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ABSTRACT Heterogeneous networks (HetNets) are one of the key enabling technologies for next-
generation networks. They aim to provide high capacity, low installation cost, and distributed traffic
loads. The cell selection issue is an open research problem in HetNets, due to the different characteristics
of base stations and the existence of a large number of them. In this paper, a novel software-defined
networking (SDN)/machine learning (ML)-based adaptive algorithm is proposed, called adaptive two-tier,
based on the K-nearest neighbor (A2T-KNN) algorithm. It is designed for millimeter wave (mmWave)-
based HetNets and it has the ability to adapt to the various movement features of moving vehicles, as well
as the different characteristics of the base stations. A real-world case is considered in the center of London.
Simulation results demonstrate that A2T-KNN achieves high prediction performance in association with
different vehicle features and configuration information. It outperforms other related schemes in terms of
average number of handovers by up to 45.83%. Moreover, it was found to enhance the average achievable
downlink data rate and network energy efficiency achieved by vehicles by up to 17.18% and 16.86%,
respectively.

INDEX TERMS 5G, Small Cells, SDN, London, Machine Learning, HetNets, Adaptive Selection.

l. INTRODUCTION

ONDON is the capital city of the United Kingdom

(UK) [1]. It has a geographical area of 607 square
kilometers and it is the most densely populated city of the
UK. In 2016, the population density per square kilometer
was 5590. To make London a smart city, the Smart London
Board was established to transform the traditional systems
of energy, healthcare, pollution management, transport, and

technology to fulfill the different requirements of user
equipment [9]. HetNets are networks that have a mix of
conventional high-power macro and low-power small base
stations (BSs) [10]. Small BSs are deployed in HetNets to
improve capacity and to distribute traffic loads with a low
installation cost [11], [12]. Figure 2 represents a map of
London, showing the locations of the macro and small BSs
operated by Vodafone. As shown in the figure, there is a

traffic into smart services [2], as figure 1 shows. By 2036,
London will become a mega-smart city with 10 million
citizens [3].

Smart city refers to a modern city that employs advanced
technologies to enhance the lives of its residents [4]. Wire-
less cellular networks are a fundamental component of smart
cities [5]. They are used to enable numerous applications
and services, such as the Internet of Things (IoT), virtual
reality, and many more. [6]-[8]. Future wireless networks
are projected to apply heterogeneous networks enabling
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high density of small BSs in the middle of London.

Cell selection refers to the process of choosing a serving
BS based on certain criteria. However, the cell selection
issue in 5G HetNets is a challenging task that affects the
performance of users and the network due to different cell
sizes, as well as high spectrum reuse [13], [14]. In addition,
the movement of vehicles in the small coverage area of
the small BSs leads to increasing handover (HO) rates
[15]. Handover procedure includes three phases; prepara-
tion, execution and completion [16]. Figure 3 displays the
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FIGURE 1: The smart city of London.

HO phases, showing the signaling overhead during these
phases. In the preparation phase, a vehicle measures the
radio resource management (RRM) parameters and then
transmits a measurement report to the source BS which
decides whether to perform an HO or not. Then, the source
BS sends an HO request to one or more target BSs. These
BSs perform admission control and they transmit an HO
response to the source BS if they can provide the requested
resources. At the end of this phase, the source BS selects
the best target BS based on the received HO responses. In
the execution phase, the source BS sends an HO command
to the vehicle to connect to the selected target BS. When
the vehicle associates with the target BS, it sends an HO
confirmation to the target BS to finish the execution phase.
In the completion phase, the target BS informs the core
control plane (C-plane) functions to switch path from the
source BS to the target BS by transmitting a path switch
request. Then, when the path switch response is received
by the target BS, it sends a release resource message to the
source BS to complete the handover process [17], [18].
Cell selection schemes vary in term of selection method,
network modeling, and problem solving, as shown in figure
4. They are classified based on the selection method into
static and dynamic. Static selection refers to choosing the
serving base station depending on a fixed method based on
one criterion or multiple criteria. Dynamic selection, which
is also called adaptive selection, means that the method of
choosing a serving cell varies based on predefined values
[12]. The dynamic method can be applied to single-tier
or multi-tier networks. Wireless networks can be modeled
based on hypothetical-based (such as hexagonal grid and
random distribution) or real-world-based approaches. Solv-
ing the cell selection issue can be achieved by applying
machine learning techniques or other approaches. Machine
learning is a powerful tool that is based on different algo-
rithms to give computer systems the ability to learn from
data without programming them explicitly [19]. Nowadays,
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machine learning techniques have proven to be effective in
many prediction tasks [20]. Software-defined networking is
one of the most recent network architectures that aims to
facilitate the network management task and to enhance the
utilization of network resources in an efficient way [21].
The cell selection decision can be centrally coordinated
by using an SDN controller [22], and the combination of
SDN and ML creates a new network management solution
[23]. Applying the traditional scheme that considers the
static method with only a single criterion, the Received
Signal Strength Indicator (RSSI), in 5G cellular networks
is not appropriate due to the existence of a high density of
BSs [24], [25]; this will lead to increasing handover rates
and service interruptions with unbalanced loads [12], [26].
Most of the existing works use static methods to select the
base station to be associated with [12]. There is a need
for an adaptive cell selection scheme that can select the
best base station by considering the HetNet’s features and
user equipment (UE) movement information. In addition,
most recent works are based on single-tier selection of base
stations. In fact, it is necessary to consider multi-tier, where
the macro BS tier is still essential to serve high mobility
UEs in order to decrease the handover rate [27]. Moreover,
applying a certain cell selection strategy to a real-world
case is preferable to study the effectiveness of the proposed
algorithm in a realistic environment.

In this paper, the major contributions are as follows:

1) We study the cell selection problem of heterogeneous
ultra-dense networks by using supervised learning
technology. We propose a novel SDN/ML-based adap-
tive algorithm called A2T-KNN. It aims to intelli-
gently choose the best BS from the two-tier BSs based
on vehicle information and the features of the HetNet.

2) We model the heterogeneous ultra-dense networks
based on a real-world dataset that was collected in
the UK. The macro and small BSs that are operated
by Vodafone and located in the central area of London
are selected to be the system model.

3) We generate a new vehicle dataset based on London
street-related information, using Google Maps and
MATLAB 2021a. It includes 38,441 rows and it is
used to train and test the used ML models.

