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Abstract
The Discrete Event System Specification (DEVS) is a modular and hierarchical Modeling and Simulation (M&S) formalism
based on systems theory that provides a general methodology for the construction of reusable models. Well-defined M&S
structures have a positive impact when building simulation models because they can be applied systematically. However, even
when DEVS can be used to model routing situations, the structures that emerge from this kind of problem are significant due
to the handling of the flow of events. Often, the modeler ends with a lot of simulation models that refer to variants of the
same component. The goal of this paper is to analyze the routing process domain from a conceptual modeling perspective
through the use of a new DEVS extension called Routed DEVS (RDEVS). The RDEVS formalism is conceptually defined as
a subclass of DEVS that manages a set of identified events inside a model network where each node combines a behavioral
description with a routing policy. In particular, we study the modeling effort required to solve the M&S of routing problems
scenarios employing a comparison between RDEVS modeling solutions and DEVS modeling strategies. Such a comparison
is based on measures that promote the capture of the behavioral complexity of the final models. The results obtained highlight
the modeling benefits of the RDEVS formalism as a constructor of routing processes. The proposed solution reduces the
modeling effort involved in DEVS by specifying the event routing process directly in the RDEVS models using design
patterns. The novel contribution is an advance in the understanding of how DEVS as a system modeling formalism supports
best practices of software engineering in general and conceptual modeling in particular. The reusability and flexibility of the
final simulation models, along with designs with low coupling and high cohesion, are the main benefits of the proposal that
improve the M&S task applying a conceptual modeling perspective.

Keywords Routed Discrete Event System Specification · Conceptual modeling · Modeling effort · Routing problem · Design
patterns

1 Introduction

A formalism provides a set of conventions for specifying a
class of objects in a precise, unambiguous, and paradigm-free
manner. In particular, the Discrete Event System Speci-
fication (DEVS) is a modular and hierarchical Modeling
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and Simulation (M&S) formalism based on systems theory
that provides a general methodology for the construction of
reusable models [1]. Several applications of DEVS can be
found in the literature. For example, in the mobile applica-
tion field, DEVS models have been used to design mobile
application behaviors [2] and to compare the performance
of distinct network architectures [3]. In supply chain man-
agement, the authors of [4] propose a strategy to generate
DEVS and Linear Programming models semi-automatically
from industry-scale relational databases. A combination of
micro- and macro-views of biological systems with DEVS
is proposed in [5, 6] with aims to improve the M&S in com-
putational biology. Since it is very costly to construct a real
battle field situation and to verify the performance of mil-
itary devices, in [7] the authors use the DEVS formalism
to define a robotic vehicle model to conduct tests through
the simulation of several scenarios. In this case, the final
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model was embedded in a tank shaped robot. Finally, in the
software engineering field, the DEVS formalism has been
used to support the evaluation of software architectures [8],
provide formal specifications for real-time systems [9], and
model web user behaviors [10]. Therefore, DEVS is a popu-
lar formalism for modeling complex dynamic systems using
a discrete-event abstraction [11]. However, although effec-
tive conceptual modeling is a vital aspect of a simulation
study, it is probably the most difficult and least understood.
The design of the simulation model impacts all aspects of
the study, in particular the data requirements, the speed with
which the model can be developed, the validity of the model,
the speed of experimentation, and the confidence that is
placed in the model results [12].

During the design phase of any DEVS model, the mod-
eler designs a simulation model that tries to replicate the
operation of a real-world or imaginary system over time
to achieve a goal. That is, the problem owner expresses its
needs, and the modeler makes an abstraction of the problem
to prepare a conceptual model for the simulation study. The
conceptual models generally describe the structure and the
behavior of the system independent from the implementa-
tion details [13]. Frequently, as part of such modeling, the
modeler defines several views of the problem. For example,
in [14] the authors deal with the M&S of systems described
according to several levels of abstraction and levels of granu-
larity. In this context, one recurrent problem during theM&S
with DEVS is the need to design an implicit routing process
over a discrete-event simulation model that solves a prede-
fined primary goal. For example, when simulation models
are designed to evaluate the quality of software architectures,
the effectiveness of functionalities is the primary goal. Still,
given that components are linked by architecture interactions,
the routing of user requests among components becomes an
issue to be solved during theM&S task [15, 16]. Another case
is frequently observed in the manufacturing domain where
real-life scenarios are composed of several machines with
the same behavior replicated in multiple work stations that
send/receive different kinds of jobs to be processed. Even
when all machines involve the same processing, inputs and
outputs vary from one workstation to another due to the flow
of jobs. When simulation models are used to represent this
domain, the final simulation model is composed of several
variants of the same component to deal with the flow of
events.

In this context,we define the routing process as “the part of
a modeling scenario where the components need to interact
among them by distinguishing the event sources and des-
tinations to ensure their diffusion into the right model”. In
DEVS simulation models, the routing processes are com-
monly solved as pre-wired connections detailed as part of
the coupling specification. That is, even when couplings are
explicitly defined, the routing functionality of a component

is hidden into its behavioral description. For example, in
the manufacturing domain, if the machine of a workstation
sends its outputs to three different destinations (machines),
its DEVS model is defined with three output ports. Each
output port is connected to the appropriate input port of
the other machines. Now, if another workstation uses the
same machine but requires five destination points, the previ-
ous model is adapted to use five output ports. Again, routes
will be defined using appropriate couplings between mod-
els. Hence, from the structural perspective, the functionality
of the routing process is implicitly defined in the pre-wired
connections defined by the couplings. Other DEVS-based
solutions involve the modeling of handlers that (explicitly)
provides the routing functionality. That is, for the previous
manufacturing scenario, the model of the machine used in
both workstations is (in each case) coupled with an appropri-
atemodel of a handler thatmanages the routes (e.g., by adding
a tag to the events). One way or another, besides solving the
primary goal, the modeler needs to solve a routing situation
by defining (implicitly or explicitly) a routing process spec-
ification. Then, due to the modular and hierarchical nature
of DEVS, such a routing process specification becomes a
systematic problem that is modeled following a predefined
structure (i.e., an implicit or explicit definition of routes) that
can be seen as a design pattern over the DEVS formalism.

A design pattern is the re-usable form of a solution to a
design problem [17]. Design patterns are general, reusable
solutions defined from the study of commonly occurring
problemswithin a given context that ensure the success of the
modeling task. For example, object-oriented design patterns
capture the intent behind a design by identifying objects, their
collaborations, and the distribution of responsibilities [18].
In the M&S of routing processes, DEVS-based solutions
(either explicitly or implicitly modeled) can be interpreted
as design patterns because they capture the structure behind
a simulation model design by defining the connections and
routes betweenmodels. These well-defined design structures
have a positive impact when buildingDEVS simulationmod-
els because they can be applied systematically. Hence, these
design patterns are powerful modeling tools that provide a
good start to define new strategies for solving routing prob-
lems.When building a simulationmodel for solving a routing
process, the modeler is solving a routing problem. Taking
advantage of the modular and hierarchical nature of DEVS,
a deeper analysis of the DEVS design patterns can help to
improve the modeling of routing processes. That is, from the
analysis of the explicit and implicit DEVS-based solutions
of routing problems, new structures emerge that can be used
to define new types of simulation models that improve the
M&S of such problems.

This paper presents an adaptation of the DEVS formal-
ism called Routed DEVS (RDEVS), designed to improve
the M&S of routing processes over DEVS models. Such an
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adaptation is based on the study of the DEVS design patterns
from a conceptual modeling view. By following the approach
described in [19], the conceptual modeling problem serves
as a bridge between the routing problem owner and the simu-
lation modeler. In this paper, we propose a conceptual model
of generic routing processes to analyze the DEVS design
patterns exhibit in the literature. Then, we show how the
RDEVS formalism acts as a formalization of the elements
that compose the conceptual model to improve the modeling
task. Our motivation is to reduce the modeling effort when
routing processes are defined over DEVS models. To get an
estimation of the effort required for building RDEVSmodels
instead of DEVS models, we use a set of metrics that allow
classifying the modeling effort in four cases (high, medium,
regular, low). These metrics are tested in this paper as a first
attempt to measure the behavioral modeling effort. Hence,
we align DEVS and RDEVS solutions over the same situa-
tion with the aim to compare such modeling efforts. Such an
alignment provides a suitable scenario to discuss the com-
parison between RDEVS models and DEVS design patterns
as vehicles for the M&S of routing processes. Hence, the
main contributions of the paper are: (i) the routing problem
definition through the specification of a conceptual model
that abstracts the elements required for its modeling, (ii) the
analysis of the DEVS-based solutions for routing processes
as designpatterns, (iii) the formal specificationof theRDEVS
formalism, and (iv) the definition and use of metrics to eval-
uate the modeling effort.

The remainder of this paper is organized as follows.
Section 2 introduces the foundations of our work in terms
of DEVS extensions, the routing problem description, and
the conceptual model designed for studying the composi-
tion of routing processes. It also includes the definition of
DEVS modeling complexity along with the DEVS design
patterns commonly used for modeling routing processes.
These design patterns are presented as implicit and explicit
routing strategies commonly used when modeling routing
processes with DEVS. To overcome the main issues of such
design patterns, Sect. 3 presents the formal specification of
RDEVS formalism as an extension of DEVS defined using a
set of predefined simulation models. Moreover, it details the
mapping between the conceptual modeling problem and the
RDEVS simulation models to ensure an appropriate model-
ing construction for routing processes. Hence, this section
shows how RDEVS models cover the same concepts that
explicit and implicit design patterns described in Sect. 2.
The main benefits of using RDEVSmodels instead of DEVS
design patterns are described in Sect. 4. Finally, Sect. 5 is
devoted to conclusions and future work.

2 Background and foundations

DEVS is a popular formalism formodeling complex dynamic
systems using a discrete-event abstraction [11]. It provides
a general methodology for the hierarchical construction of
reusable models in a modular way.

In this context, the DEVS formalism defines two kinds
of simulation models. An atomic model describes the
autonomous behavior of a discrete-event system as a
sequence of deterministic transitions between sequential
states. Moreover, it also specifies how the system reacts to
external input events and how it generates output events. On
the other hand, a coupledmodel describes a system as a struc-
ture of coupled components. Such components can be either
atomic or coupled models. The connections between compo-
nents are structured as couplings that denote howcomponents
influence each other. Hence, DEVS is a system theoretic-
based formalism that provides representation for systems
whose input/output behavior can be described by sequences
of events. While an atomic DEVS defines the system behav-
ior, a coupled DEVS defines the system structure. Given that
DEVS embodies a set of concepts related to systems theory
and modeling with aims to describe discrete-event models in
terms of their behavior and structure, such notions of systems
can be used as support for the M&S of new definitions.

Over the years, several authors have improved the for-
malism specification through DEVS extensions to solve
new types of problems. Such extensions include: Cell-
DEVS [20], Dynamic Structure DEVS [21], Fuzzy-DEVS
[22], Min–Max-DEVS [23], Multi-level DEVS [24], Paral-
lel DEVS [25], Real-Time DEVS [26] and Vectorial DEVS
[27]. Hence, the extensions of DEVS formalism expand the
classes of systems models that can be represented in DEVS
[1]. In fact, DEVS can serve as a simulation assembly lan-
guage to which models in other formalisms can be mapped
[11]. Moreover, the extensions of DEVS can be interpreted
as sub-formalisms derived from the original specification.

