CD++Builder: An Eclipse-Based IDE For DEVS Modeling

Chiril Chidisiuc

Gabriel A. Wainer

Carleton University

Dept. of Systems and Computer Engineering
1125 Colonel By. Ottawa, ON. K1S 5B6. Canada.
1-613-520-2600

cchidisi@connect.carleton.ca

Abstract

Modeling and simulation tools have been used for help-
ing in the early stages of hardware/software systems design. The
DEVS formalism is a technique that enables hierarchical descrip-
tion of discrete event models that can be used for this task.
CD++Builder is an Eclipse plugin that permits defining these
applications. We present the main features of the toolkit and its
relation to Eclipse libraries and extension points.

1. INTRODUCTION

In recent years, Rea-Time embedded applications have
grown tremendously, both in the number of existing sys-
tems and in the complexity of the tasks they execute. Cur-
rent advances in computing technology have made it pos-
sible to automate tasks at a level of complexity unknown
previously. The continuing trend in growth and increased
complexity complicates the development of Real-Time
software, where concerns for functionality, predictability
and reliability must be addressed. Current methods for
Real-Time software construction are either hard to scale up
for large systems, or require a difficult testing effort with
no guarantee for a bug free software product. Modeling
and Simulation (M& S) techniques and tools for analyzing
testing scenarios have proven to be able to provide product
s that are of better quality and have a reduced lifecycle
cost, due to improved testability and maintainability. De-
spite the net gains, most project managers are reluctant to
use the techniques because they require extra initial re-
sources in the construction of simulation models that will
not be part of the delivered application. Similarly, in the
early stage of the design of embedded systems, software
and hardware are designed independently. The software
development team is waiting for the hardware prototypes
to be available; however, the hardware development team
is waiting for the software environment for hardware pro-
totype verification and testing. A M& S-based design ap-
proach allows the user to test the functionality of the
hardware in a very early stage. This is economically effi-

gwainer@sce.carleton.ca

cient, and shortens the product development cycle and
time-to-market period.

We have built an Eclipse-based platform called
CD+ +Builder to enable the development of real-time ap-
plications using a model-based approach. The toolkit is
based on a mathematical theory called DEVS (Discrete
Event System Specifications), an increasingly accepted
framework for understanding and supporting the activities
of M&S [1]. DEVS theory provides an abstract, yet quite
intuitive way of modeling, which is independent of any
underlying runtime system, hardware, and middleware.
CD++ [2] is an engine that enables users to define and
execute DEVS models. CD++Builder provides a runtime
system associated with Eclipse plug-ins to support our
model -centered methodology. In this paper we show how
the toolkit was defined, and its relationship to Eclipse li-
braries and extension points.

2. BACKGROUND

The DEVS formalism for modeling and simula-
tion [1] provides a framework for the construction of hier-
archical models in a modular fashion, allowing model re-
use, reducing development and testing time. The hierar-
chical and discrete event nature of DEV S makes it a good
choice to achieve an efficient product development test.
DEVS are timed models, which also enables us to define
timing properties for the models under development. Each
DEVS moded can be built as a behavioral (atomic) or a
structural (coupled) model. A DEVS atomic model is de-
scribed as:

M =<X,S Y, dint, Oext, | , D >

In the absence of external events, the model will
remain in state sl S during ta(s). Transitions that occur
due to the expiration of ta(s) are called internal transitions.
When an internal transition takes place, the system outputs
the value | () T Y, and changes to the state defined by
dint(s). Upon reception of an external event, de(s, €, X) is
activated using the input value XI X, the current state s and

the time elapsed since the last transition e. Coupled mod-
els are defined as:

CM =< X, Y, D, {Mi}, {Ii}: {Zij} , select >

They consist of a set of basic models (Mi, atomic
or coupled) connected through ther interfaces. Component
identifications are stored into an index (D). A translation
function (Zij) is defined by using an index of influences
created for each model (li). The function defines which
outputs of model Mi are connected to inputs in model M;.

