
 Design and Implementation of Event-based DEVS Execution Environment
for Faster Execution of Iterative Simulation

Se Jung Kwon and Tag Gon Kim

Department of Electrical Engineering
Korea Advanced Institute of Science of Technology

Daejeon, KOREA
(E-mail : sjkwon@smslab.kaist.ac.kr, tkim@ee.kaist.ac.kr)

Keywords: Discrete event simulation, DEVS, Discrete
event simulation speedup, Event scheduling world view

Abstract

Discrete EVent systems Specification (DEVS) is one of
the most frequently utilized system specifications to model
discrete event systems in the real world. To analyze system
behavior, simulation results are collected by executing the
DEVS model. Although a large number of results are
essential for the accuracy of analysis, the existing execution
environment we developed is not focused on faster iterative
simulation for collecting plenty of data.
This paper proposes a new DEVS execution environment
applied to event scheduling worldview for faster iterative
execution. It proposes an event-oriented DEVS model for
simple event scheduling and suggests mediation processes
to simulate the DEVS-Compliant model with improved
performance, similar to simple event scheduling.
This paper discusses a performance test to verify the
execution environment. The experimental results show that
the proposed environment has significantly shorter
execution time. The expectation is that this improved
simulation engine will be applicable to iterative DEVS
execution for collecting simulation results. It increases the
accuracy of system analysis.

1. INTRODUCTION
 Discrete Event System (DES) has been widely used to
analyze system behavior in the military domain, industrial
domain, social decisions, and more. DEVS is one of the
most frequently utilized system specifications to model
discrete event systems in the real world.
To analyze the behavior of the discrete event system, many
simulation results should be collected by executing the
DEVS model using a DEVS executing environment. The
executing environment consists of a simulation engine with
a scheduling algorithm and implemented DEVS model
executed by simulation engine. The simulation engine
executes the imminent model of implemented DEVS model
with a scheduling algorithm and moves output messages
among interconnected components.
In the System Modeling and Simulation laboratory in
KAIST, we developed DEVSim++ as a DEVS execution

environment [1]. DEVSim++ realizes the DEVS formalism
for modeling and associated abstract simulator concepts for
simulation, all in C++. The implemented models of
DEVSim++ have a hierarchical structure and the same
interface as DEVS. In other words, the models are DEVS-
Compliant models, which satisfy the interface of DEVS
formalism. The DEVSim++ schedules the DEVS-Compliant
models and provides logging system for debugging.
Simulators can be developed with more convenient
modeling, debugging and verification.
The environment has been applied in the Korean military
domain, and many simulation models have been developed
[3][4][5]. In our empirical studies, however, the simulators
produced simulation results with lower performance
because the hierarchical scheduling and the modular
property of DEVS caused simulation overhead. The
execution time of the simulators was relatively short time.
However, while executing the simulator with several
random variables many times, the short time became a
considerable amount of time.
Therefore, improvement in iterative execution performance
has become an important issue for our M&S toolkit. The
primitive method is improvement in computing power or
parallel execution [6][7]. Apart from these methods, this
paper focuses on improvement of the simulation algorithm
for faster iterative execution.
Our salient attempt to improve the performance is reducing
the overhead of hierarchical structure and modular property
of DEVS. We developed an event-based engine and event-
oriented DEVS model in the view of the event-scheduling
world [8][9] (models are not scheduling units, but events of
the discrete event model are prescheduled). Whereas the
DEVS simulation engine asks the tN value to model due to
modularity, the pre-scheduled information of the event
scheduling worldview is globally stored in an event-list.
In the event-based engine, the seeking imminent model is
conducted by a sorted event-list, and message passing is
conducted by directly event calling. As a result, the
simulation speed can be improved more than with
hierarchical simulation. For event scheduling, the DEVS
should be implemented as an Event Oriented DEVS (EO-
DEVS) model, which is a set of event functions, unlike the
DEVS-Compliant model. The EO-DEVS models, however,

have a major weakness because the models have little
relation to the virtues of DEVS. Hence, this paper proposes
mediation processes to simulate the DEVS-Compliant
models, similar to the speed of executing EO-DEVS models.
The proposed process described in Figure 1 becomes
possible from the event-based engine. Supposing modelers
develop models using DEVSim++, our proposed
environment will be used in the iterative execution step
because the environment executes the same implemented
model of DEVSim++. Users can choose the DEVS
execution environments in accordance with their purposes.

