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ABSTRACT 

Steering behavior of autonomous agents plays important roles in many simulation 

applications, such as simulation of pedestrian crowds, simulation of evacuation scenarios, 

simulation of ecosystems, simulation of autonomous robots, and simulation of artificial life in 

virtual environments used in computer games. It is desirable to have an approach that can 

automatically discover multiple candidate models for steering behavior simulation besides manual 

approach (trial-and-error fashion) and data-driven approach. Towards this goal, this work presents 

an approach that searches for candidate models of steering behavior in an automated way. The 

proposed framework includes two components. A model space specification provides a formal 

specification for a general structure from which various models can be constructed, and a search 

method to search for a set of candidate models based on requirements. To support more complex 

scenarios, we further add three major extensions including: (1) Activation component assign 

dynamic priorities for behaviors depending on surround environments. (2) Multiple search stages 

are provided to assist the evolutionary search algorithm to distribute computational resources 

better. (3) A special type of entity called space entity to assist agents receive information not only 

from other entities (agents, obstacles), but also from surrounding empty space. The approach is 

able to discover multiple candidate models for three basic steering behaviors including the leader-

following ( Bleader_following), personal space maintenance ( Bpersonal_space), and mobile obstacle 

avoidance ( Bobstacle_avoidance). The results show that different possibilities of steering behavior 

support modelers to have a better understanding of the problem under study, hence assist modelers 

to develop more advanced models by testing different combinations of the basic steering 

behaviors. We evaluate all combinations between three basic steering behaviors including: (1) 

Bleader_following + Bobstacle_avoidance, (2) Bobstacle_avoidance + Bpersonal_space,  (3) Bleader_following  + Bpersonal_space, 



and (4) Bleader_following + Bobstacle_avoidance + Bpersonal_space. We further test the approach with two 

variations of scenario 4: (5) The leader surrounding + Bpersonal_space, (6) Hall-way evacuation with 

an obstacle in the middle. The results show that the framework is also able to discover multiple 

models for each of these composite steering behaviors, and several of them have good scalability 

and robustness.  
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1. INTRODUCTION 

1.1. Steering Behaviors Definition 

Steering behaviors are behaviors that make autonomous agents move around their world 

in a realistic and improvisational manner. Steering behavior of autonomous agents plays important 

roles in many simulation applications, such as simulation of pedestrian crowd, simulation of 

evacuation scenarios, simulation of ecosystems (e.g., predator-prey systems) and animal groups 

(e.g., schools of fish), simulation of autonomous robots (e.g., UAVs), and simulation of artificial 

life in virtual environments used in computer games. A common theme of these applications is to 

reflect movements in real life more truthfully, hence making the simulations more accurate and 

convincing. To achieve this goal, it is essential to model the steering behaviors that make 

autonomous agents move around their world in a realistic and improvisational manner. For 

example, to accurately study people’s evacuation from a busy shopping mall, it is important to 

model individuals’ steering behavior in a crowded environment. Similarly, to create an engaging 

virtual world for game players it is important to generate realistic steering behaviors for the game 

characters. Steering behavior simulation can also support education and learning – educators can 

use these simulations to excite students and to teach them about complex systems. For example, 

simulations of ecosystems and animal groups, such as flocks of birds, can show the emergence of 

complex patterns from simple rules. [1] 

1.2. Current Approaches to Develop Steering Behaviors Simulations. 

Developing steering behavior models in a multi-agent environment is a complex task 

because the developed behaviors need to be natural, consistent, and able to fulfill required tasks. 

1.2.1. Manually Crafted Approach. 
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Traditionally, these models are crafted manually in a trial-and-error fashion. Modelers use 

their knowledge or consult experts to manually create an initial model that captures the behavior 

and structure of a system under study. Then, the initial model is gradually improved until an end 

result meets the simulation requirements [1]. This approach is useful when testing theories of how 

a system works. However, the handcrafted models often have biases from their creators. 

1.2.2. Data-Driven Approach 

In recent years, due to the rapid development of video processing techniques, researchers 

began to use real world data to help evaluate or develop models of steering behavior. For example, 

supervised learning has been used to train a machine learning model for predicting the next-step 

steering behavior of agents based on specific conditions surrounding the agents [2] [3] [4]. This 

type of machine learning-based approach relies on the existence of large and high-quality data in 

order to train a model. It does not work when data are lacking, incomplete, or inconsistent. 

1.3. The Automated Discovery Model Approach – The Framework 

The complexity of steering behavior simulation asks for more ways to developing steering 

behavior models. In particular, it is desirable to have an approach that can automatically discover 

multiple candidate models for steering behavior simulation. A key component of the developed 

this modeling approach is the model space for searching candidate models. To define an effective 

model search space, a formal model specification is important so that automated model discovery 

is possible. Our work provided a model specification for mobile agent-based systems where a 

world includes a 2D space and a set of entities. Each entity has several pre-defined properties such 

as position, (moving) direction, speed. One entity category called agents has one or more behaviors 

that manipulate properties’ values. This agent category present objects that modelers want to study 

their movement such as: vehicles, animals, humans, etc. At each time step, agents execute their 
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behaviors in behavior groups to sense the surrounding environment and move accordingly in the 

2D space. The search space is defined by all possible behaviors of agents based on their properties 

and how they interact with other entities by sensing, filtering, and acting. Once the requirements 

and evaluations are set, a search algorithm is used to search for the best models. More details about 

the framework as well as some discovered models can be found in [5]. 

Because our previous work focused on developing the framework to support automatically 

discovering models for emerging behaviors such as: snake formation or circle formation, it cannot 

be applied directly for steering behaviors simulation. Towards this goal, this work presents an 

approach that searches for candidate models of steering behavior in an automated way. The 

multiple discovered candidate models can assist modelers see the different possibilities of steering 

behavior for a problem under study. They can be evaluated and further extended for developing 

more advanced models. This compares to the existing approaches that typically result in only one 

model for steering behavior simulation. The model space specification must be flexible enough to 

represent a wide variety of possible behavior behaviors. Furthermore, it must capture steering 

behavior in a way that is comprehensible and human readable. This latter requirement is important 

so that the discovered candidate models can potentially be modified and extended by modelers. To 

fulfill these new requirements for the framework, three major extensions are added including: 

Activation component, a Genetic Algorithm-based multiple search stage procedure, and Space 

entity component.  

1.4. Activation Component 

 For complex scenarios, agents usually have multiple behaviors where their heading 

direction decision are not unanimous. The approach of averaging moving actions from multiple 

behaviors is not uncommon in the literature. For example, in the Boids model [1], an agent’s 
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steering direction in each step is averaged from the separation, alignment, and cohesion behaviors. 

However, there are many other situations where prioritizing behaviors would work better when 

computing an agent’s final movement. Consider the behavior of obstacle avoidance, which moves 

the agent away from the obstacle, as an example. When the agent is relatively far away from the 

obstacle, it is less important to incorporate the moving action of this behavior into the overall 

movement. As the agent moves closer to the obstacle, this behavior becomes more important: the 

closer the agent is from the obstacle, the more important the behavior is. In other words, the moving 

action of this behavior becomes more dominant as the agent gets closer to the obstacle. To support 

this capability, The Activation component is used to prioritize the behaviors based on how 

“important” the behaviors are. This allows the priority of a behavior to be modeled because 

different activation levels represent different priorities. The Action component specifies the action 

of the behavior, i.e., how the behavior changes the value of a property. This component is similar 

to what we had in previous work. Both the Activation component and Action component 

dynamically compute their outputs based on agents’ conditions and surrounding environment. 

Differentiating these two components makes it possible to define behaviors that are dynamically 

activated based on conditions of the environment and then act accordingly to respond to the 

environment. Although this extension is not related directly to discover steering behaviors, it plays 

a very important role to assist multiple steering behavior working together; thus, supports 

discovery of more complex steering simulation models and increases the applicability of the 

modeling approach to even more applications.     

1.5. Genetic Algorithm-based Multiple Search Stage Procedure 

 Genetic Algorithm (GA) is used to find models that satisfy the desired behavior patterns 

specified by a modeler. The model specification’s components are designed to easily interchange 
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and manipulate between models; hence it is reasonable to present them as chromosomes and use 

GA to encode a potential solution to a specific problem and apply recombination on these 

structures so as to preserve critical information [49]. We notice that GA search efficiency reduces 

significantly for complex scenarios because of two main reasons. First, complex scenarios with 

multiple requirements typically need multiple steering behaviors to fulfill all the tasks. With the 

automated discovery approach, the more behaviors needed to be discovered, the larger model space 

requires. Hence, GA takes much longer time to search for the desired models. Second, GA ranks 

candidate models based on their fitness scores, and in many cases, conflictions between evaluation 

criteria make it difficult to rank these models. The leader-following + mobile obstacle avoidance 

is one example. The leader-following behavior makes agents form a cluster around a leader while 

mobile obstacle avoidance behavior makes agents scatter. In case of two candidate models with 

the same score, one has higher score for the leader following fitness and the other one has higher 

score for mobile obstacle avoidance fitness; GA does not know which one should be rank higher, 

hence it randomly switches the rank between these candidates and most of the time is trapped in 

its local optimal. To resolve these limitations, we divide the search process into two different 

stages, and each stage focuses on searching for specific level components of the framework to 

assist GA use the computational resource better. 

1.6. Space Entity Component 

 Our previous work has mainly focused on agents’ interactions with other physical entities 

(including other agents); hence an agent can only act on properties (e.g., position, direction, speed) 

of some physical entities. This limitation of considering only the physical entities, hence makes it 

difficult for agents to move in directions that are not directly associated with any physical entity. 

In particular, it is difficult for agents to navigate through open spaces among physical entities, 
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which is crucial for steering behavior simulation. It has been observed that when steering in 

complex environments, autonomous agents use information not only from nearby physical entities, 

but also from open space directions surrounding them. Even though an open space appears to have 

nothing, it actually contains useful information such as how far agents can move along the open 

space direction, and how much the angle difference is between the open space direction and the 

agents’ current moving directions. Having the capability of processing these types of information 

would give agents more options for choosing their movement in steering behavior simulation. This 

would allow agents to move more effectively and naturally in experiment scenarios where utilizing 

the open space around agents are crucial such as multiple obstacles avoidance, or leader-following. 

 Motivated by the above discussion, this extension develops a new behavior specification 

for steering behavior that gives agents the option to interact with the open space surrounding them. 

Hence, a new category of entity called “space entity” is introduced to add to the physical entities 

that have been supported in the previous framework. Each agent has a set of space entities 

corresponding to a set of landmarks that an agent can head to from its current position. At each 

timestep, an agent’s space entities are dynamically generated based on an adaptive space entity 

generation method, which checks the agent’s nearby physical entities and generates a set of 

possible steering directions adaptively. To work with the existing automated model discovery 

framework, each space entity has a set of pre-defined properties. For example, the travel distances 

from the agent to the space entities, or the angle differences between the directions to space entities 

and the agent’ current direction. Agents use the values of these properties to filter which space 

entity they want to change direction toward. This extension gives agents more flexibility when 

using steering behaviors. For example, in previous work, when an agent wants to avoid a physical 

entity, it first needs to get a reference direction from the physical entity. Then a static angle offset 
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is added so that the agent can move away from the entity. This approach is cumbersome and not 

adaptable (for example, the static angle offset makes the agent always turns left or right with a 

fixed angle away from the entity). The space entities provide multiple reference directions for 

agents to evaluate, hence make the steering behaviors flexible and adaptive to many situations. 

1.7. Organization 

  The remainder of this work is organized as follows. Section 2 describes the related work. 

Section 3 presents the automated model discovery framework, including the model space 

specification, activation component and the search method. Section 4 describes the space entity 

component. Section 5 presents experiment results of applying the developed approach to discover 

candidate models for a set of steering behavior simulation scenarios. Section 6 shows the 

discovered models’ evaluations and analyses from different aspects are carried out. Section 7 

concludes this work and Section 7 shows more potential research that can be carried out from this 

work.  
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2. RELATED WORK 

2.1. Steering Behavior Simulation Applications 

2.1.1. Simulation of Pedestrian Crowds 

Steering behaviors are basic components in many crowd movement experiments. In the 

simulation of the pedestrian crowd, human’s characteristics such as psychology or society are 

usually contributed to the final steering decisions. The main goal of these simulations is to study 

the crowd movements in different facility layouts under normal circumstances [6] [7] [8] [9]. For 

example, Figure 1.a shows movement pattern of individual passengers (microscopic movements) 

in a section of an airport [7]. Figure 1.b shows a similar application with shopping center layout. 

However, crowd movements here are capture as a group (macroscopic movements) instead of 

individuals [9].  

 

  

(a) An airport layout (b) A shopping center layout 

Figure 1. Application examples for pedestrian crowd simulations. 

 

2.1.2. Simulation of Evacuation 

In simulation of evacuation, the main task is to achieve the max throughput in the shortest 

times, hence the set-up scenarios usually in closed space, and have a great number of agents. 

Normal moralities can be broken in panic situations; thus, behavior rules work differently 
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compared to regular crowds. Body mass, risk sensitivity, physical limitations are usually extra 

factors that contribute to the steering decision in fire [10] [11], flood [12] [13], or other evacuation 

scenarios [14]. The applications for this type of simulation are typically related directly to real life 

situations. For example, Figure 2.a shows an evacuation example of a classroom [11]. These small-

scale simulations focus on factors that can affect the evacuation speed such as: furniture layout, 

locations and the size of exit doors, or number of people, etc.  Figure 2.b shows a flood evacuation 

simulation where a layout of a stadium is used as a real study case [13]. Large scale simulations 

similar to this example are used to design evacuation plans for big buildings rather than concentrate 

on the small details. 

  

(a) A classroom evacuation. (b) A disaster (flooding) evacuation.  

Figure 2. Application examples for simulation of evacuation. 

2.1.3. Simulation of Ecosystem 

Besides humans, many works focus on animal crowds. For example, simulations of 

ecosystems research are mainly inspired by nature and concentrate on simulating the interaction 

between animals. The study of steering behaviors of animal groups has been intensively discussed 

with Reynold’s work [1] as a prime example. In his work, flock of bird movements are combined 

between three steering behaviors: separation, cohesion, and alignment. For more complex systems 

where two or more different animal pieces are involved such as predator-prey [15] [16] or 
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shepherding [17] [18], the related works focus on designing steering behaviors to manage high-

level path planning and low-level single agent dynamics. For example, green area (Figure 3.a) [15] 

and gray travel path (Figure 3.b) [18] present a group of animals (small birds and sheep 

respectively). Because they move in group, the behaviors only need to capture movement dynamic. 

