

i

H i e r a r c h i c a l S c h e d u l i n g i n
G r i d S y s t e m s

By
Khaldoon Al-Zoubi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science
School of Computer Science

Carleton University
Ottawa, Ontario

March 2006

© Copyright
2006, Khaldoon Al-Zoubi

ii

The undersigned hereby recommend to
the Faculty of Graduate Studies and Research

acceptance of the thesis,

Hierarchical Scheduling in Grid Systems

Submitted by

Khaldoon Al-Zoubi

In partial fulfillment of
the requirements for the degree of

Master of Computer Science

 Douglas Howe, Director

 late Sivarama Dandamudi, Thesis Supervisor

 Jean-Pierre Corriveau, Thesis Co-Supervisor

Carleton University
2006

iii

ABSTRACT

This research is mainly focused on the first two stages of the Grid scheduling,

namely: Resource discovery and resource selection stages. We propose a self-discovery

method for the resource discovery stage. In addition, we propose an adaptive child

scheduling method for the resource selection stage. We also propose three rescheduling

algorithms in the resource selection stage: (1) the Butterfly algorithm in order to

reschedule jobs when better resources become available, (2) the Fallback algorithm in

order to reschedule jobs that had their resources taken away from the Grid before the

actual resource allocation and (3) the Load-Balance algorithm in order to balance load

among resources. With the purpose of increasing system scalability and flexibility, the

proposed hierarchal scheduling approach is combined with the Peer-to-Peer (P2P)

systems approach in one hybrid system.

A Grid model (consisting of 2400 nodes) is built to test the proposed ideas through

simulation over a number of different workloads and scenarios. We compare the

performance of the proposed hierarchal systems against the P2P systems approach

according to three metrics: (1) the total response time, (2) the average waiting time, and

(3) the average execution time.

iv

ACKNOWLEDGMENT

First of all, I thank ALLAH, the creator, for giving me the ability and the will to

accomplish anything I want to do.

I am always in debt for my parents, my uncle, Abraham, my wife, Sahar, my son,

Tariq, my sisters and my brothers for their infinite support in anything I want to do,

particularly in this research.

I would like to strongly thank my thesis supervisor, the late Professor Sivarama

Dandamudi, for his inputs and discussions during this research. I was truly lucky to have

the late professor Dandamudi as my supervisor in this research.

I cannot thank Professor Jean-Pierre Corriveau enough for becoming my acting

supervisor after the unexpected and sad death of late Professor Dandamudi. I am always

grateful for his help in reviewing this thesis and assuring its completion as originally

planned.

I would like to thank Professor Gabriel Wainer for granting me the permission to

use the DEVS CD++ tools, which made it possible to build the simulation model. I also

thank him and his students for their help with the tools.

v

CONTENT

ABSTRACT..III

ACKNOWLEDGMENT...IV

LIST OF TABLES.. VII

LIST OF FIGURES...VIII

LIST OF ACRONYMS.. X

CHAPTER 1: INTRODUCTION... 1
1.1 INTRODUCTION.. 1
1.2 WHY GRID COMPUTING? ... 7
1.3 GRID ARCHITECTURE... 13

1.3.1 Centralized Architecture .. 14
1.3.2 Distributed Architecture... 15
1.3.3 Hierarchal Architecture ... 18

1.4 THESIS CONTRIBUTIONS .. 19
1.5 THESIS ORIGANIZATION... 20

CHAPTER 2: BACKGROUND ... 22
2.1 INTRODUCTION.. 22
2.2 ADAPTIVE HIERARCHICAL SCHEDULING (AHS) POLICY .. 23
2.3 GRID SCHEDULING STAGES.. 24

2.3.1 First Stage: Resource Discovery... 27
2.3.1.1 Information gathering about static resources ..30
2.3.1.2 Job requirements and matching..37

2.3.2 Second Stage: Resources Selection and Job Scheduling .. 40
2.3.2.1 Dynamic information gathering ...41
2.3.2.2 Rescheduling ..42
2.3.2.3 Metascheduling...42

2.3.3 Third Stage: Job Execution .. 42
2.3.3.1 Preemption and Checkpointing..42
2.3.3.2 Cycle harvesting ...43

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS.. 44
3.1 INTRODUCTION.. 44
3.2 HIERARCHAL GRID SCHEDULING STAGES.. 47

3.2.1 First Stage: Resource Discovery... 52
3.2.1.1 First Method: Layering Resources ...55
3.2.1.2 Second Method: Self Discovery...60

3.2.2 Second Stage: Job Scheduling and Resources Selection .. 71
3.2.3 Dynamic algorithms... 79

3.2.3.1 Butterfly rescheduling algorithm ...80
3.2.3.2 Fallback rescheduling algorithm..84
3.2.3.3 Load-Balance Algorithm...86

3.3 HYBRID MODEL: HIERARCHAL AND P2P GRID SCHEDULING ... 88
CHAPTER 4: GRID MODEL BASIC COMPONENTS ... 94

4.1 INTRODUCTION.. 94
4.2 DEVS CD++ TOOLS.. 96
4.3 COMMUNICATION MODEL COMPONENTS .. 98

CONTENT vi

4.3.1 Communication Atomic models .. 101
4.3.1.1 Cable Model ...101
4.3.1.2 Router Model..103
4.3.1.3 Timer Model...104
4.3.1.4 Node Model..104

4.3.2 Communication Structured Models... 104
4.3.2.1 Top Model (Backbones Layer) ..104
4.3.2.2 Backbone Model (Nets Layer)...105
4.3.2.3 Net Model (Networks Layer)...107
4.3.2.4 Network Model (Hosts Layer) ...108

4.4 NODE MODEL DISCUSSIONS ... 109
CHAPTER 5: GRID SIMULATION MODEL, EXPERIMENTS, RESULTS AND DISCUSSIONS
... 112

5.1 INTRODUCTION.. 112
5.2 COMMUNICATION MODEL .. 115
5.3 NODE MODEL.. 121
5.4 SYSTEM MODEL... 122

5.4.1 Peer-to-Peer (P2P) System... 122
5.4.2 Hierarchal (one Grid tree) System.. 123
5.4.3 Hybrid (several Grid trees) System... 124

5.5 GRID JOBS... 124
5.6 RESOURCES ... 126
5.7 WORKLOADS... 127
5.8 PERFORMANCE METRICS.. 128
5.9 SIMULATION EXPERIMENTS.. 131

5.9.1 First Experiment: Continuous Job Submissions .. 134
5.9.1.1 Results and Discussions ..135

5.9.2 Second Experiment: Job Submissions with Different Stochastic Rates 144
5.9.2.1 Results and Discussions ..145

5.9.3 Third Experiment: Job Submissions with The Same Stochastic Rate 151
5.9.3.1 Results and Discussions ..153

5.9.4 Fourth Experiment: Algorithms Impact on System Performance.. 158
5.9.4.1 Results and Discussions ..158

5.9.5 Fifth Experiment: Resource Change Impact on System Behaviour....................................... 162
5.9.5.1 Results and Discussions ..162

CONCLUSIONS AND FUTURE WORK.. 167

REFERENCES ... 173

APPENDIX A � RESULT TABLES... 183
A.1 FIRST EXPERIMENT RESULTS SET .. 183
A.2 SECOND EXPERIMENT RESULTS SET... 187
A.3 THIRD EXPERIMENT RESULTS SET ... 190
A.4 FOURTH EXPERIMENT RESULTS SET... 191
A.5 FIFTH EXPERIMENT RESULTS SET .. 192

vii

LIST OF TABLES

Table 1: Samples of Transferred Data Time for the Shown Path in Figure 33........................ 120
Table 2: Simulated Computational Servers.. 126
Table 3: Workloads Used in Simulation (Servers = 520, Workstations = 1880)...................... 128
Table 4: Results Set in Experiment 1... 186
Table 5: Results Set in Experiment 2... 189
Table 6: Results Set in Experiment 3... 190
Table 7: Results Set in Experiment 4... 191
Table 8: Results Set in Experiment 5... 192

viii

LIST OF FIGURES

Figure 1: Accessing the Virtual Computing Power of the Grid... 13
Figure 2: Job Scheduling in Centralized Grid System... 15
Figure 3: Job Scheduling in Distributed Grid System.. 16
Figure 4: An Example of Joining a New Peer in the P2P systems .. 17
Figure 5: An Example of Hierarchical Scheduling ... 24
Figure 6: Grid Scheduling Stages and Capabilities. .. 26
Figure 7: Resources Sharing in Virtual Organizations (VOs). ... 29
Figure 8: VOs Indexes Structure in MDS Systems.. 29
Figure 9: Hierarchical Grid Scheduling Stages and Capabilities � See also Figure 6................ 46
Figure 10: Transferring User�s job to Allocated Resources. .. 49
Figure 11: Resources Discovery Stage Overview... 52
Figure 12: Submitting Actual Jobs as Batches.. 54
Figure 13: Illustration of Advertisement Messages.. 54
Figure 14: Logical Channels for GSs with Different Static Resources....................................... 57
Figure 15: Internal Illustration of Resources and Jobs .. 58
Figure 16: Logical Channels in the Self-discovery method.. 67
Figure 17: Example of Two Channels for a Parent and two of its Children................................ 70
Figure 18: Example of Fixing Broken Channel by Scheduler from Figure 17 70
Figure 19: Example of Broken and Fixed Channel.. 71
Figure 20: An Example of Mapping RFCs to Logical Channels... 76
Figure 21: Space/Time Sharing in AHS .. 77
Figure 22: Illustration of the Butterfly Rescheduling Algorithm.. 83
Figure 23: Rescheduling Fallback Algorithm... 85
Figure 24: An Example of Load Balance among Channels ... 87
Figure 25: Hybrid Model � Hierarchical and P2P Grid Scheduling .. 89
Figure 26: IP Addresses Hierarchal in the Internet Model ... 100
Figure 27: Top Model Overview.. 105
Figure 28: Backbone Model Overview .. 106
Figure 29: Net Model Overview .. 108
Figure 30: Network Model Overview... 109
Figure 31: Valid IP Addresses in the Communication Model... 116
Figure 32: An Example of the Communication Model ... 117
Figure 33: An Example of a Communication Path... 121
Figure 34: Average Waiting Times for 28.9MB Size Jobs in Experiment 1.............................. 136
Figure 35: Average Waiting Times for 312.7MB Size Jobs in Experiment 1............................ 137
Figure 36: Average Waiting Times for 1GB Size Jobs in Experiment 1................................... 137
Figure 37: Average Waiting Times for 10GB Size Jobs in Experiment 1................................. 138
Figure 38: Average Waiting Times for 100GB Size Jobs in Experiment 1............................... 138
Figure 39: Total Response Times for 28.9MB Size Jobs in Experiment 1............................... 139
Figure 40: Total Response Times for 312.7MB Size Jobs in Experiment 1............................. 139
Figure 41: Total Response Times for 1GB Size Jobs in Experiment 1.................................... 140
Figure 42: Total Response Times for 10GB Size Jobs in Experiment 1 140
Figure 43: Total Response Times for 100GB Size Jobs in Experiment 1 141
Figure 44: Average Execution Times for 28.9MB Size Jobs in Experiment 1 141
Figure 45: Average Execution Times for 312.7MB Size Jobs in Experiment 1 142
Figure 46: Average Execution Times for 1GB Size Jobs in Experiment 1 142

LIST OF FIGURES ix

Figure 47: Average Execution Times for 10GB Size Jobs in Experiment 1 143
Figure 48: Average Execution Times for 100GB Size Jobs in Experiment 1 143
Figure 49: Average Waiting Times for 28.9MB Size Jobs in Experiment 2.............................. 146
Figure 50: Average Waiting Times for 312.7MB Size Jobs in Experiment 2............................ 147
Figure 51: Average Waiting Times for 1GB Size Jobs in Experiment 2................................... 147
Figure 52: Average Waiting Times for 10GB Size Jobs in Experiment 2................................. 148
Figure 53: Average Waiting Times for 100GB Size Jobs in Experiment 2............................... 148
Figure 54: Average Execution Times for 28.9MB Size Jobs in Experiment 2 149
Figure 55: Average Execution Times for 312.7MB Size Jobs in Experiment 2 149
Figure 56: Average Execution Times for 1GB Size Jobs in Experiment 2 150
Figure 57: Average Execution Times for 10GB Size Jobs in Experiment 2 150
Figure 58: Average Execution Times for 100GB Size Jobs in Experiment 2 151
Figure 59: Average Waiting Times for 1 Hour Arrival Rate in Experiment 3 154
Figure 60: Average Waiting Times for 1 Day Arrival Rate in Experiment 3.............................. 154
Figure 61: Average Waiting Times for 1 Week Arrival Rate in Experiment 3........................... 155
Figure 62: Average Waiting Times over Different Arrival Rates in Experiment 3..................... 155
Figure 63: Average Execution Times for 1 Hour Arrival Rate in Experiment 3 156
Figure 64: Average Execution Times for 1 Day Arrival Rate in Experiment 3.......................... 156
Figure 65: Average Execution Times for 1 Week Arrival Rate in Experiment 3 157
Figure 66: Average Execution Times over Different Arrival Rates in Experiment 3 157
Figure 67: Average Waiting Times When Disabling Algorithms (Exp1 Scenario) 159
Figure 68: Average Waiting Times When Disabling Algorithms (Exp2 Scenario) 160
Figure 69: Total Response Times When Disabling Algorithms (Exp1 Scenario) 160
Figure 70: Average Execution Times When Disabling Algorithms (Exp1 Scenario) 161
Figure 71: Average Execution Times When Disabling Algorithms (Exp2 Scenario) 161
Figure 72: Number of Saved Jobs by the Fallback Algorithm (Exp1 & Exp2 Scenarios) 163
Figure 73: Average Waiting Times (Exp1 Scenario) in Experiment 5..................................... 164
Figure 74: Average Waiting Times (Exp2 Scenario) in Experiment 5..................................... 164
Figure 75: Total Response Times (Exp1 Scenario) in Experiment 5 165
Figure 76: Average Execution Times (Exp1 Scenario) in Experiment 5 165
Figure 77: Average Execution Times (Exp2 Scenario) in Experiment 5 166

x

LIST OF ACRONYMS

AHS Adaptive Hierarchal Scheduling

AET Average Execution Time

AWT Average Waiting Time

DEVS Discrete EVent Simulation

EF External Function

FTP File Transfer Protocol

GS Grid Scheduler

GSS Grid System Scheduler

GIS Grid Information System

IF Internal Function

IP Internet Protocol

IPv4 IP version 4

ISP Internet Service Provider

JD Job description

JST Jobs Status Table

JMR Job Minimum Requirements

LGS Leaf Grid Scheduler

LIST OF ACRONYMS xi

LS Local Scheduler

NWS Network Weather Service

OF Output Function

P2P Peer-to-Peer

PGSS Peer Grid System Scheduler

RFC Request For Computation

RFJM Request For Job Matching

RD Resource Discovery

SS System Scheduler

TA Time Advance

TRT Total Response Time

TTL Time To Live

WAN Wide Area Network

1

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

The current state of computing is equivalent in some respects to the state of the

electricity circa 1910s [18]. At that time, electrical power was produced by generators

for specific individuals or organizations needs such as oil companies and paper mills.

Such electric power was not only limited but also underutilized, since each organization

had to build and operate new generators in order to make electrical power available for its

needs. The shortage of electrical power at that time, for example, prevented many

electrical devices from being manufactured or even researched. In fact, the real influence

of electricity in our lives stems from the creation of the electric power Grid that provided

(via sharing generators) reliable power at low cost for both individuals and industries.

Analogically, the term �Computation Grid� was adopted from the electricity Grid to

amplify computational power via sharing computational resources since both Grids are

similar, to some point, in their infrastructure and purpose: obviously, the electrical Grid

was also used to increase electrical power via sharing electrical resources.

CHAPTER 1: INTRODUCTION 2

Grid computing cannot afford to ignore many lessons learned from the history of

the electrical power Grid. Some of these significant lessons are the reality of business

and politics, and the complexity of managing system�s resources [18]. Oil companies, for

instance, had to maintain backup generators in case some of their electrical generators

failed during oil drilling. Ultimately, this led to the need for sharing electrical power with

other organizations in order to maximize generator use via sharing, hence increasing the

availability of electrical power. In addition to the business needs, electrical Grids

developers had to adjust to new regulations that were driven by political forces and

simultaneously rise to difficult technical challenges due to the complex nature of the Grid

system. For example, a failing power plant causes its region�s load to be �dumped� onto a

nearby plant, and if this plant becomes overloaded and shuts off, both regions �fall� on

another nearby power plant, and so on. Thus it is quite possible for one faulty generator

to cause a major blackout in the entire electrical Grid as exemplified by the largest power

blackout in the world�s history: on August 14, 2003 eight U.S. states and the Canadian

province of Ontario were affected, leaving up to 50 million people with no electricity for

several days.

Reference to �the Grid� started in the mid-1990s [18, 19] to denote infrastructure

for both scientific and commercial distributed computing communities and has been

gaining popularity ever since. The �Grid� is a parallel and distributed system that

enables large collections of geographically distributed heterogeneous systems that usually

span over several organizations to share a variety of resources dynamically (at runtime)

depending on their availability, capability, user�s requirements and any other predefined

rules set by local systems and resources owners. The type of sharing in the Grid gives the

CHAPTER 1: INTRODUCTION 3

impression of a powerful self-managing virtual computer [8]. For example, a user of the

Grid may enter a command from his/her workstation to run a type of simulation that in

fact requires a fast supercomputer on the Grid. Now, from the user�s point of view, the

workstation is the one that runs the application and report results, not the Grid system.

However, in reality, the Grid has to:

! Hunt for the required resources among a massive number of diverse resources

and match them to the user requirements knowing that allocated resources may

actually be residing on the other side of the globe,

! Authenticate the user�s identity and confirm the user�s authorization for using

the allocated resources. (Security is now probably the most important issue in

Grid systems),

! Schedule the user�s application to be mapped onto (i.e. use) allocated resources

along with other jobs that possibly require access to the same resources. (Grid

scheduling is probably the second most important issue in the Grid systems, and

is the main topic of this research). For example, a Grid system may need to

migrate a job to different resources because either the allocated resources

become overloaded (e.g. heavy local load) or simply disappear from the Grid

(e.g. resources owner decides to take them off the Grid), and finally

! Report results to the user (e.g. the user receives a notification text message on

his/her cellular phone).

The fundamental principle behind Grid computing is that a number of coordinated

and shared resources (e.g. computers) can solve problems faster and better than what one

resource (e.g. computer) can do. These computers can be anywhere � they simply have

CHAPTER 1: INTRODUCTION 4

to be connected together. Therefore, the Internet can be an ideal choice to link thousands

or millions of computers since it already exists and connects the whole world � if a

node�s IP address is known, it can then receive data from another node.

Grid systems have the potential to offer users access to advanced computing

machines and other resources, enabling a solution for massively complex tasks beyond

the capabilities of a single machine or local network. For example, the gravitational

wave detector network [20, 38] collects a TeraByte of data each day. This data must be

analyzed using different algorithms to detect astronomical phenomena such as black

holes. The usual analysis of data indicating a black hole cannot, for example, reveal its

location. Now suppose that three Intel TFLOPS supercomputers are needed to analyze

the 100GB of raw data within an hour in order to enable astrophysicists to determine the

event�s location and view it via their telescopes before its visual signal fads. (And the

time to download the data onto these 3 machines is non-negligible). The Intel TFLOPS is

currently the world's most powerful supercomputer: it uses more than 9000 Pentium Pro

processors to achieve a processing rate of one teraflop [14], with 594 Gbytes of RAM,

and two independent 1 Tbyte disk systems. And it is not easily accessible. Alternatively,

a Grid system may be used, with the additional virtue of being able to broadcast results

quickly around the planet.

In order to understand the responsibilities of such a computational Grid in a

simple way, we suggest answering the following questions from a user prospective:

1) How do I run my job? This is the issue of Job submission, which can be

addressed in a simple command form.

CHAPTER 1: INTRODUCTION 5

2) How can I verify my job will run the way I want (e.g. are there suitable

resources)? This is the problem of Job requirements (and any other imposed constraints)

onto a set of resources. (We will see it is similar to looking up an entry from a database

table.)

3) How does the system discover resources for my job? Answer: It discovers

resources via gathering information about system�s resources that have to be matched to

job�s minimum requirements (i.e., resources discovery step).

4) Where does the system execute my job? Answer: It selects best resources

based on its knowledge from the discovered resources set (i.e. resources selection step).

5) Can the system guarantee my job executes on the selected resources? Answer:

No. Scheduling is tentative. Note that selected resources are not guaranteed to live in the

system more than the jobs requests themselves. However, the system may provide

reliable services via, for example, advance reservations (as discussed in the next

chapter).

6) What will happen to my job if its selected resources disappear? Answer: It

migrates to different resources (i.e. issues of migration and re-scheduling).

7) Why do resources disappear? Answer: Resources may disappear in the system

because they are owned by local systems, and therefore are controlled by them.

8) What do I gain in using a Grid system? Answer: Such a system, with great

computational power, can solve problems that were considered unsolvable, since a Grid

system offers more computational power than the most powerful present computers.

Furthermore, it is simply cheaper to share expensive resources rather than purchasing

them.

CHAPTER 1: INTRODUCTION 6

9) How does the system manage my job in the presence of other users? Answer:

It does it via Scheduling (e.g. it balances workloads among resources).

10) Where does the system get its computational power? Answer: It gets its

power by sharing huge sets of resources via the cooperation of participating companies.

Simply, the more computers work together on solving a problem, the faster the

corresponding Grid. Its power comes from exploiting the underutilized resources in

organizations. The key observation is that resources are typically busy only about 5% of

the time (more on this later).

11) How can I know my job�s status and output? Answer: Grid systems allow a

user to monitor his/her job (i.e. monitoring). Such systems also produce jobs output once

they are executed or during their execution (i.e. termination).

12) What is the difference between a Grid and cluster systems? Answer: A

cluster is a group of individual, stand-alone computers that work together and are viewed

as a single computing system. The individual computers that make up the cluster

communicate with each other via high-speed connections such as a Gigabit Ethernet.

Conversely, a Grid consists of multiple systems (e.g. clusters) that work together and

span over large geographical regions while maintaining their distinct identities. Most

importantly, a cluster system, like an �end system� in a Grid, is owned and controlled by

a single entity. In summary, clusters are a form of resources that are usually supported in

Grid systems.

13) It is too expensive to build a system to connect companies together? Answer:

No. They can be connected via the Internet � we repeat: if a computer�s IP address is

known, it can receive data.

CHAPTER 1: INTRODUCTION 7

14) But communication in the Internet is unreliable? Could a Grid be reliable?

Answer: Yes. Fault tolerance [2] is a major research area in the use of Grids. Achieving

reliability is key.

15) How will this system scale? The answer is non-trivial and lies in the notions of

hierarchical ad distributed processing.

1.2 WHY GRID COMPUTING?

Why do we need Grids? To answer this question, consider for instance two

students. Each one of them has to purchase ten books for the next school�s term.

Suppose, each book costs about a $100 � each student has to pay about $1000 to buy all

books. Now, these two students decide to create a system where each one of them only

buys five books (i.e. spends only $500); they share the ten books between each other. Of

course, a well-coordinated sharing policy is needed to get the full advantage of the

system resources (i.e. 10 books). Most probably, for this to work, the two students must

not need the same book on the same day or afternoon. Therefore, the system can perform

well most of the time.

Because each student actually owns only five books, one student may not lend

his/her book to the other student if he/she needs it � the sharing problem. To overcome

some of these problems, the two students decide to enlarge their system by bringing other

students (e.g. say 50) from their school and other schools. Moreover, the students decide

to allow different type of resources into the system (e.g. calculators).

CHAPTER 1: INTRODUCTION 8

Now, the students have probably hundreds of books, calculators, articles, old

exams�etc. By building this system:

! None of the students probably needs to purchase expensive school things (i.e.

resources) until they graduate,

! Each student still own their things and, for instance, a student doesn�t have to

give her book up if she needs it,

! Most resources in the system are put into use most of the time (i.e. boost

resources utilization),

! Multiple resources may be used by one student at one time (i.e. in parallel). For

instance, a student may need various articles and books for his current research,

! Many students may cooperate � sharing ideas among wider audience,

! Each student has an access to a huge collection of resources that he/she may not

even dream of (e.g. old exams for the last five years),

Of course, some students may pull out of the system (with their resources) if they

are not gaining what they expect from the system. Probably, it is not the fault of the

system if it fails; most probably it is the fault of the students who didn�t coordinate well

among themselves to make the created system a success.

Assuming a Grid system among 50 students, the following capabilities are required

in order to perform well. The system has to:

! Authenticate student identity. Of course, not anyone is allowed to use the

system. Furthermore, a resource owner may only permit (i.e. authorize) a

group of other students to use his/her donated resource. For example, a student

CHAPTER 1: INTRODUCTION 9

may put an expensive calculator into the system and want only her friends (e.g.

five students) to use this calculator because she doesn�t trust anybody else with

her calculator. Note that authentication and authorization fall in what we call

system security.

! Keep track of what resources it has at all times. For example, when a student

adds a book (i.e. resource) to the system; he sends an email (i.e. advertisement)

with a description of the new book to the student who is responsible of

managing these resources. In addition, if a student decides to pull out of the

system, his resources need to be removed from the resources list. Thus each

request to the Grid must trust this Grid will discover the resources that match

the request at hand.

! Schedule a (student�s) request to use specific resources (e.g. books). For

example, once a student selects the needed resources, he sends an email to the

student who is responsible for managing requests to use the system resources

(i.e. the system scheduler). Of course the system scheduler must re-schedule

(i.e. migrate) a student�s request to use a different copy of a book (i.e.

resource), if

- the owner of that book decides to keep his book and takes it off the

system (i.e. resource disappearing) or

- Too many students want to use the same book (i.e. overloaded resource)

and another copy of that book becomes available.

! Grant (students) access to system resources. For example, students may choose

a free delivery system to transfer their goods across schools and departments.

CHAPTER 1: INTRODUCTION 10

Each student may wait a day or two to receive a book if he is receiving it from a

different school. This kind of delay is a cost that must be paid when a system is

distributed among geographical areas.

The example above gives some issues with the use of a Grid when a group of

individuals/organization (e.g. virtual organizations [18, 19]) comes together to share a

large collection of resources). The system becomes very powerful if it offers well-

designed capabilities such as security (i.e. authentication and authorization), resources

advertisement and discovery, scheduling, balancing workload, job migration and an

efficient reaction to resources disappearing of the system.