4) We perform simulations to evaluate the performance
of the proposed A2T-KNN algorithm. The results
demonstrate that the proposed algorithm outperforms
other schemes in terms of average (a) number of
handovers (HOs), (b) staying time, (c) number of HO
failures and unnecessary HOs, (d) downlink sum-rate,
(e) energy efficiency, (f) radio link failures (RLFs),
and (g) handover interruption time (HIT). In addition,
the A2T-KNN achieves high accuracy, sensitivity,
specificity and precision.

The rest of this paper is organized as follows: Section II
provides a review of related works. The proposed scheme
and system model are described in detail in Sections III
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and IV, respectively. Section V presents a performance
analysis of the proposed A2T-KNN algorithm. The paper
is concluded in Section VI. Appendix VI provides lists of
the main abbreviation and symbols that are mentioned in

this paper.
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on the achieved throughput in ultra-dense networks. The
user location and/or cell size are considered when taking
the handover decision. Simulation results show that the
proposed schemes are superior to the traditional scheme in
terms of the average achievable user throughput by up to
47% .

In [29], Tesema et al. developed a fast cell selection
(FCS) approach for 5G ultra-dense networks to select serv-
ing cells from a set called Active Set (AS). To improve the
reliability of the communication system, multi-connectivity
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was considered. The serving base station was selected
based on the signal-to-interference-plus-noise ratio value.
The study considered both fast and slow user equipment.
Simulation results demonstrated that the proposed approach
could overcome the problem of radio link failures. More-
over, the achievable throughput was enhanced in comarison
with other single-connectivity strategies.

In [30], Cacciapuoti, A. S. proposed a mobility-aware
cell selection scheme for millimeter-wave networks. The
proposed scheme considered the distribution of the loads
among the small cells to avoid cell congestion. It reduced
the number of frequent handovers between small cells and
took into consideration the problems of non-line-of-sight
propagation effects, blockage, and directionality. In addition,
it could handle changes in the network topology and channel
conditions. A polynomial-time complexity figure algorithm
was designed to solve the user association issue. The numer-
ical results showed that the proposed scheme outperformed
the traditional RSS-based approach.

Wickramasuriya et al. proposed a cell selection algorithm
for 5G cellular networks in [31]. A Recurrent Neural
Network (RNN) was used to predict the optimal BS that a
mobile user would be associated with. To train the proposed
RNN model, received signal strength (RSS) values were
used. The proposed RNN architecture has three layers;
input, hidden, and output. The RNN model has 640 neurons
and the activation functions used are sigmoid and tanh.
To evaluate the performance of the proposed approach,
Google’s Python- based Tensorflow library was utilized.
The learning rate was set to 0.0003 and the model training
took 35 minutes. An area of 36 km? was considered, with
eight base stations distributed randomly. A mobile node,
which can be a pedestrian or a vehicle, can connect with
the three nearest base stations. Simulation results show that
the proposed algorithm achieved 98% accuracy in predicting
the next BS.

In [32], Kishida et al. proposed a cell selection scheme
for 5G multi-tier Radio Access Networks (RANs). The
selected cell is the cell that has the maximum signal-to-
interference-plus-noise ratio (SINR) value and is located
in the user’s direction. Real locations of base stations
are considered in a metropolitan environment in Shinjuku,
Tokyo. Two kinds of users are considered: pedestrians, with
walking speed 3 km/h, and cars with driving speed 40 km/h.
Simulation results demonstrate that the proposed scheme
made improvements in terms of the number of handovers
by 30%.

In [33], a conditional random field (CRF)-based method
was proposed by Zhang et al. for predicting the optimal
serving base station. The proposed scheme is called CRF-
cell selection protocol (CRF-CSP) and it relies on setting up
a grid that covers the area of interest in the 3D space. The
CRF-CSP is based on localization information to find the
nearest grid point. In the model training phase, the optimal
cell identifications and SINR values are given. Simulation
results demonstrate that the proposed CRF-based method
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can predict the optimal base station with a high prediction
accuracy (90%). In addition, it has superiority over other
simple heuristic schemes.

A machine learning-based user association scheme is
proposed by Zappone et al. in [34]. It aims to maximize
sum date rates achieved by users in massive multiple-input
and multiple-output (MIMO) networks. The best serving
base station is predicted using a trained model based on
a feed-forward artificial neural network (FF-ANN). The
geographical locations of users are given to the ANN model
as inputs. The FF-ANN is structured as four fully connected
layers with neurons of 128, 64, 64, and 40 respectively.
The Rectified Linear Unit (ReLU) activation function is
employed in the first and the third layers, while a sigmoidal
activation function is used in the second layer of the FF-
ANN. The adaptive moment (ADAM) estimation algorithm,
which is a method for stochastic optimization, is used
with Nesterov momentum for training the model [35]. The
number of samples is 155,000, which is split into a training
set of 140,000 samples and a validation set that includes
15,000 samples. Numerical results prove that the proposed
method significantly reduces the computational complexity
of the user association compared to the traditional cell
selection scheme and it achieves the same performance as
the traditional approach.

A user association approach was proposed by Elkourdi
et al. in [36] for two-tier HetNets. It solved the cell
selection issue by applying a Bayesian game model between
two players, i.e., user equipment (UEs) and access nodes
(AN). The UE can be either delay-sensitive (DS) or delay-
tolerant (DT), based on their delay requirement. Simulation
results show that the proposed approach outperformed the
conventional and cell-range-expansion (CRE) schemes in
terms of the probability of proper cell selection and end-
to-end latency.

Khan, H. et al. introduced an ML-based cell selection
approach for vehicles in mmWave networks in [37]. Dis-
tributed deep reinforcement learning (DDRL) is used to
solve the vehicle association problem. The reinforcement
learning problem is formulated as a Markov decision process
(MDP). An Asynchronous Advantage Actor Critic (A3C)
framework is used that includes actor and critic. Actions
are sent from roadside units (RSUs) to a central entity
that is responsible for calculating rewards to the RSUs.
The proposed scheme decreases the control overhead and
the computational complexity compared with other complex
methods. Numerical results show that the proposed DDRL-
based scheme has superiority over many cell selection
schemes in terms of achievable sum rate by up to 15%.