However, with a growing number in new extensions
of DEVS and an increasing number of problems to be
solved using discrete simulation techniques, the DEVS sub-
formalisms can be studied as variants and subclasses [28].
From such a perspective, DEVS variants act as a layer below
the DEVS formalism that summarizes a set of models useful
to specify new types of systems. Although all extensions pro-
videwell-defined solutions for specific contexts, the subset of
extensions classified as variants tries to solve modeling and
simulation issues from the system representation perspective.
The variants of DEVS provide feasible solutions for repre-
senting new types of systems dynamics that allow building
powerful simulation models. For example, the Cell-DEVS
[20] formalism combines cellular automata with DEVS the-
ory to describe n-dimensional cell spaces as discrete event
models, where each cell is represented as a DEVS atomic
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model that can be delayed using explicit timing construc-
tions [29]. On the other hand, DEVS subclasses act as a
layer above the DEVS formalism that structures a set of suit-
able models for solving specific types of problems without
requiring dip down into the DEVS structure itself for mod-
eling special functions. The subset categorized as subclasses
tries to solve modeling and simulation issues from the prob-
lem representation perspective. Subclasses of DEVS provide
reliable solutions for structuring efficient models that allow
representing structural problems commonly modeled with
DEVS. A well-designed model significantly enhances the
possibility that a simulation study will be a success [12].

The RDEVS formalism is an adaptation of DEVS con-
ceptually defined as a subclass of DEVS [28]. The core of
RDEVSdefines a set ofDEVSatomicmodels that use routing
information to authenticate senders, receivers, and transac-
tions. Interpreting this incoming information, routingmodels
only accept specific input messages before passing on the
message payload to an associatedmodel for processing.Also,
routing models are capable of directing processing results to
a specific set of receivers. This allows the use of the RDEVS
formalism as a layer above the DEVS formalism that pro-
vides routing functionality without requiring the user to dip
down to DEVS itself for any function [1].

The first description of RDEVS was presented in[30].1 In
this paper, we present an adaptation of the original RDEVS
specification that provides a general solution for routing
problems. Even when routing problems have been solved in
theM&S community for years (as we will show in Sect. 2.3),
we have not found an explicit definition of such a problem.
Hence, we propose a definition in Sect. 2.1. Here, routing
problems are analyzed in terms of the independence of the
components. This independence gives a full separation of
concerns at modeling time that reduces the modeling effort
involved in the DEVS modeling complexity (Sect. 2.2). To
prove that RDEVS is better thanDEVS for routing problems,
we analyze the structure of the DEVS patterns used in regu-
lar routing problems (Sect. 2.3). The modeling effort of each
pattern is studied to get structural criteria (defined as a design
metric) for measuring routing solutions.

2.1 The routing problem

Frequently, simulation scenarios require selectively send-
ing/receiving events fromone component to another.Wehave
defined the routing process as “the part of a modeling sce-
nario where the components need to interact among them by

1 It is important to denote that [30] only includes the RDEVS formal-
ization in set-theoretical notation. In this new version, the RDEVS for-
malization and the closure under coupling proofs have been improved.
Moreover, herewe introduce conceptualmodels to characterizeRDEVS
definition and compare it with DEVS-based solutions.

distinguishing the event sources and destinations to ensure
their diffusion into the right model”. Figure 1 presents two
scenarios that depict different types of routing processes:
output routing using internal information (scenario #1) and
input routing using external information (scenario #2).

In scenario #1, there are three types of components: C1,
C2, and C3. The behavior required is the following: “The
component C1 must alternate its output events between com-
ponents C2 and C3. That is, if C1 sends an event to C2, the
next event will be sent to C3 and vice versa, after sending an
event to C3, the next event will be sent to C2”. In this situa-
tion, componentC1 needs to route its output events toC2 and
C3 using its internal information. Such internal information
gives the next destination for the outgoing event. Then, the
routing process is exhibited from the source component (C1)
into the set of possible destinations (C2 and C3).

On the other hand, scenario #2 shows the opposite situa-
tion. There are four components in scenario #2: C4, C5, C6,
and C7. Here, the expected behavior is the following: “The
component C7 processes input events from components C4,
C5, and C6 with different strategies according to their pre-
vious processing. That is, component C7 executes different
processes P1, P2, and P3 for the events that come from C4,
C5, and C6, respectively. Each process has a unique behav-
ior.”. Hence, C7 needs to route its input events from C4,
C5, and C6 to, respectively, the behavior of P1, P2, and P3
using external information. Such external information pro-
vides the source component of the incoming event. Then,
the routing process is exhibited in the destination component
(C7) according to the set of possible sources (C4, C5, and
C6).

The above routing process definition includes both types
of routing (scenario #1 and scenario #2) as part of the mod-
eling scenario. Then, the modeling strategy used for solving
a full routing process description affects the structure of the
final simulation model. When building a simulation model
for solving a routing process, themodeler is solving a routing
problem.

2.1.1 Defining the routing problem as conceptual modeling
problem

From a conceptual point of view, the routing problem can
be studied as a graph model over a set of predefined com-
ponents. The aim here is structuring the model as a graph,
with the nodes of the graph representing the components,
and the edges representing the connections (i.e., the relation-
ships) among these components. Such representations allow
modeling a strict separation of concerns between themodel’s
primary goal and the routing process. For example, the set of
predefined components in scenario #1 is delimited byC1,C2,
and C3. The equivalent graph model for such a scenario will
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Fig. 1 Scenarios including routing processes in their structure

be composed of three nodes NC1, NC2, and NC3 (one node
per component) and two edges (one edge per relationship).

Figure 2 presents a UML class diagram [31] that formal-
izes the routing problem domain in terms of a set of elements
commonly identified as part of the routing modeling scenar-
ios. Concepts stereotyped as< < routing process > >are used
to define the routing process domain. Meanwhile, the con-
cepts stereotyped as< < scenario goal > >describe the main
elements to be modeled as part of the primary goal of the
scenario.

A Routing Scenario is structured in, at least, two nodes
(Node concept). Each Node can be conceptually defined as
the fundamental unit fromwhich routing processes aremade.
Then, the relationship Composed by defined between Rout-
ing Scenario and Node is detailed as a UML composition.
Moreover, nodes are linked by edges (Edge concept). There-
fore, each Node has one input (Input concept) and one output
(Output concept). An Edge is an ordered pair of nodes that
Starts at the Output of a Node and Ends at the Input of
another Node. Then, the concept Edge includes the relation-
ships Starts at and Ends at as mandatory associations with
Output and Input concepts, respectively. However, the Input
and Output of a Node can be related to more than one Edge
(i.e. the associations detailed with multiplicities 1..*).

All the nodes included in a Routing Scenario must mate-
rialize a component (Component concept). A Component
is an entity of the real world or imaginary system to be
modeled that can be characterized by its operation. Such
an operation is described as a set of behaviors. Hence,
a Component definition Includes (at least) one behavioral
description defined using the Behavior concept. The Materi-
alizes relationship between conceptsNode andComponent is
mandatory for the Node concept (multiplicity 1). However,
the same Component can be used to build multiple nodes
(then, the Materializes association for the Node concept is
detailed with multiplicity 1..*).

When a Node Materializes a Component, the routing
information to be used for controlling the input/output of
the Component related to the Node (i.e. the Routing Policy
concept) needs to be detailed. Such a Routing Policy is used
to route the input/output events that flow to/from the actual
Node from/to the other nodes that compose the Routing Sce-
nario. For example, in scenario #1 a Routing Policy for NC1
will involve nodes NC2 and NC3. Even when a new Node
NC1’ can be included in the Routing Scenario as a mate-
rialization of Component C1, the routing policies of NC1
and NC1’ may be different. Then, NC1 and NC1’ will share
the same internal behavior (that is, the Component C1) but
each nodewill send/receive events following its ownRouting
Policy. Therefore (as the class diagram of Fig. 2 shows), a
Routing Policy must be Defined over a set of nodes (at least,
one Node). Moreover, a Node included as part of a Routing
Scenario must be attached to, at least, one Routing Policy.
Hence, even when the Routing Policy is encouraged to man-
age the flow of events over the edges, its definition must be
attached to the Node detailed at design time over a Compo-
nent. Then, the Routing Policy is defined as an association
class linked to the Materializes association between Node
and Component.

The conceptual model detailed in Fig. 2 allows an under-
standing of the modeling relations among the concepts
involved in routing situations. At this point, it is important to
understand that the routing process definition does not allow
universal routing policies at the scenario level. Instead, rout-
ing policies must be defined at the node level according to
the scenario structure.

2.2 DEVSmodeling complexity

Models represent simplifications of a system. Therefore,
many models will exist for any particular complex system
[32]. For themodeler, the challenge to be solved is the process
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Fig. 2 UML class diagram used for studying the components and their interactions in routing scenario configurations

of exploring a family of hierarchical models and selecting a
particular composition fromwhich a fit-for-purpose discrete-
event simulationmodel can be automatically synthesized and
executed. For example, in [33] the authors define perfor-
mance metrics used to guide the modeler to select the most
practical model of a real-world system from among a poten-
tially large set.

In this context, assuming that anymodel can be considered
as a set of interconnected components, the overall complexity
of amodel can be studied as a combination of three elements:
the number of components, the pattern of the connections
(which components are related), and the nature of the con-
nections (the complexity of the calculations determining the
relationships) [34]. Given that the structure of a formalism
provides a basis for measuring the complexity of objects in
that class [35], the modeling complexity of DEVS simulation
models can be studied by analyzing DEVS complexity itself.

DEVS models are defined using two abstraction levels:
behavior and structure. Then, DEVS modeling complexity
should be analyzed using a holistic approach that combines
both perspectives as follows:

• Themodeling effort required for defining the behavior, and
• The structural complexity defined over the behavioral
descriptions.

Of course, both perspectives are related to modeler skills.
The modeling effort (or behavioral modeling effort) is used
as ameasure for the complexity of behavioral descriptions. If
themodeler does not know theproblemdomain, themodeling
task will be hard. As consequence, behavioral descriptions
will be complex. However, if the modeler is a domain expert,

the model design will be easy to understand. Domain experts
usually provide an objective view of complex behaviors as a
set of simple behaviors. Then, models are structured as a set
of behavioral descriptions. Such separation of concerns influ-
ences the structural complexity.Hence, evenwhen structural
complexity can be analyzed from an isolated point of view in
terms of the model’s composition, the structural complexity
will always depend on the modeling effort.

Following the definition presented in Sect. 2.1, our pro-
posal is structuring the routing problem model as a graph.
Over this representation, graph theory measures can be used
to measure the structural complexity of the models. There-
fore, at this stage of research, we leave aside the structural
complexity and only focus our attention on studying themod-
eling effort. Our aim is to study the modeling effort attached
to distinct simulationmodels of routing problems to compare
DEVS and RDEVS solutions.

