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Abstract—The modelling epidemiology processes supporting
public policy decision-making usually require SIR compart-
mental models which mathematically describe the pandemic
phenomenon’s dynamics. In general, these models and extensions
are used to conceptualize a macro-level of populations evolving
between different pre-determined health statuses. In this work,
we propose an alternative modelling for the COVID-19 pan-
demic according to probabilities defined by interactions among
individuals. We present an Agent-Based Model (ABM) to take
into account both the heterogeneity of individuals population
health statuses and the spatial structure of the environment.
The model is verified by reproducing already known results
of Corsica’s COVID-19 pandemic data and different patterns
of COVID-19 virus spread are visualized at any time with the
NetLogo simulation environment. The implementation details of
our alternative approach is then detailed and discussed.

Index Terms—COVID-19, Computational modelling, Agent-
Based Model, NetLogo.

I. INTRODUCTION

The Coronavirus 2019 disease or Covid-19 caused by the
SARS-CoV-2 virus appeared on November 16, 2019 in Wuhan,
China in the province of Hubei. It spread all over the world
and officially became a pandemic on March 11, 2020. In order
to cope with the formation of numerous epidemic clusters
and to preserve the capacities of hospitals, many countries
took containment measures that were unprecedented in the
modern industrial world and had major economic, social and
environmental consequences. These measures are still causing
uncertainties and fears regarding global economy, education,
health and populations fundamental rights. On April 15, 2021,
France officially reached 100,000 deaths. On April 17, 2021,
3 million deaths due to COVID-19 were recorded worldwide.
In France, official data on the spread of the epidemic are
consolidated by the Ministry of Solidarity and Health [1] and
“Santé publique France” [2]. This data can be downloaded
from the Web [3]. In Computer Simulation Science (CSS),

conceptual pandemic models have been implemented and
simulated for more than half a century. These trivial sub-
models are historically based on mathematical epidemiological
models called compartmental SIR models (S for Susceptible, I
for Infected and R for Recovered). They were created in 1927
by Anderson Gray McKendrick and William Ogilvy Kermack
[4]. Ever since, these equation-based models have been used
in numerous digital tools for public policy decision-making
[5]. SIR models mathematically describe the epidemiological
dynamics of the considered pandemic phenomenon. These are
conceptual models built on the basis of a system of differential
equations which describes the evolution of the percentage of
different categories of the population of individuals over con-
tinuous time. Since, different categories of SIR models have
been proposed to describe individual populations evolving
between different predetermined health statuses [6]. The most
notable examples are Susceptible-Infected-Recovered-Death
(SIRD) models [7], Susceptible-Infected-Susceptible (SIS) [8]
models, Susceptible-Exposed-Infected-Removed (SEIR) mod-
els [9], Susceptible-Latent-Infected-Removed (SLIR) [10], and
there are many more. While in a basic SIR model a person’s
health status changes from Susceptible to Infected and then
to Removed, as people are dead or immune, with an SIS
model there is no acquired immunity. When a person has
been infected, they recover and they are sensitive to the
disease again. Both SEIR and SLIR seem to be more realistic
because they integrate an additional intermediate step between
the exposing latency period and the apparition of symptoms.
Thus, the different specializations of the SIR models take into
account more degrees of infectivity that may arise between
the Susceptible, Infected and Recovered basic stages. Fig. 1
is an illustration of the different steps that we can observe in
the basic deterministic models of infectious diseases. In these
epidemiological models, the main modelling hypothesis poses
as an axiom that all the persons in the population behave,
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contract the virus and develop the disease homogeneously.

Fig. 1: Basic deterministic epidemiological models.

Taking these basic epidemiological models as a reference,
we propose an alternative computational Agent-Based Model
(ABM) to study the COVID-19 dynamics. Our approach offers
the possibility to explicitly represent heterogeneities at an indi-
vidual level, and also allows us to take into account the spatial
characteristics of the pandemic. In the early 2000s, the ABM,
also named Individual-Based Models (IDM), was developed
and opened the way to new modelling perspectives [11], [12].
In this new kind of epidemiological models, the pandemic
complex system is considered from the point of view of Multi-
Agents System (MAS). It is then possible to conceptualize the
heterogeneous health statuses for each person of the popula-
tion concerned by the pandemic, taking into account spatial
characteristics and intricate nonlinear relationships that may
be hard to describe mathematically. Epidemiological effects
are observed as emerging from the interactions between agents
in the simulation. With the COVID-19 pandemic, the develop-
ment of this kind of model has become a pregnant topic in the
literature [13]–[16]. In addition, these ABM epidemiological
models, although more complex to implement, benefit from the
technological evolution of simulation platforms and computer
hardware. In fact, with the increase in computing power and
data processing, more and more precise ABM instances can
be encoded. In this paper, we show how to conceptualize
the pandemic phenomenon from the MAS point of view. For
that, we propose a COVID-19 pandemic ABM. The use of
an agent-based modelling process will allow us to take into
account the heterogeneity of populations in the territories,
as well as the environmental spatial characteristics likely to
influence the pandemic. The corresponding computer model is
implemented in the generic NetLogo simulation environment
[17]. In an experimental part, the case of Corsica is studied.
The paper is organized as follows. In a second part, we recall
the computational modelling principles this work is based
upon. In a third part we explain the COVID-19 pandemic ABM
and its subsections describe each component of the model