In other hand, the path planning for the dog shown in Figure 3.b is complex, and the developed 

behavior is able to capture the side-to-side steering movements. 

  
(a) Predator-prey example (b) Shepherding example 

 

Figure 3. Application examples for simulation of ecosystem. 

 

2.1.4. Simulation of Autonomous Robotics 

In simulation of autonomous robotics, to reduce operation costs and risks of failure, 

simulations are commonly the first step to evaluate the outcome before deploying on real hardware 

devices. Research in this field develops simulation models mainly for two scenarios. In the first 

scenario, modelers know the travel path of each individual in advance and pre-set all parameters 

to satisfy the need. The related works in this scenario focus on optimizing the efficiency of steering 

behaviors and are mostly used in drone performance (Figure 4.a) [19] [20]. The second scenario 

uses a decentralized approach where each robot is fully automated and can make their own 

decisions. These robots rely on a set of equipped sensors to sense the surrounding environments 
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and decide the next steering direction. Recent works focus on movements of Unmanned Aerial 

Vehicles (UAVs) in many applications such as: fire observation [21], bio-inspired swarm [22] 

[23], or farming [24] [25]. For example, Figure 4.b illustrate a fire observation simulation [21] 

where a group of UAVs automatically determine their travel paths (distinguished by colors) based 

on the activeness of fire areas.  

  

(a) A drone performance (b) UAV path-planning for fire observation 

Figure 4. Application examples of simulation of robotics. 

2.1.5. Simulation of Artificial Life 

Besides nature, artificial life concepts also play an important role in the construction of 

simulation models of non-player characters in computer games. In many applications, to add more 

realistic to the steering models, evolutionary computations including genetic algorithm, 

evolutionary strategies, genetic programing, evolutionary programing are used [26]. For example, 

in [27], [3] the authors develop a real-valued encoding for context steering to have a 

comprehensive evaluation for each agent’s goals. In gaming, this goal can be anything such as 

reaching a destination or avoiding dangers ahead. Based on the assessment, a set of fitness 

functions are used to find the best steering directions. 
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2.2. Manually Crafted Approach. 

Regardless of the applications and the requirements, developing natural steering behaviors 

for crowd simulation and modeling is a challenging task because they are influenced by many 

factors such as physics, psychology, and society [28]. Traditionally, these models are crafted fully 

based on knowledge from modelers. Behaviors-based [1] [29] [30] [31], force-based [32] [33], 

velocity-based [34] [35], and vision-based [36] [37] techniques are among the most common 

techniques to manually develop autonomous crowd simulation models. [38] 

2.2.1. Behavior-based Model 

The most famous behavior-based model is Boids model [1] that simulates flocks’ 

behaviors. Each member of the group interacts with a nearby neighbor by following a set of rules 

(Separation, Alignment, and Cohesion (Figure 5.a, b, c respectively). 

   

(a) separation (b) cohesion (c) alignment 

Figure 5. Flock of bird movements are presented as three steering behaviors. 

 In recent years, researchers have developed many advanced behavior-based models. For 

example, the work in [39] used a behavior called Centroidal particle dynamics to explicitly ask 

pedestrians in dense crowds to step in the direction that would best to maintain and attempt to 

regain personal space. Another example is [22] where modelers proposed a flocking model for real 
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UAVs incorporating an evolutionary optimization framework with carefully chosen order 

parameters and fitness functions.  

2.2.2. Forced-based Model. 

In 2000, the famous Social Force Model (SFM) was presented by [32] to study the 

behaviors of crowd panics. Each agent is affected by attractive and repulsive forces of every object 

in the environment including other agents, physical objects, and other factors. Figure 6.a shows 

main timesteps of an evacuation scenario where a group of agents need to escape a closed room 

through a small door using SFM. This concept later on is extended and became Universal Power 

Law that governs pedestrian interactions in [33]. The key point of the law is pedestrians attempt 

to minimize the energy they spend on interactions, knowing that a predicted collision has a lower 

probability of actually occurring if it is farther away. As shown in Figure 6.b, agents at initiated 

state moves in random direction. By applying Universal Power Law, eventually, all of them have 

the same moving flow. 

  

(a) Social Force Model (b) Universal Power Law Model 

Figure 6. Examples of Forced-based model. 

2.2.3. Velocity-based Model 

Velocity-based models consider not only neighbors’ positions but also their velocities to 

make decisions. The main advantage of this type of model-based is it can predict the collisions 
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between objects in the next multiple timestep and is mainly used in obstacle avoidance scenarios. 

The work in [40] creates a model that combines the advantages of force-based and velocity-based 

models to create better evacuation models. Its social force equation is expanded to include the 

collision prediction force; hence their model has better quality in terms of evacuation time and 

prediction times, and the steering behaviors are more natural compared to the of [32]. 

 

2.2.4. Vision-based Model 

The vision-based models are variations of the velocity-based models. Instead of focusing 

on the neighbors’ raw information, vision-based models process and convert this information to 

pixels and gradient, and base on the color combinations to make the decisions. For example, in 

[36], a target person processes surrounding neighbor information, then converts it to three different 

color pixel maps. These maps are further processed to analyze the risk of collision based on the 

combined color (red is high risk, and blue is low risk) (Figure 7.a ), and the person chooses the 

path with the lowest risk. This work in [37] goes one step further by combining a vision-based 

model with a velocity-based model to steer agents through dynamic environments. The optical 

flow of human eyes is used as a vision in this work. As a result, agents have the depth perception 

of far and near objects (Figure 7.b) and use it to extract visual features such as extract visual 

features such as the focus of expansion and time-to-collision. 

 

(a) Risk of collision based on the gradient. 
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(b) Depth perception that similar to humans. 

Figure 7. Examples of vision-based model. 

2.3. Data-Driven Approach 

In recent years, with the rapid development of video processing techniques, the data-driven 

approach is also used to simulate crowd steering behaviors to take advantage of the collected data. 

Calibration-based, evolutionary algorithm-based, and machine learning-based techniques are 

commonly used. 

2.3.1. Calibration-based Techniques 

In the calibration-based method, modelers develop a calibration function to adjust the 

parameters until it matches the ground truth data. As a result, datasets in many proposals [41] [42] 

[43] mainly are used to validate the tested model and play a small role in model construction. The 

calibration processes are still depended heavily on the expert’s domain. For example, the work’s 

formulation is based on incrementally learning pedestrian behaviors from crowd video (Figure 8) 

and calibrating the parameter to extract correct pedestrian trajectory [44]. 
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Figure 8. An example of extracting travel path of pedestrians from crowd video clips. 

2.3.2. Evolutionary Algorithm-based Techniques 

In evolutionary algorithm-based techniques, the model construction steps are automated 

by using an evolutionary algorithm (GA for example) to capture generic behavior rules from video 

data. In [45], a symbolic regression problem is used to formulate crowd behaviors and a self-

learning gene expression programming is utilized to solve the problem and automatically obtain 

behaviors that match data. The work in [46] goes one step further by using genetic algorithms to 

discover individual agent behavioral rules from videos. Pedestrian movements in these clips have 

prescribed objectives, and by designing the rules that can reproduce, GA can discover the purposes 

of crowd behaviors solely from the collected data. 

2.3.3. Machine Learning-based Techniques 

 In machine learning-technique, a form of artificial intelligence (AI) that makes predictions 

from data. One or more supervised, unsupervised, or reinforcement learning AI models are chosen. 

Supervise methods rely on prediction labels from training data to build appropriate models [4]. In 

the work [2], each agent has a 360-degree Field of View (FOV) and is split to 4 equal direction 

segments (North, South, East, West) (Figure 9.a). 24 policies are generated to cover all possible 

combinations between the statuses of each segment, and Decision Tree AI model is used to predict 
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the next steering direction. Unsupervised method does not build a prediction model and uses 

unlabeled training data directly to predict the outcome [47] [48]. Reinforce learning method trains 

AI models using reward and penalty mechanisms. In [15], the authors show that by using a multi-

agent reinforcement learning model (SELFish) (Figure 9.b), emergent escape-based flocking 

behavior can be discovered. Even though the goal of training agents is to survive as long as 

possible, their crowd movements lead to flocking behavior similar to Boids. Regardless of the 

choice, AI models use the training data to learn and predict the next steering action of each agent 

based on the surrounding environments. The more correct predictions, the better the AI models 

are. These data driven techniques help to reduce the manual workload and bias from modelers 

significantly. 

  

(a) (b) 

Figure 9. Two different machine learning techniques to predict the next steering direction. 

(a) Multiple policies for Decision Tree model 

(b) A reinforcement learning approach using a deep learning model named SELFish 
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3. METHODOLOGY 

3.1. The Framework 

3.1.1. The Overview 

The framework includes two major components: a model space specification and a search 

algorithm. The model space specification provides a formal specification for the general model 

structure from which various models can be generated. It defines a “meta-model” for behaviors-

based mobile agent systems [5]. GA is chosen as the search algorithm to discover the best fit 

models base on a set of pre-defined fitness metrics. Figure 10 shows an overview workflow of how 

these two components works in the framework. 

 

Figure 10. Overview each step of the automated model discovery approach. 

The model space specification is designed to take advantage of mobile agent-based system 

where abilities of perception, decision-making and action are provided [38]. In addition, it can be 

combined with other type of models to create complex steering behavior. The model space is 

composed of a world and a set of entities (agents, obstacles, and space), and each entity category 
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has a set of pre-defined properties P such as: position, heading direction, or speed. Because we use 

agent-based model, each agent a = < P, B> contains a set of behavior b.  A world is a 2-D space 

that wraps vertically and horizontally. Besides agent entity, others basic type of entities can be 

added easily to the framework depends on the scenarios such as: obstacles, or space entities. All 

agents share the same set of behaviors. Each behavior manipulates a pre-defined property such as: 

position, heading direction, or speed. Properties play critical roles because each behavior acts on 

a specific property by changing its value based on observations of the environment and nearby 

agents’ properties. In complex scenarios where the discovered models need to fulfill several 

requirements, multiple steering behaviors usually are needed, and conflictions can happen between 

them such as force cancelation. Therefore, it is essential for the framework to have a mechanism 

to dynamically prioritize each behavior based on the surrounding environment. As a result, we 

separated the behavior specification into two main components: Activation and Action or b = < p, 

Activation, Action> in B. The Activation component = < Criteria, Activation function> is used 

to assign a weight for the behavior depends on agents’ self or neighbors’ criteria and activation 

function (binary or linear). It is useful when agents need different priorities for their behaviors 

under different circumstances. The Action component = <F, offset> has a set of filters F to filter 

entities and extract property’s values from them. After the offset is added, the final value replaces 

current property value p of the agent. More detail of basic model space specification can be found 

in [5]. 

Based on the model space, Genetic Algorithm (GA) is used to find models that satisfy the 

desired behavior patterns specified by a modeler. GA encodes a potential solution to a specific 

problem on a simple chromosome-like data structure and apply recombination on these structures 

so as to preserve critical information [49]. Based on the specification, a random model can have 
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one or more behaviors. Each behavior has several choices to choose for range filters (distance, 

angle, speed, etc.), method filters (nearest, furthest, average, etc.), and extract property functions 

(position, direction, speed). These options are considered as chromosomes for models, and all 

possible combinations between them create the search space. First, random models are generated 

within the model space, and all of them create an initial population. Next, simulations of each 

model are performed by using a set of agents that make decisions based on model’s behavior 

specifications. A set of fitness functions is used to evaluate how close the outcomes of models are 

to the simulation goals. After the evaluation, if the fitness scores of one or more models pass the 

threshold, GA finds the best models and stops. If they do not pass, a new population is created 

with 25% best from old generation, 25% mutation from 25% best of old generation, and 25% 

crossover from old population. The last 25% is randomly generated to increase the diversity of the 

populations [5], and a new circle begins until GA finds the best model(s) or reaches the 

computation limitations. 

3.1.2. Agent Property Specification 

To support more complex scenarios, we would allow a modeler to add new properties into 

the model space for automated model discovery. The goal of property specification is to provide a 

well-defined structure for agent properties so that new user-defined properties can be added into 

the model space and be searched by the search method in a unified way. To achieve this goal, a 

formal and general structure for user-defined properties is needed. We define a user-defined 

property p has a general structure as below: 

p = <type, range, vinit> where 

Type: numerical, or categorical 
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Range: if type is numerical, range =[vlow, vupper], where vlow is the lower bound of the numerical 

value, and vupper is the upper bound of the numerical value. 

  if type is categorical, range = the set of all possible categorical values.  

vinit: initial value of the property: 

  if type is numerical: vinit is a real number between vlow and vupper  

  if type is categorical: vinit is an element of the Range set.   

 To add a new property to the model space, a modeler  needs to specify the type, range, and 

vinit for that property so that it can be searched by the search method.  Typically, the modeler has 

some knowledge about the system and the property, and thus can define the type and range of a 

new property to be searched. For example, if agents’ energy is important for a specific application, 

the modeler can define a new property called energy, and specify its type to be numerical and 

define its range to be between 0 and 100.  Similarly, if agents can change color between green, 

yellow, and red for a specific application. The modeler can define a property called color that has 

type = categorical and range = {green, yellow, red}. The modeler may also specify the initial 

value vinit for the property if starting from that initial value is important for the application. 

Otherwise, by default vinit is a random value within the Range.  

We note that specifying the type, property, and vinit of a property is different from defining 

how the property is used by specific behaviors. The modeler specifies the property, but then it is 

up to the search method during the model discovery process to decide if and how the property will 

be used by a specific behavior.  In general, when a modeler provides a property that is meaningful 

and has relevant range, it would make it easier for the search method to find behaviors using this 

property. 
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3.1.3. A Demonstration Example of How a Behavior Manipulates an Agent’s 

Properties. 

Based on the model space specification, in each iteration of the discrete time simulation, a 

behavior goes through multiple steps to compute a moving action of the behavior. Figure 11 

illustrates these steps where each step is represented by a box. The arrows before and after the 

boxes represent the input and output of these steps. In the first step, agents sense a set of nearby 

neighbors within their field of view (FOV). The second step applies filters to get a specific set of 

agents. The next step extracts property from the set of agents and combines them into one reference 

value. Then, the last step is to add an offset to the reference value to compute a desired value for 

the property the behavior is acting on. This desired value is referred to as the desired action for 

this behavior. If there are multiple behaviors that belong to the same behavior group, the described 

actions are averaged to compute an overall action of the agent. Note that a special property is the 

position property, which is treated differently based on which step a position value is checked. 

