
The Mixed Reality Simulation Platform (MIXR)

Douglas D. Hodson1, David P. Gehl2
Air Force Institute of Technology, WPAFB, OH, USA1

emails: doug@sidechannel.net1, gehldp@earthlink.com2

Abstract— The Mixed Reality Simulation Platform (MIXR)
is an open-source software project designed to support the
development of robust, scalable, virtual and constructive,
and stand-alone and distributed simulation applications. Its
most common use case is to support the development of
executable simulation applications used to assemble real-
time, interactive, distributed virtual environments (DVEs).

MIXR’s core infrastructure is architected to favor the
development of applications that can be executed in a deter-
ministic manner to meet real-time interaction/response time
requirements, yet provide a degree of configuration flexibility
for scenario definition, I/O, and standard interoperability
interfaces (e.g., DIS, HLA, etc.).

The MIXR codebase has been used as a basis to develop
numerous military-oriented applications that support Live,
Virtual, and Constructive (LVC) simulations, also called
“mixed reality” simulations [1].

This paper describes the software platform itself, and
how it partitions code to take advantage of multi-core/multi-
CPU PCs to support the development of real-time simulation
applications.

Keywords: MIXR, DVE, LVC, mixed reality, simulation

1. Introduction
The Mixed Reality Simulation Platform (MIXR) is an

open-source software project that originated in the De-

partment of Defense (DoD). It has been used to support

the development of numerous distributed applications in

multiple domains, including Live, Virtual, and Constructive

(LVC) simulations.

MIXR defines a high-level organizational pattern that

provides a structure for simulation applications (sometimes

called simulators). In other words, the software provides a

blueprint for the developer to customize to ease the creation

of simulation applications. It leverages traditional object-

oriented (OO) software design principles while blending

real-time system concepts to meet human and/or hardware

interaction requirements.

By providing abstract representations of system com-

ponents (i.e., abstract classes), system models at different

levels of fidelity can be intermixed in such a way as

to optimize runtime performance. For virtual and mixed

reality simulations, the abstract representations of systems

enable a developer to tune applications to run efficiently so

that human and/or hardware (in-the-loop) interaction latency

deadlines are satisfied. For purely constructive simulation

applications (where interaction deadlines are non-existent or

of less concern), “higher-level” or more detailed (possibly

processor intensive) system models can be selected.
The software leverages the Model-View-Controller

(MVC) pattern by partitioning functional components into

separate packages. MVC concepts are taken a step further

in this domain by providing other views, such an abstract

network interface to support specific interoperability

solutions; examples include the Distributed Interactive

Simulation (DIS) protocol and the High Level Architecture

(HLA).
Specific applications using the software are numerous, and

include current and future fighter and bomber platform sim-

ulators, Unmanned Aerial Vehicle (UAV) Ground Control

Stations, Integrated Air Defense Systems (IADS), futuristic

battle managers and more; for additional information see [2]

and [3].

2. Abbreviated History
The genesis of the MIXR software codebase can be traced

to the late 1980s when it was written in the C programming

language and executed on a Commodore Amiga 1000 (yes,

a Commodore Amiga!). Because C doesn’t directly support

the OO programming paradigm, the codebase defined an

OO-like infrastructure to support programming from this

perspective. In the early 1990’s, the C-based OO system

was converted to C++, where applications were developed

and executed on Silicon Graphics (i.e., SGI) workstations.

The transition away from Silicon Graphics workstations to

personal computers (PCs) occurred in 1997.
Initially, (not 1997 specifically) the codebase had no

official name associated with it; that changed in 2002 when it

was named the Enhanced Air-to-Air, Air-to-Ground Linked

Environment Simulation (EAAGLES); later updated to mean

the Extensible Architecture for the Analysis and Generation

of Linked Simulations. The update removed domain specific

terminology such as “air-to-air” and “air-to-ground” to em-

phasize the more general purpose modeling and simulation

capabilities the software is designed to support.
In 2003, “EAAGLES” became more visible within the

DoD community when an EAAGLES-based fighter cockpit

application was demonstrated at the Interservice/ Industry

Training, Simulation and Education Conference (I/ITSEC);

the world’s largest modeling, simulation, and training con-

ference. Even though the “fighter cockpit” simulator was

18 Int'l Conf. Scientific Computing | CSC'18 |

ISBN: 1-60132-473-1, CSREA Press ©

developed in only a few months, it performed flawlessly;

a testament to both the design of the application and the

underlying framework.

