
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/283430580

An	efficient	approach	to	collaborative
simulation	of	variable	structure	systems	on
multi-core	machines

ARTICLE		in		CLUSTER	COMPUTING	·	OCTOBER	2015

Impact	Factor:	1.51	·	DOI:	10.1007/s10586-015-0498-9

READS

21

6	AUTHORS,	INCLUDING:

Chen	Yang

The	University	of	Western	Ontario

10	PUBLICATIONS			3	CITATIONS			

SEE	PROFILE

Xiao	Song

Beihang	University(BUAA)

36	PUBLICATIONS			38	CITATIONS			

SEE	PROFILE

Bo	Hu	Li

Beihang	University(BUAA)

31	PUBLICATIONS			166	CITATIONS			

SEE	PROFILE

Available	from:	Chen	Yang

Retrieved	on:	05	January	2016

https://www.researchgate.net/publication/283430580_An_efficient_approach_to_collaborative_simulation_of_variable_structure_systems_on_multi-core_machines?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/283430580_An_efficient_approach_to_collaborative_simulation_of_variable_structure_systems_on_multi-core_machines?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Chen_Yang95?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Chen_Yang95?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/The_University_of_Western_Ontario?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Chen_Yang95?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Xiao_Song10?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Xiao_Song10?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Beihang_UniversityBUAA?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Xiao_Song10?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Bo_Li93?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Bo_Li93?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Beihang_UniversityBUAA?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Bo_Li93?enrichId=rgreq-654c14ea-aa9d-4735-856e-c9b69ba97bc2&enrichSource=Y292ZXJQYWdlOzI4MzQzMDU4MDtBUzozMDI2MDA2OTAzMDcwODNAMTQ0OTE1NzAzNDY0MA%3D%3D&el=1_x_7


Noname manuscript No.
(will be inserted by the editor)

An Efficient Approach to Collaborative Simulation of
Variable Structure Systems on Multi-core Machines

Chen Yang · Peng Chi · Xiao Song · Tingyu Lin · Bo Hu Li · Xudong
Chai

Received: date / Accepted: date

Abstract Complex variable-structure systems (CVSSs)
are a common type of complex systems that exhibit
changes both at structural and behavior levels. Simu-

lations of CVSSs challenge current collaborative execu-
tion methods with increasingly big and complex mod-
els. The emergence of multi-core paradigm presents an

exciting opportunity to address such challenge, so an
advanced parallel simulator under multi-core environ-
ments is proposed. The simulator: (1) provides thread

simulation kernels and five kinds of management ser-
vices to support dynamic model structure flexibly; (2)
can explore both inherent and dynamic parallelism a-

mong models based on interaction relations, and em-
ploy the multi-thread paradigm to gain good speedup;
(3) adopts an efficient dynamic load-balancing method,

which can migrate models among cores with very low
cost and support dynamic core allocation on demand,
to address evident load-imbalance problems brought by

variable-structure. The experiments show that struc-
ture changes can be supported while up to 23% perfor-
mance increase can be gained.

Keywords Multi-core · Parallel Discrete Event

Simulation · Variable Structure · Dynamic Load
Balancing · Collaborative Simulation

C. Yang
Department of Electrical and Computer Engineering, Univer-
sity of Western Ontario, London, ON, Canada
E-mail: cyang337@uwo.ca

P. Chi · T. Lin · B. H. Li · X. Chai
Beijing Simulation Center, Beijing, P.R. China

X. Song
School of Automation Science and Electrical Engineering,
Beihang University, Beijing, P.R. China
E-mail: songxiao@buaa.edu.cn

1 Introduction

Many complex systems consist of a large number of
components which adapt or learn as they interact [1],

so that the systems exhibit eminent overall properties,
such as emergence, nonlinearity, self-organization, chaos
or gaming [2][3]. Among them, Complex Variable-Structure

Systems (CVSSs) are systems that have variable con-
stituents and interaction structure during the execu-
tion. In other words, CVSSs exhibit changes simulta-

neously at structural and behavior levels [4][5], when
evolving over time. Typical CVSSs are widely distribut-
ed in the areas of complex engineering, sociology, and

ecology. Commonly, where there are autonomous and
interactive entities, system changes in interactions and
constituents occur frequently.

Parallel Discrete Event Simulation (PDES) involves

the use of multiple processors to collaboratively simu-
late and analyze large-scale systems in shorter time.
However, using common PDES methods, a CVSS is

mostly modeled as the “complete” and static-structure
system, in which all possible models, interaction ports
and connections exist and participate in the simulation

since the beginning stage and could not be changed
easily and flexibly during the execution period. Fur-
thermore, models need to be designed to only deal with

related events during the right intervals and discard un-
related events caused by redundant components, ports
and connections. Two problems will arise. First, the ef-

ficiency of simulation executions would be severely de-
graded, if the structure changes a lot (especially for
large-scale simulation systems), as all the components

and the “complete” interaction structure need to be
loaded before the simulation starts and a lot of redun-
dant events flow in the simulation system. Secondly,

users may be unable to exactly predict all the possible



2 Chen Yang et al.

models, ports and connections at the beginning, espe-

cially for evolving CVSSs.

Researchers try to employ variable-structure theory

and technology in PDES [4][6][7][8] to address the above

problems. Variable Structure PDES (VSP) refers to

the PDES that supports the change of structure (con-

stituent models, model ports or connections between

models) and parameter changes to well simulate CVSSs’

behavior. However, current PDES methods mostly have

two drawbacks to deal with increasingly big and com-

plex models of CVSSs [16].

(1) Current VSP methods largely overlook the effi-

ciency issues, which can lead to unbearably long simu-

lation time.

The extended formalisms of DEVS (Discrete Event

System Specification [9]) aiming to improve the expres-

siveness, such as DYNDEVS [4], DSDE [6], ρ-DEVS [8]

have been proposed to support the modeling of vari-

able structure systems. Most of these work focuses on

the theoretical aspect of VSP. Hu et al. [7] further in-

troduced the concept of variable “ports” and enabled

structure changes (reconfiguration of simulation sys-

tems) by adding extra supporting services to the DEVS-

based simulation environment. However, these work did

not adopt popular methods, such as flattened simula-

tion structure [10][11] and load balancing [12][13] to

improve the efficiency. On the other hand, the emer-

gence of multi-core paradigm provides an exciting op-

portunity to improve the efficiency of VSP, by enabling

fine-grained parallelism of code execution and support-

ing low-latency communication [16]. However, very few

research results of VSP under multi-core environments

have been done.

(2) Current PDES methods adopting multi-core tech-

nology mostly could not support the VSP.

Most cutting-edge simulation applications are try-

ing to employ high performance computing to solve

challenging problems, such as the aerospace vehicle anal-

ysis and design [14] on the Columbia supercomputer in

NASA, the earth simulator project [15] in Japan, the

human brain project in European Union. Thus it is of

great importance to improve the capacity of simulating

large-scale CVSSs by utilizing the latest technologies

of high-performance computing. The latest advances in

the PDES community such as [16][17][18][19] attempt

to exploit multi-core computers, but mostly, they can-

not support the simulation systems featuring dynamic

structure, as they cannot both allow new models and

connections to be created and added to the existing

network of models dynamically, and cannot eliminate

possible straggler events that flow through newly-added

connections.

Overall, there is a lack of flexible, efficient and sys-

tematic methods for the PDES of CVSSs to use multi-

core technology.

We only discuss conservative simulation in this pa-

per, because it is usually hard or costly to save the

whole state of models for rollbacks [20][21] that are

common in optimistic simulation, e.g. large continu-

ous models, models built by using commercial software,

legacy models or other models containing irrevocable

operations. The algorithms and methods presented in

this paper can also be applied to common PDES for

static-structure models, which can be deemed as special

cases of variable structure models. It is pervasive that

a high performance computer equips with tens or hun-

dreds of cores, which means that a computer alone can

provide powerful computing power for some large-scale

simulation applications, so we only discuss the methods

on multi-core machines, though the proposed methods

can be adapted to multi-core clusters.

The paper is organized as follows: Sect. 2 reviews

related work and existing problems. Sect. 3 briefly in-

troduces the parallel simulator-Ivy which our methods

are based on. Sect. 4 and 5 elaborate on the detailed

methods. Sect. 6 presents the experiment result. Fi-

nally, Sect. 7 gives the conclusion.

2 Related work and existing problems

The physical system is viewed as comprising some num-

ber of physical processes (PPs) that interact in some

fashion [21]. Each PP is modeled by a Logical Pro-

cess (LP) and interactions between PPs are modeled

by exchanging time-stamped messages between the cor-

responding LPs. Thus a PDES of the physical system

is typically composed of a collection of collaborative

LPs. Each LP performs computations to process events,

leading to the modification of state variables and/or

the scheduling of new events for itself or other LPs.