Specifically, in the extract action property step, a position value is always converted to the 

direction towards that position; the direction then becomes the reference value for the next step 

(the add action offset step). In all other situations, a position value is treated as a value for 

calculating a distance to that position. 

 

Figure 11. Steps of a behavior. 

Figure 12 illustrates the behavior steps for a sample behavior that makes an agent steer left 

from its nearest neighbor. In this example, the 2D space includes ten regular agents (hollow white 

circle) and one obstacle (black solid circle), where agent A is the agent that owns this behavior.  
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Through step 1, there are five entities: four regular agents (1-4) and one obstacle within agent A’s 

FOV. In step 2, agent A applies couple of filters to eliminate unsatisfied neighbors. The first filter 

chooses regular agent only (step 2.a). Hence, the obstacle is removed. The second filter chooses 

the nearest neighbor (step 2.b), and as a result agent 1 is selected. In step 3, agent 1’s position 

property is extracted and then converted to the direction towards that position. This direction 

becomes the reference value for the moving action of this behavior. Then step 4 adds an offset 

value to the reference direction to compute the desired action of this behavior. In the last step, 

agent A executes the desired action and moves according to the new direction. 

 

Figure 12. Illustration of the behavior steps. 

3.2. Activation Component 

3.2.1. Motivations 

In previous work, the described actions from the multiple behaviors of a same behavior group 

are averaged to compute the final action. In many cases, this method does not work well because 

the desire action of each behavior would cancel each other after being averaged. For example, 

Figure 3.a shows a scenario where agents have an obstacle avoidance behavior but cannot 

successfully perform it.  Figure 3.b explains why this happens. In this example, agent A has two 

behaviors that manipulate its direction: B1 and B2. Agent A uses behavior B1 to avoid the obstacle 

by steering to the left, and B2 to follow its nearest agent. Because the final decision 𝑩̅ is averaged 

between B1 and B2, agent A moves toward to the obstacle directly.  
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(a) (b) 

Figure 13. An example where average method does not well. 

 To address this problem, we need a mechanism to specify the importance of each behavior 

at each iteration. Therefore, we extend the previous work so that each behavior has two 

components: an Activation component and an Action component. The Activation component 

specifies the level of activation of the behavior. This allows the priority of a behavior to be modeled 

because different activation levels represent different priorities. The Action component specifies 

the action of the behavior, i.e., how the behavior changes the value of a property. This component 

is the same as a behavior in previous work. In other words, previous work considered only the 

Action component, and our extension adds a new Activation component. 

 

3.2.2. Activation Component Specification 

With the differentiation of the Activation component and the Action component, Figure 4 

shows how the overall action of a behavior group is computed in previous work (4.a) and in current 

work (4.b). As can be seen, in previous work, each behavior Bi returns a reference value vi (i = 1, 

2, 3, …, n), then the final result is averaged among all reference values.  
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In the current work, along with reference value vi, each behavior Bi also returns a weight value wi. 

The overall action is the summation of product between normalized weight 
𝑤𝑖

𝑠𝑢𝑚𝑤
  and reference 

value vi of each behavior. Because this weight distribution method sums up all 
𝑤𝑖

𝑠𝑢𝑚𝑤
 to 1 after 

normalization, the more weight a behavior has, the more portion it takes. Hence, this is an approach 

to support the priority mechanism. 

 

(a): Average overall action.                                   (b): Weight overall action. 

The steps of the Action component are similar to the steps of the behavior in the previous 

work (illustrated in Figure 1).  Thus, in this paper we focus on the Activation component. In 

general, the Activation component checks the condition of itself or its environment and returns a 

weight represents the importance of the behavior. This involves sensing the environment based on 

FOV, applying filters, and extracting property (referred to as activation property) in the same way 

as in the Action component. Afterwards, it uses an activation function to compute a weight based 

on the activation property value. Figure 5 illustrates the steps of the Activation component, which 

returns an activation weight in the end. Note that a special case is to check an agent’s own property 

Figure 14. Combining desired actions from multiple behaviors. 



26 

to computer the activation weight. In this case, a self-filter is used to return the agent itself before 

the extra property step.  

More formally, we define the Activation component to have three elements: 

Activation = <Fa, pa, activation_function> 

Fa is a set of filters where fa ∈ Fa 

fa is a filter where: 

fa = <pf, cf> 

 pf is the filtered property 

 cf is the filter criteria:  

• if pf is numerical type, cf = [cf_low, cf_upper], where vlow is the lower bound, and vupper is 

the upper bound of the criteria. 

• if pf categorical type, criteria = a subset of the set of all possible categorical values. 

pa is the activation property.  

activation_function = <type, ra> where: 

 type: activation type: binary or linear (see explanation below). 

 ra is the activation function range, where ra = [ra_low, ra_upper],  follows the same regulation 

as cf. 

 The activation function computes a weight based on the value of the activation property. 

This function needs to have a well-defined structure so that it can use the same structure to cover 

different situations of changing activation weight based on dynamic values of the activation 

Figure 15. Steps of the activation component 
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property.  In this work, we allow a behavior to have one of the following two activation function 

types: binary function and linear function.  

Binary function returns weight value of 1 or 0 based on if pa is inside or outside a specified range 

[𝑟𝑎_𝑙𝑜𝑤,𝑟𝑎_𝑢𝑝𝑝𝑒𝑟]. By giving weight of 0, a behavior is considered not activated because its product is 

also equal 0 and not contributed to the overall action. In some cases, modelers want the passing 

conditions are not within the range. To capture all these situations, specification of the binary 

function is: 

binary = <inside> where: 

 inside: a Boolean value to decide the satisfied conditions are inside or outside the range of 

ra 

 Table 1 shows the details of the binary function. When inside is True, the function returns 

weight of 1 if pa is within the range of ra, and 0 otherwise. When inside is False, the function 

returns 0 if pa is within the range of ra, and 1 otherwise.  

Table 1. Weight value using binary function. 

Inside Weight value Function graph 

True 

 

𝑤𝑒𝑖𝑔ℎ𝑡 =  {
1 𝑖𝑓 𝑝𝑎 ∈ [𝑟𝑎_𝑙𝑜𝑤,𝑟𝑎_𝑢𝑝𝑝𝑒𝑟] 

0 𝑖𝑓 𝑝𝑎 ∉ [𝑟𝑎_𝑙𝑜𝑤,𝑟𝑎_𝑢𝑝𝑝𝑒𝑟]
 

 

False 𝑤𝑒𝑖𝑔ℎ𝑡 =  {
0 𝑖𝑓 𝑝𝑎 ∈ [𝑟𝑎_𝑙𝑜𝑤,𝑟𝑎_𝑢𝑝𝑝𝑒𝑟] 

1 𝑖𝑓 𝑝𝑎 ∉ [𝑟𝑎_𝑙𝑜𝑤,𝑟𝑎_𝑢𝑝𝑝𝑒𝑟]
 

 

 

 Different from the binary function that returns only two values: 0 or 1, the linear function 

returns different values based on the inputs of the activation property. The specification of linear 

function is: 

linear = <slope, increase> where:  
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 slope: measures the rate of weight change for different property values. It is an integer and 

has range [0, supper]. supper is the upper bound of slope value. 

increase: a Boolean value to indicate the increment/decrement direction of the weight value.  

To make the search process more efficiency, modelers need to define upper bound of slope. Thus, 

the search space includes all possible values within range of [0, supper] (note: in our implementation 

we define a granularity to make the search space finite). Table 2 illustrates the linear function for 

various slope and increase variables. If increase is True, the weight increases when pa moves 

toward to the upper bound ra_upper of ra. If increase is False, the weight increases when pa moves 

toward to the lower bound ra_low of ra. When pa is no longer within range of ra, the weigh is equal 

to either 0 or (ra_upper × slope) depends on the  pa and increase value. 

Table 2. Weight value using linear function. 

Increase Weight value Function graph 

True 𝑤𝑒𝑖𝑔ℎ =  {

0 
𝒔𝒍𝒐𝒑𝒆 ×  (𝒑𝒂 −  𝑟𝑎_𝑙𝑜𝑤) 

𝒔𝒍𝒐𝒑𝒆 ×  (𝑟𝑎_𝑢𝑝𝑝𝑒𝑟 − 𝑟𝑎_𝑙𝑜𝑤)

    

𝑖𝑓 𝒑𝒂 < 𝑟𝑎_𝑙𝑜𝑤

𝑖𝑓 𝑟𝑎_𝑙𝑜𝑤 ≤ 𝒑𝒂 ≤  𝑟𝑎_𝑢𝑝𝑝𝑒𝑟

𝑖𝑓 𝒑𝒂 >  𝑟𝑎_𝑢𝑝𝑝𝑒𝑟

 

 

False 

 

𝑤𝑒𝑖𝑔ℎ𝑡 =  {

𝒔𝒍𝒐𝒑𝒆 ×  (𝑟𝑎_𝑢𝑝𝑝𝑒𝑟 − 𝑟𝑎_𝑙𝑜𝑤) 

𝒔𝒍𝒐𝒑𝒆 ×  (𝑟𝑎_𝑢𝑝𝑝𝑒𝑟 − 𝒑𝒂) 

0 

  

𝑖𝑓 𝒑𝒂 < 𝑟𝑎_𝑙𝑜𝑤

𝑖𝑓 𝑟𝑎_𝑙𝑜𝑤 ≤ 𝒑𝒂 ≤  𝑟𝑎_𝑢𝑝𝑝𝑒𝑟

𝑖𝑓 𝒑𝒂 >  𝑟𝑎_𝑢𝑝𝑝𝑒𝑟

 

 

 

3.2.3. Illustrative Example 

Below is an illustrative example shows how the activation weight of a behavior is 

computed at different time steps. Figure 6 shows this example, where an obstacle is moving toward 

to agent A and the distances between them at time t = 0, 10 and 20 are 130, 75, and 10 respectively.  
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  (a) t = 5                            (b) t = 10                          (c) t = 15     (d) weight assignments 

  

Behvaior B changes the agent’s direction if it is too close to an obstacle. The specification 

of behavior B is in Table 3 

Table 3. Model specification of behavior B. 

Activation:  Action: 

Filter: 

f1 :  pf = type     

      cf  = obstacle 

pactivation = position  

ractivation = [20-120]  

(note: distance range between 20 and 120).  

Activation function: 

     type: linear, increase = False, slope = 2. 

Filter:  

f1 : pf = type     

  cf  = obstacle 

paction = position (converted to the direction 

towards that position and use it as the 

reference value).  

offset: 40 (add 40 degree to the reference 

direction) 

  

Behavior B’s activation has one filter with filter property = type and criteria = obstacle. In 

other word, the filter chooses only obstacles and eliminates regular agents. Because pactivation 

chooses position as activation property, the linear activation function calculates the activation 

weight based on range cactivation = [20,120]  and the relative distance between position of agent A 

and position of the obstacle. Figure 6.d shows how the weight is calculated. Because increase 

value is False, weight is decreasing when distance is increasing. In this example, Figure 6.b shows 

Figure 16. A scenario where obstacle is moving toward to an agent at three different time steps 

and their weight values. 
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the distance d2 = 75 and it within activation criteria range. As a result, weight of behavior B at t = 

10 is  2 × (120-75) = 90. At t = 5 and t = 15, because the distance d1 (Figure 6.a) and d3 (Figure 

6.c) both exceed the range of activation criteria ca, weight of B at t = 5 equals to 0 (d1 = 130 > 

ca_upper), and weight of B at t = 15 is 2 × (120 – 20) = 200 (d3 = 10 < ca_low). For the Action 

component of this behavior, it has one filter that is similar to the filter of activation. It then extracts 

the obstacle’s position to get the direction to the obstacle as the reference value. A 40 degree is 

added to this reference direction to make the agent turn away from the obstacle. 

 

3.2.4. A Demonstration Experiment. 

To demonstrate adding user-defined properties for automated model discovery, we 

consider an example that we studied in our previous work: snake shape (Table 4 - ID: 4) with 

personal space (Table 4 – ID: 5,6) [5]. In that example, agents form a snake shape and also maintain 

personal space, so they do not collide with each other. The discovered model works well if number 

of agents and world size are set correctly. However, in the situation where there are too many 

agents in a limited space world, there is not enough space for agents to execute the speeding up 

behavior. As a result, their speeds decrease to zero and stand still until the rest of the simulation 

(Figure 7.a).  To prevent that from happening, beside snake formation and maintain personal space, 

we also add speed goal. Function s𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎𝑖 , 𝑡) (1) adds penalty every time speed of agent ai 

is zero at a specific time step t by returning value of 1. Equation (2) sums all the penalty during 

the whole simulation. Hence, the lower the sum value is, the better the speed goal achieves.  

𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎𝑖 , 𝑡) = 𝑖𝑓 (𝑠𝑝𝑒𝑒𝑑(𝑎𝑖 , 𝑡) = 0) 𝑟𝑒𝑡𝑢𝑟𝑛 1, 𝑒𝑙𝑠𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 0.           (1) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑 𝑖𝑠 𝑧𝑒𝑟𝑜 =  ∑ ∑ 𝑠𝑝𝑒𝑒𝑑𝑧𝑒𝑟𝑜(𝑎𝑖 , 𝑡)|𝐴|
𝑖=0

𝑇
𝑡=0                  (2) 

  T is total number of simulation iterations. 

 |A| is a set of agents, (ai,t) is the ith agent at time step t. 
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With this speed fitness function added, a better model is discovered and agents able to 

maintain acceptable speeds. The behavior to keep the speed is when speed of an agent is in range 

[0,0.1], it turns left 60 degrees. Hence, open more spaces for agents to speed up. However, agents 

cannot maintain a stable snake formation because most of the agents change their directions too 

quickly as Figure 7.b shows.          

To find models that can lead to stable snake formation, it is necessary to add a new property 

that can control how long agents need to wait before changing the direction. Thus, we add a user-

defined property called patience to the search space. Patience is numerical type with initial value 

vinit = 100 and range = [0,100]. Table 3 shows the final discovered model specification, and the 

first three (ID: 1-3) are used by agents to wait patiently before changing their directions. 

Table 4. A set of behaviors to maintain more stable snake formation. 

Behavior Group: Patience 

ID Behavior specification Purpose 

1 
Activation: if self-speed is within [0, 0.1], return 1. 

Action: reduce the value of self-patience by 1. 

If speed of agent itself is slow, 

its patience decreases.  

2 
Activation: if self-speed is within [0.2, 2], return 1. 

Action: increase the value of self-patience by 2. 

