

eler develop an appropriate model, but that all parties
involved in a simulation study understand and agree to
that model. As such, it is important that the concep-
tual model is represented and communicated in a man-
ner that is understandable to all. A range of modeling
methods have been used for representing simulation con-
ceptual models, such as process flow diagrams, event
graphs, activity diagrams, IDEF diagrams, Petri nets,
etc. (Robinson 2006). Many of the techniques present
an abstract way of thinking which is not natural and so
it is difficult to properly model the real system in the
required level of detail. For example, a flow diagram
provide an overview of the system and do not have much
detail. Petri nets are well defined and they represent a
directed graph of nodes and arcs. However, there is not
an elegant way of representing hierarchies graphically.
Moreover, conceptual models are often not reused ex-
plicitly in the further steps of the simulation process, as
formal model transformation methods are not available
to guarantee model continuity (Olive 2007). This means
that, based on exactly the same conceptual model, dif-
ferent simulation modelers will most likely create differ-
ent simulation models. This puts an excessively high
share of simulation project success responsibility in the
hands of the code writer. This situation would have
been mitigated if stakeholders were involved in the de-
sign of the conceptual models, and if the latter were
reused explicitly in the further stages of the process.
Therefore, we can conclude that there is a big semantic
gap between the conceptual modeling stage and the sim-
ulation model construction stage. Therefore, we would
like to pay attention to the deficiency in conceptual
modeling stage and the lack of a commonly accepted
standardized conceptual modeling method and language
in Modeling and Simulation (M&S). In short, the exist-
ing modeling methodologies require some development
in the state of the art of conceptual modeling and sim-
ulation model construction stages.
In this paper, firstly a brief overview of the conceptual
modeling techniques used in simulation field is provided.
Then, two useful modeling approaches, namely hierar-
chical modeling and component based modeling are dis-

cussed. After that, a conceptual modeling approach for
discrete event simulation is proposed. Finally, conclu-
sions are drawn and future work is outlined.

CONCEPTUAL MODELING METHODS
USED IN M&S

Simulation conceptual modeling generally benefits from
general purpose diagramming techniques, which are not
adequate for meeting the needs of simulation projects.
Despite the fact that conceptual modeling is an impor-
tant step in a simulation study, there is not a com-
mon simulation conceptual modeling language. Thus,
in many cases conceptualization deeply depends on the
skill and experience of individual modelers. This sec-
tion provides a brief overview of the conceptual model-
ing methods used in M&S.

In order to provide a better understanding, after giving
a brief introduction we will give a sample model of a
single server queue for each method. Simulation of a
single server queuing system is a common example of
discrete event simulation such as an information desk
at an airport or a hotel, a pharmacy, a barber shop, or
a ticket office. This example was chosen because of its
simplicity enables an easier comparison of the methods.

For example, consider a service facility with a single
server for which we would like to estimate the average
delay in the queue for arriving customers. We define
the following state variables: status of the server (idle
or busy), number of customers waiting to be served (if
any), the arrival time of each customer waiting in the
queue. We define three types of events: arrival, service
and departure. Delay in the queue means the length of
time from the arrival of a customer at the information
desk queue until the instant he/she begins to be served.

Event Graphs

Event graphs provide a representation for discrete event
simulation (Schruben 1983). An event graph partitions
the model into events and relationships between events.
The events are represented by vertices (nodes) in the
graph and relationships between events are represented
as directed edges (arcs) between event vertices. Figure
fig:eventgraphshowsaneventgraphforthesampleproblem.

Figure 1: An event graph for a single server queue (Seila
et al. 2003)

Activity Cycle Diagrams

Activity diagrams are graphical representations of work-
flows of stepwise activities and actions with support
for choice, iteration and concurrency. UML activity
diagrams can be used to describe step-by-step work-
flows of components in a system. An activity diagram
mostly consists of, activities (rounded rectangles), deci-
sions(diamonds) and flows(arrows). Bars represent the
start (split) or end (join) of concurrent activities. A
black circle represents the start (initial state) of the
workflow and an encircled black circle represents the end
(final state). Flows(arrows) run from the start towards
the end and represent the order in which activities hap-
pen. Activity diagrams can be regarded as a form of
flowchart. Figure 2 shows an activity cycle diagram for
the sample problem.

