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INTRODUCTION  
 
Algorithms can be used to implement a set of instructions or rules. The applications of algorithms are 
extensive, however, there are some areas where they can be constrained. In composition theory, there 
are many choices that are drawn from the artist's creativity. These choices are partly influenced by the 
rules of composition theory and partly influenced by the artist's personal perception or inspirations. It is 
for this reason that a computer would not be able to satisfy every artist's perception into one musical 
piece. The algorithmic components, however, can be achieved by satisfying the components of 
composition theory to develop a piece of music. 
 
Composition theory is a branch from music theory which deals with the architecture and construction of 
music. This is achieved by a mixture of instruction from composition rules and the composer's 
continuous personal percept. The composer is commonly a human-agent in an environment which 
solely provides rules and agent intelligence. The rules in this environment are those directly given by 
composition theory, these rules include rules of harmony, structure, style, articulation, dynamics and 
sequence. 
 
If one is to compose music artificially, one would need to reproduce these rules from composition theory 
as well as the emotional intelligence that the human-agent provides. Unfortunately, the human-
intelligence that produces emotion cannot be achieved in a computer-agent (Johann Beukes. pages 
58-59, 2011) which makes the latter impossible. Consequently, this leads us to believe that a computer-
agent might be able to mimic the procedural aspects of composition theory but will fail when it is to 
include the emotional aspects. Let it be clear that this research only poses procedural traits to develop 
music and does not attempt to algorithmically mimic emotional traits which are found in human-agents. 
 
If one is to ignore emotional trait constraints, then it is easy to develop music-strings through 
randomization. A way to achieve this is through a statistical model: A statistical model is a structure that 
produces a sample based on a probability of occurrence in each instance of production. The probability 
of occurrence is attached to each production in a context-free grammar (CFG). By doing this, any string 
can be derived from the CFG with a user defined occurrence. Obviously, this CFG will be able to 
produce a very extravagant music selection which is why it has become necessary to channel a 
workable sample from a selection through human intervention. 
 
Now that a sample has been established, either through randomization or human intervention, the 
sample can proceed to be refined through genetic algorithms as per the title of this paper. A genetic 
algorithm is a search heuristic that mimic the process of natural evolution. The heuristic is routinely 
used to generate useful solutions to optimization and search problems (Melanie 1996). This research 
attempts to use genetic algorithms to refine the statistical sample. The genetic algorithm will consist of 
various phases which the statistical sample will be passed through. At the end of the genetic phase the 
statistical sample should be refined and can be finalized.  
 

BACKGROUND  
 

The Statistical Model 
 



Conklin (2004) reviewed the process of music generation and equated it with the problem of sampling 
from a statistical model. One can represent a piece of music as a chain of events, which consist of 
music objects (notes, rests etc.) together with a duration and an onset time after instantiation into a 
piece. A statistical model of music assigns to every possible piece of music a probability and captures 
regularities in a class of music, be this a genre, a style, a composer's style, or otherwise. Conklin (2004) 
pointed out that, surprisingly, only a few of the proposed sampling methods have been explored in the 
music generation literature. He suggests that using statistical modelling in music composition can be 
beneficial. The main limitation of Conklin (2004) is that of Viterbi decoding, as its computation time 
increases exponentially with the context length of the underlying Markov model on states. Producing 
the highest probability pieces from complex statistical models is therefore a computationally expensive 
task (Conklin 2004), and heuristic search and control strategies must be applied. 
 
