
at–Automatisierungstechnik 2023; 71(6): 423–442

Methods

Daniel Lehner*, Sabine Sint, Martin Eisenberg and Manuel Wimmer

A pattern catalog for augmenting Digital Twin
models with behavior

Ein Musterkatalog zur Erweiterung von digitalen Zwillingsmodellen um Verhaltenssichten

https://doi.org/10.1515/auto-2022-0144

Received November 5, 2022; accepted March 20, 2023

Abstract: Digital Twins are emerging as a solution to build

and extend existing software systems to make better use

of data produced by physical systems. For supporting the

development of Digital Twins, several software vendors are

offering dedicated tool support, often referred to as Digital

Twin platforms. The modeling capabilities of these plat-

forms are mostly concerned with structural viewpoints, i.e.,

providing an overview of available components including

their current and historical sensor values. However, behav-

ioral viewpoints did not yet receivemuch attention on these

platforms. As behavioral models are often used during the

design processes, e.g., for simulation and synthesis, it would

be beneficial for having them included in Digital Twin plat-

forms, e.g., for reasoning on the set of possible next actions

or for checking the execution history to perform runtime

validation. In this paper, we present a catalog of modeling

patterns for augmenting Digital Twin models with behav-

ioral models and their corresponding runtime information

without requiring any extension of the code bases of Digital

Twin platforms. We demonstrate the presented modeling

patterns by applying them to the Digital Twin platform

offered by Microsoft, in an additive manufacturing use case

of a 3D printer in a production line.

Keywords: behavior modeling; Digital Twins; language

engineering; model-driven engineering; modeling patterns.

*Corresponding author: Daniel Lehner, JKU Linz Christian Doppler Lab-

oratory for Model-Integrated Smart Production (CDL-MINT), Department

of Business Informatics – Software Engineering, Johannes Kepler Univer-

sity Linz, Altenberger Straße 69, 4040 Linz, Austria,

E-mail: daniel.lehner@jku.at

Sabine Sint,Martin Eisenberg and ManuelWimmer, JKU Linz Christian

Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT),

Department of Business Informatics – Software Engineering, Johannes

Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria,

E-mail: sabine.sint@jku.at (S. Sint), martin.eisenberg@jku.at

(M. Eisenberg), manuel.wimmer@jku.at (M. Wimmer)

Zusammenfassung: Digitale Zwillinge entwickeln sich zu

einer Lösung für den Aufbau und die Erweiterung beste-

hender Softwaresysteme, um die von physischen Syste-

men erzeugten Daten besser nutzen zu können. Um ihre

Entwicklung zu unterstützen, bieten mehrere Softwarean-

bieter spezielle Tools an, die oft als Digital Twin-Plattformen

bezeichnet werden. Die Modellierungsmöglichkeiten dieser

Plattformen beziehen sich hauptsächlich auf strukturelle

Gesichtspunkte, d.h., sie bieten einen Überblick über die

verfügbaren Komponenten einschließlich ihrer aktuellen

undhistorischen Sensorwerte. DaVerhaltensmodelle häufig

während des Entwurfsprozesses verwendet werden, z. B.

für Simulationen, wäre es von Vorteil, wenn sie in Digital

Twin-Plattformen enthalten wären, z. B. um die möglichen

nächsten Aktionen zu bestimmen oder die Ausführung-

shistorie zu überprüfen, um eine Laufzeitvalidierung

durchzuführen. In diesem Beitrag stellen wir einen Kat-

alog von Modellierungsmustern vor, mit denen die Mod-

elle des Digitalen Zwillings um Verhaltensmodelle und

die entsprechenden Laufzeitinformationen erweitert wer-

den können, ohne dass eine Erweiterung der Codebasen

erforderlich ist. Wir demonstrieren die Muster anhand

eines 3D Drucker Anwendungsfalls, indem wir sie auf die

von Microsoft angebotene DT-Plattform anwenden.

Schlagwörter: Verhaltensmodellierung; Digitale Zwillinge;

Language Engineering; Model-Driven Engineering; Model-

lierungsmuster.