If speed of agent itself is fast, 

its patience increases. 

Behavior Group: Angle 

3 
Activation: if self-patience is within [5,10], return 1. 

Action: direction increases by 50  

If patience of agent itself is 

low, it steers left 50 degrees. 

4 

Activation: if having one or more regular agent within 

FOV, return 1.  

Action: change direction to nearest agent 

Follow the nearest agent.  

Behavior Group: Speed 

5 

Activation: if the distance to nearest agent is within 

[0,15], return 1  

Action: speed decrease by 0.3 

Slow down if too close to an 

agent. 
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Whenever speed of an agent decreases and within range [0 – 0.1], it begins to lose patience 

by 1 at each iteration. During that time, if agent is able to gain speed above 0.2, its patience 

increases by 2. If not, the agent will wait until its patience level is below 10, then turn its direction 

50 degree to the left. In other word, instead of breaking the snake shape immediately, agents wait 

until their patience is low. As a result, these behaviors maintain snake formation (Figure 7.c) better 

than previous one. Without a user-defined property, it is challenging to express a behavior that 

makes agent wait patiently before making another decision.  

   

(a) (b) (c) 

 

Figure 17. Three experiments of snake formation with personal space. 

 To compare quantitative results between previous and current experiment, three fitness 

functions are used include: snake shape, personal space, and speed fitness function. First, snake 

shape fitness function measures the differences between an agent’s direction and the direction 

toward to its nearest neighbor. Second, personal space fitness function adds penalty whenever 

agent violate other agents’ personal space (Keller and Hu 2019). Next, speed fitness function is 

calculated using  equation (1) and (2). Final fitness score of them is averaged between 100 

6 

Activation: if the distance to nearest agent is within 

[20,150], return 1  

Action: speed  increases by 0.5 

Speed up when there is 

enough space ahead. 
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simulations. Lastly, the scores are normalized to have common scale of 0 being the best, and 1 

being the worst. Compare the results between experiment 1 (without patience property) and 2 

(with patience property) of Table 4, we see that experiment 2 gives better score in snake shape 

and personal space behaviors because the snake shape maintains stably for a longer time. Hence, 

agents do not change direction as frequency as experiment 1 and have less chance to collide with 

each other. Speed in other hand, experiment 1 receives the better score because agents in 

experiment 2 will wait an amount of time before changing the direction when their speed is zero. 

Thus, more speed penalties are added to it. 

Table 5. Fitness scores of experiments with and without patience. 

Snake Shape + Personal Space + Maintain speed models 

Experiment 1: without Patience property Experiment 2: with Patience property 

Snake Shape: 0.77 

Personal Space: 0.513 

Speed Fitness: 0.12 

Snake Shape: 0.53 

Personal Space: 0.308 

Speed Fitness: 0.22 

 

3.3. Genetic Algorithm and Two Stage Searches. 

3.3.1. Motivations 

As mentioned in section 3.1.1, Genetic Algorithm (GA) is used to find models that satisfy 

the desired behavior patterns specified by a modeler. The model specification’s components are 

designed to easily interchange and manipulate between models; hence it is reasonable to present 

them as chromosomes and use GA to encode a potential solution to a specific problem and apply 

recombination on these structures so as to preserve critical information [49]. We notice that GA 

search efficiency reduces significantly for complex scenarios because of two main reasons. First, 

complex scenarios with multiple requirements typically need multiple steering behaviors to fulfill 

all the tasks. With the automated discovery approach, the more behaviors needed to be discovered, 
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the larger model space requires. Hence, GA takes much longer time to search for the desired 

models. Second, GA ranks candidate models based on their fitness scores, and in many cases, 

conflictions between evaluation criteria make it difficult to rank these models. The leader-

following + mobile obstacle avoidance is one example. The leader-following behavior makes 

agents form a cluster around a leader while mobile obstacle avoidance behavior makes agents 

scatter. In case of two candidate models with the same score, one has higher score for the leader 

following fitness and the other one has higher score for mobile obstacle avoidance fitness; GA 

does not know which one should be rank higher, hence it randomly switches the rank between 

these candidates and most of the time is trapped in its local optimal. 

3.3.2. Properties of Fitness Functions 

To rank the generated model correctly, each scenario needs a set of fitness metrics to 

evaluate how close the discovered models are to the requirements. Depending on the scenarios, 

each fitness metric can either counts each time agents violate the requirements’ rules or check how 

quick agents fulfill a goal. Because requirements are different, their equivalent fitness metrics 

should be measure differently as well. For example, in an obstacle avoidance in pedestrian crowd 

scenario, the obstacle avoidance fitness metric can be set so strict that the model is considered bad 

with only one violation between the obstacle and a pedestrian. In other hand, many personal space 

violations between pedestrians can be acceptable. As a result, all metrics are treated with min-max 

normalization before multiplying together to give the overall fitness score. The normalized score 

ranges from [10-9 - 1], the better a model completes a requirement , the higher score of the 

equivalent fitness metric is. The minimum score is kept as 10-9 instead of 0 because the overall 

fitness score is the product between all metrics. If the minimum score is 0, it will negate all other 

metric scores, and does not give accurate evaluations. For example, Table 6 shows overall scores 
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of three models for a scenario that has two fitness metric f1 and f2. By checking the score for each 

model, we can easily rank model 3, model 2, then model 1 in descending order. However, with the 

normalize range = [0-1], all three models’ overall score = 0 and are rank the same. With  

normalized score ranges from [10-9 – 1], not only three models now are rank correctly, but the 

good behaviors also are preserved for the next generations. It is shown in f2 = 0.5 of model 2 and 

f1 = 0.8 of model 3 where they have a good metric score.  

Table 6. Overall scores between different normalize ranges. 

Name Normalize range = [0-1] Normalize range = [10-9 - 1] 

Model 1 
f1 = 0, f2 = 0 

Overall score = f1*f2 = 0 

f1 = 10-9, f2 = 10-9 

Overall score = f1*f2 = 10-18 

Model 2 
f1 = 0, f2 = 0.5 

Overall score = f1*f2 = 0 

f1 = 10-9, f2 = 0.5 

Overall score = f1*f2 = 5-10 

Model 3 
f1 = 0.8, f2 = 0 

Overall score = f1*f2 = 0 

f1 = 0.8, f2 = 10-9 

Overall score = f1*f2 = 8-10 

 

3.3.3. Two Stages Search Process 

To resolve these limitations in section 3.3.1, we divide the search process into two different 

stages, and each stage focuses on searching for specific level components of the framework to 

assist GA use the computational resource better. Figure  18 shows the overview of multiple search 

stage processes for automated discovery model approach. 
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Figure  18. Overview of two search stages for automated discovery model approach. 

Stage 1 is described in section 3.1. We notice that at this stage, discovered models usually 

have high fitness metric scores for one of the requirements. Thus, it is acceptable for discovered 

models at stage 1 to be low because the goal is to search at model specification level and find the 

purpose of each behavior. Next, discovered behaviors are classified using a semi-automated 

process. First, a two-way validation method classifies the purpose of each behavior automatically. 

Next, modelers further observe how agents move in these selected behaviors and classify them 

manually based on their movement’s patterns.  

Because sometimes it needs more than one behavior to fulfill a requirement, using a 

proposed validation approach, each behavior in one model is tested with two validations to be 

classified correctly. First validation tests each behavior with a set of fitness metrics to classify the 

type: one behavior fulfills one requirement. If selected behavior has a high score in one fitness 

metric, it is considered to satisfy the equivalent requirements. Second validation first removes one 
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behavior, then tests the remains in a model to classify the type: multiple behaviors fulfill one 

requirement. If the model gives a bad score for a selected metric, the removed behavior is 

considered important for the equivalent requirement. The examples in Figure 19 show the reasons 

why two validations are needed. The model in Figure 19.a has both behaviors B1 and B2 that gives 

a good score for obstacle avoidance metric. If only second validation is used, the classifier will 

miss both behaviors because if one is removed, the other still gives a high score for the obstacle 

avoidance requirement. Figure 19.b shows a reverse case where the model needs both behavior 

B1 and B2 to have a good score for the leader following requirement. Hence, if only first validation 

is used, both B1 and B2 will give a bad score for the requirement and are not selected as candidate 

behaviors.  

 

(a) 

 

(b) 

Figure 19.  Classify each behavior fulfills one requirement (a) & multiple behaviors fulfill one 

requirement (b) examples. 

After the classifications, the selected behaviors become the building blocks for stage 2. The 

next populations for GA are created by combining between one candidate behavior for each 
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requirement. Because the purposes of these behaviors are already defined, stage 2 mainly focuses 

on Activation component where GA needs to search for the weights between these behaviors. In 

other words, stage 2 focuses on component level with the goal to make the candidate behaviors 

work together to archive the higher overall fitness scores. Because each stage focuses on a different 

level of model specification, GA is able to put computational resources more efficiently and 

discover better quality models for complex scenarios. As a result, the two-stage search process 

shows significant improvements in both searching time and quality of discovered models, 

especially in complex scenarios where there are more than three requirements. Even though the 

searching time to discover one set of models takes longer, the overall quality of discovered models 

is much better. More importantly, GA is able to escape its local optimal, and satisfied models are 

discovered with fewer number of search.  
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4. SPACE ENTITY 

4.1. Motivations 

Our previous work has mainly focused on agents’ interactions with other physical entities 

(including other agents); hence an agent can only act on properties (e.g., position, direction, speed) 

of some physical entities. This limitation of considering only the physical entities, hence makes it 

difficult for agents to move in directions that are not directly associated with any physical entity. 

For example, action component relies on a reference value from a nearby entity and a static offset 

value to steer either left or right.  Figure 20.a illustrate an example where agent A get an angle 

reference from agent 1, and steer to the left to avoid it. Figure 20.b shows a different position of 

agent 1 and agent 2 where the better option is to steer to the right (blue dash arrow). However, 

agent A final decision is still turn to the left (red solid arrow) because of the static offset.  

 

(a)                                                        (b) 

Figure 20. An example shows static offset is limited agent's steering option. 

It has been observed that when steering in complex environments, autonomous agents use 

information not only from nearby physical entities, but also from open space directions 

surrounding them. In many situations where agents form clusters, they have limited area to move, 

hence it is crucial for agents to have the capacity to maneuver around empty space efficiently. 

Even though an open space appears to have nothing, it actually contains useful information such 
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as how far agents can move along the open space direction, and how much the angle difference is 

between the open space direction and the agents’ current moving directions. Having the capability 

of processing these types of information would give agents more options for choosing their 

movement in steering behavior simulation. This would allow agents to move more effectively and 

naturally in experiment scenarios where utilizing the open space around agents are crucial such as 

multiple obstacles avoidance, or leader-following.  

4.2. Space Entity Specification 

Motivated by the above discussion, we provide a new behavior specification for steering 

behavior that gives agents the option to interact with the open space surrounding them. Hence, a 

new category of entity called “space entity” is introduced to add to the physical entities that have 

been supported in the previous framework. Each agent has a set of space entities corresponding to 

a set of landmarks that an agent can head to from its current position. At each timestep, an agent’s 

space entities are dynamically generated based on an adaptive space entity generation method, 

which checks the agent’s nearby physical entities and generates a set of possible steering directions 

adaptively. To work with the existing automated model discovery framework, each space entity 

has a set of pre-defined properties. For example, the travel distances from the agent to the space 

entities, or the angle differences between the directions to space entities and the agent’ current 

direction. Agents use the values of these properties to filter which space entity they want to change 

direction toward. This extension gives agents more flexibility when using steering behaviors. For 

example, in previous work, when an agent wants to avoid a physical entity, it first needs to get a 

reference direction from the physical entity. Then a static angle offset is added so that the agent 

can move away from the entity. This approach is cumbersome and not adaptable (for example, the 

static angle offset makes the agent always turns left or right with a fixed angle away from the entity 
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like the example in Figure 20). This extension assists agents move around narrow space more 

efficiently and adaptively in many situations because the space entities provide multiple reference 

directions for agents to evaluate.  

To fully support an automated discovery model approach, a formal specification of space 

entity set called S is included in entity specification from previous work beside agents, obstacles, 

and zone entities. S is defined as a set of space entities where:  

s = <position, P> ∈ S where  

position is value x and y of s in 2d space. 

P is a set of pre-defined properties of a space entity. 

4.3. Space Entity Generation Method 

Figure 21 shows an example of how an agent uses the adaptive space entity generation 

method to generate a set of space entities S. Figure 21.a illustrates a current processing red agent 

A with a 360-degree FOV. Agent A has some nearby entities including four agents (A1, A2, A3, 

A4), one black circle obstacle (O1), and two rectangle walls (W1, W2). To generate set S, at each 

timestep, agent A first groups entities of the same categories (agents, obstacles, or walls) into 

clusters. Next, a pair of tangent lines called key heading options are created based on the most 

outward entities’ positions of each cluster. Figure 21 (b, c, d) show how agent A generates blue, 

red, and green key heading options for agent, obstacle, and wall categories respectively. These key 

headings are important because they present the boundary between occupied segments (colored by 

blue, red, and green) and empty space segments (white) within an agents’ FOV. 



42 

  
(a) (b) 

  
(c) (d) 

 

Next, all key heading options are combined to create an initial heading set for agent A as 

Figure 22.a shows. In many cases, the space between two adjacent key headings is so large that it 

may leave many good potential headings between the boundaries, such as the gap between h2 and 

h3 in Figure 22.a. As a result, staring from FOV’s  right bound of the agent, more trajectory options 

are generated incrementally by a pre-set interval, and follow a counterclockwise direction until it 

reaches FOV’s left bound. While increasing, if an option hits the same value as the key heading 

value before the next interval, the counting starts again at the matched key value (illustrated by hs1 

– hs7 in Figure 22.b). These heading options are dynamically changed at each time step depending 

on the positions and heading directions of agents, as well as the positions of nearby neighbors, 

hence agents have a better spatial set to interact. After all key heading options are generated, their 

Figure 21. Key heading options of different entity's categories. 
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intersections with the processing agent’s FOV become the positions of space entities s (Figure 

22.c). 

 

 

 

4.4. Space Entity Properties  

As mentioned above, besides position property, each space entity s also has a set of pre-

defined properties from the modelers. Because we focus on obstacle avoidance and leader-

following steering behaviors, there are two important properties for each space entity: travel 

distance and angle distance. 