Benefits of Grids can be extensive. They include:

1) Expanding computing power by the use of underutilized resources

Grids are motivated by the multitude of unused computers on evenings,

weekends, and daytime hours that can provide significant computational power. Most

machines in a typical organization are busy less than 5% of the time (i.e. 1 hour and 12

minutes a day) [8]. Therefore, these resources are unused for about 95% of the time (i.e.

22 hours and 48 minutes a day). Grids unleash the hidden computing power that is not

being used, giving companies a huge expansion in computing power. Several studies

reports that utilization can be increased without affecting production drastically [18].

Now, suppose that machines on which a set of applications normally runs most of the

time are experiencing a heavy unusual load. All or some of these applications may be

executable on unused machines either in the same or in a different organization via the

CHAPTER 1: INTRODUCTION 11

Grid. The following conditions must be met to enable the Grid to transfer these

applications to some idle machines:

! The minimum requirements for the applications [38] must be specified. For

example: �application X only runs on INTEL architecture and must finish

within three hours�.

! The target idle machines must meet the jobs minimum requirements (JMR)

and any other imposed conditions by users (e.g. deadlines).

Of course, not all jobs are suitable for Grid computing. For example, a batch job

that spends a lot of time processing input files and generating output files makes a good

candidate for Grid computing. However, it doesn�t make sense to submit a small

program that takes a few seconds to run on a typical PC to the Grid because of the Grid�s

computing overhead (such as scheduling and job transferring delays).

2) Improved productivity and collaboration among organizations

Collaboration brings (in a dynamic and geographically distributed manner) huge

resources to form one powerful computing system which is called the �Grid� to amplify

productivity, allowing widely isolated departments and businesses to create virtual

organizations [19] in order to share data and resources.

Sharing resources among a number of organizations reduces cost in a spectacular

way. An organization may �borrow� resources (e.g. databases, supercomputers, etc.)

from another organization �on the fly�. Of course, borrowing is cheaper than buying.

It is likely that the future way for companies and government agencies to support

research is by providing access to available resources. But how many companies are

CHAPTER 1: INTRODUCTION 12

willing to donate an Intel TFLOPS or a Cray T3E supercomputer to a university? In

comparison, how many companies could be willing to give only access to such machines

when they are idle? For a student in a university, there is no difference between

evenings, weekends or business hours. However, there is a big difference in a company!

Most machines are probably idle on weekends in most companies. Large amounts of

research money are spent on buying resources, but with the advent of the �Grid�,

providing access to expensive resources is probably more efficient for everyone.

Furthermore, it is much easier to convince the �right people� to gain access to a resource

than to expect it to be donated.

Sharing in the Grid starts with data (i.e. �data Grid�) in the shape of files or

databases [8]. A �data Grid� can increase data capacities by spanning over many systems

and have greater capabilities than on any single system. Of course, sharing is not limited

to data, but also expands to other resources, such as software, tools, computers, licenses,

and others.

3) Solving complex problems

A �Grid� creates a virtual powerful machine that is capable of solving complex

problems that were previously unsolvable. Supercomputers rely on thousands of well

coordinated processors to solve complex problems that were unsolvable by one computer

with one processor.

Suppose now we place three Intel TFLOPS supercomputer to work together in a

cluster. They will then be faster and better than one Intel TFLOPS if they are well

coordinated. Suppose further that we group three such clusters together. They will then

CHAPTER 1: INTRODUCTION 13

be more powerful than one cluster, again, if they are well coordinated. Should these

clusters be geographically dispersed, they could be thought of as a Grid.

In summary, the Grid is a virtual supercomputer that can span over the entire

world and address problems currently unsolvable (Figure 1).

Figure 1: Accessing the Virtual Computing Power of the Grid

1.3 GRID ARCHITECTURE

The system architecture plays a vital role in the overall system performance during

the scheduling stages, which are discussed in the next chapter, since the adopted

CHAPTER 1: INTRODUCTION 14

architecture dictates the scheduling schemes in the Grid system. Of course the system

architecture should always scale while allowing Grid scheduler(s) to:

! Discover resources (for submitted jobs) from huge resources collections,

! Select best resources with respect to a user conditions (i.e. economic,

performance, etc.),

! Retrieve jobs from their host machines and submit them to resources in order to

execute,

! Collect information about system resources,

! Migrate (i.e. reschedule) jobs to different resources at any scheduling stage, and

! Report results to users.

In this section, we take a brief look at three architecture types: centralized,

distributed and hierarchal architectures.

1.3.1 Centralized Architecture

In the centralized scheduling systems, all jobs are submitted to a single Grid

scheduler, that does not belong to a specific local system and is responsible for assigning

resources to all jobs across geographically distributed domains. Thus, the central Grid

scheduler is responsible for tracking the status of every job in the system and must

maintain up-to-date information about every resource in the system, as shown in Figure

2. This approach can be found in many current Grid systems [26] such as Condor [13,

42], PBS [33, 36], Maui [24, 30], and LSF [28, 29].

Obviously, when the number of jobs increases, the worse it gets in making

scheduling decisions regardless of the way resources are structured. Note that some Grid

CHAPTER 1: INTRODUCTION 15

Information Systems, like the Monitoring and Discovery System (MDS) [31], structure

resources in a hierarchical way to achieve scalability. However, if those hierarchal

resources are still accessed by a single scheduler, the overall system performance will

still get worse and worse as the number of jobs increases in the system.

Finally, such an architecture introduces one point of failure, as in the case of any

centralized system � the whole system comes down when the central scheduler fails to

operate.

Figure 2: Job Scheduling in Centralized Grid System

1.3.2 Distributed Architecture

In this architecture, several Grid schedulers (GSs) are distributed and coordinate

among each other to access system resources as shown in Figure 3.

<<Grid scheduler>>

Users

Users

Resources Resources
Resources

Resources
Resources Resources

Pending Jobs Users

CHAPTER 1: INTRODUCTION 16

In general, Grid schedulers (GSs) in distributed systems gather information about

their local resources. A user submits a request to the Grid via a GS. In turn, that GS

submits the request to its local resources or to remote resources via other schedulers. Of

course, this architecture is an improvement over the centralized one with respect to fault

tolerance and performance, since scheduling is performed by several distributed Grid

schedulers (GSs). On the other hand, it introduces new non-trivial issues, such as how

those Grid schedulers locate other schedulers in the system.

A peer-to-peer (P2P) system [4, 10, 32, chapters 24-27 in [34], 44] is an example

of distributed systems. We found that there is a strong tendency among researchers to

use the Peer-to-Peer (P2P) approach in order to replace the centralized architectures in

the Grid systems. The P2P systems are currently used to share data among several peers

across the network. Gnutella [4] and Napster [32] are examples of such file sharing

systems.

Figure 3: Job Scheduling in Distributed Grid System

GSN-1
GSN

Users

Users

Resources Resources
Resources

Resources
Resources Resources

Users

Pending Job

Users

GS1
GS2

CHAPTER 1: INTRODUCTION 17

In P2P systems, nodes are called peers, if a peer is connected directly to another

peer; then both of them are considered neighbors (i.e. neighbors are not necessarily

geographically close to each other). When a peer wants to join the system, it requests a

set of neighbors via contacting one or more contact services, as shown in Figure 4.

A user�s workstation submits a request to the system via one of its peers. The

peer in turns forwards the request to its neighbors, and the neighbors forward the request

to their neighbors, and so on. Once the request is received by a peer that can satisfy the

request, it contacts the initial requesting workstation to offer its service. Note that the

source workstation often receives multiple responses. In this case, the workstation

ignores the unwanted responses.

Figure 4: An Example of Joining a New Peer in the P2P systems

Many papers address Grid scheduling with the assumption that resources will be

discovered via P2P systems. Thus, in this case, scheduling turns out to be one issue:

when will a peer accept a request from a neighbor or refuse that request and forwards it

to its neighbors. For example, [44] proposes a Grid scheduling architecture that

combines local and Grid schedulers in one unit with two queues: Local queues and Grid

CHAPTER 1: INTRODUCTION 18

queues. The algorithm in [44] is summarized as follows (i.e. Note that [44] doesn�t

address how Grid schedulers locate their peers and leaves it up to the P2P approach):

 // AWT is the Approximate Wait Time for a job to stay

in

 // the local scheduler queue before it is executed.

 // GTH is a Grid scheduler threshold

 Place a received job in the Grid queue;

 If AWT < GTH then

 Move job from the Grid queue to the Local queue;

 Else

 Job is migrated to a peer Grid scheduler;

1.3.3 Hierarchal Architecture

As stated earlier, many researchers have proposed replacing the centralized

architecture approach with the P2P systems approach. Few researchers seem to instead

advocate a hierarchical approach. For example, [48] states that �Although it seems

obvious that a Grid scheduler may consist of more than a single scheduling layer, many

details of an appropriate scheduling architecture have not yet been established�.

Moreover, some other researches have ruled out the hierarchal architecture approach

CHAPTER 1: INTRODUCTION 19

altogether. For example, [44] states that �A hierarchy where Grid schedulers are

organized into a tree and jobs flow up and down the tree is an interesting approach, but

we do not expect it to scale as well as a P2P approach�.

In fact, our research not only shows that a hierarchal architecture scales well, but

also that it offers a substantial performance improvement over the P2P approach.

Moreover, our proposed hierarchal architecture does not need to replace the P2P based

Grid systems, but in fact can be combined with the P2P approach in one Hybrid system

(see next section).

1.4 THESIS CONTRIBUTIONS

The main contributions of this research are summarized below.

• Propose a hierarchal architecture that can be combined with the well-known P2P

approach so that it provides better system scalability, efficient resources

management, etc. The proposed hierarchal architecture also reduces the average

job waiting time, increases system parallelism and deals with user imposed soft

conditions (i.e. conditions that a user likes to have, but is willing to continue

without them until they become available).

• Propose a self-discovery method to be used in the resource discovery stage. This

method produces a set of logical channels to be used as paths by jobs (in the next

scheduling stage) to get to their physical resources. We have observed that many

studies jump over the resource discovery stage into the second scheduling stage

by assuming that all jobs can execute anywhere in the Grid, or simply assuming

CHAPTER 1: INTRODUCTION 20

that resources will be discovered using the P2P approach. However, as it will be

shown, those scheduling stages have to be dealt with in sequence.

• Propose an adaptive child scheduling method to be used in the resource selection

stage. This method uses a self-scheduling scheme by exploring the parent-child

relationship. Three rescheduling algorithms are also proposed for this stage:

o The Butterfly algorithm to reschedule jobs when better resources become

available,

o The Fallback algorithm to reschedule jobs that had their resources taken

away from the Grid before the actual resource allocation and

o The Load-Balance algorithm to balance load among resources.

• Provide a Grid simulation model that can be expanded, in theory, to any desired

number of nodes (i.e. we stopped at 2400 nodes). This model not only shows that

the proposed schemes are implementable in real life, but also provided a

reasonable number of nodes for the simulation of a Grid system. We believe that

75 nodes was the maximum used in other related work on Grid simulations [51].

Ultimately, to obtain end-to-end Grid scheduling, the job execution stage has to be

addressed. We did not tackle this third scheduling stage.

1.5 THESIS ORIGANIZATION

The rest of the thesis is organized as follows. Chapter 2 provides a brief

background of the hierarchal scheduling in parallel and cluster systems and it discusses

CHAPTER 1: INTRODUCTION 21

the three Grid scheduling stages: resource discovery, resource selection and job

execution. Chapter 3 presents the proposed ideas for applying the hierarchical

scheduling schemes to manage resources in the Grid systems. It also serves as the

specifications for the Grid model in the next chapters. In that chapter, we discuss the

proposed schemes for the first two stages of the Grid scheduling: resource discovery and

resource selection. In addition, it introduces three rescheduling algorithms: the butterfly,

fallback and load-balance. It also proposes a hybrid system to combine the proposed

hierarchal schemes with the well-known peer-to-peer (P2P) approach. Chapter 4 gives a

brief introduction to the Discrete Event Simulation (DEVS) CD++ tools. It also

discusses the basic elements that construct the Grid model used to run a series of

experiments through simulation. Chapter 5 discusses the Grid simulation model, its

assumptions and the results obtained over several experiments (Detailed result tables are

given in Appendix-A). Finally, conclusions are provided.

22

CHAPTER 2: BACKGROUND

2.1 INTRODUCTION

This chapter provides a background on the Adaptive Hierarchical Scheduling

(AHS) policy and the three stages of the Grids scheduling: resource discovery, resource

selection and jobs execution.

The Adaptive Hierarchical Scheduling (AHS) policy [14] has been considered for

several systems: Shared memory, distributed memory (multicomputers) and cluster

systems. In this chapter, we give a brief introduction to the AHS method. (Please refer

to [14] for more details).

Once more, Grid scheduling is performed in three stages. First, resource

discovery, which produces an initial list of matched resources. Second, resources are

selected (i.e. resource selection stage) from the list obtained in the first stage based on

different conditions and constraints. Third, the Grid execute jobs on the selected

resources (i.e. jobs execution stage).

CHAPTER 2: BACKGROUND 23

2.2 ADAPTIVE HIERARCHICAL SCHEDULING (AHS) POLICY

The AHS method has the system (e.g. cluster) schedulers prearranged in a tree of

schedulers. The core of the AHS policy deals with job assignment, affinity-scheduling,

and self-scheduling [1, 14]. For self-scheduling, the parent-child relationship between

the nodes in the tree is key. Specifically, when a non-root node can handle more work, it

initiates self-scheduling by sending a request for computation (RFC) message to its

parent node requesting more computation. If the parent node doesn�t have work to pass

to that child at the time of the RFC, it in turn generates its own RFC and sends it to its

parent on the next level of the tree. This process is recursively followed until either the

RFC reaches the root system scheduler or a node with unassigned computation is

encountered along the path. In the case the RFC reaches the root system scheduler, the

latter backlogs the request if there are no jobs waiting to be scheduled. However, if a

scheduler with unassigned computation is found, the root scheduler applies the space-

sharing policy to the waiting jobs as discussed next.

Job and Task Assignment: The algorithm first determines the ideal number of jobs

that can be moved down one level from the parent node to the child node as a single

assignment by applying a space-sharing policy to divide waiting jobs among children�s

partitions. For example, the (root) system scheduler (SS), in Figure 5 has 4 waiting jobs.

Suppose that upon receiving an RFC message from S1, it applies the space sharing policy

and passes 2 jobs to S1. In this case, S1 will apply the space sharing policy on the

received two jobs and pass (say one job) to S2. Now, suppose that S3 sends an RFC

CHAPTER 2: BACKGROUND 24

message to S1 to request more work to do. In this case, S1 can pass the other job to S3

without generating an RFC to the SS. Furthermore, S1 or S3 can now apply the time

sharing policy on the job it has by chopping it into a number of tasks and distributing it

among its children in a time-sharing fashion.

Affinity-Scheduling: Once the ideal number of computations to be transferred is

determined, the policy selects the best jobs to be passed to a child. For example, jobs

have to have their data in a partition before passing it to that partition.

Figure 5: An Example of Hierarchical Scheduling

2.3 GRID SCHEDULING STAGES

Grid systems engage in the management of vast collections of heterogeneous

resources that are distributed over vast geographical regions, dynamically available, not

controlled nor owned by the Grid system in which the information about the local

S2 S3

Jobs/Tasks

SS

S1

User
2

1

CHAPTER 2: BACKGROUND 25

systems (that actually own the resources) is often outdated. In this environment, the

scheduler (broker) becomes one of the most significant components of the Grid system,

since it has the responsibility of discovering resources that meet the user�s submitted job

requirements, selecting best resources, scheduling jobs on the selected resources,

migrating jobs to different resources (e.g. due to workload), executing user�s job (i.e.

mapping jobs to resources) and finally reporting results to the user.

Scheduling computation (i.e. jobs) in the Grid environment is a very challenging task.

Grid characteristics must be taken into account to be able to perform efficient scheduling.

Grid schedulers (or brokers) must make scheduling decisions in an environment where

they have:

! No control over the resources since they don�t own them.

! Distributed resources.

! Dynamic existence of the resources. Resources may be added or removed from

the system at any time.

! Up-to-date information collection. Detailed and up-to-date information gathering

about resources is essential in order to make the best possible job/resource

matching,

! Heterogeneous resources. Jobs must be matched to resources so that they get

computed on them as requested. For example, a job may only run on an INTEL

architecture and the Linux operating system.

! Distributed Data. For example, a job may need its data to be fetched from remote

systems.

CHAPTER 2: BACKGROUND 26

! Local management security policies. For example jobs inputs/outputs have to

pass through local systems firewalls.

! Network related issues (e.g. connection unreliability, bandwidth, etc.).

! Tentative scheduling until the allocation of actual resources: target resources may

be taken off from the Grid before a job actually uses them.

It is important to draw the line between Grid schedulers and local schedulers. The

primary difference is that local schedulers own and control local resources � they are well

informed about their local resources (which is completely the opposite in the case of Grid

schedulers). As a result, Grid schedulers should gather information from local schedulers

as much as the latter are willing to give up. Note that the lack of resources ownership

and control is at the root of most (if not all) problems in Grid scheduling.

Figure 6: Grid Scheduling Stages and Capabilities.

Job
requirements
Imposed
constraints

Job matching
Static resources
information

Resource
discovery

Resource
Selection

Job execution

[Set of matched
resources]

Re-scheduling
Dynamic resources info
Meta-scheduling
Migration, monitoring
Balance workload

Preemptions
Migration
Monitoring
Completion

Submit job to
resources

Submit job to
the Grid

CHAPTER 2: BACKGROUND 27

The three stages (and related issues) of Grid scheduling are summarized in Figure 6. In

the rest of this section, we examine Grid scheduling and related issues in more details.

2.3.1 First Stage: Resource Discovery

The first step to schedule a job in the Grid is to find resources for it. The user

must be authorized to access the discovered resources and the resources must meet the

submitted job minimum requirement (JMR). Of course, Grid schedulers can never carry

out this step without gathering the sufficient information to enable them to match the jobs

to the suitable resources.

Currently, Grid schedulers may gather information from two main sources: The

Grid information system (GIS) and the local schedulers (i.e. the schedulers that actually

own and control the resources). Grid schedulers also need to know the job requirements

or any other imposed constraints by the user in order to match those jobs to suitable

resources.

At the beginning of resource discovery, Grid schedulers start with an empty set of

resources for a newly submitted job, and end up with a set of relevant resources for the

new arrived job. In other words, Relevant resources are the ones authorized for user

access and meeting the minimum job requirements (JMR)). The best resources, based on

available information, are then selected in the next stage of Grid scheduling, resources

selection � (see Figure 6).

Resource discovery is a complex task in Grid systems because of resources distribution,

dynamic resources availability (where resources come and go dynamically without any

centralized coordination), and also due to the concept of virtual organizations (VOs) [18,

CHAPTER 2: BACKGROUND 28

19] � different groups with different users. The term �virtual organizations� was used in

[18, 19] to describe a group of individuals or/and organizations share resources

dynamically according to certain sharing rules. This adds complexity to resource

discovery, since resources are not �smoothly� partitioned in Grid systems, and different

set of resources or/and users may belong to different VOs. Figure 7 shows an example of

two overlapping VOs: some of the resources and users belong to both of them, but the

remaining of resources and users belong to only one of them. Consequently, users are

only authorized to access resources contained in their VOs. Of course, users must first

register in a VO to be able to access resources in that VO, and VOs should not only keep

track of registered users IDs and passwords but also other information such as billing,

access duration, and so on.

In MDS systems [31] (Figure 8), for example, resources of a virtual organization

(VO) register in one place that is called �Index�. An Index of a VO can register with

another Index; hence resources registrations are structured in a hierarchical manner. In

this case, as shown in Figure 8, the scheduler places a search query to discover resources

Once it receives a set of filtered resources, it places another query to select resources.

CHAPTER 2: BACKGROUND 29

Figure 7: Resources Sharing in Virtual Organizations (VOs).

Figure 8: VOs Indexes Structure in MDS Systems

VO - A
VO - B

Users

Resources

Users

Resources

Resources

Users

Resources

Resources

Authorized Access to Resources

Selection

ISIS

IS

IS

IS
IS

Index registration
IS = VO Index

Scheduler

Discovery

CHAPTER 2: BACKGROUND 30

2.3.1.1 Information gathering about static resources

The term �static resources� is defined in this thesis as the resources that are

needed for jobs to be able to execute until completion. Schedulers match collected static

resources to jobs requirements in order to determine if such a job is executable on those

static resources. Static resources usually need manual intervening in order to be changed

(e.g., operating-systems upgrade). Note that we will refer to �static resources� hereafter

in this thesis as simply �resources�.

Therefore, Grid schedulers can never achieve their goal of discovering resources

in order to be matched to a user�s application without first gathering the necessary

information about advertised resources in the Grid. Lots of hypothetical schedulers

presume that 100 percent of the needed information has been collected and is correct

[43]. This is a great oversimplification in a Grid environment. In fact, information

services [9] are a critical part of Grid scheduling, providing fundamental mechanisms for

resources discovery and monitoring, thus enabling Grid schedulers to do a better a job,

since the more a scheduler is informed about its environment the smarter it gets in

making valuable decisions that can play a major role in the overall system performance.

For example, imagine that a Grid scheduler queues a job to run on a Linux machine to

find out later that the job only runs on a newer version of Linux than the installed one on

that machine. The scheduler, in this case, made a dreadful decision because it didn�t

know what Linux version is currently installed on that machine. The job minimum

requirements are also important to enable Grid schedulers to do better matching. We will

discuss job requirements in the next section.

CHAPTER 2: BACKGROUND 31

Now, a method must be developed to gather information dynamically in order to

keep Grid scheduler(s) up to date as much as possible. This is not a trivial task in Grid

systems (or any other dynamic environment) where resources may appear or disappear

dynamically at run time. For example, in the mobile IP systems [37], a laptop computer

can be connected to any network and can still get access to the Internet. An event must

be triggered to inform the network router of the existence of that laptop (so that it can get

access to the Internet). This can be done in two forms: First, the laptop may broadcast a

message (i.e. called advertisement message) on the network to say simply �I am here� to

notify the network router, enabling the router to do what it has to do to ensure of routing

packets to the subject laptop. Alternatively, �somebody� (e.g. network router) has to keep

sending a special message similar to the ICMP message (i.e. called solicitation message)

to discover if anybody just got attached to its network, allowing, for example, the above

laptop to discover it.

The dynamic connecting approach of the mobile IP can be applied to the Grid

systems. A Grid scheduler has to receive some kind of message (i.e. advertisement

message) from somebody to inform it about new resources or changes in the current

resources. Furthermore, a Grid scheduler may also send a solicitation message to check

for example the status of certain resources. Note that some resources (once they are

reserved to be used) may require schedulers to keep sending periodic confirmation

messages to validate the reservation: if such message is not received by resources within

certain time, the reservation will then be cancelled. These types of messages may be

extended to be used as a solicitation messages by the Grid schedulers, since they have to

reach end-systems anyway.

CHAPTER 2: BACKGROUND 32

Grid Information System (GIS)

Grids schedulers may gather information [43] about resources from a Grid

Information System (GIS) which in turns gets its information from the actual resources.

The Monitoring and Discovery System (MDS) [31] is an example of GIS systems. The

European Data Grid Relational Grid Monitoring Architecture (R-GMA) and Hawkeye,

part of the Condor project [13], are other examples of GISs [60]. In the four sets of

experiments that were conducted in [60] to assess the performance of service components

of MDS2, R-GMA and Hawkeye GISs under different conditions, they found, due to high

loads, a strong advantage to caching or pre-fetching the data, in addition to the need to

have primary components at well-connected sites.

Furthermore, it is highly important to agree on a protocol (i.e. language) to

describe resources. However, this is an area of on-going research and there is debate on

how to structure a resource description and what schema to use (e.g. XML) [43].

The ClassAds Language

As described above, information must be collected to enable Grid schedulers to

match applications to resources and a technique must be defined to represent resources

and applications. As an example, the classAds (classified advertisement) language [40,

42] is used in Condor [13] matching. It is generic language that can be used in resource

discovery and matching for dynamic heterogeneous systems like the Grid where

resources ownership and control is distributed, with the possibility of resources

disappearance/appearance. The following shows an example of a resource advertisement

in ClassAds language. See [40, 42] for more details.

CHAPTER 2: BACKGROUND 33

[

Type = "Machine";

Activity = "Idle";

Disk = 80.0G;

Memory = 256M;

LoadAvg = 0.045;

MIPS = 104;

Arch = "INTEL";

OpSys == “LINUX”;

KFlops = 21893;

Name = "nice";

Requirements = Type == "Job" && LoadAvg < 0.3

]

The following shows an example of a job submission in ClassAds language. This

job description (JD) defines the submitted job requirements � we will revisit the job

requirements subject later in this section.

[

Type = "Job";

CompletionDate = undefined;

Cmd = "run";

CHAPTER 2: BACKGROUND 34

Requirements = Arch == “INTEL” && OpSys == “LINUX” && Memory

> 20

Rank = (Memory > 32) * ((Memory * 100) + (IsDedicated *

10000) + MIPS)

]

Local scheduler information

The more information Grid schedulers know about local resources, the smarter

they become. Therefore, the Grid schedulers should gather information from local

systems as much as they are willing to give. Local schedulers are the best source of

reliable information about their resources, since they control and own those resources �

nobody can use local resources without going through those local schedulers.

The following shows some of the attributes that can be gathered from local

schedulers, enabling them to make smarter decisions. These attributes are mainly based

on [28, 48] where [28] offers objective re-assessment (e.g. advanced reservation vs.

guaranteed completion time) of the communication attributes that are listed in [48].

Advanced reservation

Advance reservation [48] defines the timeframe (start and end times) to limit a set

of resources to a specific user or users. Some systems like Maui [24], a default time

length is created if reservation timeframe is not specified. This feature can be very

helpful when scheduling a critical job that has to finish before a deadline. In the black

hole example that was described earlier, three Intel TFLOPS supercomputers were

needed to analyze the 100GB of raw data within one hour to enable astrophysicists to

determine the blast location in space and view it via their telescopes before its visual

CHAPTER 2: BACKGROUND 35

signal fades. In this case, not only reservation may be needed, but also guaranteed

completion.

