A multi-target compiler for DEVS

M. Cristiag®*, D.A. Hollmann®*, C.S. Frydman®*

@CIFASIS and UNR, Rosario, Argentina
bCIFASIS-CONICET, Rosario, Argentina
¢Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,13397, France

Abstract

Discrete Event System Specification (DEVS) is a modular and hierarchical formalism for system modeling
and simulation. Modeling should be performed by using an abstract language; simulation is performed by
tools called concrete simulators. Each concrete simulator has its own input language which, in the case of
atomic DEVS models, it is, essentially, a general-purpose programming language (such as Java or C++).
Hence, once engineers have written an abstract model, they need to manually translate them into the input
language of the concrete simulator of their choice.

In this paper we present a multi-target compiler for atomic DEVS models written in CML-DEVS, an
abstract DEVS modeling language. This multi-target compiler is able to compile a CML-DEVS model to
the input language of the PowerDEVS and DEVS-Suite concrete simulators. In this way, the CML-DEVS
compiler frees engineers from the manual translation of their abstract models. Besides, the same abstract
model can be simulated on many concrete simulators by simply re-compiling the model.

Keywords: DEVS, compiler, CML-DEVS

1. Introduction

Discrete Event System Specification (DEVS) is perhaps the most general and used modeling and simu-
lation (M&S) formalism [1]. In DEVS a system is modeled by giving its structure, through a coupled DEVS
model, and its behavior, through one or more atomic DEVS models, which are composed in intermediate
coupled models that at some point form the final coupled model. Simulation of these models is performed
by tools called concrete simulators (for instance, DEVS-C++ [2], DEVSim++ [3], CD++ [4], PowerDEVS
[5], JDEVS [6], DEVS-Suite [7], LSIS-DME [8]). Usually a concrete simulator provides two languages to
its users: a) a language to compose atomic or coupled models into coupled models, that can be called
structuring language; and b) a programming language to program atomic models, which in general is the
same programming language of the concrete simulator.

Structuring languages are easy to use as they frequently rest on some sophisticated graphical user interface
(GUI) that allows engineers to graphically compose their atomic and coupled models. Indeed, these languages
let engineers not in the habit of programmig, to compose their models as they learned in textbooks. They
also learned that DEVS atomic models should be described in the standard language of mathematics by
using equations, functions, sets, etc. However, when they want to simulate these atomic models they need
to program them in the input language of a concrete simulator, which means to write code in Java or C++
or other general-purpose programming language. Or else, they need to ask to a programmer to do that.
Furthermore, if they want to try out different concrete simulators they need to re-implement their models
for each of them. The process of translating the abstract model (i.e. written in mathematics) to the input
language of a concrete simulator, may induce errors that would render the simulation activity not as accurate
as it should be.

*Corresponding author

Preprint submitted to Elsevier December 28, 2016

For these reasons, we developed CML-DEVS [9], a DEVS specification language based on standard
mathematics and inspired in formal notations such as Z [12], B [13] and TLA+ [14], which are used by the
Software Engineering community. CML-DEVS models may be used to abstractly describe DEVS atomic
models, which can later be composed with the structuring languages provided by concrete simulators. One
of the objectives we had in mind when designing CML-DEVS was that it should be possible to automatically
translate any CML-DEVS model into the input languages of the main concrete simulators.

In this paper we present a multi-target compiler for CML-DEVS models. That is, we present a program
that reads a CML-DEVS specification and generates a program in the input language of a concrete DEVS
simulator. In turn, this program generated by the compiler can be compiled as indicated by the concrete
simulator in order to simulate it. Therefore, the combination of CML-DEVS plus its multi-target compiler
relief engineers from the error-prone, annoying task of translating their abstract models into concrete models.
CML-DEVS plus its multi-target compiler let engineers to think in terms of mathematics and to use several
different concrete simulators for simulating the same model.

In this first version the compiler produces PowerDEVS [5] and DEVS-Suite [10, 7] code, that is, es-
sentially, C++ and Java code, respectively. However, we show how it can be easily extended to produce
concrete models for other tools. In effect, by following standard compiler design techniques, our CML-DEVS
compiler provides the functionality for parsing, type checking, AST construction, etc. of CML-DEVS code
in such a way that producing object code for different concrete simulators is a rather easy task. The tool
presented in this paper is intended to be a proof-of-concept tool, not a production tool. As such, it can be
improved in many ways although it features the basic structure and functionality of more advanced tools.
With this tool we aim at showing to the DEVS community an alternative, complementary technology for
modeling atomic DEVS models. In spite of this, we encourage the DEVS community to try the current
version of the CML-DEVS compiler as it is a fully functional program providing a new way of writing DEVS
atominc models.

The CML-DEVS compiler can be freely downloaded from http://www.cifasis-conicet.gov.ar/hollmann/
projects/CML-DEVS.

The paper is structured as follows. In Section 2 we introduce, by means of a class-room example, the
CML-DEVS specification language, assuming the reader is familiar with DEVS (otherwise refer to [1]). The
CML-DEVS multi-target compiler is described in Section 3 where we comment on key design decisions that
guided us towards its implementation. An empirical evaluation of the compiler is presented in Section 4. This
evaluation consists in collecting fourteen atomic DEVS models, writing them in CML-DEVS and compiling
them to PowerDEVS and DEVS-Suite input languages with the CML-DEVS compiler. Integration of the
CML-DEVS approach with existing DEVS tools is discussed in Section 5. Similar and related works are
described in Section 6. Finally, we give our conclusions in Section 7.

2. Introduction to CML-DEVS

CML-DEVS has been discussed in detail elsewhere [9]. Here we will show its main features by means
of an example. We want to focus on the fact that writing CML-DEVS code is essentially the same than
writing standard mathematics or the same than writing atomic models as in DEVS textbooks or as in the
classroom. An analogy that might apply is that CML-DEVS is to DEVS what ITEX is to mathematics. In
this sense, mathematicians do not find writing math formulas with BTEX particularly annoying although
it requires some learning process. Therefore, we pick an atomic model written as in DEVS textbooks and
present the CML-DEVS code for it. The chosen model is used by Hans Vangheluwe (professor at McGill
University’s School of Computer Science) in his course “Modelling of Software-Intensive Systems”. The
model can be found in his class notes [11] and in Figure 1. This atomic model describes the behavior of two
traffic lights in an intersection. These traffic lights have two modes of operation: autonomous, in which the
lights behave as expected; and manual, in which the lights blink yellow. There is some external mechanism
that switches between modes by sending two events.

We are not going to delve into the behavior of this model as it is quite simple and we assume readers are
familiar with the DEVS formalism. Instead, we want to emphasize the fact that Figure 1 is a mathematical,

DEVS = <X7 57 Y7 5int766$t7 Aa ta>

T=R Sent((RG,€), M) = BB
X:{M’A} 6emt((RKe)7M):BB
w:T—= XU{¢} dest((GR,e), M) = BB
S = {RG,RY,GR,YR, BB} S ((YR,¢), M) = BB
0int(RG) = RY; §;nt(RY) = GR 8ext (BB, e€), M) = RY

— {GREEN, YELLOW , BLINK }
G) = A(RY) = M(GR) = GREEN

YR) = YELLOW

BB) = BLINK

dint(GR) = YR; 0;n:(YR) = RG
ta(RG) = 60s; ta(RY) = 10s
ta(GR) = 50s; ta(YR) = 10s
ta(BB) = +o0

o

Figure 1: Professor Vangheluwe’s atomic DEVS model of two traffic lights

abstract, simulator-independent description of a DEVS atomic model. In other words, we claim that people
with a similar background to Professor Vangheluwe would agree in that Figure 1 represents a typical textbook
description of a DEVS atomic model.