In July of 2006, a significant subset of the original

EAAGLES codebase was released into the public domain;

it became what is known as OPENEAAGLES. At the same

time, a website was set up to provide information, docu-

mentation and releases. In 2009, the book "Design & Im-

plementation of Virtual and Constructive Simulations Using

OPENEAAGLES" was published [4]. Since then, a steady

stream of releases has been posted.

In 2017, OPENEAAGLES was renamed to MIXR for a

number of reasons. These include:

• providing a better alignment of the project name with

domain of interest; i.e., the development of mixed

reality simulation applications. See [1] and [5] to under-

stand the relationship between mixed reality simulations

and LVC simulations,

• explicitly shifting away from using the term “frame-

work” in favor of “platform” to indicate a concerted

effort to expose the functionality/capability it provides

in different ways, as opposed to traditional OO-style

inheritance (i.e., subclassing),

• serve as an indication that the project is transitioning

away from a “traditional C++” codebase in favor of a

“modern C++” codebase to improve quality, capability,

understandability, and reduce complexity.

Today, the MIXR codebase is quite stable in terms of the

features it provides and capabilities it exposes. As a result of

its relatively long development history, it has accumulated

lots of “baked-in” knowledge which resulted from its use in

supporting the development of a large number of simulation

applications. The current focus is on refining and improving

it in ways to make it even more flexible and accessible to a

wider audience.

3. Terminology
Over the past few decades a number of equivalent terms

have arisen to describe real-time, distributed simulations that

create a shared virtual world for humans and/or hardware

to interact within. For example, distributed virtual environ-

ments (DVEs), networked virtual environments (NVEs) and

distributed virtual simulation (DVS). Today is no different;

but the trend is to characterize these systems, more generally,

as “mixed reality” environments or simulations; which does

more clearly describe them.

A common architectural characteristic of these systems

include the asynchronous execution of several largely au-

tonomous standalone simulation applications that interact

with each other by exchanging data through a network

to create a shared illusion of a virtual world (in military

terms, a “synthetic battlespace”). In a military domain, the

means to exchange data between applications is defined by

interoperability protocols, of which several are published

as IEEE standards; for example, the Distributed Interactive

Simulation (DIS) and the High-Level Architecture (HLA).

These distributed simulations provide a means to interact

within the shared virtual world by providing interfaces to

humans and/or hardware.

Because humans and/or hardware are included as part of

the represented system of interest (i.e., “in-the-loop”), addi-

tional requirements in the form of interactive response times

arise, which classifies the entire apparatus as a real-time

system. Trade-offs must be made concerning responsiveness

and fidelity when constructing these real-time systems.

The MIXR codebase was designed from scratch con-

sidering these requirements, such that trade-offs between

deterministic execution performance and model fidelity can

be made.

4. Software Classification
A framework is a set of cooperating classes that make up

a reusable design for a specific class of software [6], [7]. A

framework is customized to a particular application by cre-

ating application-specific subclasses of abstract classes from

the framework [8]. A toolkit is a set of related and reusable

classes that provide useful, general-purpose functionality.

They are the OO equivalent of subroutine libraries [8].

Fig. 1: Platform Orientation

As Figure 1 shows, an application built using a framework

is created by extension; which, in C++, usually means

subclassing classes via inheritance. Whereas, an application

that simply uses library functionality (i.e., toolkits) does not

exhibit the same kinds of dependencies (i.e., specifically

coupling).

While MIXR is strongly organized as a framework in

which applications are developed by extending classes, the

goal is to position it to feel and act more like a general

purpose modeling and simulation platform. In other words,

expose more of its functionality without having to subclass

classes.

In either case, MIXR is not an executable application like,

say, Microsoft Word or even a typical game engine. It doesn’t

define a main() function; it leaves those details up to the

developer which is in full control of how applications are

assembled and configured.

Int'l Conf. Scientific Computing | CSC'18 | 19

ISBN: 1-60132-473-1, CSREA Press ©

MIXR is written in C++ and partitioned into packages

that serve as functional toolkits (i.e., libraries) for the de-

veloper to use as needed. For example, it defines a graphics

toolkit which can be used to facilitate the development of

operator/vehicle interfaces and displays.

