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Abstract  

Many kinds of data collections are time-based or can be collected in a 

temporal manner. There has been a desire in the geography and geospatial 

communities to put temporal behavior on the same footing as spatial struc-

ture and to develop a comprehensive geo-temporal information system. In 

many cases, temporal information refers to sequences of happenings in the 

world. To efficiently represent such temporal information, we present 

event structuring as a general approach to build knowledge in time-based 

collections. In this case an event is defined as a meaningful occurrence that 

has substantial impact on subsequent developments. A properly organized 

event sequence forms a narrative, or story. Such stories are powerful me-

chanisms for human understanding; not only are they in a form that make 

them easier to recall, but they lead to mental models that can be intuited, 

examined, and joined together into larger models. In this paper, the pro-
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posed event structuring methods are not limited to geospatial data, but ra-

ther any types of time-based collections such as text corpora. We first pro-

vide the definition of event structuring, and then describe detailed exam-

ples of event structures built upon different kinds of data. Last, we raise 

the need for an event descriptive language in order to generate, organize, 

and compare event structures. 

1.1. Introduction 

There are many kinds of data collections that are time-based. These in-

clude many types of physical data, either from simulations or observations, 

text collections with temporal information embedded, and multimedia col-

lections with time stamps, embedded temporal information, or references 

to events in times. In many cases, this temporal information refers to hap-

penings in the world, either real, simulated, or imagined. An example of 

physical data is the results from simulating a hurricane, where a storm 

surge forms that, depending on the direction and wind fields of the hurri-

cane, is followed by inundation of barrier islands and coastal areas, after 

which there is flooding, rain squalls, and damaging winds. This sequence 

of events forms a narrative, or story, of the hurricane. An example of a text 

collection is a set of histories and/or reports. Embedded in the texts are 

dates, names, places, and occurrences that can be organized as events in 

time. For a particular geographical region, there could be social, political, 

military, weather, and other events that when brought together in an over-

all organization would reveal relationships among the events and thus 

among the histories. An example of a multimedia collection is online news 

pages aggregated over time. When properly organized along the time di-

mension, the stories extracted from these pages can be aggregated into top-

ic clusters, which typically show a burst of related stories after a motivat-

ing event (e.g., the tsunami in Japan) (Luo 2010). For a large event there is 

an ebb and flow of related stories and many sub-topic clusters. 

 

Central to all these types of data is the idea of an event, which we define 

here as a meaningful occurrence in time. In this paper, we demonstrate that 

an event is a powerful organizing concept, giving meaning and structure to 

temporal information. When properly organized, a sequence of events with 

coupled topics could indicate a cause and effect relationship and a se-

quence with similar topics would indicate a trend. A hierarchical event 

structure could emerge with larger events encompassing distributions of 

smaller events. Additional meanings would emerge from the event se-

quencing and structuring itself. A properly organized sequence would tell a 
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story, as in the hurricane example above. These stories are powerful me-

chanisms for human understanding; not only are they in a form that make 

them easier to recall, but they lead to mental models that can be intuited, 

examined, and joined together into larger models. 

 

To the extent that a data collection refers to happenings in the world, there 

is also usually a geographical reference. A GIS can be used to organize 

and make queries of the geographical references, but there is then the ques-

tion of how to include the time structure. Time is a dimension, like the 

three spatial dimensions, and this fact can be used to provide a similar or-

ganization as in the 3D GIS. But time is also different, as will be discussed 

further below. Events, here with the expanded definition of meaningful oc-

currences in time and space, provide the additional organization that will 

lead to a full 4D GIS. 

1.2.Defining Events, Creating Event Structures, Organizing the 

Time Dimension 

To organize the time dimension in a way similar to the spatial dimensions, 

we employ the events defined above. Since the unstructured time dimen-

sion is unbounded, the events provide a scale. Time units can be centuries, 

decades, years, months, days, hours, seconds, and nanoseconds. Seasonal 

weather events have a scale of hours to days whereas climate events have a 

scale of decades to centuries. The scale is determined by the event catego-

ry. 