4.4.1. Travel Distance 

The travel distance property measures various distances on the paths between agents and 

space entities. In many situations, one heading direction path can be intersected by more than one 

entity category. Therefore, nearest travel distance values to each and all categories are generated 

for space entities. Figure 23.a illustrates that a path is drawn from agent A to s1 and intersected 

with obstacle O1, hence the travel distance to the nearest obstacle is d0. Since there is no agent or 

wall along the path, the travel distance to the nearest agent and the nearest wall properties are equal 

to agent A’s FOV distance. The travel distance to all entities is assigned by the distance to the 

   

(a) (b) (c) 

Figure 22. Sub heading options and space entities generated. 
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nearest entity (in this example it is O1 with distance = do). Similarly, Figure 23.b shows a case 

where the path from A to s2 is intersected with all entity categories. Hence, da, do, dw, and do are 

assigned to the travel distances to the nearest agent, obstacle, wall, and all entities respectively. 

Figure 23.c shows one simple case where the path from A to s3 is not blocked by any entity. 

Therefore, all travel distances have values equal to agent A’s FOV distance. These property values 

give agents the flexibility to focus on the category they are interested in. For example, if an agent 

wants to avoid a nearby obstacle, it only needs to check which path gives the shortest travel 

distance to the obstacle and avoids using it. 

   

(a) (b) (c) 

Figure 23. The travel distance property’s values of different entity’s categories. 

4.4.2. Angel Distance 

Two angle distances are used to measure the relative angle differences between a heading 

option and agents’ heading values. First, in the situation where an agent needs to choose between 

two or more trajectory options that have the same travel distance, the angle distances between the 

headings and the agent’s current heading direction (adc) are used to analyze and compare each 

heading option further. Figure 24.a illustrates ⍺1, ⍺2, ⍺3 are the angle distances adc from s1, s2, s3 

to the current heading direction (green arrow) of agent A respectively. Second, we assume that 

agents have knowledge of directions heading toward a pre-set area in some scenarios such as: the 
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leader-following or evacuation, hence the angle distance from the desired area to a heading option 

is provided to guide agents to the correct area. Depending on the layout of the testing experiment, 

this desired landmark is pre-defined by modelers. For example, Figure 24.b shows points B and C 

are the bounds of an escape hallway. If an agent is not in the hallway, its position, point B and 

point C form an area where all heading options inside are considered within desired range 

direction. In this example, heading options to s1 and s2 have angle distances to the desired area add 

equal to 0. For the options that are outside of the range such as the trajectory between agent A and 

s3 in Figure 24.b, β3 is the angle distance between it and the nearest desired area bound (AC). If an 

agent wants to escape, it will select the space entity where the angle distance to the desired area 

add is smallest (either s1 or s2). 

  

(a) current direction adc (b) desired area add. 

Figure 24. The angle distance property’s values to  

These distance properties, when combined with filter components from previous work, 

create a new set of behaviors for agents to interact with the space surrounding them. Not only are 

agents able to navigate through physical entities more efficiently, but they also have more heading 

options on both the left and right sides to evaluate. Most importantly, this extension increases the 

search space with better options and the behavior sets are diverse enough for GA to discover 

multiple good strategies where agents’ movements are more natural and effective. 
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5. EXPERIMENTS 

We evaluate the framework by applying it to discovering simulation models in various 

steering behavior scenarios. First, we consider three basic steering behavior scenarios including 

leader-following, mobile obstacle avoidance, and person space maintenance. The discovered 

behavior models in these scenarios are referred to as Bleader_following, Bobstalce_avoidance, and 

Bpersonal_space, respectively. Then, we  further evaluate the framework in more complex steering 

behavior scenarios that combine the basic steering behavior scenarios described above. All the 

combinations are tested including: (1) Bleader_following + Bobstalce_avoidance, (2) Bleader_following + 

Bobstalce_avoidance, (3) Bleader_following + Bpersonal_space, and (4) Bleader_following + Bobstalce_avoidance + 

Bpersonal_space scenarios. We also evaluate the framework with two extra scenarios called: (5) the 

leader-surrounding scenario, and (6) hall-way evacuation with an obstacle in the middle scenario. 

More discovered models for different set up can be accessed through the webpage (www.). Each 

agent has a FOV angle = 360 and a FOV distance = 60, its speed has range = [0-2]. Agents’ position 

and heading direction are set randomly (without overlap each other) at the initial steps, and their 

speed are all = 2. 

5.1. Basic Steering Behaviors 

5.1.1. The Leader Following Scenario  

• Experiment setup: the leader represents a light from a high altitude; hence all agents 

know the desired direction toward the leader regardless of the distance between them. The leader 

does not have physical constraints with other entities, and it changes direction/speed randomly 

after a period. 

•  The leader following fitness  score: Because the only requirement of this scenario is 

agents are as close to the leader as possible, Average distance to a leader measure the average 
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distance of all agents in |A| set to the leader at the end of each time step (Equation 1). Because all 

entities are placed randomly at the start of each simulation, agents need a burn-in time (in this case 

is 1/3 of the simulation time T) to gather around the leader first. As a result, the average distance 

to the leader is counted for the last 2/3 simulation time. 

Equation 1. The leader-following metric equation. 

 

T: simulation time. 

• Specification of discovered models: Three candidate models are discovered for 

Bleader_following. Figure 25 a, b, c shows heat maps where agents in all three models are fulfilled by 

following the leaders, however, each of the models presents distinct movements. Model 1 (Table 

7), model 2 (Table 8), and model 3 (Table 9) shows model’s specifications of the movements 

presented in Figure 25 a, b, c respectively. For model 1, agents use a set of space entities to decide 

where to steer next. Because the desired direction in this scenario is toward the leader, agents select 

the space entity in front of them (within [0-60] of angle distance to current direction (adc)) and has 

the nearest angle distance (add) to the leader. Figure 25.a.1 shows an example where the current 

direction of agent A is indicated by a green arrow, the light blue segment illustrates the 1st filter of 

the behavior Table 7:ID-1; thus, s1 eliminated because it is not within [0-60] of adc of agent A. 

Between s2 and s3, since  add = alpha of s2 is smaller, agent A head toward to it. For model 2, it has 

two filters that make agents select the nearest leaders and extract the leader’s position. Then, agents 

simply steer to the leader position (Figure 25.b.1) and eventually, they gather in a very small area 

around the leader. In model 1, since each pair of adjacent space entities is set with an interval, most 

of the time, the selected space entity does not head directly toward the leader. Hence, model 1’s 
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heat map shows agents gather around the leader in a larger area compared to model 2’s heat map 

(Figure 25.a.2 vs Figure 25.b.2). Model 3 although has similar specification as model 2, with the 

adding offset of 75 to the left of the agent (Figure 25.c.1), it shows a very different movement 

where agents create a spiral pattern before gathering around the leader. (Figure 25.c.2). 

  

(a.1) Steering decision of a singular agent and (a.2) the heat map of BLeader_following Model 1 

  

(b.1) Steering decision of a singular agent and (b.2) the heat map of BLeader_following Model 2 
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(c.1) Steering decision of a singular agent and (c.2) the heat map of BLeader_following Model 3 

Table 7. Model 1 specification of Bleader_following. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: select the neighbor with the angle distance to 

the current direction within [0-60] 

▪ 2nd filter: select the neighbor with the nearest distance 

to the desired direction. 

▪ Property to extract: position of the chosen space entity. 

Steer to the leader 

using its nearest 

space location. 

 

 

 

 

 

 

 

 

 

Figure 25. Steering decisions and heat maps of three different movement patterns of the 

leader following scenario. 
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 Table 8. Model 2 specification of Bleader_following. 

 

Table 9. Model 3 specification of Bleader_following. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: select leader category 

▪ 2nd filter: select the nearest neighbor 

▪ Property to extract: position of the chosen entity. 

▪ Offset = -75 

Point to the leader’s 

position, then add -

75 offset to create 

the spinning 

movement.  

 

5.1.2. Mobile Obstacle Avoidance Scenario  

• Experiment setup: 6 mobile obstacles are placed randomly in a warped world. 

Their directions and speeds are randomly changed after a period. 

• Obstacle avoidance fitness score: This fitness counts every time an agent is 

overlap with an obstacle. The total number of violations at the end is averaged.  

Equation 2. Obstacle avoidance metric equation. 

 

T: simulation time. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: select leader category. 

▪ 2nd filter: select the nearest neighbor. 

▪ Property to extract: position of the chosen entity. 

▪ Offset  = 0 

Steer to the nearest 

leader’s position. 
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(Normalize range [0,1] – A model is considered not good if agents overlap with obstacles 

more than averagely 1 time at each timestep) 

• Specification of discovered models: The approach is able to discover three models 

for Bobstalce_avoidance. The first discovered model ( 

• Table 10) makes agents avoid obstacles by extracting the position of the nearest 

obstacle, then adding an offset = 60 to steer agents away from the obstacles (the black solid circle) 

(Figure 26.a.1). Even though the model has one only one behavior ( 

• Table 10- ID: 1) and its activation component does not affect the overall decision, 

this activation specification is important for later experiments. The priority to avoid obstacles is 

increased when agents move toward the obstacles. With the slope = 100, this obstacle avoidance 

behavior can easily dominate other behavior. Model 2 (Table 11) simply make agents select a 

space entity with furthest travel distance to avoid obstacles. Figure 26.b.1 illustrate agent A has 

three space entities. S1 and s2 intersect with obstacle, hence their travel distances are shorter than 

s3. By steering to s3’s location, agent A is able to avoid the obstacle. Bobstalce_avoidance of Model 3 

is similar to  (Table 11- ID:1). However, this model also has speed behaviors where behavior Table 

12 – ID:2 slows down agents if they are too near to a nearby neighbor, and speeds up when agents’ 

self-speed is slow (Table 12 – ID:3). This is the first model that is presented in this work that shows 

the usefulness of Activation component. The speed up behavior has priority pretty low compared 

to the slow down behavior (10 vs 600). In other words, even if agents want to speed up but there 

are close by neighbors in front of them, slow down behavior will dominate and stop agents from 

speeding up. Comparing heat maps of model 1, model 2, and model 3 (Figure 26.a.2, Figure 26.b.2, 

and Figure 26.c respectively) shows that movement of model 2 utilizes the space surrounding the 

obstacle better than model 1. Agents in model 2 leave a little empty space around the obstacle 
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while model 1 leave much larger gap. Model 3 pushes the movement efficiency one step further 

by limiting the movement of agents. Because agents only move when necessary, the risk of 

collision is reduced to minimum. 

  

(a.1) Steering decision of a singular agent and (a.2) the heat map of BObstacle_avoidance Model 1 

  

(b.1) Steering decision of a singular agent and (b.2) the heat map of BObstacle_avoidance Model 2 
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(c) The heat map of BObstacle_avoidance Model 3 

Figure 26. Steering decision and heat maps of three different movement patterns of the mobile 

obstacle avoidance behavior. 

Table 10. Model 1 specification of Bobstacle_avoidance. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ 1st filter: select obstacle category. 

▪ 2nd filter: select the neighbor within [0-40] of the 

current direction. 

▪ Criteria: distance to the select neighbor [0-60] 

▪ Linear activation function: 

o Slope: 100 

o Increase: False 

Action: 

▪ 1st filter: select obstacle category. 

▪ Property to extract: position of the chosen entity. 

▪ Offset = 60 

Head to the select’s 

obstacle, then add an 

offset = 60 to steer 

away from the obstacle. 

(W = [0-6000] 
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Table 11. Model 2 specification of Bobstacle_avoidance. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: Select the space entity with the furthest 

travel distance. 

▪ Property to extract: position of the chosen entity. 

Steer to the furthest 

space. 

 

Table 12. Model 3 specification of Bobstacle_avoidance. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: Select the space entity with the furthest travel 

distance. 

Property to extract: position of the chosen entity. 

Steer to the furthest 

space. 

Speed Behavior 

2 
Activation: 

▪ 1st filter: choose a set of space entities with the angle 

distance to current direction within [0-45]. 

▪ Criteria: travel distance to a neighbor [0-5] 

▪ Linear activation function:  

o Slope: 100   

o Increase: false 

Action. 

▪ Property to extract: speed of the chosen entity. 

▪ Offset: -3.0 

Slow down when too 

close to the nearest 

neighbor in front.  

(W= [0 – 500]) 

3 
Activation: 

▪ Criteria: self-speed is within [0-1.5] 

▪ Binary activation function:  

o Inside: true 

o Weight: 10 

Action: 

▪ Property to extract: self-speed. 

▪ Offset: 2.0 

Speed up when self-

speed is slow.  

(W = 10) 
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5.1.3. Personal Space Maintenance Scenario  

• Experiment setup: 30 agents are placed randomly in a warp world and not overlap with 

each other.  

• Personal space fitness score: similar to obstacle avoidance score, this fitness function 

keeps track every time agents overlap each other.  

Equation 3. Personal space metric equation. 

 

( T: simulation time) 

( Normalize range: [0,4] - A model is considered not good if agents overlap with 

other agents more than averagely 4 time at each timestep) 

• Specification of discovered models: For personal space maintenance scenarios, there 

are three discovered models for Bpersonal_space. First model selects the space entity with the furthest 

travel distance. This model is similar to the obstacle avoidance behavior  Table 10 -ID:1, hence 

agents will avoid colliding with nearby neighbors, in this case, other agents. Figure 27.a.1 

illustrates agent A has two nearby neighbors A1, A2, and three space entities S1, S2, S3. S1 and S2 

are intersected with A1 and A2 respectively, hence their travel distances are shorter than S3’s. 

Hence, agent A selects S3 to head toward. To get an informative heat map (Figure 27.a.2) for this 

model, the initial set up is modified so that there are several agents that have speed = 0, hence 

serve the same purpose as static obstacles. Therefore, the heat map is able to show how moving 

agents avoid the static ones. Second model uses a similar behavior to alignment behavior in 

Reynold’s work [1]. Reflect the model’s specification in Table 14,  Figure 27.b.1 shows agent A 



56 

first selects the nearest agent neighbor, then matches its heading direction with the select neighbor. 

Heat map in Figure 27.b.2 shows that all agents eventually move in the same direction, in this case 

is from left to right and the direction angle is 4 degree. The third model uses a speed behavior 

(Table 15- ID:1) to make agents slow down as soon as the simulation starts. The second speed 

behavior (Table 15- ID:2) tries to speed up agents but its weight is only equal to 1, hence does not 

contribute much to the final action. However, this speed behavior combination plays a critical role 

when searching for more complex scenarios later. The heat map (Figure 27.c) shows a minimal 

movement of all agents and make this strategy minimize the risk of collisions between agents as 

well. Second and third models of this experiment show that by using the automated approach, the 

bias from humans is reduced because the approach focuses only on fulfilling the tasks. In this case, 

these solutions only work because agents are set up to not overlap each other at the initial 

placement step, and there are no other requirements. 