in detail. The implementation of the model as well as some
results obtained are discussed in a fourth part. Concluding
remarks and possible extensions of this model are presented
in a fifth and final part.

II. COMPUTATIONAL MODELLING PRINCIPLES

A. Modelling process

The process of complex system modelling aims at providing
an executable model of the phenomenon observed in the real
world, which will be ultimately exploited with computer tools.
The executable model is a numerical expression of a set of
constituents, their organisation and their interactions within
a descriptive hierarchy of abstraction levels. The modelling
process is built under these philosophical bases and raise
questions of both descriptive scales and constituents organ-
isation as preconditions for the formulation of a conceptual
model, i.e. a conceptual modelling phase relying on a precise
scientific methodological frame. Hence, conceptual modelling
is a cornerstone of an interdisciplinary modelling work in
computer simulation science. Fig. 2 is an illustration of what
is a modelling process.

Fig. 2: The process of a complex system modelling in
computer simulation science. This modelling process is fully
addressed in the seminal works of [18]–[22].

In the modelling process of Fig. 2, the complexity is
progressively introduced at each iteration of the process. The
aim is to produce an intelligible executable model, however
sufficiently detailed in accordance with reality. The compu-
tational expertise of the initial complex system takes place
during the final simulation phase, where scientific experiments
are conducted in silico. The data obtained is used for the
purposes of study and synthesis, notably to help political
decision-making. The discussion on modelling processes has
been going for years among the scientific community, par-
ticularly because of its critical nature. In fact, taking into
account the infinity of possible choices about simplifying
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the modelling assumptions initially formulated by modellers,
may correspond to an infinity of abstractions, i.e. as many
conceptual models and different conceptualisation methods,
and that for a same phenomenon observation. Thus, as argued
in 2015 by Stewart Robinson [23] in a simulation conference,
“conceptual modelling is more an art than a science.”. Thanks
to this context, computer simulation became more rigourous
over the last few years.

B. Agent-Based Computational Modelling

Agent-Based Computational Modelling (ABCM) is at the
origin of real-world phenomenon description based on the
agent paradigm.

From the modeller’s point of view, the complex system’s
conceptual model is thought from its constitutive units, i.e.
its constituents [24]. As often reflected in the literature, the
agent paradigm is especially well adapted to simulate complex
system phenomena, whose spatial dynamics come from au-
tonomous and interacting constituents of an organisation. This
paradigm imposes to consider the phenomenon in the light
of the definition of dynamic or static sub-systems with links
and a hierarchical organisation. These sub-systems interact
in a global system delimiting de facto for the observer a
Multi-Agent System (MAS). From conceptual modelling, it is
a point of view involving to formulate the explanation of the
phenomenon’s dynamics as being the result of a constituents
assembly expressed in the form of agent collection, i.e. in the
form of autonomous and individual entities. Agents interact
among themselves and in function of interaction links (rules),
but also with a superior conceptual entity which represents the
wider system, i.e. the environment. The set of these critical
elements constitutes the key concepts underlying the MAS
point of view. They are generally sufficient to formulate the
conceptual model of a complex system’s phenomenon having
spatial dynamics. As highlighted by J. Ferber in [25], the MAS
point of view is thus greatly based on the interaction problem
constituting the main driving force of conceptual thinking
at the source of the expression of interaction mechanisms
between agents and with the environment; the latter can itself
be considered as being an agent. These interaction mechanisms
can be of different natures, trans-hierarchical and can evolve
in time. The modeller explains these interaction mechanisms
in the form of local interaction rules. Fig. 3 illustrates how to
use the MAS key-concepts to build the computer model of a
complex system.