Figure 1. The proposed process of M&S

This paper is organized as follows. Section 2 presents
DEVS scheduling and several of the related works. Section
2 also presents event-scheduling world view. Section 3
explains how the DEVS is executed on the event scheduling
world view, and Section 4 proposes the pre-process and the
mediation process for DEVS-Compliant models. From the
processes, the event-based engine can execute same DEVS-
Compliant model of existing simulation environment.
Section 5 illustrates two case studies for correctness test and
performance test. Finally, Section 6 concludes this paper.

2. RELATED WORK

We firstly introduce background knowledge of DEVS
execution and surveyed papers about improvement of DEVS
execution. Secondly, we briefly introduce event scheduling.

2.1. DEVS Execution

The classic DEVS execution is performed on a
hierarchical structure like the structure of DEVS [8]. Each
Atomic model is mapped to Simulator, and each Coupled
model is mapped to Coordinator. The top coordinator of
hierarchy is called Root Coordinator, which decides what
model is executed next.
Due to the modular property of DEVS, there is no global
information in the simulation process. Hence, DEVS

simulation is performed by moving four messages: (*, t),
(done, tN), (x, t), and (y, t). (*, t) is delivered to the next
scheduled component at time t, and (done, tN) is sent to their
parent from components to notice the next time that the
model should be executed. (x, t) and (y, t) are related to
message passing between atomic models. As each message
is moved among coordinators and simulators on the
hierarchical structure, the DEVS model is executed.
In this simulation process, there are two kinds of overhead
[10]. One is an overhead of scheduling because the time
information about the imminent model is collected through
the hierarchical structure. The other is overhead of message
passing between atomic models because the messages are
conveyed by hierarchical structure. Although DEVS models
with no hierarchy are not always faster than hierarchical
structure [12], it is a general tendency that the classic DEVS
execution is slower as the hierarchical structure gets deeper.
Consequently, there have been efforts to improve the DEVS
execution algorithm for various DEVS formalism.
For the classic DEVS, there have been two efforts to
improve the simulation speed. One is the work of Kim et al.
They reduced execution time by restructuring the hierarchy
through a static optimization approach based on profile
analysis [12]. The other is the work of Lee et al. They
proposed a compiled technique, which combines component
models into a single model. By composition at compile time,
they reduced message passing overhead [10].
For parallel and dynamic structure DEVS, A. Muzy and J. J.
Nutaro proposed an improved algorithm focused on active
components using an event-list [13]. Because the priority of
the model is unnecessary, unlike classic DEVS, all the
atomic models can be scheduled in the event-list, regardless
of hierarchical structure. However, message passing is
conducted by hierarchical structure.
There also have been various attempts for Cell-DEVS. Cell-
DEVS is extended DEVS formalism for cellular space [8].
The forest fire spreading model [14] is a representative
application of Cell-DEVS. For the Cell-DEVS, Wainer and
Giambiasi proposed improved simulation by flattening of
the hierarchical model [15]. Hu and Zeigler proposed a
simulation algorithm by constructing a complete tree to
utilize spatially distributed causal events [16].

2.2. Event Scheduling World View

Event scheduling world view is one of the most
efficient discrete event simulation strategies because of its
simplicity. Event scheduling works with prescheduling of
all events in an event-list [8]. In other words, because the
event-list is always arranged in order of time, the scheduling
is performed at insertion time of events in advance. In this
view, DES is specified to the EO model with an event as a
unit in contrast with the object-oriented view. The EO
model consists of functions mapped to events and global
variables modified by functions. The simulation engine

executes a function mapped to an event by extracting from
the event-list, and the executed functions insert a newly
generated event to the event-list for scheduling:

Tglobal // current simulation time
EventList // List of sorted event(time, target-function)

Simulation_Run()
while (Event-List is not empty)
 first = top of EventList
 delete the top of EventList
 Tglobal = first.time
 execute first.mapped-function
 End while

Schedule_New_Event(time, target-function)
// called by functions mapped to events
 create an event with the pair(time, target-function)
 insert the event to Event-List

