
Simple Eight Bit, Emulated Computers for Illustrating Computer

Architecture Concepts and Providing a Starting Point for Student

Designs

Timothy D. Stanley, Thanh Quach Xuan, Leslie Fife, Don Colton

School of Computing

Brigham Young University Hawaii

Laie, HI 96762 USA

StanleyT@byuh.edu, xq003@byuh.edu, fifel@byuh.edu, ColtonD@byuh.edu

Abstract

Students learn better when they both hear and do. In

computer architecture courses “doing” can be difficult in

small schools without hardware labs hosted by computer

engineering, electrical engineering, or similar

departments. Software solutions exist. Our success with

George Mills’ Multimedia Logic (MML) is the focus of

this paper. We have found that students learn and

understand more, and experience less frustration, without

the additional complexity of hardware details. MML

provides a graphical computer architecture solution with

convenient I/O support and the ability to build and

emulate a variety of computer designs. It has proven

highly motivational to upper-division computer science

students designing and constructing emulated computers.

Student projects resulted in excellent student

understanding of the detailed inner workings of

computers. Students also developed better teamwork

skills and produced useful training aids for the lower-

division computer organization class. Designs

implemented include 8-bit and 16-bit, von Neumann and

Harvard architectures, from single-cycle to twelve-cycle

instructions. Issues resolved during the learning process

include timing, initialization, instruction set architecture,

I/O, and assembler design. We provide two

demonstration computers used to illustrate to students a

design approach and an expected outcome in their

individual design activities. One example is an eight-bit

Harvard architecture with eight instructions that execute

in a single clock cycle. The second is an eight-bit von

Neumann architecture that has four instructions and

executes each instruction in three clock cycles. This

paper describes these two example computers.

Keywords: Computer Organization & Architecture,

Emulation Software, Pedagogy.

1 Introduction

Effective learning comes from doing, not just hearing.

Computer Architecture is an area where doing is a natural

extension to the course material. There are many

approaches to teaching a lab component for Computer

Architecture. These include no lab at all, emulated

hardware, actual hardware, and a mix of emulated and

actual. Software tools range from register- and memory-

level computer simulators to high-level chip design

languages. Between these extremes is George Mills’

Multimedia Logic (MML). We discuss the use of

computer simulators and chip definition languages. We

then introduce Multimedia Logic and our approach.

However taught, Computer Architecture is an essential

part of any computer science curriculum. In the periodic

curriculum report issued by a joint task force headed by

the ACM and IEEE-CS, Architecture and Organization is

one of 14 core bodies of knowledge (CC 2001). The 36

minimum core hours in Architecture and Organization

represents more than 12% of all core topic hours (CC

2001). While not binding, this curriculum

recommendation is a good indication of the central place

Computer Architecture occupies in the curriculum. The

core architecture topics include machine level

representation of data, memory system organization and

architecture, and alternative architectures (CC 2001).

The teaching of each of these can be enhanced through

the MML software tool. For example, alternative

architectures can be clearly shown. In our examples, both

Harvard and von Neumann designs are shown.

1.1 Computer/Logic Simulators

Many computer architecture classes use emulators. The

popular textbook “Computer Organization and Design”

(Paterson, and Hennessy 1994) features SPIM by James

Larus (Larus 2006). It shows memory contents and

registers and includes an assembler but does not simulate

the datapath.

Moving closer to our goal, many computer architecture

classes use the text by Null and Lobur that introduces

MARIE (2003a). They may also use MarieSim (Null,

and Lobur 2003b). MARIE uses a von Neumann

architecture with a simple instruction set. Using

MarieSim, students can write their own programs and

watch them execute, seeing the effect these programs

have on system state. MARIE has been implemented

with a “Data Path Simulator” that highlights registers and

data paths visually. This shows the steps the processor

goes through when running a program. However,

Copyright © 2007, Australian Computer Society, Inc. This

paper appeared at the Ninth Australasian Computing

Education Conference (ACE2007), Ballarat, Victoria,

Australia, January 2007. Conferences in Research in

Practice in Information Technology, Vol. 66. Samuel Mann

and Simon Eds. Reproduction for academic, not-for profit

purposes permitted provided this text is included

students cannot build their own computers and simulate

them.