 

The idea of a motivating event provides further structuring. The motivating 

event for the Japanese tsunami and nuclear meltdown was the tsunami it-

self. The motivating event for the Israeli incursion into Lebanon in 2006 

was the firing of rockets at Israeli border towns by Hezbollah. All sorts of 

sub-events, reactions, and responses flowed from this motivating event. In 

cases such as the latter case, there may be some dispute about the motivat-

ing event and when it occurred. However, topic-temporal analysis and/or 

spatial temporal analysis will find the strongest clusters of events and their 

associated motivating event(s). We have shown this to be the case for 

broadcast news story analysis (Luo 2010, Luo 2006). Since, for example, 

visual analysis tools that use this structure are exploratory, one does not 

expect to be given the single right description of a story but rather the main 

thread and associated relevant information from which one can make his 

own interpretation. There are other examples demonstrating that these 
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event structures can generally be generated automatically or semi-

automatically. For example, we have shown that storm surge, hurricane 

windfield, and atmospheric events associated with air quality can be gen-

erated by identifying and tracking 2D and 3D features of interest in simu-

lations or observational data (Yu 2010). Events associated with the devel-

opment of new research themes and ideas can be identified in large 

collections of proposals or research papers using a combination of tempor-

al and topic modeling (Dou 2011), though in this case information from 

outside the collections must be used to describe the events in detail (e.g., 

information about when a new NSF program was launched that led to the 

development of the new ideas). 

 

The motivating events provide a hierarchical structure. A main motivating 

event can encompass subordinate motivating events. (In the case of the 

tsunami, these subordinate events would be the breakdown of cooling sys-

tems that led to successive core meltdowns, evacuations, emergency main-

tenance, and so on.) In addition, we use the fact that all these time struc-

tures have a beginning and an end. To this we apply a “narrative 

imperative”, where we assume a story is told between the beginning and 

the end. As much as possible, we apply a shaping based on the event clus-

tering (including spatial-temporal and topical modeling) and make an in-

terpretation that brings out the story, since this will provide the most mea-

ningful structure in time. We have found that this hierarchical structuring 

and narrative shape emerge in a variety of different types of temporal data; 

we posit that this is a general phenomenon. However, the best, most mea-

ningful structuring cannot be done entirely automatically, though our expe-

rience is that much of it can be. Here the user‟s knowledge and reasoning 

can be inserted. One goal of a visual analytics interface would be to guide 

the user to do this at just the right point in the time structure. Because of 

the hierarchical structure, this can be done quickly at higher levels. 

1.3. Events in Space: 4D GIS 

Since Einstein, it has been realized that time stands on an equal footing 

with the spatial dimensions in the physical world. Although this equiva-

lence is apparent at, say, the scale of the universe, time takes on a different 

character than the other dimensions at our earth-centered scale. Most sig-

nificantly, time is unbounded at this scale whereas the other 3 dimensions 

are bounded. (The spatial dimensions are also unbounded at the scale of 

the expanding universe, but this is not the relevant scale for an earth-

centered focus.) Thus, the spatial dimensions latitude, longitude, and alti-
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tude are bound to the surface of the earth (and thin shells above and below 

the surface) since that is where almost all earth-focused detail lies. (The 

thin shell above the earth‟s surface extends, say, through the stratosphere, 

and that below the earth‟s surface to the deepest mines.) But unlike the 

spatial dimensions, time keeps unspooling, starting with the primordial 

earth and unfolding inexorably as the present becomes the past. One thing 

is for sure; each passing instant adds to the time dimension. 

 

This temporal behavior has the effect of endless “stacking up” of occur-

rences over spatial regions. In fact, the GeoTime papers take advantage of 

this metaphor to provide a rich visualization of events over geography. 