CD++ [2][2] implements DEV S theory. The tool-
kit has been built as a set of independent software pieces,
each of them independent of the operating environment
chosen. The defined models are built as a class hierarchy,
and each of them is related with a simulation entity that is
activated whenever the model needs to be executed. New
models can be incorporated into this class hierarchy by
writing DEVS models in C++, overloading the basic meth-
ods representing DEV S specifications: external transitions,
internal transitions and output functions. CD++ employs a
virtual time simulation approach, which allows skipping

Navigator Panel

periods of inactivity. A real-time engine enables simula-
tion advancing based on the wall-clock.

3. CD++BUILDER

CD++Builder packages all the potential tools that
can be used in a CD++ project from the existing CD++
toolbox, the Eclipse workbench, and its own tool set. A
default perspective for CD++Builder is given to support
the CD++ environment. CD++ Builder was designed and
developed as a plug-in for the Eclipse platform. The latest
version of the plug-in is compatible with Eclipse 3.1.x
release. The final product is required to provide the follow-
ing functionalities:

Create and configure a project

Edit modd files, including reserved word and key word
highlighting

Display models and execution results

Display buttons and perform operation with buttons

CD++ tools Buttons Editor Panel
+Builder - ATM.MA - Eclipse SDK
File EMit Refactor Mavigate Search Project @ Run Window Help
o = G T (e od Q- o s | Blco+Buider ”
s nfigakor 32 §im amma X =
= 1= atm - [top] T
1= _ﬁtm components : auth cardreader@fCardReader cashdfspenser@fcashdispenser
ifi'! ATM_1 bat out : ecash out
@ ATM_2.bat out : eard out
=] aTM.bat F—
|= ATM.EY ; " "
"] Link : in card infcCardReader
b 4 '%} QIELT):G\ £ Link : cardno outfCardFResder infauth ¥
E i o
e ATMLOG_Z Izg Link : amnt_out@auth infcashdispenser
B¢ ATMLOG 3o L].-nk : arnt_outBauth ejectfeardreader
@, ATMLOG.log Link : ejectlauth ejectlicardreader
|2 ATMOUT_1.00t Link : outfcashdispenser cash_out
= aTMouT 2.:out Link : card_uut@cardreader card_out
| ATMOUT_3 .00t
| ATMOUT, ot
Ig Balanceverifier . cpp [auth]
|ie| Balanceverifier.h components : balancverfBalanceverifier pinver@PINverifier userfacefUserInterf:
|=) Balanceverifier.o OUL @ AMNT Out
|£| CardReader.cop out : eject
| cardreader.h in : in
v
CardRaadar.n = Link : in cardnofussrface
EE Cutline &3 =i Link : get_pinfpinver get_pinfuserface
A outling is not avalable. Link : pin outBuserface pin infpinver
Link : get amntfpinver get_amntfuserface
Link : amnt_outBuserface amnt_ infBhalancver
Link : get_amnt_out [fhalancver gEt_amnt@usEr face
Link : asmnc out@balancver smnt out
v
AN s 2
| CO+CansoleView | Tasks | B Console: &3 Ciebiug =0

A console is not available.

Outline Panel

Wtitable

et

Task List/Conscle Panel

Figure 1. CD++Builder main window.

In accordance with the Eclipse 3.1 platform speci-
fications, the components of CD++ Builder plug-in are
defined in the manifest file, which contains declarations of
dependencies on other plug-ins, visibility of plug-in public
classes to other plug-ins, declaration of its functionalities,
and implementation of other plug-ins extension points
[5]. The plug-in was designed by extending the Eclipse
framework extension points to meet the above require-
ments. The extension points are used as entry points that
allow plug-ins to offer new services or contribute to the
behaviour of the existing components and services. The
requirements of CD++ Builder plug-in were implemented
by extending the interfaces provided through the following
extension points: org.eclipse.ui.ide.resourcefilters,
org.eclipse.ui.editors, org.
eclipse.ui.editors.documentProviders, org.eclipse.ui.views,
org.eclipse.ui.newWizards, org.eclipse.ui.actionSets,
org.eclipse.ui.popupMenus, org.eclipse.ui.perspectives and
org.eclipse.ui.preferencePages. The following figure shows
the main components of CD++Builder main Window.

