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Worldwide, breast cancer has become the second most common cancer in women. The disease has currently been named the
most deadly cancer in women but little is known on what causes the disease. We present the effects of estrogen as a risk factor on
the dynamics of breast cancer. We develop a deterministic mathematical model showing general dynamics of breast cancer with
immune response. This is a four-population model that includes tumor cells, host cells, immune cells, and estrogen. The effects of
estrogen are then incorporated in the model. The results show that the presence of extra estrogen increases the risk of developing
breast cancer.

1. Introduction

Among many cancer types, breast cancer is the second most
common cancer in women, exceeded only by skin cancers.
The chance of developing invasive breast cancer at some time
in a woman’s life is a little less than about 12% [1]. Being
exceeded only by lung cancer, breast cancer is the second
leading cause of cancer deaths in women. The chance that
breast cancer will be responsible for a woman’s death is about
1 in 36 [1]. The disease has been more pronounced in the
developed world in the past but has soon crossed boundaries
into the developing world of Africa and Asia. In Zimbabwe,
breast cancer is currently the third leading cancer responsible
for deaths of women of all ages with crude mortality rate
of 5.6 per 100 000, exceeded only by Cervical cancer and
Kaposi sarcoma [2]. Breast cancer is a malignant (cancerous)
tumor that starts in the cells of the breast, that is, a group of
cancer cells that can grow into (invade) surrounding tissues
or spread (metastasize) to distant areas of the body. It begins
when breast cells start to grow out of control due to DNA
damage which controls all cell actions in the body tissues.
When DNA is damaged, normal cells will repair the damage
or the cell dies but in cancer cells, damaged DNA is not

repaired and does not die like it should. Instead the cell goes
on making new abnormal cells with the same damaged DNA
which the body does not need. A single genetically altered cell
then grows into a tumor in a stepwise progression.

There are several types of breast cancer, but some of them
are quite rare. In some cases a single breast tumor can be a
combination of these types or be a mixture of invasive and
in situ cancer. Ductal carcinoma in situ (DCIS) is the most
common type of noninvasive breast cancer. DCIS means that
the cancer cells are inside the ducts but have not spread
through the walls of the ducts into the surrounding breast
tissue. However, after starting in a milk passage (duct) of the
breast, it can break through the wall of the duct and grow into
the fatty tissue of the breast. At this point, it may be able to
spread (metastasize) to other parts of the body through the
lymphatic system and bloodstream and will now be referred
to as invasive ductal carcinoma (IDC). Lobular carcinoma
in situ (LCIS) is another type of noninvasive breast cancer
which begins in the milk-producing glands and does not
grow through the wall of the lobules. This can become
invasive and spread to other parts of the body as invasive
lobular carcinoma (ILC), a state which is harder to detect by
a mammogram.
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2. Risk Factors and Vulnerable Groups

There are many factors that affect the chance of an individual
developing breast cancer, some of which one can change
and some cannot be changed. Having a risk factor, or even
several, does not mean that one will automatically develop
the disease. Women have a higher risk of developing breast
cancer although in men it has been discovered too [3]. Some
of these factors include use of alcohol with the risk increasing
relative to the amount of alcohol consumed, overweight
or obese, especially for women after menopause. Obesity
increases estrogen levels due to fat tissue producing small
amounts of estrogen [1]. High doses of radiation are also
known to increase breast cancer risk, where exposure to radi-
ation from the atomic bomb at Hiroshima caused increased
breast cancer incidence, especially in women exposed as
teenagers, when their breast cells were very immature [4].
Repeated X-ray exposure for treatment of tuberculosis,
postpartum mastitis, chest acne, and monitoring treatment
for scoliosis increases risk [5]. A woman may become
pregnant after a cancer cell has formed in her breast, a cell
which may have been dormant for many years. However,
with pregnancy, estrogen levels rise stimulating the dormant
cancer cell to grow into a clinically detectable cancer [6].

Breast cancer incidence rates are higher in non-Hispanic
white women compared to African American women for
most age groups. Incidence and death rates for breast cancer
are lower among women of other racial and ethnic groups
like Asian, African, and Hispanic white than among non-
Hispanic white and African American women [1]. However,
in women under 45 years of age, breast cancer is more
common in African American women. There is higher risk
among women whose close blood relatives have this disease.
Having one first-degree relative (mother, sister, or daughter)
with breast cancer approximately doubles a woman’s risk.
Having 2 first-degree relatives increases her risk about 3-fold.
The exact risk is not known, but women with a family history
of breast cancer in a father or brother also have an increased
risk of breast cancer. Altogether, less than 15% of women
with breast cancer have a family member with the disease.
This means that most (over 85%) women who get breast
cancer do not have a family history of this disease [7]. A
woman with cancer in one breast has a 3- to 4-fold increased
risk of developing breast cancer in the other breast or in
another part of the same breast [8]. Certain inherited DNA
changes can increase the risk for developing cancer and are
responsible for the cancers that run in families. For example,
the breast cancer genes one and two (BRCA1 and BRCA2)
are tumor suppressor genes. Mutations in these genes can
be inherited from parents. When they are mutated, they no
longer suppress abnormal growth and cancer is more likely
to develop [9].

2.1. Estrogen as a Risk Factor. The hormone estrogen works
as a chemical messenger in the body. It is essential for
normal sexual development and functioning of female
organs important for childbearing like the ovaries, uterus,
and breasts. Estrogen also helps regulate a woman’s men-
strual cycles. It is necessary for the normal development

of the breast. It also helps maintain the heart and healthy
bones. However, during each monthly menstrual cycle, a
woman is exposed to increased estrogen levels, especially
just before an egg is produced by her ovaries (ovulation).
Also during pregnancy, women have prolonged exposure to
high levels of estrogen. If a woman gives birth before 32
weeks or has an induced abortion, she will have an increased
estrogen exposure without the protective effect of lobule
differentiation. Estrogen can cause cancer in two ways. It
acts as a “mitogen”; that is, it stimulates breast tissue to
increase cell divisions (mitosis). This sometimes results in
cancers due to errors in cell division (mutation). Secondly,
certain metabolites of estrogen also act as carcinogens or
genotoxins, by directly damaging DNA, thereby causing
cancer cells to form [10]. Estrogen exposure can be in the
form of environmental estrogens termed “xenoestrogens”
which are naturally occurring like phytoestrogens in plants
or synthetic chemicals that can act like human estrogen made
by the ovary. Xenoestrogens can mimic the effect of human
estrogen as they have a chemical structure that allows them
to fit into the estrogen receptor the way a key fits into a lock.