If a LP at simulation time T can only schedule new

events with time stamp of at least T + L, then L is

referred to as the lookahead for that LP. The Lower

Bound Time Stamp (LBTS) of a LP is essentially the

smallest timestamp of events that may be received in

the future. If events within each LP have been processed

in time stamp order, then it is sufficient to ensure that

the parallel simulation will produce exactly the same

results as the corresponding sequential simulation [21].

This is the theoretical basis of PDES.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 3

2.1 Variable structure PDES

DYNDEVS and its simulator [4][22] can only support

the creation and the removal of models and connections

between models. Uhrmacher et al. [8] proposed a new

formalism ρ-DEVS by extending DYNDEVS with vari-

able ports. Muzy and Zeigler [23] proposed a coherent

framework for common dynamic structure formalisms.

Barros [24] compared the advantages of centralized and

distributed policies to enforce dynamic structures. How-

ever, these works did not discuss the efficiency aspect of

their hierarchical simulation approaches [10][11], such

as flattened execution structure and load balancing.

Moreover, they cannot take full advantage of multi-core

architectures. To the best of our knowledge, our work-

Ivy [25] is the first high performance simulator that is

capable of VSP on multi-core machines.

Thus, an efficient method, supporting comprehen-

sive structure changes in a distributed way, a central-

ized way, or a hybrid way, should be developed.

2.2 High performance simulator

2.2.1 Execution architecture

ThreadedWarped [26] adopted a master-slave architec-

ture: a manager thread, a global event queue of the

simulation objects and several worker threads. Vitali

et al. [27] presented a load-sharing approach by allo-

cating the computing power to multi-threads dynam-

ically. Chen et al. [28] proposed a global scheduling

mechanism using several event lists and several active

worker threads, each of which selects and processes the

earliest event in current event lists repeatedly. Tang

et al. [19] proposed a hierarchical parallel simulator

(for multi-core clusters) which schedules LPs to pro-

cess safe events in parallel with multi-threaded Oper-

ating System Processes (OSPs). The hierarchical ar-

chitecture consists of the OSP level and the thread

level. Wang et al. [16] proposed a thread-based simula-

tor ROSS-MT that can avoid multiple message copying

in the same OSP. Lin et al. [17] introduced an opti-

mistic and thread-based simulator which creates sev-

eral priority queues within one OSP and maps a sub-

set of the threads to a single queue to decrease the

contention and improve performance. Bauer et al. [18]

proposed a technique to control optimism of PDES in

which each LP continuously communicates time esti-

mates of its next k outgoing inter-LP events to its neigh-

boring LPs and uses time estimates from its neighbours

as bounds for its time advance. However, most of these

simulators [16][17][18][26][27][28] adopts optimistic syn-

chronization algorithms and we could not find evidence

that these simulators allow new LPs and connections to

be established and added to the existing network of LPs

during the execution and contain proper mechanisms to

deal with possible straggler messages sent through new

connections.

2.2.2 Time management algorithm

Conservative simulation strictly avoids any occurrence

of causality errors, so time management algorithms need

to determine whether the events are safe to process.

There have been many conservative algorithms [29],

most of which are based on lookahead and LBTS. How-

ever, common conservative algorithms are not applica-

ble to the VSP, as when new directed connections are

added, the downstream LPs may receive events with

past time stamps. This should be addressed to guar-

antee all the events of each LP are processed in time

stamp order.

As for the efficiency aspect, more related researches

are [19] and [30]. Peng et al. [30] adopted a multi-

threaded architecture for each federate, but the infor-

mation of all sub-models in a federate are needed to

compute unified LBTS for all these sub-models. Tang

et al. [19] proposed a similar algorithm to compute ap-

proximate LBTS in an asynchronous way. The thread

that has finished the processing of current safe events

for its models will seek to acquire the unique handle

to initiate the computation of new approximate LBTS

and then share the LBTS inside the federate. However,

these two methods largely ignore the model structure

(could not capture structure changes) and thus con-

strain the extraction of inherent and dynamic paral-

lelism among models, especially when the lookahead

of models differ greatly and the models are sparsely

connected. Some work uses application-specific infor-

mation, such as model structure, to improve the perfor-

mance of conservative algorithms, but they cannot cope

with minor changes to the model [29]. We have not yet

seen application-independent algorithms that are capa-

ble of using model structure to extract the parallelism

of models.

Thus a multi-threaded simulator with good time

management algorithms is preferred in order to gain

good performance.

2.3 Load balancing

Load imbalance on multi-cores can lead to severe degra-

dation of the system performance [31], as the risk of

blocking fast LPs for a long time to wait slow LPs

greatly increases in conservative simulation. Research

on load balance of PDES can be broadly divided into

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Chen Yang et al.

two categories: (1) metrics for detecting load imbal-

ances and deciding about LP movements; (2) protocols

or mechanisms to support load migration.

For the first set, there have been many algorithms

[13]. Glazer and Tropper [32] proposed the simulation

advance rate, which is calculated using the CPU al-

location and the virtual time advance of processors.

Jiang et al. [33] generalized Glazer’s algorithm by con-

sidering heterogeneous processors and background load.

Peschlow’s metric of computation load [31] depended

on the number of events processed and the effective

time advance. The model structure/interaction can be

used to build model groups to facilitate load balanc-

ing [36][37]. Overall, these work largely has an underly-

ing assumption that the structure of simulation systems

does not change. Structure changes require that loads

of new models are considered and evaluated, and loads

of removed models are neglected, to get a precise load

distribution, so current metrics need to be extended.

For the second set, comparing with current load bal-

ancing methods among nodes or CPUs, balancing load

among cores allocated to an OSP does not necessarily

mean copying and transferring of model state, as LPs

can be created as shared models inside an OSP. Then

the efficiency of load balancing can be substantially im-

proved with proper algorithms. A more related work is

[30]. Peng et al. [30] proposed a preliminary load balanc-

ing method by transferring the state of models between

threads in an OSP, but this can be time-consuming

when a large number of LPs need to be migrated.

Besides, PDES of CVSSs needs the capability of dy-

namical addition and release of computing resources.

Basically, the quantity of processor time required to

process an event for a LP may change during the simu-

lation, and so does the event population. Dynamic ad-

dition (or removal) of models to (from) the simulation

system for CVSSs further makes such functions more

significant, because of load changes. Vitali et al. [27]

and Carothers et al. [38] did some useful work on this

aspect, but they did not address the problems caused

by structure changes, for example, how to evaluate the

load of new models and how to detect internal workload

imbalances caused by a sharp change in the simulation

communication pattern.

To address the above problems, a parallel simulator-

Ivy and a high efficient load balancing method on multi-

core machines are proposed, based on our initial work

in [25] and [39]. Adopting our method, Ivy can support

dynamic structure in a distributed, a centralized, or a

hybrid way; deep extraction of the parallelism between

models; and fine-grained parallel execution of models.

Moreover it can migrate unbalanced load between cores

without pausing the whole system and without copying

the state of LPs, and can add or release cores on de-

mand. The comprehensive experiment shows that our

simulator can achieve better performance.

3 Introduction of Ivy under multi-core

environments

3.1 Basic principles of Ivy

We have proposed a parallel simulator-Ivy under multi-

core environments to enhance the ability to naturally

and effectively simulate CVSSs which are normally large

in scale [25]. Component-based models in Ivy’s model

base are named as Simulation Component Models (SCMs),

which can be instantiated with initial parameters into

different Component Model Instances (CMIs). A stan-

dard framework of the SCM is defined in [25] to guide

the implementation of formal SCMs. A standard SCM

mainly includes a unique ID, a user model, common

attributes, and management interface. The user model

can be any domain model built by users for their speci-

fied business. The common attributes include input/output

ports, simulation time, lookahead, and input/output/waiting

event lists. The management interface contains the com-

mon interface that is necessary for Ivy to schedule CMIs.

Variable structure of a simulation system includes

the change of model ports, constituent models and con-

nections between models. Basic principles of structure

changes are as the following.

Different data protocols that a CMI uses to commu-

nicate with others are abstracted as ports, in order to a)

increase the simulation capability for variable-structure

systems, and b) loose the coupling between CMIs and

improve model reusability. The port lists and the cor-

responding operation methods (addPorts and remove-

Ports in model’s unified management interface MgrIn-

terface [25]) are formally included in the model imple-

mentation to support variable ports. Via variable ports,

significant changes inside the models can be signalized

to the external world, which is particularly important

in the molecular biological domain [8].

The interaction between CMIs can be described by

oriented connections between ports of CMIs. Directed

connections are independent from model implementa-

tions, but it should be guaranteed that the type of

source ports match that of destination ports. The change

of connection relationships between models can be used

to naturally simulate the change of the system network,

which can help to study complex systems with variable

interaction structure.