Algorithm 1. Simple algorithm of event scheduling

3. EVENT-ORIENTED MODEL FOR DEVS
Above all, we propose the event-oriented model for

event-scheduling DEVS execution. While DEVS is
specified with components as a unit, the EO-Model must be
specified with events as a simulation unit. In addition,
unlike DEVS, the EO model has global variables with no
hierarchy and no modularity. The functions of the EO model
schedule the next events. That means that the model is not
separated from simulation engine.
To execute DEVS using the algorithm described in Section
2, DEVS should be translated to the set of events. In DES,
the state is changed when the system has no input until the
specified time or an inputted message occurs. Two events
can be declared according to the state transitions*.
Firstly, an internal transition event occurs when there is no
input until the specified time. In the case of DEVS, the
specified time is declared as tN, which all the model have.
The coordinators select imminent tN and execute functions
of corresponding model: int, and ta functions. From the
return values of and ta functions, message passing and
scheduling are conducted. In the view of event scheduling,
all the processes are united into one internal function,
mapped from an internal transition event as in Figure 2.

Figure 2. An internal transition function

of EO-DEVS Model

* DEVS can also be declared as only one event because the
external transition occur by internal transition at the same
time. Nonetheless, this paper declares two events according
to the state transition.

When the internal transition event occurs, the mapped
internal function is executed and internal state transition and
output generation are conducted. At this time, two new
events are created. One is an external transition event
destined for other model. An output message is a trigger that
executes other models. The internal transition function
creates an external transition event and is inserted into the
event-list. The output message is attached to the external
transition event instead of message passing process; i.e., the
external events signify the message itself. The other is an
internal transition event for the next execution of itself.
Secondly, an external transition event occurs when an
inputted message occurs. In the case of DEVS, the ext
function of DEVS is called by the output message of the
other model. Because the calling of ext means that the state
of system is modified and has to newly reschedule, the ta
function of DEVS is recalled, and the tN of the system is
modified. Likewise, in the view of event scheduling,
external state transition and regenerating the next execution
time become one external function mapped from the
external transition event, as in Figure 3.

Figure 3. An external transition function

of EO-DEVS Model

When the external transition event occurs, external state
transition is conducted by the mapped external function, and
the next internal event newly occurs from a generated time
value that specifies the next execution.

The EO-DEVS model can show dramatically improved
speed with event-based simulation due to simplicity.
Nevertheless the EO-DEVS model has a weak relation to
the property of DEVS. When we implement the EO-DEVS
model, we implement two functions from 4 DEVS functions
and add an event scheduling routine. The implementation
process often has bugs and errors. In addition, the EO-
DEVS model has no hierarchy and no modularity. That is
the opposite against the positive property of DEVS. If
someone wants an extremely fast simulation, the EO-DEVS
model is useful. However, the advantages of DEVS are
generally good reasons that the DEVS has widely used.
Hence, a new requirement is applying event scheduling to
the DEVS-Compliant model. The next section explains the
event-based engine reflecting the requirement.

4. EVENT-BASED ENGINE FOR DEVS-

COMPLIANT MODEL
To apply event scheduling to the existing DEVS-

Compliant model, we propose processes between the
DEVS-Compliant model and the event-based engine. In the

view of the simulation engine, the differences between the
DEVS-Compliant model and EO-DEVS model are as
follows:
i) DEVS-Compliant models have a hierarchical structure
and I/O interface. Many existing implemented models
consist of coupled models and atomic models. In contrast,
EO-DEVS models consist of only event functions, and there
is no interface for the message I/O.
ii) DEVS-Compliant models consist of 4 functions like
DEVS. In contrast, EO-DEVS models consist of only 2
functions mapped to events.
iii) DEVS-Compliant models are passive models and EO-
DEVS models are active models. In the DEVS-Compliant
model, the functions of the DEVS model only receive the
calling of the simulation engine and the called function
returns results—i.e., output message or next time value. In
contrast, the functions of EO-DEVS models schedule an
event into the event-list of the simulation engine directly.
Therefore, the proposed event-based engine supports two
processes. One is the pre-process for i) as described in
Section 4.1. In the pre-process, the DEVS-Compliant
models are translated to executable model by event
scheduler. The other is the mediation for ii) and iii) as
described in Section 4.2. The mediation translates the
callings of event functions to callings of DEVS-Compliant
functions and schedules events form the return values of
DEVS. The event-based engine with the processes is called
“E-DEVSim++”.Section 4.3 proposes an event-based DEVS
execution algorithm.