Liu et al. proposed a cell selection approach that inte-
grates the advantages of fuzzy logic and multiple attribute
decision-making algorithms to perform the BS selection task
in [38]. It depends on the Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS). The best
serving BS is chosen based on several network parameters;
reference signal receiving power (RSRP), SINR, and jitter.
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A subtractive clustering algorithm is applied to generate a
suitable fuzzy membership function. The simulation results
demonstrate that the overall performance of the proposed
strategy is better than the RSS-based schemes. It enhances
the network performance in terms of the number of han-
dovers by almost 90% and the rate of ping-pong handovers
by 10%, while providing an optimal Quality of Service
(QoS) level.

In [39], Waheidi et al. proposed a distributed multi-
class user association algorithm, known as Cell Association
based on a Multi-Armed Bandit (CA-MAB) game. Static
and mobile environments are considered in this work. User
equipment and low- powered IoT devices are the classes that
are focused on. The evaluation results demonstrate that the
proposed CA-MAB algorithm improves energy saving and
the aggregated throughput. In addition, the mobility of de-
vices affects equilibrium, throughput, and energy efficiency.

Zhang et al. introduced a deep learning-based cell selec-
tion scheme designed for ultra-dense networks in [40]. A
two-tier heterogeneous ultra-dense Network was considered,
consisting of macro- and small BSs. It aimed to solve the
cell selection problem based on base station load. A U-Net
convolutional neural network (CNN) was trained to select
the optimal base station by mapping channel gain values
onto images. Simulation results showed that the proposed
CNN-based approach improved network robustness and
decreased the computation time.

In [41], Sun et al. introduced two coordinated multipoint
(CoMP) handover schemes for heterogeneous ultra-dense
networks. The schemes are called movement-aware CoMP
handover (MACH) and improved MACH (iMACH). They
are based on estimating a dwell time of a user inside a
serving cell. The MACH approach chooses n BSs that have
the strongest received power with dwell time longer than
a predefined threshold. The iMACH scheme selects n — 1
BSs, as performed by the MACH scheme, and adds the
nearest BS. In the MACH scheme, the handover is initiated
when the farthest base station in the cooperating BSs set
becomes the closest; in contrast, the handover is performed
under the iMACH scheme when the closest BS becomes
the farthest one. Simulation results shows that the proposed
schemes improved the average throughput and the coverage
probability and decreased the handover rate.

In [42], a user association method, known as RTP), was
developed by Qin et al. for 5G ultra-dense networks. It
selects base stations based on estimating the residence time
inside a cell, where a predefined time threshold is set. The
base station that has the strongest received signal power with
a residence time longer than the predefined time threshold
will be chosen as a serving BS. Simulation results prove that
the proposed HO RTP scheme outperforms the conventional
scheme in terms of average throughput achieved by users.

Alablani and Arafah proposed an adaptive cell selection
(ADA-CS) approach for two-tier HetNets in [12]. It selects
the optimal serving base station based on the various charac-
teristics of network cells and vehicle movements. It performs
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six phases to achieve the cell selection task: configura-
tion, decision-making, filtering,Handover based on Resident
Time Prediction (HO narrowing, selecting, and handover
triggering. Simulation results show that the proposed ADA-
CS approach outperforms the traditional and recent cell
selection schemes in terms of average achievable downlink
data rates and spectral efficiency per vehicle by up to 3.98%.
Moreover, it decreases the number of handovers by up to
42.39%.

The limitations of recent cell selection works that are
presented in this section are:

« Most recent works follow a static, non-adaptive, strat-
egy to select the serving base stations. As there are
multiple tiers in HetNets, adaptive selection is preferred
that can be performed by setting up certain thresholds
to switch between the network tiers. For high-speed ve-
hicles, macro- BSs are desired to maintain the network
performance. On other hand, low- and medium-speed
vehicles will be based on small BSs as the serving BSs.

e Most recent works give the highest priority to BSs
that have the greatest receiving power to enhance the
achievable throughput. In fact, in mobility environ-
ments, the closest BS that has the strongest receiving
power will be far away when the user is moving
forward. Therefore, relying on this principle leads to
a degraded network performance due to unnecessary
handovers.

o Some works depend on the estimation of the cell
staying time, which is an essential factor of the serving
cell selection. Moreover, these works, for simplicity
purposes, estimate the staying time based on the as-
sumption the user is at the edge of the cell.

e The number of ML-based works is fewer than the
non-ML-based works, whereas predicting serving BSs
needs to be based on machine learning algorithms to
reduce the computational complexity. Moreover, input
features for a machine learning model should be set
carefully so that the trained model can solve the cell
selection problem efficiently.

o Applying a cell selection strategy in a real-world
context is preferable to study the effectiveness of the
proposed protocol. Some works were tailored to certain
typologies and applying them to a real-world case will
lead to undesirable network performance.

Based on the limitations mentioned above, there is a need
for cell selection methods that are adaptable for selecting
the serving cell to be associated with in order to maintain
network performance. In addition, relying on machine learn-
ing algorithms is a trend nowadays that we should take
advantage of to reduce the computational complexity and
prediction time. Furthermore, implementing a proposed cell
selection algorithm on a realistic environment is desirable to
determine the effectiveness and applicability of the proposed
strategy.
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TABLE 1: Comparison among recent related cell selection studies.

Cite Year | Authors Designed for ML-Based | Real-Word
[28] | 2016 | Arshad, R. et al. Single and two-tier networks | No No
[29] | 2016 | Tesema, F. B. et al. Single-tier networks No No
[30] | 2017 | Cacciapuoti A. S. Single-tier networks No Yes
[31] | 2018 | Wickramasuriya, D. et al. Single-tier networks Yes No
[32] | 2018 | Kishida, A. et al. Multi-tier networks No Yes
[33] | 2018 | Zhang, S. et al. Single-tier networks Yes No
[34] | 2018 | Zappone, A. et al. Single-tier networks Yes No
[36] | 2019 | Elkourdi, M. et al. Two-tier networks No No
[37] | 2019 | Khan, H. et al. Single-tier networks Yes No
[38] | 2019 | Liu, Q. et al. Single-tier networks No No
[39] | 2020 | Waheidi, Y. M. et al. Single-tier networks No No
[40] | 2020 | Zhang, Y. et al. Two-tier networks Yes No
[417 | 2021 Sun, W. et al. Single-tier networks No No
[42] | 2021 | Qin, Z. et al. Single-tier networks No No
[12] 2021 Alablani, I. A. and Arafah, M. A. | Two-tier networks No No

lll. THE PROPOSED A2T-KNN SCHEME
In this section, the proposed A2T-KNN scheme is discussed
in terms of the SDN/ML-based model building process and
the framework of the proposed approach.