Guaranteed Completion Time

Local schedulers still reserve the right to decide when a job will start and end

within a given timeframe. However, they guarantee that jobs will be completed before

the given deadline. For instance, backfilling based scheduling (i.e. a new job is allowed

to overtake earlier queued jobs if its early execution will not delay others) can predict the

maximum completion time but not the starting time of the job�s execution.

Resources allocation on demand

Multistage jobs are possibly better suited with different resources for different

stages. For example, a job requires high bandwidth for database transfer stage, but it

doesn�t at a subsequent stage. Therefore, that job may reserve a high bandwidth for only

the database transfer stage, but not for other execution stages.

Accordingly, local systems that support offering potential resources on demand

for the Grid are taken into account by the Grid schedulers when scheduling multistage

jobs.

Resources cost

Grid schedulers can use this information to evaluate different resources and select

the best-suited offer for a job. For example, assume a company provides two sets of

clusters to the Grid: Set A and Set B. Also assume a job can execute on both sets of

clusters and requires input data files that only exist on set A. Now, the cost is high to

schedule that job on set B because a database must be transferred to it. Cost is usually

CHAPTER 2: BACKGROUND 36

used as a general term that may indicate performance, charging for the use of resources,

and so on.

Job workflow

Grid jobs are often complex and contain various stages that depend on each other.

A local scheduler may take into account dependencies between allocations if they are

provided by the higher-level scheduling instance.

In multistage jobs or in a complex job execution, a job stage may not start

execution because of its dependency on another required resource such as another job�s

output, another stage execution output of the same multistage job and so on. These

dependencies are called the workflow of a job. For example, a job may not start unless a

database is transferred to the subject job�s location.

The workflows are very complex in the Grid environment and therefore workflow

management [15] is required for workflows with hefty number of tasks and completion

time (e.g. days). Workflow management in GriPhyN [15, 22], which is outlined below, is

an example of these systems. It must:

! Locate which components in the job generate the desired data outputs.

! Create components set based on their execution order.

! Locate the physical files of each component in the components set. This creates a

set of components physical locations (CPL).

! Identify the components output locations (COL) based on the computational

requirements of the CPL set to execute them in line with the discovered resources.

CHAPTER 2: BACKGROUND 37

! Determine the physical locations of the input data files set and select locations are

more appropriate given the COL set.

! Augment the workflow description to include jobs set to move components (CPL)

and input data files to the appropriate target locations (COL).

Cancellation Policy

Some local management systems define rules that must be met by the Grid

schedulers to keep resources allocation valid (i.e. before actual execution of a job). For

example, local schedulers may require a confirmation message for each job or jobs that

are scheduled to use the local resources, and if not received within some time, allocated

resources are then cancelled. The number of such cancellations measures the level of

local resources reliability.

2.3.1.2 Job requirements and matching

The job descriptions (JDs) describe the jobs minimum requirements to be able to

execute on certain resources, hence they enable schedulers to discover resources for those

jobs via matching them to advertised resources. The syntax of JDs can be expressed in a

language similar to ClassAds that we described briefly earlier in this section. Thus, the

job minimum requirements (JMRs) are related to the type of gathered information about

resources. JDs should then describe jobs from these angles. Job requirements can be

divided, as in [38], to three categories: computation requirements, data requirements, and

network requirements.

CHAPTER 2: BACKGROUND 38

Computation requirements

Grid schedulers should be informed (via JDs) of the computational needs of a job

in order to execute that job until completion. The importance of job requirements in

matching the job to the best possible resources by schedulers dictates the need for jobs to

be able to sufficiently describe their requirements.

Computational resources go beyond the type of resources such as architectures,

memory, disk space, operating systems, etc. to other important factors such as the

required time for a job to start and to complete, execution cost (e.g. price per hour),

resources reliability, machines performance and failure rate, etc. All of those factors

should be considered by schedulers to make a good choice in matching and selecting

resources for a job.

As described earlier, a Grid environment presents a challenge in matching jobs to

large collection of heterogeneous resources � there are too many dissimilar types of

computing architectures, operating systems or even versions of operating systems,

software installations and environments, such as shells and compilers. A given

application may be compatible with only restricted set of computational resources. For

example, if a job is limited to an INTEL architecture and a specific version of Linux

operating system, then Grid schedulers have no choice but to schedule it on a machine

that meet these requirements, regardless of the number of idle machines that don�t meet

that job minimum requirements.

Data requirements

CHAPTER 2: BACKGROUND 39

Data is essential in computing a job and cannot be ignored. Consider, for

example, a job that requires its files to be retrieved from remote location. The time

required to transfer those files must be taken into consideration when scheduling that job

on selected resources.

Network requirements

Data intensive computation applications dedicate the biggest fraction of their

execution time to transferring data. Such applications require minimum assurance of

network bandwidth or communications reliability and speed between network nodes. For

this reason, those applications count on guaranteed reservations of network bandwidth to

achieve a satisfactory degree of Quality-of-Service (QoS).

Data-intensive applications can be very difficult to support in Grid systems [18],

since they require high bandwidth data rate all the way between resources (e.g. remote

data repository) and application�s home (e.g. user�s workstation) whose bandwidth tends

to be smaller than local disks bandwidth. As stated earlier, the main goal of building

Grids is to increase resources utilizations. Therefore, we can never expect a machine on

the Grid to stay idle while waiting for huge data to be transferred to it � machines can

execute other jobs while waiting for the data to be transferred and cached locally.

Networks usually impose constraints on foreign jobs communications. For

example, firewalls can stop communication between any two machines, and system

administrators can shut down services if they misinterpret remote accesses.

CHAPTER 2: BACKGROUND 40

2.3.2 Second Stage: Resources Selection and Job Scheduling

In the previous stage (resource discovery), the Grid schedulers gather static

information about resources in order to be able to match them to the JMRs. For example,

if a job requires a UNIX machine, the Grid must then allocate a UNIX machine to be able

to execute that job.

Now, in this stage, Grid schedulers have to select resources from the obtained list

in the resource discovery stage so that they schedule matched job on them (in order to be

executed later). The resources selection is based on users imposed constraints (e.g. time,

cost etc.) and more collected dynamic information (e.g. load, prices etc.). For example, a

user may require that her job to be completed with one hour or less at a price of $100 per

hour.

In this stage, Grid schedulers meet new challenges due to the dynamic nature and

characteristics of the Grids, such as:

! Mapping jobs to best resources based on their knowledge via gathering

dynamic information about resources (e.g. workload) and user�s imposed

constraints (e.g. execute a job with a certain time).

! Rescheduling a job on different resources because of reasons such as

disappearing targeted resources from the system, overloaded resources, better

resources become available, and so on.

Grid schedulers have to gather dynamic information about resources to be able to

carry their objectives at this stage to comply with users imposed constraints and to

increase parallelism in the system so that jobs are efficiently scheduled together. The

CHAPTER 2: BACKGROUND 41

kind of dynamic information, such as resources accessibility and system workload, etc.,

can be provided by different services, like for example NWS (Network Weather Service)

[58, 59].

Note that predications using mathematical algorithms may also be used to improve

resources selection at this stage; [49] is an example of such algorithms.

2.3.2.1 Dynamic information gathering

The Network Weather Service (NWS) can be used to forecast the performance in

metacomputing environments (i.e. gathering dynamic information). [59] discusses how

the NWS is designed, and how it predicts the performance of a metacomputing system.

[59] also focuses on the NWS ability to predict the system�s �weather� via TCP/IP end-

to-end latency and throughput.

Grid schedulers may also collect cost information to be able to survive in the

reality of the business world. For example, a user requires using expensive ASIC tools in

the Grid, but for not more than a $100 per hour. For the Grid to be able to meet this

request, it has to then collect additional information like prices. GRACE (Grid

Architecture for Computational Economy) [7] is an example of systems that gather this

type of information for Grids. It even enables customers (i.e. users) and vendors

(resources owners) to negotiate the cost of resources according to the expected starting

time, the expected ending time, or the required storage, etc.

CHAPTER 2: BACKGROUND 42

2.3.2.2 Rescheduling

Rescheduling is modifying initial matching in response to dynamic system

changes like resources disappearance or other jobs load in the system.

2.3.2.3 Metascheduling

Metascheduling [16, 43] is the harmonization of scheduling of several

applications running on the same Grid simultaneously. The system takes into account

both the needs of an application (i.e. requirements and constraints) and the overall

performance of the system.

Systems usually use databases to store information about all applications in the

system such as the status of applications, the predicted execution costs, and so on.

2.3.3 Third Stage: Job Execution

This stage occurs once a job is transferred to the selected resources and starts

executing.

2.3.3.1 Preemption and Checkpointing

Preemption allows jobs to be interrupted (i.e. blocked) while running, to be

restarted later. Some local management systems may permit temporary preemption of a

job by a Grid scheduler (i.e. higher-level scheduler). Jobs can then be resumed without a

loss of work because of checkpointing (i.e. checkpoint file is created).

CHAPTER 2: BACKGROUND 43

Condor [5] uses preemption in a number of ways in order to apply the policies

supplied by both users and local management systems, for example:

! When an owner reclaims her computer after an absence (e.g. by touch of the

mouse),

! When a computer is busy with another local job or any other reason based on the

owner�s policies, or

! When another computer becomes available to execute the Grid job.

2.3.3.2 Cycle harvesting

Cycle harvesting is a way to get the most out of unused computers by repeatedly

using workstations that otherwise would be idle. For example, if a computer is

configured to use this method, it starts executing Grids jobs as soon as it becomes idle for

a period of time. This can be useful in an organization with too many unused computers

for a long period of time such as weekends, nights or even lunch. The workstation owner

can regain his machine once he starts using it again, maybe with a touch of the mouse,

the same way as screensaver works. PBS [33] systems support this type mechanism.

44

CHAPTER 3: HIERARCHICAL SCHEDULING IN

GRID SYSTEMS

3.1 INTRODUCTION

This chapter proposes ideas for applying hierarchical scheduling scheme to manage

resources in Grid systems. It also serves as the specifications for our Grid model used in

the next chapters. In this chapter, we discuss the schemes we propose for the first two

stages of the Grid scheduling: At the end of this chapter, we combine our proposed

hierarchical architecture with the well-known technique of Peer-to-Peer (P2P) systems in

a single hybrid system. Note that, in this thesis, a Grid scheduler (GS) can be referred to

as node, scheduler, child or parent. The Leaf Grid scheduler (LGS) is the Grid scheduler

that resides directly on top of resources and is connected with them via local scheduler(s).

The root of the Grid tree is called either the system scheduler (SS) or the Grid system

scheduler (GSS).

Resource discovery, in the general method, must produce a set of matched

resources to a user�s job. A Grid system must collect detailed dynamic information (e.g.

system load) about the available resources to make good scheduling decisions. Of

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 45

course, the more information a scheduler knows about the system (e.g. load), the better

decisions it makes.

In our hierarchical approach, the resource discovery stage may be performed using

one of two methods: layering resources (first method) or self-discovery (second method).

We have implemented the second method because it is more efficient and easier to

implement. In fact, we have come up with the self-discovery method during the

implementation of the model.

In the Layering resources method (ie the first method), Grid schedulers (GSs)

receive resources advertisements from their children; they update their tables and pass

these advertisements (about static resources) to their parents in the hierarchy. Actually,

this method turns out to be non-trivial to implement, since a child may advertise different

set of resources. This difficulty was our motivation to come up with the second method.

In the Self-discovery method, the GSS initiates resource discovery for one or more

jobs at the same time by passing their JMRs as one block to all children partitions (i.e.

children subtrees). At the end of this method, all schedulers will have none or a number

of job bags for the jobs that are executable on their partition, where each distinctive bag

is associated with one logical channel (i.e. please see section 3.2.1 for more details).

Thus the main difference between the two methods is that schedulers in the first method

collect all advertised resources in their children partitions. Conversely, in the Self-

discovery method, schedulers are only concerned about the jobs that are executable on

their children partitions, hence, canceling out irrelevant information about resources.

Therefore, at the end of the resource discovery phase (see Figure 9) a set of logical

channels are produced that every job must take to reach its final physical resources.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 46

Consequently, the resource discovery stage affects directly the way jobs are scheduled on

selected resources. Note that Leaf Grid schedulers (LGSs) may receive resources

advertisements from anywhere as soon as they reflect the resources below them. For

example, LGSs may receive advertisement from a Grid Information system (GIS) or from

local schedulers (i.e. note that LGSs may be combined in one unit with local schedulers).

The resource selection (i.e. job scheduling on selected channel) stage (see Figure 9)

focuses mostly on scheduling multiple jobs simultaneously, re-scheduling because of

workload or disappearing/reappearing of resources. Note that moving jobs from parent to

child is according to the adaptive hierarchy scheduling (AHS) method, which in turns

uses the collected dynamic information to schedule a job on a specific child�s partition.

Three rescheduling algorithms are also used in this stage: Butterfly, Fallback and Load-

Balancing algorithms.

Figure 9: Hierarchical Grid Scheduling Stages and Capabilities � See also Figure 6.

[Set logical
channels]

Job
requirements
Imposed
constraints

Job matching
Static resources
information

Resource
discovery

Job
scheduling
on selected

channel

Job execution

Re-scheduling
Dynamic resources info
Meta-scheduling
Migration, monitoring
Balance load

Preemptions
Migration
Monitoring
Completion

Submit job to
resources

Submit job to
the Grid

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 47

In this thesis, we don�t address the execution stage (see Figure 9). However, we

assume that once a leaf GS is ready to map a Grid job to resources, it contacts the user�s

workstation to retrieve the physical job. Leaf GSs map a Grid job in the same way a

typical Grid scheduler would do in the execution stage of the general method. For

simplicity, we assume that a job executes until completion. However, we are still

interested in the location of the resources that execute a job (see the Butterfly algorithm

in this chapter).

3.2 HIERARCHAL GRID SCHEDULING STAGES

Grid schedulers are structured in a tree form that we call Grid tree. Users submit

their jobs to the Grid via the Grid system scheduler (GSS), which is the root node of the

Grid tree. Theoretically, a user can submit the whole job as a batch, with its description

(JD), to the Grid system. Obviously, transferring entire jobs in an environment like the

Grid is very expensive as explained below. Thus, we assume that a user only submits a

job description (JD) to the Grid System Scheduler (GSS) where the job description

includes the job minimum requirements (JMR) and any other imposed constraints by the

user. The GSS then adds more information to the job description (e.g. sequence number),

discovers resources for it and schedules it according to the AHS method on one of its

children. The system allocates (i.e. grants actual access to) the needed resources for the

job when it reaches a leaf Grid scheduler (i.e. a node on top of resources). The LGS

connects directly with the user�s workstation and serves as a middleware between the

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 48

user workstation and the allocated resources as shown in Figure 10 (note that LGSs may

be combined with local schedulers in one unit).

Transferring entire jobs when actual resources are allocated (or about to be

allocated) can have a lot of benefits:.

First, the nature of the Grid allows it to handle huge jobs.

Second, the user may interact with resources directly during the job execution stage

giving her the impression of running the job on her workstation. In this way, the user

may monitor the job progress more closely and may even decide to abort the job before it

completes. We will re-visit this point when we discuss the butterfly algorithm.

Third, some jobs can�t be executed as a batch. For example, a user wants to build

software project which is stored under a configuration management tools (e.g. ClearCase)

on his workstation. Of course, the user would like to submit just the JD and tell the Grid

where to find the makefile and the source code. Although syntax for job description to

the Grid system is out of our research scope, nevertheless, we would expect something

similar to the following (see also chapter 2 for classAds [42] examples):

 Type = “Job”, Size = 20M, Dir = “/usr/project”, Cmd =

“make”, Cmd = “run proj.exe”, JMR= (Arch = “INTEL” or

“AMD”, OS = “Linux”)

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 49

Figure 10: Transferring User�s job to Allocated Resources.

The Leaf Grid scheduler (LGS) that transfers the necessary preparation (e.g.

source code) to execute the job serves as an agent between the user workstation and the

allocated resources for the job. The main drawback for this scheme is a security issue

since the user workstation runs directly on the top of the resources via an LGS. Security

is a fundamental issue in Grid systems but is out of the scope of this thesis. (Please refer

to [55] for security related issues in the Grid environment). In essence, when expensive

resources are shared in the Grid systems, their owner must make sure that these resources

are only used while well-protected.)

In this thesis, we refer to job description (JD) as the submitted job minimum

requirement (JMR) and any other imposed conditions by the user. Although we

sometime view a JD as a job when it is transmitted from one GS to another, we still only

GS2 GS3

Resources Resources

Report messages
Job description message

GSS

GS1Grid�s user

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 50

mean a job description (JD). Conversely, we always call the transfer of data from user�s

workstation to a LGS a job or application.

In summary, Grid schedulers (GSs) operations, in our approach, are:

! Resource discovery (produces set of logical channels � see Figure 11). We

discuss two methods (but we�ve only implemented the second method):

o In the first method (layering resources),

! Schedulers collect resources advertisements about static resources

from their children.

! Job matching uses JMRs and the available information about static

resources.

! The Resource discovery phase is repeated for a job at every level

in the Grid tree.

o In the second method (Self-discovery),

! Information about resources is only collected and matched by leaf

Grid schedulers (LGSs).

! Each scheduler inserts matched jobs (only Ids) into bags and

passes those bags to their parents, hence, a scheduler knows

matched jobs on a partition by looking into those bags.

! The Resource discovery phase is performed one time for a job.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 51

! Schedule jobs on selected resources (on their children�s channels) according to

the AHS method, users imposed constraints and any collected dynamic

information (e.g. system load).

! Monitor scheduled jobs on their partitions. They keep information about the jobs

that they�ve already scheduled on their children�s partitions (called jobs status

tables (JST)). By doing so:

o It becomes easier for GSs to make rescheduling decisions.

o Easier for GSs to recover from failures by duplicating vital information.

For example, suppose a GS fails and one of its children then inherits its

place to become the new parent as described in [2]. The new parent then

merges its JST (i.e. because used to be child) with its new children�s JSTs

(i.e. its former siblings) to recover the dead parent�s JST.

! Balance load among its children�s channels. See the Load balance algorithm.

! Reschedule jobs because of resources disappearance. See the fallback

rescheduling algorithm.

! Reschedule a job on a preferred resource, which was unavailable at the time of

that job scheduling. See the butterfly rescheduling algorithm.

Of course it is unrealistic to jump into job scheduling phase (on selected resources)

without first going through the resource discovery stage. We could have assumed that all

jobs are executable anywhere in the Grid in order to exclude the resource discovery stage

from our work. Indeed, many publications make this oversimplification (e.g. see [17]).

We chose to address the resource discovery stage because as it is going to be obvious

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 52

through out this chapter that resource discovery has a direct influence on the design and

implementation of the job scheduling and resource selection stage.

For the rest of the chapter, we first add more discussions on the resource discovery

stage in our approach. We then discuss the adaptive hierarchical scheduling (AHS)

method, which is responsible for pushing Grid�s jobs into children partitions. We then

illustrate three rescheduling dynamic algorithms.

Finally, please recall that we assume that jobs run to completion when they are

executed, since job execution stage is out of this thesis scope.

3.2.1 First Stage: Resource Discovery

The purpose of this stage is to produce a set of logical channels to be used as

paths by jobs, in the next stage, in order to get to their physical resources (see Figure 9).

Logical channels serve as a map for jobs to know how to reach resources that can meet

their requirements.

Figure 11: Resources Discovery Stage Overview

Grid�s user

Grid System

JMRs
Set of logical
channels

Static resources
advertisements

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 53

Logical channels are generated based on both gathered static resources

advertisements by the system (via LGSs) and the JMR(s) for subject job(s) as shown in

Figure 11. Note that the job description (JD) of a job contains both the JMR and any

other imposed conditions by the user (e.g. cost).

JMRs can be submitted explicitly to the GSS as part of the job description (JD) or

submitted implicitly by submitting the entire job as a batch to a queue that is associated

with a set of resources, which in turns submits it to the GSS, as shown in Figure 12.

Either way, the JMR for a Grid job is still submitted to the GSS to discover resources for

it.

Grid systems also need to gather static information from resources in order to be

able to perform job matching. By static information we mean the information that is

needed from resources to be able to determine that a specific Grid job is computable on

those resources. These types of resources usually need intervening to change them such

as architecture, operating systems and so on. Schedulers can gather them either from a

General information system (GIS) or directly from local schedulers. Today, Grid

schedulers and local schedulers are combined in one unit [44].

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 54

Figure 12: Submitting Actual Jobs as Batches

Figure 13: Illustration of Advertisement Messages

In the following two sections, we discuss two methods of resource discovery in

the Grid trees: Layering resources and Self-discovery. The main difference between the

two methods is on how to produce logical channels, which jobs must take in order to

reach physical resources.

GSS JMRs

Grid�s user
Submitted
physical jobs

GS3 GS4

Resources Resources

GSS

GS1 GS2

GS5 GS6

Resources Resources

GIS

Advertisements

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 55

3.2.1.1 First Method: Layering Resources

In general, information gathering can be via probing resources (i.e. through agents)

by sending some type of solicitations or by getting advertisements from those resources.

For example, as shown in Figure 13, GS3 and GS4 receive advertisements directly from a

GIS system whereas GS5 and GS6 receive them from local schedulers (or resources

agents). Now, when a GS receives an advertisement message, as shown in Figure 13, it

! Updates its resources and

! Passes the advertisement to its parent in the hierarchy tree.

Grid schedulers (GSs) manage resources on their partitions in tables that we call

recourse managers (RM), which are built in hierarchical structure. This way, each GS

manages only resources on its partition. Thus, it becomes easier to match resources to a

job minimum requirement (JMR) since a GS only worries about resources that exist on its

partition.

The Recourse manager (RM) of a GS is a database table about resources of each of its

children. It doesn�t mean that a parent�s RM has to keep a detailed resources information

about each of its children (i.e. it may only keep a reduced resources set (RRS) of its

children resources). For example, consider the case when a child�s RM contains an

INTEL architecture with Linux operating systems resources. In this case, the parent�s

RM may only store �INTEL architecture�. Therefore, when a job requires an INTEL

architecture, the JD is passed to all children to verify if this job is still computable on the

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 56

parent�s subtree. However, if a JD doesn�t match a child partition, it means this job can�t

use that child partition (i.e. it can�t be scheduled on this specific partition).

Recourse managers (RMs) are essential in the scheduling process since GSs must always

verify that a job will compute on a child�s partition before it schedules the job on that

child�s partition. The fact that a job may not be computable on certain children partitions

because of lack of resources, adds more complexity to the Grid scheduling process.

Furthermore, children may advertise different sets of resources because they receive

distinct resources from grandchildren,. For instance, Figure 14 shows a Grid tree of four

levels of schedulers. Now suppose that GS7 and GS8 advertise different resources. This

prevents GS3 from advertising one type of resources, since jobs that can execute on GS7�s

partition not necessarily can compute on GS8�s partition and vice versa. Therefore, GS3

should advertise two types of resources. Suppose further that GS4 advertises the same

resources as GS8. In this case, GS1 advertises two types of resources since it stores one

type of resources for both GS4 and GS8 (i.e. received via GS3) and the other type for

GS7�s resources (i.e. received via GS3).

Figure 14 shows the multiple paths, which we call logical channels, that jobs must

take in order to reach resources that can execute them. Schedulers, in the next stage,

must push jobs into channels that will be able to guide jobs to their matched physical

resources.

A scheduler rearranges the data structures of resources, if needed, according to

received advertisements from its children. For example, advertisements may cause a

scheduler to divide a set of resources into two or more, or to combine resources from

different children into one set of resources.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 57

Figure 14: Logical Channels for GSs with Different Static Resources

Consider Figure 15, as an example, which shows an inside look of the GS1

scheduler of Figure 14. The first subfigure (in Figure 15) shows that GS1 has two

children GS3 and GS4. GS3 advertises two types of resources where one of them is

similar to the advertised one by GS4 (i.e. similar resources serve as backup resources to

each other since they share same channel). Now, queued jobs in GS1 are actually waiting

to use one of three logical channels.

GSS

Resources Resources
Resources

Resources

GS2
GS1

GS3 GS4

GS7 GS8 GS9
GS10

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 58

Figure 15: Internal Illustration of Resources and Jobs

<<GS1>>

 GS3

GS4

Jobs

<<GS1>>

 GS3

GS4

Jobs

• GS1 internal illustration from Figure 14
• GS3 advertises two distinct sets of resources
• GS4 advertises one set of resources and

similar to one of GS3�s types

• GS4 advertises different set of resources
• No jobs are executable on GS4 after

resources change
• GS4 previous jobs didn�t lose their resources,

since they still executable on GS3

<<GS1>>

GS3

GS4

Jobs

• GS3 advertises different set of resources, but
similar to GS4.

• All jobs lost their resources and must be re-
scheduled.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 59

The second subfigure (in Figure 15) shows that GS4 changes its resources (i.e.

broken channel) but none of the queued jobs (that previously matched GS4�s resources)

need to be rescheduled because they can still use the other channel via GS3 resources. In

third subfigure (in Figure 15), GS3 advertises the same resources as current GS4 resources

(i.e. one output channel) causing all of the queued jobs in GS1 to be rescheduled. For

example in this method:

! A child transfers all of its resources (i.e. ftp a file) to its parent when that child�s

resources change.

! A child also has to inform its parent of the number of resources sets it

advertises.

! A job points (e.g. C++ pointer) to its primary matched resources and to one or

more backup resources. For example, a job may match GS4�s resources and

both GS3�s resources in the first subfigure of Figure 15. Thus, one of these

resources can be the primary one and one or more can be backup resources.

Note that a job may have backup resources on every scheduler on its path.

Suppose that a job comes back to a scheduler because of resources

disappearance, the scheduler can then make a quick decision (using its jobs

status tables (JSTs)) on whether the returned job is still executable on any of its

children. Of course, if a job returned to a scheduler doesn�t have a backup on

that scheduler, the scheduler then sends it back to its parent without spending

the time of trying to discover resources for it on any of its children�s partitions.

Of course, the above points are design choices that can vary from one strategy to

another.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 60

Now, the layering-resources method that we just described in this section structures

resources in a hierarchal fashion. As a result, each GS in the Grid tree has to collect

resources and match jobs to those resources. In attempting to implement this method, we

learned that it was non-trivial to implement due to several reasons, such as:

! Resources sets from different sites do not exactly match each other easily in

order to share one channel.

! Every time a resource set is changed, schedulers perform too much work to

rearrange resources sets and pending jobs on those resources, as shown in

Figure 15.

! Resource discovery is performed for jobs at every level of the hierarchy.