4.1. Pre-process

Figure 4. An example of the pre-process

At first, the proposed engine decomposes the coupled

model from the DEVS-Compliant model because the EO-
DEVS models have no hierarchical structure and I/O
interface. By analyzing the hierarchical structure, the engine
eliminates coupled models except for atomic models. In
addition to this process, by analyzing the message routing
path from a departure atomic model to a destination atomic

model, the engine leaves one-depth message paths a port.
When the output message is returned from ext of DEVS, the
engine finds the destination of created events from the
information from the reduced path.
From the example in Figure 4, the DEVS-Compliant models,
which have a hierarchical structure and I/O interface, are
translated to a pre-processed model with no hierarchy and
direct message paths.

4.2. Mediation Process

To resolve the differences, the mediation process
translates the function calls and the scheduling parts
adequately. When the simulation engine calls the functions
mapped to event, proper functions of the DEVS-Compliant
model is called through the mediation. From the return
values of DEVS functions, external transition events and
internal transition events are scheduled through the
mediation process. In detail, the output messages from the
ext function are translated to external transition events, and
the tN value from ta function is translated to an internal
transition event.
We can infer that new overhead is occurred from the
mediation process, though the overhead is the price that
pays for using existing DEVS model. Modelers can
implement DEVS-Compliant model with comparative ease
and execute the model with the event-based engine through
the mediation process.

4.3. Event-based algorithm for DEVS-Compliant

models
This section explains the detailed algorithm for

implementing the ‘E-DEVSim++’. Algorithm 2 describes
the simulation initialization including the pre-process. At
first, the simulation engine extracts atomic models from the
DEVS-Compliant model. Next, the engine finds the
destination ports and atomic models for each port of every
model. Each atomic model has a port-mapping table, which
has a coupling relation from the output port to the
destination’s input port.

OutmostCoupled // the top coupled model of DEVSim++
M // set of pre-processed atomic models
dest // indicates a desitnation model and port.
Simulation_INIT()
 M = Flattening(OutmostCoupled)
 For each m of M
 For each output port p of m
 dest = FindDestinationPort(p)
 m.port_table.add(p, dest)
 end For
 end For

Algorithm 2. Initialization including the pre-process

Because we discuss the execution of classic DEVS, the
proposed engine should deal with the select function. All the
coupled models of DEVS have the select function to select

an imminent model when the tN of models are same.
Therefore, the role of select function in the proposed engine
is performed at event insertion time. Hence, the events
should be identified and the priority of events should be set
up during the pre-process.
Algorithm 3 describes the main function of simulation. The
simulation engine has two kinds of data structures for
storing events. One is a heap-based event-list for internal
transition events. The other is an event queue for external
transition events. Although external transitions are even
events in the view of state transition, the external transitions
occur by output function at the time of the executed internal
event. Hence, the engine does not have to schedule the
external events. After one internal event is executed, the
engine handles only external events sequentially.

Tglobal // current simulation time
INT_EventList(time, target_model)

 // List of sorted event, Heap-based
EXT_EventQueue(dest, output)

// List of unsorted event, Queue-based

Simulation_Run()
while (isEmpty(INT_EventList))

 first = top.INT_EventList(time, target-model)
 delete the top.INT_EventList from Event-List
 Tglobal = first.time
 target = first.target_model

 message_set = target.output()
 for each msg of message_set
 Schedule_EXT_Event(msg.port_name, msg.output)
 target.int_trans()
 new_tn = taget.ta()
 Schedule_INT_Event(new_tn, target)

 while(isEmpty(EXT_EventQueue))
 first = front.EXT_EventQueue
 delete the front.EXT_EventQueue

target = first.target_model
target.ext_trans(first.output)

 new_tn = target.ta()
 Schedule_INT_Event(new_tn, target)
 End while
 End while

Algorithm 3. Main simulation part

Algorithm 4 describes scheduling functions called by the
main simulation function. The functions are called by event-
oriented models in original event scheduling. In contrast,
DEVS-Compliant models are the passive models. So the
simulation run function calls these functions.
Each function creates an event from arguments and inserts
or pushes back to proper data structures. When the
Schedule_INT_Event function is called, the previous event
should be deleted because when the model’s state is
changed by external transition and has a new tN value, the
prescheduled event indicating the target_model is still stored
in the event-list.

When the Schedule_EXT_Event is called, the argument is
an output port and output messages. Hence, the function
finds destination information from port_table and creates a
new event with the information.