The presence of estrogens can also activate hormones
like relaxin to stimulate cell division. In fact, relaxin (RLX)
has been shown to have a powerful effect on growth and
differentiation of breast cancer (MCF-7) cells [14]. However,
the effect of RLX is induced by estrogen probably by inducing
RLX receptors as in myometrial cells [15]. Therefore, in
general, it may be implicated in breast cancer risk because
of its role in stimulating breast cell division, work during
the critical periods of breast growth and development, effect
on other hormones like relaxin that stimulate breast cell
division, and support of the growth of estrogen-responsive
tumors. Other studies have also shown that there is a positive
relationship between endogenous hormone levels in post-
menopausal women and risk of breast cancer [16]. In hor-
monal birth control mechanisms, there are two hormones
involved, estrogen and progestin. Hormonal birth control
mechanisms involve the oral contraceptives, minipill, Depo-
Provera, and implants. These prevent pregnancy by releasing
synthetic hormones to prevent the release of eggs from the
ovaries (ovulation) and by thickening the cervical mucus,
which helps block sperm from entering the uterus and by
making it hard for an egg to attach and grow in the uterus.

2.2. Researches on Other Risk Factors. In the search for the
actual cause of this deadly disease, many risk factors have
been studied. Oral contraceptives use has undergone many
discussions as a risk factor of breast cancer. A meta-analysis
was performed of case control studies that addressed whether
prior oral contraceptive use is associated with breast cancer.
MEDLINE and PubMed databases and bibliography reviews
were searched to identify related material published in or
after 1980. Thirty-four studies were identified that met
inclusion criteria. Two reviewers extracted data from original
research articles or data provided by study authors. The
DerSimonia-Laird method was used to compute pooled odds
ratios (ORs) and confidence intervals (CIs). The Mantel-
Haenszal test was then used to assess association between
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OC use and breast cancer. Results showed that the use of
OCs was associated with an increased risk of premenopausal
breast cancer in general with an OR (1.19) and 95% CI (1.09–
1.29) and across various patterns used. It was associated
with breast cancer risk in both parous (OR, 1.29; 95% CI,
1.20–1.40) and nulliparous women (OR, 1.24; 95% CI, 0.92–
1.67) [17]. It was however not specific on whether the oral
contraceptive investigated had estrogen, progesterone, or
both. Other researchers have argued that estrogen level is
increased in women receiving exogenous estrogens in form
of OC or HRT [18]. Moreover, there is general agreement
that the risk associated with OC and HRT depends on the
duration of exposure, being lowest in women who never used
OC or HRT [19].

Abortion and fertility have also been investigated as
risk factors on breast cancer. In a research, modelling and
forecasts based on abortion and other risk factors were
done. They used the national cancer registration data for
female breast cancer incidence in eight European countries:
England and Wales, Scotland, Northern Ireland, the Irish
Republic, Sweden, the Czech Republic, Finland and Den-
mark which were chosen because of their comprehensive
data on abortion incidence. Relaxin has also been discovered
to promote differentiation of breast cancer cells in vitro,
more specifically, the MCF-7 breast adenocarcinoma cells.
MCF-7 cells can be induced to progress in the differentiation
pathway under the influence of relaxin (RLX), a peptide
hormone that has been shown to have a powerful effect on
growth and differentiation of epithelial and myoepithelial
cells of the mouse mammary ducts in vivo [20]. Estrogen
involvement has also been suggested. In fact, as shown for
normal mammary gland, estrogens are needed to allow
relaxin to produce its effect [14], probably by inducing
relaxin receptors, as occurs in myo-metrial cells [15].

Association of metal exposure with breast cancer risk
is a topic currently under discussions. An experiment was
done to review the scientific evidence with respect to the
in vitro and in vivo studies and epidemiological evidence
for links between breast cancer and exposure to metals. It
was found that there is growing evidence that environmental
contaminants such as metals play a role in breast cancer [21].
Based on a relatively small number of studies, this literature
review uncovered important deficiencies and gaps in the
current literature that assesses the link of the incidence of
breast cancer to metal exposure.

Several studies suggest that selective estrogen-receptor
modulators (SERMs) like tamoxifen and raloxifene may
lower breast cancer risk in women with certain breast cancer
risk factors. But so far, many women are reluctant to take
these medicines because they are concerned about possible
side effects. Newer studies are looking at whether aromatase
inhibitors; and drugs such as anastrozole, letrozole, and
exemestane can reduce the risk of developing breast cancer
in postmenopausal women. These drugs are already being
used as adjuvant hormone therapy to help prevent breast
cancer recurrences, but none of them is approved for
reducing breast cancer risk at this time. One of these drugs,
exemestane, has recently been shown to lower the risk of
invasive breast cancer by 65% in women at increased risk.

Fenretinide, a retinoid (drugs related to vitamin A), is also
being studied as a way to reduce the risk of breast cancer. In
a small study, this drug reduced breast cancer risk as much as
tamoxifen. Other drugs are also being studied to reduce the
risk of breast cancer [1].

Studies continue to uncover lifestyle factors and habits
that alter breast cancer risk. Ongoing studies are looking at
the effect of exercise, weight gain or loss, and diet on breast
cancer risk. Studies on the best use of genetic testing for
BRCA1 and BRCA2 mutations continue at a rapid pace. Sci-
entists are also exploring how common gene variations may
affect breast cancer risk. Each gene variant has only a modest
effect in risk (10 to 20%), but when taken together they may
potentially have a large impact. Potential causes of breast
cancer in the environment have also received more attention
in recent years. While much of the science on this topic is
still in its earliest stages, this is an area of active research
[3].

3. Treatment of Breast Cancer

Treatment of breast cancer can be classified into broad
groups, based on how they work and when they are used.
These include surgery, chemotherapy, radiation therapy, and
hormone therapy. Surgery is when the breast tumor is
removed as partial mastectomy/breast-conserving surgery
and mastectomy. Partial mastectomy surgery only removes
a part of the affected breast, but how much is removed
depends on the size and location of the tumor and other
factors whilst mastectomy surgery removes the entire breast.
The whole breast tissue is removed, and sometimes along
with other nearby tissues. This can be in the form of a
simple mastectomy or skin-sparing mastectomy depending
on whether there is need for immediate reconstruction of the
breast.

Radiation therapy, as the name implies, is treatment with
high energy rays or particles that destroy cancer cells. This
is also used to treat cancer that has spread to other areas,
for example, to the bones or brain. It can be administered
in two ways, external beam radiation and internal radiation.
External beam radiation is when the radiation is focused
from a machine outside the body on the area affected by
the cancer. This procedure is more like getting an X-ray,
but here the radiation is more intense. Brachytherapy, also
called internal radiation, is when instead of aiming radiation
beams from outside the body, radioactive seeds or pellets are
placed directly into the breast tissue next to the cancer. Its
administration is limited by tumor size, location of tumor,
and other factors relating to the patient’s medical condition.
Systematic therapy refers to drugs which can be given by
mouth or directly into the bloodstream to reach cancer cells
anywhere in the body. chemotherapy, hormone therapy, and
targeted therapy are examples.