In turn, Figure 2 shows a pretty-printing of the CML-DEVS source code shown in Figure 3 corresponding
to Vangheluwe’s traffic lights atomic model. Note that Figure 2 is, essentially, a mathematical formula much
like Vangheluwe’s formulation of the same model (i.e. Figure 1). It rests on equations, functions and set
theory, with no influence whatsoever from a general-purpose programming language. Information not quite
standard included in Figure 1 is not present in Figure 2—ie., T = R and w : T — X U {¢}. In fact the
main differences between both figures reside in the way functions are given: Vangheluwe gives them through
function application expressions while Figure 2 uses definitions by cases. Actually, definitions by cases are
more general than application expressions, which can only be used for discrete and small functions. Observe
that, in this particular case, these definitions by cases could be automatically translated into function
application expressions. Another difference is that CML-DEVS follows Zeigler’s et al. definition of atomic
models where inputs (X) and outputs (V) are associated to ports [1], whereas Vangheluwe’s formulation
omits this feature. Including port information in atomic models prepares them to be easily coupled with
other models. Probably, Professor Vangheluwe did not include this information for pedagogical issues,
keeping the formalism as simple as possible. The inclusion of port information makes it possible to couple
the model but it also makes it necessary to indicate from (to) what port an event (output) comes (goes)
from (to). This is represented by CML-DEVS reserved word value (see 0.4 definition). In CML-DEVS each
event (output) is an ordered pair of the form (port, value), where value is the value received (sent) in port
port. Hence, when a transition is defined by the arrival of a value, regardless of the port at which it arrives,
the second component of the pair is represented by value.

On the other hand, the CML-DEVS source code of Figure 3 is aligned with the way specifications in
formal notations such as Z, B and TLA+ are written. We think the code is self-explanatory and respects
the way engineers write their abstract models. Although it resembles the form of a program it is important
to make the following observations:

1. It is based on logic, set theory, equations and function definitions, which is hardly the case of, for
instance, Java or C++ programs;

2. There are no side effects as it is a declarative language enjoying referencial transparency [15], which
makes it to be closer to the language of mathematics and farther from imperative programming lan-
guages;

3. This source code can be generated by, for example, a formula editor featuring a rich graphical user
interface, thus relieving engineers from learning the syntax of CML-DEVS; and

4. This source code can be automatically pretty-printed as in Figure 2, by developing a simple translation
tool producing ITEX or XML code as used by word processors or engineering graphical tools.

TrafficLights = (X, 5,Y, 8int, dext, A, ta) where
X ={(in,z) : x € {M, A}}
S ={RG,RY,GR, YR, BB}

RY if s=RG

5 () GR ifs=RY
int\S) =

! YR if s=GR

RG if s=YR

60 if s=RG

10 if s € {RY, YR}

50 if s=GR

400 if s=BB

Y = {(out,y) : y € {GREEN, YELLOW , BLINK }}

BB if s € {RG,RY,GR, YR} Avalue= M
RY ifs=BBAvalue=A

ta(s) =

Oezt (8, value) = {

(out, GREEN) it s € {RG, RY,GR}
A(s) = { (out, YELLOW) if s = YR
(out, BLINK) if s= BB

Figure 2: Pretty-printing of the CML-DEVS source code for Vangheluwe’s traffic lights atomic model

3. The multi-target CML-DEVS compiler

In this section we describe the main features and design of the CML-DEVS multi-target compiler (or
compiler for short). The description is somewhat detailed as we intend it to help the DEVS community to
either implement similar tools or improve the one described in this paper. Some of the design decisions we
show here were made for quickly providing a working tool for the DEVS community.

The CML-DEVS compiler is a Java program based on a standard one-pass compiler design and on the
ANTLR parser generator [16]. Figure 4 shows a descriptive block diagram of the structure of the compiler.
It is multi-target as it is conceived to generate code for different concrete simulators from the same CML-
DEVS model, as we explain in Section 3.1. In this first version, though, it generates only PowerDEVS [5]
and DEVS-Suite [10, 7] code which are essentially C++ and Java code, respectively. As we have said, this
tool is a proof-of-concept whose main goal is to demonstrate the feasibility of the CML-DEVS approach.
Then, we believe that the “multi-target” feature is demonstrated by generating code for more than one
simulator and by showing that each new code generator can be easily implemented (see Section 3.1). Today
the CML-DEVS compiler is less than 20 KLOC including comments (15 KLOC of pure Java code).

The CML-DEVS grammar informed in [9] was written in the grammar language supported by ANTLR.
In this way, ANTLR generated the lexical analyzer or scanner and the syntax and semantic analyzer or
parser. These two functional components are implemented by a collection of Java classes automatically
generated by ANTLR.

The main function of the parser is to generate a concrete syntax tree (CST) of the CML-DEVS model.
This CST is a central data structure as it organizes the model being compiled as a tree structure. The CST
has a node for each terminal and non-terminal defined in the grammar that is being used in the model,
where its children are the tokens that build it. For example, in the CML-DEVS code of Figure 3, ta is
represented as a node whose only child is the defcases structure who, in turn, has four children, one for
each case sentence. Hence, there is a Java class for each token defined in the grammar. However, these

4

atomic TrafficLights is (X,S,Y,dint, dext,lamda, ta) where
Xis
in: {M,A}
end X
Sis
s:{RG,RY,GR, YR, BB}
end S
dint is
defcases
case s = RY if s=RG
case s=GR if s=RY
case s= YR if s=GR
case s = RG if s=YR
end defcases
end dint
ta is
defcases
case 60 if s = RG
case 10 if sin{RY, YR}
case 50 if s =GR
case INF if s=DBB
end defcases
end ta
dext is
defcases
case s = BB if sin{RG,RY,GR, YR} Avalue =M
case s=RY if s=BBAvalue=A
end defcases
end dext
Y is
out : {GREEN, YELLOW , BLINK}
end Y
lamda is
defcases
case (out, GREEN) if sin{RG,RY,GR}
case (out, YELLOW) if s=YR
case (out, BLINK) if s= BB
end defcases
end lamda
end atomic

Figure 3: CML-DEVS source code for Vangheluwe’s traffic lights atomic model

CML-DEVS model

Multi-target compiler i
Scanner
ANTLR l

Parser (CST)

|

PowerDEVS Intermediate code DEVS-Suite
code generator generator (AST) code generator

!

New code generator

!

PowerDEVS model Simulator model DEVS-Suite model

Figure 4: Descriptive block diagram of the CML-DEVS multi-target compiler

classes provides only syntactic information. For instance, in this phase is not possible to know what is
the type of each expression. ANTLR organizes these classes according to the Composite design pattern
[17, ch. 4-Composite], which allows a uniform access to the structure. In particular, an object structure
adhering to a Composite can be analyzed by implementing the Visitor design pattern [17, ch. 5-Visitor].
This combination of design patterns facilitates the implementation of several key functions of the compiler.