At the other end of the complexity spectrum is the

implementation of a simulator of an entire real

architecture. Clark, Czezowski, and Strazdins

implemented a simulator for the Sparc V9 (2001). Even

if it had a GUI, this is of limited usefulness for a typical

undergraduate course in computer architecture. The level

of complexity this embodies is not a good starting point

for learning computer architecture. In addition,

pedagogically, learning only one machine’s architecture

is limiting. The Alfa-1 simulator (Wainer, Daicz, Simoni,

and Wasserman 2001) also works specifically with the

Sparc processor. This tool allows the user to experiment

with the entire architecture, including extending it in

some ways. However, the limited user interface and the

restriction to a single architecture are limitations. The

Alfa-1 was designed to replace tools that simulated

obsolete architectures. This approach ensures that an

eventual replacement for Alfa-1 will be needed.

Some simulation tools address only a single problem.

The KScalar simulator (Moure, Rexachs, and Luque

2002) provides a tool for learning about microprocessors.

This is, of course, only part of what must be covered in a

typical computer architecture course. However, this

might be a good choice for an advanced course on

microprocessors or for a few labs within a larger course.

A similar approach is used by Holland, Harris, and Hauck

(2003). They provide an incomplete processor and have

students design the missing pieces. They can simulate

any non-floating-point instruction in their 8-instruction

MIPS processor. This creates an opportunity for students

to learn processor details. However, the student is still

limited to a single processor type without floating point.

Other parts of the machine architecture still must be

learned in some fashion. Another single-purpose tool is

SIMT (Tao, Schulz, and Karl 2003). This simulator

allows the evaluation of shared-memory systems. While

these tools may be very useful in specialized computer

architecture courses, having to learn several unconnected

single-purpose tools takes extra effort in a general

computer architecture course.

1.2 Chip Design Languages

Several chip design languages are available.

Logisim (Burch 2002) is another design and simulation

tool. A basic package, Logisim allows the user to design

circuits from basic logic components and some basic

devices. The primary drawbacks are the lack of a clock

for timing and the somewhat primitive I/O capabilities.

Logic Works 5 from Capilano Computing is a wonderful

package, but the emphasis is on detailed timing and

simulation of circuits to be exported to silicon (2006). It

seems more suited to advanced students that already

grasp computer architecture and are looking for the next

step. It does not have the input and output devices

available in Multimedia logic.

DLSim by Matthew Leslie was developed while an

undergraduate student with additional development

funded by Cambridge (2006). It is an open source Java

program available from http://www.sourceforge.net/.

DLSim has the capability to use macros and can display

logic states propagated through the circuits. But the

devices are simply blocks and the rich set of IO devices

available in Multimedia logic is not available.

A number of schools have used VHDL as a design

medium for computer architecture. While VHSIC is used

commercially for chip design, we believe it is too abstract

to visualize and is too much like a software design to be

physically satisfying.

1.3 Multimedia Logic (MML)

The package we chose is Multimedia Logic (MML), open

source free software by George Mills (2006). MML

strikes a good balance. We can design and implement

logic at the gate level, but still use high-level I/O

operations. (This is parallel to the C programming

language. C provides near-assembler access to the

machine, but still includes a standard I/O library in the

basic distribution.)

We have seen how a variety of tools exist to simulate

imaginary and real computers based on simple and

complex instruction sets. Generally these tools allow the

simulation of only a single architecture and they often

hide many of the underlying details that we might like to

reveal. You can write programs and see the results in

various registers, but the computer itself remains a black

box. Alternately, some tools allow the student to access

the logic gate level of design but have limited I/O

capabilities.

MML allows the student to define an Instruction Set and

build the enabling architecture. This means the student is

not limited to von Neumann computers or the instruction

sets designed by others. With an excellent graphical user

interface and ASCII I/O, the tool is easy to learn and use.

Because MML is open source software, functions can be

added and the tool recompiled. Despite being easy to use

it is capable of sophisticated designs. For example, see

the work of James Larson (2006).

Multimedia Logic is a very decent environment for

virtual computer construction. We were able to

implement all of the necessary components in order to

run programs written for MARIE. The benefits of MML

for our project were extensive. Ease of use compared to

physical hardware is obvious. In addition, MML uses

abstraction to simplify the hardware components it offers

and reduces the need to build all of one’s own

components, such as an arithmetic logic unit.