Chemotherapy is treatment with cancer-killing drugs
that can be given intravenously (injected into a vein) or by
mouth. It is given in cycles, with each period of treatment
followed by a recovery period. Treatment usually lasts for sev-
eral months when chemotreatment is given to patients with
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no evidence of cancer after surgery. This is known as adju-
vant therapy. When the treatment is given before surgery,
chemotherapy is called neoadjuvant therapy. Hormone ther-
apy hormonal therapy is often used as an adjuvant therapy to
help reduce the risk of the cancer coming back after surgery
although it can also be used as neoadjuvant treatment as
well. This is when several approaches to blocking the effect
of estrogen or lowering estrogen levels are used to treat
hormone receptor-positive breast cancers. However, hor-
monal therapy does not help patients whose tumors are both
estrogen receptor (er) negative and progestin receptor (PR)
negative.

4. Models Done on Tumor Growth

Several mathematical techniques have been applied in the
study of breast cancer [11, 22–24]. Delay differential equa-
tions were used to model the interaction of breast cancer
cells with the immune system. A developed model with delay
differential equations modelling breast cancer accounted
for different cell cycles and included terms to evaluate
drug treatments, but ignored quiescent tumor cells [11].
Another related model included quiescent cells but ignored
immune response and drug treatments in which there was
consideration of the interconnected growth patterns of both
proliferating and quiescent cells [22]. In a bid to improve
the researches done by [11, 22], an integrated model in form
of delay differential equations was developed accounting for
quiescent cells, immune cells and included drug intervention
terms. They included additional terms to account for the
impact of Paclitaxel on the quiescent cells [25].

In one of the studies on the relationship between Body
Mass Index (BMI), menopausal status, estrogen replacement
therapy (ERT), and breast cancer risk, a mathematical
model was developed and results showed that estrogen levels
are responsible for the relationship between BMI, ERT,
menopausal status, and breast cancer risk [23]. Statistical
analysis and stochastic modelling have also been applied
to investigate breast cancer and tumor growth [26]. They
dealt with aspects of probability and statistics applied to
breast cancer research. From in vitro experiments, breast
cancer cells, the MCF-7 cells’ behaviour in different types of
substrates was noted. More specifically, it is how the stiffness
of the different substrates affects the cell that is of most
interest. The effect on aggregate counts and morphological
parameters of the cells by surrounding (simulated) tissue’s
stiffness was analysed using methods from linear Mixed
Models theory. The analysis indicated that certain param-
eters are significantly different for different tissue stiffness.
Stochastic modelling related to initial tumor growth was
studied and certain types of randomness were introduced in
it. They numerically investigated how the model responds
to stochastic behaviour of the parameters defining mutation
characteristics. The model for tumor growth was rather
stable with respect to small random perturbations. For
the case of significant parameter randomness, the average
number of cells (normal and mutant) at a time T was
highly dependent on the expected value of the stochastic

process representing the corresponding parameter value.
This suggested a stable state for in vitro experiments and
since in vivo experiments are known to be unstable, the
presence of risk factors had aided in tumor behaviour.

A mathematical model of immune response to tumor
invasion was also developed using competition models.
Tumor cells population, CD8+T cell population, and Natural
Killer cell population competed in a way almost similar to
that suggested by Lotka-Volterra’s competition models [24].
This carries a fundamental aspect on the interaction between
immune cells and tumor cells. The presence of tumor cells
stimulates the immune response, represented by the positive
nonlinear growth term for the immune cells. This type of
response term is of the same form as the terms used in the
respective model of [27].

Cell populations have also been known to compete
for nutrients and natural cell requirements resulting in
nutrient consumption models. Burton [28] first proposed
that diffusion and nutrient consumption might be limiting
solid tumor, and since then a large number of studies have
described the spatiotemporal interactions between tumor
cell populations and nutrients. Early models of nutrient-
limited tumor growth calculated the nutrient concentration
profiles as a function of tumor spheroid radius that was
changing due to the rate of cell proliferation [29]. The later
models have incorporated differing degrees of complexity
for cell movement. Tumor cell proliferation and death are
considered to be dependent on only one generic nutrient
(most often oxygen). However, some consider the effect of
several nutrients and pH on the cell population [30].

The Gail model is also one of the widely used models
and established models for predicting breast cancer risk in
women. It was developed from a nested case control study
conducted on a cohort of white women who were receiv-
ing regular screening mammograms in order to calculate
multivariate relative risks of breast cancer based on age
at menarche, age at first live birth, number of first-degree
relatives (mother and sisters) with breast cancer, number
of breast biopsies, and whether or not a typical hyperplasia
was present on any biopsy specimen [31]. However, this
widely used model does not predict breast cancer risk in
young women generally and should not be used for that
purpose [32]. It also underestimates genetically inherited
breast cancer because it does not take into account paternal
history. The model was also not intended to predict risk in
women under age 40, nor in African American women of all
ages [33].

Cell-DEVS, an extension of the DEVS formalism, has
been used to model tumor-immune systems that involve
growing tumors interacting with immune cells [34]. This
has an advantage in that it facilitates the formal specification
and reuse of cellular models. A Cell-DEVS model was
implemented and tested using the CD++ toolkit and simu-
lation results indicated that the model captured the intended
qualitative aspects of tumor growth and immune system
response [35]. Simulation-based parameter estimation offers
a powerful means of estimating parameters in complex
stochastic models. The use of simulation for computing
the maximum likelihood estimator in the natural history of
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breast cancer was discussed. From the analysis, simulation
provided a straight forward means of computing such
estimators for models of substantial complexity [36].

A commonly proposed model for tumor growth assumes
that the rate of growth is proportional to the number of
malignant cells [37]. But currently, the hardest challenge
in modelling tumor growth and treatment is estimating
parameters in models that are mathematically simple and
broadly applicable [38]. Most of the risk factors have shown
an association with estrogen as emphasised so we seek to
develop Lotka-Volterra’s competition model of the tumor
cells and the immune response in order to assess the impact
of estrogen on the dynamics of breast cancer tumor.

5. The Estrogen-Free Model

Based on many previous useful models done on tumor
growth we here consider a model which subdivides the total
population N(t) of cells of the breast tissue at any given
time t into three groups which include normal or host cells,
tumor cells and immune cells classes. The normal cells class,
denoted by H(t) is in form of epithelial cells that make up
the breast tissue. The cells differentiate and die normally
as they have unaltered DNA which controls all cell actions.
We assumed that the normal and tumor cells compete for
space and resources in a small volume and therefore assumed
a competition model used by Gatenby [39]. The normal
cells grow exponentially at a per capita growth rate of α1

as a result of DNA initiation [39]. β1 is the depletion rate
resulting from competition for resources such as nutrients
and oxygen or the accumulation of substances released from
cell metabolism within themselves.