Figure 2: An activity diagram for a single server queue
(Seila et al. 2003)

IDEF Diagrams

IDEF (Integration DEFinition) is a family of modeling
languages in the field of systems and software engineer-
ing. They cover a wide range of modeling methods,
yet the most-widely recognized and used one is IDEF0.
IDEF0 (Integration Definition for Function Modeling) is
a function modeling methodology for describing organi-
zations or systems. It is a model that consists functions,
data and objects. Functions are represented by boxes.
Data or objects that interrelate those functions are rep-
resented by arrows). Figure 3 shows a simple IDEF0
diagram for the sample problem.

Petri Nets

Petri nets are bipartite graphs and provide a mathe-
matically rigorous modeling framework. They serve as
a ready simulation model, as well as a conceptual model.

Figure 3: An IDEF0 diagram for a single server queue

However, their analysis is intractable for large models.
Petri nets consist of places, transitions, and directed
arcs. Arcs run from a place to a transition or a transi-
tion to a place, never between places or between transi-
tions.The places from which an arc runs to a transition
are called the input places of the transition; the places
to which arcs run from a transition are called the output
places of the transition. Places may contain a number
of tokens. A transition of a Petri net model is fired
whenever there is a token at the start of all its input
arcs. Figure 4 shows a petri net model for the sample
problem.

Figure 4: A petri net model for a single server queue

There are various types of Petri nets, such as timed
Petri nets, stochastic Petri nets, and colored Petri nets.
The use of stochastic Petri nets has become particularly
important in the modeling of discrete event systems.
Timed Petri nets are the particular types of Petri nets
that associate the time and time delays.

HIERARCHICAL COMPONENT BASED
MODELING

As modelers build more complex and complicated mod-
els for large systems, it becomes hard to design, de-
velop, manage and maintain the simulation models. The
monolithic approach for developing models becomes too
cumbersome in large simulation projects. Besides, when
each simulation model is designed from scratch, the lack
of reuse makes simulation a time consuming and expen-
sive task (Oses et al. 2004).
Applying different software engineering approaches into
the simulation field can help managing larger models,

such as thinking at various levels of abstraction or com-
ponent based development. In this section two modeling
approaches, which have been applied in the simulation
field and provided valuable contributions, are discussed.
These are hierarchical modeling and component based
modeling.
Hierarchical modeling (also known as multi-level model-
ing) provides a way to represent a system in a hierarchi-
cal structure to deal with large scale or complex models
in a thorough manner (Simon 1962). Hierarchical mod-
eling allows modeling with more manageable sub-parts
at different levels of detail. The ability to move among
the different levels of a model hierarchy greatly increases
the manageability and understandability of large mod-
els (Daum and Sargent 1999). Hierarchical modeling
can provide for a more natural way of modeling and
help to focus on different degrees of detail when using a
model.
Hierarchical models are generally developed in two dif-
ferent ways, that are top-down and bottom-up strate-
gies. In both cases, hierarchical models mostly repre-
sent a tree-like structure. In the top-down approach, a
system is broken down into subsystems and this is called
as decomposition. During the top-down modeling pro-
cess, modelers specify the main parts and relationships
of the system without inner details first and then they
fill in the lower levels. In the bottom-up approach, sub-
systems are coupled together to form a larger system
and this is called as composition. During the bottom-
up modeling process, modelers first think of the lowest
level, i.e. smallest parts or building blocks of the system
and then they use these previously constructed building
blocks to compose larger models and systems. Simu-
lation models can be developed by employing either a
top-down decomposition approach or a bottom-up com-
position approach.
In the component based approach software systems are
built by assembling components already developed and
prepared for integration. Component based modeling
and simulation is an interesting research area that many
researchers studied in the last decade (Buss 2000, Him-
melspach and Uhrmacher 2004, Sarjoughian and Elam-
vazhuthi 2009, Verbraeck and Valentin 2008). Compo-
nent based simulation relies on having pre-built, vali-
dated simulation model components that can be cou-
pled to form a composed model that represents a sys-
tem. A simulation model component is expected to be
a self-contained, interoperable, reusable and replaceable
unit, providing useful services or functionality to its
environment through properly defined interfaces (Ver-
braeck and Dahanayake 2002). Component based ap-
proach promises to have many benefits over a monolithic
approach such as reuse of interoperable components and
rapid development (Verbraeck and Valentin 2008).
The development process for component based systems
consists of two major stages: component development
and component composition (Oses et al. 2004). These