After all connections related to a model are removed,

the model can be removed to change the component

parts of the simulation system. Similarly, models can

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 5

Fig. 1 Variable interaction structure

join the simulation if they are created, and the re-

lated connections and the model references are added

to the connection management and Simulation Engine

Instances (SEIs, see Sect. 3.2) respectively. However,

when necessary, some inactive models can be kept in

the heap and later initiated as new models to deal with

the frequent change of models in the system, in order

to improve the performance of dynamic structure sim-

ulation.

Example Airplanes will normally fly across different

air-traffic-control areas and need to interact with dif-

ferent control centers to guarantee a safe flight. This

can be naturally modeled by changes of connections

between airplane models and control center models (cf.

Fig. 1). Airplanes will fly over an air-traffic-control area

when it becomes far enough. If the attention is paid to

the operation of only one air-traffic-control center, then

the airplane models should be added to or removed from

the simulation system.

3.2 Multi-thread execution architecture and life-cycle

The multi-thread execution architecture of Ivy is shown

in Fig. 2. Ivy and models-CMIs compose the simulation

system. Ivy executes as an OSP, which creates a collec-

tion of thread-level SEIs. One or more CMIs, which

are initiated from the SCM base and allocated to a

SEI, form the CMI-reference list of that SEI. The SEIs

are created in the form of threads to schedule CMIs on

their own CMI-reference list. To efficiently support sim-

ulation of variable structure systems, Ivy provides five

kinds of core services: object management, connection

management, simulation engine instance management,

time management and load balance management, by

making good use of the multi-threaded paradigm and

the communication mechanism based on shared vari-

ables. The main thread controller-actually the main

thread of the OSP is designed to respond to user re-

quests, and to configure and control the simulation ex-

periment using the above core services of Ivy.

The life-cycle of Ivy, represented mainly by the main

thread controller and the SEIs, is discussed as follows:

Fig. 2 Multi-thread Execution architecture of Ivy

3.2.1 Main thread controller

The main thread controller initiates Ivy’s core services,

which play their roles as the following:

(a) Object management loads the SCMs and instanti-

ates them as the CMIs according to the application

demand. Object management can create or delete

the CMIs dynamically, when the components of the

simulation system needs changed.

(b) Connection management initiates the network of

the simulation system by loading the interaction

model of the system and maintains directed con-

nections between ports of the CMIs.

(c) Simulation engine instance management creates, ini-

tializes, starts, pauses and terminates the Simula-

tion Engine Instances (SEIs). The SEIs schedule

the event-processing of the CMIs in parallel and

are responsible for passing events according to di-

rected connections. Time management is utilized to

synchronize the CMIs in the simulation system.

(d) Load balance management migrates the CMIs be-

tween the SEIs, or even employs SEI management

to release certain in-use cores or add additional

cores on demand, in order to improve the efficiency

of the collaborative scheduling of the LPs on cores.

3.2.2 Simulation engine instance (SEI)

Once created, a SEI will schedule the CMIs on its CMI-

reference list repeatedly. The SEI will:

(a) Schedule the next CMI on the list to calculate the

LBTS of the CMI and read safe events from the

CMI’s inputList to waitingList under the control of

the LBTS,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Chen Yang et al.

Fig. 3 Locks used in Ivy

(b) Sort events in waitingList of the CMI in time stamp

order,

(c) Schedule the processing of the earliest event in wait-

ingList,

(d) Advance CMI’s simulation time to the timestamp

of the processed event,

(e) Send newly scheduled events caused by event pro-

cessing to inputList of the destination CMIs, accord-

ing to connections.

(f) Repeat step (c)-(e) until no events exist in wait-

ingList, otherwise go to step (a).

4 Efficient structure change and time

management algorithm

Sect. 4.1 introduces how dynamic and distributed struc-

ture changes of models are achieved. Sect. 4.2 presents

the synchronization algorithm for VSP, but we only

elaborate on how it correctly synchronizes the models,

exploits the fine-grained inherent parallelism between

the models and achieve the deadlock avoidance, in the

static-structure simulation system. Then based on the

results in Sect. 4.2, Sect. 4.3 further discusses how the

proposed algorithm and extra mechanism work in VSP,

for example how the deadlock is avoided in VSP.

4.1 Dynamic and distributed structure change

Due to dynamic structure, multiple threads may try to

read and modify the same information of the simula-

tion system simultaneously, so locks are used to guar-

antee safe concurrent access to the shared resources

among threads [25]. We made some optimizations by

redesigning some data structures and removing some

locks based on [25].

Table 1 Locks used in Ivy

Lock
Name

Locked Object Affiliated
To

Contention
By

CRL RW lock CMI-reference list SEI MTCb, SEIs, LBc

IPL RW lock input port list CMI MTC, SEIs
OPL RW lock output port list CMI MTC, SEIs
IEL RW lock input (event) list CMI MTC, SEIs
TV RW lock time variable CMI MTC, SEIs
CC RW lock CMI connections CMa MTC, SEIs

a CM denotes Connection Management.
b MTC indicates Main Thread Controller.
c LB represents Load Balance management.

The locks (cf. Fig. 3) are used to avoid resource

contention. All these locks are readers-writer locks. A

readers-writer lock allows concurrent access for read-

only operations but requires exclusive access for write

operations.

4.1.1 Control of structure change

As shown in Fig. 4, the models in a simulation system

can be divided into several groups, in each of which a

control model of variable structure is responsible for is-

suing orders of structure changes. Each SEI acting as

a scheduling center for its CMIs, can execute structure

changes under the regulation of related locks, so the

structure can be changed in a distributed and concur-

rent way. If only the models (or even only one model)

scheduled by a certain SEI are programmed with the

structure-change ability, then the structure change will

be performed in a centralized way. Another extreme

would be that each model is only responsible for struc-

ture changes related to itself, like an agent in complex

systems.

Fig. 4 Distributed control of variable structure

IPL RW lock and OPL RW lock can ensure safe con-

current access to the input port list and the output port

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 7

list respectively. The addition and removal of model

ports are used to simulate the evolving phenomenon

of subjects with new output/input. Port changes can

be initiated by the CMI itself to exhibit internal state

changes by different ports (i.e. reflection [4][8]), or even

by other CMIs to exert external influence.

Connection management uses CC RW lock to con-

trol reading and writing operations of connections among

models. Current connections to a CMI are utilized to

acquire the simulation time and lookahead of CMIs

on the other side of those connections to compute the

LBTS of that CMI. With CC RW lock, connections can

be changed without interrupting the execution of unre-

lated CMIs, while the potential risk of access violations

is eliminated. When connections are being changed,

read operation will be suspended until the alteration

has been finished and vice versa, but multiple read op-

erations on connections are allowed.

CRL RW lock and certain procedures are proposed

to guarantee the safe removal and addition of CMIs.

Three steps to remove a CMI include: 1) delete the

reference of this CMI from the CMI-reference list of a

certain SEI, 2) delete related connections of the CMI,

and 3) delete the CMI. The process to add a CMI is

largely reversed except some special treatment on time

management is needed (see Sect. 4.2).

4.1.2 Efficiency and flexibility of variable structure

Our proposed method can achieve smooth and safe struc-

ture changes with little intervention, instead of pausing

the whole simulation. For large-scale simulation run-

ning on tens or hundreds of computing nodes, this can

substantially improve the efficiency, due to that any

unrelated CMI can be scheduled normally. As stated in

[40], variable structure model can make the simulation

more efficient, due to the focus only on active models

without the burden of all models always active in the

system. However our work is a starting point, more re-

search effort should be paid to gain higher efficiency.

The method also exhibits good flexibility for users

to simulate the complex system: support both the dis-

tributed way and the centralized way (autonomy and

control [41]) to change model structures. The way and

algorithms to control structure changes are leaved to

users. Comparatively, Barros [6] defined the dynamic

structure system network using the DEVS formalism,

but the work based on the vision of an executive that

resides as a kind of all-mighty atomic model in the

coupled model [42], showed limited capability to deal

with complex systems that consist of autonomy entities

and is essentially a centralized mechanism of controlling

structure changes [43].

4.2 Time management algorithm

Only the CMIs that have connections to CMI i cur-

rently are considered to compute LBTS(i), as only the

CMIs that send events to CMI i can affect the time ad-

vance of CMI i. The influence of structure changes on

time management is ultimately reflected on the change

of connection relationships. Thus LBTS(i) can be com-

puted, according to the current connection relationship,

as

LBTS(i) = min{T (j) + LA(j)} (1)

in which CMI i receives messages from CMI j, LA(j)

is the lookahead of CMI j, and T (j) is subject to the

constraint (Tc(j) is the current simulation time of CMI

j):

T (j) =

{
Tc(j) if processing safe events

LBTS(j) if no safe events
(2)

The transient messages do not exist in Ivy, because

the scheduled events (actually the references to these

events) are directly written into inputList of destination

CMIs and the SEI thread in charge of sending an event

will never return until the write operation is finished.