One of the key functions of the semantics analysis implemented by a Visitor is type checking and inference.
In turn, this is one of the CML-DEVS characteristics that increases its abstraction level moving it away from
programming languages and getting it closer to the language of mathematics. There are three important
issues in the CML-DEVS type system:

o It works with types not usually found in the input languages of concrete simulators (e.g. sets and
functions);

e It avoids mistakes that surface when the model is simulated and are hard to find;

e It provides an easy way of defining sets that mix elements that usually belong to different types (e.g.
R U {oo}). These sets are frequently used by the DEVS community when describing abstract models.

Although in this first version type checking is not fully implemented, class TypeChecker is a Visitor
implementing type inference. Every heir of class Expression is visited by TypeChecker in order to infer the
type of the expression. These inferred types are used to find out the type of expressions in the target
language, and will later be used to perform type checking.

Besides, ANTLR automatically generates a template! Visitor interface (CMLDEVSVisitor) specifically
tailored to analyze the CST generated after the parsing phase. Currently, the CML-DEVS compiler im-
plements this interface with a set of classes headed by CMLDEVSBaseVisitor whose function is to generate
an abstract syntax tree (AST) containing semantic information about the model. The implementation of
CMLDEVSBaseVisitor requires to set the template parameter with the various classes representing elements
of the intermediate code. In this way, it can be said that the implementation of CMLDEVSBaseVisitor
represents the intermediate code generator (cf. Figure 4).

IThat is, an interface or a class parametrized by a type.

The AST generated by the implementation of CMLDEVSBaseVisitor is organized as a Composite design
pattern headed by the CMLDEVSData interface. Each node in the AST contains information such as the
semantic role played by each syntax element and the type of expressions. For example, in the AST the ta node
of the CST mentioned above, contains information indicating what is the definition part and the condition
part of each case sentence, what is the type of each variable participating in them, etc. This information is
given by storing it in classes whose types convey this semantic information. Note that at the AST level there
are concepts that have no direct implementation in an imperative programming language. For example, §..,
Sint, etc, as expressed in CML-DEVS are mathematical functions according to its semantics, which needs a
non trivial implementation in an imperative programming language. However, this intermediate language
makes it really simple to generate code for each concrete simulator.

3.1. Code generation

Carefully designing the code generation phase (cf. Figure 4) is important in the CML-DEVS compiler as
we intend it to be a multi-target compiler. The main design decision is to postpone code generation as much
as possible. In this way, code generators do not need to implement other functions as they are provided by
previous phases. Then, new code generators are small and simple and easy to add.

When calling the CML-DEVS compiler users must pass a parameter telling to what simulator language
the compilation has to be done. This parameter is used internally to instantiate the proper code generator.
In the CML-DEVS compiler, each code generator has three main responsibilities:

e Produce object code respecting the syntax and conventions of each concrete simulator;

e Distribute the final code in files according to the requirements set by each concrete simulator. For
example, PowerDEVS requires three files for an atomic model (ModelName.pds, ModelName.h and
ModelName.cpp), while DEVS-Suite [10, 7] requires only one (ModelName.java); and

e Substitute reserved words of the target language used in the CML-DEVS specification. For example,
class is a reserved word in C++, Java, etc. but is not in CML-DEVS. Then, engineers may use class
in their CML-DEVS specifications as a name for variables, constants, etc. but when the compiler
generates code for a concrete simulator whose input language is based on an object oriented language,
this word must be replaced because otherwise the generated model will not compile. We discarded
the possibility to reserve more words at the CML-DEVS level because this would mean to collect the
reserved words of all possible input languages of concrete simulators.

Each of these responsibilities is assigned to different classes, which have to be carefully created as they
are related to each other. Creating families of related objects is the purpose of the Abstract Factory design
pattern [17, ch. 3—Abstract Factory]. Hence, the CML-DEVS compiler defines TargetLaguageFactory, an
interface for instantiating objects that depend on the target language.

Target code generation (i.e. the first responsibility listed above) is organized according to the Visitor
design pattern [17, ch. 5-Visitor]. These visitors visit the Composite that structures the AST headed by
CMLDEVSData (i.e. the intermediate representation) and print the final code. Hence, the CML-DEVS
compiler defines the Printer interface such that each of its implementations will print object code corre-
sponding to each sentence of the intermediate language. An excerpt of Printer’s interface is shown in Figure
5. Note that there are methods to print each terminal and non-terminal of the intermediate language. In
this sense, the classes implementing this interface are known as pretty-printers or printers. In fact, these
printers use StringTemplate technology to produce the final code. StringTemplate is a Java template engine
for generating source code, or any other formatted text output, developed by ANTLR’s designer [18].

Therefore, implementing the code generator for PowerDEVS (respect. DEVS-Suite) implies to provide,
among others, a heir of TargetLaguageFactory, called PowerDEVSFactory (respect. DEVSSuiteFactory), and
an implementation of Printer, called PrinterPowerDEVS (respect. PrinterDEVSSuite). We will focus on Print-
erPowerDEVS as PrinterDEVSSuite is very similar, and printers are the most interesting components of code
generation. Implementing PrinterPowerDEVS entails to define a StringTemplate template and implement
some of its methods by calling StringTemplate. Figure 6 shows code snippets of the implementation of three

7

public interface Printer {
String print(State s);
String print(Deltalnt dint);
String print(TimeAdvance ta);
String print (Assignment assig);
String print(Cases cases);
String print(ListExpression listExpression , CMLDEVSType type);
String print(NumberSetExpression numberSetExpression, CMLDEVSType type);
String print(TextValue textValue, CMLDEVSType type);
String print(NatValue natValue, CMLDEVSType type);
String print(ComparisonDiff comparisonDiff);
String print(ComparisonEq comparisonEq);
String print(OperationPlus operationPlus, CMLDEVSType type);
String print(OperationMult operationMult, CMLDEVSType type);

Figure 5: Part of Printer’s interface

methods of PrinterPowerDEVS, and Figure 7 shows an excerpt of the template. As can be seen, the template
consists in the basic structure of the code to be generated with place holders that are replaced each time
the template is used. The replacement can be done with a library provided by StringTemplate. The place
holders are replaced with the actual data taken from the intermediate representation. For example, in the
second sentence of print(), in Figure 6, stHeader is the instantiation of the template shown in Figure 7.
Then, this sentence replaces parameter S of headerFile with the result of print(atomic.getState()), whose
implementation can also be seen in Figure 6.

Hence, implementing a new code generator entails repeating the implementation schema followed for the
implementation of the PowerDEVS and DEVS-Suite code generators. That is, defining a heir of Target-
LaguageFactory and an implementation of Printer and implementing it using StringTemplate. That is, it
would be convenient (although not mandatory) to define a new template considering the peculiarities of the
input language of the concrete simulator. As a matter of fact, the implementation of the methods shown in
Figure 5 for the DEVS-Suite simulator are almost identical to those of PowerDEVS. This means that the
effort of implementing a new code generator is alleviated not only by the general design of the compiler but
also by the fact that existing code generators can be used as the base to implement new ones.

