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ABSTRACT Modern cyber-physical systems would often fall victim to unanticipated anomalies. Humans
are still required in many operations to troubleshoot and respond to such anomalies, such those in future
deep space habitats. To maximize the effectiveness and efficiency of the anomaly response process, the
information provided by anomaly response technologies to their human operators must be epistemically
accessible or explainable. This paper offers a first step towards developing explainable anomaly response
systems. It proposes a logic, Causal Signal Temporal Logic (CaSTL), which can formally describe cause-
effect relationships pertaining to fault explanation. Moreover, it develops an algorithm to infer a CaSTL
formula that explains why a fault has happened in a system, given the model of the system and an observation
about the fault. The effectiveness of the proposed algorithm is demonstrated with a simulated Environmental
Control and Life Support System (ECLSS).

INDEX TERMS Explanation, diagnostic reasoning, failure analysis, simulation, temporal logic, trou-
bleshooting.

I. INTRODUCTION

MORDERN cyber-physical systems (CPSs) are becom-
ing increasingly complex and being deployed in more

safety-critical missions such as transportation, health care,
manufacturing, aerospace, and defense [1], [2]. Since the
concept of CPS was first proposed in [3], its intent has
been constantly expanded by a series of works [4]–[6]. One
notable characteristic is the increasing attention paid to the
role of humans in a CPS. This shift in the role of humans,
from being an operator of machines to a strategic decision-
maker and a flexible problem solver, presents new design
requirements for CPSs, particularly in terms of enhancing
their ability to interact with humans [7]. Many technolo-
gies, such as an interactive human-machine interface [8], a
human digital twin [9] and a virtual-physical collaboration
controller [10] have been designed for the interaction be-
tween CPSs and humans in the robotics domain. However,
in comparison, despite the widespread study of the fault
detection and diagnosis (FDD) problem in CPSs, most works
focus solely on the development of FDD algorithms [11]–

[13]. To date, limited works have proposed a comprehen-
sive system-level CPS design that considers both physical
components, simulation systems, and an interaction design
specifically applied to FDD scenarios. Small errors in CPSs
may lead to disastrous consequences. Even with the most
recent advancements in FDD, human experts still (and in
the foreseeable future continue to) play irreplaceable roles in
anomaly response, particularly in safety-critical domains. To
enable anomaly response technologies in CPSs to collaborate
effectively and efficiently with humans, we must guarantee
that the information provided by them to the humans about
the anomaly (e.g., a system fault, an off-nominal behavior, or
a cascading set of system disturbances) is not only accurate in
and of itself but also epistemically accessible or explainable
to their human operators. In this paper, we will call anomaly
response technologies with adequate epistemological under-
pinnings as fault explanation (FE).

To give a more concrete example, it has great significance
to monitor the process effectively and deal with abnormal
conditions promptly to ensure the success of long-duration,
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deep space missions [14]. An Environmental Control and
Life Support System (ECLSS), designed to meet the environ-
mental and metabolic needs of the crew for such missions, is
especially sensitive to failures since it directly relates to the
crew’s life and mission success [15]. Traditionally, the FDD
method has been one of the core technologies to ensure the
system’s normal operation. However, humans, either onboard
crew members or remote operators, have an irreplaceable
advantage in the face of unpredictable anomalies. Thus, gen-
erating explanations for anomalies is indispensable in making
anomaly response technologies more complete.

Related Work: Formal methods can serve as a starting
point for developing FE technologies [16]. Existing formal
verification tools can generate either a counterexample or
a certificate to justify whether a CPS violates or satisfies a
specification, which describes the desired/normal behavior
[17]. Such certificates and counterexamples, particularly the
latter, can already provide humans with some rudimentary
understanding of the fault (which violates the specification)
under investigation. However, the specification needs to be
provided prior to the FE process, which may not be possible
in many anomaly response scenarios. An alternative way is to
learn the desired/normal or undesired/abnormal behavior of a
CPS from data [18]–[21]. For instance, a (temporal) logical
formula can be learned from the time series data of normal
(positive) and abnormal (negative) behaviors to classify these
two different types of behaviors. However, formulas learned
in such a data-driven fashion can only explain “What has
happened?" not “Why has the fault happened?”, a more prac-
tically important question in anomaly response. Moreover,
it is difficult for such methods to generate explanations for
token (singular) cases if they are unseen in the data, e.g.,
corner cases.

Causality theory [22]–[24] offers a wide range of tools
to address these issues. It provides mathematical formula-
tions to define and reason about cause-effect relationships, a
crucial step towards answering “Why” questions. Moreover,
based on studies on how humans explain decisions to one
another [25], it has been shown that causal explanations
are preferred by humans. Therefore FE systems should be
able to provide causal explanations, if possible. There have
been some recent efforts on integrating formal methods and
causality, even thought not in the context of FE. For instance,
a new temporal logic was proposed in [23] to characterize
cause-effect relationships and causal inference was then used
to learn logical formulas from data. The method is data-
driven therefore doesn’t utilize knowledge of the system
under investigation. Moreover, the proposed logic is asso-
ciational, which doesn’t take the full advantage of causality
theory (Pearl’s causal hierarchy [22] consists of three layers
from the least to most powerful: associational, interventional,
and counterfactual). Ideally, a comprehensive explanation
for a fault should include the description of the abnormal
behavior, identification of the cause, and quantification of the
causal relationship between the cause and the behavior [26].
However, existing fault explanation (FE) methods, such as re-

quirement learning methods [18]–[21] discussed above only
capture the characteristics of the abnormal behavior, lacking
causal implications. Despite the work in [23] attempts to
express causal relationships by using temporal logic, the
Probabilistic Causation [27] it chooses as the metric often
fails to distinguish spurious correlations.