The Genetic Algorithm 
 
Matic (2009) reviewed that composing, as well as any other artistic activity, includes free choice by 
which a composer express their feelings, moods, intentions or inspiration. He maintains that these 
choices are seen as a series of instructions that can be relatively easy to interpret. Most composers 
apply certain rules and instructions when composition and thus any composing process in some way 
can be considered as an algorithm. On the other hand, the absence of human factors in the automatic 
composition will lead to the appearance of large amounts of objectively bad and useless music as a 
result of bad computational selected choices. The combination of genetic operators such as mutations, 
selections and crossovers in some way simulates the innovative process (as real composing is), 
enabling continuous "improvement" of their obtained results. The main limitation of Matic (2009) is that 
the user will not be able to specify a genre based on user perception as the class of the best individuals 
will be very similar every time. The following evaluation function was used by Matic (2009): 
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represent the collection of good tones. 𝛼, 𝛽 and 𝛾 served as global weight factors. The experimental 
results that were produce by the algorithm meet some objective criteria of "beautiful" compositions: 
According to Matic (2009), they contain intervals that are pleasant to the human ear, the rhythm is 
meaningful, and, with a slight adjustment to the appropriate arrangement, the compositions sound 
unusual, but pleasant. George and Wiggins [1998] proposed a genetic algorithm which was used 
similarly in Matic (2009) like the use of evolutionary algorithms. Most of which include the work on 
modified genetic operations that can be traced back to Horowits (1994); Burton (1996); Brown (2002) 
and Moroni et al. (2000). 
 
George and Wiggins [1998] reviewed that genetic algorithms have proven to be very efficient search 
methods, especially when dealing with problems that have very large search spaces. This, coupled with 
their ability to provide multiple solutions, which is often what is needed in creative domains, makes them 
a good choice for a search engine in a musical application. George and Wiggins [1998] new GA exhibits 
the following three significant characteristics which are uncommon in GA applications to music: An 
algorithmic fitness function for objective evaluation of the GA results; problem-dependent genetic 
operators; and symbolic representation of the structures and the data which helped them solve their 
problems. George and Wiggins (1998) state subjectively that their system often generated interesting 
music patterns. The main limitation of George and Wiggins (1998) is that the music pieces produced 
had no music structure as a result there was no room for time signatures which are important in music 
analysis. Their research was also biased to the study of jazz music. A very similar study was done by 
Biles et al. (1996).  
 
Alfonseca, Cebrian, & Ortega (2007) propose the use of interval distance as a fitness function which 
may be used by genetic algorithms to automatically generate music in a given pre-defined style. 
Alfonseca et al. (2007) focused on continuing the results of their previous work which helped them 
increase the efficiency of the procedures described by their previous paper on information theory. The 
main limitation of Alfonseca et al. (2007) is that their genetic algorithm still needed to be fine-tuned for 
the proposed application. Moreover, although the authors introduced the information about note 



duration in the genetic process, it had been ignored so far. Alfonseca et al. (2007) still need to 
experiment with different strategies. Some of the pieces of music thus generated recall the style of well-
known authors, in spite of the fact that the fitness function only takes into account the relative pitch 
envelope. Qualitative response by human audiences confirms that the results described in this paper 
are superior to those obtained previously with a different fitness function. Their use of the interval 
distance informed this research paper. 
 

 

MAIN FOCUS OF THE ARTICLE 
 
Problem 
 
There has been several attempts to conduct algorithmic music composition by using techniques which 
resemble statistical models (Conklin, 2004) and genetic algorithms (Matic, 2009) (George & Wiggins, 
1998) (Alfonseca, Cebrian, & Ortega, 2007). However, there has been no attempt to integrate these 
techniques into a suitable algorithm for future progress in music evolution and architecture. According 
to Conklin (2004), the simplest way to generate music from a history-based model is to sample, at each 
stage, a random event from the distribution of events at that stage. After an event is sampled, it is added 
to the piece, and the process continues until a specified piece duration is exceeded. Although this is a 
quick and easy way to create music, it is doubtful that the music produced by the Conklin (2004) random 
model would be meaningful as music-notes are just being randomly attached together. When creating 
a statistical model it is often convenient to view all components of the sample at once, especially when 
dealing with large samples, this can be achieved by using a context-free grammar (CFG). This brings 
us to the first problem statement (PS1): 
 
PS1: Very few algorithms, in Composition theory, make use of Context free grammars for convenience 
in their statistical music production. 
 