Schedule_INT_Event(time, target_model)
 delete previous event of target_model
 create an event with the pair(time, target_model)
 insert the event to INT_EventList

Schedule_EXT_Event(port_name, output)
 dest = port_table.find(port_name)
 create new event with the pair(dest, output)
 pushback the event to EXT_EventQueue

Algorithm 4. Scheduling function

5. CASE STUDY

In this section, we perform two experiments. One is a
correctness test, and the other is a performance test. In the
correctness test, we confirm that the sequence of E-
DEVSim++ is the same as DEVSim++, using the Single
Server Queuing Model. In the performance test, we show
the performance improvement compared with DEVSim++.

5.1. Correctness Test

For the correctness test, we implement the single server
queuing (SSQ) model for DEVSim++. The model design of
SSQ is depicted in Figure 5. The SSQ model consists of a
generator, a buffer, four processors, and a transducer. A
generated signal from the generator queues up in the buffer
until the processor can handle this signal. Through the
processor, processed signals arrive in the transducer. When
the goal number of customers is reached, the transducer
sends a stop message to the generator.

Figure 5. Single Server Queuing Model

We execute two simulation environments using the same
DEVSim++ model. Under the same parameters and the
same random seed, we log generation time, service-start
time, and service-end time of all the signals and compare
time-stamps between two simulation engines.
We experiment and compare two logs until the number of
customers reaches 1,000,000. For the sake of easier viewing,
Figure 6 depicts only the fore twenty signals for graphical
representation of comparison between two simulation
engines. ‘×’ means a time stamp of E-DEVSim++ and ‘+’
means a time stamp of DEVSim++.
The horizontal axis is customer number generated in order
and the vertical axis is time. We collected logs from each
simulation engine and drew ‘×’ or ‘+’. In this graph, we can

confirm that there are only ‘ ’ stamps because ‘×’ and ‘+’
stamps are perfectly overlapped†. We also compared logs of
two engines, and they were perfectly equal. From the
comparison, we can confirm that two engines show the
same results using the SSQ model.

Figure 6. Graphical representation of comparison

 when customer number is below 20

5.2. Performance Test

We completed a performance test using a simple SSQ
model. We then applied our proposed engine to the
developed model for real-world domain, which is Anti-
torpedo simulation model. All the models are existing
DEVSim++ models with no revision. The experimental
environment is listed in Table 1.

Table 1. Experimental environment

CPU Intel i7 860
(2.6GHz, 4 core, No hyper-threading)

RAM 6.00GB
OS Windows 7
Language Microsoft Visual C++ 10.0

5.2.1. Single Server Queuing Model

We experimented with a performance test using the
SSQ model as with the correctness test. Because
performance of DEVSim++ is generally worse as the depth
of the model gets deeper, we used flattened SSQ models
(one outmost coupled model and atomic models) for pair

† All the customers had three ‘ ’ stamps, but on the graph,
some customers only have two stamps. In these cases,
generated time and service-start time are almost equal.

comparison. The 3 test subjects are DEVSim++, E-
DEVSim++, and EO-DEVS models with simple event-
based scheduling.
We executed the model on each execution environment and
timed the execution time. To experiment in scalability, we
executed many SSQ models simultaneously while
increasing the number of models from 1 to 20,000. The
results are depicted in Figure 7.

Figure 7. The experimental results of SSQ model

(10,000 customers for each SSQ model)

The graph shows how the event-based engine enables
performance improvement. E-DEVSim++ is about 4 times
faster than DEVSim++, and the EO-DEVS model is about 8
times faster than DEVSim++. Naturally, the fastest EO-
DEVS model with event-scheduling is a better choice for
the iterative execution. Considering the weakness of the EO-
DEVS model, however, E-DEVSim++ is the more
preferable choice. The time gap between E-DEVSim++ and
the EO-DEVS model is due to the overhead of the
mediation process. Nonetheless the time gap is less as
compared to the execution time of DEVSim++.