Considering the issues mentioned above, we propose a
temporal logic as the formal explanation that can not only
capture the properties of abnormal behavior and the cor-
responding potential causes but also provide a quantitative
description to measure the causal effect of the potential
cause for the abnormal behavior. Further, we propose an
algorithm to infer this causal explanation, which serves as
the crucial technology to solve the FE problem. The proposed
explanation method sheds light on the way for the interaction
design in CPSs, particularly under the human-involved FDD
scenario.

Contributions: The main contribution of this paper is three-
fold. First, we propose a new logic, Causal Signal Temporal
Logic (CaSTL), which can be used to specify and reason
about cause-effect relationships pertaining to FE. We endow
CaSTL with interventional and counterfactual syntax and se-
mantics. To the best of our knowledge, this is the first instance
where a temporal logic has been proposed to incorporate
the interventional and counterfactual aspects of causality.
Second, we develop an algorithm that, given the simulation
model of a system and the time series data of a fault, can
infer a CaSTL formula explaining the fault from a causal
perspective. Our algorithm is both model-based and data-
driven. It generates an explanation that is consistent with both
the observational data and the knowledge about the system.
Finally, we validate the effectiveness of the proposed method
via a simulated ECLSS developed by us.

II. PRELIMINARIES
The formal definition of CPS is firstly proposed in [3] as:
“CPS is an integration of computation with physical pro-
cesses whose behavior is defined by both cyber and phys-
ical components of the system. Embedded computers and
networks monitor and control the physical processes, with
feedback loops where physical processes affect computations
and vice versa." The cyber elements include embedded sys-
tems and network controllers, which are usually modeled
as discrete events. Whereas the physical components exhibit
continuous dynamics and are commonly modeled using dif-
ferential equations [28]. For example, in our work, an ECLSS
is considered a CPS composed of cyber components, e.g.,
some flight software supervision control and data acquisition
systems, and physical components such as an array of sen-
sors and actuators that interact with the internal or external
environment.

In the context of our FE problem, upon observing an ab-
normal behavior in a physical component, such as an actuator
in an ECLSS, humans are naturally inclined to engage in
causal reasoning [25]. Often, we believe (or want to believe)
that one action caused another. It is a truth universally echoed
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by scientists that correlation does not imply causation. In
daily life, however, the former is frequently mistaken for the
latter. Causal inference aims at estimating the causal effects
of an intervention or treatment on an outcome, which increas-
ingly plays a vitally important role in scientific investigations
and real-world applications [22]–[24]. Next, we will present
a few key concepts in causality that are relevant to the rest
of the paper. We use capital letters to denote variables, e.g.,
X , and small letters to denote their values, e.g., x. Similarly,
we will use bold capital letters to denote sets of variables,
e.g., X, and bold small letters to denote sets of values, e.g.,
x. If a set is indexed, e.g., with X being a vector, we will
use subscripts to denote its elements, e.g., Xi being X’s i-th
element/dimension (and similarly xi being the value of Xi).

In order to place generating an explanation for CPSs in the
concept of causality, we first recall the original definition of
the Structural Causal Model.

Definition 1. Structural Causal Model (SCM) [22]: An
SCM is a triple M = ⟨U,V,F⟩, where U is a finite
set of background or exogenous variables, which cannot be
observed or experimented on, V is a finite set of observable
or endogenous variables (these variables are assumed to
be functionally dependent on some subsets of U ∪ V), and
F = {FV |V ∈ V} is a finite set of functions such that each
FV is a mapping from a subset of U ∪V \ V to V .

A causal model M induces a directed (causal) graph,
G(M), where each vertex corresponds to a variable in U∪V
and each directed edge points from a variable in the domain
of a function FV (i.e., Pa(V )) to another variable in V . The
(part of) physical component in a CPS can be transferred
into an SCM where V could represent a series of actuators’
states at different time points, e.g., X(t), F represent any
linear or non-linear functions to model dynamic relationships
between the elements in V. Generally speaking, in an SCM,
the dynamics can be described using piece-wise functions
[29] or differential equations [30]. In this paper, we assume
the dynamics of actuators in our focused CPS are modeled
by piece-wise functions and only consider the corresponding
causal models that induce directed acyclic graphs (DAGs).
Namely, for any element (X(t) for dynamic case) in V, it has
no effect on itself, i.e., X(t) does not appear in FX(t). It has
been shown in [24] that for an SCM that induces a DAG, the
values of all its endogenous variables are determined given
a context u, i.e., a setting u for all the exogenous variables
in U1. We call a pair (M,u) consisting of a causal model
M and a context u a (factual) causal setting (or a possible
world). To make it easier to understand, we give an example
of a static SCM without introducing time t.

Example 1. Fig. 1. (a) shows the causal graph G(M)
induced by an SCM M , where U = {UX , UY , UZ},
V = {X,Y, Z}, and F = {FX , FY , FZ}, e.g., X =
FX(Z,UX) = 5Z + 3UX , Y = FY (Z,UY ) = 4Z + 7UY .

1The reverse is not true though. There might be multiple u’s correspond-
ing to the same set of endogenous variable values.

(a) (b)

FIGURE 1. The causal graph G(M) induced by the SCM of Example 1.