1 Introduction

Digital Twins (DTs) are becoming important ingredients in

realizing software-defined manufacturing [1]. Based on a

commonly used definition that was initially proposed by

Kritzinger et al. [2], the DT provides a virtual representa-

tion of the physical system that enables bi-directional syn-

chronization between it and its physical counterpart. DTs

promise to support a multitude of tasks of the whole system

life-cycle [3, 4]. In this context, more and more software

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2022-0144
mailto:daniel.lehner@jku.at
mailto:sabine.sint@jku.at
mailto:martin.eisenberg@jku.at
mailto:manuel.wimmer@jku.at

424 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

development companies provide a set of tools, also referred

to as DT platforms, to automate common DT creation and

maintenance tasks.

Current DT platforms offer dedicated support for struc-

tural modeling aspects, such as defining components and

topologies of systems to represent current and historical

runtime states of systems. However, behavioral aspects are

most often a second concern [5], although these behavioral

aspects are usually required for modeling systems, espe-

cially when modeling DTs [6]. Such behavioral models are

used during the design and generation processes, e.g., for

simulation and synthesis, and thus also available in current

system modeling languages, such as SysML1 or Automa-

tionML.2 Enabling this type of modeling in current DT plat-

forms as well would allow reflection on the runtime state of

systems from behavioral viewpoints. As a result, amore sys-

tematic analysis of generated runtime data is achieved, e.g.,

comparing simulation traces with actual execution traces,

to mention just one possible use case.

Therefore, the research goal of this paper is to find

means to augment existing DT models with behavior with-

out requiring heavyweight extensions of such platforms.

With the term heavyweight extensions, we mean the neces-

sity of changing the code base of platforms for introducing

additional modeling capabilities. Instead, we are interested

in representing behavioral models directly using the cur-

rent modeling capabilities of existing platforms. By finding

proper structures, structural DTmodels are augmentedwith

behavior. Such augmentation also includes a representa-

tion of the historical traces of behavior execution, i.e., the

runtime of the system. In this paper, we focus on discrete

behavior models and leave continuous ones as subject to

future work.

To achieve this research goal, we present a model-

ing pattern catalog for explicating how behavioral models,

including their runtime traces, can be represented in DT

platformswithout having to rely onheavyweight extensions

of the code bases of these platforms. This enables us to lever-

age provided features of these platforms, e.g., scalability

while reusing information from behavioral models which

may be already in use in the early engineering process.

We demonstrate the modeling pattern catalog by its

application to a 3Dprinter use case. In particular,we demon-

strate how to realize the presented patterns on top of the

Microsoft DT platform.3 The results of this study indicate

that the presented patterns can be realized to represent

behavioral models with their runtime traces in current DT

1 https://sysml.org.

2 https://www.automationml.org.

3 https://azure.microsoft.com/products/digital-twins.

platforms which already provide certain structural model-

ing capabilities.

By proposing the pattern catalog anddemonstrating the

realization of the patterns in the Microsoft DT platform, this

work contributes to theoretical results about patterns for

software language engineering, practical tooling results for

the Microsoft DT platform, and takeaways for researchers,

tool builders, and platform operators.

The remainder of this paper is structured as follows.

In Section 2, we explain the background of this work, i.e.,

Model-Driven Engineering and DTs. Section 3 introduces

a running example of a 3D printer used throughout the

paper. Section 4 introduces the different modeling patterns

that allow extending current DT platforms having a fixed

structural modeling language with behavioral viewpoints.

In Section 5, we demonstrate the usage of the presented

patterns for theMicrosoft DT platform through our running

example. Section 6 provides a critical discussion of the pre-

sented work. Finally, in Section 7, we present and discuss

related work, before we conclude the paper with an outlook

on future work in Section 8.

2 Background

This section summarizes relevant background information

for this work. We briefly outline Model-Driven Engineering

(MDE), Digital Twins, and the combination of both.

2.1 Model-Driven Engineering

In Model-Driven Engineering (MDE), models are consid-

ered as the central artifacts in the engineering process [7].