Aswe can see, there are some basic components:

Navigator Panel: allows user to view the current
projects and their contents.

Editor panel: alows user to view the contents of a
selected file. It is programmed to open the default editor
for that particular file.

Task list/Console panel: a section to write down
planned tasks for particular project. The task view also
shows the errors encountered when compiling the project.
The console will display any errors encountered while
running a CD++ function and output from CD++ tools.

Outline panel: outlines the functions and objects in a
selected class file. This portion is only implemented for
C++ files.

4. DESIGN OVERVIEW

The CD++ Builder plug-in is organized as a per-
spective, defined at the "org.eclipse.ui.perspectives’ exten-
sion point. It aso provides a project wizard (org.
eclipse.ui.newWizards), a customized text editor, designed
to work with model files (org.eclipse.ui.editors and org.
eclipse.ui.editors.documentProviders), and a Console View
Window to display the results of a running model as well
as current system status (org.eclipse.ui.views).

The perspective implements the inherited meth-
ods from the | Per specti veFact ory interface to define
the initial page layout and visible components (i.e. tabs,
panels, and action sets), using the inherited method cr e-
atelnitial Layout. CD++Builder has a variety of

components to execute DEV S models and to analyze simu-
lation results.

&= Simulate Project @
Coupled Model file name {.ma)

| Browse
Event file name (ev)

¥ I ATM.EV Browse
Output file name (Lout)

W Browse

Log file name {.Jog)

v | Browse

Simulation top time (hhimm:ss:ms)
(MOTE: unchecked time aption means infinity’ 2= stop time)

v IW : W Joo ’ﬁ

Advanced Users Only. Enter desired parameters:
|

Comments

r

Saveas.bat| Load bat

Proceed | Cloze

4 CD++ Modeler
File Edit Exscute Animate Help

DeBES8 -
=) Riook Hods | Atamic .li:oupled
@ States | :
@ Links
o Parts
e Vars

» BE LS

Simulator Starts

Figure 2. CD++ Builder button actions

The main components are integrated as buttons
located in the top toolbar:
- Build: This button automatically creates a makefile for a
specific project and runs the make command to compile
the source code for the models. The result is an executable
to run amodel.
- Execute: This button activates the CD++ engine. This
executable represents a project-specific program that will
execute a DEVS model.
- Drawlog: This button generates a file for easier
visualization of the execution of a model.
- CD++Modeler: This button loads the CD++ Modeler
program, a graphical tool for designing and executing

DEVS models. In this application you can design atomic/
coupled models as well as animate the simulation results.
Each button has a corresponding class file, which
defines the action for it. The association between a button
and its action class was done using the | wor kbenchW n-
dow Act i onDel egat e interface. This interface was pro-
vided by extending the “org.eclipse.ui” extension point.
Each action class implemented the inherited methods, one
of which is the r un method, inherited by I wor kbench-

W ndow ActionDel egate interface from | Acti on-
Del egat e interface. The only method implemented for
each action classis r un, thus making the response of each
button unique, which is analogous to acti onPer -
formed of Java Acti onLi st ener interface. Figure 2
shows the description of the action taken when buttons are
pressed: CDBuilder.buttons.SimuAction launches a dialog
window to run the models, and the CDBuilder.buttons.
BubbleEditorAction starts CD++Modeler.