In the above example, we can observe X and Y are
correlated since they’re both caused by Z. However, there
is no causal relationship between X and Y . Such structures
widely exist in physical systems, e.g., two or more lights
controlled by a single switch. However, we cannot determine
the causal relationship between X and Y by only observing
X and Y . Instead, we will need to conduct an intervention,
which can be understood as a mathematical formulation of
randomized experiments.

Definition 2. Intervention [22]: Forcing the value of some
variable V ∈ V to v in an SCM M (called an “interven-
tion” and denoted by do(V = v)) results in a new SCM
denoted by Mdo(V=v). In the new SCM (called “intervention
SCM” or “submodel”), the function for V , FV , is set to
v while the remaining functions in F are unchanged. A
pair (Mdo(V=v),u) consisting of a submodel Mdo(V=v) and
a context u represents a counterfactual causal setting (or
a parallel world). An intervention can be carried out on
multiple endogenous variables simultaneously, denoted by
do(X = x), where X ⊆ V. The resulting submodel is
denoted by Mdo(X=x).

Example 1. (Continued). An intervention X = x means that
we should replace the original function FX which maps from
UX and Z to X with a new function X = x. In Fig. 1. (b),
this corresponds to removing the edges from UX and Z to X
and setting the value of node X to x.

It can be easily seen that if all functions in F of an
SCM M or a submodel Mdo(V=v) are deterministic (an
assumption we make in this paper), for a given context u,
there is only one possible value for each v ∈ V . We call
the resulting set of endogenous variable values v(M,u) or
v(Mdo(V=v),u) as potential outcome. With such, we can
use any appropriate logic, e.g., the propositional or predicate
logic, to reason about (factual and counterfactual) causal
settings. For instance, given a formula φ := y > 5, a causal
model M satisfies φ under context u, written as (M,u) |= φ,
if y(M,u) > 5. Moreover, Halpern and Peal have proposed a
definition of actual cause with the aforementioned formalism.

Definition 3. HP Definition of Actual Cause [24]: X =
x,X ⊆ V is an actual cause of φ under the causal setting
(M,u) if all the following conditions hold: (1) Sufficiency:
(M,u) |= φ and (M,u) |= X = x; (2) Necessity: There
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exists an intervention do(X = x′) with x′ ̸= x such that
(Mdo(X=x′),u) ̸|= φ.

III. CASTL: CAUSAL SIGNAL TEMPORAL LOGIC
Even though the HP definition of actual cause can be used
to reason about causality in many real life scenarios [24],
it is not powerful enough for the purpose of explaining and
reasoning about faults in CPSs, e.g., ECLSS, where temporal
information is crucial for both the description of faults and
the analysis of their causes. Thus, in this section, we extend
Dfn. (3) and propose the syntax as well as the qualitative
and quantitative semantics of Causal Signal Temporal Logic
(CaSTL).

Definition 4. Syntax of CaSTL: The syntax of CaSTL is
defined as follows: Φ ::= do(φc) ⇝ φe, where ⇝ is the
“lead-to” operator and φc and φe are the cause and effect
event formulas, respectively, which have the same syntax as
the Signal Temporal Logic (STL) [31]: φϱ ::= Xϱ(tϱ) ∼
dϱ|φ1 ∧ φ2|φ1 ∨ φ2|♢[τ1,τ2)φ|□[τ1,τ2)φ, where subscript
ϱ = {c, e}, Xϱ(tϱ) denotes the value of variable Xϱ at time
tϱ, tϱ ∈ N, dϱ ∈ R, and ∼∈ {≤, <,>,≥}. The Boolean
operators ∨ and ∧ are disjunction (“or”) and conjunction
(“and”), respectively. The temporal operators ♢ and □
stand for “eventually” and “always,” respectively. CaSTL is
equipped with qualitative and quantitative semantics defined
as follows.

Definition 5. Qualitative Semantics of CaSTL: A causal
setting (M,u) (or the resulting trace π(M,u)) satis-
fies Φ, i.e., (M,u) |= Φ (or π(M,u) |= Φ) if and
only if the following two conditions are satisfied: (1)
Sufficiency : ∀do([Xc(τ1) = xc(τ1), . . . , Xc(τn) =
xc(τn)]) such that πc = [xc(τ1), . . . , xc(τn)] |= φc, i.e.,
πc |= ♢[τ1,τn](Xc ≥ dc), π(Mdo(πc),u) |= φe, i.e.,
π(Mdo(πc),u) |= □[τ3,τ4](Xe ≥ de). Here Xc is the
variable related to the cause and Xe is related to the effect.
(2) Necessity : ∃do([Xc(τ1) = x′

c(τ1), . . . , Xc(τn) =
x′
c(τn)]) such that π′

c = [x′
c(τ1), . . . , x

′
c(τn)] ̸|= φc, i.e.,

π′
c ̸|= ♢[τ1,τn](Xc ≥ dc), π(Mdo(π′

c)
,u) ̸|= φe, i.e.,

π(Mdo(π′
c)
,u) ̸|= □[τ3,τ4](Xe ≥ de).

Remark 1. Intuitively, according to our semantics, we say
that φc is the cause of φe in the context of an SCM M (e.g.,
one converted from a simulation model) and a context u iff
(1) any intervention satisfying φc will always result in a trace
satisfying φe and (2) there exists an intervention violating φc

which will result in a trace violating φe. We are extending
the HP definition of token cause (Dfn. (3)) here, i.e., “if the
cause φc had not occurred, then the effect φe would not
have happened” (also called the counterfacturality princi-
ple). Different from the original HP definition, which doesn’t
naturally afford reasoning about temporal relationships, our
CaSTL definition of token cause (by combining the powers of
causality and temporal logic) enables us to reason about and
explain both causal and temporal relationships. Moreover,
φc of CaSTL is more expressive than the HP causal expres-

sion, either a single variable or a set of variables.