The music produced by a statistical model again lacks distinctive melody and meaningful structure. It is 
seen in Matic (2009); George & Wiggins, (1998); Alfonseca, Cebrian, & Ortega (2007) that even though 
the music produced by their research was developed using a genetic model, the music produced still 
failed to have a distinctive structure and a meaningful melody. Which brings us to the second and third 
problem statements (PS2 and PS3): 
 
PS2: While there are many algorithms that create music using algorithmic composition, very few 
algorithms have been presented which produces tasteful structure and stylistic sense in its melody 
production. 
 
PS3: Very few algorithms has been presented which make use of a hybrid of statistical and evolutionary 
methods. 
 
Addressing these problems foregrounds music as a platform that inspires creative thinking thus 
motivating success.  
 

Research Methodology 

 
The research methodology is underpinned by a research model that presents five phases: The 
Statistical, Genetic, Variation, Structure, and Credibility phases. This paper only focuses on two of the 
five phases of algorithmic music production (Ajoodha, 2013): The Statistical phase, where a context-
free grammar and statistical model is used to generate user-defined music-strings; and The Genetic 
phase, where a genetic algorithm is used to refine the statistical sample. The other phases included: 
the Variation phase, where a selection of melodies is viewed from the sample and an algorithm is 
applied to deduce musical variation from the output of the genetic phase; the Structure phase, where 
structure is automatically assigned to each melody with respect to its variation; and the Credibility 
phase, where the music is tested for credibility with respect to cultural acceptance. Figure 1 below 
shows the complete music development process through these phases, however, only the first two of 
the five phases will be explained in this paper. 
 



 
A CFG has been identified which needs to be created along with a statistical model to generate user 
defined music-strings. A simple CFG is proposed to suit the representation of each note played, 
however, firstly the music representation that will be used throughout this paper is discussed. 
 

Music Representation 
 

The standard music representation will be used by focusing on music notes; octave; duration; and 
tempo representation. JFugue version 4.0.3 (Koell, 2013) and Sibelius version 6 were used for the 
creation of audio files and music manuscript representation respectively. The note structure will follow 
the standard manuscript note representation and accidentals will be used where necessary. Figure 2 
below shows a list of note names ranging from middle C to C an octave higher by using a chromatic 
scale. The row of letters in Figure 2 represent the note name of the notes above each respective letter. 
A similar notation will be used throughout this paper. 

 
Each note duration will follow the conventional manuscript notation. The note durations in this paper 
will be limited to the durations given by Table 1. Each row in Table 1 gives a duration representation 
that can apply to every note in Figure 2. Furthermore, every note duration can be defined by the note 
representation, where a note represents either a sound or a rest (i.e. where no sound is played). The 
rest representation is given by last column of Table 1. 

 
 
Tempo is defined as the number of beats per minute. To define the tempo of a melody the tempo at the 
beginning of that melody is defined. The tempo can range from 0 to infinity, however only a selected 
range of tempos will be used in this paper. Figure 2 below shows the different tempo ranges and their 
respective classifications. Notice that different tempo classifications can overlap. 



 
 

The Statistical Phase 
 

In this phase a context-free grammar (CFG) is defined that is able to derive any of the 768 music notes 
(12 notes x 8 possible durations x 8 octaves) available by the representation. This CFG achieves this 
by a simple leftmost derivation. The CFG is defined as follows: 
 

 
Let G have the following productions: 
 

 
 



From this CFG any derivation of the 768 notes can be produced at any time by a simple leftmost 

derivation starting from production £. A problem lies in the arrangement of these note values upon a 
specified tempo (i.e. the selection of u). So it has become necessary to intervene in the initial population 
selection as the sample can be infinitely large – infinite because of the infinite possible tempos. Using 
a statistical model for this intervention, by adding a probability of occurrence (POC) to each production 
in the CFG, a statistically channelled initial population is achieved for the evolutionary algorithm to act 
on in the Genetic phase. This can done in four steps: Firstly, the note selection POC is specified, since 
there are only 12 different notes in every octave and 1 rest (possibility of no note occurring), each note’s 
POC is set to 0.07. Secondly, an octave range is specified: by using the Gaussian function given by 
Equation 2. The Gaussian distribution is defined around a specific octave, tempo, and duration, with 

the mean given as 𝜇 and standard deviation given as 𝜎2. 
 