In computer simulation science, the MAS point of view is
nowadays considered as one of the best conceptual modelling
methods. In fact, it benefits from major evolutions related
to object paradigm and concepts developed over the last
decades, as the evolutions of numerous disciplines associ-
ated to computer science, in particular Distributed Artificial
Intelligence (DIA) [27] and Artificial Life (AL) [28]. In the
literature, we usually distinguish between two main types
of conceptual models coming from the MAS point of view:
Cellular Automata Models (CAM) and Agent-Based Models
(ABM). The CAM refer the generic conceptual model spe-

Fig. 3: Formulating a conceptual model and its computer
model counterpart from the MAS point of view, from [26].

cialisations of the basic Cellular Automata (CA) proposed
in the 1940s by Stanislaw Ulam [29], and that John von
Neumann used investigating the logic of self-replication [30].
The conceptual model is constituted by fixed agents called
cells which constitute a discrete global environment called
cellular environment. In a CAM, cell agents play a major
role in the local interaction rules. For their part, the ABM are
extensions of CAM which better translate the MAS point of
view and its agent paradigm. In fact, in addition to fixed cells,
ABM also have mobile agents which can be moving within
the cellular environment. The Fig. 4 is an illustration of the
difference of point of view existing between the definition of
a CAM type and an ABM type conceptual model [31].

Fig. 4: Multi-Agent Systems (MAS): CAMs versus ABMs from
[31].

Both CAMs and ABMs benefit intrinsic capacities giving
modeller the formal elements allowing them to describe with
much realism numerous phenomena in reality by expressing
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TABLE I: Main ABM Parameters.

Param. Name Comments
S Surface area Number of cells.
N0 Init. population Number of agents.
α0 Init. contamination % of Si and Sa agents at t = 0,

distributed according β.
β Asymptomatic-rate % of agents don’t experience any

symptoms after becoming exposed.
The rate of asymptomatic infections
could be as high as 81% [37].

γ Mortality rate % Mort. following infection [38].
χ Immune period Up to 8 months after infection [39].
δ Infect.-period Range 1-20 days, see [40].
φ Transmission-rate The threshold at which the viral load

in the environment infects the agent.
η Max. mobility radius Used to calculate the agent moving

according to the value of its κ mobility.
µ Inf.-r.-asymptomatic % of asymptomatic finally becoming

infected. A small fraction of
asymptomatic persons may eventually
develop symptoms, see [41].

ν Surviving-factor % of viral-load not surviving in
the environment. This parameter
is used to calculate the decrease
of the viral load in a cell
of the environment at each
time step, see for estimation [42].

π K-virus-growth Impact of the agent on the increase
of the viral load in a cell.

θ Min-viral-Load Minimum viral load deposited
in a unit of space (cell).

ρ Vacc.-coverage Initial vaccine coverage
of the population.

transition rules that can be formulated under very simple math-
ematical bases. The scientific literature praises indeed in this
regard the good performances of these two model types in gen-
eral. Furthermore, hardware evolutions also have significantly
increased the interest for this kind of modelling, in particular in
terms of performances, with parallel and distributed computing
evolutions [32]–[35]. However, in numerous works, that the
ABMs are limited in terms of performances when we have
to model a propagation phenomenon, and we’ll prefer in this
case to use a CAM [36].

III. CONCEPTUAL MODELLING

A. Model description

Let an agent an, with n = {1, 2, ..., L}, representing one
individual agent moving on a c(i, j) cell of the CAM’s square
lattice N = L × L of side L. Each cell owns a viral load
QV L(i, j) which represents the quantity of virus. The higher
the viral load, the higher the rate of viral replication, which
indicates a more rapid progression of the disease. Agent an
belongs to the population size N and it can have one of the
six possibles states: Sn ∈ {Ss, Se, Sa, Si, Sd, Sm}. If Sn =
Ss (Safe), the agent is not exposed to the pathogen, i.e. is
susceptible to be infected with COVID-19. If Sn = Sk, with
k = e, a, the agent is in Exposed or Asymptomatic state to
the virus that causes COVID-19, but it is not sick. If Sn = Si

(Infected), the agent has active COVID-19. Finally, if Sn =
Sk, with k = d,m the agent is either dead (Dead) or immune
(Immune). The agents may undergo probabilistic transitions
between the considered health states . The main parameters
that drive these δ agent’s transitions are summarized in table
I.

In this paper, we assume that cured agents are replaced
in the environment by safe agents to mimic the recruitment

rate used in Ordinary Differential Equations (ODE) models
as mentioned in [11].

Fig. 5: Schematic representation of an agent’s state transition.

In the following, we describe the state transition rules
and the dynamics of agent interactions. The transitions rules
allowed and their respective values are illustrated in Fig. 7.