4.2.1 Correct synchronization of the static-structure

model

We will first check whether the above algorithm can

correctly synchronize all CMIs in the static-structure

system. To facilitate the proof, we define the following

variables:
Ta: the timestamp of event a sent to CMI i

Tb(i, j): the timestamp of event b sent from CMI i to

CMI j

Tc(i), Tc(j): the current time of CMI i, CMI j

LA(i), LA(j): the lookahead time of CMI i, CMI j

Event b is scheduled by CMI i, after the process of any

event a. Assume b should be sent to CMI j, in other

words CMI j receives messages from CMI i. so

Tc(i) = Ta (3)

Tb(i, j) ≥ Tc(i) + LA(i) (4)

Tc(j) ≤LBTS(j)

=min{T (m) + LA(m)}
≤Tc(i) + LA(i)

(5)

CMI i advance its current time to Tc(i), after event a

is processed, i.e. Eq.(3). CMI i can only schedule events

with time stamp not less than Tc(i)+LA(i), i.e. Eq.(4).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Chen Yang et al.

Because there are no transient messages that arrive

with the past time stamp, and the scheduling of events

is constrained by Eq. 1 and 2, so Eq. 5 is correct. m

refers to any model that has connections to model j.

So Tb(i, j) ≥ Tc(j), i.e. CMI j will not receive straggler

messages. Then by processing received events in time

order, CMI j conforms to the local causality constraint

[21]. Event a is scheduled to CMI i, so it can be proofed

that CMI i conforms to the local causality constraint

similarly. Thus all CMIs are synchronized in the static-

structure system.

4.2.2 Fine-grained inherent parallelism

This algorithm could exploit the parallelism by only

taking into account of related models through acquir-

ing current connection relations (by connection man-

agement) to compute the LBTS of a model. Tradi-

tional conservative algorithms base on global reduc-

tions to derive a unified LBTS, so its LBTSG equals

min{T (j) + LA(j)} , for each model j in the simu-

lation. Time advance of each model is constraint by

LBTSG, i.e. LBTS(i) = LBTSG. In our method, the

SEIs schedule the LBTS computation for their own

models in parallel. LBTSIvy(i) = min{T (j) + LA(j)},
for each model j which will send messages to model i.

Thus we can derive that LBTSIvy(i) ≥ LBTS(i) =

LBTSG, i.e. our algorithm can get the fine-grained in-

herent parallelism to facilitate parallel scheduling of

models.

4.2.3 Deadlock avoidance in the static-structure system

Conservative time management algorithms may lead to

a deadlock, manifesting that some CMIs cannot ad-

vance their local time anymore. During the period be-

tween the times of two consecutive structure changes,

the simulation system will not change its connections

and models. We will first see the properties of such

static-structure system.

Theorem 1 If the system encounters a deadlock, there

must exist cycles.

PROOF. We assume that there is no cycle in the dead-

locked simulation system. Then the system can be ab-

stracted as a Directed Acyclic Graph (DAG), in which

nodes represent CMIs and directed connections indi-

cate interaction relationship. The DAG of the simu-

lation system can be topologically sorted as a linear

array, so that if the array is aligned in a row, all con-

nections (edges) are directed from the left nodes (ver-

tices) to the right ones. The nodes in the n-th posi-

tion are denoted as CMI n. Intuitively if the upstream

nodes (actually CMIs) do not stop the time advance,

the downstream nodes will not encounter a deadlock in

a DAG using our proposed algorithm, because the up-

stream senders (nodes) that eventually advance their

local time make LBTS of the downstream nodes be-

come larger and larger, so that the downstream nodes

can also advance to anywhere in the future in a finite

amount of time. We will proof it strictly as the follow-

ing.

Lemma 1 Any CMI n can advance to anywhere in the

future in a finite amount of time, if the simulation is

not over.

The lemma can be translated into the mathematic de-

scription as:

Lemma 2 Given any M > 0, a TM , subjected to TM >

0, can be found, so that after the wall clock time TM ,

the virtual time of CMI n, T (n) > M .

PROOF. Strong induction is used to proof this lemma.

Basis: n = 1, CMI 1 has no senders, so LBTS(1) =

+∞. If there are unprocessed events, it is safe to process

them without a deadlock and eventually advance its

local time to anywhere in the future if the simulation

is not over. If no events exist, T (1) = LBTS(1) = +∞.

Thus Lemma 2 holds for n = 1.

Induction step: assume Lemma 2 holds for n ≤ m.

When n = m+1, given anyM(m+1) > 0, LBTS(m+

1) = min{T (h) + LA(h)}, for any upstream CMI h

(0 < h ≤ m) that connects to CMI m+ 1.

According to the induction step, for any δ > 0,

M(m + 1) + δ > 0, a TM (k) > 0 for each CMI k(0 <

k ≤ m) can be found, so that after TM (k), T (k) >

M(m+ 1) + δ.

We set T ′
M = Max{TM (k)|0 < k ≤ m}, so after T ′

M ,

T (l) > M(m+1)+δ, for any CMI l that 0 < l ≤ m. And

we assume that CMI p has the smallest T (p) + LA(p)

among CMI l that 0 < l ≤ m.

Then

LBTS(m+ 1) =min{T (h) + LA(h)}
>min{T (l) + LA(l)}
=T (p) + LA(p)

>M(m+ 1) + δ

(6)

so CMI m + 1 can process any events with timestamp

less than M(m+1)+δ. When no events exist, according

to Eq. 2 and Inequ. 6,

T (m+ 1) =LBTS(m+ 1)

>M(m+ 1) + δ

>M(m+ 1)

Thus for n = m+ 1, Lemma 2 holds.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 9

Thus using strong induction, we can infer that the

lemma holds. So for any CMI, if any event exists, it will

be processed after a finite amount of time. This contra-

dicts to the deadlock assumption. So alternatively there

must be cycles in the deadlocked system.

Lemma 3 Upstream nodes not on cycles can advance

to anywhere in the future in a finite amount of time.

PROOF. These nodes and their upstream nodes consist

of a DAG, so the lemma can be deduced from lemma

1.

Theorem 2 With our time algorithm there is no dead-

lock on cycles.

PROOF. Assuming that there are unprocessed events,

and one of the earliest events is contained in CMI i.

Due to the constraint of LBTS, no event can be safely

processed. So T (k) = LBTS(k) = min{T (l) + LA(l)},
for any CMI k on cycles.

When deadlocking,

LBTS(i) =min{T (j) + LA(j)}j→i

=T (k) + LA(k)

=min{T (l) + LA(l)}l→k + LA(k)

= · · ·
=LBTS(i)latest + LA(m) + · · ·+ LA(k)

(7)

Because all the upstream nodes can have enough big

LBTS after some time, so when deadlocking, all CMI

j in Eq. 7 belongs to the cycles. Due to finite nodes

on the cycles, the node that determines the time ad-

vance of its direct downstream nodes can be ultimately

traced to CMI i itself. If any CMI on the cycle has

LA(j) > 0, LBTS(i) can increase gradually and its un-

processed events will certainly be processed after some
time. Thus the earliest time of events on the cycles in-

creases. This contradicts with the assumption that the

system is deadlocked. So no deadlock exists on the cy-

cles. We can infer from the process of proof that this

efficient algorithm has the same restriction as the null

message algorithm: there should be no zero-lookahead

cycle [21].

Theorem 3 Downstream nodes will not encounter a

deadlock.

PROOF. Due to the incremental simulation time of

nodes on the upstream and cycles, it can be easily in-

ferred that with enough time advance of nodes on the

upstream and cycles, the downstream nodes can process

any future event. So theorem 3 holds.

If all the nodes do not have events to be processed,

then the simulation ends. Otherwise all the nodes can

process any future event after a finite amount of time,

i.e. the simulation system adopting our time manage-

ment algorithm can avoid the deadlock.

4.3 Relations between time management and dynamic

structure

Connection relations are the core part of the time man-

agement shown in Sec. 4.2, as the algorithm acquires

the set of models-CMI j only through directed connec-

tions. The set of models-CMI j in the Eq. 1 may change,

due to the change of connections.

4.3.1 Dynamic parallelism

When the interaction structure changes, new parallelism

(we call it dynamic parallelism) may emerge. For exam-

ple, when an airplane flies over an air control area, the

interaction between the airplane model and the control

center model does not exist anymore, and thus the two

models can be scheduled totally in parallel. Our algo-

rithm deals with such situation in the way that if some

connections to CMI i are removed, the CMIs on the

other side of these connections are no longer consid-

ered to compute LBTS(i), so that such dynamic paral-

lelism between CMI i and other CMIs can be naturally

acquired. The effects of removing the CMIs on time

synchronization are indirectly exerted by the removal

of related connections. The removal of senders (CMIs)

or connections only makes time constraint on recipients

(CMIs) relaxed, so the normal scheduling of recipients

is not influenced.