2.2.1 Design metrics for studying DEVSmodeling effort

Given the need to measure the modeling effort in routing
problem solutions, two types of measures are taken: sce-
nario metrics and simulation model metrics. The scenario
metrics refer to properties related to the routing scenario to
be modeled. In this paper, we only use the number of nodes
to be modeled (defined as N). On the other hand, the sim-
ulation model metrics refer to the properties of the DEVS
models designed by the modeler for solving the scenario. It
is important to denote that with aims to model the behavioral
modeling effort, we employ metrics attached to the simula-
tion model structure. As stated in the previous section, DEVS
structure refers to the definition of a model while DEVS
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behavior refers to the pairs of input/output time-indexed tra-
jectories generated by a structure via a simulator. Due to the
structure of DEVS, we use three properties: number of sim-
ulation models (defined as Q), number of couplings (defined
as K), and number of ports (defined as W ). Over these met-
rics, we define two modeling relations (along with feasible
indicators) to value the modeling effort as a combination of
both: Q/N and W/K . From this perspective, ports and cou-
plings are related to theDEVS structure. So, we employ these
measures to evaluate the modeling effort considering that the
pairs of input/output time-indexed trajectories will be the
same in all models compared by the modeling relations Q/N
and W/K . These ratios are defined to detect the monolithic
level of DEVS configurations and the effectivity of depen-
dencies designed as ports allocated for each coupling. We
will test these metrics across our proposal, but deeper anal-
yses will be tested in future research using DEVS models
obtained from the literature.

The number of simulation models (Q) measures the mod-
eler effort when building a simulation model that imitates the
behavior of a component involved in a routing process. As
Sect. 2.2 details, domain experts usually provide an objec-
tive view of complex behaviors as a set of simple behaviors.
Then, a simulation model designed following an appropriate
separation of concerns will not be based on monolithic con-
figurations. A monolithic configuration is given when each
node is defined as a behavioral simulationmodel. This means
that the number of nodes (N) and the number of simulation
models (Q) are equally valued for the routing problem under
analysis. As the number of simulation models increases over
the same number of nodes, themonolithic configuration fades
out. Then, the number of simulation models per node (i.e.
the Q/N relation) in monolithic configurations is 1. With an
appropriate separation of concerns, a good modeler will try
to improve theQ/N relation to increasing the average number
of models attached to each node. Hence, when studying the
closeness to monolithic configurations, the threshold of the
Q/N relation can be defined as 1.

Even when the Q/N relation can be used to study the mod-
eling effort, it should be analyzed along with the number of
couplings and the number of ports to improve the interpre-
tation of the modeling solution. The number of couplings
(K) measures the modeler effort when building a simulation
model that refers to a component that interacts with other
components involved in a routing process. When compo-
nents interact, the simulation models that represent them are
connected using a set of couplings. Intuitively, if the simu-
lation model contains a lot of couplings the modeling effort
increases because the modeler needs to consider all possi-
ble dependencies among components. In the same direction,
if the simulation model contains just a few couplings the
modeling task is easier because dependencies among com-
ponents are restricted into a small set of elements. When

simulation models are designed following an appropriate
separation of concerns, the couplings depict either structural
or behavioral dependencies among components. Such struc-
tural and behavioral dependencies can be interpreted as a
UML aggregation or composition [31], respectively, where
the model of one class (parent) owns the model of another
class (child). Aggregation implies a relationship where the
child can exist independently of the parent (i.e. structural
dependency). Composition implies a relationship where the
child cannot exist independently of the parent (i.e. behavioral
dependency).

Either with structural or behavioral dependencies, the
number of couplings cannot be considered as an isolated
metric for measuring modeling effort. The number of ports2

(W ) provides a feasible measure that can be combined with
the number of couplings to estimate the modeling effort. In
DEVSmodels, a coupling is defined as a two-port connection
that relates two different models. Then, ideally, the number
of ports allocated for each coupling (i.e. the W/K relation)
is at most 2. This is because a coupling is defined as a pair
of ports. When building a routing problem solution, a good
modeler will try to improve the W/K relation to decrease the
average number of ports allocated for each coupling. This is,
instead of defining a port for each coupling, the modeler will
try to reuse ports for several couplings. Hence, the threshold
of the W/K relation can be defined as 2.

Tables 1 and 2 introduce both metrics in terms of their
definition, minimum and maximum values, and values com-
parison.

To illustrate the use of these metrics, Figs. 3 and 4 depict
two alternative models that solve, respectively, scenarios #1
(Fig. 1a) and #2 (Fig. 1b) presented in Sect. 2.1.

Scenario #1 includes three nodes (that is,N � 3). In such a
scenario, the component C1 has two behavioral responsibili-
ties: executing its own operational behavior and distributing
its output events between C2 and C3. Solution #1 (Fig. 3a)
structures the component C1 as a single simulation model
(monolithic configuration) that performs both behaviors (that
is, QC1 � 1). Here, the number of couplings is K � 5 while
the number of ports is W � 10. Specifically, the couplings
defined in modelScenario1 depict an aggregation3 among
modelC1,modelC2, andmodelC3 formodeling the structural
interactions of componentsC1,C2, andC3. The final value of
Q for solution #1 isQSOLUTION1 � 4. Meanwhile, in solution
#2 (Fig. 3b) the behaviors of component C1 are divided into
two internal simulation models: operation, and distribution

2 Considering that i) all ports have at least one coupling, ii)our approach
is focused on Classic DEVS, and iii) the notion of bag (i.e., a collection
of simultaneous external events generated by internal and confluent
transitions) on one port is not admitted.
3 Models modelC1, modelC2, and modelC3 can be used outside the
model modelScenario1 because each one of them represents a Compo-
nent (Fig. 2).
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Table 1 Definition of the metric “Q/N”

Q/N Property Description

Definition Average number of models attached to each node where Q is the number of models and N is the number of nodes

Minimum value A value of Q/N � 1 indicates a monolithic configuration (i.e., each node is represented by a model)

Maximum value A value of Q/N >1 indicates that the number of models is higher than the number of nodes. Hence, a model
composition is used to represent each node

Comparison between values Given two different measures m1 and m2, the closest value to 1 will refer to a more monolithic configuration than
the other one. A value far from 1 is desirable since it indicates that the modeler has a good modeling approach
(i.e., it has performed an accurate separation of concerns)

Table 2 Definition of the metric “W /K”

W /K Property Description

Definition Average number of ports allocated for each coupling where W is the number of ports and K is the number of
couplings

Minimum value A value of W /K <2 indicates that there are ports that are used to address more than one coupling

Maximum value A value of W /K � 2 indicates that each pair of ports is used to address one coupling (i.e., ports are designed for
specific couplings)

Comparison between values Given two different measures m1 and m2, the closest value to 2 will refer to a highly structure route solution than
the other one. A value far from 2 is desirable since it indicates that the modeler has improved the routes
definition (i.e., it has performed an accurate separation of concerns)

Fig. 3 Possible solutions for building a DEVS simulation model of scenario #1

Fig. 4 Possible solutions for building a DEVS simulation model of scenario #2
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(then, QC1 � 3). The couplings among such internal mod-
els depict a composition4 among operation, distribution, and
modelC1 for modeling the behavior required in component
C1. Moreover, solution #2 employs 9 couplings (K � 9) and
15 ports (W � 15). The final value of Q is QSOLUTION2 � 6.

From a different point of view of routing processes, the
component C7 of scenario #2 executes different behavior
according to the component that sends the input event (C4,
C5, and C6). Such a scenario includes four nodes (that is, N
� 4). In this case, the simulationmodel defined as solution #1
(Fig. 4a) employs a single model (monolithic configuration)
to represent all behaviors of componentC7 (that is,QC7 � 1).
The number of couplings included in this solution is 7 (K �
7), while the number of ports is 14 (W � 14). The final num-
ber of models is QSOLUTION1 � 5. Alternatively, solution #2
(Fig. 4b) splits such behaviors into a set of behavioral mod-
els (called operationP1, operationP2, and operationP3) that
individually represent each one of the behaviors required in
component C7 (then, QC7 � 4). In this solution, the number
of couplings is 13 (K � 13), and the number of ports is 20 (W
� 20). The overall number of models included in the solution
is QSOLUTION2 � 8.

Analyzing the alternative model solutions proposed for
both scenarios according to the modeling effort metrics, the
measures are:

• For scenario #1: The modeling effort in solution #1
(Fig. 3a) is characterized by Q/N � 1.33 (Q � 4 and N
� 3) and W/K � 2 (W � 10 and K � 5). Instead, the mod-
eling effort in solution #2 (Fig. 3b) improves bothmeasures
as Q/N � 2 (Q � 6 and N � 3) and W/K � 1.66 (W � 15
and K � 9).

• For scenario #2: The modeling effort in solution #1
(Fig. 4a) is reduced to Q/N � 1.25 (Q � 5 and N � 4)
and W/K � 2 (W � 14 and K � 7). Again, solution #2
(Fig. 4b) improves the measures as Q/N � 2 (Q � 8 and
N � 4) and W/K � 1.53 (W � 20 and K � 13).

Table 3 summarizes the criteria adopted for measuring the
modeling effort in routing problems using the relations Q/N
and W/K . Moreover, Fig. 5 depicts the same information as
a chart.

According to such valuation, a growing value in the W/K
relation (that is, a value closer to 2) increases the modeling
effort. If the number of ports allocated for each coupling is
closer to 2, the modeler is trying to solve the routing pro-
cess using pre-wired connections. Independently from the
monolithic configuration, the models included in the final

4 Models operation and distribution are not able to be used out-
side model modelC1 because each one of them represents a Behavior
included in a Component (Fig. 2).

Table 3 Valuation of the modeling effort to solve routing problems

Q/N W /K Modeling effort

case #HIGH ≈ 1 ≈ 2 + +

case #MEDIUM >1 ≈ 2 +

case #REGULAR ≈ 1 <2 -

case #LOW >1 <2 - -

Fig. 5 Chart representation of Table 3

simulation will be handling routing connections as part of
their behaviors.

Of course, the modeling effort will be higher if monolithic
configurations are employed because a single simulation
model will be in charge of handling all behaviors. There-
fore, the modeling effort in case #HIGH is higher than in
case #MEDIUM.

Contrary, if theW/K relation is lower than 2, themodeler is
trying to improve its solution by leaving the routing responsi-
bility into newcomponents. This reduces themodeling effort.
Now, Q/N relation plays an important role. A good modeler
will try to improve its design with a proper separation of con-
cerns that not only provides simpler simulation models but,
also, improves their reusability. The benefits of reuse should
accrue from the reduced time and cost for model develop-
ment [36]. Therefore, with a Q/N relation closer to 1, the
modeling effort increases due to the monolithic configura-
tion (case #REGULAR). As the Q/N increases, the modeling
effort decreases due to the nodes are modeled as a set of
behaviors (case #LOW ).

Hence, considering the modeling effort as a measure for
the complexity of behavioral descriptions, the valuation pro-
posed in Table 3 defines four caseswith aims to compare such
an effort in terms of Q/N and W/K . Then, both relations can
be interpreted as design metrics. It is important to remem-
ber that in this case, the modeling effort does not consider
structural complexity measures (that is, metrics related to the

123



M. J. Blas et al.

hierarchical structure). Therefore, an accurate application of
these measures must ensure the following:

• The scenario to be modeled is a routing process situa-
tion composed of several components explicitly connected
through output/input connections.

• The modelers employ similar levels of abstraction for
building the simulation models that depict the routing
problem.

• All the elements included in the design (i.e., the models,
couplings, and ports) have been used to accomplish the
simulation purpose.

• The routing policy attached to each node is defined at
design time and cannot be changed during the simulation
execution (its definition is given by the description of the
routing scenario).