stages are usually carried out by different parties, like
domain experts and software engineers. When a com-
ponent library is available, a developer can build a sys-
tem in a bottom-up fashion, by combining components
into larger components, where an assembly of the high-
est level components is considered to be the system. In
component based approaches, overall software quality
increases due to components are thoroughly tested first
and reviewed during reuse (Sommerville 2007).
The component based approach has originally a bottom-
up way of assembling components, which means that it
can be applied together with the hierarchical modeling
approach. Simulation model components can be assem-
bled in many ways into a hierarchy. New components
can be built from scratch in each layer or reused if they
already exist in pre-defined and verified component li-
braries, so it is not necessary to always create larger
components from smaller components.
Applying a unified hierarchical component based mod-
eling approach looks like an encouraging way in the sim-
ulation field. During the the conceptual modeling stage,
by applying a top-down hierarchical modeling approach,
a modeler can first partition the system into the relevant
subsystems and define the relationships between them,
without delving yet into their inner details. For exam-
ple, to represent an airport system, one would identify
such subsystems as gates, security check points, infor-
mation desk, check-in desks and so forth. At the simula-
tion model construction stage, by applying a bottom-up
component based approach, basic available primitives
and building blocks can be composed to provide the de-
sired functionality of the identified subsystems and the
simulation model.
However, there is a big semantic gap between the con-
ceptual modeling and the simulation model construc-
tion stages. For example, to be able to reuse the exist-
ing components, one should know that what is already
available. This means that, there must be a way to ex-
press how the components relate to the subtrees in the
conceptual model. Besides, good classification and doc-
umentation is essential for the successful reuse of sim-
ulation model components. We believe that in order
to bridge this gap, we need a common simulation con-
ceptual modeling language and a model transformation
method between the conceptual model and the simula-
tion model. A higher level representation on top of the
rigid simulation model implementation is expected to
make the simulation model development process faster.

A CONCEPTUAL MODELING APPROACH
FOR DISCRETE EVENT SIMULATION

In this section, a hierarchical component based concep-
tual modeling approach is suggested. The proposed con-
ceptual modeling method will basically define a system
with its components, relations, and objectives based on
the following definition of a system. A system is a set of

interrelated components working together toward some
common objective or purpose (Kossiakoff and Sweet
2003, Blanchard and Fabrycky 2006).
We define two types of nodes, that are components and
entities. Each component can have four different types
of variables: input variables, output variables, local vari-
ables and parameters. Components can have various
properties such as descriptors and rules. Descriptors de-
fine the meta information such as name, version, author,
bugs, keywords, etc. They can be used in cataloging
and searching components. Rules are constraints that
can be defined about components. They can be used to
express the boundaries of the system. Besides, we define
a component type for each component which is used for
classification purposes. We only allow type inheritance
in our method and use component type information to
classify the components. Type inheritance only provides
a limited support for component structure.
Every component has an objective, which is defined by
its behavior. At the conceptual modeling level, we pro-
vide a way to define the pseudo algorithm for the behav-
ior of a component. This will be used to support model
transformation and not obligatory.
Entities are specialized components, having both vari-
ables and properties. The only difference between a
component and an entity is that entities do not have an
internally defined behavior. For example, entity com-
ponents can be used to represent system resources. A
graphical representation for components and entities is
shown in Figure 5.