 
 

Since most music is dominantly based around middle C, it would be fitting to take middle C as the 
mean with a selected standard deviation. Figure 5 below shows Gaussian distribution around the 5th 

octave by setting 𝜇 = 5 and  𝜎2 = 1. The standard deviation is chosen as directly proportional to the 
increase in the probability of occurrence of the octave selection.  

 
Thirdly, the duration range is specified. Again Gaussian distribution can be used to do this, setting 𝜇 = 

2 and  𝜎2 = 1.5, the distribution depicted by Figure 6 is achieved. These parameters where chosen such 
that the half notes get a better chance of occurrence as it is very common for music to dominantly have 
this trait. However, these parameters are subject to change.  
 



 
 
Finally, a specified Tempo range is established. This again done using Gaussian distribution, only this 
time the median of any specified tempo and the standard deviation is chosen as directly proportional to 
the inclusion of more tempo ranges (i.e. the larger the tempo chosen, the more tempo classifications 
will be included). Figure 7 below shows a Gaussian distribution where 𝜇 = 133 and  𝜎2 = 4 for tempo.  
 

 
 
The Genetic Phase 

 
This phase presents a genetic algorithm that refines the sample created in the statistical phase. Figure 
10 outlines the refinement process of the genetic algorithm performed in the Genetic phase. 



 
 

In Figure 10 the statistical population is firstly pre-processed. The pre-processing stage is essential to 
setup the evaluation function. As part of the pre-processing step a key signature is established and the 
initialization of genetic operational parameters are setup, this includes the inversion and translocation 
thresholds. The Initialized population is then passed to the genetic algorithm where the functional 
evaluation takes place. In the functional evaluation state the music-strings are scanned and assigned 
an evaluation. The evaluation is derived from the evaluation function. Thereafter, the algorithm is 
prompted to terminate. The Algorithm will terminate if and only if the iteration counter for the genetic 
algorithm exceeds the specified generation threshold. Upon termination the individuals are released as 
best individuals. If the algorithm fails to terminate then there is a selection of music-strings. Music-
strings are selected based on specified selection parameters. The selection categorises the individuals 
as either candidates for mutation or cloning. Only mutation candidates are allowed to pass through to 
the genetic operation state, whereas clone candidates are immediately passed through to the 
Population of individuals state. In the genetic operations state a selection of mutations occur and the 
mutated individuals as passed through to the Population of individuals state. The cycle continues until 
the algorithm terminates (i.e. iteration counter > generation threshold number). 

 
Pre-processing 

 
Before the genetic algorithm is initiated it is important to establish some constraints and rules. An 
example of such a rule is a key signature for the populations to strive towards. A key signature can be 
selected in various ways, however, for this sake of this paper the key signature will be chosen optimally 
by a NoteCount() procedure. A scale counter for a corresponding scale will count the occurrences of 
each note in the sample that belong to the corresponding scale. The scale counter with the largest value 
will be chosen and the corresponding scale will be used. Other constants that should be established in 
this step include the constants for the influence of each instance of the evaluation function; the number 
of generations; the mutation and clone decision constant; the mutation translocation threshold; and the 
mutation inversion threshold. 
 