Engineering problems are attempted to be solved by using

formal models, i.e., machine-readable and processable rep-

resentations, which allow for different viewpoints on the

systems. By this, the abstraction power of models is used to

cope with the increasing complexity of current systems [7,

8] which is, of course, also of interest for software-defined

manufacturing. To be able to represent the observed reality

in formal models, dedicated modeling languages, such as

the Unified Modeling Language (UML4) or Domain-Specific

Modeling Languages (DSMLs) are used. In this context, a

four-layer metamodeling stack (M0 – M3) [7, 9] is often

used for defining how metalanguages, languages, models,

and runtime traces are related to each other. Besides, there

exist approaches for multi-level modeling [10], where one

goal is to reduce complexity in domain models by having

4 http://uml.org.

https://sysml.org
https://www.automationml.org
https://azure.microsoft.com/products/digital-twins
http://uml.org

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 425

several instantiation levels and where a level can influence

elements in more than just the level immediately below

it [11–13]. For the work presented in this paper, we are

focusing on the metamodeling stack which is illustrated in

Figure 1.

At the M3 layer, meta-metamodels define meta-

languages (Meta-Language (ML)), which specify the

constructs for languages and their relations at the next

layer, the so-called M2 layer. At this layer, metamodels

define languages (Language (L)), which describe the

formalisms for models/domain models (Domain Model
(DM)) one layer lower at M1. Domain models specify the

general concepts within the given domain to finally

describe the system and Runtime Trace (RT) at the M0

layer. In Figure 1, we define a Structural Language (SL)
and a Behavioral Language (BL) based on the Meta Object

Facility (MOF) for defining the concepts for Structural

Models (SM) and Behavioral Models (BM). These SM and BM

are instances of the belonging SL and BL and are associated

with each other. At the M0 layer, the Structural Trace (ST)
and the Behavioral Trace (BT) represent the elements and
their interactions during system runtime.

2.2 Digital Twins and Digital Twin platforms

DTs are software systems comprising data, models, and

services to interact with physical systems for a specific

purpose [2, 14, 15]. To enable the efficient and system-

atic development of DTs, various vendors provide dedi-

cated tool support, the so-called Digital Twin platforms

[16]. Examples include Microsoft Azure,5 and Amazon Web

BT Behavioral Trace

System

Model

Meta-
Metamodel

Metamodel

MOF

SL BL

SM BM

ST BT

«instanceOf»«associa on»
Legend
MOF Meta Object Facility
SL Structural Language
BL Behavioral Language

M3

M2

M1

M0
Run me
Trace (RT)

Domain Model
(DM)

Meta-
Language (ML)

Language (L)

SM Structural Model
BM Behavioral Model
ST Structural Trace

Figure 1: Four-layer metamodeling stack.

5 IoTHub: https://azure.microsoft.com/services/iot-hub/, DT service:

https://azure.microsoft.com/services/digital-twins/, and TSI database:

https://azure.microsoft.com/services.

Services,6 or tool platforms, such as Eclipse.7 These plat-

forms provide predefined services for establishing a bi-

directional connection with physical assets to collect data

via sensors and control actuators. They also provide the

ability to connect these assets to tools, such as time series

databases or visualization dashboards. The services help

to reduce the number of repetitive tasks, while also sup-

porting certain quality properties such as scalability and

interoperability [16]. One common feature of these different

platforms is that they provide dedicated modeling support

for the creation of DTs. An investigation of their model-

ing capabilities [5] shows that they support a variety of

commonalities.

2.3 MDE for Digital Twins

By applying MDE to DTs, the strengths of both fields can

be combined. Figure 2 shows an architecture for this com-

bination. At the Modeling Layer the structural and behav-
ioral models (SM and BM) are modeled. They conform to

their structural and behavioral language (SL and BL). At
the Realization Layer the actual System and its digi-

tal counterpart (Digital Twin) are located. Based on the
machine-readable models and available transformations,

the system or/and the DT can be automatically generated.

In previous work, we have shown this transformation for

structural information incorporated in SM, such as Automa-

tionML models [17] or UML class diagrams [5]. This struc-

tural information comprises information on which compo-

nents are running in a system, which properties can be

sensed, and particular values of these properties at a given

point in time.

M
od

el
in

g
La

ye
r

Re
al

iz
a

on
La

ye
r

DT Pla orm

SL BL

SM BM

System
Digital Twin

«instanceOf»«associa on»

Legend
SL Structural Language
BL Behavioral Language
SM Structural Model
BM Behavioral Model

Data exchange
Genera on

Figure 2: MDE for DTs: From design models to Digital Twin artefacts.