2 Architecture Course Design

The philosophy of our computer architecture course is

that students will only truly understand computer

architecture when they design and build a computer.

Students are shown how to build a computer through a

couple of designs that are the focus of this paper. We

demonstrate starting from an Instruction Set Architecture

and continuing through the building of emulated

hardware to implement the instruction set. After working

through these example designs, students were assigned to

invent an original design, including an instruction set, and

the registers to support the instructions. Our students are

then required to implement their design in MML (Mills

2006). We have used this approach for three years now

and students have produce some wonderful designs.

Students feel empowered and are highly motivated to

participate in the labs and survive the debugging process.

They report having a great sense of accomplishment and

achieving a profound understanding of how computers

work at the logic level.

3 Example Computer One, the von Neumann

Design

We start our discussion of MML with a “Hello World”

example shown in Figure 1. This seems to be the first

program shown in every programming language text, and

it is fun to do it in an architecture course as well.

In a recent semester, to set the stage for the design

assignment, the instructor provided as an example an 8-

bit, accumulator-based, von Neumann design that uses

three clock cycles to execute each instruction. The von

Neumann architecture uses a single memory for data and

instructions. To make this computer as simple as

possible, but still able to demonstrate operation with

useful programs, it was designed with four instructions.

The instructions are: Load the accumulator from memory,

Save the accumulator to memory, Add from a memory

location to the accumulator, and Jump if the last add

produced a zero result. These four instructions were

supplemented by two memory mapped commands,

Output on Save to memory location x3F, and Halt on

Save to memory location x3E. Figure 1 shows the main

page of this computer running a “Hello World” program.

A second page of multiplexers is shown in Figure 2.

One of the most difficult challenges in a design like this

is to develop an instruction decoder state machine in

“Read Only” memory. This decoder takes as inputs a

step count, the op-code and the zero flag, and provides as

outputs control signals to set paths through multiplexers

and enable writing to memory and registers

One very nice feature of designs done in Multimedia

Logic is the ease of attaching diagnostic displays to the

computer. Displays include hexadecimal, binary, and

ASCII display terminal. Also available are text displays

that provide one of sixteen text strings depending on a

provided four-bit binary value. These text displays are

used to show the current state of the computer in the

execute cycle, and the instruction currently being

executed.

Even though this computer has only four instructions they

cover the basics needed to illustrate an accumulator-based

von Neumann architecture.

One significant learning to come from this design is the

elegance of self-modifying code to implement a program

like the “Hello World” program shown. An effective

indirect load can be designed in the von Neumann

architecture by just recursively incrementing the load

instruction. This can lead to a discussion on self-

modifying code.

In the Harvard architecture discussed next, with twice as

many instructions, the “Hello World” program is a series

of output commands for characters stored in the data

memory because the program memory can not be

modified by the running program.

4 Example Computer Two, the Harvard

Design

An alternate example, developed three years ago, just

redesigned to improve readability, is a single cycle, 8-bit,

Harvard architecture describe in the proceedings of the

ACM Workshop on Computer Architecture Education

(Stanley 2005). This design, shown in figures 3 and 4,

uses two memories, one, read only, for program storage

and a second, read-write, for data storage. It also has a

read-only memory used to decode operation codes into

control line states. This design also uses two ALU

devices, one to increment the program counter and a

second to execute mathematical instructions. Having two

ALUs enables instructions to execute in one cycle, with

the program counter incrementing while the other

processes are also occurring. Also, this architecture can

simultaneously access data and program memory

eliminating the “von Neumann Bottle neck”. But since

mathematical operations are on data memory, creating

self modifying code is not possible in this design. This

makes some program tasks awkward. For example, the

hello world program implemented in the Harvard design

consists of a series of output commands.

One of the nice features of designs in MultiMedia Logic

is the freedom to lavishly include display devices to show

hexadecimal values, binary values, ASCII text, and value

dependent comments, like the display “OutM” which is

the mnemonic for the current instruction.

In this design, as with the von Neumann design, one of

the most difficult challenges is designing the operation

decoder, although for the Harvard design, this task is

simpler since each instruction takes just one cycle. One

nice capability with both designs is the ability to single

step through instructions, by pressing the “Clock Pulse”

button or have the computer run by lifting the “Enable

Clk” switch.