2.3 DEVS design patterns for routing process
situations

When DEVS is applied for solving routing scenarios, the
overall model has two different goals: (i) a primary goal
derived from the real world or imaginary system that com-
poses the scenario, and (ii) a routing process goal that helps
during the resolution of the primary goal. During the design
phase, the modeler must design a DEVS simulation model
that achieves both goals. Therefore, the modeler always
builds a design that consumes routing information (either
by an implicit or explicit specification).

In an implicit solution, the models are designed consider-
ing the events flow as pre-wired connections. That is, for
each possible interaction among components that defines
an alternative flow, the model includes a coupling (among
specific ports) that is used when the interaction is active.
Such an implicit solution is the one used in the model solu-
tions detailed in Figs. 3 and 4. For example, the connections
amongmodelC1, modelC2, andmodelC3 (Fig. 3) are defined
using two output ports in the modelC1. Each output port of
the modelC1 is specifically linked to the input port of one
possible destination. Such destinations are defined accord-
ing to the routing behavior detailed in component C1. Then,
each destination is attached to an output port of the source
model by a specific coupling. Such couplings allow sending
direct events from modelC1 to modelC2 and modelC3 using
pre-wired connections. The same implicit strategy is used in
Fig. 4. However, in these cases, the modelC7 includes three
input ports to distinguish the events that come frommodelC4,
modelC5, and modelC6. Again, the couplings detailed over
these ports can be seen as pre-wired connections. Examples
are presented in [37–41].

The use of implicit solutions for modeling routing pro-
cesses can be studied using the UML class diagram depicted
in Fig. 2. In an implicit routing, even when a Node Materi-

alizes a Component through a Routing Policy, the Routing
Policy is also applied in the Edge definition. A Node (node
#1) decides the output port to be used for sending an event to
another Node (node #2) using its Routing Policy. However,
the Routing Scenario needs to include an Edge that links
properly node #1 and node #2. Therefore, the edges need
to be defined complying the routing policies required in all
nodes. Figure 6 depicts such consideration by including the
Complies relationship between the concepts Edge and Rout-
ing Policy.

Even when implicit solutions are widely used for routing
problems, such solutions do not follow the low coupling5

guide commonly applied in modular designs. An implicit
solution for routing processes in DEVS implies that each
one of the models that represent a Node will be as specific
as its Routing Policy. Then, the modeling effort increases
because the modeler needs to study the Routing Policy to
build its design. Moreover, the simulation model that defines
the Routing Scenario will be also as specific as the routing
policies used in the set of nodes that compose it. Hence, a
complex Routing Policy leads to highly linked specific mod-
els that are not completely independent of each other.

Contrary to an implicit strategy, explicit routing solutions
are also encountered in the literature. Such solutions com-
monly involve a set of handlers that manages the routing
functionality. For example, Fig. 7 presents an explicit strategy
as an alternative solution for the model proposed in Fig. 4b
(that is, modelScenario2). According to this solution, the
model modelC7 receives all the events produced by mod-
els modelC4, modelC5, and modelC6 using the same input
port. Such an input port is designed as a unique entrance to
themodel that implements componentC7 (that is,modelC7).
Then, the model modelC7 uses a new internal model (called
inputHR) to distribute the events among the available behav-
iors (that is, operationP1, operationP2, and operationP3).
Examples that use the explicit routing strategy for solving
routing problems are detailed in [1, 15, 41, 43].

When studying the use of explicit solutions in terms of the
UMLclass diagramdepicted inFig. 2, a newconceptHandler
must be added in the domain to reflect the modeling strategy
(Fig. 8). Now, a Node uses a Handler with aims to apply
its Routing Policy according to the Component description.
Such Handler Manages the Input and Output of the related
Node to restrict the incoming/outgoing events to the Com-
ponent in which the Routing Policy is applied. Therefore,
the explicit solutions isolate the Routing Policy in a specific
part of the Node (i.e. the Handler) giving a complete separa-
tion of concerns between the routing responsibility and the
Behaviors included in the Component.

5 In software engineering, the coupling is the strength of the relation-
ships between modules [42].
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Fig. 6 UML class diagram of the routing problem domain with implicit routing solutions

Fig. 7 Explicit solution for
modeling the routing process
required in scenario #2

An explicit solution for routing processes in DEVS
implies that each one of the handlers included in the nodes
will be as specific as the Routing Policy attached to its def-
inition. Hence, a complex Routing Policy leads to specific
handlers but, still, it is independent of the behavioral model-
ing (related to the Component). This particularity gives low
coupling among models. However, the effort involved in the
design of explicit solutions is higher than in the equivalent
implicit solution because themodeler needs to design a larger
number of models per node. That is the reason why implicit
solutions are more common than explicit solutions.

Either with an implicit or explicit solution, the modeler
always employs external information to structure the simu-
lation model. Such external information can be interpreted
as the routing path to be followed by events. Hence, both
solutions can be studied as design patterns for routing prob-
lems. A design pattern is the re-usable form of a solution
to a design problem [17]. Therefore, the implicit and explicit
solutions detailed are design patterns over the DEVS formal-

ism that help to build simulationmodels for routing processes
by following a general strategy based on a pattern-oriented
modeling approach for designing and developing models of
complex systems [44]. Hence, the design metrics defined in
Sect. 2.2 can be used to analyze their modeling effort.

3 The routed DEVS formalism

The RDEVS formalism is an extension of DEVS concep-
tually defined as a subclass of DEVS that provides a design
structure that reduces themodeling effort of routingprocesses
over discrete event models [28]. The design patterns detailed
in Sect. 2.3 as implicit and explicit solutions leave the rout-
ing modeling decision to the modeler. That is, the modeler
that builds the design specifies the routing policy following
some modeling strategy. When implicit solutions are used,
the routing information is hidden in the couplings. When
explicit solutions are used, the routing information is hidden
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Fig. 8 UML class diagram of the routing problem domain with explicit routing solutions

in the handler definition. In both cases, for modelers who
have not been involved in the design, a full understanding of
the final simulation model will be tricky without adding any
external data related to the couplings foundations.

Instead, the RDEVS models allow defining the rout-
ing information explicitly without requiring any behavioral
description attached to it. Then, the information related to
the routing policy is detailed by the modeler as part of the
node definition to authenticate senders and receivers before
executing the behavior of the component. The execution of
the routing process is built-in RDEVS models. Then, rout-
ing models provide an appropriate separation of concerns in
terms of the routing process description (i.e., the structure and
routing paths) and the behavior of the components. Hence,
modelers who have not been involved in the design will only
have to understand the behavior of the components.

3.1 The RDEVSmodels

The RDEVS formalism defines three types of models: essen-
tial, routing, and network. Each RDEVS model depicts an
abstraction level of some component defined in Fig. 2 as fol-
lows:

• A network model structures the routing process definition
(i.e. the Routing Scenario concept). Each network model

is composed of a set of routing models that represents the
entities used to describe routing interactions among com-
ponents.

• A routing model represents an entity involved in the rout-
ing process (i.e., the Node concept). Each routing model is
defined as a pair {routing information, essential model}
that take care of verifying the routing policy over the
incoming message and, then, pass on the operative con-
tent to the essential model for processing.

• An essential model refers to a module used to describe a
routing entity (i.e. theComponent concept). Each essential
model is designed to exhibit the behavior of a domain-
specific component.

Hence, the core of the RDEVS approach is using the main
components of the routing problem domain to structure the
simulation model definition (Fig. 9). RDEVS models embed
the definition of theComponents into theNodes specification
that composes the description of the Routing Scenario. By
embedding the components into the nodes, the formalism
improves the modeling task in two ways:

i) The design of the behavioral description is only required
for the domain-specific components: The modeler builds
simulation models for representing well-known ele-
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ments. There is no need to be worried about modeling or
implementing routing solutions.

ii) The routing policy is isolated from the behavioral
description allowing the reuse of simulation models in
several scenarios: The modeler can use the designed set
of simulation models without changing their specifica-
tion with aims to depict different routing processes over
the same set of components (only needs to change the
routing policy configuration).

The following subsections introduce the formal definition
of the RDEVS models using set-theoretic notation.

3.1.1 RDEVS essential model (Component)

The RDEVS Essential Model specifies a discrete-event simu-
lation model that exhibits the behavior of a Component to be
used as part of a Routing Scenario (that is, a routing process
component). The sameEssential Model can be used to define
multiple nodes with different Routing Policies over a defined
Routing Scenario.

AnEssentialModel is equivalent to aDEVSatomicmodel
[1]. Formally, it is defined by the structure

M �< X , S, Y , δint, δext, λ, τ >

where.
X ≡ set of input events,
S ≡ set of sequential states,
Y ≡ set of output events,
δint: S→S ≡ internal transition function,
δext: Q ×X→S ≡ external transition function, where
Q � {(s,e) | s m S, 0 ≤e ≤ τ (s)} ≡ total state set,
e ≡ time elapsed since last transition,
λ: S→Y∪ø ≡ output function,
τ : S → R+

o,∞ ≡ time advance function.
The Essential Model definitions specify the set of avail-

able components that will be used for theM&S of the routing
process. To define such essential models, the modeler only
needs to know the component description (obtained from the
domain specification). It does not need to take care of the
routing context where the component will be used. There-
fore, the modeler could be a domain expert.

3.1.2 RDEVS routing model (Node)

The RDEVS Routing Model (Routing Model) defines a
discrete-event simulation model that takes action inside the
routing process (i.e., a routing process node). The Routing
Model definition employs a routing process component as an
operational description of its behavior. Hence, an Essential
Model is embedded in the definition of the Routing Model.
Moreover, the definition also includes a set of elements used

to describe the Routing Policy. Such a policy involves an
identifier used to find the Node inside the Routing Scenario.
By using this identifier, the model decides whatever to accept
or deny input events and how to route its own output events
into other models. The first test is performed when executing
the external transition function. The routing decision is taken
when executing the output function.

As discussed above, several Routing Models can be
defined by combining the same Essential Model with differ-
entRouting Policy. The inverse is also true. The sameRouting
Policy can be used in several Routing Models with different
Essential Model. Then, the modeler can design alternative
Routing Scenarios using the same set of Components in dis-
tinct Nodes.