4.3.2 Special treatment on new connections

The removal of connections or models increases the par-

allelism between models, while the addition of connec-

tions or models might bring straggler events or lead

to sudden decreases of the LBTS of the downstream

models. Actually, an optimistic algorithm can deal with

straggler events by the rollback mechanism to guar-

antee strict synchronization, but it is impractical for

many reasons (see Sect. 1). Normally, in conservative

simulation either receivers or senders are constrained

to eliminate straggler events [21]. In the first approach,

receivers are prevented from advancing too far ahead of

all potential sending models, so that receivers will not

receive messages in their past. However, the assumption

of this method is that we know all potential senders for

any receiver in advance. Even if such assumption holds,

receivers will advance slowly by taking account of all

potential senders. The window-based method described

in [21] is an extreme of this approach by introducing a

time window of size Tw to prevent any LP from ad-

vancing more than Tw units of time ahead of any other

LP. The second approach allows LPs with greater flex-

ibility to advance further ahead of others but provides

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 Chen Yang et al.

less control due to, in general, no limit on how large

TR − TS (the initial lookahead on the new connection)

can be [21], but lookahead has to be changed to the nor-

mal value after the initial transition period. Rajaei et

al. [44] proposed an idea by delaying the timestamp of

straggler messages (to be not smaller than the current

time of the receivers-CMIs) without the modification of

lookahead.

Comparatively, we define two kinds of events: the es-

sential and the non-essential events. The essential events

can exert significant effects on other models, while the

non-essential events are kinds of events that can be

discarded like in the parallel discrete event simulation

of continuous systems [20], for example the periodi-

cal state-reporting events. Events with time stamp less

than the simulation time of a CMI can either be adopted

by delaying its time stamp like in [44] (or even NO-

TIME, NOTIME which accepts straggler events as cor-

rect is another extreme algorithm without any synchro-

nization [45].) or simply be discarded according to the

tag that denotes the significance of the event. Our al-

gorithm leaves this kind of decisions to users and Ivy

can automatically dispose straggler events when read-

ing input events of a model.

A more recent method [20] only stores the straggler

event with the latest timestamp for each input port of

a LP and the arrival of a new message will override the

event no matter if the LP was able to read it or not.

Ivy can also support this method simply by removing

straggler input events except the latest one when read-

ing the input events from inputList for a LP.

The effect caused by a sudden decrease of LBTS

of downstream models can be eliminated by discarding

the decreased LBTS and keeping the old one. When the

smaller LBTS is not accepted, the corresponding CMI

will not be able to advance and will wait until its new

senders advance to proper time (under the constraint

of Eq. 1). Time advance of the new CMIs is driven by

the processing of received events.

4.3.3 Deadlock avoidance in the dynamic-structure

simulation system

Sect. 4.2 presents that our time management algorithm

can guarantee the deadlock avoidance of static-structure

simulation systems, which can actually be considered as

variable-structure systems during the period between

two consecutive structure changes. After new connec-

tions or models are added, the immediate downstream

models may be affected, not being able to get a bigger

LBTS to advance their simulation time by processing

future events. But once the structure has changed and

before the next structure change happens, no matter

where the earliest events exist (on the circle or not),

the minimal simulation time (or exactly LBTS) of all

models in the simulation system, behaving like a static-

structure system, will continue to advance in order to

process the earliest events, so the variable structure

system adopting our time management algorithm can

avoid the deadlock naturally.

5 Dynamic load balancing of variable structure

simulation systems

5.1 Dynamic load balancing mechanism

Two mechanisms are proposed to achieve high efficient

load balancing (as shown in Fig. 5): an efficient mech-

anism for load migration and a mechanism that sup-

ports dynamic allocation of computing resources. The

latter one is mostly neglected by researchers, but it can

achieve high utility of computing resources and sub-

stantially increase the performance of simulation sys-

tems with obvious structure changes, as dynamic struc-

ture (changes of constituent models, interaction struc-

ture and model ports) can cause changes of the com-

munication or/and computation load on computing fa-

cilities, and allocating fewer cores may greatly decrease

the synchronization cost when there exist fewer mod-

els, or allocating more cores may increase the speed to

simulate more models.

Load change of the

simulation system

Change cores

dynamically

Change cores for the

simulation system?

Migrate models

among current cores

no

yes

Create new SEIs on

new cores

Migrate models to

SEIs on the

reserved cores

Migrate models

among current cores

Delete SEIs on the

cores to be released

increase decrease

Achieve dynamic

allocation of core

resource

Fig. 5 High efficient load balancing strategy

Our basic idea of the first mechanism is to separate

the necessary elements to schedule a model from the

threads, so that load migration can be easily realized

when the model as a whole is migrated. When a model

is scheduled, four kinds of elements are tightly related,

(1) input events, (2) current simulation time, (3) LBTS,

and (4) output destinations of events. The input event

queue inputList , current simulation time and LBTS of

the model are maintained inside the model, so the first

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 11

three kinds of the related elements can be migrated with

models.

The CMIs and connections are shared among all

threads (SEIs) in the OSP (Ivy). Each SEI maintains a

list of CMI references (cf. Fig. 2, Fig. 3). The CMIs can

be accessed using these references, so that the CMIs

can be traversed by a SEI to schedule LBTS comput-

ing, processing of safe events and event output in each

simulation cycle. The LBTS computation for a model is

decided by the CMIs that connect to this model. With

the help of shared connections, the information of the

sender CMIs can be acquired to compute the LBTS

and the events are output by directly inserting event

references into the input event queue of the destination

CMIs. Thus we can see that the scheduling of migrated

models is not affected, except for a short pause of their

execution. So the migration of models is simplified as

the removal of CMI references from the source SEIs and

the addition of CMI references to the destination SEIs.

Operations on the list of model references are con-

trolled by the readers-writer lock CRL RW lock. Once

the next model reference on the list is got, the SEI will

release the reader lock of CRL RW lock to schedule the

model, and then load balance management can get the

writer lock and modify the list before the SEI returns

to get the reader lock of CRL RW lock. So it is possible

that the migration of models can be done without in-

terrupting the normal scheduling of models. During the

migrating process, there is a short interval when models

are removed from the source SEI and not added to the

destination SEI. However, due to the shared connec-

tions, messages are normally received without the loss

of message and the computation of LBTS for receivers is

not affected. Thus the proposed load migration mecha-

nism can be a high efficient way for migration of models

without pausing the whole system, and without copying

and transferring of the model state.

Our method to achieve dynamic resource allocation

is to create new SEI threads or delete old SEI threads

on cores. As for decreasing the occupied computing re-

source, the first step is to migrate models from SEIs to

be deleted, and then the redundant SEIs can be safely

removed. In order to allocate more computing resource,

SEI management need create new SEI threads first and

then load balance management would migrate models

to the new SEI threads. Such adjusting processes can

be executed dynamically, which would raise the effi-

ciency of the simulation execution with little interven-

tion. Our method enables good scalability and can cope

effectively with the changing demand for the computing

resource.

5.2 Load balancing algorithm

In the multi-core era, the inter-thread communication

is extraordinarily fast (the delay is in the nanosecond

range [46]), thus the computation speed of CMIs be-

comes a primary affecting factor and the communica-

tion requirement is taken into consideration as a sec-

ondary optional factor.

Peschlow et al. [31] and Jiang et al. [33] did some

useful work on load balancing in common PDES. In-

spired by their work, a metric for fine-grained compo-

nent models is proposed by considering the processing

time of events. During a monitoring interval, TMtr, the

event set evtSet(m) for CMI m is

evtSet(m) ={evti|timestamp(evti) ∈ TM tr,
evti ∈ safeEventList(m)}.

(8)

Events in evtSet(m) are processed and Advancem is

the simulation advance of the simulation time of CMI

m. The load of CMI m is a measure of the amount of

the CPU time it needs to advance its local simulation

clock one unit. We consider only homogeneous cores in

the multi-core machines, because the metric for hetero-

geneous cores can be easily deduced like the method in

[33].

Loadm =
CPUm

Advancem

=

∑
evti∈evtSet(m) CPUm(evti)

Advancem

(9)

The load metric of LPs in [31] can be deduced by set-

ting CPUm(evti) as one to get the number of events a

LP has executed within the measurement interval. How-

ever, such metric in [31] cannot reflect the real LP load

when the processing of individual events needs very dif-

ferent CPU time. Assuming that there exist LPs whose

total number is M in the monitoring interval, and M ′

in the next interval, the mean load of the LPs and the

future total load in the next interval are defined as:

MEAN =

∑M
m=1 Loadm

M
(10)

LPsLoad =
∑M ′

m=1 Loadm (11)

The load of a new CMI is evaluated as the same as

that of a CMI that have the same template SCM, or else

is evaluated as MEAN . So the future load is the sum

of all CMIs in the system as Eq. 11. In order to reduce

the time cost of dynamic instantiation of the SCMs,

certain number of CMIs can be kept in the system (but

not in the simulation) and reused in the simulation after

re-initialized. This leaves as the future work.