5 Conclusions

These two designs, while not very advanced, have proven

to be very useful for teaching principles of computer

architecture. The have also served as a spring board for

some very elaborate designs from our students. Some of

the student designs include sixteen bit computers,

hardware multipliers, a 128 bit key hardware encryption

unit, and a fully multiplexed sixteen register array of

sixteen bit registers. Also, since hardware is not used in

these designs, students can take them with them at the

end of the semester.

Some comments from students taking this class include

the following:

“This project was very motivating for our team. We

spent many hours to insure that a quality project was

built. We learned a lot through the design and assembly

as well as in debugging. Our fellow students also learned

from our presentation of this project.”

Another student added:

“We appreciate for this new method of teaching the

computer architecture. We think that we learn much

more than if we physically build computers. I personally

understand more how to build and design a computer

from the ground up. Although our computer is in a logical

form, it does represent our knowledge and our work.

Instead of spending more time on connecting wire or

circuit, our team actually spends more time on the

primary elements in designing, planning, debugging, and

understanding how our computer works.”

 Patterson says “The processor comprises two

components: data path and control...” (1994). These

students know what that means because they have built

both.

6 Acknowledgements

The authors gratefully acknowledge George Mills, the

author of Multimedia Logic, for making his logic

simulation package available without cost and including

the source code on his web site,

http://www.softronix.com/.

The authors are also deeply grateful to the students they

have taught who have been the motivation for this

development. Special thanks to Elliot Manning who was

the team leader of the first student team and set the bar

for the following classes.

7 References

Burch, C. (2002): Logisim: A Graphical System for Logic

Circuit Design and Simulation. ACM Journal of

Educational Resources in Computing 2(1): 5–16.

Capilano Computing. http://www.capilano.com/.

Accessed 1 June 2006.

Clark, B., Czezowski, A. and Strazdins, P. (2001):

Implementation Aspects of a SPARC V9. Proc. 25th

Australasian Computer Science Conference, Melbourne,

Australia, 23–32.

Computing Curricula 2001 Computer Science, Final

Report, ACM/IEEE-CS Task Force, 15 December 2001.

http://acm.org/education/curric_vols/cc2001.pdf.

Accessed 9 August 2006.

Holland, M., Harris, J. and Hauck, S. (2003): Harnessing

FPGAs for Computer Architecture Education. Proc. 2003

IEEE International Conference on Microelectronic

Systems Education, 12.

Larson, J. http://www.dst-corp.com/james/

MMLogic.html. Accessed 1 June 2006.

Larus, J. SPIM, A MIPS32 Simulator,

http://www.cs.wisc.edu/~larus/spim.html. Accessed 1

June 2006.

Leslie, M. http://urchin.earth.li/~mleslie/project.html,

Accessed 1 June 2006.

Mills, G. Multimedia Logic, available for free download

at http://www.softronix.com. Accessed 1 June 2006.

Moure, J., Rexachs, D. and Luque, E. (2002): The

KScalar Simulator. ACM Journal of Educational

Resources in Computing 2(1): 73–116.

Null, L. and Lobur, J. (2003): The Essentials of Computer

Organization and Architecture. Sudbury, MA, Jones and

Bartlett Computer Science.

Null, L. and Lobur, J. (2003): MarieSim: The MARIE

Computer Simulator. ACM Journal of Educational

Resources in Computing 3(2): 1–29.

Paterson, D. and Hennessy, J. (1994): Computer

Organization and Design, The Hardware/Software

Interface, Morgan Kaufmann.

Stanley, T. (2005): An emulated computer with assembler

for teaching undergraduate computer architecture. Proc.

of the Workshop on Computer Architecture Education.

Tao, J., Schulz, M. and Karl, W. (2003): A Simulation

Tool for Evaluating Shared Memory Systems. Proc. 36th

Annual Simulation Symposium (ANNS’03).

Wainer, G., Daicz, S., Simoni, L. and Wassermann, D.

(2001): Using the Alfa-2 Simulated Processor for

Educational Purposes. ACM Journal of Educational

Resources in Computing 1(2): 111–151.

Figure 1 An example computer using an 8-bit von Neumann design

Figure 2 Multiplexer array for the 8-bit von Neumann design

Figure 3 Example computer two, the eight bit Harvard design

Figure 4 Multiplexer array for Harvard design