Figure 5: Visual representation for components and en-
tities

In order to define the state of the system, we use the
definition of Law and Kelton (1991): the state of a sys-
tem is the collection of variables necessary to describe
a system at a particular time. Hence, we use the local
variables to refer to the state and state change is pos-
sible when the local variables are updated. Output of
a component is available when the output variables are
updated.
Relations define how components and entities relate to
each other. Six basic relations are suggested in our
method and a textual representation for them is listed
in Table 1.
Due to hierarchical modeling is applied, composition
and decomposition capability is especially handled. Be-
sides, composition and aggregation are differentiated
clearly. The hierarchies are represented with ’HAS A’

Relation
Fixed Composition

CompA HAS CompB

Temporary Composition

CompA GOES CompB

Logical link

CompA ISLINKED CompB

Physical link

CompA ISJOINED CompB

‘Send-To’ relation

CompA SENDS EntityC TO CompB

‘Send-To-Via’ relation

CompA SENDS EntityC TO CompB VIA
CompD

Table 1: Textual representation of basic relations

relation and called as fixed composition. Since a uni-
fied approach is performed, composition refers to both
composition and decomposition capability. Aggregation
refers to a temporary whole-part relationship during the
execution of the simulation model. This type of relation
is called as temporary composition and represented as
with ’GOES TO’ relation.
Logical links and physical links are distinguished as well.
Association relations or any other logical relationships
can be expressed with logical links. ’Send-To’ and ’Send-
To-Via’ relations are provided for transferring data be-
tween components. When necessary and appropriate
cardinality information can be defined for the relations,
such as: 1..*, * or 0..*, n, 0..1, 1, ...etc. A graphical
representation for the suggested relations is illustrated
in Table 2.
In order to define the objective of the components we
suggest four main behavioral modeling primitives, which
are if condition, while loop, switch case and assignment.
Then we define an expression as a combination of these
primitives. A possible textual notation is given below:

� IF < condition > THEN < expression >

ELSE < expression >

� SWITCH{CASE < case >< expression >}

Relation Representation

Fixed Composition

Temporary Composition

Logical link

Physical link

‘Send-To’ relation

‘Send-To-Via’ relation

Table 2: Basic relations of the proposed conceptual
modeling method

� WHILE < condition > DO < expression >

� Assignment ∶< variable >= value

� Expression ∶
{IF Cond,While Loop,Switch,Assignment}

A sample component diagram of a single server queue
is demonstrated in Figure 6. The model defines the
following steps:

� Customer arrives(GOES) to the Waiting Queue of
the Service Desk

� Waiting Queue ISJOINED to the Service Process

� Waiting Queue is a queue component, thus when
available Customer is sent to Service Process

� When Service Process is finished, Customer leaves

� Waiting Queue calculates the delay time for each
Customer

� Service Process calculates the service time for each
Customer

Figure 6: A sample conceptual model with the proposed
method

COMPARISON WITH THE EXISTING
TECHNIQUES

In order to compare the proposed method in its current
status with the other techniques, a number of require-
ments for an effective conceptual modeling language is
represented below:

1. It should represent the system structure (elements
and relations) clearly.

2. It should represent the purpose of the simulation
study (objectives and boundaries).

3. It should be abstract from technical or organiza-
tional details (Ribbert et al. 2004).

4. It should support classification and inheritance.

5. It should support hierarchical modeling to develop
manageable and understandable models.

6. It should be formal enough to avoid misinterpreta-
tions. Besides, it should be theoretically possible to
map the conceptual model to a formal specification
to support model transformations (Ribbert et al.
2004).

7. It should be easy to learn and use (Ribbert et al.
2004).

Most of the conceptual modeling languages and model-
ing techniques provide the first four requirements. How-
ever, the main problem in simulation conceptual mod-
eling is hierarchical modeling and model composabil-
ity (Kasputis and Ng 2000). Recent studies state that

model composability is troublesome in simulation and
the existing methodologies require additional effort to
facilitate it (Röhl and Uhrmacher 2006, Yilmaz and
Oren 2006). Indeed, combining multi-level abstraction
and composition with inheritance and aggregation is not
easy, neither in theory nor in practice. Figure 7 shows
the three dimensions of hierarchical simulation concep-
tual modeling. Object oriented modeling methods pro-
vide few mechanisms to describe components. Simply
adopting the object oriented concepts is not adequate for
expressing the hierarchies in simulation models. Thus,
when a modeler wants to add different layers into his/her
models, object oriented conceptual modeling techniques
become insufficient.