The qualitative semantics can be used to check whether a
causal setting (M,u) satisfies or violates a proposed causal
relation expressed in CaSTL. However, it does not provide
any information about how strongly the Sufficiency and
Necessity are satisfied or violated. Quantitative semantics
for STLs, called robustness degrees, has been proposed to
provide a measure of satisfiability of a trace with respect to
(w.r.t.) a STL formula [32], [33]. We define the qualitative
semantics of CaSTL by modifying these existing definitions
as follows:

Definition 6. Quantitative Semantics of CaSTL: The de-
grees of sufficiency and necessity of a causal setting (M,u)
(or the resulting trace π(M,u)) w.r.t. Φ are defined as:

(1) The degree of sufficiency of a CaSTL formula Φ w.r.t.
a model M and a trace π is

S(Φ) = E[ρe(φe, π(Mdo(πc),u))|∀ρc(φc, πc) > 0], (1)

where ρc(·) are the robustness degrees of the interventional
traces πc w.r.t. the cause formula φc (see Dfn. 5), which is
calculated based on [33]. ρe(·) are the robustness degrees of
the traces π(Mdo(πc),u) w.r.t. the effect formula φe. Both
of these two robustness degrees are bounded to the interval
[−1, 1]. Therefore, ρc(·) > 0 are corresponding to traces
generated by applying interventions satisfying φc.

(2) The degree of necessity of a CaSTL formula Φ w.r.t. a
model M and a trace π is defined as

N(Φ) = −E[ρe(φe, π(Mdo(π′
c)
,u))|∀ρ′c(φc, π

′
c) < 0], (2)

where ρ′c(·) are the robustness degrees of the interventional
traces π′

c that violate the cause formula φc (see Dfn. 5). ρe(·)
are the robustness degrees of the traces π(Mdo(πc),u) w.r.t.
the effect formula φe. Similarly, ρ′c(·) < 0 are corresponding
to traces generated by applying interventions violating φc.

IV. PROBLEM FORMULATION: FAULT EXPLANATION
FROM A CAUSAL PERSPECTIVE
Based on the fact that causal inference is not possible with-
out manipulating the variable(s) to which a cause will be
attributed to, we will utilize a simulation model M of the
system of interest, such as an ECLSS, to provide causal
explanations for anomalies.

Problem 1. Fault Explanation (FE) Problem. Given a fully
observable simulation model M of the system of interest,
e.g., an ECLSS, the time series data (trace) of a fault π =
[x(0), · · · ,x(T )], the time series data (trace) of a normal be-
havior π∗ = [x∗(0), · · · ,x∗(T )], and a formula φe describ-
ing the effect of the fault, find another formula φc (i.e., find
the variable Xc, the time bond [tc1 , tc2 ], and the threshold
dc) such that the CaSTL formula Φ = do(φc)⇝ φe explains
fault φe in the context of model M and trace π in the sense
that: (1) Existence: there should be at least one context u
such that π = π(M,u), i.e., the trace generated by M and
u satisfies π |= φc and π |= φe. Moreover, π∗ ̸|= φc and
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π∗ ̸|= φe. (2) Sufficiency and Necessity: For all contexts u’s
satisfying the Existence condition, (M,u) |= Φ according to
the token level semantics of CaSTL, i.e., Dfn. (5).

Remark 2. The assumption that φe is given is not a very
strong one, given all the existing temporal logic inference
algorithms [18]–[21] that can be used to infer φe from data.
We merely make the assumption to keep the paper compact.
Besides, in practice, φe can be set according to the alarm
threshold of the abnormal behavior.

Remark 3. We believe explanations written as CaSTL for-
mulas are epistemically accessible to human operators. Such
explanations satisfy a range of criteria of what humans see
as “good” explanations [25]. For instance, CaSTL explana-
tions are contrastive. Humans tend to think in counterfactual
cases, e.g., “What would have happened if variable X had
been different?” CaSTL naturally affords this aspect in its
semantics. Furthermore, CaSTL explanations are compact
due to the expressiveness of CaSTL as mentioned in Remark
1. At last but not least, CaSTL explanations can be selected.
Human usually do not expect explanations that cover the
complete list of causes of an event. We are used to selecting
one or two causes from a list of possible causes as “the” ex-
planation [34]. As such, in our framework, we first compute
the degrees of sufficiency and necessity of each possible cause
and then only provide those with highest degrees to humans.

V. METHODOLOGY
In this section, we will first convert the FE problem into
an optimization problem (Sec. V. V-A). Then we introduce
a way of formulating simulation models as SCMs (Sec. V.
V-B) and propose a method to generate traces for quantify-
ing the degrees of sufficiency and necessity (Sec. V. V-C).
Finally, we present an overall algorithm to solve the FE
problem (Sec. V. V-D).