B. δ1 - Exposition of susceptible agents

Agents in Ss state are exposed to the viral-load QV L(i, j)
of the underlying cell.
• δ1(Ss) → Se: an agent in the Ss changes to the Se

exposed state if the quantity of viral-load QV L(i, j) in
the underlying cell is upper to the φ transmission-rate.

C. δ2 - Contagion of exposed agents

Agents that are exposed in Se state changes to Sa or Si

states. These latter develop symptoms.
• δ2(Se) → Sa: the local probability Pa of an agent in

state Se to become asymptomatic Sa is given by: Pa =
1 − βNi , where β is the asymptomatic-rate, and Ni is
the number of infected or asymptomatic agents in the
neighboring cells of the CAM.

• δ2(Se) → Si: the Si infected agents are the others
remaining agents of the set; those who did not become
asymptomatic.

D. δ3 - Contagion of asymptomatic agents

Agents that are asymptomatic in Sa state changes to Si or
Sm states, or stay asymptomatic Sa.
• δ3(Sa)→ Si: the µ infection-rate determines the number

of asymptomatic agents becoming infected (N ′i ), as:
N ′i = µ × Na with Na the number of asymptomatic
agents. An infected agent loss its mobility;

• δ3(Sa)→ Sm: the Sm iMmune state of an asymptomatic
agent is acquired after χ days (immune-period-agt).

E. δ4 - Infected agents evolution

Agents that are infected (Si) changes to Sd or Sm states.
• δ4(Si) → Sd: dead agents are deduced from the γ

mortality rate parameter has a percentage of the infected
agents (Si);
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• δ4(Si)→ Sm: if the δ infectious period is over, the agent
has become immune. The immunity linearly decreases at
each time step.

F. δ5 - Immunity of agents

• δ5(Sm)→ Ss: after the χ immune period, the agent loses
immunity and recovers the safe status Ss.

G. Cell contamination

It is assumed that the viral load in a cell of the CAM follows
the logistic growth law in discrete time (Verhulst model [43]),
such that:

qt+1 = π × qt (1− qt) (1)

where, qt is the amount of virus particles at time t; π is the
maximum amount of virus particles allowed in a unit of space
(cell).

IV. COMPUTATIONAL MODELLING

A. NetLogo simulation

With the increasing evolution of performances related to
computer hardware and with the emergence of numerous MAS
generic simulation environments as Swarm [44], Repast [45],
MASON [46] or whether NetLogo [17], [47], just to name the
most famous, CAM and ABM benefit an increasing renewed
interest. All these SMA simulation environments offer an
integrated graphical user interface, ergonomic and easy to
use, dedicated to the implementation of the executable model.
They are very efficient and they gather every day a larger
and larger community of modellers. In this work, we have
made the choice to use the NetLogo modelling and simulation
environment [48] which is based on the use of a generic
design pattern easily accessible for modellers whichever their
disciplinary field. The latter undeniably constitutes a MAS
simulation environment that is appropriate for interdisciplinary
simulation projects [26]. The Fig. 6 is a screenshot of the
model in NetLogo.

Fig. 6: Screenshot of the model in NetLogo dedicated to
simulation experiment parameterisation.

B. Experiments

In this section we verify the capacity of the model to
simulate the epidemic phenomenon of COVID-19 in Corsica.
Corsica is the fourth largest island in the Mediterranean with
an area of 8.722km2. It has 350,273 inhabitants in 2021
according to INSEE estimates (39 inhabitants per square KM).
Its low demography makes the island the least populated
territory in France. An epidemic cluster of the delta variant was
declared on July 9, 2021. Since the evolution of the epidemic
of COVID-19 in the island is particularly worrying. In this
experiment, we try to estimate this evolution.

1) Initial conditions and simulation loop: The number of
cells and agents are set to correspond to the population density
of Corsica. At time t = 0, agents in states Ss, Se, Sa, Si and
Sm are instantiated from the NetLogo interface settings and
constitute the initial global state S0 of the simulation. They
are randomly distributed on the L × L lattice. These agents
perform the state transitions δ synchronously at each time step
and then randomly move in the environment according to their
mobility attribute. The simulation algorithm is summarized on
Fig. 7.

Fig. 7: Simulation algorithm.

Fig. 8 is an illustration of the spatial distribution of agents
over time - An example of four snapshots of the lattice for
t = 7, t = 14, t = 21 and t = 28 days are presented.

2) Calibration: In order to calibrate the model we fit the
parameters from the July data obtained from the online tool
COVID-Tracker (Dashboard Regions) [49]. The incidence rate
(real data) to date and the simulated incidence rates per
100,000 population (model outputs) are shown in Fig. 9.