Given that creating object code by printing can be bad in terms of performance, this technique can be
changed or improved in the future by tool developers. This technique was chosen because is one of the
simplest forms of code generation, thus allowing a rapid prototyping of the compiler.

The code corresponding to the PowerDEVS and DEVS-Suite code generators is about 1 KLOC, each.
This shows that the effort of implementing new code generators (cf. Figure 4) is marginal with respect to the
total effort (recall that currently the CML-DEVS compiler is about 20 KLOC), as it is otherwise expected
if proved compiler techniques are followed. In turn, this suggests that the idea of defining a specification
language for atomic DEVS models and designing a multi-target compiler for it, was right.

4. Examples and empirical evaluation

In this section we show some examples of the application of the CML-DEVS compiler. At the same time
we use these examples as the basis for an empirical evaluation of the whole proposal (i.e. the CML-DEVS
modeling language and its multi-target compiler).

We have written in CML-DEVS and compiled to PowerDEVS and DEVS-Suite 14 DEVS atomic models,
including the example of the traffic lights shown in Section 2. In order to use these models as the basis for
an empirical evaluation of our proposal we took them from third-party resources such as books, web sites
and courses. In other words, these models were not proposed by us which would have biased the evaluation.
What we have done, though, is to translate them from the mathematics or semi-formal descriptions used
by their authors into CML-DEVS specifications. In doing so we tried to follow the mathematical structure

8

public Void print() {
stHeader.add (" modelName” , atomic.getName());
stHeader.add("S", print(atomic.getState()));
stSource.add (" lambda”, print(atomic.getLambda()));

public String print(State s) {
String sString = "";
sString += decls2string(s.getStateVars());

return sString;

public String print(LambdaCases cases) {
List<String> casesSt = new Arraylist <>();
for (LambdaCase c: cases.getCases())
casesSt.add (" ("
+ c.getCondition (). accept(this)
+ "){\n"” + c.getPair().accept(this) + "\n}");
String otherwise;
if (cases.hasOtherwise())

otherwise = "\nelse{\n" + cases.getOtherwise ().getPair().accept(this) + "\n}";
else
otherwise = "\ nelse{\n_return_.Event();\n}";
return "if." 4+ StringUtils.join (casesSt, "\nelse_if") 4+ otherwise;
}
Figure 6: Snippets of PrinterPowerDEVS’s implementation
headerFile (modelName, path,params,S,X,Y,dint ,dext, functions , funLib) ::= <<

class <modelName>: public Simulator {
public:
<if (X)> <X> <endif>

<modelName>(const char xn): Simulator(n) {};
void init(double, ...);
double ta(double t);
void dint(double);
void dext(Event , double);
Event lambda(double);
void exit ();

<<

Figure 7: Excerpt of the StringTemplate template used to generate PowerDEVS code

SIZE (IN BYTES)

MODEL SOURCE T CML-DEVS PowerDEVS DEVS-SuitE TIME
ACCtrlUnit Wainer’s sample of DEVS D 2,422 4,245 4,946 2s
models [19]
ACTempProp Wainer’s sample of DEVS D 1,311 2,903 3,669 2s
models [19]
ATMVerif Wainer’s sample of DEVS D 961 2,584 2,991 2s
models [20]
BilliardBall Zeigler and Sarjoughian [10] D 735 2,389 2,945 1s
BinaryCounter Zeigler and Sarjoughian [10] J 631 2,104 2,557 2s
ConstGen PowerDEVS model library C 335 1,415 1,800 1s
CoolUnit Wainer’s sample of DEVS D 746 2,178 2,692 2s
models [19]
ElevatorDoor Wainer’s sample of DEVS D 1,440 3,262 3,964 2s
models [21]
ElevatorEngine Wainer’s sample of DEVS D 1,755 3,464 4,323 2s
models [21]
Generator Zeigler and Sarjoughian [10] J 384 1,491 1,861 1s
Hint Cellier and Kofman [22] C 1,196 2,771 3,312 1s
TrafficLights Vangheluwe’s class notes D 1,051 2,713 3,388 1s
it
Server Wainer’s course material D 799 2,372 3,046 2s
23]
Switch Zeigler and Sarjoughian [10] D 1,045 2,810 3,453 2s

Table 1: Atomic DEVS models used for the evaluation of the CML-DEVS compiler

suggested by each author. Table 1 provides some elemental data of each model, while all the experimental
data and the CML-DEVS compiler are publicly available?. The first column simply identifies the model;
column SOURCE gives the origin and a reference to the authors of the model; column T indicates whether
the CML-DEVS specification was written from a DEVS description (D) or from the source code of an atomic
PowerDEVS (C) or DEVS-Suite (J) model; columns CML-DEVS, POWERDEVS and DEVS-SUITE show,
respectively, the size in bytes of the CML-DEVS specification and the PowerDEVS and DEVS-Suite source
code resulting from compiling the specification with the CML-DEVS compiler; finally, column TIME is the
approximated compilation time (of both PowerDEVS and DEVS-Suite since the differences are negligible).

As can be seen from Table 1, the examples cover a wide range of applications, origins and authors, thus
representing a reasonable sample. In effect, we have collected models from six different sources and author-
ships. The sources include Cellier and Kofman’s book on continuous system simulation; the PowerDEVS
library of atomic models; Professor Vangheluwe’s class notes of his course “Modelling of Software-Intensive
Systems” given at McGill University; Professor Wainer’s repository on CD++ models which includes mod-
els written by students who took his course “Simulation of Discrete Event Systems” given at Buenos Aires
University and “Methodological aspects of modeling and simulation” taught at Carleton University; the
technical report from Zeigler and Sarjoughian on M&S describing DEVS-Suite; and a model described by
Professor Wainer himself in one of his class presentations. That is, there are models written by experts and
students as well. In fact, some of the students’ models have to be slightly modified or corrected as they
contain errors such as, for instance, modifications of the state inside the output function (). The models
listed in Table 1 where compiled on the following platform: AMD Athlon(tm) 7850 Dual-Core Processor
CPU at 1.40GHz with 4 Gb of main memory, running Linux Kubuntu 14.04 (Trusty Tahr) of 64-bit with
kernel 3.16.0-67-generic; the CML-DEVS compiler uses Java 1.7, ANTLR 4.5 and StringTemplate 4.0.8.

2http://www.cifasis-conicet.gov.ar/hollmann/projects/CML-DEVS

10

The compilation times shown in the table are approximate and rounded. As the table shows, times are
reasonable, furthermore considering that the current version of the CML-DEVS compiler is, above all, a
proof-of-concept. It is also clear that the sizes of the compiled models are higher than the CML-DEVS
specifications, which is an indication of the syntactic complexity of the formers with respect to the latter.
Complexity that is hidden to engineers using this approach.