As organized, the software enables the creation of a

diverse set of simulation applications. Derived simulation ap-

plications can often be run stand-alone or within a distributed

networked environment. Distributed applications that interact

with each other using standard protocols such as DIS and/or

HLA can be setup almost “out of the box”.

5. Virtual Simulation Requirements
Simulations that interact with human participants (or hard-

ware) must respond within prescribed deadlines (latency or

response times). A simulation that does not respond (like the

system it is intended to represent) will frustrate the operator

and may skew the simulation results. Software systems faced

with this demanding requirement fall into the category of

a real-time system. Real-time systems are designed and

organized so that time-critical (often periodic) tasks can meet

their deadlines.

Two standard approaches to scheduling tasks include

priority-based and foreground/background systems. Priority-

based designs assign a priority to each task in the system.

The task with the highest priority that is ready to run is

executed first. The scheduling of the task resides with the

operating system.

In a foreground/background system the application con-

trols the scheduling of tasks. Foreground tasks are executed

with the help of a jump-list, or a managed list of pointers

to functions (tasks). Tasks are executed one after another as

defined by the list order. Aperiodic events and background

tasks receive processing time after all the “highest priority”

tasks in the list have finished.

MIXR is organized as a foreground/background system,

but instead of managing a jump-list (or a list of functions

to process), thread execution paths are interwoven into the

design of the class hierarchy. It is specifically designed to

take advantage of multi-core/multi-CPU PCs which allow

the creation of a high priority foreground threads. Because

multiple processors are available, reliable execution of high

priority time-critical foreground threads is assured with

general purpose operating systems such as Windows and

Linux.

It should be emphasized that MIXR-based applications

execute as a cycle or frame-based system; not as a discrete-

event processor. This approach satisfies the requirements for

which it is designed; namely, support for models of vary-

ing levels of fidelity including higher level physics-based

models, digital signal processing models and the ability to

meet real-time performance requirements. Model state can

be captured with state machines and state transitions can use

provided message passing mechanisms.

6. Real-Time Simulation Platform
MIXR was written in C++ because:

• most real-time systems are developed in C for perfor-

mance reasons [9]. Object-oriented languages tend to be

viewed with skepticism as overall system performance

often outweighs flexibility. But for the modeling and

simulation domain, we believe the advantages afforded

by an object-oriented language (i.e., C++) outweighs

this slight performance penalty,

• C++ is portable and compilers exist on virtually every

platform. This allows developers to build MIXR-based

applications on any of the major popular operating

systems (Windows, Linux, etc),

• C++ is flexible in terms of supporting multiple pro-

graming paradigms,

• it is desirable to define memory management so it

does not interfere with the overall performance of the

application. Therefore, the use of new and delete
operators is preferable to uncontrolled garbage collec-

tion.

It is beyond the scope of this paper to cover each and

every class defined, but a few key classes deserve attention

in provide insight into the structure of the codebase.

Object : The Object class is the C++ system object

for the MIXR codebase. Unlike other OO languages (for

example Java or Ruby), the C++ language does not provide

a system object. C++ also does not provide native garbage

collection. While lacking these two features could be viewed

as a negative when comparing the native features of various

languages, it is considered a positive when the application

domain consists of applications that need to meet real-time

requirements.

C++ provides the flexibility to define how these mecha-

nisms work for different application domains. For example,

if the developer is writing an application in which control

over potentially time-consuming memory management op-

erations is of little concern, the codebase provides smart

pointers to automatically manage the creation and deletion

of objects. If, on the other hand, the application has time

constraints to meet (i.e. a real-time system), the uncontrolled

creation and destruction of objects might lead to perfor-

mance problems.

One of Object’s capabilities is to provide a simple ref-

erence counting system for the memory management of all

objects. Object provides access to this system so that a de-

veloper can manually control and tune performance-oriented

applications, if they arise; for example, the processing, in

real-time, of modeled radio frequency (RF) emission packets

or infrared radiation (IR) geometry information.

The other subtle but important aspect to providing a

system object appears in the form of typechecking. The

presence of a system object, and the derivation of all classes

from it, enables the dynamic casting of objects. It also avoids

20 Int'l Conf. Scientific Computing | CSC'18 |

ISBN: 1-60132-473-1, CSREA Press ©

the pitfalls associated with untyped functions and classes.

MIXR’s coding standards explicitly prohibits the use of void

pointers for this very reason.

Component : In OO programming, a container class is

a class of objects that contain other objects. The MIXR

component class is that and much more. Component is a

container for other components. Component also defines a

basic messaging system that is used throughout the codebase.