Tumor cells, denoted by T(t) at any time t, represent
a class of breast cancer cells with damaged DNA. There
are about 51 breast cancer cell lines which mirror the
145 primary breast tumors [40]. These can be classified
into 2 major branches, the luminal, which has estrogen
receptors (ESR1 positive), and basal-like, without estrogen
receptors (ESR1 negative). We then assume a homogeneous
luminal type of cancer cells in form of MCF-7, MDAMB361,
BT474, T47D, and ZR75 cell lines. Several tumor growth
laws have been proposed which include an exponential
growth, Gompertz growth and logistic growth. We assume
the presence of a small tumor mass, that is, a tumor size that
is close to zero relative to carrying capacity, and therefore
the choice of growth law does not significantly affect the
qualitative behaviour of the model since they only differ
for large tumor sizes. We therefore assume an exponential
growth of tumor cells with per capita rate of α2 which
results from the damaged DNA. Analogously β2 is a factor
restricting their growth competition for space and food
within themselves. The normal cells H(t) and tumor cells
T(t) also compete for space and natural cell requirements like
oxygen as they are supplied by the blood vessels. We assume
cancer cells have uncontrolled cycle than the normal cells due
to changed DNA which makes them fail to regulate a cell
cycle [12] and thus their interaction with normal cells results
in an inhibitory effect on normal cells at rate δ1 [41].

The model includes an immune cells class, I(t), in form
of Natural Killer (NK) cells and CD8+ T cells. Their growth
may be stimulated by the presence of the tumor and they
can destroy tumor cells through a kinetics process. We also
assume that the presence of a detectable tumor in a system
does not necessarily imply that the tumor has completely
escaped active immunosurveillance. Although a tumor is
immunogenic, it is possible that the immune response may
not be sufficient on its own to completely combat the
rapid growth of the tumor cell population and the eventual
development into a tumor.

The population of immune cells is considered to be
outside of the system and we assume a background level of
NK cells, even in the absence of tumor with CD8+ T cells
only present as a result of activation. It is therefore reasonable
to assume a constant source, s, of the immune cells from
the thymus gland [27]. Furthermore, in the absence of any
tumor, the cells will die off naturally at a per capita rate of μ.
The presence of tumor cells stimulates the immune response
resulting in growth of immune cells. This is represented by
a positive nonlinear growth term for immune cells which
as a function of T(t), is positive, increasing and concave
with the form ρI(t)T(t)/(ω + T(t)), where ρ is the immune
response rate and ω is the immune threshold rate, which
is inversely proportional to the steepness of the immune
response curve. This type of response term is of the same
form as the terms used in respective models of [13, 27]. Thus
immune cell proliferation is controlled and will never result
in immune crowding which might in turn be detected as a
threat. Furthermore, the reaction of immune cells and tumor
cells can result in either the death of tumor cells at a rate
γ2 or the inactivation of the immune cells, with γ3 as the
interaction coefficient.

After considering all these aspects, we present the follow-
ing system of Lotka-Volterra type of differential equations to
determine the dynamics of breast cancer cells:

dH

dt
= H

(
α1 − β1H − δ1T

)
,

dT

dt
= T

(
α2 − β2T

)− γ2IT ,

dI

dt
= s +

ρIT

ω + T
− γ3IT − μI.

(1)

Initial values of variables are H(0) = 1, T(0) = 10−5 and
I(0) = s/μ = 1.379310345 adopted from [11, 13].

5.1. Equilibrium Points and Positivity of Solutions. An equi-
librium point is a stable condition that does not change over
time, or in which change in one direction is continually
balanced by change in another. The variables H , T , and I
represent subpopulations of breast cells and therefore, should
be positive or zero for all t ≥ 0. One can easily show
that all the variables are greater than or equal to zero. If
this condition is not met, the model should be discarded
as it violates a basic aspect of scientific reality. The steady
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states occur where the ordinary differential equations are
simultaneously zero, that is, where

dH

dt
= dT

dt
= dI

dt
= 0. (2)

The model system admits four steady states in which
there are two dead equilibria, one tumor-free equilibrium
points and one coexisting equilibrium point.

5.1.1. Tumor-Free Equilibrium-ξt . The first equilibrium
point as the tumor-free equilibrium as this is when only
tumor cell population has been forced to extinction as a
result of the competition with normal and immune cells.
This is given by

ξt = (H∗,T∗, I∗) =
(
α1

β1
, 0,

s

μ

)

. (3)

We define a feasible region as a set of nonnegative and
real solutions of our variables (H ,T , I) since cell populations
are nonnegative and real. The equilibrium state ξt exists since
α1 > 0, β1 > 0, μ > 0, and s > 0, we have all solutions in the
neighbourhood of ξt as positive and real and hence in the
feasible region.

5.1.2. Type 1 Dead Equilibrium-ξ1
d . The dead equilibrium

point is when normal cells only have died off leaving the
tumor cells surviving. We classify this as a “dead” in the sense
that there is no recovery of damaged normal cells since they
have been forced to extinction. This is given by

ξ1
d = (H∗,T∗, I∗)

=
(

0,
α2 − γ2I∗

β2
,

s

μ− ρT∗/(ω + T∗) + γ3T∗

)

,
(4)

where ξ1
d represents the type 1 dead equilibrium value of the

normal cells, tumor cells, and immune cells, respectively.
The tumor cell population will increase with a decrease

in tumor cell death rate, β2, and an increase in tumor growth
rate, α2. An increase in immune cells also reduces tumor cell
population as a result of predation on tumor cells by immune
cells. We know that β2 > 0. So we need α2 ≥ γ2I∗ which
implies I∗ ≤ α2/γ2 so that T∗ can be in the feasible region.
That is, the net growth rate of tumor cells must be more
than or equal to immune cells at any time t in order for the
competition to drive normal cells to extinction.

The immune cells are inversely proportional to tumor
dynamics such that an increase in tumor dynamics reduces
immune cells as more immune cells are deactivated by tumor
cells. This exists when

μ− ρT∗

ω + T∗
+ γ3T

∗ > 0, (5)

which when expanded will give

γ3T
∗2 +

(
μ + ωγ3 − ρ

)
T∗ + μω > 0. (6)

By letting u1 = γ3, u2 = μ + ωγ3 − ρ and u3 = μω, we get

T∗ = −u2 +
√
u2

2 − 4u1u3

2u1
. (7)

We know that u1 > 0 and u3 > 0 and thus we need
u2 < 0, that is, μ + ωγ3 < ρ. This implies that the immune
response rate should be greater than the rate at which they
are reduced. We also have u2

2 − 4u1u3 > 0 for T∗ to be
real, that is, (μ + ωγ3 − ρ)2 > 4γ3ωμ for solutions of our
system around the type 1 dead equilibrium to be real and
nonnegative. This implies that the difference in the rates of
immune cell initiation and reduction should be greater than
the rate at which they are lost. Also

√
u2

2 − 4u1u3 ≥ u2 =⇒ 4μωγ3 ≤ 0, (8)

which means one or more of the parameters μ, ω, γ3 is zero.
This explains that ξ1

d only exists when there are totally no
immune dynamics which is a rare scenario, hence it is very
rare to reach to such an equilibrium point unless someone is
dead.