6 AWS IoT Greengrass https://docs.aws.amazon.com/greengrass/v2/

developerguide/what-is-iot-greengrass.html.

7 Eclipse Hono: https://www.eclipse.org/hono/, Vorto: https://www

.eclipse.org/vorto/, and Ditto: https://www.eclipse.org/ditto/.

https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/digital-twins/
https://azure.microsoft.com/services
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://www.eclipse.org/hono/
https://www.eclipse.org/vorto/
https://www.eclipse.org/vorto/
https://www.eclipse.org/ditto/

426 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

3 Running example: 3D printer

As a running example for this paper, we consider a produc-

tion line where additive manufacturing is used to improve

flexibility, support complex geometries, and simplify fabri-

cation. As part of this production line, 3D printers are used

for printing different items needed for the final product. In

this context, we will focus on the 3D printer and identify

open challenges at the end of this section.

3.1 3D printer models

Figure 3a shows a simplified structure for the used

3D printers in terms of a UML class diagram. A

3DPrinter has a unique id, a temperature value temp
showing the current processing temperature of the printer,

and the three different axes x, y, z to indicate the current

position of the print head. Besides these attributes, the 3D

printer can process signals as input (receive), such as

connect, sendCADFile, print, pause, stop, and reset
and as output (send), such as finished for indicating the
end of a print job and error to indicate errors.

In addition to the structural information summarized

in the class diagram, the 3D printer can take different states

during its operation. Figure 3b shows the behavioral model

of the 3D printer as a UML state machine. As starting point,

it will be in the state StandBy waiting for any connection.
After connecting a device to the printer, the statewill change

StandBy

Connected

Prin ng

connect

finished

Opera onal

sendCADFile

PausePrin ng

pauseprint

print

CancelPrin ng
stop

finished

Error

reset error

3DPrinter

id: String [1..1]
temp: Float [1..1]
x: Float[1..1]
y: Float[1..1]
z: Float[1..1]

«send»
«signal» finished
«signal» error

«receive»
«signal» connect
«signal» sendCADFile
«signal» print
«signal» pause
«signal» stop
«signal» reset

(a) (b)

Figure 3: Structural and behavioral views of a 3D printer. Please note

that we use a custom shortcut notation concerning sending and

receiving signals. (a) Structural Model as Class Diagram, (b) Behavioral

Model as State Diagram.

to Connected and the printer is ready to receive a print

file. After receiving the file to print, the 3D printer is in

the state Operational, does some preheating, and then is

ready to print. When it starts printing, the operational state

will be Printing. During printing, there is the opportunity
to pause the printing (PausePrinting) and restart it again
or cancel the print job (CancelPrinting). When the print

job is finished, the 3D printer will go back to the StandBy
state. If an error occurs at any time, the printer changes

to the state Error. After resetting it, it will change back to
StandBy.

Based on the defined structure and behavior in the

models, properties, and states of the 3D printer can change

during runtime. Figure 4 shows an excerpt of a possible

runtime execution trace. From snapshot t1 to t2 temperature

(from 35 to 80), state (from operational to printing), and

y-position (from 0 to 1) change. From snapshot t2 to t3 the

change is no longer linear but depends on the signal being

processed. Depending on the signal, the printer changes

to another state (StandBy or PausePrinting) with other
specified values for the properties. Snapshot t3 does not

show a view produced by execution but shows oppor-

tunities that could be analyzed by using state machines

to reason about the potential next states, e.g., in what-if

analysis.

This runtime execution trace can be divided into one

structural and one behavioral trace. In the structural exe-

cution trace, the value change of the properties of the class

are propagated, i.e., how the position and the temperature

change (Figure 4, change of tempand y values). In the behav-

ioral execution trace, behavior is observed over time. For

instance, the status of the 3D printer changes from oper-

ational to printing and then to standby or pause printing

(Figure 4). Based on the behavior and associated state, the

system can respond differently to interactions.

… …

t1 t2 t3t0

print

Opera onal Prin ng

p1: 3DPrinter

id: Printer1
temp: 180
x: 0
y: 0
z: 0

p1: 3DPrinter

id: Printer1
temp: 200
x: 0
y: 1
z: 0

t4

p1: 3DPrinter

id: Printer1
temp: 80
x: 0
y: 0
z: 0

p1: 3DPrinter

id: Printer1
temp: 180
x: 0
y: 1
z: 0

StandBy

PausePrin ng

Figure 4: Excerpt of a runtime execution trace of the 3D printer.