Eclipse Framework - P rojedt wizand extension points)

org.eclipse.ui wzards.nevwsresource,

orgeclipse jface wizard WizardPage,

orgeclipse jface. preference,

CDProjectWizard

== create ==+CDProjedWizard(1CDProje dyizard

+addP ages(1void

+performFinishi);hoolean

+init(workben ch:l'Wo tkbench, zelection: | StructuredSeledionT void

'

Basich evnProje dResourcebyizard WizardP age
IWiakbenchPreferenceP age
M M M

1 I 1

1 I 1

1 1 1
== interface == == interface == == interface ==

BasicH ewProjectResourceWizard WizardPage MorkbenchPreferencePage
Fiy Py i)
COPreferencePage

-create Check Boxgroup: Composite lakbel String) Button

-create Compostefparent: Composite num C olumnsintT Composite
-create Label(parent: Composte text Siving):Label

-create PushButtoniparent; Composite label StringButton

-create RadioB uttoniparent: Composie label: String) Button

-cregte TexdFieldparent Composite). Text
#doGetPreferenceStore) IPreferenceStore

-initializelefaults(1 void

CDProjectCreationPage

-inttializevalues() void

-hame Counterint= 1
-name: String
-ngiter Filedriter= null

#oresteCortents(parent: Compasite) Cantrol
+init{workbench o kbench): void

+icd getSelected (2 SelectionE vent): void

+yicd getD efaultSelected (g; Sel ectionE vent): void

+oreate Control(parent: Composite) void
+inizh(Thoolean

== cregte ==+ CDProjedCrestionPagelworkbench; Mok bench selection:] StructuredSeledtion’ CDProje dCrestionP age

+trocdi T exdie: M adifE vent Twaid
#periormDefaults)); woid
+perform Ok () boolean

-storevalue =) vaoid
-tabF orwardparent: © omposite T void

CD++ Builder Plug-in - CD++ project wizard

Figure 3. CD++ Builder project wizard class diagram

To create a model, CD++ Builder includes a
project wizard. Its functionalities were implemented by
extending the "org.eclipse.ui.newWizards' interfaces:
Basi cNew Proj ect ResourceW zard, W zar dPage,
and | Wor kbenchPr ef er encePage. The relationship
between the interfaces and the classes that extend them is

shown in Figure 3. The Basi cNewPr oj ect Resour -
ceW zard interface is a workbench wizard that creates
a new project resource in the workspace. The class
CDPr oj ect W zard implements the interface. A page
was added to the interface-predefined basic structure of
the wizard, where client’s name must be entered, by us-

ing the CDPr oj ect Cr eat i onPage class, which imple-
mented the W zar dPage interface. CDPr oj ect W zard
class, which inherited from interface Basi cNewPr oj ect
Resour ceW zar d icnludes the method addPage, added
the page to the wizard. When the client finishes entering
data into CD++ project wizard pages and clicks button
Finish, the method perf or nFi ni sh of CDProj ect -
W zard is called, which creates a project resource with
user-entered name. After the model is, the next step isto
define the components of the model. The components of
the model are listed in the model file with extension. The
cseEdi t or editor was set to be the default text editor for
CD++Builder plug-in (Figure 1). It inherited the
Text Edi t or interface provided by
“org.eclipse.ui.text. TextEditor”. cseEditor uses cse
Docunent Provi der, which implemented methods of
the Fil eDocunent Provi der interface, provided by

“org.eclipse.ui.text.FileDocumentProvider”. The cse
Docunent Provi der allows the plug-in to create and
save the files by implementing the methods of Fil e-
Docunent Provi der interface. To define the behaviour
of the syntax editor, a configuration class must be created
and associated with the coupling syntax editor (cse). The
configuration class for the coupling syntax editor
cseEdi t or was chosen to be the cseConfi gur ati on,
which implemented the Sour ce Vi ewer Confi gura-
tion interface provided by the
“org.eclipse.jface.text.source.Source ViewerConfigura-
tion” extension point. To create database of reserved
words for highlighting, a cseScanner and cseWr d-
Det ect or classes implemented interfaces Rul eBased-
Scanner and | Wor dDet ect or respectively from the
“org.eclipse.jface.text.rules’ extension point.