Functional Evaluation 

 
In each iteration of the genetic algorithm (GA) an objective function is established that the music-strings 
can be evaluated by and a decision can be immediately reached to whether or not the music string, or 
part of it, will be accepted in the next generation of the GA. Recall that the algorithm initially scans 
through the sample with the NoteCount() procedure, the output of this NoteCount() will be an 
appropriate key signature which will be embedded to the evaluation criteria. Each individual’s note is 
evaluated in order to determine if the consecutive notes are abiding the established key. Let the 
evaluation function for determining a key signature be defined as:  
 



 
 

Where 𝜃 is the influence of the evaluation, n is the number of notes, and 𝛼 is a value that describes 

whether or not the note in accepted by the established key signature. 𝛼 can be one of two values. If the 

note is in the established key signature then 𝛼 assigned a very high value as music in key is highly 
encouraged. Similarly if a note is not in the established key then 𝛼 assign a much lower value. See 

Table 3 for proposed weights for 𝛼.  
 

 
A crucial part of determining the quality of music is examining what each note interval is. That is 
determining what relationship the note played had with the previous note played as the relationship of 
these two notes greatly affect the quality of the entire piece. It for this reason that every note played is 
evaluated by its previous note’s in its respective key. The interval is the difference between two pitches. 
To get the interval of a pitch with respect to another simply compute:  
 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐷𝑖𝑠𝑡 = |𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ 𝐴 − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ 𝐵| 
 

One way of examining the intervals is to make sure all the intervals are accepted by the key signature. 
The following evaluation is proposed: 

 

 
Where 𝜗 represents the influence of the evaluation, 𝛽 represents the interval cost and m is the number 
of intervals in the individual.  The following weights in Table 4 have been proposed for 𝛽. 
 

 

 

Further work need to be done to make sure that the current interval is accepted by the previous note’s 
respective key, however this is not a crucial factor when determining quality so the influence of this will 



be relatively low. The Following evaluation function is proposed with proposal weights given by Table 
5:  

 

 
 

Finally, the entire evaluation of the individual is considered and its mean, 𝜇, and standard deviation, 𝜎2, 
are computed. The standard deviation (in this context) is inversely proportional to the quality of the 
piece. These values are added to the evaluation as well. Therefore, the total fitness for an individual is 
given by the following equation:   
   

 
 

Where 𝜃 is the influence factor of the key signature; n is the number of notes in the individual; 𝛼 is the 

evaluation of the key signature with respect to the individual;  𝜗 is the influence factor of the interval 

with respect to the key signature; 𝛽 is the weight of the interval with respect to the key signature and 

the individual; m is the number of intervals; 𝜌 is the influence factor of the interval with respect to the 
previous note’s key signature; 𝛾 is the weight of the interval with respect to the previous note’s key 

signature and the individual; 𝜇 is the mean of the individual’s evaluation; and 𝜎2 is the standard deviation 
with respect to the mean. It is from these individual evaluations that the quality of every individual is 
calculated. The evaluation is directly proportional to the music-string’s quality.  

 
Selection of Individuals 
 
After the evaluation of a generation by the evaluation function the max and min evaluations in the 
generation are extracted and used to create a new evaluation relative to the min and max evaluations. 
The following equation is used to calculate the relative evaluation:  
 

 
 

The relative evaluation is measured as a percentage with respect to all the other individuals. Based on 
the mutation and clone decision constant, chosen in the pre-processing step, the generation is split into 
two different categories: clone candidates or mutation candidates. Figure 9 shows the clone and 



mutation decision constant set as 0.8. The cloned individuals will be automatically added to the next 
generation whereas the mutation candidates will await the mutation process that occurs in the genetic 
operation state.  
 

 
 
Genetic Operations 
 
Recall that when an individual is cloned the individual the taken unchanged and posted into the next 
generation of the genetic algorithm. On the other hand, when an individual is mutated, the individual’s 
content is changed and then put into the next generation. There are five different types of mutations 
that could randomly occur in a mutation candidate: An inversion; deletion; duplication; correction; or a 
translocation.  
 

An inversion occurs when a segment of the music-string is revered end- to -end given a specified 
threshold. The threshold serves as an upper bound for the inversion segment length.  The inversion 
threshold is specified in the pre-processing step. Figure 10 shows an example of a music string being 
inverted. Given an inversion threshold, say 5, an inversion length of 4 is randomly selected and the 
segment EFGA is selected from the complete string CDEFGABC. In the rightmost image the sub-string 
is inverted and placed back into the same position. The goal of this operation is to rectify mistakes by 
structurally rearranging interval groups which could render the individual better for survival.   