A. THE PROPOSED SDN/ML-BASED MODEL BUILDING
To build the proposed machine learning model, five main
stages have been passed through, as shown in figure 5 which
are:

« Stage 1: Data Preparation: This stage aims to collect,
generate and prepare information from vehicles and
from macro- and small base stations. At the end of
this stage, data that is essential to train and validate
the proposed machine learning model will be ready.

BSssmau and BSsy,qcro represent the small and
macro- BSs. The vehicle speed threshold, the re-
ceived signal strength indicator threshold, and the
BS’s load threshold are expressed by S, RSSI,
and L, respectively. The cell radius is denoted
by R and the staying time of a vehicle within
a cell is represented by ST;;. The distance and
azimuth between a base station B; and vehicle V;
are represented by d;; and ;5.

Algorithm 1: Pseudocode for A2T labeling algorithm.

input : BSsgnai, BSSmacro-

1) BSs Dataset Collecting: In this step, the ap-
propriate dataset for the macro and small base
stations should be collected. BSs dataset can
be found over the web as a single dataset that
saves information related to both of macro and
small BSs. On other hand, the macro and small
BSs information may be found as two separated
databases. The geographical location information
of BSs in terms of latitude and longitude co-
ordinates must be exist in the BS dataset. The
collected BSs dataset that is used in this work is
described in section IV-B.

2) Vehicle Dataset Generation: In this step a vehi-
cle dataset is generated using Google Maps and
MATLAB simulator. The explanation of vehicle
dataset generation process is given in details in
section IV-B.

3) Data Cleaning and Labeling: In the cleaning
step, the data that is not used by the proposed
cell selection scheme to predict the next BS is
removed. It is worth mentioning that the central
area of London has a high density of small cells,
with a number of the traditional macro- cells,
which makes the area suitable for our study. The
labeling process is performed based on the A2T
scheme that is described in Algorithm 1, where

output: BS.
if Veh.kspeed < S then
====== Select from small BSs tier ======
X = {Bl‘Bl € BSsgman & RSSL']' >

RSST and load < L};
ST’” _ dij COS(QU)J’_\/'W;VBi cX
BS = {B;|B; € X & has maz(ST;;)};
end if
if Length (BS==0) then
====== Select from macro BSs tier ======
X = {Bi|B; € BSspacro & RSSI;; > RSSI};
BS = {B;|B; € X & has maxz(RSSI;;);
end if

4) Data Dividing: The data samples are divided into
two datasets: a training set for ML model training
and a testing set for model validation. In this
work, an 80/ 20 (training/testing set) ratio was
used. The training sample items were selected
randomly from whole dataset and the testing
sample was the remaining items.

o Stage 2: ML Model Training: In this stage, the
machine learning model was trained using the train-
ing sample. In this work, the following ML models
were trained to perform multi-classification based on
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FIGURE 5: Stages for building the proposed ML model.

supervised learning using a training set.

— K-Nearest-Neighbor (KNN): This is a widely
used and effective classifier, based on a predefined
parameter (K) to determine the number of neigh-
bors used in a similarity calculation that depends
on the distance between samples. In this work,
to measure the distance between two samples, the
Euclidean distance is used.

— Feed-Forward Back-Propagation Artificial
Neural Network (FFBP-ANN): This is a popular
machine learning algorithm that simulates the
human neuron system. It is implemented based on
feed-forwarding of data and back-propagation of
errors. In this study, an FFBP-ANN is structured
as three layers; input, hidden, and output. The
number of neurons in the hidden layer is ten,
while the number of neurons in the output layer is
658, which equals the summation of the number of
small and macro BSs. The activation function used
is tansig and the training of the FFBP-ANN took
approximately 17 days, using a high-performance
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computer.

— Naive Bayes (NB): This is a simple probabilistic
classifier based on Bayesian law. In this work, the
NB model is trained to predict the next BS.

o Stage 3: ML Model Validation: The proposed ML

classifiers were tested using the testing sample. The
performance of the trained ML models is described in
detail in section V-A. The KNN classifier outperforms
the FFBP-ANN and NB classifiers in terms of predic-
tion efficiency. Therefore, the KNN trained model is
selected in this work to be the BS prediction tool.

Stage 4: ML Model Deployment: ML model deploy-
ment is the process of installing the trained ML model
on the SDN controller. The SDN controller is the core
component of an SDN-based vehicular network, and
is physically connected to network elements, including
wireless base stations [43], [44]. It is responsible for
performing the adaptive cell selection task based on
the installed ML model.
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Algorithm 2: Pseudocode for A2T-KNN algorithm.

input : Veh.lat, Veh.lon, Veh.azimuth, Veh.kspeed, L, S, RSSI, R.

output: BS.
while Vehicle moves do
if RSSI < Th || len(BS) == 0 then

Input = [Veh.lat, Veh.lon, Veh.azimuth, Veh.kspeed, L, S, RSSI, RJ;

BS = KNNMdI (Input);
Trigger handover to BS# BS;
end if
end while

o Stage 5: ML Model Monitoring: In this stage, the
proposed ML model was evaluated to monitor its
performance in a real-world case based on London.
Section V-B represents the evaluation of the proposed
A2T-KNN in terms of average number of handovers,
staying time, number of HO failures and unnecessary
HOs, downlink sum-rate, energy efficiency, radio link
failures, and HO interruption time.

B. FRAMEWORK OF THE PROPOSED SDN/ML-BASED
CELL SELECTION APPROACH

The framework is based on the combined SDN and ML
approach, as shown in figure 6. SDN is applied to perform
efficient traffic management and cell selection tasks, based
on the installed trained machine learning model. The inputs
of the ML-model are vehicle information and network con-
figuration information. The geographical coordinates of ve-
hicles (i.e., latitude (LAT') and longitude (LON)), azimuth
between vehicle direction and the north (AZIMUTH),
and vehicle speed in km/h (KX SPEED) are given to the
ML model. In addition, the predefined BS’s load, vehicle’s
speed, RSSI, and cell radius thresholds are also inserted into
the ML model. Based on the given information, the ML
model can predict the optimal BS to be associated with,
whether it is a macro- or small BS. Algorithm 2 gives the
pseudocode for the proposed A2T-KNN scheme.