5.2.2. Anti-torpedo Warfare Simulator

Figure 8. Brief scenario of anti-torpedo simulation [3]

We experimented with the anti-torpedo warfare

simulation model to apply our proposed engine to the
developed model for the real-field. The brief scenario is
illustrated in Figure 8. The attacking platform is a
submarine, and the target platform is a surface ship. The

surface ship uses decoys for counter-measures. The surface-
ship launches decoys according to stored strategies against
the torpedo’s possible paths. While the torpedo traces
decoys, the surface-ship can evade the opponents.
The objective of this simulation model is to evaluate the
counter-measure tactics against the torpedo system. From
the results, we can determine how various factors, such as
tactics and the performance of underwater weapons,
influence the effectiveness of the system. Experimental
results support assessment of anti-torpedo countermeasure
effectiveness and the decision-making process for future
equipment procurements.
In this paper, we experimented with the same model and
parameters using DEVSim++ to compare to the results and
execution time of DEVSim++. There are 600 scenarios from
4 parameters, detection range of surface ship, pattern of
decoy system, operating time of decoy, and speed of mobile
decoy. We tested 4 scenarios while changing the pattern of
decoy system and not changing other parameters. The
parameters are listed in Table 2 and Table 3.

Table 2. List of parameters
Parameter names Parameter Value
Detection range 2500m
Operating time 130 seconds
Speed of mobile decoy 12 knts
Pattern 1, 2, 3 and 4

Table 3. Four patterns of the decoy operating system
Implications
1 4 static decoys (2 decoys at the front of surface

ship and the others at the rear)
2 4 mobile decoys (2 decoys at the front of surface

ship and the others at the rear)
3 2 static decoys at the front of surface-ship and 2

mobile decoys at rear
4 2 mobile decoys at the front of surface-ship and 2

static decoys at rear

All the scenarios are executed 10,000 times. The execution
time for generating the above data is described in Figure 9.
The graph in Figure 9 shows considerable performance
improvement. According to the patterns, our new simulation
engine is 15–19 times faster. Seo et al. actually simulated
the model 100 times and limited the changeable parameters
[3] because of time limitation. The E-DEVSim++ provides
more diverse analysis scenarios while increasing the number
of execution times.

Figure 9. Execution time of the experiment

6. CONCLUSION

This paper proposed a new DEVS execution
environment with event-scheduling for faster iterative
execution. It applied an event scheduling worldview to
DEVS execution and proposed an EO-DEVS model
executed by event scheduler. However, the weakness of the
EO-DEVS model is critical while our existing DEVSim++
models are useful for modeling and debugging.
Hence, the requirement of using DEVS-Compliant models
with no change is arisen. The proposed simulation
environment in this paper, ‘E-DEVSim++’, consists of
existing DEVS-Compliant models and an event-based
simulation engine with the pre-process and the mediation
process, which enable the event-based engine to execute
DEVS-Compliant models. The proposed engine is 5–20
times faster than DEVSim++ in the case study.
Finally, we can improve the M&S process of DEVSim++
toolkit. Users can use DEVSim++ in the development and
testing process because the DEVSim++ is suitable for
modeling and debugging. After that, using E-DEVSim++,
they can execute the developed model and analyze the
simulation results with more data in less time. To maximize
the merits of event scheduling, the E-DEVSim++ needs to
be as fast as the EO-DEVS model. Therefore, minimizing
the mediation overhead is instrumental in future work.

Acknowledgement

This research is supported by Ministry of Culture,
Sports and Tourism(MCST) and Korea Creative Content
Agency(KOCCA) in the Culture Technology(CT) Research
& Development Program 2009.

References
[1] Tag Gon Kim, Chang Ho Sung, Su-Youn Hong, Jeong
Hee Hong, Chang Beom Choi, Jeong Hoon Kim, Kyung
Min Seo, and Jang Won Bae, 2011, “DEVSim++ Toolset
for Defense Modeling and Simulation and
Interoperation,” The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology, Vol. 8,
No. 3, (July): 129 – 142.