The algorithm can be configured, according to the

following two situations.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Chen Yang et al.

5.2.1 Resource-constrained dynamic load balancing

It is highly possible that the available cores are limited,

due to the background load of other applications, when

the computational infrastructure is not dedicated. Due

to fluctuations of the background load, the available

cores change over time, indicated in Eq. 12. The load

distribution of the simulation also changes because of

the variation of the system constituents, reflected in

Eq. 11, so the load balancing should also proactively

eliminate such possible imbalance.

The ratio of the CPU allocation by processor n to

the total CPU allocation is

FRACn =
EffCPUn

EffCPU
=

EffCPUn∑N
j=1EffCPUj

(12)

Thus the load undertaken by processor n is defined

as

CoreAllocn = FRACn × LPsLoad. (13)

This is a classical bin-packing problem that many

bin packing algorithms can be employed, such as [33][34][35].

We have implemented one bin-packing algorithm de-

scribed in [33].

5.2.2 Dynamic load balancing with ample resources

For the multi-core machine with enough available cores,

cores can be allocated exclusively to the SEI threads.

However, too many cores may lead to costly commu-

nication overhead, as the wide distribution of LPs (ex-

treme: each LP allocated to one core exclusively) make

the inter-core communication increase greatly and the

inter-core communication brings higher latency and over-

head than the intra-core communication. More cores

also mean it takes less average time to process an event,

so the communication delay and overhead become obvi-

ous. Thus communication should not be neglected any

more.

With the help of connection management, a SEI will

schedule its CMIs to pass events to destination CMIs.

During this process, the number of events sent between

LPs can be naturally acquired to compute Eq. 16 and

Eq. 17. These data are used to reduce the communi-

cation cost on the basis of computation load balance.

The size of events is generally overlooked, because the

communication delays are more or less the same using

the shared-variable communication.

RatioSyncCost =
CommCPU

EffCPU

=
EffCPU −

∑M
m=1 CPUm

EffCPU

(14)

Where RatioSyncCost indicates the ratio of the com-

munication cost to the whole cost of CPU.

minCost =wcomm ×
Comm′

Comm
× CommCPU+

wcomp ×
Load′

Load
× CPU

CPU ′

(15)

Commm→n =
LpEventsm→n

Advancem
(16)

Commm,n = Commm→n + Commn→m (17)

Comm =
∑(SEIi,SEIj)

CMIm∈SEIi,CMIn∈SEIj
Commm,n (18)

{Comm,Load,CPU} and {Comm′, Load′, CPU ′}
are the states of the simulation system before and af-

ter dynamic balancing. Comm and Comm′ denote the

total inter-thread communication by considering inter-

actions between LPs in different SEI threads. Because

of only one single thread for each SEI, little communi-

cation cost between LPs in one SEI can be achieved.

RatioSynCost can be set before the simulation to

indicate the acceptable threshold of the communica-

tion cost. When the threshold is exceeded, the load bal-

ancing service considering both computation and com-

munication is started up. A large number of modern

computational intelligence methods can be employed to

achieve minimal cost in Eq. 15. The values of weights

and depend on the simulation application type (compu-

tation or communication intensive) and can be assigned

using experimental methods or machine learning meth-

ods.

6 Experiment and analysis

According to the standard interface defined in [25], the

port alteration methods are encapsulated inside the

model as the unique entry to modify ports, so naturally

variable ports can be supported. Our initial applica-

tion [25], in which a tanker aircraft and several normal

planes fly in formation to one remote place has vali-

dated our methods on the removal and addition of con-

nections and models. The situation is that: when a nor-

mal plane does not receive oil refueling in time, it would

land emergently on a nearby airport (exit from the for-

mation fly) and should be removed from the simulation

system; before it lands, it will request for reinforce-a

new normal plane nearby will join. We do not explain

the detailed support of structure changes in this section

any more.

The following section demonstrates another applica-

tion and its experiment results, based on Ivy. Ivy along

with the load balancing strategies has been tested to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 13

Fig. 6 An example application of the formation flight

acquire its performance on a common simulation sys-

tem and a variable-structure simulation system using a

typical scenario of the air traffic control system.

6.1 Simulation models

The simulation models are built to simulate the scenario

that multiple teams of controllers in a major airport di-

rect hundreds of airplanes to land or take off. Each team

is in charge of airplanes in certain sector airspace that

can be scanned with radars. The airplanes enter or de-

part from the controlled airspace when their distances

with the control tower are less or more than 80km. The

simulation for this scenario includes the change of air-

plane models and related connections in the simulation

system. The simulation system consists of one schedul-

ing center, several teams of controllers and hundreds of
airplanes. The landing or taking-off plan of airplanes

are made by the scheduling center. Multiple teams of

controllers are responsible for coordination between air-

planes and the scheduling center. The airplanes are

randomly generated and they join the simulation to

simulate the entrance of airplanes into the controlled

airspace. After landing, the airplane will stay in the air-

port for different time intervals, take off and ultimately

depart from the controlled airspace, which is simulated

by the removal of airplane models. The time interval is

drawn from the same normal distribution with a stan-

dard deviation of 10%. The constituents and the inter-

action structure of the whole simulation system can be

abstracted as Fig. 7.

6.2 Testing environment and results

All experiments were performed on a high performance

multi-core machine with four way 3.07GHz Intel Xeon

Fig. 7 Model of the air traffic control in an airport

CPU X5657, 24G RAM to test our work on the capa-

bility of dynamic structure and load balancing among

cores. Each CPU contains 6 cores, so 24 independent

threads at most can be created to execute exclusively

on different cores. We have created 500 entities includ-

ing 1 scheduling center model, 4 team models and 495

airplanes. The event-processing time for models was

randomly generated among [1ms, 100ms] and saved to

simulate different computation requirements of event

processing. Ivy and 500 models executed as an OSP

holding 4, 8, 12, 16 and 20 threads respectively on the

dedicated multi-core machine. The system ran for the

wall-clock time 10 hours each. Two kinds of conditions

are set, 1) the system constituents of the system is do

not changed during the system execution; 2) the sys-

tem constituents of the system is changed dynamically.

Because there are enough available cores, the second

method is adopted and the values of weights wcomm

and wcomp are firstly set as 1 and 10 respectively ac-

cording to our empirical analysis. The cores allocated

to the simulation are not changed in this test. The com-

prehensive experiment covering more applications with
the function of dynamic core allocation is the next focus

of our work.

6.2.1 Load balancing of the normal simulation system

At the beginning, models are scattered evenly among

threads on cores. We set the radius of the controlled

airspace as an extraordinarily big value. The airplanes

are generated at the beginning and randomly distributed

in the controlled airspace, so that during the experi-

ment, the constituents and interaction structure of the

simulation system were not changed. The results of the

experiments with/without load balancing are shown in

Fig. 8.

Comparing with the results of the experiments with-

out load balancing, the average performance by adopt-

ing our load balancing method has been improved by

16.05% (cf. Table 2). With the increase of the thread

number, our algorithm can achieve better performance,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Chen Yang et al.

Table 2 The Performance Improvement

System
Configura-
tion

Thd
4

Thd
8

Thd
12

Thd
16

Thd
20

Aver

Performance
improvement

0.0868 0.1610 0.1769 0.1861 0.1918 0.1605

Table 3 The Performance Improvement

System
Configura-
tion

Thd
4

Thd
8

Thd
12

Thd
16

Thd
20

Aver

Performance
improvement

0.1352 0.1974 0.2695 0.2848 0.2795 0.2333

because load balancing is increasingly important when

there exist many collaborative working threads and the

efficiency can be extremely low when the load discrep-

ancy is large. Thus we can see that adopting our balanc-

ing method can upgrade the performance of the com-

mon simulation system.

Fig. 8 Experiment results of common simulation

6.2.2 Load balancing of the dynamic-structure

simulation system

To enable variable structure, the radius of the con-

trolled airspace was set as a normal value-80km. The

airplanes were created to join the simulation and deleted

from the simulation dynamically. The airplane would

fly in the controlled space and stay in the airport after

landing. The comparing experiment results are shown

in Fig. 9.

From Table 3, we can infer that our method works

well as the number of cores increases. Comparing with

the results of the experiments without load balancing,

the average performance improvement through adopt-

ing our load balancing method can be 23.33%, which is

Fig. 9 Experiment results of variable structure simulation

better than the results for the normal simulation sys-

tem. With the increase of the thread number, our al-

gorithm can achieve better performance. Thus we con-

clude that adopting our balancing method can upgrade

the performance of the variable-structure simulation

system.