! It is difficult to detect new appeared resources.

The above points mainly led us to come up with the self-discovery method which is

discussed in the next section.

3.2.1.2 Second Method: Self Discovery

The Grid system, in the self-discovery method, omits irrelevant dissimilarities

between resources of different sites. The principle behind this method is resources are

equivalent to each other if they match the same set of jobs. In other words, if the same

jobs set is executable on different resources, the Grid system will then consider those

different resources as alike, since their differences do not affect the jobs computability at

that time. For example, one site advertises INTEL architectures and another site

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 61

advertises AMD architectures. Now, suppose the Grid has ten jobs that they can be

executed on either INTEL or AMD platforms. In this case, the Grid system considers the

INTEL architecture as equivalent to the AMD architecture for those ten jobs since they

can be executed on either platform. However, suppose another set of jobs only requires

AMD architecture to execute. The Grid system, in this case, considers the INTEL

architecture as nonequivalent to the AMD for the latter set of jobs.

Leaf Grid schedulers (LGSs), in the self-discovery method, are the only schedulers

that collect information about local resources via GIS(s) or local schedulers as described

in the previous section. In fact, having LGSs as the only Grid schedulers to collect and

store information about local resources is a major benefit of this method since:

(1) Information will be more likely up-to-date (i.e. note that in our model, we

assume that LGSs are combined in one unit with local schedulers, since it

is usually the case [44]), and

(2) Scalability is improved in the overall system (i.e. information is

distributed across the Grid).

LGSs start resource discovery by sending the Request for Job Matching (RFJM) message

to their parents, which in turn forward the RFJM message to the grandparents, and so on

until the RFJM message is received by the GSS, enabling it to initiate the resource

discovery stage to all of its raw jobs (i.e. jobs that have not been through resources

discovery). However, if the GSS has no raw jobs, it will then backlog the RFJM message

until receiving new jobs. Now, the GSS starts the resource discovery stage by:

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 62

! Broadcasting a special message to all of its children to destroy all channels in the

system,

! Passing all raw jobs to all of its children as one block. The children in turn pass

the raw jobs as one block to the grandchildren, and so on until they reach the

LGSs at the bottom of the Grid tree.

Note that

! LGSs save all requests that they receive from their parents regardless if they have

matched or not, enabling LGSs to perform rematching, if needed, due to resources

change, and

! Intermediate schedulers (GS) always pass one RFJM message to their parents on

behalf of their children and suppress other RFJMs preventing the GSS from

initiating any unnecessary resource discovery.

! An LGS sends an RFJM message in any of the following two cases: At starts up,

or its Bag becomes empty (i.e. all of the jobs in its bag are completed and out of

the system).

! A logical channel is created for every unique jobs bag.

When a scheduler receives a job bag from one of its children, it checks if it has

similar bag (i.e. bag with the same jobs). Now, if the received bag is equivalent to

another existing-channel�s bag, the scheduler then:

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 63

! Creates a new branch for that channel and binds it with the child�s channel (e.g.

informs the child with the channel�s port number).

! Re-calculates the channel processing power based on the new created branch.

! Updates parent, if any, with the new processing power of this channel.

However, if the received bag is unique, the scheduler then:

! Creates a new channel with a new port number (i.e. one branch) and binds it with

the child�s channel (e.g. informs the child with the channel�s port number).

! Initializes the channel processing power based on the received info from child.

! Updates parent, if any, with a copy of the new bag and the channel�s port number.

The following logic defines a scheduler steps (i.e. the above points) upon receiving a

bag from a child. Note that, in our case, the channel�s processing power is the number of

CPUs residing under that channel, since we are assuming that our computational

resources are parallel computers (please see chapter 5 for more details about the Grid

simulation model).

If new bag = an existing channel bag then

 {

 Create new branch with child�s received info

 Increment channel processing power by the new branch processing power

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 64

 Increment total processing power of scheduler by the new branch processing power

 Inform child with this channel number

 Update parent with the new processing power of this channel

 }

Else

 {

 Create new channel with new number

 Create new branch with child�s received info

 Initialize the new channel processing power with the new branch processing power

 If this channel is the first created channel in this scheduler

 {

 Initialize the scheduler processing power with the new branch processing power

 }

 Else

 {

 Increment total processing power of scheduler by the new branch processing power

 }

 Inform child with this channel number

 If scheduler has parent

 {

 Send bag with other info such as channel�s number and processing power

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 65

 }

 }

Note that, in our case, the GSS informs all LGSs in the Grid tree to delete a saved

request (i.e. no need to perform rematching), once the job starts executing, since we do

not address the execution stage in this thesis. However, in reality, the GSS should update

LGSs when a job is completed, since a job may migrate during execution.

Consider, for example, the GSS, in Figure 16, initiates resource discovery phase

(upon receiving one or more RFJM messages from children) for six jobs: J1, J2, J3, J4, J5,

and J6. The GSS then passes these jobs as one block to all of its children; the GSS�s

children in turn forward those jobs again as one block to the grandchildren, and so on

until those jobs reach the LGSs at the bottom of the Grid tree. Now, LGSs start matching

those jobs once they arrive, if a job matches an LGS�s resources; it inserts it in its bag

(i.e. note that LGSs still keep matched/unmatched requests, enabling them to perform job

rematching, if resources happen to change). Now suppose that all six jobs match all

resources in GS7, GS8, and GS9. But, only J1, J2, and J3 match resources at GS10.

Therefore, as shown in Figure 16, at the end of the resource discovery stage for those six

jobs, the system ends up with two channels: jobs J4, J5, and J6 can use only one channel

where J1, J2, and J3 can use both channels.

Now, assume that jobs J1 and J2 are already queued at GS10 in Figure 16. Suppose

further that resources at GS10 are changed (e.g. operating system upgrade). In this case

there are four possibilities:

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 66

1. All matched jobs (J1, J2 and J3) still match and all mismatched jobs (J4, J5 and

J6) still mismatch to GS10�s resources (i.e. no change to GS10�s bag). Thus, the

resources change in this case is irrelevant and nothing is done about it.

2. Job J3 (i.e. not queued at GS4 yet) doesn�t match anymore. In this case, GS10

builds a new bag for the matched jobs and forwards it to GS4, which in turns

create new channel with GS10 and forwards the bag to GS1. Of course, there is

no need for GS10 to reschedule any job because both J1 and J2 are still

computable on its partition.

3. One or more of the already mismatched jobs (J4, J5 and J6) match new

resources. GS10 then reacts in similar way to the previous case. Of course,

quick detection for appearing new relevant resources can be proven powerful

in the Grid environment, since new appearing resource may relieve another

overloaded similar resource, by migrating jobs to the new one.

4. One (or both) of jobs J1 or J2 (i.e. already queued at GS4) doesn�t match

anymore. Now the job (J1, J2 or both) that lost its resources needs to be

rescheduled and a new bag needs to be created as was described previously.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 67

Figure 16: Logical Channels in the Self-discovery method

In our implementation, we store a bag in a stream of bytes. Suppose GS10 in

Figure 16 successfully matches J1, J2 and J3 to its local resources out of J1 through J6 jobs

set. In this case, GS10�s bag is stored as the following:

Now assume that J1, J2 and J5 are completed. GS10 will then receive from its parent

an update messages (that we call holes) to indicate that J1, J2 and J5 are out of the system.

Upon receiving those update messages, GS10:

! Unsets the first two bytes (i.e. make them holes).

J1

1

J2

1

J3

1

J4

0

J5

0

J6

0

GSS

Resources Resources
Resources

Resources

GS1

GS3 GS4

GS7 GS8 GS9
GS10

J1, J2 and J3
can also use
this channel.

J1 through J6
can use this
channel.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 68

! Send an RFJM message to its parent, if matched jobs in its bag drop below the

threshold value.

! Deletes J1, J2 and J5 requests.

! Slides bag backward by making the first byte in the bag corresponds to J3. At this

point, the first six bytes in the GS10�s bag will then be as the following (i.e. X

corresponds to a hole):

Suppose further that the GSS has three jobs (J7, J8 and J9) that have not been through

resource discovery phase when it receives an RFJM message from one of its children.

The GSS then initiates the resource discovery for those jobs by passing them to all of its

children. Note that in our case, we chose to store all job requests at LGSs to enable them

to perform re-matching when it has resources change and to prevent them from sending

unnecessary RFJM messages. However, if LGSs do not store job requests locally, the

GSS will then initiate resource discovery for all jobs from J3 through J9 without J5 �

design issue of space versus communications. In our case, the GSS only needs to

transmit J7, J8 and J9, since JMRs are also stored in LGSs. Now, assume that all of those

jobs match resources at GS10; the bag will then be as the following (of course, a bag

shrinks or grows by bytes as necessary).

J3

1

J4

0

X

0

J6

0

X

0

X

0

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 69

Each scheduler associates a bag, a port, a parent port and branches with each channel.

Each channel�s branch stores both the child�s IP address and the child�s port number.

Parent and child schedulers can communicate with each other (via IP addresses) by

indicating the parent/child port number.

Figure 17 shows an example of two channels between a parent and two of its

children. Now suppose that the right channel in Figure 17 is broken because of a

resource change. Suppose further that the LGS (of the broken channel) sends similar bag

to the left channel�s bag. In this case, the parent will fix the broken channel by

connecting the broken right channel to the left one, as shown in Figure 18. However, the

parent, that fixed the broken channel, still needs to send a message to its parent in order

to cancel the broken channel. Otherwise, the grandparent will not realize that one of its

channels is broken. If that parent is the only one uses the subject channel at the

grandparent, then the grandparent deletes the channel. However, if the channel at the

grandparent is used by more than one child, then the grandparent just removes that the

parent reference to the subject channel, as shown in Figure 19. Of course, at all times,

children have to update their parents of any changed information in a channel,

particularly, the channel�s processing power.

J3

1

J4

0

J9

1

J6

0

J7

1

J8

1

X

0

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 70

Figure 17: Example of Two Channels for a Parent and two of its Children

Figure 18: Example of Fixing Broken Channel by Scheduler from Figure 17

Parent Port = 3
My Port = 1
Bag = <<Bag_A>>

Parent Port = 1
My Port = 1
Bag = <<Bag_A>>

Parent Port = 2
My Port = 1
Bag = <<Bag_B>>

Parent Port = 2
My Port = 2
Bag = <<Bag_B>>

Parent Port = 3
My Port = 1
Bag = <<Bag_A>>

Parent Port = 1
My Port = 1
Bag = <<Bag_A>>

Parent Port = 1
My Port = 2
Bag = <<Bag_A>>

Parent Port = 2
My Port = 1
Bag = <<Bag_B>>

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 71

Figure 19: Example of Broken and Fixed Channel

3.2.2 Second Stage: Job Scheduling and Resources Selection

When a job description (JD) is submitted to the GSS, it is queued in a special

queue until it goes through the resource discovery phase (i.e. in our case, the self-

discovery method), as described in the previous section. The resource discovery phase

constructs logical channels for all submitted jobs in order to get to physical resources that

are able to execute them.

In this stage, a scheduler pushes jobs into a child�s channel upon receiving a

Request for Computation (RFC) message on that channel, hence, it is a self-scheduling

method. Therefore, this stage starts when LGSs start transmitting RFCs to their parents

GSS

GS1

GS3 GS4

GS7 GS8

Fixed broken
channel

Do not know of
fixed channel

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 72

(i.e. note that RFC message, in this stage, works quite like the RFJM message in the

previous stage).

In our case, we assume that LGSs are combined with local schedulers (LSs) in

one unit. Thus an LGS sends an RFC message to its parent: (1) once it completes a job

and (2) its bag still contains more matched jobs (i.e. jobs are removed from bags once

they are completed). Note that the AHS method in this stage is based on the AHS

method for parallel and cluster systems presented in [14].

In general, Grid scheduling, in this stage, uses self-scheduling by exploring the

parent-child relationship. When a non-root GS wants some work to do, it initiates self-

scheduling by sending a request for computation (RFC) message to its parent (via a

channel) requesting computation from it. If the parent GS doesn�t have computations that

can be pushed on that child�s channel at the time of receiving the RFC, it in turn

generates its own RFC and sends it to its parent on the next level of the Grid tree. This

process is recursively followed until the RFC reaches the Grid system scheduler (GSS) or

a GS with computations is encountered along the path. Note that intermediate schedulers

send one RFC message per channel to their parent, but still mark all channels� branches

that have received RFCs on. For example, in Figure 16, assume that GS3 receives two

RFC messages from its children: One from GS7�s branch and the other from GS8�s

branch. In this case GS3 passes one RFC message to GS1, if GS3 has no jobs to pass to its

children. However, if GS4 receives two RFC messages from its children: One from GS9

and the other from GS10. In this case GS4 passes (if it cannot satisfy either RFC) both

RFCs to GS4 since those RFCs have come from two different channels. In other words,

schedulers always receive one RFC message from similar resources.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 73

Schedulers use space-sharing policy to distribute computations among channels,

upon receiving an RFC message on a channel from a child, as follows:

 NBB rateshare ×=

Where: Bshare is branch share of all jobs within scheduler�s subtree. Brate is the branch

transfer rate. N is the number of jobs within a scheduler subtree. Brate is calculated as

follows:

∑
=

= M

i
ipwr

pwr
rate

C

B
B

1

)(

Where: Bpwr is the branch processing power. Cpwr is a channel processing power (i.e.

total processing power for all of its branches). M is the number of channels for a

scheduler.

The processing power, in our case, is the number of CPUs that resides beneath a

channel. For example if channel A with one branch is connected to a parallel computer

with (305 nodes, 4 CPUs per node) and channel B with two branches is connected to two

parallel computers with (64 nodes, 2 CPUs per node for each computer). In this case,

channel-A processing power is 1220, and channel-B processing power is 256. Now

suppose there 10 jobs and an RFC is received on one of channel-B�s branches. The

scheduler will then push one job into that branch from channel-B.

Now, once a scheduler determines the number of jobs that will be pushed into a

channel�s branch, it builds a list of those jobs as one block and pushes them into that

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 74

branch. Of course, a scheduler only pushes into a channel the jobs that are already

inserted in that channel�s bag (i.e. jobs that match resources below). Otherwise, an RFC

message is forwarded on that channel to the parent. A scheduler performs the following

steps to collect the jobs in order to be pushed into a channel�s branch (i.e. note that a

scheduler quits once the allowed number of jobs is collected):

1. Invokes the �butterfly� algorithm (discussed later in this section). This algorithm

enables the scheduler to re-schedule jobs on an appeared better resource.

2. Collects jobs from the unassigned (i.e. unpushed) jobs.

3. Invokes the �load-balance� algorithm (discussed later in this section). This

algorithm enables the scheduler to re-schedule jobs to balance load among

resources.

Note that the AHS method for parallel and cluster systems [14] (outlined in chapter

2), only considers the unassigned computation when scheduling jobs into a child. It

doesn�t also build logical channels, since jobs do not go through resource discovery, as in

the case of the Grid. The AHS method in [14] can be viewed as a tree with one channel

(i.e. all jobs match all resources).

We expect, in reality, schedulers to collect more dynamic information to make better

scheduling decisions. This information can be performance related (e.g. load) or

economic related (e.g. prices), as described in chapter 2. The NWS [59] is an example of

systems that gather performance related information, and the GRACE [7] is an example

of systems that gather economic related information. Note that the difference between

collected static information and dynamic collected information is that, on the one hand,

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 75

the static information must exist to enable a job to execute. On the other hand, dynamic

information allows the selection of the best resource among a set of resources able to

execute the target job. For example, two resources may be able to execute a job, based

on the static information. However, one of those resources will be selected based on the

dynamic information.

User-imposed constraints are also taken into account when selecting resources (i.e.

channels). For example, a user may set a deadline, price range, etc. Those constants can

be divided into two categories: soft and hard conditions. Soft conditions are the ones that

user is hoping to have, but can continue without them until they become available (or if

the ever become available). For instance, a customer, prefers to pay $100 per hour to use

a resource, but is willing to pay $150 per hour for a while. On the other hand, hard

conditions are the ones that user is not willing to give up. For example, a user requests

that her job to be executed within one hour or forget about it.

Consider Figure 20 as an example, which shows a Grid tree with four hierarchy

levels where all sites have equivalent processing power. Suppose the resource discovery

phase has already produced the channels that are shown in Figure 20, and suppose further

that each of the LGSs: GS7, GS8, GS9, and GS10 transmits an RFC message to its parent.

Now presume that the GSS has three jobs that can push into the two channels. It will

then push one job into the first channel (satisfying RFC1), and pushes two jobs into the

second channel (satisfying RFC2). Now, assume once the GS1 receives the two jobs, it

pushes both of them to GS4�s channel. In this case, GS1 realizes that RFC2 was not

satisfied, since no jobs were pushed into GS3�s second channel, GS1 will then reissue

RFC2 message on behalf of GS3�s second channel.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 76

Figure 20: An Example of Mapping RFCs to Logical Channels

Now, the leaf GS is responsible for bringing the physical job into the system and

will serve as a middleware (i.e. user agent) between the allocated resources and the user

workstation. In this way, the user�s application will run on the top of the allocated

resources giving the impression of running the application on his/her workstation. For

example, a start-up company cannot afford an expensive development tool and assume

those tools are part of a larger firm�s Grid resources. Therefore, this start-up company

may rent those needed tools (say for two hours a day). By running the start-up company

application directly on the top of the tools, the Start-up Company will then benefit of

interacting directly with tools for two hours without interruption. Once it finishes using

the allocated resources, it aborts the application. Reservation of resources is important

RFC1

GSS

RFC2

Resources
Resources

GS1

GS3 GS4

GS7 GS8 GS9
GS10

Resources
Resources

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 77

feature of Grid systems. Maui [24] Grid scheduling is an example that uses the

reservation concept to maintain allocated resources.

GSs may also break a Grid job into sub-jobs in order to run it on multiple sites

simultaneously. In our approach, a GS can theoretically distribute sub-jobs among its

children�s channels and then collect the results from them. Therefore, that GS can serve

as an agent between resources and user�s workstation. Breaking Grid jobs into sub-jobs

is out of the scope of this thesis ([21] presents a proposed architecture to break Grid jobs

into sub-jobs). For example, assume a job requires using four INTEL TFLOPS in order

to complete within (say one hour). Suppose now that the Grid is able to discover these

computers whereas each machine is located at different location. Thus, the Grid should

be able to submit that job in parallel to those computers.

Now, as soon as the jobs reach leaf GS (LGS), the actual job is brought to the

system by that LGS to be divided into sub jobs to share resources. Figure 21 shows an

example of a Grid job sharing two clusters where the two clusters.

Figure 21: Space/Time Sharing in AHS

Job transfer

1

1/2

GS

LGS

1/2

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 78

It becomes difficult, in the general scheme shown in Figure 6, to make a job

running on multiple resources (e.g. say 2 clusters) together to achieve parallelism.

Furthermore, we don�t see how running a job in parallel can be achieved in the P2P

systems, since forwarding requests is the only relationship between a peer and its

neighbors.

One of the most attractive capabilities of the Grid systems is the ability to use the

massive underutilized computing power. Thus, a Grid system should aim to use

computing resources in parallel to get the full advantage of its power (i.e. simply, 10

computers can work faster and better than one computer can do). Such computing power

is the driving force behind the Grid�s popularity in the scientific communities such as the

biomedical field, physics modeling, and many others. Nowadays, the approach in writing

such huge applications is to be dividable into sub-jobs where each sub-job is executed on

different resources (e.g. computer) in parallel without the need for these sub-jobs to

communicate with each other [8]. Of course, executing one job on different machines

requires an algorithm that can split that job into a number of independent sub-jobs, since

contention occurs if those sub-jobs are not truly independent. For example, a sub-job

needs another sub-job outputs before it can even start. Note that there are no current

practical tools that can divide an arbitrary job to be run in parallel, and the art of

automatic transformation into parallelism of an arbitrary job is in its infancy stage [8].

Therefore, we should realize that not all Grid jobs could currently be divided into sub-

jobs to be run in parallel in the Grid systems. However, as stated earlier, new intensive

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 79

computation applications are currently being written to take the full advantage of Grid

parallelism in the future [8].

3.2.3 Dynamic algorithms

Grid systems are extremely dynamic environments, hence, various unforeseen events

can occur during scheduling stages that will force Grid systems to accordingly react in

order to adapt to the new circumstances. As a result, we propose three dynamic

algorithms to take some of these unexpected circumstances (during the resource selection

stage) into account:

! Butterfly Re-scheduling algorithm to handle rescheduling jobs when better

resources become available. Of course, a �better� resource is decided based on a

predefined metric(s). In our case, we use the shorter geographical distance

between the user and the selected resources as the preference metric.

! Fallback Re-scheduling algorithm to handle rescheduling jobs that their resources

had taken away from the Grid before the actual resource allocation (since Grid

scheduling is tentative until the actual allocation of the resources).

! The Dynamic load balancing algorithm to balance load among resources.

GSs store information about jobs that currently scheduled in their partitions in Jobs

Status Tables (JST). Each entry in a JST table contains information a bout a job such as

the Job description (JD) and its state. A job is always in one of the following states:

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 80

! Raw: Once a job is accepted by the GSS, it goes into the raw state until it goes

through the resource discovery stage.

! Tentative: (i.e. tentative scheduling) a job may lose its resources, because their

owner can take Grid�s resources at any time. It is not expensive to reschedule a

job in this state. In our case, we only perform jobs rescheduling in this state.

! Ready: Once a job reaches the LGS (i.e. the scheduler on the top of the needed

resources), it goes into the ready state. At this state, the LGS connects to the user

workstation and starts transferring the necessary data from the user�s workstation

to the Grid and serves as middleware (i.e. user agent) between resources and

user�s workstation.

! Blocked: When a job is preempted from using the allocated resources. For

example, some jobs only run when resources are idle. In our case, we assume that

jobs never get preempted. As stated earlier, the execution stage is out of the

scope of this thesis.

! Running: When a job is actually using the allocated resources.

3.2.3.1 Butterfly rescheduling algorithm

Interacting directly with the resources can be helpful when, for example, a user rent a

resource�s access (e.g. ASIC tool) for few hours. Of course, in this case he wants a full

uninterrupted access for the entire purchased period. Grids give companies the power to

actually search for needed resources with the best conditions without, for instance,

dealing with salesmen, signing business contracts, and so on. Suppose a company needs

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 81

to lease a verification ASIC tools to verify its new chip before moving the chip into the

silicon stage. The company subsequently has to:

! Discover a supplier (maybe taking weeks) who is willing to grant access to the

required resource,

! Convince management of the need of required resources (e.g. countless

presentations),

! Deal with the supplier�s salesmen (i.e. signing contracts), and if they are lucky,

they can access the needed resource from their site.

With the advent of the Grids systems, the above company can search the Grid, in the

same way we search the Internet, by submitting the JMR (i.e. the verification ASIC tools

in this case) along with its conditions (say $300 per hour or less). Now, if the Grid

system discovers the required resource of the customers (satisfying its conditions, then

the company will have this resource �on the fly� via the Grid. However, if this company

can�t find the needed resources for $300 per hour (i.e. imposed conditions); it can keep

increasing the price until it finds the needed resources for the best price in the Grid.

Furthermore, it is quite possible to discover a resource constrained by user conditions

(e.g. ASIC tools ≤ $300 per hour), but that is busy for the time being. Then, resolution

depends on the user conditions: a user may decide to wait for the busy resource or use a

more expensive resource and switch to other cheaper resources only when they become

available.

The proposed butterfly re-scheduling algorithm is for rescheduling a job on the

closest (i.e. geographically) resource with respect to the user location once it becomes

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 82

available if it had been busy when the user�s job was scheduled. Interestingly, our

proposed algorithm may keep jumping (like a butterfly) among resources until it settles

on the closest resources. For example, a user in Ottawa Canada submits a job to the Grid.

Suppose the Grid discovers three resources: in Ottawa, Toronto and India. Now, suppose

the job gets scheduled on the resources in India because both resources in Ottawa and

Toronto are busy. The Grid then migrates the job to the closer resource once it becomes

available (say in Toronto), and then eventually to Ottawa, if resources in Ottawa become

available.

The principle behind this scheme is to reschedule an already-scheduled job to �better�

resources (with respect to predefined metrics) when they become available because those

preferred resources had been busy when the job arrived to the Grid. Therefore, this

algorithm can be extended to any soft conditions imposed by the user.

Our choice is to apply this algorithm to geographical distances, because executing

jobs on nearby resources reduces communication costs that can be very expensive,

particularly, in the Grids environment.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 83

Figure 22: Illustration of the Butterfly Rescheduling Algorithm

The algorithm determines the closer resources to the user from the IP addresses.

As will be discussed in the next chapter, the router prefix of an IP address is an indication

of its geographical location. For example, suppose a job is submitted to the Grid from

workstation with IP address of 132.4.4.5 as shown in Figure 22. Now, assume that

IP addresses of GS1, GS2, GS3 and GS4 are 132.4.1.1, 133.6.6.7,

132.4.4.6 and 132.4.5.5 respectively. The GSS realizes that GS1 is closer to the

user than GS2, since both IP addresses of GS1 and the user�s workstation have the same

router prefix (132.4) of their IP addresses. Suppose the GSS pushes the job to GS2

because GS1 is busy at this time. In this case, the GSS marks this job as a �butterfly� job

(i.e. scheduled to use unpreferred resources). Assume GS1 sends an RFC to the GSS after

that specific job is pushed to GS2, causing the GSS to send a cancellation message to the

GS2 for that job (i.e. maybe also send another replacement job to GS2) and reschedule the

subject job on GS1. GS1 recognizes that GS3 is closer to the user because they share the

same router prefix (132.4.4). Therefore, if the job is scheduled on GS4 because of GS3

GS3 GS4

Resources Resources

Rescheduling path

GSS

GS1 GS2

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 84

is being busy; the job is rescheduled on GS3 (if it becomes available). Of course, not

always a scheduler can tell the closer child to the user based on IP address. For example,

if the user�s workstation IP address was 135.4.4.5, it becomes difficult to the GSS

to tell which one is closer, GS1 or GS2 � probably, in this case, it doesn�t matter that

much because the user�s workstation is too far from the resources anyway.