A. FE AS AN OPTIMIZATION PROBLEM

In practice, it is quite possible that there doesn’t exist an
explanation Φ that satisfies all three conditions mentioned
in Problem 1. To accommodate this, we will utilize the
quantitative semantics of Sufficiency and Necessity defined
in Sec. III and convert the FE problem to an optimization
one. To identify the (possible) cause event φc,i associated
with an element/dimension Xi of a component X (with the
corresponding explanation being Φi := do(φc,i) ⇝ φe), we
solve the following optimization problem:

Problem 2. FE Optimization Problem. Given a fully ob-
servable simulation model M of the system of interest, e.g.,
an ECLSS, the trace of a fault π = [x(0), · · · ,x(T )] the
trace of a normal behavior π∗ = [x∗(0), · · · ,x∗(T )], a
formula φe describing the effect of the fault, the dimension
of interest Xi, find the optimal value of parameter vector
θ∗
i := [t∗c1 , t

∗
c2 , d

∗
c ,∼∗] (with the resulting CaSTL formula

being Φ∗
i = do(φ∗

c,i) ⇝ φe) that solves the following

optimization problem:

sup Ji(θi) = −E(Φi) + λSS(Φi) + λNN(Φi) (3)

where E(Φi) = e−(ρcπ−ρcπ∗ ) is the degree of existence, ρcπ
and ρcπ∗ are robustness degrees of π and π∗ w.r.t. φc,i,
respectively. S(Φi) and N(Φi) are degrees of sufficiency
and necessity of the CaSTL formula Φi (as defined in Eqns.
1 and 2), λS and λN (both positive) balance the degrees of
existence, sufficiency and necessity.

Finally, with all the Φ∗
i ’s (θ∗i ’s) and their corresponding

costs J∗
i , we can select the ones with the lowest costs (highest

combined degrees of existence, sufficiency, and necessity)
and provide them to human operators.

FIGURE 2. The framework of our proposed method. The dashed line is one of
our future work. The proposed framework can not only provide causal
explanations to human operators but also can be used to transmit human’s
feedback back Causal Explanation Generator to achieve a cooperative
anomaly response.

B. SIMULATION MODELS AS SCMS
From Example 1, we are informed that the framework of
the causal inference needs to manipulate the variable(s) to
which a cause will be attributed. Such interventions are
clearly unfeasible in many real-life’s cases; however, we
can manipulate variables with the help of simulation models
to take the intervention. Because in simulation models, it
is often possible to manipulate a variable individually, this
naturally conforms to the concept of intervention and thus
facilitates causal inference.

In order to take advantage of the flexibility of the simu-
lation model to solve the FE optimization problem from the
perspective of the causal inference, such a model can be con-
verted to an SCM as follows. First, set U as the sensor noises.
Second, set V as the collection of all components of the state
variable at all time instants, i.e., V = {X(0), . . . ,X(T )}.
Finally, set F as

{
FX(t)|t = 0, · · · , T

}
with each FX(t) is

the underlying relations among components.

C. DEGREES OF SUFFICIENCY AND NECESSITY
COMPUTATION
Based on Def. 6, we need to generate traces satisfying the
cause formula φc,i to calculate the degree of sufficiency. As
for the degree of necessity, traces violating φc,i need to be

VOLUME 10, 2022 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3246512

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



DENG et al.: Causal Signal Temporal Logic

generated. We construct an optimization problem for trace
generation. For preparing the calculation of the degree of
sufficiency, we first solve the following problem:

inf(−
I∑

n=1

ρcn −
1

2

I∑
n=1

I∑
m=1

∥ρcn − ρcm∥
2
),

s.t. πc,i |= φc,i,
δρci ≥ δϵmin,

(4)

where I is the number of traces to be generated, ρc· is the
robustness degree of each trace in πc,i w.r.t. φc,i, and the
scalar ϵmin ≥ 0 is a desired minimum robustness. According
to the cost function in Eqn. (4), ∀ρc· ∈ (0, 1], the generated
traces satisfy φc,i and the corresponding robustness degrees
have a uniform distribution in the interval (0, 1].

Similarly, for calculating the degree of necessity, we solve
the following problem at first:

inf(

I∑
i=1

ρ′cn −
1

2

I∑
n=1

I∑
m=1

∥∥ρ′cn − ρ′cm
∥∥2),

s.t. π′
c,i ̸|= φc,i,

δρ′ci ≤ −δϵmin,

(5)

where ρ′c· is the robustness degree of each trace in πc,i w.r.t.
φc,i, which satisfy ∀ρ′c· ∈ [−1, 0). Considering the smooth-
ness of AGM robustness degree, we take a similar gradient-
decent method proposed in [35] to solve above problems.
After that, we take interventions on the simulation model M
using πc,i and π′

c,i:

π(Mdo(·),u) = π(Mdo(Xc=·),u), (6)

where · is πc,i and π′
c,i, respectively, and u is the specific

sensor noises. Finlay, the degrees of sufficiency and neces-
sity can be computed using Eqns. (1) and (2). The algorithm
to calculate the degrees of sufficiency and necessity is shown
in Alg. 1.

D. SOLUTION
The conventional approaches for the optimization of cost
functions Ji are often expensive, because the number of
evaluations that may be performed is limited, typically to a
few hundred or even less [36]. In our problem, we evaluate
Ji using a simulator, e.g., a Simulink model. Given the
complexity of many CPS models, obtaining a trace from the
simulator can be time-inefficient and it is hard to observe
the first- or second-order derivatives when evaluating Ji.
Therefore, to learn a CaSTL formula in an efficient manner,
we need to decrease the number of simulations and choose
a more time-efficient optimization approach such as the
Bayesian optimization (BayesOpt). Combined with our focus
on finding a global rather than local optimum, we decide
to use BayesOpt since it provides an elegant framework for
avoiding getting caught in a local minimum.