1.4. Events in a Narrative Structure 

According to a report published by the International Data Corporation, in-

formation that was either created or replicated in digital form in 2007 

alone was 281 exabytes, and the projected compound annual growth rate 

between 2008 and 2011 was almost 60%. Without a doubt, such informa-

tion contains valuable knowledge regarding every aspect of our lives, such 

as history, social behavior, new scientific inventions, etc. However, given 

the overwhelming amount of information, it is nearly impossible to ma-

nually sanitize, extract meaningful events, organize, and analyze these dig-

ital collections. Although organizing such information based on content or 

meaning is important, creating event structures along time allows us to 

discover the historic evolution of the events, themes, and even ideas. One 

can construct narratives and stories that effectively summarize and make 

coherent large amount of information. Lawrence Stone (1979) defines 

narrative as: “the organization of material in a chronologically sequential 

order and the focusing of the content into a single coherent story, albeit 

with subplots. Narratives are analytic constructs that unify a number of 

past of contemporaneous actions and happenings, which might otherwise 

have been viewed as discrete or disparate, into a coherent relational whole 

that gives meaning to and explains each of its elements and is, at the same 

time, constituted by them (Griffin 1992, McCullagh 1978). Narrative per-

mits a form of sequential causation that allows for twisting, varied, and he-

terogeneous time paths to a particular outcome” (Griffin 1993). Our 

process of event structuring is similar to narrative in that it‟s not just tem-

porally aligned incidents; it is centered on events that signal the beginning 

of multiple thematically related incidents. And the structure of the events 

makes the connections and relationships between incidents easily infera-

ble. Organizing unstructured information into an event structure allows 
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one to grasp the gist of massive amount of information. For example, an 

event structure constructed based on everyday news could clearly represent 

what is/was happening and how each event progresses throughout time. An 

event structure built upon social media such as tweets could provide an up-

to-the-minute of what everyone is talking about around us and across the 

globe. However, with 140 million new tweets per day, constructing an ef-

ficient analysis has become a highly challenging problem.  

1.1.1. Human-Computer Generated Linear Narrative 

Ideally, the event-based narrative structures should be general enough so 

that their general aspects can be widely applied to different kinds of data 

sources, be it GIS or non-geospatial data. In addition, the narrative should 

be human-computer generated, since without automation it will not be 

scalable and without human input it will not be fully meaningful. 

 

For a human-computer generated narrative, we have the following goals. 

 

1. Create an interactive analysis program, ING (“InteractiveNarra-

tiveGenerator”) such that a human user, P (“Person”), using pro-

gram ING can interactively compute a digital narrative, N, from an 

arbitrary dataset D. 

 

2. Create a program, NC, (“NarrativeComparator”), that can auto-

nomously compare and cluster large sets of these digital narratives 

generated via interactive computation using the ING tool. 

 

Below we give our operational definition of narrative and show how our 

goals above have a perhaps not entirely superficial similarity to several 

fundamental theorems in computer science. 

 

A digital narrative is a narrative encoded in digital media (whether it is en-

coded as data or a program is an independent issue). A human generated 

digital narrative is a narrative generated by a person, but without using a 

software tool that explicitly aims to semi-automate the creation of the final 

narrative structure. (So a narrative created by a person using a word pro-

cessor, or electronic search and analysis tool such as Matlab, is still called 

a human generated narrative). In contrast, a human-computer generated 

narrative is a digital narrative generated by a software tool that explicitly 

extracts events in and/or helps the user interactively structure the digital 

narrative. Referring to our above, we desire to make an InteractiveNarrati-
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veGenerator program that helps people generate human-computed generat-

ed narratives for arbitrary digital datasets. 

 

At present, we limit ourselves to human-computer generated linear narra-

tives rather than branching or recursive narratives. We briefly discuss 

some intuitive reasons here. Following Occam‟s Razor, one should gener-

ate the simplest narrative which explains the temporal dataset unless one 

can trade simplicity for greater explanatory power. We further take the fol-

lowing stance. When comparing two otherwise similar narratives of rough-

ly the same length, a person will generally find linear narratives easier to 

understand than branching narratives or recursive narratives. This is con-

sistent with the observation that introductory computer science students are 

typically introduced to imperative programming constructs starting with 

sequential statements, then branching, then loops and finally recursion. A 

major caveat is that narrative length is important as well. One can imagine 

two narratives (which happen to be proper algorithms) that have equivalent 

interpretations, but where the first one is linear and 100 sentences long and 

the second one is iterative using a loop construct and only 3 sentences 

long. The former would be easier to understand for a person with impera-

tive programming knowledge. However, we contend that generating a 

short linear narrative whose sentences use a high-level of abstraction is 

more desirable than generating a more precise (i.e. using less abstraction) 

branching or recursive narrative. 