From the outset, MIXR is designed to facilitate the

creation of simulation applications that execute in real-time

and/or interact with a human participant. Applications with

time constraints and latency/response deadlines typically

separate time-critical tasks and non-time-critical tasks; for

example, the execution of an aerodynamic model at a specific

frequency as opposed to writing data to a hard disk, or

printing a document.

This separation is facilitated by two methods in the com-

ponent class. When designing a model, code that needs to

execute in a time-critical manner (usually mathematical cal-

culations) is placed in an overridden virtual updateTC()
(update time-critical) method. Code that can be run in a

non-time-critical manner is placed in the overridden virtual

updateData() method.

This organization of code has a number of advantages:

• since time-critical code is clearly separated from back-

ground code, applications can be designed to meet

performance requirements,

• all the code (time-critical and background) associated

with a model is logically located within the same class.

As in Figure 2, one can view an instance of a simulation

application as nothing more than a tree of Components.

A call to the top (or root) of the tree’s updateTC()
method, will automatically execute every subcomponent’s

updateTC(). In other words, every component will exe-

cute the code of its children. This process continues until

the entire tree has been processed. The same process takes

place for the background code.

Fig. 2: Component Tree

The MIXR coding standard spells out rules to follow when

writing code in updateTC() (e.g., no blocking I/O calls).

These rules mimic understood guidelines associated with

real-time system development.

7. Application Structure
A developer using MIXR as a basis for a simulation typ-

ically builds an application by either using existing classes

(i.e., models) or extends them to add detail. Finally, main()
is defined for the application.

The mainline usually performs these tasks:

• read a configuration file that defines and creates an

object hierarchy. MIXR provides a parser to do this;

it defines a simple context-free scheme-like input lan-

guage, that is easy to extend,

• create and setup threads to be executed. For non-real-

time applications (e.g., purely constructive applications)

a single thread maybe all that is needed. For a virtual

simulation with time-critical code, both foreground and

background threads are usually created,

• execute the simulation by calling updateTC() and

updateData() as required. If the application is a

virtual simulation high-priority thread(s) are assigned

to process foreground tasks.

The developer fully defines the mainline to allow for a

variety of execution scenarios to be defined; MIXR does

not define a main() function! Furthermore, application

mainlines tend to be short and sweet. Most of the work is

in the design and extension of new classes.

Simulation applications are typically organized like the

structure as shown in Figure 3. Thinking in terms of a tree

of components, the class Station resides at the top, or the root

node. Every other component is a subcomponent of Station.

Station connects models to views (e.g., graphical displays,

I/O devices and controls, interoperability networks). A Sta-
tion owns an instance of a Simulation which manages a

list of players (i.e., entities or platforms), keeps track of

simulation time, which includes the cycle, frame and phase

that is currently being processed.

Being a frame-based system, delta time is passed as an

argument to updateTC() so proper calculations involving

time can be performed. Having models rely on delta time

for calculation means the frequency of the entire system

can change without having to change each and every model

(so long as Nyquist rates are met). Additional time related

information is recorded in terms of cycles (16 frames or

sometimes called a major frame) and phases. Phases se-

quence the flow of data throughout a model. Four phases

are currently defined:

• Dynamics – update player or system dynamics includ-

ing aerodynamic, propulsion, and sensor positions (e.g.,

antennas, IR seekers).

• Transmit – R/F emissions, which may contain datalink

messages, are sent during this phase. The parameters

for the R/F range equation, which include transmitter

power, antenna pattern, gains and losses, are computed.

• Receive – Incoming emissions are processed and fil-

tered, and the detection reports or datalink messages

Int'l Conf. Scientific Computing | CSC'18 | 21

ISBN: 1-60132-473-1, CSREA Press ©

Fig. 3: Application Structure

are queued for processing.

• Process – Used to process datalink messages, sensor de-

tection reports and tracks, and to update state machines,

on-board computers, shoot lists, guidance computers,

autopilots or any other player or system decision logic.

A Player is a component that adds dynamics and other

unique behaviors. Some components that can be attached
include signatures, antennas, sensors and stores. Derived air

and ground players are included within the codebase.

An abstract interoperability network interface is defined

so specific protocols can be incorporated, such as DIS to

support interoperability with other distributed simulation

applications. This network interface automatically creates

new players in the player list. As far as the simulation is

concerned, these players are like any other.