BayesOpt consists of two main components: a Bayesian
statistical model, typically Gaussian process (GP) regres-
sion, for modeling the cost function, and an acquisition

Algorithm 1 Degrees of sufficiency and necessity Compu-
tation for φc,i

Input: SCM M (converted from a simulation model), a
causal STL formula φc,i with parameter set θi, learning rates
γ1 and γ2, number of traces I , two thresholds ϵd1

and ϵd2

Output: The degree of sufficiency S(Φi) and the degree of
necessity N(Φi)

1: Obtain u from the simulation model
2: while min ∥ρcn − ρcm∥ ≤ ϵd1

do
3: Solve Eqn. (4) using the gradient-descent method with

γ1 as the learning rate
4: end while
5: Generate interventions using Eqn. (6)
6: S(Φi)← Eqn. (1)
7: while min

∥∥ρ′cn − ρ′cm
∥∥ ≤ ϵd2

do
8: Solve Eqn. (5) using the gradient-descent method with

γ2 as the learning rate
9: end while

10: Generate interventions using Eqn. (6)
11: N(Φi)← Eqn. (2)
12: return S(Φi) and N(Φi)

function for deciding where to sample next. Let J(·) ∼
GP (m(θ), k(θ,θ′)) in Eqn. (3) be an unknown function we
aim to optimize over a candidate set θ = [tc1 , tc2 , dc]. This
GP is completely specified by its mean function m(θ) and its
covariance function or kernel k(θ,θ′):

m(θ) = E[J(θ)], (7)
k(θ,θ′) = E[(J(θ)−m(θ))(J(θ′)−m(θ′))]. (8)

In this paper, the squared exponential kernel [37] is used in
GP modelling, which can be computed as:

k(θ1,θ2) = exp (−|θ1 − θ2|2

(2l)2
), (9)

where l is the length scale and | · | is the Euclidean length.
The statistical model as shown in Eqn. (7) is then used to

create an acquisition function αt(θ). As such, it can be used
to suggest Pt, the next input with which to sample the system.
Gaussian Process Upper Confidence Bound (GP-UCB) [38]
is one intuitive acquisition function. It balances exploration
and exploitation through a single hyperparameter, βt:

αt(θ) = mt−1(θ) +
√

βtσt−1(θ), (10)

A higher βt increases the variance of the acquisition function
favor points, causing more exploration. A lower βt increases
the mean of the acquisition function favor points, causing
more exploitation.

The algorithm to solve Problem 2 using the BayesOpt is
shown in Alg. 2. The steps are self-explanatory. We adopt
the classical approach of counterfactual reasoning: abduction
(Line 1) and intervention, consisting of action and prediction
(Lines 7-9). The code will be available here. Fig. 2 shows the
framework of our proposed methods to solve the FE problem.
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Algorithm 2 FE Optimization for φc(θ)

Input: Search space D, SCM M (converted from a simula-
tion model), fault trace π, normal trace π∗, effect event φe

Output: A CaSTL formula that explains fault trace π in the
context of model M : Φ∗

i = do(Xi(t
∗
c) ∼∗ d∗c) ⇝ φe and its

cost J∗
i

1: Obtain u from the simulation model
2: Select θ ∈ D for every different φc

3: Calculate J using Eqn. (3) and M
4: P0 ← [θ, J ]
5: for t in [1, T ] do
6: Bayesian update mt−1(θ) and σt−1(θ)
7: θt ← argmaxθ∈D mt−1(θ) +

√
βtσt−1(θ)

8: Calculate S and N using Alg. 1
9: Calculate Jt using Eqn. (3)

10: Pt ← Pt−1 ∪ (θt, Jt)
11: end for

VI. CASE STUDY
A. ECLSS SIMULATION MODEL

The Simulation Testbed for Exploration Vehicle ECLSS
(STEVE) at the University of Colorado Boulder is a simpli-
fied single-bed CO2 removal system of the Carbon Dioxide
Removal Assembly (CDRA) onboard the International Space
Station (ISS). Its purpose is to simulate common anomalies
of CDRA and generate data under nominal and/or faulty
conditions. STEVE, shown in Fig. 3, comprises a single
sorbent bed packed with a 13X zeolite used in the 4-Bed
CO2, a successor of the Carbon Dioxide Removal Assembly
(CDRA). As indicated in the Piping and Instrumentation
Diagram (Fig. 4), the bed either removes CO2 from the
provided air flow (adsorption) or releases CO2 under ther-
mal vacuum (desorption). During adsorption, the apparatus
supplies the specified flow of CO2-laden air to the sorbent
bed. Nominally, STEVE provides a gas mixture with 78.86%
nitrogen, 20.84% oxygen, 0.3% carbon dioxide, and dew
point of less than -60°C; the latter achieved with a desiccant
bed packed with Drierite® beads. At this concentration, the
CO2 partial pressure is approximately 2.1 mm Hg. A rope
heater raises the insulated bed temperature to 200°C and a
throttled vacuum pump reduces pressure to below 20 mm
Hg for CO2 desorption and regeneration of the pellets via
thermal-pressure swing. The adsorption/desorption cycle can
be repeated for a set number of cycles.

In parallel, a Simulink model of the STEVE testbed was
developed. The model can rapidly generate data and simu-
late conditions that the STEVE testbed cannot experimen-
tally test. The model also utilizes Simscape, a physical pre-
developed component model used in the Simulink environ-
ment. Fig. 5 shows the overall model that comprises principal
components and subsystems of the STEVE testbed, which
are the inlet stream, the sorbent bed, valves, sensor suites,
vacuum pump, flow controller, filter, and pipes.