3) Validation: In this section, we use our ABM to estimate
the evolution of the pandemic in Corsica in the absence of
health restrictions for different types of vaccine coverage.
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(a) t=7. (b) t=14.

(c) t=21. (d) t=28.

Fig. 8: Computer simulation of the COVID-19 model for a
3.105 agents population randomly distributed in 110 × 110
space with a 1.10−2% contamination rate. Each color repre-
sents one state: white, Ss;yellow, Se;orange, Sa;red, Si;blue,
Sm.

Fig. 9: Validation of the model. The red curve represents the
real incidence rates, the blue curve represents the simulated
incidence rates. The blue curve nicely follows the red curve -
July 2021 period.

The French government is counting on the reinforcement of
vaccination to try to curb the resurgence of the COVID-19 due

TABLE II: Vaccination Coverage.

Experiment Value Comment

Scenario 1 57.2% Reference benchmark on August 4th.

Scenario 2 90.0% Expected vaccine coverage to
achieve vaccine immunity.

Scenario 3 0% Group Immunity Policy.

Scenario 4 25.3% Low vaccination coverage
as of May 27.

to the Delta variant. In this context, health Minister Olivier
Véran hopes France will fully vaccinate more than 50 million
people by the end of August. In this paper, we simulate
the effects of the French vaccination policy in Corsica. For
that, we simulate the different scenarios in Table II. The four
scenarios proposed allow us to explore the conditions under
which immunity can be achieved in a closed space such as
Corsica. The benchmark experiment (scenario 1) corresponds
to the real situation until the day of writing this paper, it
corresponds to the current vaccine coverage. The common
parameters to all experiments performed are detailed in Table
III.

TABLE III: Experiments - Common model parameters.

Parameter Value Comment

S 110× 110 Cells

N0 3.55 Agents

α0 2.0−5 This value is estimated
on August 2nd with the
CovidTracker tool [49].

β 81%

γ 4.5−5

χ 240 Days.

δ 8 Days.

φ 1.0−4

η 1 Moore neighbour.

µ 0.5

ν 1.0−2

π 2.10

θ 1.0−4

ρ cf. Table Depends on the simulation experiment.

4) Comments and discussion: Scenario 1 (blue curve)
corresponding to the current situation in Corsica, suggests
the peak of viral load of the fourth wave around August
15th. From the end of August to the end of September the
epidemic slowly decreases with an estimated incidence rate
between 100 and 200. Scenario 2 (green curve) assumes 90%
vaccination coverage in Corsica. These simulations clearly
show that vaccination is the best solution to reach collective
immunity in the short term. The incidence rate does not exceed
a few cases and the incidence curve is almost flat over the
three months simulated. Scenario 3 (red curve) corresponds
to the herd immunity policy. In this experiment we assume
that the vaccine would no longer be effective against Delta
variant infections. In this case the incidence rate relative to the
population reaches a peak never known and never recorded
in Corsica. The authorities do quickly implement sanitary
restrictions and Corsica risks the occurrence of a humanitarian
emergency situation. Scenario 4 (orange curve) assumes a low
vaccination coverage, identical to that in May. This experience
shows that the vaccination coverage of the population in
May was not sufficient to counter the epidemic in Corsica
if the Delta variant had appeared at that time. The simulation
predictions of the incidence rates for the different scenarios in

Authorized licensed use limited to: Carleton University. Downloaded on February 01,2022 at 13:41:26 UTC from IEEE Xplore.  Restrictions apply. 



Table II are graphically shown in Fig. 10.

Fig. 10: Simulation experiments - July-September 2021 period.
Vaccination Coverage (VC): the curves correspond to the
different simulation scenarios described in Table II. Scenario 1
- blue curve, VC 57.2%; scenario 2 - green curve, VC 90.0%;
scenario 3 - red curve, VC 0.0%; scenario 4 - orange curve,
VC 25.3%.

V. CONCLUSION AND RESEARCH PERSPECTIVES

The present work proposes an Agent-Based Model (ABM)
that simulates the epidemiological effects of COVID-19 in
Corsica. It tries to apprehend the complexity of the COVID-
19 pandemic phenomenon’s dynamics within a limited space
without being too simplistic. The simulations performed prove
that it is possible to simulate an epidemiological phenomenon
using an ABM. They clearly prove that vaccination is an
indispensable individual and collective means of prevention
to protect against COVID-19. The results presented are pre-
liminary and will need to be consolidated through numerous
replications. The values of the parameters have a strong
influence on the results, so a sensitivity analysis of the latter
will have to be performed in a future work. We will also
consider social constraints in a future version of the model.
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