Formally, the RoutingModel is defined by the structure

R �< ω, E, M >

where.
ω � (u, W, δr) ≡ routing policy,where.
u m N0 ≡ model identifier,
W � {w1, w2,…, wp| w1, w2,…, wpm N0} ≡ set of identi-

fiers that restricts the nodes from which input events will be
accepted,

δr: SM →TOUT ≡ routing function used to direct the out-
put events, where SM is the state of M and TOUT � {t1, t2,…,
tk| t1, t2,…, tkm N0} ≡ set of identifiers that restricts the
nodes towards which output events will be sent,

E � <XE , SE ,YE , δint,E , δext,E , λE , τE >≡RDEVS essen-
tial model embedded in R,

M � <XM , SM, YM, δint,M , δext,M , λM, τM> ≡ DEVS
atomic model that describes the behavior of the node to be
executed during the routing process simulation, where

XM � {(x, h, T IN) | x m XE, h m N0, T IN � {t1, t2,…, tk|
t1, t2,…, tkm N0}} ≡ set of input events identified inside the
routing process, with

x ≡ input event defined in E,
h ≡ sender identifier,
T IN ≡ set of identifiers that represents enabled targetmod-

els,
SM � SE ≡ set of sequential states,
YM � {(y, u, TOUT) | y m YE, u m N0, TOUT � {t1, t2,…,

tk| t1, t2,…, tkm N0}} ≡ set of output events identified inside
the routing process, with

y ≡ output event generated by E,
u ≡ sender identifier (that is, the model identifier),
TOUT ≡ set of identifiers that represents enabled target

models,
δint,M: SM →SM � δint,E ≡ internal transition function,
δext,M: QM × XM→ SM ≡ external transition function

that only accepts input events that satisfy one of the follow-
ing statements: (i)The event has been sent to R from some
allowed model (Clause #1): This clause is activated when u
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Fig. 9 UML class diagram of the routing problem domain with RDEVS models

belongs to T IN (i.e. the set of identifiers that represents the
enabled target models for the incoming event) and the source
identifier h (i.e. the sender of the incoming event) is included
in W . (ii)The event comes from an external source (Clause
#2): This clause is activated when h is zero (that is, the sender
identifier of the incoming event is fixed as 0) and u belongs
to T IN (i.e. the set of identifiers that represents the enabled
target models for the incoming event). iii) The model config-
uration constraints it to accept all input events (Clause #3):
This clause is activated when the model identifier u is zero
and W is configured as an empty set (i.e. there is no restric-
tion related to the achievable senders). Under this clause, the
model will exhibit similar behavior to aDEVS atomicmodel.
Then, the external function is defined as

δext,M (s, e, x ′) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δext,E (s, e_c + e, x) if(u ∈ TIN∧h ∈ W ) ∨ (h � 0 ∧ u ∈ TIN )∨ (u � 0∧W � ø)

with x ′ � ( x , h , T ) and setting e_c � 0 after the execution

s otherwise

Updating the elapsed time accumulated value as e_c � e_c + e

with.
QM � {(s,e) | s m SM, 0 ≤e ≤ τM(s)} ≡ total state set,
e ≡ time elapsed since last transition in M,
e_c ≡ time elapsed since last transition in E,

λM: SM →YM ∪ø ≡ output function that produces events
with routing information, defined as

λM (s) � (λE (s), u, δr (s))

τM: SM → R+
o,∞ ≡ time advance function.

In a Routing Model, an event is identified by the sender
information (i.e. the model that generates the event as part
of its output function). Although natural numbers are used
to define the identifiers, such elements can be defined using
other types of individualization.

As defined above, the simulation functions of M embed
the functions of E to allow the routing process only when

events are accepted inside the Node. Such embedding can be
understood as a new type of relationship among DEVSmod-
els. Besides the structural and behavioral dependencies, the
RDEVS formalism includes an embedding dependency in
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which the model of one class "uses" the model of another
class. Therefore, by using this new type of dependency
among models, the formalism details the functions of the
Routing Model using the Essential Model definition. For
example, the external transition function is designed as an if-
else function to accept only the set of input events that must
be processed inside theNode. That is, if an input event fulfills
some of the defined clauses, the Routing Model executes the
external transition function of the Essential Model to exhibit
the behavior of the Component embedded in the Node. Oth-
erwise, the model “rejects” the incoming event staying in the
same state that was before it arrives. As opposed, the inter-
nal transitions of the Routing Model are governed by the
Essential Model. Given that the Node must exhibit the same
behavior as the Component, the internal transitions of both
models should be the same (that is why the internal transition
function of M is equivalent to the one defined in E). Then,
the internal transitions of the Essential Model will take place
in the Routing Model. Moreover, given that before executing
an internal transition the model needs to produce an output
event, the output function of M employs the output function
of E surrounded with the routing data. Therefore, the events
sent by the Routing Model include the events produced by E
alongwith themodel identifier (sender) and the set of enabled
destinations obtained from the routing function.

The Routing Model definition follows the statement
detailed in Sect. 2.2 as “the routing policy attached to each
node is defined at design time and cannot be changed during
the simulation execution”. Hence, the ω definition cannot be
dynamic itself. Its values are fixedwhen the simulationmodel
is designed by following the routing scenario description.

3.1.3 RDEVS network model (Routing scenario)

The RDEVS Network Model (Network Model) describes a
complex discrete-event simulation model that has a primary
goal that includes the resolution of a routing problem (i.e. a
routing process scenario). To build a Routing Scenario, the
modeler needs to define a set of Nodes. Then, the definition
of the Network Model includes a set of Routing Models and
the couplings among them. Such couplings are detailed as
all-to-all connections to leave the routing task to the Nodes.
The Network Model specification also involves two spe-
cial translation functions used to link several models. These
functions allow matching events from different Routing Sce-
narios. Then, the design of the Network Model is prepared to
interact with other Network Models or, simply, with DEVS
models. The combination of several types of simulationmod-
els depends on the simulation goal.

Formally, the Network Model is defined by the structure

N �< X , Y , D, {Rd}, {Id}, {Zi,d}, Tin, Tout,Select >

where.
X ≡ set of input events,
Y ≡ set of output events,
D ≡ set of identifiers that represent the nodes to be

used as part of the routing scenario (i.e. references to Rout-
ingModels), where d m N0, ∀d m D,

For each d m D, Rd is a RoutingModel, defined as

Rd �< ωd , Ed , Md >

where ud � d,
For each d m D ∪ {N}, Id is the set of influences over d

defined as Id � {i / i m D ∧ i �� d} ∪ {N} to maintain the
all-to-all couplings,

For each i m Id , Zi,d is a translation function between
events of i and events of d, where

Zi,d � Tin, if i � N ,
Zi,d � Tout , if d � N ,
Zi,d: YM,i→ XM,d if i �� N ∧ d �� N ,
Tin: X → {(x, h, T) | x m X, h m N0, T � {t1, t2,…, tk|

t1, t2,…, tkm N0}} ≡ input translation function that takes
an external input event and returns an input event identified
inside the routing scenario, where

x ≡ input event defined in N ,
h � 0 ≡ sender identifier where zero indicates that the

event comes from an external source,
T ≡ set of enabled destinations (identifiers) that must pro-

cess the input event,
Tout: {(y, h, T) | y m Y, h m N0, T � {(t1, t2,…, tk) |

t1, t2,…, tkm N0}} → Y ≡ output translation function that
takes an output event identified inside the routing scenario
and returns an external output event, where

y ≡ output event allowed in N,
h ≡ sender identifier,
T � ø ≡ set of enabled destinations (empty set implies

that events go to an external destination),
Select: 2D →D ≡ function for tie-breaking between

simultaneous internal transitions.
Following the formal definition, the Network Model only

comprehends the routing process scenario modeled inside
of it. That is why the events that come from external mod-
els are not treated as identified events. All the external input
events that arrive at the Network Model are translated into
events with identification inside the routing scenario by using
the input translation function. In such cases, given that the
sender identifier is not defined as part of the scenario, the
input translation function fix h to zero. Any Routing Model
included in the Network Model that receives an event with
h � 0 should process it according to Clause #2. That is, the
Routing Model verifies that its own identifier is included in
TIN prior accept the incoming event. A similar setting strat-
egy is used for output events. Conceptually, the output events
of the Network Model are defined as identified events with
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external destinations.However, given that the routing process
only takes place inside the Network Model, external identifi-
cations are not allowed. Therefore, external destinations are
detailed setting TOUT as an empty set (giving “everywhere”
as destination). Moreover, all the events that leave the Net-
work Model (classified as events with identification inside
the routing process) must be transformed into DEVS regular
events to keep the Routing Scenario isolated from the other
simulation models. Such a transformation is performed by
executing the output translation function.

3.2 Closure under coupling

Closure under coupling justifies hierarchical construction. A
system formalism is closed under coupling if the result of
any network of systems specified in the formalism is itself a
system in the formalism [1]. However, it also assures that the
class under consideration is well-defined and enables check-
ing for the correct functioning of feedback coupled models
[45].

To prove that the RDEVS formalism is closed under cou-
pling, two new models are obtained: (i) the Routing Model
that is behavioral equivalent to the Network Model, and (ii)
the Essential Model that is behavioral equivalent to the Rout-
ing Model. Appendix A summarizes both demonstrations.
The equivalent models obtained in such demonstrations can
be used to justify the hierarchical composition because they
ensure that the Network Model and Routing Model can be
used to structure hierarchically theRouting Model andEssen-
tial Model, respectively. By transitivity, a dynamic system
specified with a Network Model can be reduced to a behav-
ioral equivalent Routing Model and, then, the Routing Model
can be transformed into the behavioral equivalent Essential
Model. Hence, aNetwork Model can be reduced to an equiva-
lent EssentialModel. Such anEssential Model can be used in
the new Routing Model (following the Routing Model defini-
tion). Now, a Routing Scenario (the Network Model) can be
used to structure newNodes (theRouting Models). Therefore,
the hierarchical construction stays within the formalism.

Although equivalent models are not commonly used for
closure under coupling demonstrations, such a strategy for
RDEVS allows proving that any RDEVS model can be
reduced to a DEVS atomic model (because the Essen-
tial Model is defined as a DEVS atomic model). Then,
the RDEVS models can be combined with DEVS models
develop larger simulation structures. Moreover, given that
RDEVS models are compatible with DEVS models, the
RDEVS models can be executed using DEVS simulators.

3.3 About the RDEVS structure

The RDEVS formalism is designed for leveling out the mod-
eling effort of routing problems providing an easiermodeling

solution that employs a set of simulation models that are
defined in terms of the main elements involved in routing
scenarios. In this context, RDEVS models aim to isolate a
routing scenario inside the Network Model. Such a Network
Model can be defined to interact with other models. These
models can be other routing scenarios (with their own set
of nodes and routing policies) or, simply, other DEVS mod-
els required as part of the problem. Following this approach,
the identifiers used in the Routing Models that compose the
Network Model are unique inside the network definition.
However, their definition is not valid for the overall simula-
tion model. That is why the incoming events of the Network
Model are setwith zero as the sender identifier. Zero indicates
that the event is coming from outside the network and, then,
theNetwork Model must decide which node will be in charge
of its processing (employs the input translation function). In
the same direction, the outgoing events of theNetwork Model
use an empty target list to indicate that the event is going to
be sent by all the outputs detailed in the model. Then, these
events are sent “everywhere”.

A deeper analysis of RDEVS structure reflects that, even
when Routing Models are defined using some kind of exter-
nal information (that is, the identifiers of available senders
and possible destinations), the same information was already
used when DEVS solutions were applied. When couplings
are detailed (in implicit DEVS solutions) or handlers are
defined (in explicit DEVS solutions), the modeler is using
external information to get the final design (such as scenario
context). In RDEVS solutions, such external information is
captured in a single component of the Routing Model: the
ω definition. This routing policy is defined as a static com-
ponent (in the same way that couplings and handlers). As in
DEVS solutions, such a component should be defined in a
way that covers all routing paths required over the scenario.
Given that routing paths are defined at design time, there is no
way to assess the modeling strategy really fulfills the routing
paths required over the scenario.