The Simscape Moist Air components assume that gas

FIGURE 3. Image of the STEVE testbed.

species in the mixture are thermally perfect. Relationships
between pressure, temperature, and density obey the ideal
gas law. Other properties – specific enthalpy, specific heat,
dynamic viscosity, and thermal conductivity – are functions
of temperature only. The Simscape models conserve mass,
momentum, and energy based on this assumption. In addi-
tion, Gaussian noise is added to the simulation results at the
Data Acquisition (DAQ) subsystem to simulate sensor noise
and saturation. Although these Simscape components enable
fast and effortless simulation of basic thermal and fluid prop-
erties, there are no pre-developed models for valves and the
sorbent bed which performs CO2 adsorption and desorption.
Such models are hard-coded using the “MATLAB Function
block” available in the Simulink library.

The Simulink model is designed to simulate multiple
failure modes similar to the STEVE testbed. For example,
a leak at the outlet of the sorbent bed, which may be caused
by wear and tear of connectors or the human error during
maintenance, can be simulated. Air will leak out of the
system during adsorption and into the system during des-
orption due to the pressure difference between the bed and
the lab (habitat) environment. For this study, we performed
a simulation with four cycles that contain 80 minutes CO2

adsorption and 80 minutes desorption per cycle. (Fig. 6 (b)
and (c)).

B. SIMULATION RESULTS AND DISCUSSION
In order to validate the performance of proposed method for
the FE problem, we consider the following situations: (1)
there is a single fault happened to the component that we
select as a potential cause and (2) there are multiple faults
happened to different components that we select as potential
causes.

1) Single Fault
In this case, a Leak failure is introduced to “Valve 1" in
the third cycle as shown in Fig. 6. (a). The corresponding
anomalies can be observed in a sequences sensors, e.g. Bed
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FIGURE 4. STEVE Piping and Instrumentation Diagram

FIGURE 5. Overview of the Simulink Model.

TABLE 1. FE Results for Case 1.

Effect Formula CaSTL Explanation Φ∗
i S(Φ∗) N(Φ∗)

φe := □[424,431](CO2 ≤ 87%) do(□[310,428](Leak ≥ 7.2× 10−8 ∧ Leak ≤ 2.3× 10−7]))⇝ φe 0.54 0.68
φe := □[424,431](CO2 ≤ 71%) do(□[308,425](Leak ≥ 9.2× 10−8 ∧ Leak ≤ 2.2× 10−7]))⇝ φe 0.63 0.72
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FIGURE 6. In (a)-(c), the blue (red) trajectory corresponds to a normal
(abnormal) behavior of the system used in the case study. Please notice that
in paper, we assume we have access to the abnormal behaviors as the fault
trace π and the normal ones as π∗. Each cycle includes one CO2 adsorption
(ads) cycle and one desorption (des) cycle. (a) illustrates the “real” cause, an
abrupt fault artificially injected; while the purple and blue dash lines in (c)
illustrate two thresholds to define different effect formulas φe, respectively.

Temperature, CO2 Concentration, etc., as shown in Fig. 6.
(b), (c). In this case study, we made some simplifications and
only analyzed the causal relationship between two compo-
nents. Next, we follow our proposed framework as shown in
Fig. 2 to infer a CaSTL to explain this fault qualitatively and
quantitatively:

1. The developers of this ECLSS provide a causal graph of

FIGURE 7. The causal graph pertaining to case 1, there is a leak happened to
Valve 1. And this failure mode (red box) has an effect on CO2 concentration.

this failure mode, as shown in Fig. 7.
2. Determine the abnormal behavior, the value of sen-

sor CO2 Concentration is below the threshold 87%
(the purple dash line as shown in Fig. 6.(c)) at time
bonds [424min, 431min], as the effect for our prob-
lem. This can be written in the effect STL as φe :=
□[424,431](CO2 ≤ 87%).

3. Determine the potential cause of this particular abnor-
mal behavior could be a leak of “Valve 1". This cause
can be written in a cause STL as φc := □[t1,t2](Leak ≥
α ∧ Leak ≤ β).

4. Given the abnormal and normal behaviors shown in Fig.
6. (a) and (c), we infer the optimal parameters in the
CaSTL, Φ := do(□[t1,t2](Leak ≥ α ∧ Leak ≤ β)) ⇝
□[424,431](CO2 ≤ 87%), following steps listed in the
blue box in Fig. 2 using Alg. 2.

Table 1 shows the formulas learned using our algorithm.
It can be observed that Φ∗

1 := do(□[310,628](Leak ≥
8.2 × 10−8 ∧ Leak ≤ 2.3 × 10−7])) ⇝ φe not only
precisely locates the time bond t ∈ [310min, 628min] but
also approximately locates the leakage range of the valve,
Leak ∈ [8.2×10−8, 2.3×10−7]. Compare this with the real
cause shown in Fig. 6. (a), we can observe that the learned
formula correctly the temporal and spatial properties of the
injected fault. Next, we change the threshold from 81% to
71% (the blue dash line as shown in Fig. 6.(c)) in the effect
formula φe := □[424,431](CO2 ≤ 71%) and then infer the
parameters in the cause formula, φc := □[t1,t2](Leak ≥
α ∧ Leak ≤ β). The corresponding results are shown in
Table 1. According to the results, we can observe that for
different effects, even for cause formulas have the same form,
the parameters inferred in the cause formulas are different,
and the corresponding Sufficiency and Necessity are also
different. This is because the cause formula on the one
hand should capture the difference between abnormal and
normal behavior (as shown in Fig. 6), and provide the best
explanation for different outcomes on the other hand, that is
maximizing N and S.