Precisely, as an example of the code generated by the CML-DEVS compiler, Figure 8 lists the result of
compiling the traffic lights model (Figure 3) to the PowerDEVS input language (in the Appendix, Figure
A .13 lists the result of compiling the same model to DEVS-Suite). As the figure shows, the code is clean,
well-indented and structured, and strictly follows the conventions set forth by PowerDEVS (e.g., there is
a function called dint for the internal transition function, another function dext for the external transition
function and so on). Note the use of function findInSet which is a function implemented as part of the CML-
DEVS framework. Functions such as this are included in library auxFunc which in turn is made available to
the PowerDEVS model. PowerDEVS’ users would have to write their own set manipulation functions if they
would have implemented the model without the CML-DEVS compiler. Instead, by using the compiler, they
can simply write sin { RG, RY, GR} and let the compiler to implement it. Last, but not least, compare the
simplicity, familiarity and cleanness of the CML-DEVS source code of Figure 3 with respect to the C++ code
of Figure 8. For example, in the former there are no things such as casts and pointers (i.e. programming,
not modeling, concepts), which are necessary in the latter. We argue that the model of Figure 3 can be
written by an engineer completely unaware of C++, which is not the case for the program of Figure 8.

Finally, we would like to comment on examples BinaryCounter, ConstGen, Generator and HInt. They
were written from PowerDEVS (ConstGen and HInt) and DEVS-Suite (BinaryCounter and Generator)
source code rather than from pure DEVS models. We did so to compare the code generated by the CML-
DEVS compiler with respect to the code written by PowerDEVS and DEVS-Suite expert users. Model HInt
is an hysteretic quantized integrator which is used in continuous system simulation, as defined by Cellier and
Kofman [22]. Model ConstGen is a very simple model that generates a constant. BinaryCounter is a model
producing an output for every two inputs that are received. Generator is an example of a proactive system
which produces output at a regular pace. In order to keep the presentation concise, we include here the
analysis of model HInt but similar conclusions can be drawn from the other three models. Figure 9 lists the
PowerDEVS code of HInt as proposed by Cellier and Kofman [22, p. 545]. In turn, the CML-DEVS code
is in Figure 11 and the result of compiling it is in Figure 10. As can be seen, both PowerDEVS programs
are similar in size, structure and functionality. Furthermore, in Figure 12 we can see the results of using
both implementations (i.e. Figures 9 and 10) as part of a PowerDEVS simulation. It is obvious that both
programs yield the same results, which is an indication that the compilation of the CML-DEVS specification
behaves the same with respect to the original model.

We believe that this evaluation shows that the whole approach (i.e. the CML-DEVS specification lan-
guage and its multi-target compiler) is feasible and has several advantages over existing technology.

5. Integrating CML-DEVS within existing simulators

Mainstream DEVS simulators usually feature powerful GUIs that allow users to easily compose large
models from existing ones. However, as we pointed out, atomic models have to be written in general-purpose
programming languages. For this task, DEVS simulators either provide a programming editor or users can
use the editor of their choice. Once the new atomic model is written it can be used as a component of larger
models by a simple gesture of the GUI.

Therefore, we foresee the following simple integration strategy of the CML-DEVS multi-target compiler
within these simulators:

1. Write CML-DEVS code with some programming editor. Ideally, a CML-DEVS editor, such as a
formula editor, can be developed and integrated into existing simulation environments.

2. Compile each CML-DEVS model into the input language of the simulator you are using. Here the
CML-DEVS editor can call the compiler.

11

#include " TrafficLights.h”
using namespace auxFunc;

void TrafficLights::dint(double t) {
TrafficLights prev(”"");

prev = xthis;

if (prev.s = "RG")
s = "RY";

else if (prev.s = "RY")
s = "GR";

else if (prev.s = "GR")
s = "YR";

else if (prev.s = "YR")
s = "RG";

}

void TrafficLights::dext(Event x, double t) {
TrafficLights prev("");

prev = xthis;

std::string value = x(std::string=x)(x.value);

if (findInSet(prev.s, {"RY", "RG", "YR", "GR"}) && value = "M")
s = "BB;

else if (prev.s = "BB" && value = "A")
s = "RY";

}
Event TrafficLights::lambda(double t) {

if (findInSet(s, {"RY", "RG", "GR"})) {
out = "GREEN";
return Event(&out, Y_out);

}
else if (s = "YR")
out = "YELLOW" ;
return Event(&out, Y_out);

else if (s = "BB") {
out = "BLINK";
return Event(&out, Y_out);
}
else
return Event ();
}
double TrafficLights::ta(double t) {
if (s = "RG")
return 60.0;
else if (s = "RY")
return 10.0;
else if (s = "GR")
return 50.0;
else if (s = "YR")
return 10.0;
else if ((s = "BB"))
return INFINITY;

Figure 8: Result of compiling to PowerDEVS input language (C++) the traffic lights model shown in Fig. 3

12

#include "Hlint.h"
double HlInt::ta() {
return sigma;

void Hint::dint(double t) {
X = X 4+ sigma x dX;
if (dX > 0) {
sigma = dq / dX;

#include "Hlint.h"
double HInt::ta(double t) {
return sigma;

void HiInt::dint(double t) {
Hint p = xthis;
xS = p.xS + sigma x p.dX;
if (p.dX > 0) {

q = q + dq; sigma = p.dq / p.dX;
} a=p.q+ p.dq;
else }
if (dX < 0) { else
sigma = —dq / dX; if (p.dX < 0) {
q =gq — dq; sigma = —p.dq / p.dX;
} qg=p.q— p.dq;
else }
sigma = inf; else
} sigma = INFINITY;
void Hlint::dext(Event x, double t) { void Hint::dext(Event x, double t) {
float xv; Hint p = xthis;
xv = *(float«*)(x.value); double value = x(doublex)(x.value);
X=X+ dX % e; xS = p.xS 4+ p.dX x e;
if (xv > 0) if (value > 0)
sigma = (q + dq — X) / xv; sigma = (p.q + p.dq — p.xS)/value;
else else
if (xv < 0) if ((value < 0))
sigma = (q — epsilon — X) / xv; sigma=(p.q—p.epsilon—p.xS)/value;
else else
sigma = inf ; sigma = INFINITY;
dX = xv; dX = value;
} }
Event Hlnt::lambda(double t) { Event HlInt::lambda(double t) {
if (dX = 0) if (dX = 10) {
y = 4q; y = q;
else else
y =4q + dq * dX / fabs(dX); y = q + (dg x dX) / fabs(dX);
return Event(&y,0); return Event(&y, Y.y);
} }

Figure 9: PowerDEVS (C++) implementation of HInt as
given by Cellier and Kofman

13

Figure 10: PowerDEVS (C++) implementation of HInt re-
sulting from compiling the CML-DEVS model of Figure 11

atomic HInt is (X,S,Y,dint, dext, lamda, ta) where
Sis
zS: R
dX : R
q: R
sigma : R
end S
Xis
zX : R
end X
Y is
y: R
end Y
dint is
xS = xS + sigma * dX
defcases
case sigma =dq/dX Nq=q+dq if dX >0
otherwise defcases
case sigma = —dq/dX Ng=q—dq if dX <0
otherwise sigma = INF
end defcases
end defcases
end dint
dext is
S =x5+dX xe
defcases
case sigma = (q + dg — x5) /value if value >0
otherwise defcases
case sigma = (q — epsilon — z5) /value if value <0
otherwise sigma = INF
end defcases
end defcases
dX = value
end dext
lamda is
defcases
case (y,q) if dX =0
otherwise (y,q + dgq * dX/abs(dX))
end defcases
end lamda
ta is
stgma
end ta
end atomic

Figure 11: CML-DEVS source code for Cellier and Kofman’s HInt

14

7 T T 7 T T T T
\ Hintegrator from PowerDEVS ——— \ Hintegrator from CML-DEVS
B e] B []
\ \
\ : \
L\ ! S 1
\ \
\ \
a b \ e J a e i
\ AN
3L . o 3 b N i
s L . J 2 | i
~ - . —_—
1L B . J 1k T i
0 L L 1 1 o 1 1 L L

Figure 12: Plot of the curves obtained by simulating the model given in Figure 9 (left) and Figure 10 (right)

3. Save the compiled model as any other atomic model of the simulator. CML-DEVS compiled models
are indistinguishable from atomic models compiled by other means.