  

(a.1) Steering decision of a singular agent and (a.2) the heat map of BPersonal_space Model 1 
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(b.1) Steering decision of a singular agent and (b.2) the heat map of BPersonal_space Model 2 

 

(c) The heat map of BPersonal_space Model 3 

Figure 27. Steering decision and heat maps of two different movement patterns of personal space 

behavior. 
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Table 13. Model 1 specification of personal space maintenance scenario. 

 

Table 14. Model 2 specification of personal space maintenance scenario. 

 

Table 15. Model 3 specification of personal space maintenance scenario. 

 

 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: Select the space entity with the furthest travel 

distance. 

▪ Property to extract: position of the chosen entity. 

Steer to the furthest 

space. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: Select the nearest neighbor. 

▪ Property to extract: current heading direction 

Align with the 

nearest neighbor. 

ID Behavior Specifications Interpreted Purpose 

Speed Behavior 

1 
Activation: 

• Always active, W = 100 

Action. 

▪ Property to extract: speed of the chosen entity. 

▪ Offset: -2.5 

Always try to slow 

down. W = 100 

2 
Activation: 

• Always active, W = 10 

Action: 

▪ 1st filter: choose a set of agents with the angle to current 

direction within [0-50]. 

▪ 2nd filter: choose a set of agents within [10-60] 

▪ 3rd filter: select the nearest agent. 

▪ Property to extract: selected neighbor speed. 

Offset: 2.0 

Speed up when there 

is no nearby entity. 
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5.2. Composite Steering Behaviors. 

To test the approach for more advanced scenarios, we increase the complexity of the 

experiments by combining the requirements from the above basic cases. As mentioned in section 

3.3.1, we noticed GA search efficiency reduces significantly when searching for candidates in 

these scenarios because of two reasons. First, the model space becomes very large, hence making 

it more difficult to search for the good candidates. Second, these scenarios need to fulfill more 

than one requirement, hence it is challenging for GA to rank the candidates, and the overall scores 

are likely to be trapped in the local optimum. As a result, we use the above basic steering behaviors 

as a set of building blocks and combine them based on the scenario requirements to generate the 

initial population. With this approach, the behaviors of models already have the correct purpose, 

and the potential candidates are generally well-built from the very beginning. The composite 

steering behaviors including 6 scenarios: For the combination of 2 basic steering behaviors, we 

have: (1) Bleader_following + Bobstacle_avoidance, (2) Bobstacle_avoidance + Bpersonal_space,  (3) Bleader_following  + 

Bpersonal_space, Scenario (4) is The leader surrounding + Bpersonal_space, which is a variation of 

scenario (3) where the requirement for agents is surrounding the leader with a pre-set distance, 

instead of come as near the leader as possible. For the combination of 3 basic steering behavior, 

we have  (5) Bleader_following + Bobstacle_avoidance + Bpersonal_space. Scenario (6) is Hall-way evacuation 

with an obstacle in the middle, which is  a variation of scenario (5) where we test how agents 

maneuver to escape in a closed simulation space. The experiment set up and the fitness metric 

scores, if not mentioned, are the same from the basic steering experiments above (Section 5.1.1, 

5.1.2, and 5.1.3). 

5.2.1. The Leader-Following + Mobile Obstacle Avoidance Scenario  
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• Specification of discovered models:  Table 16 shows the Bleader+following of discovered 

models for this scenario are similar to the behaviors in basic scenarios in section 5.1.1. For 

Bobstacle_avoidance, its activation component first selects only obstacles in front of it. It is necessary 

because agents have FOVs = 360, and they do not need to avoid obstacles behind their travel paths. 

Based on the criteria and activation function, the priority for this Bobstacle_avoidance increases when 

the distance of agents to obstacles decreases with a range from [0-6000] for the distance from 60 

-> 0. In other words,  Bobstacle_avoidance affects the overall steering behavior at the moment agents 

sense an obstacle. Because the weight of Bleader+following of all three models = 1, Bobstacle_avoidance 

dominates them easily. Figure 28.a shows a simple set up to capture the movement patterns of 

both Bleader+following and Bobstacle_avoidance. A leader moves from P1 to P2 while an obstacle moves 

from P3 to P4 with the intention to make their travel paths intersect each other. Figure 28.b, c and 

d illustrate the heat map of model 1, 2, and 3 in Table 16 respectively. As expected, Bleader+following 

are similar to the heat map in section 5.1.1. The Bobstacle_avoidance is shown as the interruption in 

travel movements of agents when following the leader. Beside informing about the gathering area 

around the leader, the heat maps also show how fast the discovered model gathers agents around 

the leader as well. The more density along the leader’s travel path, the quicker agents surround the 

leader. Thus, model 2 is the best, followed by model 1, and last is model 3. 

Table 16. Model specifications of the leader-following + mobile obstacle avoidance scenario. 

Name  Bleader_following Bobstacle_avoidance 

Model 1 Table 7: ID – 1. Weight = 1 
Activation: 

▪ 1st filter: select obstacle category. 

▪ 2nd filter: select the neighbor within [0-40] 

of the current direction. 

▪ Criteria: distance to the select neighbor [0-

60] 

▪ Linear activation function: 

o Slope: 100 

Model 2 Table 8: ID – 1. Weight = 1 
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Model 3 Table 9: ID – 1. Weight = 1 

o Increase: False 

Action:  

Similar to action component of Table 11: ID – 1. 
 

  

(a) Initial set up to generate the heat map. (b) Model 1 

  

(c) Model 2 (d) Model 3 

Figure 28. Heat maps of three different movement patterns of Bleader_following + Bobstacle_avoidance 

scenario. 
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5.2.2. Mobile Obstacle Avoidance + Personal Space Maintenance Scenario 

Discovered models for this scenario are similar to models in Table 11 and 12 even though 

these basic steering models should only fulfill one requirement. In this scenario, it works because 

one of the travel distance properties of a space entity measures the distance to all entities. As a 

result, beside avoiding obstacles, the  Bobstacle_avoidance  in Table 11 and 12 also avoid other agents 

as well. Heats map in Figure 29.a & b shows similar pattern as Figure 26.b.2 and c as well. 

However, with personal space maintenance requirements, agent density that Model 2 can handle 

will be higher than Model 1 because agents in Model 1 will constantly move; hence personal space 

violation is more likely to occur.   

  

(a) Model 1 (b) Model 2 

 

Figure 29. Heat maps of three different movement patterns of Bobstacle_avoidance + Bpersonal_space 

scenario. 

5.2.3. The Leader-Following + Personal Space Maintenance Scenario  

For this scenario, GA is able to discover three different strategies to satisfy these 

requirements.  Bleader_following behaviors of these three models (Table 17) are similar to model 1, 

model 2, and model 3 in Table 7, Table 8, and Table 9 respectively. For Bpersonal_space, Model 1 of 

Table 17 selects the furthest space to make agents avoid their neighbor and move faster the leader’s 

speed by 0.5. After forming a cluster around the leader where agents are very near each other, they 
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do not collide with each other even though they constantly move. By moving slightly faster than 

the leader, agents move very slowly when the leader stops, hence giving them enough time to 

respond to the surrounding environment. Table 18 shows Bpersonal_space behaviors used for Model 

2 and Model 3 in (Table 17). It is a speed behavior to help agents slow down when too close to 

another neighbor, and speed up when there is enough space in front of it. It is a better variation of 

Table 15’s model because the weight of slowing behavior is dynamically changed depending on 

the surrounding environment. Hence, this Bpersonal_space is robust and can handle the larger scale 

experiments later on.  Figure 30 shows that at the end of the simulation, there is no overlap between 

agents, and distinguishes movement patterns across all models. Compared to Figure 25, heat maps 

of three models in Figure 31 shows that the gathered areas of agents around the leaders are 

significantly larger due to Bpersonal_space.  

Table 17. Model specifications of the leader-following +Table 17 personal space maintenance 

scenario. 

Name  Bleader_following Bpersonal_space 

Model 1 Table 7: ID – 1. Weight = 1 
Table 13: ID – 1. Weight = 1 

Model 2 Table 8: ID – 1. Weight = 1 
Table 18:  

ID – 1 Weight = [0-500] 

ID -2 Weight = [10] Model 3 Table 9: ID – 1. Weight = 1 
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Table 18. Speed behavior used for Model 2 and Model 3 of the leader-following + personal 

space maintenance scenario. 

ID Behavior Specifications Interpreted Purpose 

Speed Behavior 

1 
Activation: 

▪ 1st filter: choose a set of space entities with the angle 

distance to current direction within [0-50]. 

▪ Criteria: travel distance to a neighbor [0-5] 

▪ Linear activation function:  

o Slope: 100   

o Increase: false 

Action. 

▪ Property to extract: speed of the chosen entity. 

▪ Offset: -3.0 

Slow down when too 

close to the nearest 

neighbor in front.  

(W= [0 – 500]) 

2 
Activation: 

• Always active, W = 10 

Action: 

▪ 1st filter: choose a set of agents with the angle to current 

direction within [0-50]. 

▪ 2nd filter: choose a set of agents within [10-60] 

▪ 3rd filter: select the nearest agent. 

▪ Property to extract: selected neighbor speed. 

▪ Offset: 2.0 

Speed up when self-

speed is slow.  

(W = 10) 

 

 

   

(a) Model 1 (b) Model 2 (c) Model 3 

Figure 30. Simulation snapshots of three different movement patterns of leader_following + 

personal space scenario. 
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5.2.4. The Leader Surrounding + Personal Space Maintenance (2 models) 

• Experience set up: One leader is placed randomly on the map and, changes 

direction/speed randomly after a period. 

• Fitness metrics:  

o Personal space score: as same as Equation 3. 

o The leader-surrounding score: this fitness metric measures two conditions. First one 

is that agents need to maintain a certain distance to the leader. Thus, the leader-following metric’s 

Equation 1 is modified so that if the average distance to the leader is within [20-60. With only the 

first condition, the surrounding phenomenon is not captured because agents can maintain the 

distance to the leader with one big cluster. As a result, a second condition is needed to measure the 

number of agents around the leader. The area around the leader is divided into 8 segments, and 

80% of the agents need to be inside all 8 segments for the score to be considered good enough.  

• Specification of discovered model: Unlike the leader-following score where agents 

move toward the leader as close as possible, the distance to the leader in this case cannot be too 

   

(a) Model 1 (b) Model 2 (c) Model 3 

Figure 31. Heat maps of three different movement patterns of Bleader_following + Bpersonal_space 

scenario. 
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close or too far, hence makes the scenario more difficult to have good discovered models because 

the model space speciation can only select the nearest or furthest nearby entity.  

Table 19. Model 1 of the leader-surrounding + personal space scenario. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ 1st filter: select only leader category. 

▪ 2nd filter: select the nearest neighbor. 

▪ Criteria: distance to a neighbor [0-60] 

▪ Linear activation function:  

o Slope: 10   

o Increase: true 

Action: 

▪ 1st filter: select the neighbor with the nearest distance to 

the desired direction. 

▪ Property to extract: position of the chosen space entity. 

▪ Offset: -45.0 

Circle around the 

leader when not too 

close. 

(W = [0-600]) 

2 Table 7 – ID: 1 
Follow the leader 

(W= 10) 

Speed Behavior 

3 Table 18 – ID: 1 
Slow down when too 

close to the nearest 

neighbor in front.  

(W= [0 – 500]) 

4 Table 18 – ID: 2 
Speed up when self-

speed is slow.  

(W = 10) 

 

 

 

 

 

 

 

 

 

 



67 

Table 20. Model 2 of the leader-surrounding + personal space scenario. 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ 1st filter: choose the nearest entity.  

▪ Criteria: angle distance to current direction [0-60]. 

▪ Linear activation function:  

o Slope: 5   

o Increase: false 

Action: 

▪ 1st filter: choose the nearest entity. 

▪ Property to extract: position of the chosen space entity. 

▪ Offset: -60.0 

Steer away from a 

nearby entity if it is in 

front of. 

(W = [0-300]) 

2 Activation: 

▪ 1st filter: select only leader category. 

▪ 2nd filter: select the nearest neighbor. 

▪ Criteria: distance to a neighbor [0-40] 

▪ Linear activation function:  

o Slope: 20   

o Increase: true 

Action: 

Similar to Action component of (Table 9 - ID: 1) 

Point to the leader’s 

position, then add -75 

offset to create the 

spinning movement. 

(W = [0-800]) 

Speed Behavior 

3 Table 18 – ID:1 
Slow down when too 

close to the nearest 

neighbor in front.  

(W= [0 – 500]) 

4 Table 18 – ID:2 
Speed up when self-

speed is slow.  

(W = 10) 

 

To make the agents surround the leader, Table 19: ID-1 is a variation of Table 9 and it makes agents first steer to the space 

entity with nearest angle distance to desired direction (add) when they are near the leader, then turn 45 degrees to the left. The 

activation makes agents want to surround the leader most when they are far away (the weight is highest when the distance to the 

leader ≥ 60), and the surrounding desire reduces when the distances to the leader reduce; hence 

agents are able to keep their space around the leader. These scenarios once again show the 

important role of  the Activation component because it helps two steering behaviors with two 

different purposes work together. When far away from the leader, agents have higher priority to 
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surround it first. However, their desires decrease until they are close enough. Because the leader is moving, the second steering 

behavior (Table 19: ID-2) assist agents to follow the leader, while still keep the circle formation around it. Speed behaviors 

(Table 19:ID-3+4) are similar to the speed behavior set of Table 18. To keep the circle formation while the leader is 

moving, Table 19: ID-2 makes agents steer to the leader. Model 2 shows a different strategy where there are three behaviors 

to fulfill personal space requirements. Two speed behaviors that are similar to Table 18 – ID: 1 and 2, and an angle behavior 

( 

 

 

 

 

 

 

 

 

Table 20 – ID: 1) that makes agents steer away from a nearby neighbor in front of it when too close. The spinning movement 

behavior (  

 

 

 

 

 

 

 

 

Table 20 – ID: 2) is similar to model 1 with the same priority assignments. With these model specifications, agents that are far 

away from the leader steer around the leader as soon as the simulation begins. They continue to reduce their distances to the leader 

until a set of agents is close enough and starts to reserve their distances to the leader as  

Figure 32.a and b illustrate. For model 1, because these agents cannot both form a single circle while maintaining the distances 

to the leader, the outer group tries to form the second rings as the heat map in  

Figure 32.a shows, to make the leader-surrounding score as high as possible. For model 2, it does not work as well as model 

2 because the behavior  

 

 

 

 

 

 

 

 

Table 20 – ID: 1 not only makes agents steer away from the neighbor, but also from other 

agents as well. As a result, agents surround the leader in a much larger area, and not enough agents 

to form a circle shape  surrounding the leader like Model 1. (The travel path of the leader that is 
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illustrated in the heat maps is similar to set up in section 5.2.1 Figure 28.a but without the 

involvement of the obstacle). 