1.5. Events in Non-Geographic Information Spaces 

There is much time-dependent information that is not spatial or not strong-

ly spatial (e.g., text or multimedia collections). The event structuring de-

scribed above can be pulled out from the spatial dimensions and used 

alone for these types of data. It appears that the ideas developed for geo-

graphic time will apply as well to these time-dependent information spac-

es.  

 

Take document collections as an example: similar to the 4D GIS, docu-

ment collections contain bounded dimensions plus the unbounded time 

dimension. The words, for example, are bounded by a finite vocabulary 

(though it may slowly grow over time), and the organization of the words 

is bounded by a set of explicit rules – grammar. Eventually copying all 

documents, from the beginning of writing on paper, to digital space from a 

paper-centric should bring tremendous benefits. However, the growth of 

digital information is exponential, as described above.  
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Visual Representation and Analysis of Temporal Structures. Certain types 

of visualizations, such as ThemeRiver (Havre, 2000), are particularly ap-

propriate for representing temporal information. ThemeRiver is initially 

designed to visualize thematic variations over time within a large collec-

tion of documents (Havre, 2000). ThemeRiver provides a macro-view of 

thematic changes in a corpus of documents over a serial dimension. It is 

designed to facilitate the identification of trends, patterns, and unexpected 

occurrence or non-occurrence of themes or topics. Figure 1 shows an in-

stance of ThemeRiver constructed based on microblogs. Although the x-

axis displays time in a linear manner, according to studies on perception 

(Kohler, 1947, attention is usually drawn to the sudden increase and de-

crease of “currents” within the river. Therefore, significant patterns such as 

“bursty themes” are easily discovered by users through exploring the 

ThemeRiver.  

 

Let‟s take a look at a concrete example of how ThemeRiver can facilitate 

identifying the beginning of an epidemic spread. The data are provided by 

the VAST challenge 2011 committee. The goal of the VAST challenge is 

to push the forefront of visual analytics tools using benchmark data sets 

and establishing a forum to advance visual analytics evaluation methods 

(IEEE VAST Challenge, 2011. One of the tasks in the 2011 challenge is to 

characterize an epidemic spread in a metropolitan area. One of the datasets 

for this task is the microblog messages collected from users in that region. 

The question is when and where the outbreak started and whether it is con-

tained. With more than 1 million microblog messages in the data set, it is 

impossible to manually sift through all the messages, not to mention that 

lots of noise (random microblogs) exists in the data. An event structure 

constructed based on the microblogs can provide both a summary of all 

messages and insights regarding specific events such as the epidemic 

spread that the city officials worry about.  

 

In order to construct the temporal event structure, we first processed all 

microblogs and extracted 10 thematically meaningful topics using Latent 

Dirichlet Allocation (LDA). LDA is a generative model that represents the 

content of words and documents with probabilistic topics (Blei 2003). The 

LDA has several advantages comparing to the previous vector space mod-

els (VSM) widely used for text analysis, one of which is that each topic 

now is individually interpretable, providing a probability distribution over 

words that picks out a coherent cluster of correlated terms (Blei 2010). 

Among the 10 extracted topics, two of them (Figure 1) are highly relevant 

to illness, in particular flu-like symptoms. Having the topical summary of 
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all microblog messages, we further visualize the topical trend in Theme-

River to reveal temporal patterns and events. In Figure 2, each “current” 

represents a topic with the color schema connecting the topical trend and 

the actual content of the topic. The x-axis is time, with each interval denot-

ing 4 hours in a day. In this case, we are portraying the topical trends of 

the microblog data between April 29th and May 19th. 

 

 
Figure 1: Two salient topical trends in the ThemeRiver regarding the epi-

demic spread. 1a: microblogs about flu-like symptoms such as “cold, 

sweats, headache”. 1b: More severe symptoms such as “pneumonia, diarr-

hea” started appearing. 

 

Given the ThemeRiver view, one can easily discover that there are repeti-

tive patterns among several topics, such as users blogging about TV shows 

and commercials every night (topic 09 in red), and that lots of users like to 

talk about songs they love any time during the day (topic 05 in blue). 