5.1.3. Type 2 Dead Equilibrium-ξ2
d . Type 2 dead equilibrium

exists when both normal cells and tumor cell population have
died off, given by

ξ2
d = (H∗,T∗, I∗) =

(

0, 0,
s

μ

)

, (9)

where ξ2
d represents the type 2 dead equilibrium values for

the normal cells, tumor cells and immune cells, respec-
tively. Since s > 0 and μ > 0 it implies that all the
solutions around the dead equilibrium of type 2, ξ2

d are in
the feasible region. This state is feasible but however no
fixed tissue is present which can be as a result of whole
breast tissue removal maybe by a mastectomy surgery or
death.

5.1.4. Coexisting Equilibrium-ξc. The coexisting equilibrium
point ξc is a state in which all cell populations have survived
the competition and they coexist and is given by

ξc = (H∗,T∗, I∗) =
(
α1

β1
− δ1

(
α2 − γ2I∗

)

β1β2
,
α2 − γ2I∗

β2
,

s

μ− ρT∗/(ω + T∗) + γ3T∗

)

, (10)
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where ξc represent the coexisting equilibrium values of the
normal cells, tumor cells and immune cells, respectively.

This exists when β1, β2 > 0 and

α1 − δ1
(
α2 − γ2I∗

)

β2
≥ 0,

=⇒ α2δ1 − α1β2

γ2δ1
≤ I∗.

(11)

This implies that the combination of the net growth of
tumor cells as a result of competition due to normal cells
must always be less than the equilibrium value of the immune
cells for the cells to coexist. I∗ > 0 when α2δ1 ≥ α1β2 which
implies α2/β2 ≥ α1/δ1 . That is, the net growth of tumor cells
must be greater than that of normal cells for a nonnegative
solution to exist at ξc. The equilibrium values for the tumor
cells and immune cells are given as the same as the ones at
the type 1 dead equilibrium.

5.2. Stability Analysis of Equilibria. We analyse the equilib-
rium points in terms of their stability by means of eigenval-
ues. We apply the Hartman Grobman Theorem which states
that in the neighbourhood of a hyperbolic equilibrium point,
a nonlinear dynamical system is topologically equivalent to
its linearisation.

5.2.1. Local Stability of the Tumor-Free Equilibrium Point.
We now evaluate the stability of the tumor-free equilibrium
point, that is at ξt in which the Jacobian is given by

Jξt =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−α1 −α1δ1

β1
0

0 α2 − γ2s

μ
0

0
s

μ

(
ρ

ω
− γ3

)
−μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12)

Therefore the system gives three eigenvalues (λi) which
are, λ1 = −α1, λ2 = α2 − γ2s/μ, and λ3 = −μ. Since λ1,
λ3 < 0, we have the tumor-free equilibrium point being stable
as long as α2 < sγ2/μ. This implies that the system is stable
at tumor-free if and only if the resistance coefficient sγ2/μ is
greater than the per capita growth rate of the tumor cells, α2.
This measures how the immune system competes with the
tumor cells and since we assumed that the immune cells are
capable of destroying cancer cells at some rate, we have λ2

being negative and therefore ξt is always a stable equilibrium
point.

5.2.2. Local Stability of Type 1 Dead Equilibrium. Evaluating
the Jacobian at the ξ1

d gives the first eigenvalue as

=⇒ λ1 = α1β2 − α2δ1 + δ1γ2I∗

β2
. (13)

We know from Section 5.1.4 that α1β2 − α2δ1 + δ1γ2I∗ ≥
0, thus λ1 is a nonnegative eigenvalue and thus the type 1
dead equilibrium is always unstable. This is in fact the case
suggested by De Pillis and Radunskaya [13] that the dead
equilibria are always unstable in host dynamics. This implies
that once interactions among these cells drives them to the
death of normal cells, there is no recovery and no form of
intervention or parameter adjustment that will stabilise it.
That is, once normal cells’ DNA is damaged, the cell can
never recover.

5.2.3. Local Stability of Type 2 Dead Equilibrium. Evaluating
the Jacobian at the point ξ2

d gives

Jξ2
d
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1 0 0

0 α2 − γ2s

μ
0

0
s

μ

(
ρ

ω
− γ3

)
−μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

The system has three eigenvalues (λi) which are λ1 = α1,
λ2 = α2 − γ2s/μ, and λ3 = −μ and since α1 > 0 and
−μ < 0, this implies that whatever value of λ2, the type 2
dead equilibrium is a saddle point which is always unstable.

5.2.4. Local Stability of the Coexisting Equilibrium Point. We
would want to analyse how the system behaves around the
coexisting equilibrium point, ξc. For simplicity, we introduce
parameters f (h), f (t), f (i) where,

f (t) = α2 − γ2I∗

β2
,

f (h) = α1

β1
− δ1

(
α2 − γ2I∗

)

β1β2
,

f (i) = s

μ− ρT∗/(ω + T∗) + γ3T∗
.

(15)

We need f (h) ≥ 0, f (t) ≥ 0 and f (i) ≥ 0, for feasibility
of solutions, and therefore these parameters are nonnegative
as shown in the previous sections. Thus computing the
Jacobian matrix at this point gives

Jξc =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1 − 2β1 f (h)− δ1 f (t) −δ1 f (h) 0

0 α2 − 2β2 f (t)− γ2 f (m) −γ2 f (t)

0
−ρω f (i)
(
f (t) + ω

)2 − f (i)γ3 −μ +
ρ f (t)
ω + f (t)

− γ3 f (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)
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This results in one of the eigenvalues

λ1 = α1 − 2 f (h)β1 − f (t)δ1. (17)

Substituting for f (t) and f (h), then solve we have

λ1 = −α1 + δ1

(
α2 − γ2I∗

β2

)

. (18)

However, since H∗ exist at ξc when

α1 − δ1
(
α2 − γ2I∗

)

β2
≥ 0, (19)

this implies that λ1 is negative and thus the stability of the
system can be determined by the state of eigenvalues λ2 and
λ3. These are obtained from the remaining 2 × 2 matrix
below:

τ =

⎛

⎜
⎜
⎝

α2 − 2β2 f (t)− γ2 f (i) −γ2 f (t)

−ρω f (i)
(
f (t) + ω

)2 − f (i)γ3 −μ +
ρ f (t)
ω + f (t)

− γ3 f (t)

⎞

⎟
⎟
⎠.

(20)

For the system to be stable, we need the trace to be
negative and the determinant to be positive. The trace (τ)
can be written as

Trace (τ) = −α2 +2γ2I∗−γ2 f (i)−μ+ρ f (t)/(ω+ f (t))−
γ3 f (t).