Eclipse Framewark - Text Editar structure)
org.eclipse i text. org.eclipse.ui text. org.eclipse jface.text . source. org.eclipse.jface tex
FileDracurm ertProwder TestE ditar
SourceriewerC anfiguration rules
M M M M M,
1 1 | | |
1 1 I I I
1 1 1 1 1
== interface == == interface == == interface == == interface == == interface ==
FileD ocumentProvider TextEditor SourceViewerConfiguration RuleBasedScanner MordDetector
iy iy i) Fiy i)
csel ocumentProvider c=ef ditor cseScanner

#oreste Documnent(element: ObjectrlDocument | | <= create ==+ceeEditor]); ceeEditor
#do aveD ocum erit (1 woid +dizpose)void

-fk eyrwnred Stringll= {"cotn ponents" 'in", "out”, "Link"
-y Start: String= "top"
-fyCther String= i@

== cregte ==+cseScanner(inanager: C oloflanager T cseScanner

cseConfiguration

ceAN or d etector
== create == +csaConfiguration]colortanager Colomdanager cseConfiguration
+getConfiguredC ortent Types(zourcevievwer | Source’yiemer 1 String() +igWiordP art (chara der:char boolean
#getC DS canner (). cseScanner +izWordStat (charadterchar) boolean

+getP resentationR econd ler(zource i ewer:| Souncei ewer) Presentstionk econ diler

CD++ Builder Plug-in - CD++ Model File Editor

Figure 4. CD++ Builder text editor class diagram

The results of simulation and error reporting can
be directly viewed in CD++ Builder perspectives in the
console panel (Figure 5). The "org.eclipse.ui.views' ex-
tension point was used to create the panel. By implement-

sion point was used to create the panel. By implementing
the Vi ewPar t interface methods, the Consol eVi ew class
handles the display of messages in the console. The text,

displayed in the console window, was managed by the
consol eDocunent class, which implemented the Ab-
stract Docunent interface. To store the text, displayed
in the console window, the Consol eQut put Text Store
class was used, which extended the | Text St or e inter-
face.

Tolerance set to: 1e-08

Configuration o show real numbers: Width = 12 - Precdision =5
Cuankurn; Mok used

Evaluate Debug Mode = OFF

Flat Cell Debug Mode = OFF

Debug Cell Rules Mode = OFF

Temporary File created by Preprocessor = ftmpftF74.0

Printing parser information = QOFF

Starting simulation. Stop at time: Infinity,
N00:00:10:000 [in | 1.00000
00:00:30:000 [in | 1.00000
Simulation ended!

CO++ConsoleYiew |Tasks Search

Figure 5. CD++ Builder Console View

5. CONCLUSION

We presented the design of CD++Builder, an en-
vironment for building models based on the DEV'S formal -
ism. In the future, this environment will alow us to study

models in a simulated environment, and to execute them in
a hardware surrogate. The hierarchical nature of DEVS
permitted to do this without modifying the original mod-
els, providing the base for enhanced system development
in embedded platforms. The environment permits an en-
hanced experience in the development of the applications.

References

[1] “Theory of Modeling and Simulation”. B. Zeigler, H.
Praehofer, T. G. Kim. 2" Edition. Academic Press.
2000.

[2] "CD++: atoolkit to define discrete-event models’. G.
Wainer. In Software, Practice and Experience. Wiley.
Vol. 32, No.3. November 2002. pp. 1261-1306

[3] "Modeling State-Based DEVS Maodelsin CD++". G.
Christen, A. Dobniewski, G. Wainer. In Proceedings
of MGA, Advanced Simulation Technologies Confer-
ence 2004 (ASTC'04). Arlington, VA. U.S.A. 2004.

[4] Glinsky, E. and G. Wainer. 2002a. Definition of Real-
Time simulation in the CD++ toolkit. In Proceedings
of the 2002 Summer Computer Simulation Confer-
ence. San Diego, USA.

[5] F.Budinsky, D. Steinberg, E. Merks, R. Ellersick, and
T.J. Grose, Eclipse Modeling Framework, 1 ed. , Ad-
dison-Wedley Professional, Aug. 200