IV. SYSTEM MODEL

A. SIMULATION TOOL

The MATLAB 2021a simulator was used for modeling and
analyzing the performance of the proposed cell selection
scheme due to its powerful capabilities. In addition, THE
MATLAB simulator has many toolboxes that can be used
to perform the cell selection task in a realistic environment.
Figure 7 shows the main MATLAB toolboxes that are
installed to perform simulation experiments.

B. DATASETS
o BSs dataset: In [45], Boswarva O. created a dataset of
point locations of wireless base stations located in the
United Kingdom in February 2017. The raw data was

publicly released by The Office of Communications
(Ofcom), which is the UK’s governmental communi-
cations regulator [46]. It has been uploaded on the
Sitefinder website as a Microsoft Excel spreadsheet. A
description of the UK BSs dataset is given in Table 2.
In the dataset, there are six mobile network operators:
Airwave, Orange, O2, T-Mobile, Three and Vodafone,
as illustrated in figure 8.

TABLE 2: Description of the dataset of the UK BSs.

Number of columns | 12

Names of columns ’Operator’,’ Opref’, Sitengr’,
’Antennaht’,’ Transtype’,
’Fregband’,” Anttype’,
’Powerdbw’,”Maxpwrdbw’,
’Maxpwrdbm’, Sitelat’, ’Sitelng’
Number of rows 144,557

o Vehicles dataset: A vehicle dataset of the central

area of London was created by us in August 2021.
This dataset was generated using Google Maps and
the MATLAB simulator. The following processes were
performed using Google Maps:

— Starting Google My Maps, as shown in figure 9a.

— Creating a new map of London (figure 9b).

— Adding driving routes for the selected London
streets (figures 9c and 9d): 55 streets were chosen
in this work, as shown in Table 3. Each driving
route has a set of geographical points.

— Exporting the created driving routes as Keyhole
Markup Language (KMZ) files (figure 9e).

Using the MATLAB simulator, the following opera-
tions were performed:

— Generating extra geographical points for each
street, based on a predefined distance, which is
1 meter in this work.

— Calculating the azimuth for each point according
to the street on which the point is located. The
azimuth is the angle between north and the street
direction, beginning from the located point.

— Generating random speeds in kilometers per hour
(km/h) ranging from 10 to 40 km/h.
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FIGURE 7: The MATLAB toolboxes used.

— Exporting the vehicle dataset of the central area of
London as a Microsoft Excel spreadsheet that has
38,441 rows.

The description of the vehicle dataset fields is given in
Table 3. Figure 10 shows a snapshot of the generated
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TABLE 3: Description of the generated London vehicle dataset.

Field Name Description Values

’STREET_NAME’| Name of London street
where vehicle is lo-

’Aldgate’,’ Bethnal

Grove’,’London

Green’, Bevis
Ln’, City’,’Clerkenwell’,’ Commercial’, ’Coventry’,’Crawford’,”Epworth’,’Euston’,’ Farringdon’,Finsbury
cated. Square’, Fleet’,’George’,’ Gower’,’ Grays
Square’,’Grosvenor’,’Hackney’,”High
Wall’,’Long
ford’,’New’,Northington’,’Old
Square’,’Regent’ ,Riding House’,’Rosebery ~ Ave’,’Seymour’,’Shaftesbury ~ Ave’,’Strand’, Tottenham
Court’,”Voss’,” Whitechapel’,” Wilson’,” York’

Marks’, Brick Ln’, ’Brook’,’Cable’,’Cannon’,’ Chancery
Inn’,’Great Marlborough’,’ Grosvenor
Holborn’,’Holborn’,”Hollest’,’Lever’,’Lime’, Lisson
Acre’,Marylebone’,’ New Cavendish’,New Ox-
Gloucester’,’Orange’,’Oxford’, Park’,’ Portland PI’,;’Queen

"LAT’ Latitude coordinate of | [51.51 to 51.53]
vehicle.

"LON’ Longitude coordinate | [-0.1693 to -0.0538]
of vehicle.

*AZIMUTH’ Angle between vehicle [0 to 357.2597]

direction and north in
degrees.

"KSPEED’ Speed of vehicle in

km/h.

[10 to 40]

‘I Mobile

orange”
o vodafone 02

&) AIRWAVE

Three.co.uk

FIGURE 8: The mobile network operators in the UK BSs
dataset.

C. NETWORK MODEL

A two-tier heterogeneous ultra-dense network is considered
that is comprised of macro- and small BSs. The system
model represents the distribution of base stations operated
by Vodafone in the middle of London, as shown in fig-
ure 11. The set of base stations is denoted by BSs =
{Bi1, Ba,...,Bs} and includes the macro- and small base
stations, (BSSacro and BSsgmqir), respectively. Total net-
work vehicles is expressed by V. = {Vi,V,,...,V;} and
these vehicles are distributed within the central area of
London. A vehicle can be connected to only a single BS
at a time. The association matrix between base stations and
vehicles is denoted by A = {411, A12,..., A;;}, where the
association variable between base station B; and vehicle V;
is expressed by A;; and it can take either O or 1.

D. PROPAGATION MODEL

In this paper, the propagation channel model comprises three
main components: path-loss (PL), fading and shadowing.
These are the main losses that affect the strength and quality
of wireless signals. The 3rd Generation Partnership Project
(3GPP) path loss models are used to estimate the received
signal strength at a given distance from the serving base
station. Table 4 shows the used 3GPP path loss models that
are defined in 3GPP technical report (TR) 38.901 version

10

16.1.0 [47]. As shown in the table, the macro- BSs tier
uses the urban macro-cell-non-line-of-sight (UMa-NLOS)
PL model, while the small BSs tier uses urban microcell-
line-of-sight (UMi-LOS) (street canyon) model.