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 427

Class

Property

name : String
type : Signal_Enum

Signal

receive
send

«enumera on»
Signal_Enum

pkg_SL

StateMachine

trigger : String

fire() : void

Transi on

pkg_BL

name : String
isIni al : Boolean
isAc ve : Boolean

State source

target

0..* 0..*

1..1

1..1

0..* 0..*

0..1

name : String

name : String

Figure 5: Example metamodels of a simplified

structural and behavioral language.

The presented models are expressed using a struc-

tural and behavioral language defined at the metamodel-

ing layer. For this purpose, Figure 5 shows a simplified

example based on UML class diagrams and state machines.

A Class can have properties (Property) and Signals,
which could be of type receive or send. A class can ref-

erence a StateMachine. This state machine consists of

States and Transitions. Each transition has a trigger, a
defined source and target state, and an operation to indi-
cate if the transition fires (fire()). States have a name and
different booleans which indicate if the state is the initial or

final state or if it is active or not. In the representation of

the running example, we used a composite state (Figure 3b)

to simplify the syntactical view on the state machine where

every state can switch to an error state. However, this com-

posite state can be flattened/reduced (i.e., from each state

there is a transition to the error state), therefore we do

not consider it further in our approach. Please note that in

Figure 5, both the design and runtime views for the models

are shown as is required for executing the models, e.g.,

using simulations [18]. Thus, it is essential that alsomethods,

such as fire(), and boolean attributes, such as is Active, are

modeled.

3.2 3D printer Digital Twin

Based on the defined language and the structural model,

the system can also be realized for a DT platform. Listing 1

shows an excerpt of the concrete syntax representation of

the 3D printer interface for the Azure DT platform. In this

listing, the different properties and signals of the printer

(cf. Figure 3a) are expressed in the Azure Digital Twin

Definition Language (DTDL) which is based on the JSON-LD8

syntax.

8 https://www.w3.org/TR/json-ld.

Listing 1 Excerpt of the 3D Printer interface in Azure DTDL.

The listing shows the structural representation of the

system, but the mapping of behavioral models is still an

open issue, which is also highlighted in the following two

challenges.

– Challenge 1: Currently, DT platform languages neither

provide native support for behavioral descriptions nor

do they have the ability for extending the offered mod-

eling support. How can we still use behavioral view-

points for DTs without heavyweight extensions, i.e.,

changes to the code base, of the platforms?

– Challenge 2: There is no representation of histories of

such behavioral descriptions since there is not yet a

behavioral viewpoint in DT platforms. If wewould have

behavioral viewpoints in DT platforms, how can they be

utilized for historical information similar to what was

done for structural models?

In the next section, we tackle these two challenges by intro-

ducing dedicated patterns to add behavioral viewpoints to

https://www.w3.org/TR/json-ld

428 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

DT models which also allow for representing the history of

a system using these new viewpoints.

4 A pattern catalog for

representing behavioral models

in Digital Twin platforms

In this section, we present a catalog of patterns, which can

be employed for overcoming the challenges mentioned in

the previous section. In particular, we present patterns for

extending the capabilities of Digital Twin Modeling Lan-

guages (DTMLs) as offered by existing DT platforms by

reducing three meta-modeling levels into two levels. Fur-

thermore, we show how to represent histories of behav-

ior by exploiting different temporal modeling patterns. The

concrete realization of the patterns is shown in Section 5 for

Microsoft Azure.

4.1 Augmenting Digital Twin models with
behavior

As DTMLs are currently neither defined by dedicated meta-

languages nor providemulti-level modeling techniques that

allow explicit language extensions [11–13], they, unfortu-

nately, cannot be extended at the language level. This would

indeed break compatibility with the supporting platform

(cf. Challenge 1 as discussed before). Therefore, in order

to still be in the position to extend these languages with

behavioral viewpoints, we need to perform these extensions

at a lower level of themeta-modeling stack, i.e., on levels M0

and M1, since M2 is fixed. For this purpose, we propose two

patterns that serve as a blueprint for augmenting DTmodels

with behavior descriptions as visualized in Figure 6. It is

important to consider that due to the reduction ofmetamod-

eling layers, we do not keep the strict separation between

levels as shown in Figure 1 in the background, but have to

use them in a more flexible way.