3.2.3.2 Fallback rescheduling algorithm

The fallback algorithm is intended to reschedule jobs that become incomputable

because of losing their required resources. When an LGS detects resources change, it

performs rematching for all of its saved requests (i.e. exist in Grid tree). Now, if an LGS

ends up with the same jobs bag, this resource change is then irrelevant. However, if it

produces a different bag, it will then pass it to its parent. Schedulers handle received

bags in this stage as previously illustrated in the resource discovery stage. In addition,

Schedulers mainly have to carry out the following (i.e. note that schedulers always

inform parents of all of these activities):

! Remove any jobs that become incomputable,

! Update other channels processing power, if needed, and

! Delete any broken channels.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 85

Figure 23: Rescheduling Fallback Algorithm

Suppose, for instance, a job at GS4 in Figure 23 becomes incomputable because its

required resources just disappeared from GS4�s partition. In this case, GS4 cancels the

incomputable job and informs GS2 (i.e. its parent). GS2 then checks if this returned job is

still computable on GS5, if yes then this job is still computable on GS2. Otherwise, GS2

cancels this job and informs GS1. This process can go on until the cancelled job reaches

the GSS. If the GSS cannot reschedule the subject job on a child�s partition, the

cancelled job thus becomes incomputable on the entire Grid and user must be notified in

this case.

GSS

GS1

GS2

GS4 GS5 GS6 GS7

GS3

Resources Resources
Resources

Resources

Rescheduling fallback

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 86

3.2.3.3 Load-Balance Algorithm

As stated earlier, when a scheduler receives an RFC message on a child�s channel, it

determines the number of jobs to be pushed into that child�s channel by considering all

jobs within its subtree. Once the number of jobs is determined, schedulers collect those

jobs via the following steps:

1. Gathering jobs from already assigned jobs that are preferred to be rescheduled on

the new available resources (i.e. butterfly algorithm),

2. Gathering jobs from unassigned jobs (that have not been pushed to children�s

channels yet), and

3. Gathering jobs from already assigned jobs to balance load among children�s

channels.

Schedulers are always responsible for balancing all assigned jobs among their

children�s channels within their subtrees, since a parent may cause a child�s subtree to be

imbalanced. Of course, parents do not know how assigned jobs are distributed within

their children�s subtrees. Consider, for example, the jobs distribution in Figure 24.

Suppose GS1 receives an RFC message from GS4 and determines that 5 jobs can be

pushed into GS4�s channel. Assume further that no jobs are preferred to be rescheduled

on GS4�s partition. Now GS1 has to reschedule 2 of the already assigned jobs in GS3�s

partition. In this case, if GS1 reschedules the two jobs that are waiting in GS8, it would

ruin up the balance of GS3�s subtree. Well, since GS3 is the only scheduler is responsible

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 87

for balancing its subtree. GS3 then balances its subtree once it receives an RFC message

from one of its children.

Figure 24: An Example of Load Balance among Channels

Note that schedulers may reschedule a job from a �better� resource in order to

balance load among resources. In our approach, a scheduler marks that job as a

�butterfly� job in order to be rescheduled later, if the opportunity presents itself. In other

words, we prefer a job to execute as soon as possible rather than waiting for a �better�

resource, since this �better� resource may not be available soon or simply disappear

altogether.

GSS

RFC

Resources
Resources

GS1

GS3 GS4

GS7 GS8 GS9
GS10

Resources
Resources

Waiting Jobs

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 88

3.3 HYBRID MODEL: HIERARCHAL AND P2P GRID

SCHEDULING

The Hierarchal system (one Grid tree) has major drawbacks:

! All requests are submitted to the GSS, which may become overwhelmed with too

many requests,

! It is difficult to bring too many organizations to agree on things such as

constructing the Grid tree, controlling GSS policies, dealing with new joined

organizations, and

! It is difficult to convince companies to replace their Peer-to-Peer (P2P) based

Grid systems.

The Hybrid system, consisting of several Grid trees that act also as peers to each other

(as shown in Figure 25), does not only overcome the above drawbacks, but also provides

organizations more efficient ways to manage their own resources, such as stamping

foreign requests with low priority, isolating their resources swiftly from the entire Grid

without pumping out their pending requests of using their resources, etc.

Note that the P2P system can be viewed as a hybrid system where each Grid tree has

only one scheduler, and the hierarchal system can be viewed as a hybrid system with one

peer. In our case, we assume that (1) requests are always forwarded to neighbors as one

block (i.e. a request dies when its hop count reaches 0), (2) foreign and home requests are

queued in the same fashion.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 89

The principle behind P2P systems, as described in chapter 1, is that once a user

submits a request to a peer node, it in turns, passes the request to all or some of its

neighbors if it cannot process the request locally. The peer node that chooses to process

the received request, it contacts the request�s source directly or via the intermediate peer

nodes. However, in our hybrid model, the whole Grid tree becomes a single peer system

where a Grid�s GSS is also an acting peer on behalf of its Grid tree with neighboring

Grids. We will refer to this GSS as a PGSS (peer GSS).

Figure 25: Hybrid Model � Hierarchical and P2P Grid Scheduling

Grid A
PGSS

Neighbors

Grid B
PGSS

Grid C
PGSS

Grid D
PGSS

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 90

Consider, as an example, the four Grid trees shown in Figure 25 where (GridA and

GridB), (GridC and GridB) and (GridD and GridC) are neighbors respectively. Suppose a

user submits his job on GridA, the job will then be sent to the GSS of GridA. Now, if the

GSS in GridA processes the job locally, it will then go through the techniques that we�ve

been discussing so far in this chapter. However, if the GSS in GridA cannot handle the

submitted request for any reason such as hefty load or lack of resources, it will then act as

a peer on behalf of that submitted request. In this case, the GSS in GridA sends the job to

its neighbor in GridB. Once the request is received by the GSS in GridB, it may choose to

process it locally or to forward it to GridC, which again may forward it to GridD.

Note that the following three policies are extended from the traditional P2P

scheduling to the hybrid system:

First, support for multiple requests to be transferred to a PGSS together as a

single assignment. For example, the sender PGSS groups a number of requests in single

file and FTPs it to its neighboring PGSSs. A neighboring PGSS may accept some of

those requests and then forwards that file to its neighbors.

Second, contrary to the traditional P2P scheduling, the request files should be

forwarded by a PGSS at all times to its neighbors regardless whether some of those

requests get accepted by a receiving PGSS or not. By doing so, jobs are allowed to be

scheduled on multiple Grid trees, hence Grid trees serves as backups to each other.

Thus, once a foreign job is accepted by a PGSS, it schedules it on its Grid without telling

the source PGSS about it. The neighboring PGSS that accepts the job contacts the

sources PGSS when the job is about to run. By doing so, we gain the following:

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 91

! Preventing the source PGSS from getting overwhelmed with many responses at

the same time. Thus, since jobs most likely will be ready to run on different

Grid trees at different times, the source PGSS doesn�t get too many responses

at the same time.

! Scheduling on Grids is tentative by nature; consequently a job request may die

on a foreign Grid tree. For example, suppose that a PGSS accepts a job from

its neighbor at certain time since its tree status allows it to do so. Assume now

that after some time that PGSS decides to kill all foreign requests because, for

example, it becomes busy with local requests within its Grid tree. In this case, a

job may be scheduled and killed on a foreign Grid tree without promising the

source PGSS to execute that job.

! The source PGSS may change its mind and decides to run jobs (that already

have been transferred to neighbors) locally due to some dynamic changes on its

tree. Of course, we expect PGSSs to not treat jobs differently. Thus, a PGSS

should schedule requests on its tree regardless of whether they have been

transferred to neighbors or not. In this case, if a source PGSS receives a

response from other peers to execute a job, the source PGSS may simply choose

to not respond, if that specific job is doing satisfactory progress on the local

Grid tree. However, we should remember that when a source PGSS receives a

response from another PGSS, it means that subject job is about to run. In this

case, the source PGSS should be careful when it declines the remote PGSS�s

help.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 92

! Grids can serve as backups to each other: a PGSS may transfer a number of

jobs to neighboring peers in order to schedule those jobs on multiple Grid trees

at the same time. In this case, a job is executed on the first Grid tree that is able

to do so. For example, suppose that a PGSS pushes a request to one of its

children and at the same time sends it to its neighborhood. If it receives a

response from a PGSS, it knows that job is about to be executed on that remote

PGSS. On the other hand, if it doesn�t receive a response from any of its peers,

the job is still progressing on its current Grid tree, eventually getting a chance

to be executed.

In traditional P2P scheduling, a peer node doesn�t forward a request to its neighbors

if it accepts the request, since it is literally the one that will carry out the service. Thus, it

makes no sense to forward the request since the actual request is being served. In our

hybrid system, a receiving PGSS forwards a request (or requests) at all times, because the

request is accepted by a Grid tree (and not by a node), hence an accepted job is only

scheduled tentatively as in the case of any scheduled job on the Grid systems.

Of course, we have to stop request files at some point of being forwarded by

PGSSs. In this case, many techniques from networking can be adopted to do so. For

example, a time to live (TTL) value can be assigned to every request file. Now, every

PGSS receives a request file, it decrements the TTL value by one until it becomes zero.

Certainly, the source PGSS controls how far a request file travels away. For example, the

source PGSS can set the TTL value to one to prevent it from going beyond its neighbors

to avoid for example receiving too many responses.

CHAPTER 3: HIERARCHICAL SCHEDULING IN GRID SYSTEMS 93

The hybrid model combines advantages of both system types. Some of these

advantages are:

! It reduces the number of contact services that are needed for peers� registrations,

since a peer is in this case an entire system.

! It becomes quicker for a job to discover resources, since jumping among systems

is not like jumping among nodes.

! It enables Grid trees to use other systems as backup to balance loads, since jobs

can always migrate to other Grids, as described earlier.

! It takes the advantage of already existed peers to be configured as GSSs. For

example, if a company decides to the use hierarchal scheduling scheme, it can

then use one of its peers as a GSS.

94

CHAPTER 4: GRID MODEL BASIC

COMPONENTS

4.1 INTRODUCTION

The Grid model presented in this chapter is described using two models: the

communication and the node models.

This chapter first presents the basic components that make up the communication

model, which in some respects resembles the Internet. In addition, it provides an

overview of the node model, which is the implementation of the proposed Grid schemes

discussed in chapter 3. Note that the Grid simulation model, along with its assumptions,

will be presented in the next chapter.

Mathematical analysis or modeling is generally used to study systems or

phenomena that are difficult to work with in the real world, such as oil spills in oceans,

earthquakes, forest fires and so on. We chose to study our Grid schemes through

modeling and simulation so that they can be observed in a controlled environment.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 95

One of the challenges that we�ve faced is how to illustrate and analyze the proposed

scheduling ideas of the previous chapter, since Grids are large systems with resources

that span over multiple organizations and, as in our case, communicate with each other

via the Internet.

From our viewpoint, we have to build a communication model that resembles the

Internet where nodes of the model communicate with each other using their IP addresses.

Of course, we don�t claim that we are modeling the Internet. However, we believe that

our communication model provides what is necessary to simulate the proposed Grid

schemes at the same time as nodes communicate through the Internet. The Discrete

Event Simulation (DEVS) CD++ is used to build our communication model. This

chapter provides a brief overview about the CD++ tools. Please see [56] for more details

about the DEVS family tools.

In our communication model, several nodes are connected to each other in Internet

style and communicate with each other using their IP addresses. By having a

communication model, it becomes possible to run a series of experiments for our

proposed scheduling schemes. Consequently, all external factors fall under the control of

our model.

Of course, once the communication model is built, we can then configure the Grid

system into the desired experimental system (e.g. P2P system or Grid tree(s)). For

example, we can configure nodes of IP addresses of 132.2.3.8 and 132.2.3.4 to be

children of the node with IP address 132.2.3.10. Note that a node in the

communication model is simply a computer with an IP address.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 96

The Node model is the implementation of the Grid schemes as were presented in

the previous chapter. The Node model differentiates between nodes as workstations,

Grid System Scheduler (GSSs), Grid Schedulers (GSs), Local Schedulers (LSs) and Leaf

Grid Schedulers (LGSs). The node recognizes its type from the way it is configured. For

example, if a node discovers itself that it doesn�t have a parent but does have children, it

then knows that it should behave as the GSS node.

4.2 DEVS CD++ TOOLS

There are two types of models in the DEVS CD++ tools: Atomic models and

structured (or coupled) models. Each model communicates with other models via input

and output ports.

Structured models are a construction of a number of connected (i.e. via ports)

atomic models and/or other structured models. Structured models are written in the

CD++ script language and must define the following:

! The sub-components that make up the structured model,

! The input ports to enable the model to receive data from external models,

! The output ports to enable the model to send data to external models,

! The internal connections (IC) that define connections among internal

components,

! The external input connections (EIC) that define the model�s input-ports

connections from external models,

CHAPTER 4: GRID MODEL BASIC COMPONENTS 97

! The external output connections (EOC) that define the model�s output-ports

connections to external models.

Atomic (i.e. primitive) models are simply a component that cannot be broken into

elements. They are written as C++ classes and are compiled with the tools code.

Programmers write the atomic model code according to formal specifications in the

following wrapper functions:

! Function initFunction: It is used to initialize the atomic model.

! Function externalFunction: It is used to process external events when they

are received on one of the model�s input ports.

! Function internalFunction: It is used to process an internal event in the

atomic model (e.g. timer expiration).

! Function outputFunction: It is used to send an event (e.g. message) on one

of its output ports. This function is usually triggered based on an internal event.

For example an output is scheduled after a certain time.

In summary, the atomic model must define the following:

! The input ports, if any, to enable the model to receive data from other models,

! The output ports, if any, to enable the model to send data to other models,

! The model States. CD++ tools keep every model in two states: Active and

passive.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 98

! The internal function (IF) that defines the model behavior according to internal

events,

! The external function (EF) that defines the model behavior according to

external events (i.e. receiving data on an input port),

! The output function (OF) that defines the allowed states in which to send a

message on an output port,

! The time advance (TA) that defines an event that should be triggered after time

is advanced. Although, we sometimes refer to the TA as delay, it is different

from the conventional meaning of �delay�. In other words, the model doesn�t

sleep when it is delayed, but it actually schedules an event after some time. For

example, components A, B and C schedule events for in one hour, one minute

and one second respectively. The CD++, in this case, advances time to one

second from now to trigger component C�s event. Afterward, it advances time

59 seconds in order to trigger component B�s event, and then advances time 59

minutes to trigger component A�s event.

4.3 COMMUNICATION MODEL COMPONENTS

The Internet, not surprisingly, is a hierarchal system of nodes, networks, nets and

backbones. An IP (Internet Protocol) [46, 47] address is a distinctive identifier for a node

or host connection on a network. An IPv4 address is a 32 bit binary number usually

represented as 4 decimal values, each representing 8 bits, in the range of 0 to 255

separated by decimal points as shown in the following example.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 99

Example (see also Figure 26):

 IP address = 132.179.220.200

 132 .179 .220 .200

 10000100.10110011.11011100.11001000

Every IP address is made of two parts, one identifying the routing prefix (i.e. the

network address) and one identifying the host. The subnet mask decides which bits

belong to the network address and which belong to the host address. Now when a packet

arrives at a router, it checks if it contains an entry for that specific routing prefix (i.e.

router address) in its routing table. If so, it forwards the packet to the found router.

Otherwise, it forwards the packet to its default router, which is usually a higher level

router in the hierarchy (i.e. a country router serves as a default router for a province

router). It is possible, for a packet to reach the highest routers level in the Internet (e.g.

an international backbone router). Once a packet reaches a local network router (i.e.

Ethernet), it is then broadcasted to every node on the network. Now, it is obvious that the

number of the levels in the routers hierarchy depends on the number of bits used for the

routing prefix (i.e. subnetting masks).

In our case, we assume that the least 8 bits of an IP address represent the node,

and the other 24 bits represent the routing prefix in which each group of 8 bits represent a

level in the routing hierarchy, as shown in Figure 26.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 100

Figure 26: IP Addresses Hierarchal in the Internet Model

The Communication model defines four atomic models: Router, cable, node and

timer. It also includes the following four structured models (in which all components are

connected via a Cable model with configured distance and transmission rate):

! The Top model, which is made up of a number of backbone models.

Backbones Layer (Top layer of the Internet)

0.0.0.0 132.0.0.0 255.0.0.0

 Nets Layer � Router Prefix = 132.0.0.0

132.1.0.0 132.179.0.0 132.255.0.0

Network Layer � Routers Prefix = 132.179.0.0

132.179.1.0 132.179.220.0 132.179.255.0

Hosts Layer � Router Prefix = 132.179.220.0

132.179.220.1 132.179.220.200 132.179.220.255

CHAPTER 4: GRID MODEL BASIC COMPONENTS 101

! The backbone model, which is made up of a number of Net models and the

backbone router.

! The Net model, which is made of a number of Network models and the Net

router.

! The Network model, which is made of a number of nodes and the Network

router.

4.3.1 Communication Atomic models

4.3.1.1 Cable Model

The purpose of this component is to account for the time to transfer data and for

routers processing time, since it is difficult to determine the number of routers a packet

goes through in the Internet.

The cable component has two ports: one is used for input and the other for output.

The cable component calculates the time that a specific data should take to be transferred

through it. For example, data A, B and C could require one hour, one minute and one

second to be transferred through a cable respectively. The cable, in this case, buffers

data in ascending order (i.e. shortest at front) and schedules the first data in the buffer to

be released according to its calculated time. In our example, data C will be at the front

of the queue, and will be scheduled for release in one second from now. After data C is

released, data B moves to the front of the queue and will be scheduled for release in 59

CHAPTER 4: GRID MODEL BASIC COMPONENTS 102

seconds, since it was simultaneously waiting for release with data C. Finally, data A will

be released 59 minutes after the release of data B.

The Cable component uses distance (in Kilometers), transmission rate (in Mbit/s)

and the TCP window size (in Kilobytes) in order to calculate the required time for a data

to be transferred. Distance and transmission rates are configured by the user, but the

TCP window size is set as constant in the code. The distance is used to calculate the

propagation time (tprop). The transmission rate is used to calculate the transmission

time (ttrans). The TCP window size [46] is used to control the flow of data between

two nodes.

Based on [45], for transmitting frames in the stop-and-wait flow control scheme,

the cable component calculates the required time (rounded to the nearest milliseconds) to

transfer data, as follows:

WnTT =

where n is the number of transmitted frames (or TCP windows in our case) and Tw is the

time to send one frame (or TCP window in our case). T is the total time to send the data

through the cable. Tw is calculated as follows (ignoring acknowledgment time and

processing time at both ends):

transpropW ttT +=

Where tprop is the propagation time of the cable and ttrans is the time for the transmitter

to send out all of the bits in a window. Both tprop and ttrans are calculated as the

following:

CHAPTER 4: GRID MODEL BASIC COMPONENTS 103

V
dt prop =

Where d is the distance in kilometers and V is the speed of the light, 3 x 108 m/sec.

R
Lttrans =

where L is the length in bits of the frame (window, in our case) and R is the transmission

rate of the cable.

Consider for example that a cable is connected in a wide-area network (WAN)

with length of 1000 km and transmission rate of 100 Mbps. Thus, the propagation time is

1000 x 1000 / 3 x 108 = 3.33 ms. Now, assume the window size is set to 424 bits. As a

result, the window transmission time is 424 / (100 x 106) = 4.24 µsec.

The cable components play major role in the communication model, since they

control the time to transfer data from a node to another.

4.3.1.2 Router Model

The router component�s purpose is to route packets to their destination (please see

Figure 26). When a router receives a packet, it checks if the destination address of that

packet matches its IP address. (Of course routers have to mask the necessary bits of an IP

address to perform this checking). If yes, it routes that packet to its destination node or

to a lower router that can forward it toward its final destination. However, if it doesn�t

know how to route that packet, it sends it to its default router (i.e. a higher level router).

The router component has two input ports and two output ports. One of the input

ports is used to receive packets from higher level router and the other from lower level

CHAPTER 4: GRID MODEL BASIC COMPONENTS 104

router. In the same way, the two output ports consist of one to send packets to the

default router and the other to forward packets to a lower router (or to destination nodes).

4.3.1.3 Timer Model

The Timer component is used by nodes to schedule events. For example, a node

may schedule an event to be triggered after 5 minutes. Note that cables do not hold

Timer�s messages since Timers are usually in the same machine. However, in our case,

we use one timer for all nodes for simplicity reasons. The Timer model is actually a

special node with “0.0.0.1” IP address.

4.3.1.4 Node Model

The node model is any computer attached to the communication model and that

can be reached by any other node via its IP address.

However, this model also contains the actual Grid schemes implementation. We

shall revisit this model later in this chapter.

4.3.2 Communication Structured Models

4.3.2.1 Top Model (Backbones Layer)

Figure 27 shows an overview of the communication top model, which can contain

up to 255 backbones. In summary, the top model is described as follows:

CHAPTER 4: GRID MODEL BASIC COMPONENTS 105

• The input ports of the backbone models are connected to the backbones router

internal output port. This connection allows the backbones router to route packets

to a lower router.

• The output ports of the backbone models are connected to the backbones router

internal input port. This connection allows the backbones router to receive

packets from lower router. In this case, the backbones router is the default router

for that lower router.

Figure 27: Top Model Overview

4.3.2.2 Backbone Model (Nets Layer)

Figure 28 shows an overview of the Backbone model, which can contain up to

255 Nets. The backbone model is described as follows:

1.0.0.0 132.0.0.0 255.0.0.0

Backbones Router
0.0.0.0

CHAPTER 4: GRID MODEL BASIC COMPONENTS 106

• The input ports of the net models are connected to the net�s router�s internal

output port. This connection allows the net�s router to route packets to a lower

router.

• The output ports of the net models are connected to the net�s router internal input

port. This connection allows the net�s router to receive packets from lower router.

In this case, the net�s router is the default router for that lower router.

• The input port of the backbone model is connected to the net�s router external

input port. This connection allows the net�s router to receive routed packets to it

from a higher router.

• The output port of the backbone model is connected to the net�s router external

output port. This connection allows the net�s router to send packets to the higher

(default) router.

Figure 28: Backbone Model Overview

Backbone model: X.0.0.0 → X is the backbone number

X.1.0.0 X.179.0.0 X.255.0.0

Nets Router
X.0.0.0

CHAPTER 4: GRID MODEL BASIC COMPONENTS 107

4.3.2.3 Net Model (Networks Layer)

Figure 29 shows an overview of the Net, which can contain up to 255 networks.

The Net model is described as follows:

• The input ports of the network models are connected to the network�s router

internal output port. This connection allows the network�s router to route packets

to a lower router.

• The output ports of the network models are connected to the network�s router

internal input port. This connection allows the network�s router to receive

packets from lower router. In this case, the network�s router is the default router

for that lower router.

• The input port of the net model is connected to the network�s router external input

port. This connection allows the network�s router to receive routed packets to it

from higher router.

• The output port of the net model is connected to the network�s router external

output port. This connection allows the network�s router to send packets to the

higher (default) router.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 108

Figure 29: Net Model Overview

4.3.2.4 Network Model (Hosts Layer)

Figure 30 shows an overview of the Network model, which can contain up to 255

nodes. The network model is described as follows.

• The input ports of the nodes are connected to the nodes� router�s internal output

port. This connection allows the nodes� router to send packets to nodes.

• The output ports of the nodes are connected to the nodes� router internal input

port. This connection allows the nodes� router to forward packets on nodes

behalf.

• The input port of the network model is connected to the nodes� router external

input port. This connection allows the nodes� router to receive routed packets to

it from higher router.

Net model: X.Y.0.0 → X and Y are Backbone and Net numbers respectively

X.Y.1.0 X.Y.220.0 X.Y.255.0

Network�s Router
X.Y.0.0

CHAPTER 4: GRID MODEL BASIC COMPONENTS 109

• The output port of the network model is connected to the nodes� router external

output port. This connection allows the nodes� router to send packets to the

higher (default) router.

Figure 30: Network Model Overview

4.4 NODE MODEL DISCUSSIONS

All of the Grid model implementation is in the �Node� component since a node can

be configured to be any Grid component, such as system scheduler, local scheduler or

workstation.

The node component can be configured to operate as any of the following Grid node

types:

• Workstation: This node is responsible for submitting request to the Grid in order

to execute Grid job. Every workstation submits its request to the Grid via a �Grid

entry� node. Peers, GSSs, and PGSSs nodes are used as Grid entries in P2P

Network model: X.Y.Z.0 → X, Y and Z are Backbone, Net and Network numbers
respectively

X.Y.Z.1 X.Y.Z.200 X.Y.Z.255

Nodes� Router
X.Y.Z.0

CHAPTER 4: GRID MODEL BASIC COMPONENTS 110

systems, Hierarchal and Hybrid systems respectively. Peers, in case of P2P

systems, broadcast their IP addresses to all nodes on their networks to enable

them to submit requests to the Grid. GSSs or PGSSs broadcast their IP addresses

to their trees, and once this information arrives at the bottom of a Grid tree, it is

broadcasted to local networks. Therefore, a network must have at least one Grid

scheduler to be allowed to have workstations, and thus to become part of the Grid

system. In our implementation, we limit workstations to accept service from only

one server. Thus, a workstation ignores any received service offer from another

server, if it is already being served.

• Peer: This node is specific to P2P systems and it is assumed to be both local and

act as a Grid scheduler. It also serves as a Grid entry to workstations on its

network. Once a peer receives a JD (job description) request, it checks if it can

meet that request from workstation with respect to some factors like deadlines. If

yes, it contacts that workstation and times (100 milliseconds in our case) for the

workstation response. Otherwise, it decrements the hop count in the

workstation�s request and forwards it to its neighbors.

• Grid system scheduler (GSS): This node is a Grid scheduler that has children, but

no parent. It operates as already described in the previous chapter.

• Peer Grid system scheduler (PGSS): This node is a GSS node with neighbors. It

is operates as described in the previous chapter.

• Grid scheduler (GS): This node is a scheduler with a parent and children. It

operates as described in the previous chapter.

CHAPTER 4: GRID MODEL BASIC COMPONENTS 111

• Local scheduler (LS)/ Leaf scheduler (LGS): This node is a scheduler with a

parent but no children. It advertises local resources. Note that we assume that LS

is a combination of both Grid and local schedulers. It operates as described in the

previous chapter.

112

CHAPTER 5: GRID SIMULATION MODEL,

EXPERIMENTS, RESULTS AND DISCUSSIONS

5.1 INTRODUCTION

The Grid simulation model is broken into three submodels: The Communication,

Node and System models.

The communication model consists of 2400 nodes that are spanned over four

backbones, four nets and ten networks (i.e. sites) where each network contains 15 nodes

that can be used by the Grid. As stated in the previous chapter, the communication model

depends on the DEVS CD++ simulator in order to simulate the behavior of the

components and their communication. Note that a node in the communication model is

simply a computer with an IP address.