2) Multiple Faults
In this case, we inject a fault mode, a leak, into Valve 1
and another fault, valve stiction, into Valve 2, which is the
“Valve" model in Fig. 5. These two valves nominally open
and close during adsorption and desorption, respectively. The
corresponding causal graph is shown in Fig. 8. The corre-
sponding anomalies can be observed in a sequences sensors
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TABLE 2. FE Results for Case 2.

Effect Formula CaSTL Explanation Φ∗
i S(Φ∗) N(Φ∗)

φe := □[424,431](CO2 ≤ 71%) do(□[307,423](Leak ≥ 9.4× 10−8 ∧ Leak ≤ 2.4× 10−7]))⇝ φe 0.66 0.72
φe := □[424,431](CO2 ≤ 71%) do(□[215.3,417.7](Degree ≤ 17.2))⇝ φe 0.02 0.03

FIGURE 8. The causal graph pertaining to case 2, there is a leak (red box)
happened to Valve 1. And there is another stiction (purple box) happened to
Valve 2. Both of these two faults have effects on CO2 concentration.

as shown in Fig. 9. (a)-(c). We define the abnormal behavior
as φe := □[424,431](CO2 ≤ 71%) for this case. And we
set the causes are related to (1) the leak of Valve 1, written
as φc1 := □[t1,t2](Leak ≥ α ∧ Leak ≤ β); and (2) the
stiction of Valve 2, written as φc2 := □[t3,t4](Degree ≤ γ).
Table 2 shows the learned formulas and the corresponding
Sufficiency and Necessity. We can observe that both the
Sufficiency and Necessity of cause related to Valve 2 are
smaller than those related to Valve 1. This means Valve 1
has a stronger causal effect than Valve 2 for this specific
abnormal behavior. From this, we are informed that different
causes have different degrees of influence for the same effect.

To further validate the advantages of our proposed method,
we compare it with two fault diagnosis (explanation) meth-
ods. For the data-driven fault diagnosis method, we choose
the approach proposed in [39], which is able to extract and
classify temporal properties of different fault modes based on
the k-means classification method. For the other method, we
choose an STL inferring approach proposed in [21], which
is designed for learning an STL to capture the temporal
properties of a fault mode. This method can be used as a post-
hoc explanation to a classification approach, e.g., here we use
it to explain the classification results generated by the data-
driven fault diagnosis method [39]. In the comparison, we
construct a dataset which includes the value of the valve, the
position of the valve and CO2 concentration corresponding
the fault mode 1: a leak failure, fault mode 2: a stiction of a
valve and the normal state. For fault mode 1, we generate
50 traces by randomly injecting a leak greater 8 × 10−8

after 300 min. For fault mode 2, we generate 50 traces by
randomly injecting a leak greater 8×10−7 after 200 min and
commanding valve position to partially open to 5◦ after 200
min. Finally, we generate 50 traces for the normal condition.
We randomly select 80% of the traces for training a cluster
[39] to differentiate these three modes and then learning
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FIGURE 9. The blue (red) trajectory corresponds to a normal (abnormal)
behavior of the system used in the second case study. (a) illustrates a leak
injected into Valve 1 and (b) illustrates a stiction injected into Valve 2. The blue
dash lines in (c) illustrate the threshold to define effect formulas φe which
describes the abnormal behavior related to CO2 Concentration.

correspond STLs [21] to describe properties of each fault
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TABLE 3. Results of two data-driven methods.

Fault Mode Accuracy Learned FormulaMethod 1 [39] Method 2 [21]
Leak Valve (Valve 1) 100% 100% □[308,535](Leak ≥ 8.13× 10−8) ∧ □[600,640](CO2 ≤ 52%)

Stiction Valve (Valve 2) 100% 100% □[212,576](Leak ≥ 8.13× 10−8) ∧ □[270.4,501](Degree ≤ 70.4) ∧ □[452,489](CO2 ≤ 55%)

modes while the remaining signals are used for testing. The
results are shown in Table 3

Here we would love to discuss the main difference between
our work from other existing methods. Firstly, multiple tem-
poral logic inference algorithms [18]–[21] focus on inferring
STLs that can capture the proprieties to differentiate the
abnormal behaviors from the normal ones. These STLs are
somehow interpretable for human users; however, the learned
proprieties, e.g., the learned formulas in Table 3, do not have
any causal implications. Similarly, many components in an
ECLSS statistically correlate with each other. Therefore, it is
quite possible that a purely data-driven method may wrongly
identify a cause of an effect. In addition, existing model-
based fault diagnosis methods may be able to identify the
source of the fault, e.g., a valve leak. However, they cannot
quantify the relative strengths of the different explanations
(and diagnosis results). On the other hand, our method can
quantify them, as already shown in Table 1 and 2. These, we
believe, demonstrate the power of our method.

VII. CONCLUSIONS
In order to explain to humans the anomalies occurring in
CPSs so that FDD tasks can be performed with human advan-
tages, this paper proposed a temporal logic called causal sig-
nal temporal logic. This logic has the ability to reason about
the causation between a fault (cause) and the corresponding
abnormal behaviors (effect). We also presented an algorithm
for inferencing this logic based on a simulation model. The
performance comparison with other formal interpretation
methods on our developed ECLSS Simulink model verifies
the advantage of our method in quantifying causality. In the
future, we will keep developing methodologies that combine
the strengths of formal methods and causality theory for
explainable anomaly response for CPSs.
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