Figure 7: Three dimensions in hierarchical simulation
conceptual modeling

Although many modeling techniques have well defined
syntax or semantics, a clear metamodel and a rigorous
formalism are lacking in many cases. Besides, they do
not provide formal model transformation methods to
guarantee model continuity. Only Petri net models serve
as a ready simulation model. However, they are far from
being practical and easy to use. In many cases, simula-
tion modelers need to be experienced and trained.
The proposed method represents the system structure
with components and relations. Components have ob-
jectives and rules that define the purpose of the simula-
tion study. Hence, it satisfies requirement 1 and 2. The
method satisfies requirement 3 partially, since it allows
defining pseudo algorithms for objectives. It satisfies re-
quirement 4 partially as well, due to it only allows type
inheritance. Hierarchical modeling is supported via the
component structure and we claim that the method is
easy to use. Requirement 6 is a future work at the mo-
ment, a metamodel and a model transformation method
will be defined for the proposed method. After that, a
more detailed comparison will be performed.

CONCLUSION AND FUTURE WORK

Although, an effective and consistent conceptual model
is critical for expressing the purpose of the simulation
study, many simulation projects have no deliberate con-
ceptual modeling stage. Moreover, formal model trans-
formation methods are not available to help the simu-

lation model developers while moving from the concep-
tual model to simulation model. As a result, simulation
models generally do not have a higher level representa-
tion on top of the rigid simulation model implementation
and so they are not understandable to others. We think
that the deficiency in simulation conceptual modeling is
caused by the lack of a well-defined conceptual model-
ing method and language in M&S. However, this subject
has not been adequately studied yet in simulation field.
This work aims at improving the conceptual modeling
stage and increasing the reuse of simulation model com-
ponents in modeling and simulation. We suggest a con-
ceptual modeling approach for discrete event simulation
and lead to new insights about conceptual modeling.
Reuse of simulation model components will help the
modelers to construct their simulation models faster,
better and more reliable. Additionally, a common con-
ceptual modeling method will provide a better under-
standing for conceptual models.
As a future work, we will define the suggested simula-
tion conceptual modeling method formally and propose
a metamodel for the simulation conceptual modeling
language. After that, a unified modeling and simula-
tion methodology that ensures model continuity will be
proposed by the use of the gained insights about con-
ceptual modeling.

AUTHOR BIOGRAPHIES

DENIZ CETINKAYA is a Ph.D. student at Delft
University of Technology. She is in the Systems
Engineering Group of the Faculty of Technology, Policy
and Management. She received her M.Sc. in Computer
Engineering from the Middle East Technical University,
Turkey in 2005. She received her B.Sc. with honors in
Computer Engineering from the Hacettepe University,
Turkey in 2002. Her research focuses on component
based modeling and simulation. Her e-mail address is
<d.cetinkaya@tudelft.nl>.

ALEXANDER VERBRAECK is a full professor
in Systems and Simulation in the Systems Engineer-
ing Group of the Faculty of Technology, Policy and
Management of Delft University of Technology, and a
part-time full professor in supply chain management at
the R.H. Smith School of Business of the University of
Maryland. He is a specialist in discrete event simulation
for real-time control of complex transportation systems
and for modeling business systems. His e-mail address
is <a.verbraeck@tudelft.nl>.

MAMADOU D. SECK is an assistant professor
in the Systems Engineering Group of the Faculty of
Technology, Policy, and Management of Delft Uni-
versity of Technology. He received his Ph.D. degree
from the Paul Cezanne University of Marseille and his
M.Sc. and M.Eng. degrees from Polytech Marseille,

France. His research interests include modeling and
simulation formalisms, dynamic data driven simulation,
human behavior representation and social simulation,
and agent directed simulation. His e-mail address is
<m.d.seck@tudelft.nl>.

REFERENCES

Blanchard B.S. and Fabrycky W.J., 2006. Systems engi-
neering and analysis. Pearson Prentice Hall, NJ, 4th

ed.

Buss A., 2000. Component-based simulation modeling.
In J. Joines; R. Barton; K. Kang; and P. Fishwick
(Eds.), Proceedings of the 32nd Winter Simulation
Conference (WSC ’00). IEEE Computer Society, San
Diego, CA, USA. ISBN 0-7803-6582-8, 964–971.