For stability, we need trace τ < 0,

=⇒ 2γ2I
∗ − γ3 f (t) +

ρ f (t)
ω + f (t)

− μ < α2 + γ2 f (i). (21)

That is, for us to have a stable system, tumor cell
dynamics should be less than that of immune cell population.
Also we need the determinant (Δ) of the 2 × 2 matrix to be
positive for the system to be stable. The determinant Δ for
the system is also given by

Δ = f (i)γ2
(
f (t)

)2(
μ− ρ)

+ 2 f (t)μω + μω2 − γ2
(
f (t) + ω

)
f (t)

(
μ− ρ)

+ μω + f (t)
(
f (t) + ω

)
γ3

+ 2 f (t)β2
(
f (t) + ω

)(
f (t)

(
μ− ρ))

+ μω + f (t)γ3
(
f (t) + ω

)
.

(22)

For Δ > 0

f (i)γ2
(
f (t)

)2(
μ− ρ) + 2 f (t)μω

+ μω2 + μω + f (t)γ3
(
f (t) + ω

)

> γ2
(
f (t) + ω

)
f (t)

(
μ− ρ).

(23)

We know that f (t) is a function of I∗ and f (i) is a
function of T∗, therefore we generally have the growth of
immune cells being greater than that of tumor cells for us
to have a stable system.

5.2.5. Global Stability of Equilibria. To establish the global
asymptotic stability of the equilibrium points, we adopt
the method of Castilo-Chavez [42]. We rewrite system (1)
as

dX

dt
= F(X ,Z),

dZ

dt
= G(X ,Z),

(24)

where G(X , 0) = 0, X ∈ �2 denotes the undamaged cell
compartments, (H(t) and I(t)) and Z ∈ �1 is comprised
of the damaged cell compartment, T(t).

The conditions below must be satisfied to guarantee
global stability.

H1: For dX/dt = F(X , 0), X∗ is globally asymptoti-
cally stable.

H2: G(X ,Z) = AZ − G∗(X ,Z), G(X ,Z) ≥ 0 for
(X ,Z) ∈ Ω where A = DZG(X∗, 0) is an M-matrix
(with off diagonal elements as nonnegative) and Ω is
the region where the model makes biological sense.

In our case,

F(X , 0) =
⎛

⎝
α1H − β1H2

s− μI

⎞

⎠ (25)

and A is a 1× 1 matrix given by

A = DZG(X∗, 0) = α2 − 2β2T
∗ − γ2I

∗,

G∗(X ,Z) = −β2T
∗.

(26)

We therefore conclude that the tumor-free equilibrium,
ξt is the only state that is globally asymptotically stable since
G∗(X ,Z) ≥ 0. All the other equilibrium states are globally
unstable since G∗(X ,Z) < 0.

Hence, the system can only be stable when the immune
system can efficiently compete with the cancer cells, that is,
the efficiency in CD8+ activation and NK cell supply from
the thymus. As shown by both equilibria, immune resistance
to tumor growth is the only factor that determines stability
of the system. The general necessary condition for stability of
our system is that the growth rate of immune cells α2 must be
greater than the immune cell resistance coefficient sγ2/μ. The
global stability of the system is only dependant on the natural
exponential death of tumor cells. That is, as the number of
tumor cells dies naturally, the system approaches a stable
state.

6. Model with Estrogen

We introduce another class of estrogen, E(t), in the form of
17-β estradiol to the dynamics of breast cancer cells. Over
and above the estrogen produced by the ovaries, there is
more estrogen introduced into the system as part of some
oral contraceptives, in hormone replacement therapy or in
estrogen replacement therapy. The assumption here is that as
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women take hormonal birth control methods they increase
a constant level of the estrogen hormonal level. We therefore
assume a constant source, π of 17-β estradiol, the primary
biologically most active estrogen which is all the estrogen in
the system at any given time.

Human breast cells, the epithelial cells, contain estrogen
receptors termed estrogen receptor-1 (ER-α) and estrogen
receptor-2 (ER-β). These are intracellular receptors, which
when activated by ligand binding, translocate to the nucleus
and act as transcription factors by binding to DNA in the
promoter regions of target genes. Both ER-α and ER-β bind
17-β estradiol in the nucleus of the cell with similar affinity
(0.1–1 nM) and act as transcription factors to regulate gene
expression. This will lead to gene transactivation which may
also result from tethering of estrogen receptors to nuclear
transcription factors such as NFYB and SPI [43]. It is also
consistent to assume that the estrogen modulation of the
inflammatory response is a contributing factor in estrogen-
stimulated growth of breast tumor [43] which also has an
effect on the host innate immune response. This can however
result in damage to DNA primary structure of the double
helix as a result of estrogen oxidation products, the 2-OH
and 4-OH catechol estrogens, and how it stimulates cell
proliferation and gene expression via the ER. Therefore,
normal cell population, H(t) will be reduced as some of
the normal cells are being converted into tumor cells by a
factor σ1HE, where σ1 is the rate of tumor formation as a
result of DNA damage by estrogen. Damaged normal cells
will now form the class of tumor cells and therefore tumor
cell population will also increase at a rate σ2 resulting in
a growth factor of σ2HE on tumor cell population. Here
σ2 < σ1 since some of the damaged cells can be destroyed
as a result of antitumor immunity from Natural Killer
cells.

Estrogen is oxidised to catechol estrogens by recombinant
phase 1 enzymes (CYP1A1 and CYP1B1) which also die
naturally at a rate θ represented by the death factor θE.
The molecule 17-β estradiol stimulates growth in estrogen-
responsive breast cancer cells. As shown by [44] in a series
of experiments, ER-positive cells can stimulate surrounding
benign cells to proliferate through similar paracrine effects
involving stromal-epithelial cell interactions. ER-positive
breast cancer cells are themselves stimulated to grow by
estrogen through autocrine effects, and they are Ki67
positive [45]. We therefore introduce a growth factor α3T
of tumor cells where α3 is the per capita growth of T(t)
cells which is greater than α2, the growth factor from the
estrogen-free model. α3 is greater than α2 as a result of
combined natural growth rate plus growth due to autocrine
effects.

The presence of estrogen has also been shown to reduce
immune cell proliferation. A process known as ovariectomy
which involves removal of one or both ovaries upregulates T
cell Tumor Necrosis Factor (TNF) production by increasing
the number of TNF producing T cells without altering the
amount of TNF produced by each T cell [46]. We therefore
assume that if estrogen deficiency increases immune cell pro-
liferation and lifespan, then its presence will inhibit immune

cell proliferation. We can therefore represent this by a decay
factor

σ3IE

υ + E
(27)

on immune cells with σ3 as the rate of immune suppression
due to estrogen presence and υ is the estrogen threshold rate.
Incorporating these effects of estrogen on system (1) will
result in the following system of equations:

dH

dt
= H

(
α1 − β1H − δ1T

)− σ1HE,

dT

dt
= T

(
α3 − β2T

)− γ2IT + σ2HE,

dI

dt
= s +

ρIT

ω + T
− γ3IT − μI − σ3IE

υ + E
,

dE

dt
= π − θE,

(28)

whereH(0) = 1, T(0) = 10, I(0) = 1.379310345, and E(0) =
2.

6.1. Equilibrium Points and Positivity of Solutions. The model
system admits three steady states which are the dead equi-
librium, tumor-free equilibrium, and coexisting equilibrium
points.