6.3 Comparison with other implementations

We further compare our simulator with ROSS-MT [16],

NTW-MT [17], Adevs [11] based on dynDEVS and DE-

VSJAVA3.0 based on [7] in terms of runtime model

structure, scheduling of models, variable-structure ca-

pability, and load balancing in Table 4. As for the run-

time model structure, only Adevs [11] and Ivy adopt

the flattened one, which can improve efficiency by (1)

eliminating unnecessary simulator and coordinator ob-

jects, and unnecessary internal synchronization mes-

sages, and (2) avoiding unnecessary event routing mes-

sages. From the perspective of time management al-

gorithm, ROSS-MT and NTW-MT use optimistic and

global induction based time warp mechanism, which

does not consider the model structure. Adevs and DE-

VSJAVA3.0 are conservative and DEVS based, in which

the model structure is only used to compute the global

LBTS. In constrast, Ivy which is conservative, uses the

model structure to extract the inherent parallelism by

considering the related “sender” models only and nat-

urally capture the dynamic parallelism caused by the

change of interaction relations, to facilitate the paral-

lelization of model executions (See Sect. 4.2 and 4.3).

Concerning the scheduling of models, Ivy, ROSS-MT,

and NTW-MT adopting the multi-thread paradigm can

fully exploit multi-core machines by fast communica-

tion (e.g., using shared parameters and events, or point-

ers between threads). Ivy can further use the fine-grained

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 15

Table 4 Comparison between simulators that support variable structure

Item ROSS-MT NTW-MT Adevs DEVSJAVA3.0 Ivy

Runtime model
structure

Flattened Flattened Flattened Hierarchical Flattened

Time
management

algorithm

Optimistic,
Global induction
based, ignoring

interaction
structure

Optimistic,
Global induction
based, ignoring

interaction
structure

Conservative,
Using interaction
structure to do
global induction

Conservative, Using
hierarchical

structure to do
global induction

Conservative, fully
distributed,

exploiting model
structure

Scheduling of
models

Parallel by using
threaded
processes

Parallel by using
threaded
processes

Parallel by using
threaded
processes

Parallel by using
threaded processes

Highly parallel by
using threads &

extracted
parallelism

Variable-
structure

ability

No support No support variable models
(static ports),
connections

variable models
(variable ports),

connections

variable models
(variable ports),

connections
Load balancing No support No support No support Part support Full support

(higher) parallelism to increase the performance. More-

over, Ivy’s time management algorithm is implemented

in a fully decentralized way, as SEIs will schedule each

CMI to compute its LBTS when the CMI does not have

safe events to process. In the case of variable-structure

capability, only DEVSJAVA3.0 and Ivy can comprehen-

sively support the change of constituent models, model

ports and connections. As for the load balancing ability,

ROSS-MT, NTW-MT and Adevs do not support load

balancing (at least, we have not seen the related lit-

erature). DEVSJAVA3.0 supports model-continuity for

automatic migration to distributed execution, but the

method of migrating models is not fully optimized to

make full use of multi-core architecture. Also it is not

able to evaluate the load of new models and neglect

the load of removed models, after the structure change.

Comparatively, Ivy can fulfill such gap. Overall, Ivy has

advantages on several aspects to perform the simulation
of large-scale CVSSs efficiently. More detailed compar-

isons of experimental results between these simulators

are leaved as our next step work.

7 Conclusions and remarks

In this paper, an advanced parallel simulator with load

balancing strategies is proposed to support large-scale

variable structure simulation. To substantially improve

the capacity of simulating large-scale CVSSs, four as-

pects of contributions are made:

– Support flexible structure changes of the simulation

system. A natural and effective method for building

modular models of the CVSSs and a corresponding

lock-based concurrent execution approach are pro-

posed, so that safe, flexible and dynamic structure

changes of the coupled model, with little interven-

tion to the simulation execution, are achieved. The

changes of model ports, connections and composi-

tion are comprehensively supported. Readers-writer

locks are employed to guarantee the safe concur-

rency among all operations related to distributed

structure changes and trajectory simulations.

– Exploit the parallelism to a large extent between sim-

ulation models. We propose a connection-based time-

management algorithm that can extract the inher-

ent parallelism by considering the related “sender”

models only and naturally capture the dynamic par-

allelism caused by the interaction structure change,

to facilitate the parallel execution of models. Then

the algorithm’s ability to correctly synchronize all

models is proofed. Using the strong induction, we

further proof that the algorithm enables deadlock-

free scheduling of models.

– Take full advantage of multi-core machines. The multi-

threaded paradigm is adopted to substantially uti-

lize abundant computing cores and low communi-

cation latency among cores, in order to efficiently

schedule simulation models in fine-grained parallel.

– Guarantee the load balance among tens or hundreds

of cores. We propose an efficient dynamic load bal-

ancing method, which can migrate models among

cores with very low cost (only migrating model ref-

erences) and change the set of cores utilized by the

simulation dynamically on demand, to address the

load imbalance problems of variable-structure sim-

ulation. Using the proposed method, the unrelated

SEIs are not interrupted to schedule their models.

Structure changes are considered in the load balanc-

ing metrics, e.g. evaluating loads of new models, to

get the exact the computation/communication load

of variable structure simulation.

Based on our developed simulator Ivy and the load

balancing strategies, an application example is given.

The simulation results show that our methods (flexible

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 Chen Yang et al.

structure-change mechanism, dynamic-parallelism ex-

traction, fine-grained parallelization on multi-cores and

efficient load balancing strategies) can greatly improve

the performance. More application examples need to be

implemented to help identify and eliminate the bottle-

necks, in order to gain higher performance.

VSP can also bring another important capability -

openness for users to adjust scenarios during simula-

tion executions. Traditionally, scenarios predetermine

the structure of simulation systems. Some skilled prac-

titioners code conditional structure changes into mod-

els, but this makes for a less elegant and coherent model

design, and makes the runtime human-machine interac-

tion to change model structure difficult to realize. To

change the model structure, according to intermediate

results, is critical for simulations of CVSSs. Our work

can make structure changes convenient and efficient to

realize. We can imagine the situation that users change

the parameters and structure of the simulation system

when necessary, to make the simulation more powerful.

Prospective applications can be the design simula-

tion of variable structure computers [47][48], which uti-

lize the same hardware in a variety of special purpose

structures to achieve performance and economic gains,

and internetware [49], which is constructed by a set

of autonomic software entities distributed over the In-

ternet and a set of connectors enabling the collabora-

tion among these entities. Our method can also be ex-

tended to support multi-resolution simulation and on-

line simulation, such as symbiotic simulation [50], dy-

namic data-driven simulation [51], cyber-physical sim-

ulation [52], to change the structure of simulation mod-

els dynamically. For example, equipped with proper al-

gorithms steering adaptive resolution and consistency

maintenance, our work can be adapted to support dy-

namic switching among 3D models with different levels

of details according to metrics such as object impor-

tance and viewpoint, in the area of dynamic data driven

animation [53].

References

1. Holland, J.H.: Studying complex adaptive systems. Jour-
nal of Systems Science and Complexity. 19(1): 1-8 (2006)

2. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.:
Self-organization in multi-agent systems. The Knowledge
Engineering Review. 20(02): 165-189 (2005)

3. Anderson, P.: Perspective: Complexity theory and organi-
zation science. Organization science. 10(3): 216-232 (1999)

4. Uhrmacher, A.M.: Dynamic structures in modeling and
simulation: a reflective approach. ACM Transactions on
Modeling and Computer Simulation (TOMACS). 11(2):
206-232 (2001)

5. Zeigler, B.P., Praehofer, H.: Systems theory challenges in
the simulation of variable structure and intelligent systems.

In: Computer Aided Systems TheoryEUROCAST’89, pp.
41-51 (1990)

6. Barros, F.J.: Modeling formalisms for dynamic structure
systems. ACM Transactions on Modeling and Computer
Simulation (TOMACS). 7(4): 501-515 (1997)

7. Hu, X., Zeigler, B.P., Mittal, S.: Variable structure in
DEVS component-based modeling and simulation. Simu-
lation. 81(2): 91-102 (2005)

8. Uhrmacher, A.M., Himmelspach, J., Rohl, M., et al.: In-
troducing variable ports and multi-couplings for cell bio-
logical modeling in DEVS. In: Proceedings of the Winter
Simulation Conference, pp. 832-840 (2006)

9. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of model-
ing and simulation: integrating discrete event and continu-
ous complex dynamic systems. Academic press (2000)

10. Zacharewicz, G., Hamri, M.E.A., Frydman, C., et al.:
A generalized discrete event system (g-DEVS) flattened
simulation structure: Application to high-level architec-
ture (HLA) compliant simulation of workflow. Simulation.
86(3):181-197 (2010)

11. Muzy, A., Nutaro, J.J.: Algorithms for efficient imple-
mentations of the DEVS and DSDEVS abstract simula-
tors. In: 1st Open International Conference on Modeling
and Simulation (OICMS), pp. 273-279 (2005)