4. Now users can couple compiled CML-DEVS models with other models as is normally done in this
particular simulator (i.e. by using exactly the same GUI gesture).

In this way, simulators’ users will build their DEVS models as usual up until the moment they need
to write a new atomic model. At this point the simulator environment can call the CML-DEVS editor
allowing users to write more abstract, mathematics-oriented models that will be transparently coupled in
larger models. Furthermore, if users want to try out these atomic models on different simulators they can
simply take the CML-DEVS sources to the environment of the new simulator (optionally the can compile
the CML-DEVS models and export the object code). From this point, coupling these models proceeds as
usual in the new simulator.

6. Related work

As far as we know there is no approach such as the CML-DEVS multi-target compiler regarding the
automatic generation of atomic DEVS models. However, there are some works that in a way or another are
related to this approach. We will briefly comment on them in this section.

CML-DEVS has some relation with the standardization effort carried on by the DEVS community
[24]. Within the standardization areas identified by this group [25, 26, 27], model representation could be
approached with notations such as CML-DEVS. In particular, DEVSpecL. developed by Hong and Kim
[28], which somewhat inspired CML-DEVS, could also be used as an abstract model representation. The
relation between CML-DEVS and DEVSpecL was commented by Hollmann et al. elsewhere [9]. Mittal
and Douglass [29] present a domain specific language, based on Finite Deterministic DEVS, which, with
some limitations, can also be used to write abstract DEVS models. These last two proposals would allow
automatic code generation in order to get executable DEVS code in different DEVS implementations, but
apparently they do not face this problem. Several works propose XML as a language to describe DEVS
models [30, 31, 27, 32]. One of the reasons is that XML is platform independent. We believe that XML
bears no relation with the notion of abstract model as we understand it, i.e. in the sense to its distance with
respect to the language of mathematics and formal logic. XML could, indeed, be useful to communicate
and share models among computers, systems and tools.

CML-DEVS is inspired by the formal notations used in software engineering such as Z [12], B [13] and
TLA+ [14]. For example, the semantics of DEVS can be formalized in TLA+ [33] as this notation is based
on temporal logic which provides the semantics for reactive systems. Engineering and scientific software tend
to have many errors that turn decision-making based on them risky [34, 35, 36]. Researchers and engineers
use software that has not been verified [37]. Some errors are introduced due to development processes based
on informal descriptions. In this sense, the CML-DEVS approach is an attempt to formalize the process of
developing a concrete simulation model.

15

Model-Driven Engineering (MDE) and Model-Driven Development (MDD) attempts to translate abstract
models into more concrete models by means of model transformations. Once the initial model and all
the model transformations are given, the final model can be automatically generated [38]. Note that the
final goal of MDE applied to DEVS models and the CML-DEVS approach is the same. In this setting,
CML-DEVS would be the modeling language used to describe an abstract model and the CML-DEVS
compiler would be a model transformation. However, in the MDE community formal specification and
compiling techniques are rarely mentioned. On the other hand, the DEVS community has attempted to
adopt concepts and techniques from MDE and MDD, in particular there are efforts in defining model
transformations [39, 40, 41, 42, 43, 44, 45]. In these approaches, different modeling or metal-modeling
languages are proposed to describe DEVS models in such a way that they can be automatically transformed
by the corresponding model transformations. None of these modeling languages describes atomic DEVS
models using only mathematical or logical concepts. The modeling and metal-modeling languages proposed
within the DEVS community, instead, are based on general on Object Oriented technologies and notations,
notably UML, XML, OCL, etc. Although some of the model transformations proposed in the works cited
above are automatic, some of them still require to write code in some general-purpose programming language.
In this way, we think that our work provides a concrete implementation of a modeling language and a model
transformation, although not inspired in MDE or MDD concepts.

7. Concluding remarks

We have presented the main features and properties of a multi-target compiler for CML-DEVS speci-
fications. We have shown that CML-DEVS specifications are quite close to the way engineers would use
mathematics to write their atomic DEVS models. Then we have shown that these specifications can be
compiled into the input language of PowerDEVS and DEVS-Suite, which are mainstream DEVS simulators.
We have also provided evidence that the code generation phase of the CML-DEVS compiler can be easily
reimplemented as to generate code for other DEVS concrete simulators. Indeed, currently, code generators
for PowerDEVS and DEVS-Suite are about 10% of the total compiler code, what makes evident that code
generation is relatively easy. But it is even more important that plugging-in a new code generator is favored
by the design of the compiler as it is based on well-known design patterns. In fact, plugging-in a new code
generator would require no code modification but only new code. A multi-target compiler would enable
the possibility of easily simulating the same atomic model on an array of concrete simulators by simply
recompiling the CML-DEVS specification.

Having an abstract, mathematics-oriented specification language for DEVS models and a compiler that
automatically produces concrete models, would make the task of M&S much easier, productive and less
error-prone. In effect, from the conception of the idea of a DEVS model to its implementation in the input
language of major concrete simulators, either the engineer has to learn a programming language or to ask
a programmer to implement his or her models. In either case, the initial model is read and interpreted by
different persons along a lengthy time period. This multiple readings might introduce errors in the final
model with respect to the initial, abstract model. Furthermore, if engineers want to see how the model
behaves (in terms of performance, for instance) on different simulators, they need to implement it over and
over again, in which case more errors can be introduced. Letting errors apart, the productivity would be
increased if the same CML-DEVS specification can be automatically implemented for different simulators.
Moreover, engineers would not need to learn to program nor to rest on a programmer to try out their models.
Put it in another way, how much time and effort would need, say, an electric engineer to learn C++ in such
a way as to be able to produce the code of Figure 87 And conversely, how much time and effort would (s)he
need to learn CML-DEVS,; provided (s)he already knows DEVS, in such a way as to be able to produce the
code of Figure 37 What is the core business of an electric engineer: to program or to write mathematical
models?

Having a multi-target compiler opens the door to, at least, two important aspects: a) the compiler can
be optimized by experts in such a way as to produce the best possible code; and b) once the compiler is
proved correct, model translation stops being a source of errors and problems.

16

Acknowledgments

This research was partially funded by CONICET under a postdoctoral grant and by ANPCyT under

PICT 2014-2200.