The node model contains the implementation of the proposed schemes in chapter 3.

It is independent of the CD++ tools (i.e. the node model is separated from the

communication model). In other words, the Grid code can be moved to real machines

that communicate via other communication means (e.g. TCP/IP). A node in the Node

model can be configured to operate as peer, local scheduler (LS), Grid scheduler (GS),

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 113

leaf Grid scheduler (LGS), Grid system scheduler (GSS), peer GSS (PGSS) or

workstation. The node configuration determines the system model type.

The system model is the configured system type under experiment. The three

possible types: Peer-to-Peer (P2P), Hierarchal (one Grid tree), and Hybrid (several Grid

trees that acting as peers to each other) systems. As a result of our research, we chose to

compare our proposed hierarchal system against the P2P system, since the P2P system, to

our knowledge, is currently the only system in the Grid computing area being studied and

proposed by many researchers [4, 10, 32, chapters 24-27 in [34], 44] to replace the

centralized approach for Grid systems. The P2P system is a distributed system, which is

originally used to transfer files, and which offers resource discovery and balances load

among resources via its distributed nature. Thus, our choice to compare the proposed

schemes against the P2P system is justifiable.

Note that we have observed that researchers usually compare their proposed

schemes against a centralized system (perhaps because Grid computing is still a new

area). But it is clear that the centralized approach is impractical in the Grid environment

for many obvious reasons. Therefore, in our case, we did not run any of the workloads

on the centralized systems, since it is unrealistic to have one scheduler to handle all

requests.

In this chapter, we study three Grid system types (i.e. P2P, hierarchal with one grid

tree and hybrid with multiple grid trees) over a number of different scenarios. In the first

three experiments, we compare the performance of the P2P system to the Hierarchal (one

Grid tree), Hybrid (4 Grid trees) and Hybrid (16 Grid trees) systems. In the fourth

experiment, we study the degree of contribution of the proposed rescheduling algorithms

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 114

in the overall system performance. In the fifth experiment, we study the Fallback

algorithm by repeating some cases of first and second experiments with the possibility of

resources change during scheduling.

In the Grid simulation model, every local network (i.e. site) advertises 2 to 6

computational resources where those resources (i.e. servers) are parallel computers with

different processing power and operating systems. The types of those resources are

selected at random at runtime. The rest of the nodes in a site operate as workstations that

submit requests with random requirements (i.e. in our case, operating systems) to the

Grid. However, a workstation is constrained to submit one job at a time to the Grid and

to accept service offer from only one resource. Note that the Grid model contains 520

computational resources (i.e. servers) and 1880 workstations (i.e. ratio 1:3.6). Therefore,

no more than 1880 requests may exist simultaneously in the Grid, since each workstation

can submit one request at a time.

We use three performance metrics to compare the three system types: Total

response time, average waiting time and average execution time. Total response time is

the time taken from submitting the first job request until the completion of the last

submitted job. For example, a workload has 1000 jobs. Now, suppose that the first

request was submitted to the Grid at 5:00 PM and the last job was completed at 10:00

PM, the total response time will then be 5 hours. Average waiting time is the time from

submitting a job request to the Grid until the start of the actual job transferring to the

selected resources. Average execution time is the time taken from submitting the actual

job to the Grid until the job�s output is received by the submitter workstation. These

values are averaged over 20 different simulation runs.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 115

5.2 COMMUNICATION MODEL

The communication model that is used by nodes to communicate with each other,

consists of 2400 nodes that are spanned across four backbones. Each backbone (600

nodes) consists of four Nets, where each Net consists of 10 networks where every

network consists of 15 nodes. Therefore, there are (4 backbones) (4 Nets) (10 networks)

(15 nodes) which adds up to 2400 nodes in total in the communication model. Figure 32

shows an example of interconnections for two backbones, two nets and two networks (i.e.

sites) in the model.

The communication model depends on the CD++ simulator (see chapter 4) to

simulate all communication aspects among all nodes. Note that we�ve separated the

communication model from the implementation schemes to be able to move the Grid

code to real machines, if needed. In that case, Grid messages would simply be sent

through real communication channels (e.g. TCP/IP) instead of the simulated

communication model (since it depends on the CD++ tools). For example, the interface

functions of the simulated communication model can wrap the necessary TCP interface

functions, enabling the Grid messages to be transmitted via TCP/IP.

The communication model uses (in its fields) numbers 131 through 134 to

designate a backbone, numbers 1 through 4 to designate a net, number 1 through 10 to

designate a network and numbers 1 through 15 to designate a node, as shown below in

Figure 31. For example, IP address 131.4.3.2 is valid, but 135.2.2.2 is invalid (i.e. node

that doesn�t exist in the model).

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 116

Figure 31: Valid IP Addresses in the Communication Model

Since the communication model represents the physical communication among

nodes, it is static through out the simulation. In other words, our communication model

will always consist of 2400 nodes. Note that the model can expand easily to any number

of nodes we want. For example, we can add 600 nodes to the model by simply adding

one more backbone, which is trivial to do. However, we repeat, here we used precisely

2400 nodes.

The communication model presents numerous challenges that we have to address

to bring it as close as possible to emulating actual communication over the Internet

(which is excessively hard since the Internet is very large unpredictable public network).

Some of challenges that we tried to address in the communication model are:

! Internet load: Our communication packets are not the only packets using the

Internet backbones. Therefore, we should introduce some realistic load factor in

order to account for external usage.

! Routers processing time: Internet routers process a multitude of packets (not

limited to those relevant to our experiments). Furthermore, it is impossible to

determine the number of routers a packet goes through in the Internet,

131 � 134 1 � 4

Network
Numbers

Net
Numbers

Network
Numbers

1 � 10 1 � 15

Node
Numbers

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 117

particularly, if we note that packets may use different paths when they travel

between two points in the Internet. However, in our communication model,

packets always use the same path between two points, as shown in Figure 33,

which illustrates the path that a packet would take if it is transmitted from node

132.1.1.1 to node 131.1.1.1.

Figure 32: An Example of the Communication Model

The studies in [11, 12 and 35], which are based on actual statistics from Internet

Service Providers (ISP), show that Internet links are extremely underutilized. The studies

show that the traffic among backbones has an average utilization (in the two directions)

in the range of 5.4% to 10.3%. The study in [35] also shows that utilization is typically

in the range of 3-5% for traffic on a corporate T3 (45 Mb/s) link. However, we

<<Backbone>>

<<Net>>

<Site> <Site>
155 Mb/s

155 Mb/s

<<Net>>

Backbone
9.6 Gb/s

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 118

discovered that introducing a 10% load (on the communication model capacity, to

account for external traffic on the Internet) did not affect significantly the time to transfer

data between any two nodes in the model. Yet, we�ve still assumed a 10% external load

in the model.

The cable models, as discussed in the previous chapter, connect the communication

model components together. Cables calculate the time that requires transferring data

based on:

• Distance (configured by the user) is used to calculate the cable�s propagation

time.

• Transmission time (configured by the user) is used to calculate the time that takes

the transmitter to send out all data bits.

• TCP window size to control data flow [46, 47], since TCP segments cannot be

transmitted by the sender node until it receives the required acknowledgment for

previously transmitted segments.

• Data size, which is specific to the transferred data.

The study in [39] has set the TCP window size to 25 megabytes instead of the typical

current size of 64 kilobytes to transfer radiological imaging over large networks because

of the assumption that future TCP window size is predicted to be one gigabyte. In our

case, we chose to keep the TCP window size at 64 kilobytes. Of course, TCP window

size influences the time required to transfer data. For example, transferring 9 gigabytes

between two backbones, as shown in Figure 33, takes around 34 minutes and 15 seconds

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 119

if the TCP window size is set to 25 megabytes. However, it takes around 51 minutes and

24 seconds when the TCP window size is set to our choice of 64 kilobytes.

Components in the communication model are connected with cables. Based on

studies in [3, 11, 12, 27, 35, 54], we use the following (see also Figure 32):

• Backbones are connected with each other with two cables. Each cable is 9.6

Gb/s, 1000 km (e.g. AboveNet OC-192 link). Thus, data travels 2000 km to

travel from a backbone to another.

• Nets are connected with each other using two cables. Each cable is 155 Mb/s, 50

km (e.g. OC3 link). Thus, data travels 100 km from a net to another within the

same backbone or from a net router to its backbone router.

• Networks are connected with each other using two cables. Each cable is 155

Mb/s, 50 km (e.g. OC3 link). Thus, data travels 100 km from a network to

another within the same net or from a network router to its net router.

• Nodes are attached to a network with 100 Mbytes/sec, similar to the assumption

in [1].

Most of the Grid dialogue messages are in the range of few bytes. Therefore, they

usually take few milliseconds to be transmitted between two nodes in different

backbones. For example, it takes an RFC message around 6 milliseconds to travel 2200

km from node 132.1.1.1 to node 131.1.1.1 in another backbone, as shown in Figure 33.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 120

However, it takes 10-gigabytes of data 57 minutes, 12 seconds and 12 milliseconds to

travel the similar path.

Now, Figure 33 shows an example of the path that data takes when it is transmitted

from node 132.1.1.1 to node 131.1.1.1 in another backbone. In this example, the data

travels through 7 routers and 6 cables (i.e. four cables of 50 km, 155Mb/sec, and two

cables of 1000 km, 9.6 Gb/s). Thus data travels 2200 km in total, which is more than

three times the distance between Toronto and New York City. Note that Table 1 shows

examples of the required time to transfer different data sizes in the communication model

from node 132.1.1.1 to node 131.1.1.1.

All of the messages in the communication model are embedded in IP packet. In our

case, the IP packet header consists of the source IP address, the destination IP address

and the data length.

Data Size (Gigabytes) Time in (hours : minutes : seconds : milliseconds)

1 00:05:42:700
10 00:57:07:012
20 01:54:14:030
50 04:45:35:078

100 09:31:10:156

Table 1: Samples of Transferred Data Time for the Shown Path in Figure 33

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 121

Figure 33: An Example of a Communication Path

5.3 NODE MODEL

A node, in the communication model, is simply a computer with an IP address.

Yet, a node also contains the implementation of the proposed schemes for the Grid

systems in this thesis. Recall that a node, in our implementation, can operate as a peer, or

a local scheduler (LS), or a Grid scheduler (GS), or a leaf Grid scheduler (LGS), or a

Grid system scheduler (GSS), or a peer GSS (PGSS) or a workstation. The node

configuration determines the system type between peer-to-peer (P2P), hierarchal (i.e. one

Grid tree) or hybrid (i.e. multiple Grid trees serve as peers to each other).

<<Router>>
132.0.0.0

<<Node>>
132.1.1.1

<<Router>>
132.1.1.0

<<Router>>
132.1.0.0

<<Router>>
0.0.0.0

<<Router>>
131.0.0.0

<<Router>>
131.1.0.0

<<Router>>
131.1.1.0

<<Node>>
131.1.1.1

Backbone OC192
link (9.6 Gb/s, 1000
km)

100 MByte/sec OC3 link (155
Mb/s, 50km

OC3 link (155
Mb/s, 50km 100 MByte/sec

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 122

5.4 SYSTEM MODEL

We compare the performance of the 3 abovementioned types of systems according

to a number of metrics, over different scenarios. Note that the peer-to-peer (P2P) system

is a distributed system and the only system, to our knowledge, that is currently well

thought-out by researchers [4, 10, 32, chapters 24-27 in [34], 44] to replace the

centralized systems. Consequently, we repeat, it is a reasonable choice to be compared

against the proposed hierarchal systems of this research.

5.4.1 Peer-to-Peer (P2P) System

Peers broadcast their IP addresses on their local networks, enabling workstations

to discover them. Each workstation uses one peer from its site as its Grid entry (i.e.

submits all of its requests to the Grid through that entry).

Once a job request is received at the Grid entry, it checks if it satisfies that job

request�s requirements. If it does, it then contacts the workstation to offer its service and

times for the workstation response (fixed at 100 ms, in our case). Workstations may

accept a peer�s service by responding to it or may refuse a peer�s service by simply not

responding to it. If a peer cannot accept a workstation�s request, it decrements the hop

count in the JD message and forwards that message to its neighbors.

We arbitrarily set the hop count to 100, which is a large number, to allow job requests to

go through all peers in the system at least once. We also configured three to six

neighbors for each peer. Those neighbors are geographically close. However, this is not

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 123

the case in reality. Yet we made this choice to improve performance in the P2P system.

Here, a peer accepts job requests under the following conditions:

- A request matches local resources (in our case, operating systems, as discussed later

in this chapter), and

- Resources can complete the job within a deadline. (We assume the deadline is three

times the estimated usage of resources by that job.)

Note that we�ve observed, in our simulation, that some jobs do not get the chance to

run in the P2P systems. Therefore, in our model, if a workstation doesn�t get a service

offer within 2 minutes, it resubmits the job request. Note, also, that we assume in our

model that peers and local schedulers are combined in one unit [44].

5.4.2 Hierarchal (one Grid tree) System

The Grid System Scheduler (GSS) broadcasts its IP address to the local networks

via its children, enabling workstations to discover it, and use it as their Grid entry. Thus,

all workstations submit their requests to the GSS.

As stated earlier, the Grid model is constructed of 4 backbones. Each backbone

contains 4 Nets where each Net contains 10 sites. Of course, a site consists of a number

of resources (i.e. servers) and workstations.

Now, the Grid tree is constructed by connecting the GSS to 4 children where each

child holds one backbone. Each backbone-scheduler has 4 children where each child

holds one Net. Each Net-scheduler has two children where each child holds 5 sites.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 124

5.4.3 Hybrid (several Grid trees) System

The Peer Grid System Scheduler (PGSS) broadcasts its IP address to the local

networks via its children, enabling workstations within its Grid tree to discover it, and use

it as their Grid entry. Thus, all workstations within a Grid tree submit their requests to

their tree PGSS.

We use two Hybrid systems in our simulation: 4 Grid trees (Hybrid-4T) and 16

Grid trees (Hybrid-16T). In the Hybrid-4T system, the Grid tree of the hierarchal system

(see previous subsection) is broken into 4 Grid trees where each backbone has one Grid

tree. In the Hybrid-16T (16 trees), each Net has one Grid tree.

5.5 GRID JOBS

Physical jobs are simulated in the way they are transferred and executed. The

communication model simulates transferring data by calculating the required time that is

needed to transmit a job via a link (see cable component discussion in the previous

chapter). Also, a node component that is configured as a resource simulates the time that

is needed to execute a job. This time is taken as the total of: a) the time it takes a job to

be transferred to the allocated resource, b) the time it takes the job to use the resource and

c) the time it takes the output to be transferred back to the workstation (see workloads

discussion later in this chapter).

Of course, if we use real jobs, we then need to use real machines and replace the

simulated communication model with real communication networks with hundreds or

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 125

thousands of machines, which is unreasonable. It is also impractical to construct a Grid

with few machines in a laboratory, since Grid systems are constructed of various

machines over large geographical areas.

Although our research does not consider the execution stage, we still have to

simulate a job execution on a server (i.e. computational resource). And, we are still

interested in where a job gets executed.

As stated earlier, the communication model simulates the required time to transfer

data via a link. We arbitrarily assume a job produces output data five times the size of

the original input job�s size, based on [44]. Also, note that a server (i.e. a computational

resource) in our simulation, does not execute more than one job at a time.

Gaussian distribution is regularly used to simulate the required time to run a job on

a server (i.e. as in the case in [6, 17, 23, 25, 44, 50, 51, 52, 53, 54]) with respect to the

input job size and server�s processing power. Researchers in [44] assume that job sizes

are correlated to the amount of work performed by each job, because their original

collected traces do not record how much input data is used and how much output data is

generated. They use Gaussian distribution where they set the input data size mean to µ

= b * CPUs * wall time in seconds, where b = 100, wall time

is the amount of wall clock run time, and CPUs is the number of CPUs in a parallel

computer. (Similarly, we assume that our computational resources are parallel computers,

as described in next section). However, in our case, we calculate the execution time

based on the input data size and the number of CPUs in the local resources.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 126

5.6 RESOURCES

We assume all resources are parallel machines made of a number of interconnected

nodes, with a number of CPUS within each node, as in the case of most related work such

as [17, 25, 44]. We chose the following parallel computers as our computational

resources as shown in Table 2 (which is originally based on real machines as indicated in

[17, 23, 25, 44]).

Server Number of Nodes CPUs per node
1 184 16
2 305 4
3 144 8
4 1024 4
5 64 2
6 512 4
7 128 2

Table 2: Simulated Computational Servers

We�ve duplicated those servers (i.e. computational resources) in every network

(i.e. sites) in our model in the range of 2 to 6 servers per site. Note that the servers are

picked up at random from Table 2. Servers also select operating systems at random

(between UNIX, LINUX and Windows) for those computers. Of course, jobs cannot run

on any machine unless local resources match their requirements (i.e. in our case the

required operating system).

We also assume 0.1 local loads for all computational resources at all time as this

is the typical case in most studies such as [51] and [23].

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 127

Note that selecting resources, jobs, etc. at random makes it unsuitable to compare

system performance based on only one run. Therefore, we repeat, all of our collected

results are based on the average of 20 runs. Also, we have noticed that results did not

vary much from a run to another for the same workloads, perhaps because of the large

number of resources, workstations, sites etc. in the simulated model. Finally, recall that

the simulation model consists of 520 servers versus 1880 workstations � a ratio of 1:3.6.

5.7 WORKLOADS

Unfortunately it was difficult to find real traces for the Grid computing, since it is

still a new area. However we were able to base our workloads (listed in Table 3 below)

on real traces for parallel machines from [17, 23, 25, 44, 53, 57] and Grid simulation for

physics and engineering problems from [3, 41].

We use a Poisson distribution to generate input data sizes for submitted jobs to the

Grid where the Poisson mean is set to the desired average input size from Table 3 (that

was originally based on real traces from [3, 17, 23, 25, 41, 44, 53, 57]). In this way, jobs

are generated with different sizes, but with the desired average input size, which is the

typical case in reality.

Workload Number of Jobs Average Input Size (in MB) Servers to Jobs Ratio

1 10,000 28.9 1:19

2 10,000 312.7 1:19

3 10,000 1000 1:19

4 10,000 10,000 1:19

5 10,000 100,000 1:19

6 3000 28.9 1:6

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 128

Workload Number of Jobs Average Input Size (in MB) Servers to Jobs Ratio
7 3000 312.7 1:6

8 3000 1000 1:6

9 3000 10,000 1:6

10 3000 100,000 1:6

11 1560 28.9 3:1

12 1560 312.7 3:1

13 1560 1000 3:1

14 1560 10,000 3:1

15 1560 100,000 3:1

16 1040 28.9 2:1

17 1040 312.7 2:1

18 1040 1000 2:1

19 1040 10,000 2:1

20 1040 100,000 2:1

21 520 28.9 1:1

22 520 312.7 1:1

23 520 1000 1:1

24 520 10,000 1:1

25 520 100,000 1:1

Table 3: Workloads Used in Simulation (Servers = 520, Workstations = 1880)

5.8 PERFORMANCE METRICS

We use three performance metrics to compare the systems under experiment: Total

response time, average waiting time and average execution time.

The Total response time (TRT) is the time elapsed from submitting the first job request

until the completion of all jobs in a workload. For example, suppose that the first request

was submitted to the Grid at 5:00 PM and the last job of a workload was completed at

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 129

10:00 PM, the total response time will then be 5 hours. The purpose of this metric is to

show the degree of parallelism in the Grid, since we view the Grid as a huge virtual

machine. For that reason, the TRT metric is only measured in the experiments that have

the workstations constantly submitting jobs to the Grid (i.e. one job after another).

Clearly, the TRT metric is meaningless for experimental scenarios that assume people

arrive at different stochastic rates to submit jobs to the Grid (e.g. experiment 2 in section

5.9), since all/some workstations are inactive (i.e. waiting for somebody to use them) for

period(s) of times. Therefore, those waiting periods must be excluded in order to obtain

the TRT correctly. However, one can argue that we can subtract the waiting time for

each workstation by simply measuring the time from submitting the request until that

workstation receives the output of the subject job. Afterwards, we simply could add all

jobs response times to obtain the total response time. This is what we thought before we

ran the experiments in section 5.9! But this forgets that Grid systems are parallel

systems, hence, all activities are carried out in parallel (i.e. scheduling,

workstations/resources idle times are happening simultaneously). By adding the response

times for all jobs, we will obtain the total of all jobs waiting and execution times. (Other

metrics are discussed next in this section). In other words, we will obtain the total time to

complete all jobs in sequence, which defeats the main purpose of this metric, which is to

measure the degree of parallelism in studied systems. Nevertheless, if we assume, for the

sake of argument, that we can magically exclude all workstations parallel waiting times,

we will then end up with the scenario that workstations submit their jobs as one job after

another. The Total Response Time (TRT) is calculated as follows:

)(FRSLJCTRT −=

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 130

where: LJC (Last Job Completion Time) is the time recorded when receiving the output

(i.e. at workstation) of the last completed job in the workload, and FRS (First Request

Submission) is the time at which the first request by a workstation was transmitted.

The waiting time (WT) for a job is the duration from submitting the job�s request

to the Grid until the start of the actual job transferring to selected resources. For

example, if a workstation submits a request to the Grid at 5:00 PM, and gets a service

offer from a resource at 6:00 PM, the waiting time for that job will be 1 hour. The

purpose of this metric is to measure the scheduling time it takes a job until a resource is

allocated for it. Thus, this metric measures the time it takes a request to go through the

first two stages of the grid scheduling stages (i.e. resource discovery and resources

selection stages); those stages being the main focus of this thesis. The Average waiting

time (AWT) is calculated as follows:

∑ =
−= N

j jRTSJTT
N

AWT
1

)(1

where: N (Jobs count) is the number of jobs in a workload, SJTT (Start Job Transferring

Time) is the time when a workstation receives a service offer from a resource and starts

transferring the physical job, and RT (Request Time) is the time when a workstation

submits that job request to the Grid.

The execution time (ET) is the time from submitting the actual job to the Grid

until the job�s output is received at the submitter workstation. For example, assume a

workstation receives a service offer from a resource at 5:00 PM. Next suppose that this

workstation receives the output of the job at 6:00 PM. Then the execution time will be 1

hour. Although all systems, in our model, function the same way when a request is

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 131

mapped to a resource, we still need this metric to measure the location that a job was

executed at. The average execution time (AET) is calculated as follows:

∑ =
−= N

j jSJTTJCT
N

AET
1

)(1

where: N (Jobs count) is the number of jobs in a workload, JCT (Job Completion Time)

is the time when the job�s output is received at the workstation, and SJTT (Start Job

Transferring Time) is the time when a workstation receives a service offer from a

resource and starts transferring the physical job.

Note that since this thesis is mainly concerned with the first two scheduling stages

(i.e. the spent time in these two stages is basically the waiting time for that request), we

choose to break the average response time (i.e. the time from submitting a request to the

Grid until the workstation receives the output) into the two metrics of the average waiting

and execution times.

5.9 SIMULATION EXPERIMENTS

In this section we study three types of system over a number of different experiments.

The goals of those experiments are summarized below (please see experiments

discussions in next subsections for more details):

! To study the performance of the proposed hierarchal scheduling schemes by

comparing it to the well-known P2P systems over different scenarios (experiment

1, 2 and 3). The main differences between the first three experiments are

summarized as follows:

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 132

o In experiment 1: All workstations keep continuously submitting jobs to the

Grid. This scenario represents the case where a set of jobs are executed in

one batch. Of course, this scenario is not very realistic, but it enables us to

study systems performance in the worst case scenario. Indeed, it cannot

get worse than having every workstation continuously pumping jobs into

the system.

o In experiment 2: Each workstation behaves differently from other

workstation. In this experiment, jobs are assumed to arrive at a different

stochastic rate (i.e. Poisson distribution). Therefore, we don�t know where

requests come from, when requests arrive at the Grid, or when the next

request is submitted from a workstation. This scenario is somehow more

realistic. Therefore, it can be viewed as the average case scenario.

o In experiment 3: All workstations submit requests to the Grid at the same

rate. In this experiment, we can study the impact of jobs arrival rate on

the systems under experiment by stepping through different rates. Clearly,

this scenario is unrealistic, but it can help us understand how the different

system types react to different jobs arrival rate.

! To study the contribution of the rescheduling algorithms (i.e. butterfly and load-

balance algorithms) in the overall the performance of the hierarchal scheduling

scheme (experiment 4). We rerun some workloads with scenarios of experiments

1 and 2 while having our proposed algorithms disabled.

! To study the performance of the proposed fall-back rescheduling algorithm

(experiment 5). We re-run some workloads with scenarios of experiments 1 and 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 133

scenarios, with the assumption that resources may change in a stochastic fashion.

We also record the number of saved jobs due to losing resources.

Now, regardless of the configured system or experiment, the following assumptions

apply:

1. The number of used resources is still the same. Thus, the computational power of the

Grid is the same for all systems. In our case, 520 servers versus 1880 workstations.

2. A job is submitted by one workstation and executed by one server. Therefore, no

more than 1880 requests may exist simultaneously in the Grid, since we have 1880

workstations at all times. Note that in the case of the P2P system the same request

can be resubmitted more than once if the submitter workstation does not receive a

service offer from a server within a specified time (i.e. in our case, 2 minutes).

3. A workstation submits a request to the Grid via its Grid entry. It picks a job size

based on a Poisson distribution, a required operating system at random for that

request and submits it to its Grid entry (i.e. the Grid scheduler where that workstation

submits requests to the Grid through it).

4. Given the focus on resource discovery and selection:

4.1. The execution stage is alike for all systems. In fact, once a job�s request is

submitted to a resource, it invokes the same code. In the execution stage, a

resource connects with a workstation and downloads the simulated physical job

in a similar way regardless of the system under assessment. However, we are

still interested in the location of where jobs get executed.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 134

4.2. Physical jobs are simulated in the way they are transferred and executed.

5. All results are obtained over averaging 20 different runs.

5.9.1 First Experiment: Continuous Job Submissions

The purpose of this experiment is to study the system behavior when jobs are

submitted one after another. This scenario is possible when an organization, for instance,

execute thousands of jobs in one batch as one job after another.

In this experiment, we can measure the degree of parallelism in the Grid from the

time it takes the Grid to compute all jobs in a workload, since Grid systems are viewed as

a giant virtual parallel machine.