The carrier frequency is denoted by f. and it is measured
in Gigahertz. The distance between a base station and a
vehicle is represented d and it is measured in meters. The
definition of break-point distance (d'B p) 1s given in equation

(1.
dgp =4 (hps — hgss) (hven —hepy) fo/e (1)

The heights of a BS and a vehicle are expressed as hpg and
hven, respectively. The vehicles’ height must be between
1.5 and 22.5 meters to apply the 3GPP PL models. The
effective height between vehicles and BSs is indicated by
hgyy and it is described in detail in the technical report.
The symbol c represents the speed of light in a vacuum,
which equals 2.997 x 108 ms~!.

Rayleigh fading is considered in our study because it is
a good approximation of realistic conditions of a wireless
channel. It follows an independent exponential distribution
with unit mean [48]. In addition, log-normal shadowing
is considered because it is typically used to model the
relationship between RSSI and range [49].

V. PERFORMANCE ANALYSIS

In this section, the trained ML models are evaluated to
determine how well they classify input data that the models
were not trained on. Moreover, the proposed A2T-KNN
algorithm is evaluated in terms of the average number
of handovers, staying time, number of HO failures and
unnecessary HOs, downlink sum-rate, and energy efficiency.

A. EVALUATION OF THE TRAINED ML MODELS

Table 5 shows the number of training and testing samples
that are used in this work. Root mean square error (RMSE)
and mean absolute error (MAE) are common criteria for

measuring errors in prediction [27], [50]. The calculation of
RMSE and MAE is based on the predicted base stations (%),
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FIGURE 9: Using Google Maps to create a driving route.

the target BSs (y), and the number of testing samples (INV),
i.e., 7,689 samples. A confusion matrix is an effective tool to
summarize classification results in a tabular form, where the
results of classes are tallied [51]. Based on the constructed
confusion matrix, the numbers of true positive (TP), false
positive (FP), true negative (TN) and false negative (FN) ob-
servations were calculated [52]. Then, accuracy, sensitivity,
specificity, precision, F-measure (F1), and geometric mean
(G-mean) were estimated. Table 6 illustrates the evaluation
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values of the trained ML models, i.e., KNN, FFBP-ANN,
and NB models. The results demonstrate that the KNN
model achieves a high prediction performance with low
percentages of error. Thus, it is chosen to be the used ML
model.

B. EVALUATION OF THE PROPOSED A2T-KNN SCHEME
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TABLE 4: The used 3GPP path loss models.

PL model 3GPP UMa-NLOS
8
@
4
- Equations ¢(d) = max(¢(d), ¢ (d))
g where ,
s ¢(d) = 28 + 22 logio(d) + 20 logio(/fe) 10m<d<dgp
/ 28 4 40 log1o(d) + 20 logio(fe) — 9 logio((dgp)? + (hs — hven)?) dpp <d<5km
¢’ (d) = 13.54 + 39.08 log1o(d) + 20 logio(fe) — 0.6 (hyen — 1.5)
PL model 3GPP UMi-LOS (street canyon)
8
<d<d
4 Equations () = 82:4 421 logio(d) +20 logig (fe) L lom<d<dgy
= 32.4 440 lleO(d) +20 loglO(fc) -9.5 loglO((dBp) + (hBS - hVeh) ) dBp <d<5km
<
g
W)
Veh_ Table.xlsx while a vertical HO happens between heterogeneous BSs
I A B C D £ [54], [55]. Decreasing the number of handovers incurred by
VehTable a vehicle is an important factor to maintain the network
street name lat i azimuth kspeed performance [56]. The number of HOs depends on the
Categorical *Number ~ *Number  wNumber  vNumber = staying period of a vehicle within a serving cell, as the
1 street name |lat lon azimuth kspeed longer the stay time, the lower the number of HOs [57].
2 Aldgate St 51.5145 -0.0741 59.7011 10 When the handover delay is longer than the staying time
i 2:39316 2: 21212‘3‘ '8'8322 ngizg ;i within a cell, a handover failure happens. When the sum of
gate . -0. i . ]
5 Aldgate St =TT e CEiE s HO 'delays to move into Qz) .":md .out (t,) of the network
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7 Aldgate St 51,5141 -0.0752 56.1963 15 handover occurs [12], [58]. Equations (2) and (3) show the
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FIGURE 10: Snapshot of the generated vehicle dataset.

TABLE 5: Number of training and testing samples.

Number of training samples | 30,752
Number of testing samples 7,689

1) Key Performance Indicators

The key performance indicators (KPIs) that were used to
evaluate the performance of the proposed A2T-KNN algo-
rithm were the average number of handovers, staying time,
number of HO failures and unnecessary HOs, downlink
sum-rate, energy efficiency, radio link failures, and handover
interruption time.

Handover is the process of switching the connection
between network cells when a mobile device moves out
of the range of the current serving cell [53]. There are
two kinds of handovers: horizontal and vertical HOs. A
horizontal HO occurs between homogenous base stations,

12

pr — J2lsin T (PR —sin T (23R 0 < Thy < (& + to)
h 0 (ti +to) < Thay

3

Where vehicle velocity and cell radius are denoted by v
and R. The time thresholds of a HO failure and unneces-
sary HO are represented by T'hy and Th,. They can be
calculated according to equations (4) and (5), where the
acceptable values of Pry and Pr, are 0.02 and 0.04.

’Uti 2

2
Thy = TRsin(sinfl(—) — —Pry)

0<Pry<1 (4
2R’ 7 s Pres1 @)

i 2
1(’U(tz+t0))_7pru) ;O<PTu<1
™

(5)
The average number of HO failures (Ny) and unnecessary
HO (NV,) can be estimated as shown in equations (6) and

(.

2R
Th, = — sin(sin™
” sin(sin 5
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FIGURE 11: System model in central London.

TABLE 6: The trained ML models evaluation values.

Performance Metrics Equation KNN Model FFBP-ANN NB Model
Model
N f: —a:)2
RMSE \/ ZimaGimyi)” 57.54 12631 129.70
MAE Zilyimil 50.86 50.85 57.66
Accuracy (%) TP FBTFN 99.91 99.77 99.73
Sensitivity (%) TELFN 88.05 69.71 63.31
- TN
Specificity (%) FPITN 99.95 99.88 99.86
") TP
Precision (%) TPIFP 88.05 69.71 63.31
Fl (%) TPTOE (FPEFN) 88.05 69.71 63.31
G-mean (%) \/(Sensitivity X Specificity) 93.81 83.44 79.51

Nf:P’I“fXNHO (6)

EZPT'“XNHO (7)

Small cell densification is a promising solution that can be
used to fulfil the 5G network requirements of network capac-
ity and throughput [59]. The total aggregate throughput (sum
rate) is the summation of the achievable data rate across the
network when a vehicle moves [41], as equation (8) shows.
Channel capacity C;; between base station B; and vehicle
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V; can be calculated based on the Shannon theorem as given
in equation (9).