 
A deletion occurs when a random note is removed from a music-string. Figure 11 shows an example of 
a deletion. The music-string CDEFGABC is mutated by the complete removal of a random note in the 
music-string. The resulting string is CDEFGABC. The goal of this operation is twofold. Firstly this 
operation can remove an unwanted note from a music piece, and secondly the removal of the note 
could give rise to a better sounding interval that could exist between the previous and next notes of the 
note removed.  
 

 

 



 
 
 
 
 
 

 
A duplication occurs when a random note in the music-string is repeated again consecutively. Figure 
12 shows an example of a duplication. The String CDEFGABC to mutate to CDEFFGABC. The goal of 
this operation is to periodize the music-string. This gives the piece a rest from interval leaps and 
opportunely gives the listener a more wholesome sound. 

 
 
A translocation is a rearrangement of parts between two music-strings given a translocation threshold. 
The threshold serves as an upper bound for the translocation segment length. The translocation 
threshold is specified in the pre-processing step. Figure 13 shows an example of a translocation being 
performed by Piece A and Piece B. Given translocation threshold, say 5, a translocation length of 3 is 
randomly selected and the segment ABC is selected from the complete string CDEFGABC. In the 
rightmost image the segment ABC is translocated to Piece B. In this case the operation attaches the 
segment ABC to the end of piece B. The goal of this operation is to selvage a segment of good music 
and transplant it to another mutation candidate which will be revaluated and perhaps could evolve into 
a better individual.  

Phase Results and Recommendations 
 

Statistical Phase Experimental Results 

Using the parameters given above; a specified length of notes of each piece taken as 25; and the 
number of individuals per population taken as 100, we achieve 100 statistically modelled pieces. Only 
two examples are provided in this paper: Individual 1 and 87 given by Figure 14 and 15 respectively.  
 



 

 

 



Although some segments of these examples make musical sense namely the first few bars of Individual 
1 and the last few bars of Individual 87, both pieces have a lot to be desired. This however is a good 
place to start and can serve as seeds for the genetic algorithm. 

 

Genetic Phase Experimental Results 
 
The following experimental results were obtained by using the following static parameters on the 
statistical sample: 500 generations; a mutation and clone decision constant of 0.8; a mutation 
translocation threshold of 4; and a mutation inversion threshold of 11. The influence factors:𝜃, 𝜗 and 𝜌 

took the values 8, 5 and 1 respectively and the proposed weight factors:𝛼, 𝛽 and 𝛾 took the values of 
Tables 3, 4 and 5 respectively. After the NoteCount() procedure the key B flat major was established 
and embedded to the evaluation function.  
 
Figure 16 shows the 5th individual of generation 500. It is clear that this piece contains reasonable 
interval leaps and a consistent voice range. There are only two large leaps in the passage, those being 
the first and last intervals. The melody is distinctive and reasonable and there seems to be a sense of 
key except in bar two, however, bar two’s key conflict is resolved in bar 3. The melody is quite short (12 
notes) which suggests that it must have underwent several translocations and or deletions from a length 
of 25 to 13. The piece however shows character and style.    
 

 
 

Figure 17 shows the 99th individual of generation 500. It piece contains leaps no greater than 2 octaves.  
There is a chromatic build up in bar 2 and 3 which was achieved as a result of the relative key interval 
criteria. The voice range is much broader and has 3 notes out of key. There are only two large leaps in 
the passage, those being the first and last intervals. The melody is distinctive and reasonable. The 
melody is also quite short (17 notes) which suggests that it must have underwent several translocations 
and/or deletions from a length of 25 to 19. The piece however shows character and style.    