The application of these patterns enables the model-

ing of behavioral aspects in combination with structural

aspects, leveraging the existing infrastructure (i.e., model-

ing tools, APIs, code generators, and runtime environments)

already offered by DT platforms. The main idea of the pat-

terns is that the behavioral aspects, including the language

to express these aspects, are defined as instantiations of

the already available modeling language for the structural

aspects – in our setting, DTML. By this, we aim to com-

pensate for the one missing level of instantiation. The two

proposed patterns offer two alternatives on how to augment

behavior to DT models: one is substituting the instanceOf

relationships with associations (the behavioral model (BM)
is referring to language elements (BL) residing on the same
level) while the other is merging the artifacts of two lev-

els (BM and its traces (BT)) into one artifact on one level

(BM + BT) which is a direct instantiation of BL.
As a prerequisite to augment current DT models with

behavior for both patterns, we introduce SL+ (Figure 6),

a base that is used by structural models in our blueprint

as a link to behavioral aspects. In particular, all entities of

the structural model (SM) which should be equipped with

behavior descriptions should inherit from a particular base

class.

The description of the individual patterns, the trade-

offs between these two alternatives, their implementation,

and their application are described in the following based

on thewell-known pattern description template [19]. For the

implementation, we use the well-established UML notation

beforemoving on tomore specific implementations for a DT

platform in Section 5.

«instanceOf»«associa on»

Legend
DTML Digital Twin Modeling Language
SL Structural Language
SL+ Base for augmen ng structural

elements with behavior
BL Behavioral Language
SM Structural Model
BM Behavioral Model
ST Structural Trace
BT Behavioral Trace

M2

M1

M0

DTML (SL)

SL+ BL

SM BM

ST BT BM+BT

Closed behavior model pa ern

Open behavior model pa ern

Shared pa ern elements

«inheritance»

Figure 6: Macro-view on open versus closed behavior model patterns.

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 429

4.1.1 Closed behavior model pattern

Purpose: The Closed Behavior Model Pattern has the pur-

pose of describing the behavior of a closed system, meaning

that details on all model elements are already known at

design time, and defined as a schema for particular object

types. At runtime, this pattern ensures that the behavioral

model elements are instantiated only in a particular way

based on this defined behavioral schema.

Structure: In this pattern (cf. Figure 6), the behavioral

model (BM) is created as an instantiation of the DTML, and
in addition, an association relation is used to refer to the

elements of the behavioral language (BL). This relation sub-
stitutes the instanceOf relation as shown in Figure 1. The

structuralmodel (SM) has an associationwith the behavioral
model detailing the behavior of the corresponding struc-

tural entities. In the behavioral model, behavioral language

is used to specify constraints givenby the particular domain.

These constraints are used to guide the development of

the behavioral trace (BT) which is a direct instance of the

behavioral model.

Consequences: In this pattern, the behavioral language

serves as semantic meta-information of the behavioral

traces, as these traces are instantiated directly from the

behavioral model. Explicitly modeling domain-specific con-

straints in the behavioral model requires some modeling

effort, but enables the validation of these constraints on the

behavioral trace. However, this strict instantiation comes

with reduced flexibility on M0, e.g., to add new types of

behavioral traces. This is only possible by adapting the

model on M1.

Implementation: Figure 7 shows the implementa-

tion of this pattern. A given DomainBehavior is linked

to the respective Behavior element via an association.

This association is annotated as unsettable, meaning that

«abstract»
Structure

DomainStructure

«abstract»
Behavior

StructuralTrace1 DomainBehavior4StructuralTrace1

DomainBehavior

M0

M1

M2
En ty

«associa on»Legend«instanceOf» «inheritance»

{unse able}

Figure 7: Implementation of the closed behavior model pattern.

instantiations of this DomainBehavior on M0 (e.g., Domain-

Behavior4StructuralTrace1 in Figure 7) cannot use this asso-

ciation to link to a particular element on M0. Thus, this

association serves as semantic meta-information to refer to

the corresponding Behavior of the DomainBehavior used
to instantiate a particular behavioral trace. Structure and
Behavior are both abstract elements to ensure that traces
are instantiated only from the domain-specific parts, i.e.