The static perspective at the routing level is the main
difference between RDEVS and Dynamic Structure DEVS
(DS-DEVS) [21]. The routing problems studied in this paper
employ routing paths defined at design time in terms of the
behavior of the components. That is, there is no universal
routing policy that acts as a global structure of the simula-
tionmodel.Moreover, the routing policies definition does not
change during the simulation execution and, as consequence,
they can be modeled as part of the model’s design. This is the
approach used in RDEVS. Instead, in DS-DEVS the routing
is encapsulated in the model state. Therefore, it changes at
execution time. This behavior is useful when models need
to adapt their structure at simulation time by following some
specific strategy. However, such adaptability requires defin-
ing the simulation models in terms of routing elements (not
in terms of the behavior of the components). Even when the
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routing problems analyzed with RDEVS could be defined
with DS-DEVS, the modeling effort will increase without
any gain.

Regarding the codification of RDEVS models in general-
purpose programming languages, the conceptualizations
provided in previous sections can be used as a basis to
design object-oriented implementations. Given that DEVS
is based on the mathematical theory of systems and works
with object-orientation and other computational paradigms
[1], the conceptual model depicted in Fig. 9 can be translated
to an implementation deployment in, for example, Java or C
+ + over existingM&S software tools that support the execu-
tion of a DEVS abstract simulator. Then, runnable RDEVS
models can be implemented following the abstraction of rout-
ing processes. Such an implementation is outside the scope
of this paper.

4 Benefits of RDEVS formalism over DEVS
design patterns for solving routing
problems

The success of the modeling task always depends on the
modeler’s ability to get an appropriate level of abstraction in
its design. Such a level of abstraction must ensure an ade-
quate number of models, couplings, and ports to improve
themodel’s reusability.Moreover, goodmodeling enables an
appropriate separation of concerns by giving domain experts
the possibility to contribute during the design of the sim-
ulation model. This separation of concerns improves the
model’s modifiability because it leads to modular designs
with low coupling6 and high cohesion7 [46–48]. Moreover,
it also enhances the model’s maintainability because the sep-
aration of concerns reduces the number of (different) models
to be developed to get the desired simulation model.

To get appropriate modeling for routing problems, the
RDEVS formalism design maintains all these desired prop-
erties as part of the model’s definition as follows:

• Level of abstraction and separation of concerns: Each
RDEVS model structures a routing process element
defined as part of the core components required for mod-
eling a routing problem. By identifying such elements, the
formalism provides an appropriate separation of concerns
using the model’s goals: i) the Essential Model is designed

6 The low coupling is desirable because (i) fewer interconnections
among modules reduce the chance that changes in one module cause
problems in other modules (i.e. enhances reusability), and (ii) fewer
interconnections among modules reduce the modeler time in under-
standing the details of other modules [49].
7 Cohesion is an important attribute corresponding to the quality of the
abstraction captured by the module under consideration. Good abstrac-
tions typically exhibit high cohesion [46].

with aims to define the behavior of a component that will
be used several times as part of the routing scenario, ii) the
Routing Model is structuredwith aims to define a node that
interacts with other nodes to perform the routing process,
and iii) the Network Model is specified with aims to define
the structure of all possible routes (that is, all possible
interactions among nodes) as part of the routing scenario
definition. These goals allow modelers to easily recog-
nize each RDEVS model as a useful and unique element
to be used in the routing problem definition. Moreover, it
increases the abstraction level by mapping directly each
simulation model into a routing element.

• Reusability,modifiability, andmaintainability: By follow-
ing the separation of concerns, the relationships among
RDEVS models allow building structural dependencies
that reinforce their reusability, modifiability, and main-
tainability. A specific Essential Model definition describes
an elemental behavior that can be reused in several nodes
(or even as part of DEVS coupled models). Moreover, the
same Network Model definition can be used to model mul-
tiple routing scenarios by only changing the routing policy
used in each node. Then, the routing structure is highly
modifiable. Finally, given that each simulation model pro-
posed as part of the RDEVS formalism has its own goal,
the model maintainability increases as a consequence of
the separation of concerns.

• Low coupling and high cohesion: Given that connections
among models are defined in terms of their structure (not
their behavior), the chances that the changes in one model
cause problems in other models are really low. Further-
more, the model’s understanding is really easy because,
per its own definition, each model must be designed to
represent a specific routing process element.

Then, the RDEVS formalism provides a feasible solution
to modelers to easily build routing processes models. The
modeler only uses the RDEVS models as predefined simu-
lation modules that require the specification of the behavior
(Essential Model), the routing policy (Routing Model), and
the interactions among components (Network Model).

In the following subsections, a generic 3 tier architecture
for web applications is used as a case study for modeling
a routing problem. The case of the 3-tier architecture has
been already studied in [16] to show how discrete-event
M&S can be used as support for quality estimation in the
early stages of development. In that case, by considering the
simulation of software architectures as a routing problem,
the RDEVS simulation models were obtained automatically
from the software architecture design. Here, we use the same
architecture as a routing problem situation to be modeled
following two different approaches: DEVS implicit routing
solution and the RDEVS formalism. Both solutions are ana-
lyzed in terms of the design metrics detailed in Sect. 2.2.
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Fig. 10 Generic 3 tier architecture proposed in [51]

4.1 Tier software architectures

The architecture of a system defines that system in terms
of computational components and interactions among those
components [50]. Most web applications use the 3 tier archi-
tecture style (Fig. 10) to arrange its components and the set of
connections among them. This style defines three tiers pre-
sentation logic, business logic, and data handling composed
of predefined functional components named user interface
component (UIC), processing component (PC), and data
access component (DAC). A functional component is an
element that refers to a specific and well-known functional
responsibility. As part of the architectural design, the func-
tional components are related by architectural connections.
The stateless component element defines a synchronization
constraint over the functional components and cannot be seen
as a functional component itself. Finally, the storage offering
and load balancer represent external components linked to
the architecture. Such components are used for specific pur-
poses. The behavior of these components is well-known by
the architects and, therefore, does not affect the architecture
evaluation.

The 3 tier architectural style allows to scale stateless pre-
sentation and compute-intensive processing independently of
the data handler (which is harder to scale and often managed
by the cloud provider). That is, the style defined in Fig. 10 is
a conceptual idea of how the functional components of web
architectures should be structured. Architectural designs are
obtained when several replicas are defined for each one of
the functional components attached to the tiers. Therefore,
the 3 tier architectural style defines a routing problem when
specific designs are defined. The architectural evaluation of
such designs can be performed with discrete event simula-
tion. Figure 11 shows howeach part of the architecture design
can be mapped into the routing problem domain.

With aims to evaluate the modeling effort in routing prob-
lems employing DEVS and RDEVS formalisms, Fig. 12
presents two architectural designs. Each design is considered
a routing scenario. Figure 12a shows a scenario composed
of 3 replicas of the user interface component, 4 replicas of

the processing component, and 2 replicas of the data access
component. Meanwhile, Fig. 12b employs 5 replicas of the
user interface component, 2 replicas of the processing com-
ponent, and 3 replicas of the data access component.

To build discrete event simulation models that provide a
feasible solution for both scenarios, each architectural com-
ponent of the 3 tier architecture should be mapped into
an independent simulation model. Such individual models
should be able to simulate the behavioral description of the
architectural component to fulfill the simulation goal (that
is, the architectural evaluation) but also the event redirection
actions related to the routing process (that is, the routing of
user requests).

4.2 Modeling Effort

4.2.1 Building the simulation models using a DEVS implicit
routing solution

Table 4 summarizes the set of simulationmodels required for
modeling the web architectures depicted in Fig. 12 by fol-
lowing the implicit modeling strategy described in Sect. 2.3.
Appendix B illustrates the overall DEVS representation for
the scenarios detailed in Fig. 12a and b using the elements
defined in Table 4.

To keep the proposal analysis, all DEVS models are seen
as single simulation models (even when they could be mod-
eled as coupled models). Therefore, the input ports of the
model proposed for each component are as specific as the set
of nodes from which is receiving its inputs. Moreover, the
output ports of the model proposed for each component are
as specific as the routing paths where the node is delivering
its outputs. Hence, although the behavior of the architectural
components used in both scenarios is the same, the simula-
tion models designed for each case should be different to get
an appropriate set of routing actions.

When the modeling effort is analyzed in DEVS implicit
routing solutions, the number of simulation models Q
depends explicitly on the number of nodes to be modeled
N . In this case, an extra simulation model is added to depict
the scenario itself. Then, Q is defined as:
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Fig. 11 Mapping web architectures into the routing problem domain

Fig. 12 Web architectures scenarios under evaluation

QDEVS � N + 1

Now, the Q/N relation for DEVS implicit solutions is
defined as:

Q/NDEVS � QDEVS/ N � (N + 1) / N

Hence, as the definition exhibits, the final value of theQ/N
relation in implicit solutions will always be near 1.

Following the case study, the routing scenarios depicted
in Fig. 12 as 3 tiers architectures have Q/NDEVS,WA1 � 1.11
for Web Architecture #1 (with QDEVS,WA1 � 10 and NWA1 �
9), and Q/NDEVS,WA2 � 1.1 for Web Architecture #2 (with
QDEVS,WA2 � 11 and NWA2 � 10).
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Table 4 Basic simulation models required for modeling the web architectures scenarios using DEVS

Web architecture Architectural component DEVS model representation Description

Web Architecture #1—Fig. 12a - UIC The model is designed as a DEVS model with 1
input port for receiving the user requests and 4
output ports for redirecting the requests (already
processed) to a specific instance of the PC
component

PC The model is designed as a DEVS model with 3
input ports for receiving the requests (processed
by some UIC component) and 2 output ports for
redirecting the requests (already processed by
itself) to a specific instance of the DAC
component

DAC The model is designed as a DEVS model with 4
input ports for receiving the requests (processed
by some PC component) and 1 output port for
sending the final resolutions of the initial user
requests

Web Architecture #2—Fig. 12b - UIC The model is designed as a DEVS model with 1
input port for receiving the user requests and 2
output ports for redirecting the requests (already
processed) to a specific instance of the PC
component

PC The model is designed as a DEVS model with 5
input ports for receiving the requests (processed
by some UIC component) and 3 output ports for
redirecting the requests (already processed by
itself) to a specific instance of the DAC
component

DAC The model is designed as a DEVS model with 2
input ports for receiving the requests (processed
by some PC component) and 1 output port for
sending the final solutions of the initial user
requests

On the other hand, the number of couplings K defined in
DEVS implicit solutions can be defined as

KDEVS � number of EIC + number of IC + number of EOC

where the number of EIC, number of IC, and number of EOC
refer to the number of external input coupling, internal cou-
plings, and external output couplings, respectively. However,
we only consider internal couplings to capture the design of
routing interactions.

Therefore, with KDEVS � number of IC, the W/K rela-
tions for the case study are the same for both architectures:
W/KDEVS,WA1 � W/KDEVS,WA2 � 2 (with WDEVS,WA1 �
40 and KDEVS,WA1 � 20 for Web Architecture #1, and
WDEVS,WA2 � 32 and KDEVS,WA2 � 16 for Web Architecture
#2). Such value is the one expected for “pre-wired” simula-
tion models (as the one used in DEVS implicit solutions).

4.2.2 Building the simulation models using RDEVS
formalism

Table 5 summarizes the set of simulation models required
for modeling the web architectures depicted in Fig. 12 with
RDEVS. In all cases, the model refers to the Essential Model
that models the behavior of the architectural component.

Given that RDEVS employs separation of concerns
between components and nodes, both scenarios use the same
set of simulationmodels.Complementarily, as in the previous
section, Appendix B illustrates the overall RDEVS represen-
tation for both scenarios using the set of simulation models
defined as elements in Table 5.