References

(1]
2]
(3]
(4]
(5]

6

(10]
(11]
[12]
[13]
14]

(15]

[16]
(17)

(18]

(19]
20]
21]

[22]
23]

[24]
[25]

[26]

B. P. Zeigler, T. G. Kim, H. Praehofer, Theory of Modeling and Simulation, Academic Press, Inc., Orlando, FL, USA,
2000.

H. J. Cho, Y. K. Cho, DEVS-C++ Reference Guide, The University of Arizona (1997).

T. G. Kim, DEVSim++ User’s Manual. C++ Based Simulation with Hierarchical Modular DEVS Models., Korea Advance
Institute of Science and Technology (1994).

G. A. Wainer, CD++: a toolkit to develop DEVS models, Softw., Pract. Exper. 32 (13) (2002) 1261-1306.
doi:10.1002/spe.482.

URL http://dx.doi.org/10.1002/spe.482

F. Bergero, E. Kofman, PowerDEVS: a tool for hybrid system modeling and real-time simulation, Simulation 87 (1-2)
(2011) 113-132. doi:10.1177/0037549710368029.

URL http://dx.doi.org/10.1177/0037549710368029

J. Filippi, P. Bisgambiglia, JDEVS: an implementation of a DEVS based formal framework for environmental modelling,
Environmental Modelling and Software 19 (3) (2004) 261-274. doi:10.1016/j.envsoft.2003.08.016.

URL http://dx.doi.org/10.1016/j.envsoft.2003.08.016

S. Kim, H. S. Sarjoughian, V. Elamvazhuthi, DEVS-suite: a simulator supporting visual experimentation design and
behavior monitoring, in: Wainer et al. [46].

URL http://dl.acm.org/citation.cfm?id=1639809.1655390

M. E.-A. Hamri, G. Zacharewicz, LSIS-DME: An Environment for Modeling and Simulation of DEVS Specifications, in:
AIS-CMS International modeling and simulation multiconference, Buenos Aires, Argentina, 2007, pp. 55—60.

D. A. Hollmann, M. Cristi4, C. Frydman, CML-DEVS: A specification language for DEVS conceptual models, Simulation
Modelling Practice and Theory 57 (2015) 100 — 117. doi:http://dx.doi.org/10.1016/j.simpat.2015.06.007.

URL http://wuw.sciencedirect.com/science/article/pii/S1569190X15001021

B. P. Zeigler, H. S. Sarjoughian, Introduction to DEVS modeling and simulation with Java: Developing component-based
simulation models, Tech. rep. (2003).

H. Vangheluwe, The Discrete EVent System specification (DEVS) formalism.

URL http://msdl.cs.mcgill.ca/people/hv/teaching/MoSIS/notes.DEVS.pdf

J. M. Spivey, The Z notation: a reference manual, Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1992.
J.-R. Abrial, The B-book: Assigning Programs to Meanings, Cambridge University Press, New York, NY, USA, 1996.

L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

C. Strachey, Fundamental concepts in programming languages, Higher-Order and Symbolic Computation 13 (1/2) (2000)
11-49. doi:10.1023/A:1010000313106.

URL http://dx.doi.org/10.1023/A:1010000313106

T. Parr, The Definitive ANTLR 4 Reference, Oreilly and Associate Series, Pragmatic Programmers, LLC, 2013.

URL http://books.google.com.ar/books?id=SBXuLwEACAAJ

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-oriented Software, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

T. J. Parr, Enforcing strict model-view separation in template engines, in: S. I. Feldman, M. Uretsky, M. Najork, C. E.
Wills (Eds.), Proceedings of the 13th international conference on World Wide Web, WWW 2004, New York, NY, USA,
May 17-20, 2004, ACM, 2004, pp. 224-233. doi:10.1145/988672.988703.

URL http://doi.acm.org/10.1145/988672.988703

L. Fal, G. Vasconcelos, Simulation of discrete event systems — course assignment 1.

URL http://wuw.sce.carleton.ca/faculty/wainer/wbgraf/samples/airconditionPARALLEL.zip

H. Saadawi, Sysc-5807 - methodological aspects of modeling and simulation — course assignment 1.

URL http://wuw.sce.carleton.ca/faculty/wainer/wbgraf/samples/airconditionPARALLEL.zip

G. Herrero, Simulation of discrete event systems — course assignment 1.

URL http://wuw.sce.carleton.ca/faculty/wainer/wbgraf/samples/airconditionPARALLEL.zip

F. E. Cellier, E. Kofman, Continuous System Simulation, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

G. Wainer, Sysc-5104 — methodologies for discrete-event modelling and simulation.

URL http://wuw.sce.carleton.ca/courses/sysc-5104/doku. php

DEVS Standardization Group, http://cell-devs.sce.carleton.ca/devsgroup/ (Accessed: 2016-01-18).

G. A. Wainer, K. Al-Zoubi, D. R. Hill, S. Mittal, J. L. R. Martin, H. Sarjoughian, L. Touraille, M. K. Traoré, B. P. Zeigler,
Discrete-event modeling and simulation: Theory and applications, Taylor & Francis, 2010, Ch. An Introduction to DEVS
Standardization, pp. 393-425.

G. A. Wainer, K. Al-Zoubi, D. R. Hill, S. Mittal, J. L. R. Martin, H. Sarjoughian, M. K. T. Luc Touraille, B. P. Zeigler,
Discrete-event modeling and simulation: Theory and applications, Taylor & Francis, 2010, Ch. Standardizing DEVS Model

17

27]

(28]

29]

(30]

(31]

(32]

33]

34]
(35]

[36]
37)

(38]

(39]
[40]

[41]

42]

[43]

44]

[45]

[46]

Representation, pp. 427-458.

URL http://books.google.com.ar/books?id=WQvzk7ZnwHkC

L. Touraille, M. K. Traoré, D. R. C. Hill, A mark-up language for the storage, retrieval, sharing and interoperability of
DEVS models, in: Wainer et al. [46].

URL http://dl.acm.org/citation.cfm?id=1639809.1655392

K. J. Hong, T. G. Kim, Devspecl: DEVS specification language for modeling, simulation and analysis of discrete event
systems, Information & Software Technology 48 (4) (2006) 221-234. doi:10.1016/.infsof.2005.04.008.

URL http://dx.doi.org/10.1016/j.infsof.2005.04.008

S. Mittal, S. A. Douglass, DEVSML 2.0: the language and the stack, in: G. A. Wainer, P. J. Mosterman (Eds.), 2012 Spring
Simulation Multiconference, SpringSim ’12, Orlando, FL, USA, March 26-29, 2012, Proceedings of the 2012 Symposium
on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, SCS/ACM, 2012, p. 17.

URL http://dl.acm.org/citation.cfm?id=2346633

P. A. Fishwick, XML-based modeling and simulation: using XML for simulation modeling, in: J. L. Snowdon, J. M.
Charnes (Eds.), Proceedings of the 34th Winter Simulation Conference: Exploring New Frontiers, San Diego, California,
USA, December 8-11, 2002, WSC, 2002, pp. 616-622. doi:10.1109/WSC.2002.1172938.

URL http://dx.doi.org/10.1109/WSC.2002.1172938

M. Rohl, A. M. Uhrmacher, Flexible integration of XML into modeling and simulation systems, in: Proceedings
of the 37th Winter Simulation Conference, Orlando, FL, USA, December 4-7, 2005, WSC, 2005, pp. 1813-1820.
doi:10.1109/WSC.2005.1574456.