Cij = BW logg(l + 1/)2]) )

The signal-to-interference-plus-noise ratio is defined as the
power received from the serving BS divided by the summa-
tion of the power received from other BSs plus noise [60].
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It is represented by v;; and its formula is given in equation
(10).

i = P, Gij(d)gij
i (Pt G (A)gimg) + NoBW
V B;eBSsandV V; €V.

(10)

where py, is the maximum transmitting power of a base
station, ((d) is the path loss function, and g represents
the channel gain between BS and vehicle. As previously
discussed in section IV-D, the path loss function follows
the 3GPP PL models and the channel gain considers the
impacts of Rayleigh fading and log-normal shadowing. The
noise power spectral density and sub-channel bandwidth are
denoted by Ny and BW, respectively. They are used to
estimate the thermal noise level, based on an additive white
Gaussian noise model.

The energy efficiency (EE) of the system is a critical
evaluation criterion and it refers to the ratio between the
sum of the achievable data rate and the total consumed
power [61]. Equation (11) gives the formula for the energy
efficiency, which is denoted by ngg.

Sum of achievable rate (bps)

bits/joule) =
ne (bits/joule) Total consumed power (Watt)

(1)

The quality of the radio link is modeled in the term signal-
to-interference-plus-noise ratio. Radio link failure occurs
when the value of SINR of a vehicle V; from the serving
cell B; falls below the out-of-synchronization threshold
(SY N,,) for a Radio Link Failure (RLF) detection period,
which is known as Tgrpp. If Trpp timer, which is also
known as T310, has expired and the SINR value does not
increase above the in-synchronization threshold (SY N;,),
the vehicle faces a problem of RLF. Equations (12) and
(13) shows the conditions of failure and recovery of radio
link [62], [63].

Crrr : Yij < SY Nout;  for tous > TRLF (12)

CRecovery : wij > SYNmn fOT tin > TRLF (13)

Handover interruption time (HIT) is an essential metric to
evaluate the performance of cell selection schemes. HIT is
defined as the duration in which the vehicle’s connectivity
is interrupted to perform the handover operation [64].
Equation (14) gives the formula of Ty which is the
summation of break time (1'5¢qk ), processing time (I'pyoc),
interruption time (T7pterrupt), Tadio access channel time
(Trac ) and handover completion time (Tx¢) [65].

Tyir = TBreak+TProc+Tlnterrupt+TRACH+THC (14)

14

2) Simulation Results

In this section, the simulation results are presented and
discussed. The performance of the proposed A2T-KNN is
compared with the traditional max-RSSI, HO RTP [42], and
Zappone et al. ANN- based [34] schemes. Table 7 displays
the simulation parameters used to evaluate the cell selection

schemes.

TABLE 7: Simulation parameters.

. . Values
Simulation Parameters Macro BS Small BS
Number of BSs 389 269
Carrier frequency (GHz) 2 28
System bandwidth (MHz) 10 500 [66]
Transmit power (dBm) 46 30
Path loss model (dB) 3GPP UMa | 3GPP UMi

Model Model
Standard deviation of shadow | 6 4
factor (dB)
Base station height (meters) 25 10
Cell radius (meters) 1400 600
SYNoyut (dB) -8 -12
TrLF (sec)
Vehicle speeds (km/h) [10-40]
Vehicle height (meters) 1.8
RSSI threshold (dBm) -80
Speed threshold (km/h) 25
Load threshold (%) 90
Thermal noise density -174
(dBm/Hz)
Shadowing Log-normal
Fast fading Rayleigh fading
Handover delay (sec) 1 [42]
Simulation time (sec) 600

Figure 12 displays the average staying time of vehicles
under different driving speeds, while figure 13 shows the
relationship between the average number of handovers and
vehicle speeds. The results show that the staying time
decreases as the speed of a vehicle increases, and therefore
the number of HOs will increase. The proposed A2T-KNN
algorithm is superior to the conventional scheme, which is
based on the maximum RSSI values, and the HO RTP and
Zappone et al. ANN-based methods in terms of average
staying time and average number of HOs. The reason is
that the proposed A2T-KNN selects the small BS that
has the longest staying time when the vehicle speed is
lower than a predefined speed threshold (25 km/h in this
scenario). Exceeding the speed threshold leads to selecting
the nearest macro BS to avoid unnecessary HOs. As the
figures illustrate, the conventional max-RSSI and Zappone
et al. ANN-based schemes are the least efficient in terms of
staying time and involve the largest number of handovers.
The max-RSSI method selects a base station that has the
maximum RSSI values without considering the direction
and speed of a vehicle. The Zappone et al. method uses
a trained FF-ANN model to predict the next base station
based on the principle of increasing the achievable sum-
rate by relying on the shortest distance between a base
station and a vehicle, regardless of the direction and speed
of the vehicle. Consequently, our A2T-KNN outperforms the
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conventional and Zappone et al. methods in terms of average
staying time and number of HOs by 42.68% and 45.83%,
respectively, when the speed threshold is not exceeded. The
HO RTP scheme selects the nearest small BS that has a
residence time greater than a specific time threshold; as a
result, the proposed A2T-KNN outperforms the HO RTP
scheme in terms of the average staying time and number
of HOs by 35.12% and 38.1%, respectively. This is because
the HO RTP considers the residence period within the small
cell, but it gives the highest priority in selection to the
RSSI value. Moreover, the proposed AT2-KNN achieves
additional enhancements regarding the average staying time
and number of handovers with vehicles that exceed the
speed threshold, due to the adaptation characteristic of the
proposed algorithm.

Average Staying Time

300 : . i
[ Proposed A2T-KNN
[ Max-RsSSI

250 | [ HO RTP
[ Zappone et al. ANN-based

200

150 -

100 -

Average staying time (sec)

10 15 20 25 30 35 40
Speeds (km/h)

FIGURE 12: Average staying time vs vehicle speed.