However, what‟s really attracts attention is during the last 3 days the repe-

titive patterns suddenly broke. Instead the majority of the microblogs are 

about flu-like symptoms such as “cold, headache, fatigue, sweats, etc.” 

(topic highlighted in Figure 1a) and “pneumonia, diarrhea, cough, etc.” 

(topic highlighted in Figure 1b. These two topics signify exactly when the 

outbreak has begun. In addition, one can also infer a progression of the ill-

ness from cold and headache to more serious symptoms such as pneumo-

nia, diarrhea and difficult breathing since all orange topic related micro-

blogs appear before the yellow topic related microblogs. 
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The above example has shown that a ThemeRiver representation of tem-

poral information can provide users with a quick summary of the micro-

blogs. But more importantly, it directs users‟ attention to interesting pat-

terns such as the sudden increase of microblogs on an epidemic spread. 

With such clear patterns, users could identify exactly when the epidemic 

started and how it has progressed. Such representation can be considered 

as a crude instance of the event structure. What would make the structure 

more complete is to use other sources of information such as news to label 

the ThemeRiver with motivating events, so that users could infer causal re-

lationship between the news and people‟s reaction reflected in their micro-

blogs. A powerful further advance would be to arrange the motivating 

events and important sub-events into a linear narrative, using the ideas de-

scribed above. The whole arc of the epidemic could then be described in a 

coherent fashion. These considerations apply to all event-based temporal 

analyses. 

 

Another data set provided by the 2011 VAST challenge committee is a text 

corpus containing new reports. If the ThemeRiver is properly labeled with 

relevant news information, the origin of the epidemic could be accurately 

discovered. We also applied the same topic modeling method to the news 

corpus and then filtered based on region and time to look for local news 

that might be related to the outbreak. Through our analysis, the most rele-

vant incident we have found took place on May 17th, 2011, a news report 

of a truck accident on the interstate 610 bridge in the evening. The bridge 

leads over the main river in the metropolitan area and, as a result of the ac-

cident, the truck‟s cargo, probably containing some sort of chemicals, was 

spilled into the river. Tracing a few days back, on May 15th, a dangerous 

suspect who is member of the terrorist group “Paramurderers of Chaos” 

was arrested for trespassing near the loading docks at a food preparation 

plant in southwest part of the metropolitan area. Following this lead, we 

further discovered from the news data that the terrorist group had been 

planning a bioterrorism attack on the metropolitan area, which includes 

robbing equipment from a local university to manufacture dangerous mi-

crobes. As shown in Figure 2, with proper news events labeled on the mi-

croblogs data, one can infer causal relationship between an event and reac-

tions to the event and begin to make an overall narrative. 
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Figure 2: The microblog topical trends labeled with news information. On 

May 17th, right after a deadly collision involving a food truck that leaked 

chemicals into the major river in the city, people start showing flu-like 

symptoms. Following this lead, one can discover from the news that mem-

bers of a terrorist group were manufacturing dangerous microbes and poi-

soned a local food plant. Through combing the microblogs with the news 

information, not only one can discover “what happened” with respect to 

the epidemic spread, but also what caused it.  

 

Through combining different sources of information to augment each oth-

er, one can construct an effective event structure, which not only summa-

rizes “what happened” but also allows inference of causal relationship be-

tween an event and subsequent outcomes. Above we used news reports to 

label information gathered from social media (how people react to certain 

news reports). Such structure could allow one to immediately identify what 

have caused the reaction and infer why people have reacted in a certain 

way. Similar ideas could be applied to the field of scientific research. For 

example, when visualizing the topical trends of scientific publications, 

other sources of information such as grant awards could be used to label 

the trends. Therefore one can infer the impact of the grant award on the 

evolution of scientific fields. The temporal scale of such analysis might be 

significantly different from analyzing a news corpus, which is more instan-

taneous, causing immediate splash in social media. The lag between the 

time one scientific proposal has been awarded and the time that similar 
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topics are seen in the form of publications could be more than a full year. 

Therefore, when constructing event structures, proper time scale should be 

carefully chosen. But, as we have noted above, this scale can be found 

from analysis of event patterns for a given category of events. In the case 

of scientific themes, for example, application of topic modeling to propos-

al and scientific paper collections would, upon analysis, reveal the spacing 

between an idea introduced in a proposal and subsequent development of 

that idea in papers. 