 

  

(a) (b) 

 

Figure 32. Snapshots of two different movement patterns of the leader-surrounding + personal 

space scenario. 

 

  

(a) (b) 
 

Figure 33. Heat maps of two different movement patterns of the leader-surrounding + personal 

space scenario. 
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5.2.5. The Leader Following + Personal Space Maintenance + Mobile Obstacle 

Avoidance Scenario  

We increase the complexity of the experiment further by adding Bobstalce_avoidance 

requirement beside Bleader_following +  Bpersonal_space. Figure 34.a shows the initial set up for a simple 

demonstration to show the difference in movement patterns between candidates. A leader (blue 

circle) is moving from position P1 to position P2 while an obstacle (gray circle) is moving in the 

opposite direction from P3 to P4. These two objects’ travel paths intentionally overlap each other 

to show the gather and scatter movement pattern of agents. Figure 34.b and Figure 34.c shows the 

heat map movements of two discovered models. In both models, one steering behavior makes 

agents gather around the leader while another steering behavior makes agents scatter when nearby 

an obstacle. These two behaviors are conflicting with the purpose of each other. If agents focus 

too much on forming a large cluster around the leader, there is a high chance they will collide with 

obstacles. On the other hand, if agents avoid obstacles intensively, they will not be able to gather 

near the leaders. As a result, the role of activation component in this scenario is critical because it 

assists to adjust the sensitivity of both behaviors. Based on the discovered models’ specifications, 

agents always head to the leader location. However, this behavior has a small weight. The  

Bobstalce_avoidance has its priority gradually increasing when the distance between agents and the 

nearest obstacle is reduced. Hence, eventually, agents’ priority to avoid the obstacle is so large that 

it dominates  Bleader_following. As a result, for these models, if there are obstacles nearby, agents 

always avoid the obstacle first before considering moving toward the leader. For the  Bpersonal_space 

behavior, since it is a speed behavior, it does not create the conflict like the two steering behaviors 

above. Figure 34.a & b show the travel paths of discover models where a group of agents are able 

to avoid a moving toward obstacle and form the cluster around the leader afterward. The main 
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difference is Bleader_following takes advantage of space entities in Model 1 (Figure 34.b), agents form 

a cluster faster, and are able to wait until the obstacle is very near before scattering; compared to 

Model 2 (Figure 34.c) where Bleader_following is simply steer to the leader position. 

   

(a) Model 1 (b) Model 2 (c) Model 3 

Figure 34. Heat maps of three different movement patterns of the leader-following + 

personal space + mobile obstacle avoidance scenario. 

5.2.6. Hall-Way Evacuation with an Obstacle in the Middle  

 We choose this experiment because of two reasons. First, it is an evacuation scenario and 

agents now need to move a close tight space instead of  open space like the experiment above. 

Second, this example presents a practical example where our approaches can be used. 

• Experiment setup: Figure 35.a illustrates the setting with a hallway that is constructed 

by 2 rectangle obstacles above and below the simulation space, and a large circle obstacle 

presented in the middle. All agents have an initial heading direction = 0, are spawned within the 

dash line rectangle area on the left and are removed when they reach the blue rectangle on the 

right. Points P1 and P2 are pre-defined locations to form a desired heading area with an agent’s 

position.  
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• Because this scenario is an evacuation application, it needs two fitness functions: the 

“time fitness function” measures how fast all agents can escape, and the “remain agent fitness 

function” counts the number of remaining agents after the simulation time is up. It is used to 

compare between models that cannot evacuate all agents within a limited time. 

 

(a) Initial set up to generate the heat map. 

  

(b.1) Model 1 simulation snapshot (b.2) Model 1 heat map 

  

(c.1) Model 2 simulation snapshot (c.2) Model 2 simulation snapshot 

Figure 35. Scenario setup, simulation snap shots and the heat maps  of two discovered models 

for hallway with obstacle scenario. 

Table 21. Model 1 specification for Bgoal_reaching + Bpersonal_space 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 
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1 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: select the neighbor with travel distance to 

obstacle within [41-60] 

▪ 2nd filter: select the neighbor with the angle distance 

to the current direction within [0 - 60] 

▪ 3rd filter: select the neighbor with the nearest distance 

to the desired direction. 

▪ Property to extract: position of the chosen space 

entity. 

Steer to the desired 

direction and avoid 

obstacles if needed. 

 

 

Speed Behavior 

2 Table 18 – ID: 1 
Slow down when too close 

to the nearest neighbor in 

front.  

(W= [0 – 500]) 

3 Table 18 – ID: 2 
Speed up when self-speed 

is slow.  

(W = 10) 

 

Table 22. Model 2 specification for Bgoal_reaching + Bpersonal_space 

ID Behavior Specifications Interpreted Purpose 

Angel Behavior 

1 Activation: 

▪ 1st filter: choose a set of space entities with the travel 

distance to obstacles within [0-50]. 

▪ Criteria: travel distance to a neighbor [0-60] 

▪ Linear activation function:  

o Slope: 1 

o Increase: false 

Action: 

▪ 1st filter: choose a set of space entities with the travel 

distance to obstacles within [0-50]. 

▪ 2nd filter: select the neighbor with the nearest distance to 

the desired direction. 

▪ Property to extract: position of the chosen space entity. 

Move toward the wall 

(rectangle obstacle), 

then steer to desired 

direction. [W = 0 -50] 
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2 Activation: 

▪ Always activate with weight = 1.0 

Action: 

▪ 1st filter: select the neighbor with the furthest travel 

distance. 

Property to extract: position of the chosen space entity. 

Move along the wall 

by head toward to 

farthest travel 

distance to obstacles. 

Speed Behavior 

3 Table 18 – ID: 1 
Slow down when too 

close to the nearest 

neighbor in front.  

(W= [0 – 500]) 

4 Table 18 – ID: 2 
Speed up when self-

speed is slow.  

(W = 10) 

 

Although model 1 has only one steering behavior (Table 22 – ID: 1), it is able to handle 

both requirements. When approaching the obstacle, agents steer at an angle within 60 degrees from 

left or right depending on which side gives them the farthest travel distance. By selecting one of 

the space entities in front of agents, they can move forward to the goal while avoiding the obstacle. 

Figure 36.a shows an example of this behavior. Agent A eliminated s2 because it is not in front, 

and s3 because the travel distance to the obstacle is not far enough. Hence, agent A chooses s1 even 

though there is a nearby agent in front of it (green agent). This behavior is similar to Bobstacle_avoidance 

in Table 11, however, agents in this model do not steer away from surrounding neighbor agents.  
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(a) Model 1 - Table 22 – ID:1 (b) Model 2 - Table 22 – ID: 1 (c) Model 2 - Table 22 – ID: 2 

 

Figure 36. Steering decision of a singular agent of Bgoal_reaching + Bpersonal_space 

Model 2 (Table 21) on other hand, shows a different strategy where agents first move 

toward the wall, then follow the wall side regardless of their distances to the obstacle by using two 

angle behaviors. First, Table 22 – ID:1 behavior removes all space entities on the opposite side of 

the wall and forces agents to head toward the wall. Figure 36.b shows an example of how the 

behavior decides where to steer next. Agent A has 4 space entities including: s1, s2, and s3 that are 

intersected with the wall, and s4 is not. By using the 1st filter, this behavior removes s1 and s4 

because their travel distances to the obstacle (in this case is the rectangle wall). The 2nd filter further 

eliminates s2 because its angle distance to the desired direction is not minimum. Hence, agent A 

steers to s3 location. This behavior remains dominated (assign weight = [0-50]) the other steering 

behavior until agents adjacent to the wall. At that moment, the filters of this behavior eliminated 

all agents’ space entities, hence will not contribute anything to the overall decision. The second 

behavior of this model (Model 2 - Table 22 – ID: 2) even though the weight is always 1, it is good 

enough for it to take over the first behavior by simply steer to the nearest desired direction, in this 

case is a horizontal line from left to right (Figure 36.c). As a result, agents move along the wall 

and escape from the hallway. Both models share the same speed behaviors as Table 18. Figure 

35.b.1 and Figure 35.c.1  shows movement different of Model 1 and Model 2 respectively. Based 

on the heat map of Model 2 (Figure 35.c.2 ), some agents do not move toward the wall at the 

beginning because they cannot sense the wall. As a result, the quality of Model 2 depends on the 

hallway width or agent’s FOV distance. Model 1 (Figure 35.b.2 ), on other hand, has a better 

robustness capacity because the initial experiment set up do not affect the behavior. 
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Figure 37 shows an overview of all discovered models from basic steering behaviors, and how 

these models shape various composite steering behavior by creating different combinations 

between them. As the legend in the Figure 37 indicates, dash boxes present basic steering behavior 

scenarios, and solid boxes present composite steering behavior scenarios. The arrow  

indicates that model specifications in the composite scenarios are very similar to the one in basic 

scenarios. On the other hand, the arrow  shows that there are major changes (most of the 

cases are in Activation component) between the transitions. If the arrows point to a whole scenario 

box instead of each model, it means all models in the box use the same basic model. For example, 

all models of the leader-following + mobile obstacle avoidance scenario use the similar 

Bobstacle_avoidance in Table 11. 
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Figure 37. Combinations of composite steering behaviors from basic steering behaviors. 
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6. MODEL EVALUATION 

We have two different evaluations to assess the framework. One evaluation measures the 

effectiveness of the GA multiple stage search. Another one evaluates the quality of the discovered 

models. We put two models: (1) the leader surrounding + personal space maintenance scenario 

and (2) the leader-following + mobile obstacle avoidance + personal space maintenance scenario 

to the test because these two scenarios are the most complex models in our experiments, hence 

very challenging for GA to discover good models.  

6.1. Evaluation of Model Fitness Score Between One Stage and Two Stage Search. 

For each scenario, we choose the discovered models with the best scores to evaluate and 

compare the effectiveness between one stage and two stages GA search in two aspects. First, the 

best models in stage 1 and stage 2 fitness scores across 40 generations are compared. Second, the 

best 50 models in both stages are counted and the fitness score distributions of them are compared.  

6.1.1. The Leader Surrounding + Personal Space Maintenance Scenario 

Figure 38.a, b, and c show the best discovered model’s fitness scores of 40 generations for 

stage 1 and stage 2 searching respectively. The fitness scores for this scenario shows the battles 

between personal space and the leader-surrounding metrics score. In Figure 38.a, personal space 

behaviors dominate the first half of the search until 22rd generation. After that, the leader-

surrounding behavior begins to increase while the personal space decreases, hence the overall 

fitness remains low and reaches the max at 35th generation (overall score = 0.5263). In stage 2,  

FFigure 38.b shows that even though the leader-following still remains lower than the personal 

space  score, it has a higher score than stage 1 even at the 1st generation. As a result, the overall 

fitness score is able to escape the local optimum and reach much higher overall fitness score = 

0.8041.   
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(a) Stage 1 

 

(b) Stage 2 

Figure 38. Fitness scores of one and two stage search for the Leader-Surrounding + Personal 

space maintenance scenario. 

Figure 39.a and b show 50 best model distributions for stage 1 and stage 2 respectively. In 

stage 1, among 50 models, 24 models have overall fitness scores that are less than or equal 0.2, 22 

are between [0.2-0.4], and 5 models are above 0.4. For one stage search, 90% of the discovered 

models have the score below 0.4, compared to two stage search where only 34% of the models are 

below 0.4. Similar to the fitness score evaluation, this assessment confirms the significant 

improvement between one two stage search.  
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(a) Stage 1 

 

(b) Stage 2 

 

Figure 39. Overall fitness score distribution of one and two stages search for the Leader-

Surrounding + Personal space maintenance scenario. 
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6.1.2. The Leader Following + Mobile Obstacle Avoidance + Personal Space Maintenance 

Scenario 

Figure 40 shows the fitness scores of the best discovered model at each stage of this scenario. 

The challenging factor of this scenario is that its requirements conflict with each other. If agents 

have higher priority to follow a leader, they will be more likely to collide with obstacles and other 

neighboring agents, and vice versa. As a result, activation component in this scenario plays an 

important role to assist all the steering behavior working together. One stage search shows that 

GA is struggling to find the best weight combinations. Two stage search once again is able to 

escape the local optimum, and achieve a better score of 0.507 vs 0.477 of one stage search.  

 

(a) Stage 1 
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(b) Stage 2 

Figure 40. Fitness scores of one and two stage search for the Leader-Following + Mobile 

obstacle avoidance + Personal space maintenance scenario. 

Figure 41 shows the top 50 models’ distribution of stage 1 and stage 2. There are significant 

improvements from stage 1 to stage 2 where 95% of discovered models in stage 1 have the score 

below 0.3. At stage 2, the score distribution shifts toward higher grade where more than 40% of 

the models have scored higher than stage 1.  

 
(a) Stage 1 
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(b) Stage 2 

 

Figure 41. Overall fitness score distribution of one and two stages search for the Leader-

Following + Mobile obstacle avoidance + Personal space maintenance scenario. 

 

6.2. Comprehensive Model Evaluation 

Our previous work provides a set of categories to formally evaluate quality of discovered 

models including Flexibility, Comprehensibility, Composability, Controllability and Robustness 

[6]. Among them, Flexibility, Comprehensibility and Composability are covered in above section:   

• Flexibility: ability to discovered different candidate models (demonstrated in section 5) 

• Comprehensibility: the results can be understood and explained (demonstrated in tables that 

shows model specification in section 5) 

• Composability: each component of the discovered behavior can be combined, exchanged, and 

reused (demonstrated by using GA’s operators and multiple stage search) 

As a result, this section mainly focuses on evaluating Controllability and Robustness of 

discovered models. 

• Controllability: ability to modify models’ parameters and predict the new behavior patterns. 
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• Robustness: testing the limits of the model by modifying various initial conditions such as: 

increasing the number of agents or leaders, changing max speed of the leader, etc.. 