8. Graphics
The platform defines several graphic toolkits for the devel-

opment of operator/vehicle interface displays. The graphic

toolkits are based on OpenGL for all primitive drawing, thus

making it compatible with virtually any platform.

The foundation for graphics drawing is contained in the

graphics package. It contains classes for drawing graphic

objects such as bitmaps, input/output fields, fonts, polygons,

readouts, textures, and others.

As Figure 4 shows, the graphics architecture defines

hierarchical relationships between the Graphic, Page and

Display classes.

The Graphic class encapsulates attributes associated with

a graphic such as color, line width, flash rate (for graphics

that flash), coordinate transformations, vertices’s and texture

coordinates, select names and scissor box information. Since

Graphic is a component, it can contain other graphics.

The Page class defines a “page” of graphics that can

facilitate the creation of Multi-Function Displays (MFD)

where specific page transition events need to be defined. The

Display class defines all the resources available for drawing

such as fonts, the color table and both the physical and

logical dimensions of the display viewport. Finally, open

source GUI toolkits (such as Glut, Fox, FLTK and Qt) can

be used to provide a rich interface.

MIXR graphic classes ease the development of opera-

tor/vehicle displays and leverage open source GUI toolkits,

but they are not intended to replace visual scenegraph

oriented displays (such as a heads up display or image

generator). The overarching philosophy of MIXR is to avoid

reinventing what is already well done by other applications

and/or packages.

Higher level MIXR toolkits that use this structure include

the instrument library which includes dials, buttons, gauges,

22 Int'l Conf. Scientific Computing | CSC'18 |

ISBN: 1-60132-473-1, CSREA Press ©

meters, pointers, and countless other fully functional instru-

ments, along with simple maps.

All of the graphical toolkits are independent of the sim-

ulation modeling environment. Models don’t include any

special knowledge of graphics, and graphics include no

special knowledge of models. The code that connects the

two resides within the Station class.

Through an ownship pointer in the Station class, the con-

trols and displays of any player can be switched at anytime.

Switching from player to player is useful for observing

simulation interactions from different perspectives.

All of the graphics classes are derived from Graphic
which is derived from Component. Being a component, all

time-critical code can be written into the updateTC()
method and background processing can be written into the

updateData() method. Sometimes, in real-time system

development, it is desirable to set graphic drawing to an even

lower priority than other background processing. Therefore,

another method within the Graphic class is defined that

serves as a placeholder to do actual OpenGL graphics

drawing.

Object

Component

Graphic

Page

Display

GlutDisplay FoxDisplay

Fig. 4: Graphics Class Hierarchy

A sample application included in with the MIXR distri-

bution illustrates basic graphics by drawing a worm that

moves around the screen and bounces off the walls. Code

for this example is organized as follows. All mathematical

calculations for the position, speed and direction of the worm

are performed in updateTC(). All the work to setup what

to draw is done in updateData(). The actual drawing of

the graphic is performed by Graphic’s draw() method.

Organizing code this way enables the application devel-

oper to determine how to execute the code and to define

threads to meet response time requirements. For the example

just presented, a thread is set up to execute time-critical

mathematical calculations associated with worm movement

in real-time, and in a non-time-critical manner the operating

system (or Glut in this case) draws the worm during idle

times.

9. Device I/O & Linkage
MIXR abstracts I/O devices and complete linkage systems

so that a hardware interface appears to the application as

a single (unified) device that presents a number of analog

(axis) and digital (button) values as shown in Figure 5. This

linkage package has interface code for several I/O devices

including joysticks and USB-based devices. It has also been

extended to interact with other commercial I/O cards and

data acquisition devices.

Once the device is initialized, a call to the virtual

receive() method, defined in the IODevice class, obtains

the latest values from the device. Information about button

transitions can be determined as well as setting deadbands

on analog inputs.

Object

IODevice

Joystick USB

Fig. 5: Device Class Hierarchy

The Station class defines how axes and buttons are con-
nected to the models and views of the simulation application.

10. Example Applications
A MIXR software distribution consists of both code to

build new applications, and examples that demonstrates how

to use some of its inherent functional capabilities. For an

extended description of some early military products, see [2].

It details an early version of a fighter cockpit, a Ground

Control Station and a Group Command Post.