6.1.1. Tumor-Free Equilibrium ψt. The tumor-free equilib-
rium is when only the tumor cell population has died due
to the competition with the other cells. This is given by

ψt = (H•,T•, I•,E•)

=
(
α1 − σ1E•

β1
, 0,

s(E• + υ)
μ(E• + υ) + σ3E•

,
π

θ

)

,
(29)

where H•, T•, I•, E• represent the tumor free equilibrium
values for the normal cells, tumor cells, immune cells, and
the estrogen hormone, respectively. We have I• > 0 and
E• > 0 since all parameters s, υ, μ,σ3, θ, π, σ1, α1, and β1

are positive. I• now depends on estrogen suppression unlike
in the estrogen-free model, where it only depends on natural
dynamics.

H• will be nonnegative at ψt when (α1 − σ1E•)/β1 ≥ 0,

=⇒ E• ≤ α1

σ1
. (30)

This implies that estrogen cells at any given time t should
be less than the growth coefficient of normal cells. We
also noted earlier on that E• is nonnegative. Therefore, the
existence of a tumor-free equilibrium in this case depends on
the estrogen levels and (30) whilst on the estrogen-free model
it depends on the natural dynamics only.

6.1.2. Dead Equilibrium ψd. An equilibrium point is referred
to as dead if the host cell population is zero. There are two
dead equilibria where the first one is as a result of breast tissue
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removal characterised with both normal cells and tumor cell
population having died off. This is feasible as the competition
has led to exclusion of both normal and tumor cells but

however not of importance since it does not give us anything
to analyse the effects of estrogen on the dynamics of breast
cancer. The second dead equilibrium is given by

ψd = (H•,T•, I•,E•) =
(

0,
γ2I• − α3

β2
,

s

μ + δ3E•/(ν + E•) + γ3T• − ρT•/(ω + T•)
,
π

θ

)

, (31)

where (H•,T•, I•,E•) represents the equilibrium values of
the normal cells, tumor cells, immune cells and estrogen
levels, respectively. This dead equilibrium is a situation where
the normal cells have been out competed by the tumor cells
and as a result the whole breast tissue is a tumor. It exist when
I• < α3/γ2 and μ + δ3E•/(ν + E•) > (ρT•/(ω + T•) − γ3T•).
Which implies the net growth of the tumor cells must be
more than the immune cell value in order to have the tumor
cells outgrowing the normal cells as the reactivation of the
immune cells due to estrogen effects is greater than the
reactivation of the immune cells due to tumor effect.

6.1.3. Coexisting Equilibrium-ψc. The coexisting equilib-
rium state exists when all cell populations would have sur-
vived the competition. This is given by ψc = (H•,T•, I•,E•)
whereH•, T•, I•, and E• represent the coexisting equilibrium
values for the normal cells, tumor cells, immune cells and the
estrogen hormone, respectively, and are given by,

H• = α1 − δ1T• − σ1E•

β1
,

T• = 1
2β1β2

(
−B +

√
B2 − 4β1β2(−α1σ2E• + σ1σ2E•2)

)
,

I• = s

μ− ρT•/(ω + T•) + γ3T• + σ3E•/(υ + E•)
,

E• = π

θ
,

(32)

where B = −α3β1 +β1γ2I•+δ1σ2E•. Since π and θ are positive
parameters, we have E• ≥ 0. We also need α1 ≥ δ1T• + σ1E•

for H• to be feasible at this equilibrium state. That is, the
rate of normal cell growth must be greater than the rate at
which they are lost as a result of interactions with tumor and
presence of more estrogen. The value of T• > 0 at the ψc
when

E•(σ1σ2E
• − α1σ2) ≥ 0. (33)

Therefore we have either E• = 0 resulting in estrogen-
free model or E• ≥ α1/σ1 which implies that the estrogen
levels must be greater than the net growth rate of normal cells
for cells to coexist an opposite case with the tumor-free state
equation (30).

I• exists at ψc when

μ +
σ3E•

υ + E•
>

ρT•

ω + T•
− γ3T

•. (34)

Therefore activation of immune response as a result of
tumor presence should be lower than the rate at which they
are lost due to estrogen effects plus natural death.

6.2. Stability Analysis of Equilibria. Linearising the system at
different equilibrium values gives the following.

6.2.1. Local Stability of the Tumor-Free Equilibria. We would
want to check how the system at the tumor-free equilibrium
point will now behave in terms of stability given the incor-
porated effects of estrogen. The system has four eigenvalues
(λi) which will determine the stability of the system, with the
first two eigenvalues both negative and given as

λ1 = −θ, λ2 = −
μ(π + θυ) + σ3π

π + θυ
. (35)

The remaining eigenvalues are given by the characteristic
equation:

λ2 − λ(α3 + 3σ1E
• + γ2g(i)− α1

)

+ α1α3 − 2g(h)α3β1 − α1α2g(i)

+ 2g(i)g(h)β1γ2 − α3σ1
π

θ

+ g(i)γ2σ1
π

θ
+ g(h)δ1σ2

π

θ
= 0,

(36)

where

g(h) = α1 − σ1E•

β1
,

g(i) = s(E• + υ)
μ(E• + υ) + σ3E•

.

(37)

Since (α3 − α1 + 3σ1E• + γ2g(i)) is positive due to the
fact that the rate of tumor growth is greater than that of
normal cells, that is, α2 > α1, this implies−(α3−α1 + 3σ1E•+
γ2g(i)) is negative and by Routh Hurwitz criterion the system
cannot be stable. Thus the tumor-free equilibrium point is
always unstable implying the existence of estrogen has caused
instability in the tumor free state.

6.2.2. Local Stability of the Coexisting Equilibrium Point. We
linearise the system of differential equations (28) at ψc =
(H•,T•, I•,E•) = (p(h), p(t), p(i),π/θ), where from the
previous section, p(h), p(t) and p(i) are nonnegative and
real parameters. This results in the following eigenvalues
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Table 1: Model parameters and their interpretations.

Parameter Symbol Value Units Reference

Per capita growth rate of normal cells α1 0.70 (day)−1 est

Per capita growth rate of tumor cells α2 0.98 (day)−1 [11]

Natural death rate of normal cells β1 0.30 (day)−1 est

Natural death rate of tumor cells β2 0.40 (day)−1 [12]

Normal cell death rate due to competition δ1 1.0 (day)−1 [12]

Tumor death rate due to immune response γ2 0.9 (day)−1 [12]

Source rate of immune cells s 0.4 (day)−1 [13]

Immune response rate ρ 0.2 (day)−1 [13]

Immune threshold rate ω 0.3 (day)−1 [13]

Natural death rate of immune cells μ 0.29 (day)−1 [12]

with λ1 = −θ which is negative. The other eigenvalues are
obtained from the following characteristic equation:

λ3 + λ2
(
α1 + α3 − 2p(h)β1 − 2p(t)β2 − p(i)γ2

−p(t)δ1 − 2p(t)2β2δ1 − σ1E
• − s

I•

)
+ · · · = 0.