[2] Tag Gon Kim and Sung Bong Park, “The DEVS
Formalism: Hierarchical Modular Systems Specification in
C++,” 1992 European Simulation Multiconference, York,
United Kingdom, pp. 152 - 156, June, 1992.
[3] Kyung-Min Seo, Hae Sang Song, Se Jung Kwon and
Tag Gon Kim, “Measurement of Effectiveness for an Anti-
torpedo Combat System Using a Discrete Event Systems
Specification-based Underwater Warfare Simulator,” The
Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology, Vol. 8, No. 3, pp. 157 - 171,
July., 2011.
[4] Jeong Hoon Kim, Chang Beom Choi, and Tag Gon
Kim, “Battle Experiments of Naval Air Defense with
Discrete Event System-based Mission-level Modeling and
Simulations,” The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology, Vol. 8,
No. 3, pp. 173 - 187, July., 2011.
[5] Jae Hyun Kim, Su Youn Hong and Kim TG,
“Design and implementation of simulators interoperation
layer for DEVS simulator”, In: Proceedings of M&S-
MTSA’06, Ottawa, July 2006, pp.195–199.
[6] Fujimoto, R.M. Parallel Discrete Event Simulation.
Comm. of the ACM 33, 10, 1990, 30-53.
[7] Q. Liu, and G. Wainer, “Accelerating Large-scale
DEVS-based Simulation on the Cell Processor”,
Proceedings of the 2010 Symposium on Theory of
Modeling and Simulation – DEVS Integrative M&S
Symposium, Orlando, FL, pp. 191-198, 2010.
[8] B.P Zeigler, T.G Kim and H. Praehofer, Theory of
Modeling and Simulation. Academic Press, Orlando, FL,
USA, 2000.
[9] B.A. Cota and R.G. Sargent, “A Modification of the
Process Interaction World View,” ACM Transactions on
Modeling and Computer Simulation. Vol. 2, No.2, pp 109-
129, April 1992.
[10] Wan Bok LEE and Tag Gon KIM, “Performance
Evaluation of Concurrent System Using Formal Model:
Simulation Speedup,” IEICE Transactions on fundamentals
of electronics, Communications and computer sciences, Vol.
E86-A, No. 11, pp. 2755-2766, 2003.
[11] Tag Gon Kim and Sung Bong Park, “The DEVS
Formalism: Hierarchical Modular Systems Specification in
C++,” In: Proceedings of the 1992 European Simulation
Multiconference, York, UK, June 1992, pp.152–156.
[12] Yeong Geol Kim, Myung Soo Ahn and Tag Gon Kim,
“Optimization of Model Execution Time in the DEVSim++
Environment,” Eurpean Simulation Symposium, Serial. 9,
Passau, Germany, pp. 215 - 219, Oct., 1997.
[13] Alexandre Muzy and J. Nutaro, “Algorithms for
Efficient Implementations of the DEVS & DSDEVS
Abstract Simulators,” 1st Open International Conference on
Modeling & Simulation (OICMS), 2005.
[14] Lewis Ntaimo, Bithika Khargharia “A Cellular DEVS
Dynamic Fire Spread Simulation Model With An Optimized

Cell Space”, Project Report, Electrical and Computer
Engineering Department, University of Arizona, May, 2003.
[15] G. Wainer, and N. Giambiasi, “Application of the Cell-
DEVS Paradigm for Cell Spaces Modeling and Simulation”,
Simulation, v. 76, p. 22-39, 2001.
[16] Xiaolin Hu and B. P. Zeigler, “A High Performance
Simulation Engine for Large-scale Cellular DEVS Models,”
High Performance Computing Symposium (HPC'04),
Advanced Simulation Technologies Conference (ASTC), p.
3-8, 2004.

Biography
Se Jung Kwon received his BS degree in Department of
Computer Science from the KAIST in 2009 and MS degree
in Department of Electrical Engineering. He is currently a
PhD student in the Department of Electrical Engineering at
the KAIST. His research interests include simulation algo-
rithms for DES, DEVS execution environment and
framework for describing virtual world.

Tag Gon Kim received his PhD in computer engineering
with specialization in systems M&S from the University of
Arizona, Tucson, AZ in 1988. He was an Assistant
Professor in Electrical and Computer Engineering at the
University of Kansas, Lawrence, KS from 1989 to 1991. He
joined the Electrical Engineering Department, KAIST,
Daejeon, Korea in Fall, 1991 and has been a Full Professor
in the EECS Department since Fall, 1998. He was the
President of The Korea Society for Simulation (KSS). He
was the Editor-In-Chief for Simulation: Transactions for the
Society for Computer Modeling and Simulation
International (SCS). He is a co-author of the text book
‘Theory of Modeling and Simulation’, Academic Press,
2000. He has published about 200 papers in M&S theory
and practice in international journals and conference pro-
ceedings. He is very active in defense M&S in Korea. He
was/is a consultant for defense M&S technology at various
Korea government organizations, including the Ministry of
Defense, the Defense Agency for Technology and Quality
(DTAQ), the Korea Institute for Defense Analysis (KIDA),
and the ADD. He is a Fellow of SCS and a Senior Member
of the Institute of Electrical & Electronics Engineers (IEEE).