1.6. Event Description Language for Linear Narrative 

In order to generate, organize, and compare precise narratives, we need an 

event descriptive language. In this section we outline an event description 

language for linear narratives. We use object-oriented design to describe 

the language and temporal database terminology (Zaniolo 1997). We are 

continuing to investigate the literature on temporal logic (Øhrstrøm 1995), 

trace theory (Mazurkiewicz 1995), structural equation modeling (Pearl 

2002), discrete-event modeling and simulation (Wainer 09) and narratolo-

gy (Manford 2005).  There is significant overlap between these domains 

and our goals.  

 

We briefly review temporal database terminology. An instant is a single 

number, a 1-dimensional point in time. A period is a pair of instants. An 

interval is a single number, a 1-dimensional vector representing the dis-

placement between two instants. Valid time is the historical time period 

during which a database fact is true. Transaction time is the period of time 

when a fact was entered into the database. Temporal databases and TAMs 

may support valid-time only, transaction-time only, or both. The latter is 

called a bi-temporal database. Decades of real-world usage indicate that bi-

temporal databases should be provided because as temporal facts are ga-

thered, changes, corrections, and filling in of omissions are inevitable and 

end-users inevitably want the ability to rollback the database to see the his-

tory of these change operations.  

 

In our class hierarchy, an instant has a numeric value, a unit of measure, a 

calendar and a confidence descriptor. The latter three may be stored in an 

instant‟s tuple or computed. The calendar is a 1D temporal coordinate sys-

tem. The confidence descriptor may indicate a confidence interval, a prob-

ability density function, or special value indicating either no error or that 

confidence information is not available. An instant‟s numeric value may be 

+infinite. For example, a database fact with an associated period 
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(0,+infinite) is interpreted as holding true from instant 0 through the rest of 

time.  

 

 
Figure 3: Abbreviated class hierarchy for our event structure 

 

Next we define our event classes. A schematic of the class hierarchy is 

shown in Figure 3. An Event is an abstract class with 0 or 1 parent Peri-

odEvent objects (a forward declared class). PeriodEvent is an abstract class 

that has a valid time period and transaction time period. An InstantEvent is 

an abstract class that has a valid time instant and transaction time period. 

For example consider a sample from a digital thermometer such as (60°, 

12:00PM 8/19/2011). This indicates a temperature of 60° was recorded at 

the given instant. A PeriodEvent also has a list of child Event objects. This 

parent-child structure defines a navigatable 1-to-N binary relation called 

TemporalContainment. The TemporalContainment relation induces a for-

est of tree structures on Event objects. There is a second bi-directional, na-

vigatable N-to-N binary relation called the ProximatelyMotivates relation 

defined on the Event class. If Event A proximately motivates Event B, 

then A is an Event as a proximate cause of B. We restrict the proximate-

lyMotivates induced graph to be a directed-acyclic graph (DAG). Further, 

an Event A is said to “motivate” an event C if there is a path through the 

proximately motivates graph from A to C.  

 

Various constraints must be maintained between the proximately motivates 

and temporal containment relations to avoid semantic inconsistencies. For 

example, a PeriodEvent's valid time period must contain the valid time pe-

riods of all child PeriodEvent's and the instant of all child InstantEvent's.  

 

Event

PeriodEvent InstantEvent

-contains

0..*

-containedBy

0..1

-proximatelyMotivates

0..*

-proximatelyMotivatedBy

0..*
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The structure of the temporal DAG can be created from an analysis of the 

motivating events and relevant sub-events, which can be derived from a 

variety of temporal feature analysis methods, as described above. The du-

ration of events and their children (sub-events), appearance and disappear-

ance of objects, cause-effect relations, and other temporal features can be 

described in the rich narrative descriptor language. 

1.7. Towards a GTIS and TIS 

For some time, there has been a desire in the geography and geospatial 

communities to put temporal behavior on the same footing as spatial struc-

ture and to develop a comprehensive geo-temporal information system. 