The average number of HO failures and unnecessary HOs
at different speeds are represented in figures 14 and 15.
Increasing speed clearly leads to an increase in the average
number of unsuccessful and unnecessary HOs. However, we
found that the proposed A2T-KNN algorithm achieves the
lowest mean numbers of HO failures and unnecessary HOs
compared with the conventional max-RSSI, Zappone et al.
ANN-based, and the HO RTP methods. The reason behind
this is that the A2T-KNN scheme relies on estimating the
staying time accurately and it has the adaptation ability that
allows switching between different BSs tiers in HetNets
based on a specific speed threshold. Thus, the A2T-KNN
outperforms the conventional max-RSSI and Zappone et al.
ANN-based methods by 44.68% and the HO RTP method
by 36.59% when the vehicle speed is lower than the speed
threshold. Additional improvements were made by the A2T-
KNN scheme when the vehicle speed exceeded the threshold
due to the association switching to the macro-BS tier.

The cumulative distribution function (CDF) of achievable
downlink data rate of a vehicle during the simulation time
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FIGURE 13: Average number of handovers vs vehicle
speed.
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FIGURE 14: Average HO failures vs vehicle speed.

15

10

under a specific speed (10 km/h in this example) is rep-
resented in Figure 16. As the figure shows, the proposed
A2T-KNN protocol reaches peaks in the data rates, while
the max-RSSI, Zappone et al. ANN-based, and HO RTP
schemes do not achieve these peaks. Using the A2T-KNN
protocol, the movement of a vehicle forward leads to it
approaching the mid-point of a serving wireless cell in
which the BS is located, and thus the A2T-KNN can achieve
the maximum possible value of the data rate. On the other
hand, relying on signal strength values and giving them a
high priority does not guarantee reaching the highest data
rate values when vehicles move. Therefore, the A2T-KNN
scheme is superior to the max-RSSI and Zappone et al.
ANN-based methods in terms of the average achievable
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FIGURE 15: Average unnecessary HOs vs vehicle speed.

sum rate by 14.41% and has superiority over the HO RTP
approaches by 17.18%.
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FIGURE 16: CDF of achievable downlink data rates by a
vehicle during simulation time.

Figure 17 illustrates the CDF of network energy efficiency
for a vehicle during the simulation time. As the energy
efficiency is the achievable sum data rate divided by total
consumed power, the A2T-KNN algorithm is superior to
the other cell selection strategies because it outperforms
them in terms of the total achieved downlink data rate,
as illustrated in figure 16. The percentage of improvement
in terms of average network energy efficiency achieved by
vehicles is 13.99% compared with the conventional max-
RSSI and Zappone et al. ANN-based methods, while A2T-
KNN outperforms the HO RTP method by 16.86%.
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FIGURE 17: CDF of network energy efficiency achieved by
a vehicle during simulation time.

Figure 18 shows the CDF of received SINR values
by a vehicle during simulation time. According to the
result, downlink SINR improves by applying our A2T-KNN
scheme because it achieves high SINR values that are not
reached using the other cell selection methods. We found
that RLFs occur when SINR values drop below SY N,
for T'rrr, which does not exceed 1.67% using our A2T-
KNN scheme and the other cell selection scheme. The
reason for this is that all simulation experiments depend
on setting an RSSI threshold and if the received RSSI
value is less than this threshold, the cell selection algorithm
is executed. In fact, radio link failures can be avoided
by enhancing the SINR values by applying interference
mitigation techniques. In addition, relying on soft handover,
which means connecting to the next BS before breaking the
old one, helps in reducing the RLF rate.

Figure 19 shows the relation between vehicle speed and
average cumulative handover interruption time. As the figure
shows, our proposed A2T-KNN scheme outperforms other
methods because it aims to prolong the staying time of
vehicles within serving cells and therefore decreases the
cumulative HIT. In addition, the proposed scheme applies
switching between the small BS tier and macro BS tier if
the vehicle speed exceeds the predefined speed threshold to
avoid frequent HOs. We find that the worst cell selection
methods in terms of cumulative HIT are the Max-RSSI
and Zappone et al. ANN-based schemes. The reason is
that they depend on the strongest received RSSI value
when they select the next BS, and therefore the number
of HOs increases and the cumulative HIT gets worse. Our
protocol outperforms them in terms of cumulative HIT by
45.83%. The HO RTP method achieves better performance
in terms of cumulative HIT compared with the max-RSSI
and Zappone et al. ANN-based schemes because it sets a
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FIGURE 18: CDF of received SINR values by a vehicle
during simulation time.

residence time threshold, but it gives high priority to the cell
that has the strongest signal power. Consequently, the A2T-
KNN has superiority over the HO RTP method by 38.1%.
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FIGURE 19: Average cumulative HIT vs vehicle speed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study the cell selection problem of HetNets
by using SDN and machine learning technologies. In this pa-
per,an SDN/ML-based adaptive cell selection scheme called
A2T-KNN is proposed. It is designed for two-tier HetNets
and it can adapt to the characteristics of the network and the
features of moving vehicles. The proposed A2T-KNN algo-
rithm uses a KNN model that are trained based on realistic

VOLUME 15, 2021

vehicle and BS information in the central area of London.
Simulation results show that the trained model has a high
prediction performance using the testing sample. In addition,
our proposed A2T-KNN algorithm is superior to the tradi-
tional and HO RTP schemes in terms of the average number
of HOs by 45.83% and 38.10%, respectively. Moreover, it
enhances the average achievable DL throughput and network
energy efficiency achieved by vehicles by up to 17.18% and
16.86%, compared with the other methods. For future work,
the A2T-KNN algorithm will be applied in other cities, such
as the city of Riyadh, the capital of Saudi Arabia, based
on the availability of macro and small BSs information. In
addition, other machine learning algorithms can be applied
and prediction performances can be compared. The cell
selection issue in HetNets can be solved in subsequent
studies based on reinforcement learning (RL) techniques,
such as Q-learning and deep Q-networks (DQN). Licensed
Assisted Access (LAA) deployment can be considered in
our future work. It is a service that combines the use of
licensed and unlicensed spectrum to enhance the achievable
data rates and to improve the user response.

APPENDIX A: LISTS OF ABBREVIATIONS AND
SYMBOLS

The following table gives a list of abbreviations. Tables 8
and 9 give lists of the main abbreviations and symbols.
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