Now, note the following assumptions:

! The number of workstations in a site determines the number of jobs that will be

submitted from that site. For example, if site A has 3 workstations and site B has

6 workstations. Most likely, site B will submit twice the requests that are

submitted from site A. Therefore, the workload under this experiment is already

distributed among sites.

! All workstations are active simultaneously all the time. In other words, a

workstation submits a request to execute a job and then submits another request to

execute a second job immediately after it receives the first job output.

! All requests are submitted from all locations with the same probability. For

example, job number 5 from a workload may come to the Grid from any site.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 135

5.9.1.1 Results and Discussions

Note that the detailed result sets are presented in Table 4 in Appendix-A.

The average waiting time (AWT) showed a substantial improvement against the

P2P system regardless of the number of used Grid trees or workload as shown in Figure

34, Figure 35, Figure 36, Figure 37 and Figure 38. Interestingly, the AWT starts

declining slowly when the Hybrid system contains too many Grid trees. Perhaps, this is

because it gets closer and closer to the P2P system as a result of continuously increasing

the trees in the system. Of course, if we keep breaking the Grid tree into small subtrees

until each subtree has only one scheduler, we will end up with a P2P system.

We were expecting average waiting times in the hierarchal systems to be in the

range of milliseconds when there are only 520 jobs in a workload regardless of the

average jobs size, since (1) the scheduled requests are small and independent of the

average jobs size in the subject workload and (2) there are 520 servers in the Grid model

at all times, thus, each server should get a request (i.e. job) immediately. However, the

simulation proved us wrong. Actually, we had to trace the model log files in order to

figure out the reason. It turned out that one or more requests were not mapped to

resources because there were no available resources that matched their requirements. For

example, at one of the 100 GB jobs-size runs, 518 requests got mapped to resources in

milliseconds (as expected). However the two requests left did not match the two

available resources and had to wait until other resources (that matched their

requirements) became available. Of course, since a 100GB job takes a long time to

execute that will considerably affect the overall average waiting time.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 136

The total response time (TRT) also showed a significant improvement against the

P2P system regardless of the number of used Grid trees or workload, as shown in Figure

39, Figure 40, Figure 41, Figure 42 and Figure 43. This metric shows that the proposed

hierarchal systems takes more advantage of parallelism than the P2P system.

The average execution time (AET) is almost the same for small jobs (28.9MB and

312.7MB) as shown in Figure 44 and Figure 45, but starts to differ significantly when

job-size increases beyond 1GB, as shown in Figure 46, Figure 47 and Figure 48, which

makes sense, since the model is built with high performance links. Surprisingly, the P2P

system did not perform well against the hierarchal systems at 1GB size, since it doesn�t

take a long time to transfer a 1GB job across a high-performance link.

0

100

200

300

400

500

600

520 1040 1560 3000

Number of Jobs (Size = 28.9MB)

Ti
m

e
in

 S
ec

on
ds

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 34: Average Waiting Times for 28.9MB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 137

0

500

1000

1500

2000

2500

3000

520 1040 1560 3000

Number of Jobs (Size = 312.7MB)

Ti
m

e
in

 S
ec

on
ds

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 35: Average Waiting Times for 312.7MB Size Jobs in Experiment 1

0

20

40

60

80

100

120

140

520 1040 1560 3000

Number of Jobs (Size = 1GB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 36: Average Waiting Times for 1GB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 138

0

5

10

15

20

25

520 1040 1560 3000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 37: Average Waiting Times for 10GB Size Jobs in Experiment 1

0

50

100

150

200

250

520 1040 1560 3000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 38: Average Waiting Times for 100GB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 139

0

10

20

30

40

50

60

70

80

520 1040 1560 3000 10000

Number of Jobs (Size = 28.9MB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 39: Total Response Times for 28.9MB Size Jobs in Experiment 1

0

100

200

300

400

500

600

700

800

520 1040 1560 3000 10000

Number of Jobs (Size = 312.7MB)

Ti
m

e
in

 m
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 40: Total Response Times for 312.7MB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 140

0

5

10

15

20

25

30

35

40

45

520 1040 1560 3000 10000

Number of Jobs (Size = 1GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 41: Total Response Times for 1GB Size Jobs in Experiment 1

0

50

100

150

200

250

300

350

400

450

520 1040 1560 3000 10000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 42: Total Response Times for 10GB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 141

0

500

1000

1500

2000

2500

3000

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 43: Total Response Times for 100GB Size Jobs in Experiment 1

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

520 1040 1560 3000 10000

Number of Jobs (Size = 28.9MB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 44: Average Execution Times for 28.9MB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 142

7

8

9

10

11

12

13

14

15

520 1040 1560 3000 10000

Number of Jobs (Size = 312.7MB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 45: Average Execution Times for 312.7MB Size Jobs in Experiment 1

25

30

35

40

45

50

520 1040 1560 3000 10000

Number of Jobs (Size = 1GB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 46: Average Execution Times for 1GB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 143

1

2

3

4

5

6

7

8

9

520 1040 1560 3000 10000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 47: Average Execution Times for 10GB Size Jobs in Experiment 1

40

50

60

70

80

90

100

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 48: Average Execution Times for 100GB Size Jobs in Experiment 1

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 144

5.9.2 Second Experiment: Job Submissions with Different Stochastic

Rates

The purpose of this experiment is to study the system behavior when jobs requests

arrive to the Grid with different stochastic rates. For example, a workstation submits jobs

to the Grid (if it is inactive) within 10 minutes submission rate (i.e. stochastic rate), but

another one submits jobs within 5 hours rate. Obviously, this scenario is more realistic

scenario than the presented ones in experiment 1 and 3.

Now, note the following assumptions:

! The number of workstations in a site does not determine the number of jobs that

will be submitted from that site. For example, if site A has 3 workstations and

site B has 6 workstations it is not assumed that site B is going to submit twice as

many requests as site A. Also, it is possible that all requests will be submitted

from site A.

! All workstations are not active simultaneously. In other words, when a

workstation submits a request to execute a job, it waits for a period of time (i.e.

each workstation operates using different stochastic rate) before submitting

another request to execute a different job once it receives the first job�s output.

This case is typical when a workstation is used by people who arrive at different

times to use that workstation.

! All requests are submitted from all locations with the same probability.

! Workstations operate using different stochastic submission rates; each

workstation selects, at random, one of the following Poisson interval mean: 10

minutes, 30 minutes, 1 hour, 5 hours, 1 day or 1 week.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 145

5.9.2.1 Results and Discussions

Note that the detailed result sets are presented in Table 5 in Appendix-A. Note also that

we excluded the total response time (TRT) metric in comparing systems in this

experiment because of the workstations waiting times (please see the full explanation in

section 5.8).

As in the previous experiment, the average waiting time (AWT) showed a

substantial improvement against the P2P system regardless of the number of used Grid

trees or the workload, as shown in Figure 49, Figure 50, Figure 51, Figure 52 and Figure

53. The AWT of the hierarchal systems was less than 500ms for workloads with average

jobs-size less than 1GB. In other words, requests were mapped to resources once they

arrived to the Grid. Of course, because jobs arrived at a stochastic rate, the system would

then have the time to distribute them among available resources. In fact, the proposed

hierarchal schemes put scheduling-jobs in the hand of the Grid schedulers. However, in

the P2P scheme, scheduling jobs is in the hand of jobs themselves � jobs continue

searching for resources by themselves (i.e. schedulers only forward those jobs to

neighbors). As a result, for example, Grid schedulers in P2P systems cannot break Grid

jobs into subjobs so that they are executed in parallel among different sites because

scheduling jobs is made blindly by those schedulers. In contrast, scheduling jobs is not

made blindly in the proposed hierarchal schemes. Hence, jobs may, at least in theory, be

broken and distributed among multiple children�s partitions.

The average execution time (AET) was very close among all systems for very small

average job-size workloads (at 28.9MB). However, the hierarchal schemes showed

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 146

considerable improvement against the P2P system for large and medium jobs-size

workloads (more than 312.7 MB) beyond 520 jobs (because the model has 520 servers at

all times � a job per resource), as shown in Figure 54, Figure 55, Figure 56, Figure 57 and

Figure 58. This actually makes sense for several reasons, such as:

(1) The simulation model is built with high-performance links. Thus, the only

difference among all systems in the execution stage is where jobs get executed.

(2) The P2P system is manually configured to have neighbors geographically close to

each other (i.e. note that this is not necessarily true in real life). Thus, jobs grab

the first close available resources.

(3) Jobs randomly arrive at the system with different arrival rates. Thus, in the P2P

systems, it is more likely that jobs have close available resources.

0

5

10

15

20

25

30

520 1040 1560 3000

Number of Jobs (Size = 28.9MB)

Ti
m

e
in

 S
ec

on
ds

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 49: Average Waiting Times for 28.9MB Size Jobs in Experiment 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 147

0

2

4

6

8

10

12

14

520 1040 1560 3000

Number of Jobs (Size = 312.7MB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 50: Average Waiting Times for 312.7MB Size Jobs in Experiment 2

0

5

10

15

20

25

30

35

40

45

520 1040 1560 3000

Number of Jobs (Size = 1G)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 51: Average Waiting Times for 1GB Size Jobs in Experiment 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 148

0

2

4

6

8

10

12

520 1040 1560 3000

Number of Jobs (Size = 10G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 52: Average Waiting Times for 10GB Size Jobs in Experiment 2

0

20

40

60

80

100

120

140

520 1040 1560 3000

Number of Jobs (Size = 100G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 53: Average Waiting Times for 100GB Size Jobs in Experiment 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 149

35

40

45

50

55

60

520 1040 1560 3000

Number of Jobs (Size = 28.9MB)

Ti
m

e
in

 S
ec

on
ds

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 54: Average Execution Times for 28.9MB Size Jobs in Experiment 2

6

8

10

12

14

16

18

20

520 1040 1560 3000

Number of Jobs (Size = 312.7MB)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 55: Average Execution Times for 312.7MB Size Jobs in Experiment 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 150

20

25

30

35

40

45

50

55

520 1040 1560 3000

Number of Jobs (Size = 1G)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 56: Average Execution Times for 1GB Size Jobs in Experiment 2

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

520 1040 1560 3000

Number of Jobs (Size = 10G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 57: Average Execution Times for 10GB Size Jobs in Experiment 2

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 151

35

45

55

65

75

85

95

520 1040 1560 3000

Number of Jobs (Size = 100G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 58: Average Execution Times for 100GB Size Jobs in Experiment 2

5.9.3 Third Experiment: Job Submissions with The Same Stochastic Rate

The purpose of this experiment is to study the system behavior when jobs requests

arrive to the Grid within the same stochastic rate (i.e. all workstation submits jobs

according to a Poisson process). We assume all users arrive to workstations at the same

rate (e.g. Poisson�s arrival mean = 1 hour). A user�s arrival to a workstation determines

when that workstation submits a request to the Grid. In other words, a workstation stays

inactive until a user submits a request to the Grid from that workstation.

In this experiment, we only consider the P2P and hierarchal (i.e. one grid tree)

systems because it serves the purpose of the experiment and saves very much time in

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 152

collecting results via simulation (i.e. note that we had to wait sometimes one week to get

results for one simulation run for the P2P system).

Note the following assumptions:

! The number of workstations in a site determines the number of jobs that will be

submitted from that site. For example, if site A has 3 workstations and site B has

6 workstations then, most likely, site B will submit twice the requests that are

submitted from site A. Therefore, the load under experiment is already

distributed among sites.

! All workstations are not active simultaneously. In other words, when a

workstation submits a request to execute a job, it waits for a period of time before

submitting another request to execute a different job after it receives the first job�s

output.

! A job is submitted by one workstation and executed by one server. However, in

the case of a P2P system, the same request can be resubmitted more than once if

the submitter workstation does not receive a service offer from a server within a

specified time (i.e. in our case, 2 minutes).

! All requests are submitted from all locations with the same probability.

! All workstations have the same stochastic submission rate. For example, a

Poisson submission rate mean is set to 10 minutes for all workstations. Note that

results are collected for several values of Poisson interval mean: 1 hour, 1 day and

1 week. Furthermore, the average job size is 10 GB for all runs.

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 153

5.9.3.1 Results and Discussions

The detailed result sets are presented in Table 6 in Appendix-A. Also, we excluded the

total response time (TRT) metric in comparing systems in this experiment because of the

workstations waiting times (please see the full explanation in section 5.8).

As in the previous experiments, the average waiting time (AWT) showed a

substantial improvement against the P2P system regardless of the number of used Grid

trees or workload as shown in Figure 59, Figure 60 and Figure 61. The gap between

AWT of the hierarchal system and the P2P system gets larger when increasing the arrival

rate of the jobs, as shown in Figure 62. This indicates that the hierarchal system uses

available resources more efficiently than the P2P system. This observation enhances the

point that we�ve raised in previous experiments discussion that the hierarchal schemes

put scheduling-jobs in the hand of schedulers, but the P2P system puts scheduling-jobs in

the hand of jobs themselves. Of course, the smarter the schedulers get the better system

performance we get.

The average execution time (AET) showed that the P2P system starts closing the gap

with the hierarchal system when increasing the job-arrival rate until they meet, as shown

in Figure 63, Figure 64, Figure 65 and Figure 66. This actually makes sense for several

reasons, such as:

(1) The simulation model is built with high-performance links. Thus, the only

difference among all systems in the execution stage is where jobs get executed.

(2) The P2P system is manually configured to have neighbors geographically close to

each other (i.e. note that this is not necessary true in real life). Thus, jobs grab

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 154

first close available resources. Of course, the higher the rate, the more likely jobs

will find nearby available resources.

0

2

4

6

8

10

12

14

16

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 hour)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 59: Average Waiting Times for 1 Hour Arrival Rate in Experiment 3

0

2

4

6

8

10

12

14

16

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 day)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 60: Average Waiting Times for 1 Day Arrival Rate in Experiment 3

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 155

0

2

4

6

8

10

12

14

16

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 week)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 61: Average Waiting Times for 1 Week Arrival Rate in Experiment 3

3

5

7

9

11

13

15

1 Hour 1 Day 1 Week

Arrival Rates (Size=10G, 1560 Jobs)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 62: Average Waiting Times over Different Arrival Rates in Experiment 3

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 156

6

6.5

7

7.5

8

8.5

9

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 hour)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 63: Average Execution Times for 1 Hour Arrival Rate in Experiment 3

5

5.5

6

6.5

7

7.5

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 day)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 64: Average Execution Times for 1 Day Arrival Rate in Experiment 3

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 157

5

5.5

6

6.5

7

7.5

520 1040 1560 3000

Number of Jobs (Arrival Rate = 1 week)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 65: Average Execution Times for 1 Week Arrival Rate in Experiment 3

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

1 Hour 1 Day 1 Week

Arrival Rates (Size=10G, 1560 Jobs)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

Figure 66: Average Execution Times over Different Arrival Rates in Experiment 3

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 158

5.9.4 Fourth Experiment: Algorithms Impact on System Performance

The purpose of this experiment is to study the contributions of the rescheduling

algorithms (i.e. butterfly and load-balance algorithms) in the overall performance of the

hierarchal scheduling. We chose to consider both of those algorithms together because

they share the same purpose in rescheduling jobs from a child�s partition (i.e. subtree) to

another �better� partition. Therefore, by only enabling one algorithm, the principle of

that algorithm will subsequently be defeated since it is designed to work with the other

algorithm.

In this experiment, we repeat workloads for 100GB-average-size jobs using

experiments 1 and 2 scenarios, while disabling the above two algorithms. The

experiment is only carried out for the hierarchal system (i.e., one Grid tree) because that�s

the model it is designed for. Also, this saves considerable time in collecting results via

simulation (e.g. 10 hours to complete one run).

5.9.4.1 Results and Discussions

The detailed result sets are presented in Table 7 in Appendix-A.

The load-balance and the butterfly algorithms proved their significant role on the

average waiting time (AWT) when the number of jobs in workloads was increased,

regardless of the used scenario, as shown in Figure 67 and Figure 68. This observation

was also confirmed in studying the total response time (TRT), as shown in Figure 69. In

fact, the AWT and TRT increased significantly (in a straight line) with increasing the

number of jobs in workloads when our proposed algorithms are disabled. This behavior

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 159

actually makes sense, since the more pending jobs in the system; the more rescheduling is

performed by those algorithms. Therefore, both load-balance and butterfly algorithms

not only cut the overall system average waiting time, but also increase the degree of

parallelism in the system.

The average execution time (AET) is either increased (i.e. first experiment

scenario � more pressure on the system) or almost maintained at the same level (i.e.

second experiment scenario � less pressure on the system) when our algorithms are

disabled. However, interestingly, when enabling those algorithms, the AET decreases

sharply in a straight line when increasing the number of jobs in the workloads, regardless

of the scenario used. Of course, as mentioned earlier, the more pending jobs in the

system; the more rescheduling is performed by those algorithms.

0

50

100

150

200

250

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 67: Average Waiting Times When Disabling Algorithms (Exp1 Scenario)

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 160

0

20

40

60

80

100

120

140

160

180

200

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 2 Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 68: Average Waiting Times When Disabling Algorithms (Exp2 Scenario)

250
450
650
850

1050
1250
1450
1650
1850
2050
2250

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB, Experiment 1
Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 69: Total Response Times When Disabling Algorithms (Exp1 Scenario)

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 161

50

55

60

65

70

75

80

85

90

95

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB, Experiment 1
Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 70: Average Execution Times When Disabling Algorithms (Exp1 Scenario)

40

50

60

70

80

90

100

110

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 2 Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

Figure 71: Average Execution Times When Disabling Algorithms (Exp2 Scenario)

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 162

5.9.5 Fifth Experiment: Resource Change Impact on System Behaviour

The purpose of this experiment is to study the performance of the proposed

hierarchal scheduling when system resources change during scheduling. This experiment

also aims to investigate the proposed fall-back algorithm by counting the number of

saved jobs (i.e. due to resources change).

In this experiment, we use one of the following Poisson stochastic rates: one day,

three days, one week, one month, three months and six months. At simulation start-up, a

parallel computer selects its advertised operating system, and also its stochastic changing

rate. Now, when a parallel computer changes its advertised operating system, it then

reselects an operating system (perhaps the same one) and a changing rate (perhaps

different from the old one). For example, a computer selects a 6 months changing rate

and reselects a 3 months changing rate when it changes its resources.

Note that a saved job by the fall-back algorithm is counted only once. Therefore,

if a job is saved more than once, it will be counted only once.

In this experiment, we repeat workloads for 10GB-size jobs using experiments 1

and 2 scenarios, while enabling resources change behavior. The experiment is only

performed for the hierarchal system (for the same reasons as in the previous experiment).

5.9.5.1 Results and Discussions

The detailed result sets are presented in Table 8 in Appendix-A.

The fallback algorithm not only maintained the overall system performance when

there is a possibility of resource changes, but also was able to save many jobs from not

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 163

being able to complete due to losing their selected resources, as shown in Figure 73,

Figure 74, Figure 75, Figure 76 and Figure 77. Actually, this makes sense, since the

fallback algorithm performs its rescheduling while resources are busy executing other

jobs anyway � a job is already waiting in the system even if it falls on other resources.

The more jobs in the system also the more saved jobs, as shown in Figure 72. Of

course, more jobs are saved in the experiment-1 scenario than in the experiment-2

scenario because the Grid is put under more pressure in experiment-1. Furthermore, the

number of saved jobs is proportional to the number of jobs for the selected workload.

0

50

100

150

200

250

520 1040 1560 3000

Number of Jobs (Size = 100GB)

N
um

be
r o

f S
av

ed
 J

ob
s

Experiment 1 Experiment 2

Figure 72: Number of Saved Jobs by the Fallback Algorithm (Exp1 & Exp2

Scenarios)

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 164

0

20

40

60

80

100

120

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 73: Average Waiting Times (Exp1 Scenario) in Experiment 5

0

10

20

30

40

50

60

70

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 2 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 74: Average Waiting Times (Exp2 Scenario) in Experiment 5

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 165

0

100

200

300

400

500

600

700

800

900

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 75: Total Response Times (Exp1 Scenario) in Experiment 5

40

45

50

55

60

65

70

75

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 76: Average Execution Times (Exp1 Scenario) in Experiment 5

CHAPTER 5: SIMULATION MODEL, RESULTS AND DISCUSSIONS 166

40

45

50

55

60

65

70

75

80

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment 2 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

Figure 77: Average Execution Times (Exp2 Scenario) in Experiment 5

167

CONCLUSIONS AND FUTURE WORK

The hierarchal approach has not only shown substantial improvement over the

P2P-based Grid system, in the experiments reported in this dissertation, but also has

demonstrated its capability to be successfully combined with a hybrid system. The hybrid

approach, as discussed previously, increases system scalability and provides better

resources management than the single Grid tree or the P2P approaches.

Both the average waiting time (AWT) and the total response time (TRT) metrics

showed a large improvement of the hierarchal approach against the P2P system

regardless of the number of used Grid trees, workload or scenario. The average

execution time (AET) metric also showed a significant improvement over the P2P system

particularly for medium and large-size jobs. However, in some cases, the AET showed

almost identical results for all systems for small-size jobs. This actually makes sense

because we�ve used high-performance communication links and manually configured

neighbors in the P2P-based systems to be geographically close to each other.

Furthermore, we were only interested in where a job got executed, hence jobs were

handled the same way when they reached physical resources, regardless of the system

under experiment.

CONCLUSIONS AND FUTURE WORK 168

 The three proposed rescheduling algorithms showed to contribute significantly to

the overall performance of the proposed hierarchical system. The fallback algorithm

saved not only a number of jobs from not being able to execute because of resources

change, but also maintained almost the same system performance when resources are

constant. The number of saved jobs was proportional to the number of jobs in the

selected workload and the rates at which resources change. In addition, both the butterfly

and load-balance algorithms saved the system from performing poorly when increasing

the number of jobs in workloads. Obviously, the more jobs exist simultaneously in the

system, the more rescheduling is needed to balance load among resources and/or transfer

jobs to better available resources.

We would like to emphasize that many studies in the Grid scheduling literature,

jump over the resource discovery stage directly into the second scheduling stage (i.e.

resource selection) by assuming that all jobs can execute anywhere in the Grid, or simply

assuming that resources will be discovered using the P2P approach. However, as we�ve

shown in this thesis, those stages have to be dealt with in a sequence because of their

dependency on each other. In the P2P-based Grid systems, a scheduler queues a request

locally (if that request is accepted), contacts the user�s workstation and communicates

with the workstation one to one. On the other hand, it forwards rejected requests to it

neighbors. Therefore, all of the P2P-based studies come down to one scheduling

question: under what circumstances does a scheduler (i.e. peer) accept a request or

instead forward that request to its neighbors (see section 1.3.2)? However, in the hybrid

system, PGSSs may still forward accepted requests to neighboring Grid trees (i.e. in our

case, a PGSS always forward accepted requests to its neighbors so that Grid trees serve as

CONCLUSIONS AND FUTURE WORK 169

backups to each other). This shows one of the distinctions between the hybrid and the

P2P systems: a peer in a hybrid system is actually an entire system on its own (i.e. Grid

tree), but a peer in the P2P system is essentially a node (i.e. one scheduler). In practice,

we expect a specific organization to construct its own Grid tree(s) on top of their

resources in order to gain more control over its own resources. Therefore, a request, in

the hybrid approach, jumps from a system to another (or from an organization to another)

rather than from a node to another, as with the P2P systems. This observation may

provide some explanation about the fact that many jobs in our workloads didn�t get the

chance to execute when the P2P-based system was used. To overcome this problem, we

adopted a rule that workstations resubmit their requests to the P2P-based Grid system if

they don�t receive a service offer within a configured number of minutes (e.g. 2 minutes).

Furthermore, the P2P approach puts the burden of discovering resources on the

jobs. Schedulers �blindly� forward requests to their neighbors with the hope that those

jobs will find appropriate resources. However, as was shown in this thesis, the hierarchal

approach gives schedulers more �say� in discovering resources for jobs and in

distributing them among resources. This is not a trivial issue if we want to gain the full

benefits of the Grid systems. For example, a Grid system should aim to use computing

resources in parallel to get the full advantage of its power (i.e. simply, 10 computers can

work faster and better than one computer can do). Therefore, Grid schedulers, in the

future, need to break Grid jobs into subjobs and to execute them in parallel on multiple

resources. Currently, we don�t see how peers in the P2P-based Grid systems can carry

out this task. However, in theory, any Grid scheduler in a Grid tree may break a job into

subjobs and execute that job in parallel among its children partitions (see Figure 21).

CONCLUSIONS AND FUTURE WORK 170

Job scheduling using one central scheduler (that is responsible for discovering

resources, selecting resources and executing jobs) is a very common approach and still

exists today in many commercial and public-domain systems [26] such as Condor [13,

42], PBS [33, 36], Maui [24, 30], and LSF [28, 29]. Conversely, the peer-to-peer (P2P)

approach which is currently used for file sharing systems has been proposed by

researchers in order to replace the centralized architectures in the Grid systems. Of

course, this is because the P2P approach is a distributed system; hence, it can be a more

practical approach than the centralized one for many obvious reasons. However, to our

knowledge, the P2P approach has not been used for the Grid systems yet.

One of purposes of this thesis is to �start� the work of putting multiple layers of

schedulers (e.g. a Grid tree, in our case) on top of resources where jobs will eventually

run. The idea of building layers of schedulers has been mentioned in literature as the way

to go in the future for Grid scheduling. However, we couldn�t find any published scheme

to structure Grid schedulers in layers. Note that [34] (probably the only book devoted

entirely to the open research questions of Grid resource management) advocates the need

of putting �multiple layers of schedulers� (in the first page of its preface). There are still

many open research questions in Grid resource management [34]. In this dissertation, we

proposed a hierarchy structure where schedulers are placed in layers on top of resources

where jobs will eventually run.

Clearly, we did not intend to tackle all of the Grid open research questions.

Instead, this research has mainly focused on the first two scheduling stages (i.e. resource

discovery and resource selection) of Grid systems. There is definitely a need for future

research work into the jobs execution stage, as well as in security and fault-tolerance.

CONCLUSIONS AND FUTURE WORK 171

Moreover, many issues can be explored in this last stage to improve the overall

performance and reliability of the hierarchal Grid systems. Completion deadlines,

resources reservations, jobs preemptions are examples of such issues.