This need has become more acute because of the explosion in the number 

of compact, relatively inexpensive devices that make possible widespread, 

repeated measurement in the environment over time. (Repeated collection 

of airborne LIDAR data over wide areas is just one example.) That geo-

temporal structuring is still an open problem is reflected in the recent re-

port outlining important challenges from the National Academy of 

Sciences (NAS 2010). 

 

Thinking in terms of a 4D GIS, as mentioned at the beginning of this pa-

per, is one way of approaching this problem. However, as indicated above, 

time is different than the spatial dimensions, and therefore it is more accu-

rate to speak about a geo-temporal information system (GTIS). Events can 

then be derived for each category of data in the system (e.g., geologic, cli-

mate, human history, weather, etc.) and the distribution of events over time 

provide the relevant scale and the periods for each category. Each of these 

event categories will have its own hierarchical structure and its own forest 

of trees, to which can be applied the human-computer narrative organiza-

tion described above. GIS concepts can then be brought into the GTIS 

structure. For example, the idea of layers can be introduced. Each category 

could be a GTIS layer, which could be turned on or off as desired. A 

weather event layer could be overlaid on a human activity layer. One 

would then see the correlation, spatial and temporal, of these categories. 

There might be interesting cause-effect relations revealed between events 

in different categories. To encode these would require some interconnec-

tions of the originally independent categorical forests of trees. It would al-

so be good to replicate in the temporal domain some of the GIS symbology 

and data organization. Of course, much of this grew out of hundreds of 

years of cartographic tradition. Road and political boundary vectors, for 

example, came from cartography and from the ongoing need to depict and 
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use this information efficiently. Not nearly as much work has been done 

for the temporal dimension nor is there a generally agreed upon set of 

symbols and data needs. The framework we have described here can be the 

basis for developing these things. For example, timelines annotated with 

key events are widely used to give an overview of history, military events, 

geologic events, key cultural moments, and so on. Having a structure with-

in the GTIS to efficiently produce these would be a powerful thing. 

 

To show the flexibility of such an approach, we recently described how the 

whole story of a city might be aggregated in a collection of hierarchical 

temporal event structures connected to a GIS structure (Ribarsky 2011). 

We chose Rome because of its 2500 year history as a major center of 

Western civilization. One can then consider architectural, military, politi-

cal, cultural, ethnographic, weather/climate, disease spread, and other his-

tories, each with its own event hierarchy embedded at certain levels in the 

overall GIS structure. For Rome there are massive amounts of documenta-

tion, including texts and images, for this collection of histories. Moreover, 

there is a substantial and growing digital archive. But all this detail has 

never been brought together into an integrated, whole story of Rome. It is 

clear that new causes, effects, and relationships would be discovered if this 

were done. We described in this paper how interactive timelines could be 

set up for these overlapping histories, so that major historical events could 

be unfolded into their sub-events and so that selection of any events on the 

timeline would reveal the details of the geographic extent (or how some-

thing like urban demographics, for example, developed over time). When 

considering two or more histories together, key points and patterns of cor-

relation become evident. The event and narrative structuring described in 

this paper provide a rich, meaningful, and effective organization for com-

prehensive histories like this. 

 

As discussed in previous sections of the paper, there are many information 

sources that are richly temporal without having a strong spatial component. 

Document collections which are augmented over time (such as proposal, 

research paper, and report collections) often fall into this category. For 

these collections, a temporal information system (TIS) would be appropri-

ate and very useful. It seems to us that the event structuring and narrative 

approach we have described here can be brought to these types of informa-

tion. Of course, the nature of the narratives and time scales of the events 

might be different. We have already started doing this in our studies of re-

search paper and proposal collections (Dou 2011).  
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Although work has been done that shows that data-driven, semi-automatic 

event discovery and narrative structuring can be developed for a variety of 

data (Luo 2010, Lu0 2006, Yu 2010), much work remains to be done. In 

particular, we must remember that the ultimate goal is to make events and 

narratives meaningful so that people can gather insights, develop actiona-

ble knowledge, and create powerful hypotheses and models. More work on 

automated processing to extract more meaningful results is needed. But we 

must keep in mind that the human is the final agent that reasons and at-

taches meaning. Thus improved interactive visualization techniques, espe-

cially ones that insert human intelligence at exactly the right points, are ab-

solutely necessary. 
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