11. Opportunities
For almost four decades, the MIXR codebase has im-

proved and evolved in terms of both structure and provided

functionality. From its earliest beginning when it was written

in C with a developer created OO-like system to mainstream

C++; from a Commodore Amiga 1000 to current generation

PCs, it has proven itself to be a useful and capable software

development product in which a wide range of simulation

applications have been created.

Given that, we don’t consider MIXR “finished” - in

fact, we believe with the advent of Modern C++ in 2011

Int'l Conf. Scientific Computing | CSC'18 | 23

ISBN: 1-60132-473-1, CSREA Press ©

(which was the first major language update in nearly 13

years), new opportunities for the codebase are in store. For

example, C++’s standard library is growing and providing

cross platform solutions for threading, high resolution clocks

and atomic operations of which MIXR needs to fulfill

its requirements; all of these aspects can be leveraged to

both reduce the size and complexity of the codebase. Also,

with adoption or mainstreaming of graphics processing units

(GPUs) as included capabilities within a typical PC, other

opportunities present themselves in terms of optimizing

parallel data centric operations.

Favored programming paradigms and idioms have also

changed; excessive inheritance is discouraged for a number

of reasons including: 1) easy misuse, such as use for reuse

(i.e., “implementation inheritance”), 2) to reduce (or loosen)

tightly coupled code and 3) the possible refactoring of in-

heritance relationships to satisfy new use case requirements.

Because MIXR has existed for a considerable time, it

could be argued that its inheritance structure is reasonably

stable and well defined; although the desire to model and

simulate different, potentially technologies might alter that

view.

12. Finally
MIXR is open-source and freely available; it along

with a set of examples can be downloaded from

www.mixr-platform.org.

References
[1] D. D. Hodson, “Military simulation: A ubiquitous future,” in 2017

Winter Simulation Conference (WSC), 2017, pp. 4024–4025.
[2] D. D. Hodson, D. P. Gehl, and R. O. Baldwin, “Building distributed

simulations utilizing the EAAGLES framework,” Interservice/Industry
Training, Simulation and Education Conference (I/ITSEC), 2006.

[3] “MIXR Platform website,” http://www.mixr-platform.org, accessed:
2018-06-23.

[4] D. M. Rao, D. D. Hodson, M. S. Jr, C. B. Johnson, P. Kidambi, and
S. Narayanan, Design & Implementation of Virtual and Constructive
Simulations Using OPENEAAGLES. Linus Publications, 2009.

[5] D. D. Hodson and R. R. Hill, “The art and science of live, virtual,
and constructive simulation for test and analysis,” Journal of Defense
Modeling and Simulation: Applications, Methodology, Technology,
vol. 11, no. 2, pp. 77–89, 2014.

[6] P. L. Deutsch, “Design reuse and frameworks in the smalltalk-80 sys-
tem,” in Software Reusability, Volume II: Applications and Experience,
T. J. Biggerstaff and A. J. Perlis, Eds. Addison-Wesley, 1989, pp.
57–71.

[7] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, no. 2, pp. 22–35, 1988.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[9] P. A. Laplante, Real-Time Systems Design and Analysis. Wiley-
Interscience, 2004.

Author Biographies
DOUGLAS D. HODSON is a Associate Professor

of Computer Engineering at the Air Force Institute of

Technology (AFIT), Wright-Patterson AFB, Ohio USA. He

received a B.S. in Physics from Wright State University

in 1985, and both an M.S. in Electro-Optics in 1987

and an M.B.A. in 1999 from the University of Dayton.

He completed his Ph.D. at the AFIT in 2009. His

research interests include computer engineering, software

engineering, real-time distributed simulation, and quantum

communications. He is also a DAGSI scholar and a member

of Tau Beta Pi.

DAVID P. GEHL is employed by L3 Link Training & Sim-

ulation. He has over 45 years of experience in human-in-the-

loop simulation and training for human factors engineering

research including extensive knowledge in pilot/operator-

vehicle interfaces, aircraft system models (aerodynamics,

radars, weapon delivery, navigation, visual systems, etc.),

and real-time system development. Previously, he served as

the primary architect for the Extensible Architecture for the

Analysis and Generation of Linked Simulations (EAAGLES)

simulation framework. He received a B.S. in Computer

Science in 1979 and a M.S. in Systems Engineering in 1986

from Wright State University.

24 Int'l Conf. Scientific Computing | CSC'18 |

ISBN: 1-60132-473-1, CSREA Press ©