Daum T. and Sargent R.G., 1999. Scaling, hierarchi-
cal modeling, and reuse in an object-oriented model-
ing and simulation system. In Proceedings of the 31st

Winter Simulation Conference (WSC ’99). ACM,
Phoenix, Arizona, USA. ISBN 0-7803-5780-9, 1470–
1477. doi:http://doi.acm.org/10.1145/324898.325304.

Himmelspach J. and Uhrmacher A., 2004. A component-
based simulation layer for JAMES. In Proceedings of
the 18th Workshop on Parallel and Distributed Simu-
lation (PADS ’04). IEEE, Piscataway NJ, 115–122.

Kasputis S. and Ng H.C., 2000. Composable simula-
tions. In J.A. Joines; R.R. Barton; K. Kang; and
P.A. Fishwick (Eds.), Proceedings of the 32nd Winter
Simulation Conference (WSC ’00).

Kossiakoff A. and Sweet W.N., 2003. Systems enginner-
ing: principles and practice. Wiley Series.

Law A.M. and Kelton W.D., 1991. Simulation modeling
and analysis. McGraw-Hili, Inc., 2nd ed.

Olive A., 2007. Conceptual modeling of information sys-
tems. Springer.

Oses N.; Pidd M.; and Brooks R.J., 2004. Critical issues
in the development of component-based discrete sim-
ulation. Simulation Modelling Practice and Theory,
Volume 12, no. 7-8, 495–514.

Pace D.K., 2000. Ideas about simulation conceptual
model development. Johns Hopkins APL Technical
Digest, Volume 21, no. 3, 327–336.

Ribbert M.; Niehaves B.; Dreiling A.; and Holten R.,
2004. An Epistemological foundation of Conceptual
Modeling. In In Proceedings of the 12th European
Conference on Information Systems. Turku, Finland,
1557–1568.

Robinson S., 2006. Conceptual modeling for simulation:
issues and research requirements. In L.F. Perrone;
B. Lawson; J. Liu; and F.P. Wieland (Eds.), Proceed-
ings of the 38th Winter Simulation Conference (WSC
’06). WSC, Monterey, California, USA. ISBN 1-4244-
0501-7, 792–800.

Robinson S., 2008. Conceptual modelling for simulation
Part I: definition and requirements. Journal of the
Operational Research Society, 59, 278–290.

Röhl M. and Uhrmacher A.M., 2006. Composing sim-
ulations from XML-specified model components. In
L.F. Perrone; F.P. Wieland; J. Liu; B.G. Lawson;
D.M. Nicol; and R.M. Fujimoto (Eds.), Proceedings
of the 38th Winter Simulation Conference (WSC ’06).
IEEE, 1083–1090.

Sarjoughian H.S. and Elamvazhuthi V., 2009. CoSMoS:
a visual environment for component-based modeling,
experimental design, and simulation. In O. Dalle;
G.A. Wainer; L.F. Perrone; and G. Stea (Eds.),
Proceedings of the 2nd International Conference on
Simulation Tools and Techniques for Communica-
tions, Networks and Systems (SIMUTools ’09). ICST,
Rome, Italy.

Schruben L., 1983. Simulation modeling with event
graphs. Communications of the ACM, 26, no. 11, 957–
963.

Seila A.; Ceric V.; and Tadikamalla P., 2003. Ap-
plied Simulation Modeling. Brooks/Cole Publishing,
Thomson Learning Inc.

Simon H.A., 1962. The architecture of complexity. In
Proceedings of the American Philosophical Society.
467482.

Sommerville I., 2007. Software Engineering. Addison-
Wesley, 8th ed.

Verbraeck A. and Dahanayake A.N.W., 2002. Building
blocks for effective telematics application development
and evaluation. Delft University of Technology.

Verbraeck A. and Valentin E., 2008. Design guide-
lines for simulation building blocks. In S.J. Mason;
R.R. Hill; L. Mönch; O. Rose; T. Jefferson; and J.W.
Fowler (Eds.), Proceedings of the 40th Winter Simu-
lation Conference (WSC ’08). WSC, InterContinental
Hotel, Miami, Florida, USA. ISBN 978-1-4244-2708-
6, 923–932.

Yilmaz L. and Oren T.I., 2006. Prospective issues
in simulation model composability: basic concepts to
advance theory, methodology, and technology. The
MSIAC’s M&S Journal Online, Volume 2, 1–7.