(38)

By Routh-Hurwitz criteria the system is stable only if

α1 + α3 > 2p(h)β1 + 2p(t)β2 + p(i)γ2

+ p(t)δ1 + 2p(t)2β2δ1 + σ1E
• +

s

I•
(39)

It is ideal when we have the growth of the tumor and
normal cells being greater than their depreciation if they
have to survive competition and coexist regardless of the
interactions. Otherwise if the rate of growth of these normal
and tumor cells is lower than the rate at which they die
due to either interaction or naturally, this will lead to
competitive exclusion and hence the dead equilibria. We
therefore conclude that it is ideal to have

α1+ α3 < 2p(h)β1 + 2p(t)β2 + p(i)γ2

+ p(t)δ1 + 2p(t)2β2δ1 + σ1E
• +

s

I•
,

(40)

which implies a negative coefficient for λ2; hence the system
is unstable if cells coexist.

6.2.3. Global Stability of Equilibria. Global stability of
the equilibrium points here is done using Castilo-Chavez
method [42]. We rewrite system (1) as

dX

dt
= F(X ,Z),

dZ

dt
= G(X ,Z),

(41)

where G(X , 0) = 0, X ∈ �3 denotes the undamaged cell
compartments (H(t), I(t) and E(t)), and Z ∈ �1 is
comprised of the damaged cell compartment; T(t).

The conditions below must be satisfied to guarantee
global stability.

H1: For dX/dt = F(X , 0), X• is globally stable.

H2: G(X ,Z) = AZ − G•(X ,Z),G(X ,Z) ≥ 0 for (X ,
Z) ∈ Ω.

where A = DZG(X•, 0) is an M-matrix (with off diagonal
elements as nonnegative) and Ω is the region where the
model makes biological sense. In our case,

F(X , 0) =

⎛

⎜
⎜
⎜
⎝

α1H − β1H2 − σ1HE

s− μI − σ3IE

υ + E
π − θE

⎞

⎟
⎟
⎟
⎠

, (42)

and A is a 1×1 matrix given A = DZG(X•, 0) = α2−2β2T•−
γ2I• and G•(X ,Z) = −(β2T• + σ2H•E•).

The conditions H1 and H2 have not been satisfied.
We therefore conclude that the tumor-free equilibrium, ψt
is globally unstable since G•(X ,Z) < 0. The coexisting
equilibrium point ψc likewise is globally unstable since
G•(X ,Z) < 0 for all nonnegative values of coexisting
equilibrium points. The global stability of the system now
depends for the presence of estrogen levels

7. Numerical Simulations

Matlab 6.5 version was used for all our simulations for both
models using ODE45 solver. Simulations on this model give
us a portrait of the general behaviour of breast cancer cells
in the presence of normal cells and immune cells. We are
also concerned on the parameters which are of importance
in stabilising the model and the ranges in which the system is
stable and unstable. Initial values of variables are H(0) = 1,
T(0) = 10−5, and I(0) = s/μ = 1.379310345 adopted from
[13]. All parameter values used for the numerical simulations
are as shown in Table 1. The numerical solutions generally
show that in the presence of excess estrogen, tumor cells
grow as shown by Figure 1(a) while immune cells and normal
cells decrease with normal cells being the most affected
(Figure 1(b)).

8. Conclusions

The general dynamics of breast cancer have been presented
in form of a system of differential equations. Conditions of
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Figure 1: (a) Showing the general result tumor progression with excess estrogen. (b) Showing the general normal, immune, and estrogen
levels in the presence of excess estrogen.
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Figure 2: (a), (b) are graphs of numerical solutions showing the propagation of normal cells and tumor cells, respectively, with estrogen
variations.
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Figure 3: (a) The propagation of immune cells with estrogen variations. (b) The coexistence state of normal, tumor, and immune cells in
the presence of excess estrogen.
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stability of the tumor-free equilibria were established. The
system is only stable if and only if the immune resistance
is greater than tumor growth rate. That is, the chance
of an individual developing breast cancer depends on the
ability of the immunity to combat tumor cells. We have also
deduced that the presence of excess estrogen in the system
makes it unstable. This implies that additional estrogen
quantity introduced increases rate of tumor development
hence the development of breast cancer. This is supported by
Figure 2(a) which shows that the normal cells grow normally
without excess estrogen levels (pi = 0). However, their growth
is affected negatively in the presence of excess estrogen as they
decrease with increase in estrogen amounts. The excess estro-
gen is however, a favorable condition to the tumor growth.
When pi = 0 tumor cells can be controlled to minimum levels
by the immune system but rises to uncontrollable levels as the
estrogen amount increases bringing the instability as shown
by Figure 2(b). This is so because excess estrogen increases
the rate of tumor formation and also suppresses immune
growth. Figure 3(a) shows that immune levels are reduced
with increase in estrogen levels hence weakening the immune
system. Therefore the immune system will not be able to
compete effectively with the cancer cells and thus will fail
to control the disease. The estrogen-free model is always
stable in the absence of any tumor but as we introduced
estrogen, the system became unstable as shown on the global
stability. Thus, the presence of excess estrogen will lead
into a situation in which the disease is uncontrollable. No
form of control measure or intervention can stabilise the
system since it is always unstable in the presence of excess
estrogen. Therefore, abnormal estrogen levels increase the
chances of an individual developing breast cancer. This can
also implies that the use of estrogen hormone as a birth
control method has a negative impact since it can cause
breast cancer. The global stability of the model system (28)
shows that as estrogen levels approach zero, the tumor-free
equilibrium becomes stable. This brings us to another aspect
that increasing estrogen levels will increase the chance of an
individual developing breast cancer.

Numerical simulations have also shown that tumor
population increases as estrogen source rate increases in
excess estrogen (Figure 2(b)). That is, as estrogen levels
increase, the risk of developing breast cancer also increases.
Normal and immune cells also decreased with an increase in
estrogen levels. This implies that in the long run, the whole
breast tissue will be infested with tumor cells in the presence
of excess estrogen. We have also found out that any estrogen
amount above normal has a negative impact on the dynamics
of normal and immune cells. We therefore conclude that
taking extra estrogen levels either as hormonal birth control
or beauty enhancing practices will increase risk of breast
cancer development.

9. Discussion

The results clearly show a negative relationship of estrogen
amounts and tumor cell development. The development
of tumor cells depends on the ability of the normal cells

(immune system) to combat tumor cells in the absence
of excess estrogen and on estrogen levels plus immune
compatibility in case of excess estrogen levels. However, it
must be noted that it may also depend on genetics of an
individual like the ability of DNA to resist change in structure
and amount of estrogen released during natural biological
processes like menopause and premenopause stages. Expo-
sure periods to radioactive material, for example, are other
external factors which have not also been incorporated in the
model which might result in a difference of the results.
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