Because we were mainly concerned with the two first scheduling stages (i.e.

waiting time for a request), we chose to break the average response time (i.e. the time

from submitting a request to the Grid until the workstation receives the output) into the

average waiting and execution times. However, in the future, once the execution stage is

addressed, the average response time will be definitely measured as one metric.

Finally, without a doubt, security appears to us as the most important issue to

currently tackle in Grid systems or any other system. Fundamentally, the Grid has to

authenticate a user identity and authorize that user to access resources. Of course, the

process of authentication and authorization can become very complicated, since users are

usually authorized to access only a set of resources (i.e. not all resources in the Grid). In

our case, we can treat the process of authentication and authorization as part of the job

requirement to use resources. Therefore, if a user is not authorized to use a specific

resource, the request will subsequently not match that resource. In future work, we will

need to come up with a method to accumulate those user Ids in the Grid trees. Do we

store them in LGSs where matching is performed between resources and requests? Or in

GSSs where requests are submitted by users? Or in intermediate GSs enabling them to

control access to their partitions? Considerable experimentation will be required to

answer such questions.

Fault-tolerance is also a major issue in Grid computing. As a system increases

both in size and complexity, the possibility of a component failure also increases.

CONCLUSIONS AND FUTURE WORK 172

However, fault-tolerance has so far received little in Grid computing literature. The work

in [2] provides an excellent start to incorporate fault-tolerance capability to our hierarchal

architecture in this thesis. The work in [2] proposes a fault-tolerance layer, which is

embedded in Grid schedulers underneath the resource management layer (i.e. this layer is

actually the scheduling component which is this thesis topic). We believe this thesis

completes the work in [2] by providing the resource management layer that handles Grid

scheduling. The fault-tolerance layer consists of facilities that (1) monitor the status of

the resources, services and application, (2) detect and report failures, and (3) analyze and

recover from failures. Furthermore, the work in [2] structures Grid schedulers in a tree

(similar to Grid trees in this thesis). For example, once a scheduler dies, one of its

children takes its place and becomes the parent. Parents and children continuously send �I

am alive� message to each other and if this message is not received within a specified

time from a scheduler, it is assumed dead. We envision using the proposed fault-

tolerance layer in the Grid schedulers and repeat our simulation experiments with the

possibility of scheduler failures. We will also need to address failure tolerance for the

hybrid system, since work in [2] only assumes one single tree.

173

REFERENCES

[1] J. Abawajy and S. Dandamudi. Scheduling Parallel Jobs with CPU and I/O Resource

Requirements in Cluster Computing Systems. Modeling, Analysis and Simulation of

Computer Telecommunications Systems, 2003. MASCOTS 2003. 11th IEEE/ACM

International Symposium on Pages: 336 � 343.

[2] J. Abawajy and S. Dandamudi. Fault-Tolerant Grid Resource management

infrastructure. 2003. Neural, Parallel & Scientific Computations archive, Volume 12,

Pages: 289 � 306, Issue 3 (2004).

[3] Bill Allcock, Ian Foster, Veronika Nefedova, Ann Chervenak, Ewa Deelman, Carl

Kesselman, Jason Lee, Alex Sim, Arie Shoshani, Bob Drach and Dean Williams. High-

Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data

Grid Technologies. ACM/IEEE SC 2001 Conference (SC'01)

[4] E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, 5, 2000. Also

available from http://www.firstmonday.dk/issues/issue5_10/adar/.

[5] Alain Roy and Miron Livny. Condor and Preemptive Resume Scheduling. Chapter 9

in [34] book.

REFERENCES 174

[6] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Nagashima.

Performance evaluation model for scheduling in a global computing system. The

International Journal of High Performance Computing Applications, vol. 14, No. 3, pp.

268-279, 2000.

[7] R. Buyya, D. Abramson, J. Giddy: An Economy Driven Resource Management

Architecture for Global Computational Power Grids. International Conference on

Parallel and Distributed Processing Techniques and Applications (2000).

[8] Viktors Berstis. Fundamentals of Grid Computing. Available from

http://www.redbooks.ibm.com/redpapers/pdfs/redp3613.pdf.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services

for distributed resource sharing. In Proceedings of the Tenth IEEE International

Symposium on High-Performance Distributed Computing, August 2001. Also available

from http://www.globus.org/research/papers/MDS-HPDC.pdf.

[10] Cao, J., Kwong, O.M.K., Wang, X. and Cai, W. (2005). A peer-to-peer approach to

task scheduling in computation Grid. Int. J. Grid and Utility Computing, Vol. 1, No. 1,

pp.13�21.

REFERENCES 175

[11] K.G. Coffman and Andrew Odlyzko. The Size and Growth Rate of the Internet.

http://www.firstmonday.org/issues/issue3_10/coffman/

[12] K.G. Coffman and Andrew Odlyzko. Internet growth: Is there a �Moore�s Law� for

data traffic?. http://www.dtc.umn.edu/~odlyzko/doc/internet.moore.pdf.

[13] Condor Project. http://www.cs.wisc.edu/condor/.

[14] S. Dandamudi. Hierarchical scheduling in Parallel and Cluster systems. Kluwer

Academic Publishers, 2003.

[15] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Workflow

Management in GriPhyN. Chapter 7 in [34] book.

[16] Holly Dail, Otto Sievert, Fran Berman, Henri Casanova, Asim YarKhan, Sathish

Vadhiyar, Jack Dongarra, Chuang Liu, Lingyun Yang, Dave Angulo, and Ian Foster.

Scheduling in the Grid Application Development Software Project. Chapter 6 in [34]

book.

[17] Carsten Ernemann, Volker Hamscher, Uwe Schwiegelshohn, Ramin Yahyapour. On

Advantages of Grid Computing for Parallel Job Scheduling. http://wwwcs.uni-

paderborn.de/pc2/papers/files/392.pdf

REFERENCES 176

[18] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 2004.

[19] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. Available from

http://www.globus.org/research/papers/anatomy.pdf..

[20] W. Gibbs. Ripples in spacetime. Scientific American, April 2002.

[21] F. Giacomini and F. Prelz. Definition of architecture, technical plan and evaluation

criteria for scheduling, resource management, security and job description. Technical

Report DataGrid-01-D1.4-0127-1 0, European DataGrid Project, 2001. Available from

http://server11.infn.it/workload-Grid/docs/DataGrid-01-D1.4-0127-1_0.doc

[22] GriPhyN: The Grid Physics Network. http://www.griphyn.org.

 [23] S. Hotovy. Analysis of the early workload on the Cornell Theory Center IBM SP2.

Proceedings of the 1996 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems. Pages: 272 � 273.

[24] David B. Jackson. Grid Scheduling with Maui/Silver. Chapter 11 in [34] book.

REFERENCES 177

[25] J. Kaufman, Toby J. Lehman, and J. Thomas. Grid computing made simple.

Available from http://www.aip.org/tip/INPHFA/vol-9/iss-4/p31.pdf.

[26] Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, and Jan Wþeglarz.

Multicriteria Aspects of Grid Resource Management. Chapter 18 in [34] book.

[27] Rajesh Kalmadyand and Brian Tierney. A Comparison of GSIFTP and RFIO on a

WAN. Available from http://edg-wp2.web.cern.ch/edg-wp2/docs/GridFTP-rfio-

report.pdf.

[28] Ian Lumb and Chris Smith. Scheduling Attributes and Platform LSF. Chapter 12 in

[34] book.

[29] LSF. http://www.platform.com/services/support/docs/LSFDoc51.asp.

[30] Maui. http://www.supercluster.org/maui.

[31] GT Information Services: Monitoring & Discovery System (MDS). http://www-

unix.globus.org/toolkit/mds/

[32] Napster. http://www.napster.com.

REFERENCES 178

[33] Bill Nitzberg, Jennifer M. Schopf, and James Patton Jones. PBS Pro: Grid

Computing and Scheduling Attributes. Chapter 13 in [34] book.

[34] J. Nabrzyski, J. Schopf and J. Weglarz. Grid resource management: state of the art

and future trends, Kluwer Academic Publishers, 2004.

[35] A. Odlyzko. Internet traffic growth: Sources and implications.

http://www.dtc.umn.edu/~odlyzko/doc/itcom.internet.growth.pdf

[36] PBS: The Portable Batch System. http://www.openpbs.org/.

[37] Charles E. Perkins. Mobile IP: Design Principles and Practices, Addison-Wesley,

1997.

[38] Michael Russell, Gabrielle Allen, Tom Goodale, Jarek Nabrzyski, and Ed Seidel.

Application Requirements for Resource Brokering in a Grid Environment. Chapter 3 in

[34] book.

[39] Marisa Ruffolo and Mark S. Daskin. Design of a Large Network for Radiological

Image Data Extended Abstract.

http://www.kellogg.northwestern.edu/msom2005/papers/Daskin.pdf.

REFERENCES 179

[40] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource

management for high throughput computing. In Proceedings of the Seventh IEEE

International Symposium

on High-Performance Distributed Computing, 1998.

[41] Long Term Technology Review of the Science & Engineering Base. FULL

REPORT - April 2000. http://www.rcuk.ac.uk/lttr/finalversion/LTTR_ContentsPage.htm.

[42] Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy. The ClassAds

Language. Chapter 17 in [34] book.

[43] Jennifer M. Schopf. Ten Actions When Grid Scheduling. Chapter 2 in [34] book.

[44] H. Shan, W. Smith, L. Oliker and R. Biswas. Job Scheduling in a Heterogeneous

Grid Environment. http://www-library.lbl.gov/docs/LBNL/549/06/PDF/LBNL-54906.pdf

[45] William Stallings. Data and Computer Communications, fifth edition. Prentice

Hall, 1997.

[46] Richard Stevens. TCP/IP Illustrated, Volume 1. Addison Wesley, 1994.

REFERENCES 180

[47] Richard Stevens. TCP/IP Illustrated, Volume 2. Addison Wesley, 1994.

[48] Uwe Schwiegelshohn and Ramin Yahyapour. Attributes for Communication

between Grid Scheduling Instances. Chapter 4 in [34] book.

[49] Jennifer M. Schopf and Lingyun Yang. Using PredictedVariance for Conservative

Scheduling on Shared Resources. Chapter 15 in [34] book.

[50] A. Takefusa Bricks: A Performance Evaluation System for Scheduling Algorithms

on the Grids. JSPS Workshop on Applied Information Technology for Science (JWAITS

2001).

[51] A. Takefusa, H. Casanova, S. Matsuoka, F. Berman. A Study of Deadline

Scheduling for Client-Server Systems on the Computational Grid. 10th IEEE

International Symposium on High Performance Distributed Computing (HPDC-10 '01)

P. 406.

[52] A. Takefusa, S. Matsuoka. Performance Issues in Client-Server Global Computing.

International Workshop on Global and Cluster Computing (WGCC'2000).

[53] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview of a

Performance Evaluation System for Global Computing Scheduling Algorithms. In

REFERENCES 181

Proceedings of the 8th IEEE International Symposium on High Performance Distributed

Computing (HPDC), pages 97�104, August 1999.

[54] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita. Performance Analysis of

Scheduling and Replication Algorithms on Grid Datafarm Architecture for High-Energy

Physics Applications. Proceedings of the 12th IEEE International Symposium on High

Performance Distributed Computing (HPDC-12), pp. 34-43. 2003.

[55] Mary R. Thompson and Keith R. Jackson. Security Issues of Grid Resource

Management. Chapter 5 in [34] book.

[56] Gabriel Wainer. Published papers about the DEVS tools. Available from

http://www.sce.carleton.ca/faculty/wainer.html.

[57] Parallel Workloads Archive. Available from

http://www.cs.huji.ac.il/labs/parallel/workload/.

[58] Rich Wolski, Lawrence J. Miller, Graziano Obertelli, and Martin Swany.

Performance Information Services for Computational Grids. Chapter 14 in [34] book.

[59] Wolski, R. Dynamically Forecasting Network Performance Using the Network

Weather Service. Cluster Computing (1998)

REFERENCES 182

[60] Xuehai Zhang, Jeffrey Freschl, and Jennifer M. Schopf. A performance study of

monitoring and information services for distributed systems. In Proceedings of the IEEE

Twelfth International Symposium on High-Performance Distributed Computing (HPDC-

12), 2003.

183

APPENDIX A � RESULT TABLES

A.1 FIRST EXPERIMENT RESULTS SET

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
 Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

Total Response
Time

(HH:MM:SS)

520 00:00:59 00:01:17 00:38:02

1040 00:04:03 00:01:16 00:54:42

1560 00:07:06 00:01:13 00:53:45

3000 00:08:31 00:01:04 01:07:02

P2P

10000 00:04:06 00:02:05 01:05:11

520 50ms 00:01:01 00:01:54

1040 00:00:36 00:01:09 00:02:45

1560 00:00:59 00:01:02 00:11:00

3000 00:01:31 00:01:03 00:10:57

Hierarchal
(1 Grid
tree)

10000 00:01:17 00:01:00 00:19:40

520 00:00:02 00:01:15 00:06:34

1040 00:00:45 00:01:10 00:03:00

1560 00:01:10 00:00:58 00:11:15

3000 00:01:40 00:01:02 00:14:30

Hybrid (4
Grid

trees)

10000 00:01:51 00:01:00 00:24:30

28.9
MB

Hybrid (16 520 00:00:03 00:01:17 00:05:40

APPENDIX A: RESULT TABLES 184

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
 Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

Total Response
Time

(HH:MM:SS)

1040 00:40:43 00:01:18 00:04:11

1560 01:15:00 00:00:55 00:11:30

3000 01:35:00 00:01:01 00:15:41

 Grid
trees)

10000 00:01:43 00:00:48 00:25:15

520 00:10:52 00:12:12 03:44:50

1040 00:18:33 00:12:46 04:38:40

1560 00:27:50 00:13:04 04:59:39

3000 00:34:59 00:11:21 05:38:16

P2P

10000 00:35:59 00:12:21 12:31:55

520 00:02:33 00:10:13 00:56:15

1040 00:06:00 00:11:25 01:13:58

1560 00:10:39 00:11:13 01:07:42

3000 00:18:40 00:10:34 01:44:04

Hierarchal
(1 Grid
tree)

10000 00:18:45 00:11:00 04:25:07

520 00:00:41 00:16:49 00:56:56

1040 00:04:38 00:12:04 00:58:33

1560 00:09:12 00:10:40 00:58:37

3000 00:16:56 00:10:37 01:45:02

Hybrid (4
Grid

trees)

10000 00:17:22 00:10:59 04:22:57

520 00:03:04 00:13:04 00:54:56

1040 00:06:55 00:10:52 01:01:06

1560 00:14:19 00:10:15 01:48:43

3000 00:18:29 00:09:28 02:30:07

312.7
MB

Hybrid (16
Grid

trees)

10000 00:18:15 00:08:37 03:57:45

520 00:40:01 00:44:07 11:35:14

1040 01:42:40 00:46:14 23:34:53

1560 01:23:18 00:47:18 24:16:33

3000 02:06:44 00:48:11 22:48:48

P2P

10000 02:15:30 00:45:15 41:45:25

520 00:19:28 00:43:58 02:51:52

1040 00:20:12 00:38:58 04:22:49

 1 GB

Hierarchal
(1 Grid
tree)

1560 00:33:18 00:36:12 04:38:28

APPENDIX A: RESULT TABLES 185

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
 Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

Total Response
Time

(HH:MM:SS)

3000 01:02:17 00:36:12 08:10:19

10000 01:14:55 00:34:35 15:14:44

520 00:19:28 00:43:58 02:51:52

1040 00:20:12 00:38:58 04:22:49

1560 00:33:18 00:36:12 04:38:28

3000 01:02:17 00:36:12 08:10:19

Hybrid (4
Grid

trees)

10000 01:14:55 00:34:35 15:14:44

520 00:02:47 00:43:59 02:57:48

1040 00:16:22 00:40:17 03:09:54

1560 00:30:40 00:35:12 03:16:04

3000 00:54:32 00:34:46 05:22:03

Hybrid (16
Grid

trees)

10000 01:08:17 00:35:15 13:50:57

520 05:25:28 07:30:32 101:38:36

1040 09:45:07 07:54:40 175:14:56

1560 16:53:23 08:07:24 176:54:27

3000 17:26:23 06:32:11 190:44:49

P2P

10000 18:13:11 08:15:25 410:30:30

520 02:22:43 06:46:04 27:53:24

1040 03:10:45 06:22:13 28:02:44

1560 05:33:00 06:04:34 48:23:54

3000 09:13:50 05:56:49 53:35:54

Hierarchal
(1 Grid
tree)

10000 08:45:45 03:07:26 146:42:00

520 01:35:18 06:27:38 27:29:55

1040 04:22:52 05:37:17 51:43:18

1560 05:22:39 06:07:35 33:01:31

3000 02:40:38 01:41:10 20:24:40

Hybrid (4
Grid

trees)

10000 03:10:16 03:01:27 155:44:46

520 01:53:30 06:34:41 27:30:13

1040 04:55:11 05:56:54 57:33:15

1560 07:16:33 05:20:17 55:01:34

3000 03:08:39 01:33:19 85:29:41

10 GB

Hybrid (16
Grid

trees)

10000 03:15:51 2:04:40 150:08:11

APPENDIX A: RESULT TABLES 186

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
 Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

Total Response
Time

(HH:MM:SS)

520 75:49:20 90:58:56 1403:03:27

1040 92:19:51 81:36:34 1503:08:27

1560 125:01:00 85:25:49 1538:53:24

3000 215:29:40 88:33:15 2036:30:25

P2P

10000 221:17:45 89:09:30 2818:11:11

520 09:13:29 69:23:21 275:37:39

1040 35:06:13 66:48:48 407:07:50

1560 56:31:55 62:42:03 401:09:46

3000 101:21:54 61:29:54 725:21:37

Hierarchal
(1 Grid
tree)

10000 99:55:56 59:00:53 1332:30:35

520 02:23:05 80:20:05 275:37:39

1040 28:24:10 68:37:08 276:58:56

1560 49:38:07 56:02:57 295:34:23

3000 94:33:02 57:23:46 696:11:00

Hybrid (4
Grid

trees)

10000 94:43:05 57:36:38 1295:56:24

520 07:21:54 75:21:54 459:25:59

1040 43:25:48 56:14:17 513:24:44

1560 71:00:13 55:36:47 519:37:09

3000 98:54:55 49:18:19 937:01:22

100
GB

Hybrid (16
Grid

trees)

10000 99:30:40 56:05:10 1390:30:25

Table 4: Results Set in Experiment 1

APPENDIX A: RESULT TABLES 187

A.2 SECOND EXPERIMENT RESULTS SET

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

520 00:00:05 00:00:53

1040 00:00:14 00:00:56

1560 00:00:25 00:00:50

P2P

3000 00:00:26 00:00:55

520 71ms 00:00:53

1040 100ms 00:00:55

1560 113ms 00:00:50

Hierarchal
(1 Grid
tree)

3000 120ms 00:00:54

520 56ms 00:00:39

1040 142ms 00:00:42

1560 201ms 00:00:40

Hybrid (4
Grid
trees)

3000 149ms 00:00:50

520 115ms 00:00:48

1040 111ms 00:00:48

1560 201ms 00:00:48

28.9
MB

Hybrid (16
Grid
trees)

3000 401ms 00:00:51

520 00:07:42 00:14:55

1040 00:09:40 00:14:40

1560 00:011:37 00:17:26

P2P

3000 00:12:30 00:17:45

520 201ms 00:09:35

1040 191ms 00:10:33

1560 250ms 00:10:44

Hierarchal
(1 Grid
tree)

3000 345ms 00:08:44

520 175ms 00:09:22

1040 331ms 00:09:33

312.7
MB

Hybrid (4
Grid
trees)

1560 341ms 00:10:48

APPENDIX A: RESULT TABLES 188

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

 3000 389ms 00:07:58

520 337ms 00:08:39

1040 254ms 00:09:37

1560 345ms 00:10:46

Hybrid (16
Grid
trees)

3000 401ms 00:08:44

520 00:30:58 00:49:54

1040 00:32:10 00:40:29

1560 00:38:54 00:45:31

P2P

3000 00:37:24 00:39:56

520 99ms 00:38:55

1040 200ms 00:29:11

1560 149ms 00:30:57

Hierarchal
(1 Grid
tree)

3000 209ms 00:31:15

520 156ms 00:38:32

1040 301ms 00:31:42

1560 435ms 00:33:17

Hybrid (4
Grid
trees)

3000 167ms 00:32:18

520 489ms 00:31:48

1040 423ms 00:29:44

1560 469ms 00:26:29

1 GB

Hybrid (16
Grid
trees)

3000 154ms 00:25:05

520 05:54:04 07:20:25

1040 07:26:24 06:52:49

1560 07:13:06 06:10:48

P2P

3000 09:38:02 06:15:51

520 00:02:55 06:47:38

1040 00:29:54 04:55:11

1560 01:22:40 04:28:55

Hierarchal
(1 Grid
tree)

3000 02:14:26 04:17:22

520 00:03:05 06:22:11

1040 00:39:45 04:53:25

10 GB

Hybrid (4
Grid
trees)

1560 01:33:35 04:29:17

APPENDIX A: RESULT TABLES 189

Average
Jobs
Size

System Type Number
of

Jobs

Average Waiting
Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

 3000 01:39:11 03:58:05

520 00:01:29 06:25:11

1040 00:45:45 04:28:22

1560 01:46:49 04:18:15

Hybrid (16
Grid
trees)

3000 02:31:29 04:15:32

520 74:45:55 86:05:39

1040 107:18:07 78:15:02

1560 124:28:49 79:37:31

P2P

3000 130:43:04 77:27:59

520 01:37:07 75:57:48

1040 25:34:59 60:45:56

1560 34:20:16 56:56:22

Hierarchal
(1 Grid
tree)

3000 63:09:38 56:01:59

520 04:45:00 63:15:00

1040 26:25:15 58:11:00

1560 42:57:19 59:49:03

Hybrid (4
Grid
trees)

3000 63:07:32 56:21:00

520 06:55:18 60:00:11

1040 28:43:56 52:12:09

1560 44:59:54 48:04:09

100
GB

Hybrid (16
Grid
trees)

3000 55:33:50 41:07:24

Table 5: Results Set in Experiment 2

APPENDIX A: RESULT TABLES 190

A.3 THIRD EXPERIMENT RESULTS SET

Job�s
Arrival

Rate

System Number
of

Jobs

Average Waiting
 Time

(HH:MM:SS)

Average
Execution

Time
(HH:MM:SS)

520 04:55:44 07:05:44

1040 11:17:06 08:25:13

1560 13:00:39 07:56:15

P2P

3000 14:46:12 06:55:44

520 00:04:43 06:39:50

1040 03:44:54 07:37:04

1560 06:51:51 06:57:33

1 hour

(size
= 10
GB)

Hierarchal
(1 Grid
tree)

3000 09:21:10 06:30:26

520 06:51:16 07:00:27

1040 09:06:55 06:17:42

1560 12:41:30 06:44:59

P2P

3000 13:26:42 06:43:31

520 00:02:07 06:49:39

1040 03:20:27 05:57:58

1560 06:05:51 05:48:38

1 day

(size
= 10
GB)

Hierarchal
(1 Grid
tree)

3000 04:06:59 05:56:40

520 05:43:07 06:45:47

1040 09:33:57 06:52:17

1560 12:29:25 07:06:02

P2P

3000 14:30:15 06:03:07

520 00:01:36 06:46:25

1040 02:39:10 06:47:04

1560 05:10:14 07:01:36

1 Week

(size
= 10
GB

Hierarchal
(1 Grid
tree)

3000 03:26:35 06:12:22

Table 6: Results Set in Experiment 3

APPENDIX A: RESULT TABLES 191

A.4 FOURTH EXPERIMENT RESULTS SET

Used Scenario

(Job Size =
100GB)

Enabled/Disabled
Algorithms
(Hierarchal

System)

Number
of

Jobs

Average
Waiting
 Time

HH:MM:SS

Average
Execution

Time
HH:MM:SS

Total Response
Time

HH:MM:SS

520 09:13:29 69:23:21 275:37:39

1040 35:06:13 66:48:48 407:07:50

1560 56:31:55 62:42:03 401:09:46

3000 101:21:54 61:29:54 725:21:37

Enabled

10000 99:55:56 59:00:53 1332:30:35

520 38:35:11 83:55:56 314:03:13

1040 44:59:31 80:05:28 511:23:33

1560 119:40:01 79:28:10 958:32:10

3000 198:55:05 83:27:02 1595:18:48

Experiment
1

Disabled

10000 199:51:25 88:59:35 2116:17:19

520 01:37:07 75:57:48 277:25:42

1040 25:34:59 60:45:56 278:05:03

1560 34:20:16 56:56:22 233:10:07

Enabled

3000 63:09:38 56:01:59 552:49:46

520 01:38:11 93:38:14 278:20:43

1040 47:19:52 90:18:36 549:31:54

1560 69:02:26 86:48:16 549:30:54

Experiment
2

Disabled

3000 193:51:24 88:56:32 1127:12:06

Table 7: Results Set in Experiment 4

APPENDIX A: RESULT TABLES 192

A.5 FIFTH EXPERIMENT RESULTS SET

Used
Scenario

(Job Size =
100GB)

Resources
Behavior

(Hierarchal
System)

Num
of

Jobs

Average
Waiting

 Time
HH:MM:SS

Average
Execution

Time
HH:MM:SS

Total
Response

Time
HH:MM:SS

Saved
Jobs (%)

520 13:13:59 69:13:14 276:16:15 5.38%

1040 34:31:32 63:12:18 477:03:22 7.02%

1560 55:05:45 60:19:36 399:06:56 13.21%

Changing
Resources

3000 96:54:30 60:01:05 800:06:58 6.40%

520 09:13:29 69:23:21 275:37:39 NA

1040 35:06:13 66:48:48 407:07:50 NA

1560 56:31:55 62:42:03 401:09:46 NA

Exp1

Constant
Resources

3000 101:21:5
4

61:29:54 725:21:37 NA

520 01:42:04 76:05:15 278:46:04 0.38%

1040 27:42:42 60:47:23 304:54:01 2.5%

1560 39:57:23 56:57:59 333:25:21 3.65%

Changing
Resources

3000 54:53:32 56:32:38 131:26:10 2.93%

520 01:37:07 75:57:48 277:25:42 NA

1040 25:34:59 60:45:56 278:05:03 NA

1560 34:20:16 56:56:22 233:10:07 NA

Exp2

Constant
Resources

3000 63:09:38 56:01:59 552:49:46 NA

Table 8: Results Set in Experiment 5