6.2.2. Evaluation of Two Discovered Models of Leader Surrounding + Personal Space 

Maintenance Scenario 

• Controllability: We choose model 1 (Table 19) for this evaluation because it has the best 

overall fitness scores. To evaluate Controllability of this scenario, we manually change the 

Activation criteria of the circle around behavior  (Table 19 – ID: 1) to three different ranges: [0-

40], [0-60], and [0-100], and Figure 42. a, b. and c show how surrounding radius is changed for 

these three ranges respectively. For the criteria range = [0-40], agents form a smaller circle because 

they keep their priority to surround the leader until they are within the distance to 40 compared to 

60 and 100 of the other two ranges.  

   

a. Surround leader with 

[0-40] range 

b. Surround leader with 

[0-60] range 

c. Surround leader with  

[0-100] range 

• Figure 42. Agents’ behaviors change predictively after manually modifying the model 

specification of Table 19 – ID: 1 Bleader_surrounding + Bpersonal_space model 
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• Robustness:  

• Test 1 (Increase number of agents from 20 to 200) : Figure 43 illustrates how 180 agents 

surround the leader using model 1 (Table 19) by showing snapshots of three different timesteps. 

Figure 43.c shows that agents are heavily distributed on the right side of the leader because the 

leader is moving from left to right.  

   

(a) (b) (c) 

Figure 43. Snapshots at three different timesteps of the Leader-surrounding + Personal space 

maintenance scenario with 180 agents. 
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(b) 

 

Figure 44. Fitness scores for the agent’s population from [20-200] for 2 discovered models of 

the Leader-Surrounding + Personal space scenario. 

Figure 44 shows how fitness metrics change for the number of agents in simulation from 

[20-200]. The fitness scores for model 1 and model 2 are opposite from each other. Model 1 has 

higher scores for the surrounding leader fitness metric, while model 2 has higher scores for 

personal space fitness metric. As snapshots and heat map in  

Figure 32 and Figure 33 show, model 1 surrounding the leader in a much smaller radius, 

hence the probability to violate other agents’ personal space is higher. Consequently, model 1’s 

personal space score is lower. Model 2 on the other hand, surrounds the leader in a more scatter 

pattern, hence its fitness score is opposite compared to model 1. Overall, model 1 has much better 

scalability capacity than model 2. Model 2 surrounding leader score starts declining when there 

are only around 60 agents, while model 1 can still handle 200 agents fairly well. It is predictable 

because of two reasons: First, model 2 does not surround the leader in a concentrate area. Second, 

it needs much more space compared to model 1. 

• Test 2 (Increase the leader’s speed from 0.25 to 1.5) : Figure 45 shows fitness score of both 

models when testing the scenario with 40 agents and different leader’s speed from [0.25 – 1.50]. 
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Model 1 breaks when the leader’s speed is above 1.5. Because there are always two steering forces 

to keep agents surrounding and following the leader, hence when the leader moves too fast, agents 

do not have enough time to adjust, and the leader just crosses through the circle formation. Model 

2 shows an interesting pattern for the leader surrounding’s score. Even though it has lower scores 

than model 1’s in most of the tests, it does not break suddenly like model 1 shows.  

Figure 45. Fitness scores for the leader’s speed from [0.25-1.50] for 2 discovered models of the 

Leader-Surrounding + Personal space scenario. 
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 There are two reasons for it. First, this evaluation is tested with only 40 agents, hence model 2 

has space to form a large area around the leader. Second, because the forming cluster is large and 

scatter, when the leader’s speed increases, it is not easier for the leader to escape the center point 

of the cluster completely, hence the surrounding leader score only slightly decreases. 

6.2.3. Evaluation of Three Discovered Models of the Leader Following + Mobile 

Obstacle Avoidance + Personal Space Maintenance Scenario 

• Controllability: We choose Model 1 of the leader following + mobile obstacle avoidance 

+ personal space maintenance scenario for this evaluation because it has the best overall fitness 

score. Figure 46.a shows the original agents’ movement pattern of Model 1 (Figure 34.b) at the 

moment the leader intersects the obstacle. By manually changing different parameters, we can 

control the sensitivity of the behavior as we want; thus, changing movement patterns. For example, 

in Figure 46.b, we increase the distance where agents begin to slow down when they detect 

neighbors in front of them, hence making personal space become wider. Figure 46.c shows an 

opposite effect with obstacle avoidance reaction distance where agents wait until the obstacle is 

very close  to steer away from it. Different from Figure 46.b & c, in Figure 46.d, we reduce the 

desire to follow the leader significantly by changing the priority of the behavior. As a result, when 

there are obstacles nearby, agents do not want to steer back to the leader right away and  wait until 

the obstacle is far enough.  
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(a) (b) (c) (d) 

Figure 46. Controllability tests by changing model parameters. 

(a) Original discovered model, (b) Adjust Bpersonal_space distance, (c) Adjust Bobstalce_avoidance 

distance, (d) Adjust the priority between Bobstalce_avoidance and Bleader_following 

• Robustness:  

We test the limitation of the candidates by setting up different initial conditions for the 

scenarios. Three scalability tests are used including: (1) increase the number of agents and the 

space size is preserved (agent’s density is increased). (2) increase the number of agents and the 

space size is increased (agent’s density is preserved). (3) increase the number of leaders. The result 

shows that by taking advantage of information gathered from space entities in the framework, 

Model 1 (Figure 34.a) performs better than model 2 (Figure 34.b) and model 3 (Figure 34.c) in 

scalability and robustness tests. 

(1) Increase agent’s density:  We test the model with the number of agents increasing from 100 

to 600 and keep the world size as 700x700 pixels to test how agents move in limited space. Figure 

48.a shows a timestep with 400 agents and 15 mobile obstacles (Model 1 Figure 34.b). Figure 48 

illustrates that all candidates have similar performance for Bpersonal_space and Bobstalce_avoidance. 

Because model 1 uses the space entity component to follow the leaders, it gives a better fitness 

score compared to the other two models. Model 3 gives the worst score for Bleader_following as 
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predicted because it takes the longest time to move toward the leader. Since the larger the agent’s 

clusters are, the more challenging for them to maneuver around limited space and fulfill all 

requirements, the overall scores for all models gradually decrease after the number of agents 

reaches 400.  

   

(a) (b) (c) 

Figure 47. Snapshots at three different timesteps of the Leader following + Obstacle avoidance 

+ Personal space maintenance scenario with 400 agents (world size: 500 × 500) 

 

 

(a) Model 1 
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(b) Model 2 

 

(c) Model 3 

Figure 48. A test for Bleader_following + Bpersonal_space + Bobstalce_avoidance scenario – Agent density is 

increased. 
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(2) Agent’s density is preserved: In this scalability test, we increase the number of agents from 

100 to 400, and also increase the size of the world from 500x500 to 1000x1000 respectively with 

the goal to keep the density the same across different tests. Figure 50.a illustrates the screenshot  

with 400 agents and 15 mobile obstacles of Model 1 in 1000 x1000 pixels simulation space. As 

the chart in Figure 50, all models maintain the fitness score very well even with 400 agents, and 

Model 1 (Figure 34.a) still has a best Bleader_following score. The reason for the Bleader_following fitness 

score gradually decreasing is because the larger the world size is, the more time it takes for agents 

to form the cluster around the leader. Since all the tests share the same simulation time (600 

timesteps) with the first 1/3 as burn-in time for agents to move closer to the leader. For a larger 

world, this 200 burn-in time step is not long enough for all agents to gather around the leader, 

hence the score is decreased across all models. 

   

(a) (b) (c) 

Figure 49. Snapshots at three different timesteps of the Leader following + Obstacle avoidance 

+ Personal space maintenance scenario with 400 agents (world size 1000 ×1000) 
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(a) Model 1 

 

(b) Model 2 
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(c) Model 3 

Figure 50. A test for Bleader_following + Bpersonal_space + Bobstalce_avoidance scenario - agent density is 

preserved. 

(3) Increase number of leaders: In this test, we increase the number of leaders from 1 to 10. 

Figure 51 illustrates three different timestep of Model 1 (Figure 34.a) with 800 agents, 15 mobile 

obstacles and world size of 800x800. With 8 leaders, the Bleader_following makes agents follow their 

nearest leader. The chart in Figure 52 shows that the leader following score increases along with 

the number of leaders. Because agents no longer need to form one big cluster, many small clusters 

are formed around leaders, hence making the crowd distribution much better, and the models are 

able to improve the fitness scores. This test once again shows the advantage of using space entity 

component because the  Bleader_following fitness score of Model 1 (Figure 52.a) is still the best 

compared to the other two models (Figure 52.a & b) 

 



95 

   

(a) (b) (c) 

Figure 51. Snapshots at three different timesteps of the Leader following + Obstacle avoidance 

+ Personal space maintenance scenario with 8 leaders (world size 800 ×800) 

 

 

(a) Model 1 
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(b) Model 2 

 

(c) Model 3 

Figure 52. A test for Bleader_following + Bpersonal_space + Bobstalce_avoidance scenario - number of leaders 

is increased. 
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7. CONCLUSION 

This work presents an approach that searches for candidate models of steering behavior in 

an automated way. Several major extensions are added to assist developing more complex 

scenarios that include multiple steering behavior. First, Activation component decides which 

agents’ behaviors have the highest priority depending on the nearby neighbors and environment. 

Thus, the framework assists better for complex models where agents need to compute overall 

movement action from multiple behaviors. Second, a multiple search stage method shows to assist 

GA distribute computational resources better. Finally, by applying the adaptive space entity 

generation method, the evaluations for each of the space entities are meaningful, and the 

computational cost is kept low. Different distance property information provides a wide range of 

options for agents to filter, select, and act. With these contributions, multiple candidates for 

Bleader_following, Bpersonal_space, and Bobstalce_avoidance basic steering behaviors are discovered. Not only 

that, but we also further test the framework for more complex scenarios by combining these basic 

steering behaviors to create various composite steering behavior scenario including: Bleader_following 

+ Bobstalce_avoidance,  Bobstalce_avoidance + Bpersonal_space,  Bleader_following + Bpersonal_space, Bleader_surround + 

Bpersonal_space, Bleader_following + Bobstalce_avoidance + Bpersonal_space , Hall-Way evacuation with an 

obstacle in the middle. The search efficient evaluation shows that two stage search is able to escape 

the local optimal, and discovered candidates have better overall scores compared to one stage 

search. The controllability and robustness tests show the better performance of models that use 

activation component and space entities effectively, hence prove that these components are crucial 

when using the framework to automatically discover multiple candidate models for steering 

behaviors simulation.   
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8. FUTURE WORK 

8.1. Macroscopic Movements. 

The framework so far has been conducted to discover steering behavior at microscopic scale, 

meaning the framework focuses on behaviors of each agent. At macroscopic level, a group of many 

agents are treated as one big individual (similar to fluid simulation). To make it possible, the 2D 

world is transformed to a 2D Marker-and-Cell grid and it brings two advantages. First, each cell 

can store more information that a space entity cannot, such as relative distances to a certain 

landmark or density of an area. Second, treating agents as a group reduces the computation cost, 

hence the scale of the simulation can greatly increase.  

8.2. Evaluate the Approach Further with More Scenarios. 

8.2.1. More Evacuation Scenario 

The set up for a more complex evacuation scenario is shown in Figure 53.a where a group 

of agents are placed in a close room, and their goal is to escape it by evacuating through the small 

hallway on the right side. Evacuation scenario brings two new challenges for the research. First, 

the framework will be tested with a closed (un-warped) space scenario where agents only have 

limited space to move around. Space entity component relies on empty space to steer agents, and 

with the space being limited, it is more challenging to find good space behaviors. Second, agents 

need to evacuate fast to replicate a real-life situation, hence a time metric will be used, and 

simulation time will be restricted. If a searching model cannot evacuate all agents within a specific 

time, the model is not qualified as a candidate for next the stage.  
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(a) An evacuation scenario lay out (b) A Shepherding scenario layout 

Figure 53. Example of two scenario initial set ups 

8.2.2. Shepherding Scenario 

Shepherding as shown in Figure 53.b is an interesting problem to test our automated 

approach. White agents present a flock of sheep, and the blue agent presents a dog. Red circle is 

the area where sheep need to be guided into. This scenario has different challenges compared to 

evacuation scenario. First, sheep agents and the dog agent will have two different sets of behaviors. 

Sheep’s behavior might need to be manually crafted using macroscopic or mesoscopic models in 

(Yang, et al. 2020) because we focus on discovering dog’s behavior automatically. Second, as 

observed in real life, a shepherd dog moves back and forth to guide the whole group of sheep to 

the destination. The model specification might need to be expanded so that the target agent (the 

dog) can extract property of a whole group of the same entity category (the sheep) to make the 

model work. The complexity of this scenario later can be increased by including multiple dogs 

where the communications between them are necessary, and bring a whole new behavior set to the 

model space. 

8.3. Combined with Existed Methodology to Create Hybrid Approach. 

Combine our automated approach with existing approaches to take advantage of both.  

8.3.1. Combined with Manually Crafted Approach. 
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There are two potential research directions for this approach. First, new properties can be 

added based on the usefulness of them in a manually crafted approach. For example, velocity-

based models are well known for predicting collision with obstacles in advance. Agents can 

retrieve information about “distance to collision point” or “time until collision”. Adding this 

knowledge to the search space might assist to discover better candidates for mobile obstacle 

avoidance steering behavior. Second, the whole manual crafted behavior can be added as initial 

knowledge that agent knows at the beginning. Overtake behavior is a complex behavior where an 

agent, then it needs to speed up and avoids slow moving entities in front of it before steering back 

to the original path. Modelers can hand-crafted this behavior to the search space and give GA and 

agents opportunities to use it at the beginning.  

 

8.3.2. Combined with Data-Driven Approach. 

Data-driven approach can assist the framework in three aspects. First, it can be used to 

validate the discovered models further. Data of real humans’ movements are extracted and 

compared to the agents’ movements to test how close the simulations are to real situations. Second, 

it can be used to predict the next steering action and create a whole new set of behaviors for the 

framework. For example, agents have an option that is solely based on the positions of neighbors, 

then use an AI model to predict what it the next steering action. Third, GA can also be beneficial 

from machine learning models where beside fitness scores, a potential candidate can be predicted 

to be good or bad based on its model specification. 

 

8.4. Develop an Agent-based Simulation and Modeling Application using a Front-end 

Development:  
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There is not much focus on cloud-based systems for agent-based simulation and modeling, 

even though there are many simulation software nowadays such as: NetLogo or StarLogo. The 

goal of this work is developing a frontend system where users can config and simulate steering 

behaviors for a group of agents. This application should be user friendly so that users with no 

computer science background can use it and it has the  potential to attract more students to the 

simulation field.  
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