URL http://dx.doi.org/10.1109/WSC.2005.1574456

H. S. Sarjoughian, Y. Chen, Standardizing DEVS models: an endogenous standpoint, in: G. A. Wainer, M. K. Traoré,
R. Heckel, J. Himmelspach (Eds.), 2011 Spring Simulation Multi-conference, SpringSim ’11, Boston, MA, USA, April
03-07, 2011. Volume 4: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium (TMS-DEVS)., SCS/ACM, 2011, pp. 266-273.

URL http://dl.acm.org/citation.cfm?id=2048511

M. Cristid, Formalizing the semantics of modular DEVS models with temporal logic, in: 7éme Conférence on Modélisation,
Optimisation et Simulation des Systéemes MOSIM 08, 2008.

L. Hatton, A. Roberts, How accurate is scientific software?, IEEE Trans. Software Eng. 20 (10) (1994) 785-797.
doi:10.1109/32.328993.

URL http://dx.doi.org/10.1109/32.328993

L. Hatton, The chimera of software quality, IEEE Computer 40 (8) (2007) 104, 102-103. doi:10.1109/MC.2007.292.
URL http://dx.doi.org/10.1109/MC.2007.292

D. E. Post, L. G. Votta, Computational science demands a new paradigm, Physics Today 58 (1) (2005) 35-41.

L. N. Joppa, G. MclInerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, D. Gavaghan, S. Emmott, Troubling trends in scien-
tific software use, Science 340 (6134) (2013) 814-815. arXiv:http://science.sciencemag.org/content/340,/6134/814.full.pdf,
doi:10.1126 /science.1231535.

URL http://science.sciencemag.org/content/340/6134/814

M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, Synthesis Lectures on Software
Engineering, Morgan & Claypool Publishers, 2012. doi:10.2200/S00441ED1V01Y201208SWE001.

URL http://dx.doi.org/10.2200/S00441ED1V01Y201208SWE001

H. Vangheluwe, Foundations of modelling and simulation of complex systems, ECEASST 10.

URL http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/162

T. Kiithne, G. Mezei, E. Syriani, H. Vangheluwe, M. Wimmer, Systematic transformation development, ECEASST 21.
URL http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/290

D. Cetinkaya, A. Verbraeck, M. D. Seck, Model continuity in discrete event simulation: A framework for model-driven
development of simulation models, ACM Trans. Model. Comput. Simul. 25 (3) (2015) 17. doi:10.1145/2699714.

URL http://doi.acm.org/10.1145/2699714

D. Cetinkaya, A. Verbraeck, M. D. Seck, Applying a model driven approach to component based modeling and simulation,
in: Proceedings of the 2010 Winter Simulation Conference, WSC 2010, Baltimore, Maryland, USA, 5-8 December 2010,
WSC, 2010, pp. 546-553. doi:10.1109/WSC.2010.5679131.

URL http://dx.doi.org/10.1109/WSC.2010.5679131

D. Cetinkaya, A. Verbraeck, M. D. Seck, A metamodel and a DEVS implementation for component based hierarchical
simulation modeling, in: R. M. McGraw, E. S. Imsand, M. J. Chinni (Eds.), Proceedings of the 2010 Spring Simulation
Multiconference, SpringSim 2010, Orlando, Florida, USA, April 11-15, 2010, SCS/ACM, 2010, p. 170.

URL http://dl.acm.org/citation.cfm?id=1878537.1878714

D. Cetinkaya, A. Verbraeck, Metamodeling and model transformations in modeling and simulation, in: S. Jain, R. R. C.
Jr., J. Himmelspach, K. P. White, M. C. Fu (Eds.), Winter Simulation Conference 2011, WSC’11, Phoenix, AZ, USA,
December 11-14, 2011, WSC, 2011, pp. 3048-3058. doi:10.1109/WSC.2011.6148005.

URL http://dx.doi.org/10.1109/WSC.2011.6148005

L. Touraille, Application of Model-Driven Engineering and Metaprogramming to DEVS Modeling & Simulation, Ph.D.
thesis, Doctoral dissertation, Université d’Auvergne (2012).

G. A. Wainer, C. A. Shaffer, R. M. McGraw, M. J. Chinni (Eds.), Proceedings of the 2009 Spring Simulation Multicon-
ference, SpringSim 2009, San Diego, California, USA, March 22-27, 2009, SCS/ACM, 2009.

18

Appendix A. DEVS-Suite Code of the CML-DEVS Traffic Lights Model

Fig. A.13 lists the Java code resulting from compiling the traffic light model of Fig. 3 with the CML-
DEVS compiler choosing Java as the target language. This Java represents an atomic DEVS model of the
DEVS-Suite simulator. The code has been edited to make it fit into a single page.

19

package TrafficLights;

import GenCol.entity;

import model. modeling.content;
import model. modeling . message;
import view.modeling.ViewableAtomic;
import java.util .x;

public class TrafficLights extends ViewableAtomic implements Cloneable {
String s = new String();
String In = new String ();

public class outEnt extends entity {
String value;
outEnt(String value) {this.value = value;}
public String getValue() {return value;}
public String getName() {return value.toString();}

}

public TrafficLights() {
super(” TrafficLights”);
addlnport("In");
addOutport (" out”);

}

public void deltint () {
TrafficLights prev = null;
try prev = (TrafficLights)this.clone();
catch (CloneNotSupportedException ex) System.out.printlin(”Clone_not_supported”);

if ((prev.s = "RG")) s = "RY";
else if ((prev.s = "RY")) s = "GR";
) s ="YR";

else if ((prev.s = "GR")
else if ((prev.s = "YR")) s = "RG";

public void deltext(double e, message x) {
TrafficLights prev = null;
try prev = (TrafficLights)this.clone();
catch (CloneNotSupportedException ex) System.out.printlin(”Clone_not_supported”);
String port = x.getPortNames().toArray ()[0].toString ();
String value = (String)(x.read (0)).getValue();
if (((new TreeSet<String >(Arrays.asList("GR”, "RG”, "RY", "YR"))).contains(prev.s)

&& (value = "M"))) s = "BB";
else if (((prev.s = "BB") && (value = "A"))) s = "RY";
}
public message out() {
message mess = new message ();

content cont;

if ((new TreeSet<String >(Arrays.asList("GR”, "RG”", "RY"))).contains(s))
cont = makeContent(”out”, new outEnt("GREY"));

else if ((s = "YR")) cont = makeContent("out”, new outEnt(”"YELLOW"));

else if ((s = "BB")) cont = makeContent(”"out”, new outEnt(”BLINK"));

else cont = makeContent(”", new entity ());
mess.add(cont);

return mess;

}
public double ta() {

if ((s = "RG")) return 60.0;

else if ((s = "RY")) return 10.0;
else if ((s = "GR”)) return 50.0;
else if ((s = "YR"”)) return 10.0;

else if ((s = "BB")) return INFINITY;
else return INFINITY

Figure A.13: Result of compiling to DEVS-Suite input language the traffic lights model shown in Fig. 3
20