12. Robson, E., Boukerche, A.: Dynamic balancing of com-
munication and computation load for HLA-based simula-
tions on large-scale distributed systems. Journal of Parallel
and Distributed Computing. 71(1): 40-52 (2011)

13. Gan, B.P., Low, Y.H., Jain, S., et al.: Load balancing for
conservative simulation on shared memory multiprocessor
systems. In: Proceedings of Fourteenth Workshop on Par-
allel and Distributed Simulation, pp. 139-146 (2000)

14. Biswas, R., Aftosmis, M. J., Kiris, C., et al.: Petascale
computing: Impact on future NASA missions. Petascale
computing: architectures and algorithms, pp. 29-46 (2007)

15. Habata, S., Yokokawa, M., Kitawaki, S.: The earth simu-
lator system. NEC Research and Development. 44(1): 21-26
(2003)

16. Wang, J., Jagtap, D., Abu-Ghazaleh, N., et al.: Parallel
discrete event simulation for multi-core systems: Analysis
and optimization. IEEE Transactions on Parallel and Dis-
tributed Systems. 25(6): 1574-1584 (2014)

17. Lin, Z., Tropper, C., Ishlam Patoary, M.N., et al.: NTW-
MT: a Multi-threaded Simulator for Reaction Diffusion
Simulations in NEURON In: Proceedings of the 3rd ACM
Conference on SIGSIM-Principles of Advanced Discrete
Simulation, pp. 157-167 (2015)

18. Bauer, P., Lindn, J., Engblom, S., et al.: Efficient Inter-
Process Synchronization for Parallel Discrete Event Simu-
lation on Multicores. In: Proceedings of the 3rd ACM Con-
ference on SIGSIM-Principles of Advanced Discrete Simu-
lation, pp. 183-194 (2015)

19. Tang, W., Yao, Y., Zhu, F.: A hierarchical parallel dis-
crete event simulation kernel for multicore platform. Cluster
Computing. 16(3): 379-387 (2013)

20. Bergero, F., Kofman, E., Cellier, F.: A novel paralleliza-
tion technique for DEVS simulation of continuous and hy-
brid systems. Simulation. 89(6): 663-683. (2012)

21. Fujimoto, R.M.: Parallel and distributed simulation sys-
tems. Wiley, New York (2000)

22. Himmelspach, J., Uhrmacher, A.M.: Processing dynamic
PDEVS models. In: The IEEE Computer Society’s 12th An-
nual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
pp. 329-336 (2004)

23. Muzy, A., Zeigler, B.P.: Specification of dynamic struc-
ture discrete event systems using single point encapsulated

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



An Efficient Approach to Collaborative Simulation of Variable Structure Systems on Multi-core Machines 17

control functions. International Journal of Modeling, Sim-
ulation, and Scientific Computing. 5(03): 1450012 (2014)

24. Barros, F.J.: On the representation of dynamic topolo-
gies: the case for centralized and modular approaches. In:
Proceedings of the Symposium on Theory of Modeling and
Simulation-DEVS Integrative, pp. 40 (2014)

25. Yang, C., Li, B.H., Chai, X., et al.: Ivy: a parallel simu-
lator for variable structure systems under multi-core envi-
ronments. International Journal of Service and Computing
Oriented Manufacturing. 1(2): 103-123 (2013)

26. Miller, R.J.: Optimistic parallel discrete event simulation
on a beowulf cluster of multi-core machines. University of
Cincinnati (2010)

27. Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for op-
timistic parallel simulations on multi core machines. ACM
SIGMETRICS Performance Evaluation Review. 40(3): 2-11
(2012)

28. Chen, L., Lu, Y., Yao, Y., et al.: A well-balanced time
warp system on multi-core environments. In: Proceedings
of the 2011 IEEE Workshop on Principles of Advanced and
Distributed Simulation, pp. 1-9 (2011)

29. Jafer, S., Liu, Q., Wainer, G.: Synchronization methods
in parallel and distributed discrete-event simulation. Simu-
lation Modelling Practice and Theory. 30: 54-73 (2013)

30. Peng, Y., Cai, Y., Zhong, R.H., et al.: Parallel frame-
work for HLA federate oriented to simulation component
on multicore platform. Ruanjian Xuebao/Journal of Soft-
ware. 23(8): 2188-2206 (2012)

31. Peschlow, P., Honecker, T., Martini, P.: A flexible dy-
namic partitioning algorithm for optimistic distributed sim-
ulation. In: Proceedings of the 21st International Workshop
on Principles of Advanced and Distributed Simulation, pp.
219-228 (2007)

32. Glazer, D.W., Tropper, C.: On process migration and
load balancing in time warp. IEEE Transactions on Par-
allel and Distributed Systems. 4(3): 318-327 (1993)

33. Jiang, M.R., Shieh, S.P., Liu, C.L.: Dynamic load balanc-
ing in parallel simulation using time warp mechanism. In:
International Conference on Parallel and Distributed Sys-
tems, pp. 222-227 (1994)

34. Coffman, E.G., Elphick, M., Shoshani, A.: System dead-
locks. ACM Computing Surveys (CSUR). 3(2): 67-78 (1971)

35. Lewis, R.: A general-purpose hill-climbing method for or-
der independent minimum grouping problems: A case study
in graph colouring and bin packing. Computers & Opera-
tions Research. 36(7): 2295-2310 (2009)

36. Som, T.K., Sargent, R.G.: Model structure and load bal-
ancing in optimistic parallel discrete event simulation. In:
Proceedings of the fourteenth workshop on Parallel and dis-
tributed simulation, pp. 147-154 (2000)

37. D’Angelo, G., Bracuto, M.: Distributed simulation of
large-scale and detailed models. International Journal of
Simulation and Process Modelling. 5(2): 120-131 (2009)

38. Carothers, C.D., Fujimoto, R.M.: Efficient execution of
time warp programs on heterogeneous, NOW platforms.
IEEE Transactions on Parallel and Distributed Systems.
11(3): 299-317 (2000)

39. Yang, C., Li, B.H., Chai, X., et al.: An efficient dynamic
load balancing method for simulation of variable structure
systems. In: 2013 8th EUROSIM Congress on Modelling
and Simulation (EUROSIM), pp. 525-531 (2013)

40. Sun, Y., Hu, X.: Performance measurement of dynamic
structure DEVS for large-scale cellular space models. Sim-
ulation. 85(5): 335-351 (2009)

41. Uhrmacher, A.M.: Variable structure models: auton-
omy and control answers from two different modeling ap-
proaches. In: Proceedings of AI, Simulation, and Planning
in High Autonomy Systems, pp. 133-139 (1993)

42. Uhrmacher, A.M., Ewald, R., John, M., et al.: Combin-
ing micro and macro-modeling in devs for computational
biology. In: Proceedings of the 39th conference on Winter
simulation: 40 years! The best is yet to come, pp. 871-880
(2007)

43. Mittal, S.: Emergence in stigmergic and complex adap-
tive systems: A formal discrete event systems perspective.
Cognitive Systems Research. 21: 22-39 (2013)

44. Rajaei, H., Ayani, R., Thorelli, L.E.: The local Time
Warp approach to parallel simulation. ACM SIGSIM Sim-
ulation Digest. 23(1): 119-126 (1993)

45. Rao, D.M., Thondugulam, N.V., Radhakrishnan, R., et
al.: Unsynchronized parallel discrete event simulation. In:
Proceedings of the 30th conference on Winter simulation,
pp. 1563-1570 (1998)

46. Steinman, J., Parks, J.: A Proposed Open System Archi-
tecture for Modeling and Simulation (OSAMS). In: SISO
Simulation Interoperability Workshop. Orlando, FL (2007)

47. Estrin, G.: Organization of computer systems: the fixed
plus variable structure computer. In: western joint IRE-
AIEE-ACM computer conference, pp. 33-40 (1960)

48. Bobda, C.: Introduction to Reconfigurable Comput-
ing: Architectures, Algorithms, and Applications. Springer,
Dordrecht (2007)

49. Yang, F., L, J., Mei, H.: Technical framework for Inter-
netware: An architecture centric approach. Science in China
Series F: Information Sciences. 51(6): 610-622 (2008)

50. Aydt, H., Turner, S.J., Cai, T.W., et al.: Symbiotic sim-
ulation systems: An extended definition motivated by sym-
biosis in biology. In: IEEE 22nd Workshop on Principles of
Advanced and Distributed Simulation, pp. 109-116 (2008)

51. Darema, F.: Dynamic data driven applications systems:
A new paradigm for application simulations and mea-
surements. Computational Science-ICCS 2004, pp. 662-669
(2004)

52. Kim, J.E., Mosse, D.: Generic framework for design,
modeling and simulation of cyber physical systems. ACM
SIGBED Review. 5(1): 1 (2008)

53. Liu, H., He, F., Cai, X., et al.: Performance-based con-
trol interfaces using mixture of factor analyzers. The Visual
Computer. 27(6-8): 595-603 (2011)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