In RDEVS solutions, each component is defined as an
Essential Model. Then, for eachEssential Model themodeler
defines a set of Routing Models that improves the behavioral
description by adding some specific routing policy. There-
fore, in RDEVS solutions the number of simulation models
Q depends on the influences among the Essential Models
and Routing Models. If all Routing Models are defined over a
single Essential Model (i.e. all Nodes employ the same Com-

123



DEVS-based formalism for the modeling of routing processes

Table 5 Basic simulation models required for modeling the web architectures scenarios using RDEVS

Web architecture Architectural component RDEVS model representation Description

Web Architecture #1—Fig. 12a – and
Web Architecture #2—Fig. 12b -

UIC The model is designed as an Essential
Model with 1 input port for receiving
the user requests and 1 output port for
sending the requests (already
processed) to some PC component

PC The model is designed as an Essential
Model with 1 input port for receiving
the requests (processed by some UIC
component) and 1 output port for
sending the requests (already
processed by itself) to some DAC
component

DAC The model is designed as an Essential
Model with 1 input port for receiving
the requests (processed by some PC
component) and 1 output port for
sending the final solutions of the initial
user requests

ponent), the value of Q will be Q � N + 1. Meanwhile, if
each Routing Model is attached to some specific Essential
Model (i.e. each Node refers to a different Component), the
value of Q will be Q � 2 N . Over such boundaries, an extra
simulation model must be added to depict the scenario itself
(that is, a Network Model). Therefore, in RDEVS solutions
the number of simulation models Q is defined as:

N + 2 ≤ QRDEVS ≤ 2N + 1

To employ a similar approach to the one used for mea-
suring DEVS implicit solutions, the number of couplings K
is again defined as KRDEVS � number of IC. However, the
number of IC in RDEVS solutions is fixed as the set of all-
to-all couplings required to develop a Network Model. Then,
it is defined as

KRDEVS � number of ICRDEVS � N ∗ (N − 1)

Following the case study, the measures obtained for
RDEVS solutions are:

• For Web Architecture #1: Considering 3 Essential Models,
3 Routing Models for the UIC component, 4 Routing Mod-
els for the PC component, 2 Routing Models for the DAC
component, and 1 Network Model, the number of models
is QRDEVS,WA1 � 13. Given that NWA1 � 9, the Q/N rela-
tion is Q/NRDEVS,WA1 � 1.44. Moreover, the W/K relation
is W/KRDEVS,WA1 � 0.1805 (with WRDEVS,WA1 � 13 and
KRDEVS,WA1 � 72).

• For Web Architecture #2: Following the approach
detailed for Web Architecture #1, the number of mod-
els is QRDEVS,WA2 � 14. Then, the Q/N relation is

Q/NRDEVS,WA2 � 1.4 (with NWA2 � 10). On the other
hand, the W/K relation is W/KRDEVS,WA2 � 0.1333 (with
WRDEVS,WA2 � 12 and KRDEVS,WA2 � 90).

4.3 Discussion

Table 6 summarizes the modeling effort for each routing sce-
nario proposed in terms of the 3 tier architecture design.
These values are obtained from the analysis performed in
Sect. 4.2. The cases identified on the right side of the table
refer to the valuation presented in Table 3.

Given that DEVS solutions employ fewer models than
the RDEVS solution (because such solutions do not apply
an appropriate separation of concerns), the RDEVS formal-
ism shows an improvement of the Q/N relation. As Sect. 2.2
details, the use of an appropriate separation of concerns dur-
ing themodeling task reduces themodeling effort.Moreover,
when theW/K relation is considered alongwith theQ/N rela-
tion, the difference between DEVS and RDEVS modeling
efforts for routing problems increases.

Even when the values are detailed for the case study,
the modeling effort classification will remain the same
when DEVS and RDEVS solutions were applied for mod-
eling routing problems. DEVS solutions will always require
modeling the component behavior along with the routing
behavior. Instead, RDEVS solutions only require modeling
the behavior of the components. Modeling only the compo-
nent behaviors has two benefits for the modeler:

i) Once the components are designed, they can be used to
define any number of nodes: Building Routing Model
instances does not involve an extra modeling effort for
the modeler. Given that the Essential Model design
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Table 6 Comparison between
the modeling effort of DEVS
and RDEVS solutions for the
routing scenarios exemplified as
3 tier architectures

Routing scenario Solution Q/N W /K Modeling effort

Web Architecture #1 DEVS 1.11 2 + + case #HIGH

RDEVS 1.44 0.1805 – case #LOW

Web Architecture #2 DEVS 1.1 2 + + case #HIGH

RDEVS 1.4 0.1333 – case #LOW

is used as a behavioral description of Routing Model
instances, new Routing Model instances can be created
by setting new routing policies over existent behaviors.
The Routing Model instantiation only involves setting a
routing policy over a predefined Essential Model. Then,
such instantiation can be seen as a parametrization activ-
ity (not as a design task). For example, independently of
the routing scenario, the number of components to be
modeled in a 3 tier software architecture is 4. In the
RDEVS solution for the case study, such models are
Essential Model instances that depict the behavior of
architectural components (Table 5). Instead, in DEVS
solutions components aremodeled alongwith nodeswith
aims tomanage architectural functionality and routing as
part of the models (e.g. the models detailed in Table 4).
Therefore, the RDEVS models improve reusability and
reduce the modeling effort.

ii) New routing scenarios can be defined using the same
set of nodes with different routing policies: Since Rout-
ing Model instances are attached to routing policies
and the Network Model instance links several Rout-
ing Models, new scenarios can be defined by changing
the routing policies definition. For example, if the
web architecture scenario changes, the RDEVS solution
detailed for the case study can be easily re-structured
by adding/removing routing policies of specific Routing
Model instances. Instead, an alternative web scenario in
theDEVS solutionwill require not only the development
of new models to add/remove nodes but also the modifi-
cation of the existing ones. From this perspective, even
when both solutions will require changes in the simula-
tion models, the RDEVS solutions are more flexible and
adaptable than the DEVS solution.

The improvement of the modeling effort in RDEVS is
given by the modeling independence defined over Compo-
nents andNodes. Suchmodeling independence is reflected in
themodeling levels attached to each formalism. InDEVS, the
atomic DEVS defines the system behavior while the coupled
DEVS defines the system structure. In RDEVS, the essen-
tial RDEVS defines the system domain behavior, the routing
RDEVSdefines the system routing behavior, and the network
RDEVS defines the system structure. Then, by introducing
a new modeling level (i.e., the system routing behavior), the
RDEVS models provide an improvement in the modeling

effort when routing processes are defined over discrete-event
models. Even when RDEVS uses more models, the primi-
tives of conceptual modeling that act as a foundation for the
modeling levels allows reusing the models by embedding
domain functionality in the routing process definition. This
fact is captured in the Q/N and W/K measures where the
routing path definitions are transferred from DEVS explicit
“pre-wired” connections to all-inclusive RDEVS simulation
models. Such simulation models employ routing policies in
the Nodes intending to define the overall Routing Scenario.
Instead, DEVSmodels are strictly attached to the structure of
theRouting Scenario. Hence, the RDEVS formalism reduces
the modeling effort in routing simulation models by provid-
ing reusable solutions. The modeler only has to focus its
modeling skills on the domain components without worry-
ing about modeling the routing process.

To complete the analysis of modeling complexity, mea-
sures related to the structural complexity (Sect. 2.2) should
be obtained. These measures cannot be obtained at design
time. Measures such as costs of hierarchical structure, events
encapsulation, and model’s embedding should be taken at
execution time. These analyses will be carried out as future
work. Moreover, the next steps will include the study of the
performance and simulation times. However, in our experi-
ence, the simulation execution times for RDEVS models are
not directly affected by the embedding of routing function-
ality. For example, when explicit routing solutions are built
over DEVS models, the extra simulation model included for
each Node (i.e., the Handler) needs to be added to the DEVS
simulator hierarchy. Therefore, its introduction to handling
the incoming and outgoing events requires the execution of
transition functions and the propagation of input and output
events. This feature affects the simulation times. In RDEVS-
based solutions, such a feature is replaced with predefined
behaviors for accepting incoming events and routing outgo-
ing events.However, a deeper analysiswill be conductedwith
the aim to provide suitable measures related to performance
and simulation times.

4.4 Using RDEVS for theM&S of real-life scenarios

Regarding the use of DEVS and RDEVS to model real soft-
ware architectures, in this section, we briefly explain howwe
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have applied such modeling in two case studies. These cases
were obtained from Amazon Web Services.8

The first real case study analyzed is the Deals Engine
Architecture of the Expedia Group Global.9 Figure 13
presents a representation of the architectural design. Follow-
ing this representation, the architecture employs 7 compo-
nents named queue, elastic load balancer, loader, cache,
mem. cache, web, and elastic search. Over this set of com-
ponents, a total of 15 nodes are defined. Some of these nodes
share the same component. For example, 5 nodes share the
architecture component named elastic search.

The second case study is depicted in Fig. 14. This case
refers to theMulti-RegionResiliency ofNetflix implemented
with Amazon Route 53.10 The architecture uses 4 compo-
nents (flow logs, ec2, watchdog, and stream) that structure 8
nodes.

Following the guidelines detailed in the previous section
to define a simulation model for such a routing process situ-
ation, Table 7 shows the measures obtained for the modeling
effort required when DEVS and RDEVS-based solutions are
used to solve both cases. As in the 3-tier architecture case, it
is important to denote that both DEVS and RDEVS strate-
gies use the same model to describe component’s behavior.
Hence, as we have argued at the beginning, we use structure
metrics (such as, the number of ports and couplings) along
with the number of models and nodes to get modeling effort
measures that allows us to compare situations where more
complex models are used to define the same system.

For the DEVS-based solution of the first case, with a set
of 7 components and 15 nodes, the value of N is 15, and
the value of Q is 16 (i.e., N + 1 as defined in Sect. 4.2).
Then, the value of Q/N is 1.0666. For the second case, with
4 components and 8 nodes, values are N � 8 and Q � 9
(again, N + 1). Here, the value of Q/N is 1.125. As discussed
in Sect. 4.2, due to the “pre-wired” solution, the value ofW/K
is 2 for both cases.

On the other hand, for RDEVS-based solutions, measures
are improved following the metrics defined in Sect. 4.2. In
both cases, the number of simulation models Q is defined as
1 + N + number of components. Moreover, the number of
couplings K is calculated as N*(N − 1). Finally, the number
of ports W is obtained as 2 N–(number of external inputs +
number of external outputs). Hence, for the first case with N
� 15, Q � 23, W � 24, and K � 210, the ratios are Q/N �
1.533 and W/K is 0.1142. For the second case, with N � 8,
Q � 13, W � 11, and K � 56, the ratios are Q/N � 1.625
and W/K is 0.1964.

8 URL: https://aws.amazon.com/solutions/case-studies.
9 AWS Expedia Case Study. Available at https://aws.amazon.com/
solutions/case-studies/expedia/ (accessed 10th June 2021).
10 Available at: https://aws.amazon.com/solutions/case-studies/netflix/
(accessed 10th June 2021).