 

 
 



Figure 18 shows the 84th individual of generation 500. It is clear that this piece contains reasonable 
interval leaps and a consistent voice range. The melody is played relatively quickly (Vivace) and shows 
clear patterns and stylistic sense. The melody is distinctive and reasonable and there is a sense of key 
throughout the piece. The melody is relatively longer than the other pieces and demonstrates character 
and clarity.    

 

 

Future Research Directions 
Future Research Directions can attempt to improve current processes in automated music production 
by emphasize on improving methods in the statistical; genetic; variation; and structure phases. 
Additional research can also attempt to explain why it is important to include a living sample in 
automated music composition, by using a credibility phase, as producing music samples which are 
culturally rejected by the current society are meaningless.  
 
The algorithm presented can be changed based of the user defined commands with respect to the 
parameters. If the user wanted to produce a statistical population that would encourage the production 
of Jazz music than he/she would simple define the statistical phase with jazz elements, for example, 
decreasing the probability of a fifth occurring and decrease the tempo to adagio or largo classifications. 
Consequently, when the NoteCount() is performed a jazz scale will be selected and embedded to the 
evaluation criteria. 
 

Conclusion and Discussion  
 
An evolutionary approach to algorithmic music composition is presented in this paper through statistical 
and genetic models. Some melodies produced by the algorithm displayed significant interval changes 
and stylistic sense. The best individuals showed character and obeyed aspects of composition theory 
to certain extents, for example staying in key and avoiding incongrual intervals.  
 
The results can be further refined by optimizing the weight and influence factors: 𝛼 ,𝛽 ,𝛾 ,𝜃 ,𝜗 and 𝜌. By 
doing this the genetic algorithm will be able to produce an optimal set of best individuals for a desired 
application. The algorithm has been designed to run in O(mn) time and space, where n is the length of 
the individual and m is the number of generations. Increasing the number of generations and the length 
of the individuals consequently, increases the time the algorithm will take. However, the greater the 
length of the individual and the number of generations it undergoes, the better the quality of the output 
sample.  
 
The research can be extended in several ways. Since the static parameters can be optimised so that 
the algorithm outputs a set of optimally best individuals, it would be interesting to see whether it is 



possible to classify these parameters into parametric ranges that code for different genres. The best 
individuals of this algorithm can also be variated and given structure where necessary.  
 
The five phased model strengthens the algorithmic music composition methods, particularly in the 
genetic and statistic phases where the key melody is defined. The potential for this research can be 
applied to a wider context of research in education and human-agent composition. 
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KEY TERMS AND DEFINITIONS 
 

Key Words:   
 
Genetic Algorithm: - A genetic algorithm is a heuristical model of machine learning that is based on 
the process of natural selection.    
 
Statistical Model: - A statistical model is an interpretation that uses variables and equations to show 
mathematical relationships. 
 
Probability of occurrence (POC):- The probability of occurrence is a static constant assigned to every 
music object in the Statistical Phase to produce a sample.  
 
Context-free Grammar: - A Context-free grammar is a formal grammar in which every production rule 
is in the form V  u, where V is a single non-terminal symbol and u is a string of terminal and/or non-
terminal symbols, u can also be empty. 
 
Gaussian distribution: - Gaussian distribution, sometimes referred to as normal distribution, is a 
mathematical function that defines the probability of a number in some context falling between any 
two real constants. 
 
Genetic Phase: - The Genetic Phase is the second phase of a five phased model. The Genetic Phase 
presents a genetic algorithm that refines a statistical sample through a fitness function and genetic 
operators.  
 
Statistical Phase: - The Statistical Phase is the first phase of a five phased model. The Statistical 
Phase presents a Context free grammar and statistical model that produces an initial population. 
 
Music Representation: - a notational portrayal of acoustic music. 
 
Fitness Function: - A fitness function is an objective function that is used to evaluate how close a given 
construction is to achieving the pre-determined criteria. 
 
Note counting: - Is a procedure where a scale counter for a corresponding scale counts the 
occurrences of each note in the sample that belong to the corresponding scale. The corresponding 
scale with the largest counter value is returned. 

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Objective_function