As in the generic 3-tier architecture case, theRDEVSsolu-
tion improves themodeling effort for routing processeswhen,
for example, the simulation model refers to software archi-
tectures. Due to the reuse of components in several nodes and
the multiplied coupling definitions, the measures obtained in
RDEVS-based solutions refer both to cases #LOW, while in
DEVS-based solutions are #HIGH and #MEDIUM.

5 Conclusions and future work

Research and practice in systems modeling need approaches
and tools that decrease themodeling effort due to the increas-
ing (structural and behavioral) complexity of systems of
systems. In this paper, we have presented the RDEVS for-
malism as a new DEVS extension that improves the design
of discrete-event models that attempt to solve routing scenar-
ios. RDEVS models are defined to manage the events flow
using routing policies. Therefore, it structures the routing
task through the use of routing policies executed at runtime
as part of the simulation process.

We analyze our contribution from a conceptual modeling
perspective to show how the core of RDEVSmodels is traced
from the set of elements that compose a routing process def-
inition. Moreover, we define and employ a set of metrics to
estimate the modeling effort when RDEVS-based solutions
are used instead of DEVS-based solutions. As future work,
thesemetricswill be applied to evaluate themodeling effort in
new scenarios (besides routing situations) obtained from the
DEVS literature. This studywill allowevaluating the need for
new metrics to improve the modeling effort approach. Here,
such modeling effort is valued in terms of the behavioral
description designed for building the simulation model solu-
tion. This behavioral description is not seen as the traditional
DEVS behavior model. Instead, it is focused on the mod-
eling of an appropriate separation of concerns. By solving
the routing process “inside” the structure of the simulation
model, the RDEVS modeling task is less complex than its
DEVS equivalent. That is, the modeling effort is reduced
when RDEVS solutions are applied for routing scenarios.
Therefore, the modeler can spend more time improving the
achievement of the primary goal of the simulation model
without worry about the routing process modeling (neither
implicitly nor explicitly). Hence, the RDEVS formalism lev-
els out the complexity of routing problem specifications to
reduce the modeling effort. The use of RDEVS instead of
DEVS is justified by the reduction of the modeling effort.

Even when RDEVS is an extension of DEVS, RDEVS
models can be combined with DEVSmodels (atomic or cou-
pled) to build powerful simulation models that exploit the
benefits of each formalism according to the properties of the
problem. Given that the core of RDEVS is DEVS, RDEVS
models can be executed using DEVS simulators. That is, the
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Fig. 13 Architecture
representation of AWS Expedia
Group

Fig. 14 Architecture
representation of AWS Netflix
Case Study

Table 7 Modeling effort
measures for AWS Case Studies Routing scenario Solution Q/N W /K Modeling effort

AWS Expedia Group DEVS 1.0666 2 + + case #HIGH

RDEVS 1.533 0.1142 – case #LOW

AWS Netflix Case Study DEVS 1.125 2 + + case #MEDIUM

RDEVS 1.625 0.1964 – case #LOW

routing functionality of RDEVS models is encapsulated in
the execution of theRoutingmodel. TheDEVSatomicmodel
that describes the behavior of the node to be executed dur-
ing the routing process simulation (i.e., the model identified
as M in the Routing model definition) can be executed with
anyDEVS abstract simulator. Evenwhen routing policies are
hidden inside the definition of the models, their execution is
embedded in the usual behavior of any DEVS model. Then,
RDEVS and DEVS models are fully compatible during sim-
ulation execution (e.g. see [16]). However, new simulation
algorithms could be designed to improve the simulation pro-
cess according to the routing policies.

The RDEVS formalism provides complete and sound
structural semantics for modeling routing processes over
discrete-event models. Reusability and flexibility along with
designs with low coupling and high cohesion are the main
benefits of the formalism. By embedding the routing func-
tionality into the models, it reduces the modeling effort
required for building M&S solutions related to routing prob-
lems. So far, we have been used the final model specification
for getting RDEVS implementations. The study on how the
simulation scenario description can be used as a vehicle to get
RDEVS implementations is part of our future work. There-
fore, the next steps are oriented to developingM&S software
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tools that facilitate the implementation of RDEVS models
taking advantage of the modeling levels proposed in the for-
malism. Regarding the existing M&S software tools, we will
study how RDEVS models can be introduced in these tools
(e.g. as new softwaremodules or libraries) to provide suitable
implementations for M&S of general routing processes.

Appendix A

RDEVS closure under coupling

RDEVS network model to RDEVS routing model

The Network Model

N �< X , Y , D, {Rd}, {Id}, {Zi,d}, Tin, Tout,Select >

where each d m D refers to a RoutingModel defined as Rd

that is structured as

Rd �< ωd , Ed , Md >

defines an equivalent Routing Model

R �< ω, E, M >

in which:

• ω � (u, W, δr) � (0, ø, δr) | δr: SM →TOUT∧ TOUT � ø ≡
routing policy to be used in R. The equivalent model uses
zero value as its identifier and an empty set of entities to
represent the models from which input events are allowed.

These settings enable Clause #3 of the external transition
function detailed in the Routing Model definition. Then, R
processes all input events that arrive. Moreover, by setting
the routing function into an empty set value for any pos-
sible combination of TOUT, all the output events of R will
be sent everywhere (therefore, their processing depends
on the receptor model configuration). Both behaviors are
equivalent to the one expected of N since all input events
that arrive at the Network Model are received but, also, all
the output events created are sent.

• E � <XE,SE, YE, δint,E , δext,E , λE, τE >≡ essential model
embedded in R in which:

o XE � X ≡ set of input events of E. As R is detailed as
an equivalent model of N and, the Routing Model uses
the inputs of E as part of its own inputs definition, the
inputs of E are defined as equals to the inputs of N .

p SE � × imDQi| Qi � {(si, ei) | sim SM,i, 0 ≤ei ≤ τM,i(si),
∀i m D ≡ set of sequential states of E detailed as the
product of the Qi sets defined for each model that com-
pose N (these are the Routing Models). Each Qi is
defined as an ordered pair that contains the state and
the elapsed time of the Ri model.

q YE � Y ≡ set of output events of E. As in the case
of input events, the output events of E are defined as
equals to the output events of N .

r δint,E(s) � s’ ≡ internal transition function of E that
modifies the state s � (…,(sj, ej),…) to s’ � (…,(s’j,
e’j),…) where {s, s’} m SE . Since the state of E is
defined as a state combination of the models included
in N , an internal transition of E may involve simultane-
ous internal transitions of multiple components. Then,
considering that the imminent components (that is, the
ones that must adjust its state) are collected according
to the time value σ in a set structured as

IMM(s) � { i ∈ D |σi � τE,i (s) }

one model i* must be selected to execute its internal
transition. The N tie-breaking function can be used
to get the i* model. So, the imminent internal transi-
tion to be executed belongs to the Ri* model where i*

� Select(IMM(s)). However, as a consequence of this
transition, all external transitions of the components
influenced by Ri* must be executed. So, the final state
transformation from s � (…,( sj, ej),…) to s’ � (…,(
s’j, e’j),…) is defined by

s′
j �

⎧
⎪⎨

⎪⎩

δint,M, j (s j ) if j � 1

δext,M, j (s j , e j + τE (s), x j ) If i∗ ∈ I j ∧ x j �� ∅ with x j � Zi∗ j (λM,i∗(si∗))
s j Otherwise

e′
j �

{
0 if

(
j � i∗

) ∨ ( i∗ ∈ I j ∧ x j �� ø)

e j + τE (s) otherwise

s δext,E(s, e, x) � s’ ≡ external transition function of E
that modifies the set of state pairs that refers to the Ri

models linked to the inputs of N . Given that the state
of E is defined as SE , the states {s, s’} m SE where s
� (…,(si, ei),…) and s’ � (…,(s’i, e’i),…). Considering
that components are collected in a set C � { i m D | N
m Ii∧ xi ��ø}, then

s∗
i � δext,M,i (si , ei + e, xi )with xi � Z N ,i (x),∀i ∈ C
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so the state transformation is defined as

(s
′
i , e

′
i ) �

{
(s∗

i , 0) if ( N ∈ Ii ∧ xi �� ø)

(sd , ed + e) otherwise

t λE(s): SE →YE ∪ø ≡ output function of E that gen-
erates an output event if and only if the model that is
going to execute its internal transition (that is, i* model)
is linked to the outputs of N . The function is defined as

λE (s) �
{

Zi∗,N
(
λM,i∗(si∗)

)
if N ∈ Ii∗

∅ otherwise

u τE: SE→ R+
o,∞ ≡ time advance function of E that

select the most imminent event time of all the compo-
nents (that is, the routing models) included in N (i.e.
finding the smallest remaining time σ until the internal
transition of all the simulation models included in N).
The function is defined as

τE (s) � min { σi � σM,i (si ) − ei |i ∈ D }

• M � <XM,SM, YM, δint,M , δext,M , λM, τM >≡ DEVS
atomicmodel that specifies the routing process ofR. Given
that the description of M is defined in the routing model
definition and, considering that its specification uses some
of the components defined in E, no considerations are
required to get the equivalent model of N .

RDEVS routingmodel to RDEVS essential model

TheRouting Model specification includes twoDEVSmodels
defined as E and M. To define an Essential Model that acts
as an equivalent model of a Routing Model description, it is
important to understand the difference between both models.
While E determines the Component to be used as part of the
Node (that is, theEssential Model that describes the behavior
of the Routing Model), M defines the executable simulation
model over which the routing process takes place. Then, the
equivalence proof tries to find a Component with the same

behavior that a Node. Moreover, it can use the Node descrip-
tion as part of theComponent specification since bothmodels
belong to the same type (DEVS atomic model).

Then, the Routing Model described by the structure

R �< ωR, ER, MR >

with MR � <XM,R, SM,R, YM,R, δint,M,R, δext,M,R, λM,R,
τM,R > , can be described as an equivalent Essential Model
structured as

M �< X , S, Y , δint, δext, λ, τ >

inwhichX � XM,R, S � SM,R,Y � YM,R, δint � δint,M,R, δext �
δext.M,R, λ � λM,R and τ � τM,R. Following this equivalence,
each component of MR (that is, the executable model of the
routingmodel description) is directlymapped to a newmodel
that defines an Essential Model that maintains the desired
behavior of the Routing Model.

Appendix B

Representation of web architectures
as discrete-event simulationmodels

DEVS representation

Figures 15 and 16 show the representation of theweb-based
architectures depicted in Fig. 12 as DEVS models. Each box
included in the figures refer to a DEVS model detailed in
Table 4. In Fig. 15, we use the models defined in the first
row of Table 5 (i.e., the ones designed for Fig. 12a). Instead,
in Fig. 16, we use the models defined in the second row of
the table (i.e., the DEVS models detailed for the architecture
depicted in Fig. 12b).

RDEVS representation

Figures 17 and 18 show the representation of the web-
based architectures depicted in Fig. 12 as RDEVS models.
Each box included in the figures refer to a RDEVS model
detailed in Table 5. In both cases, the same set of models is
used.
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Fig. 15 Mapping the Web
Architecture #1 into DEVS
models detailed in Table 4

Fig. 16 Mapping the Web
Architecture #2 into DEVS
models detailed in Table 4
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Fig. 17 Mapping the Web
Architecture #1 into RDEVS
models detailed in Table 5

Fig. 18 Mapping the Web
Architecture #2 into RDEVS
models detailed in Table 5
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