DomainStructure and DomainBehavior, with the defined
constraints.

Instantiation on the running example: Instantiating the

implementation of this pattern to the running example

of this paper, leads to the elements as illustrated in

Figure 8. Based on the structural and behavioral languages

as described in Figure 5 (note that the fire() operation of

the transition in Figure 5 is represented as fire attribute in

Figure 7), the 3DPrinter contains an inheritance relation-

ship to Class and an outgoing association to the respec-

tive state machine describing the 3D Printer behavior (cf.

PrinterStateMachine in Figure 8). Figure 8 visualizes the
contents of this PrinterStateMachine using the example
of the states Operational and Printing, which are con-

nected via the transition Print. PrinterStateMachine,
Operational, Printing, and Print comprise unsettable
associations to the StateMachine, State, or Transition
that contain the respective meta-information on the lan-

guage level (i.e., attributes and associations). The domain-

specific definitions of these language elements define (i) fur-

ther restrictions on attributes (e.g., theisStart is initialized
with a value, which cannot be changed on M0, by mark-

ing the corresponding attributes as final), (ii) constraints

on associations (e.g., specify that the Operational can

only be linked to Printing via Print), and (iii) guidelines
(e.g., the name attribute of a State or Transition is not

defined within the elements of DomainBehavior as values
of attributes, but rather represented by the respective class

names such as Operational or Print). By this explicitmod-
eling of domain-specific constraints on M1, the structural

and behavioral dependencies on M0 can be controlled. It

results, for example, that the attribute isStart of the states
has not to be considered in the behavioral traces anymore.

4.1.2 Open behavior model pattern

Purpose: The purpose of the Open BehaviorModel Pattern is

the behavioral description of systems in which the behavior

of the systemmight be changed during runtime, i.e., systems

with open behavior. The behavior can be specified individ-

ually on the object level, but not on the type level.

Structure: In this pattern (Figure 6, white and dark

gray marked part of the macro view), the M1 level

430 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

«abstract»
Class

«abstract»
State

name: String
isStart: bool
isAc ve: bool

«abstract»
Transi on

name: String
fires: bool

«abstract»
StateMachine

Opera onal4Printer1

isStart: false
isAc ve: false

Prin ng4Printer1

isStart: false
isAc ve: false

fires: true

Print4Printer1

PrinterStateMachine

StateMachine4Printer1

Prin ng

isStart: bool = false {final}
isAc ve: bool

Print

fires: bool

Opera onal

isStart: bool = false {final}
isAc ve: bool

1..1

{unse able}

1..1 1..1

M0

M1

1..1

{unse able}

1..1

1..1

{unse able}

{unse able}

1..1

1..1

3DPrinter

id: String [1..1]
temp: Float [1..1]
x: Float[1..1]
y: Float[1..1]
z: Float[1..1]

Printer1

id: 1
temp: 45
x: 0
y: 1
z: 0

Text Meta-Informa on«associa on» Legend«instanceOf» «inheritance»

0..* 0..*

Figure 8: Closed behavior model pattern applied to the running example.

contains the information about the behavioral language

(BL), whereas the domain-specific details of the behavioral
model (BM) are merged with the behavioral traces (BT) on
the M0 level. Thus, the behavioral model and the behav-

ioral trace are both directly instantiated from thebehavioral

language.

Consequences: The lack of a dedicated DomainBehav-

ior description (cf. Section 4.1.1) in this pattern reduces

the initial modeling effort for describing a system on M1.

However, it increases the modeling effort on M0 as the

domain behavior needs to be introduced on this level. More-

over, the lack of domain-specific constraints on M1 does not

allow for the validation of correct instantiation for partic-

ular structural entity types and thus remains specific for

the given instances. Nevertheless, these missing constraints

increase the flexibility of the modeled behavior on M0, as

it can be changed without the need for any adaptations

on M1.

Implementation: The implementation of this pattern

is visualized in Figure 9. Here, the behavioral traces

are directly instantiated from the Behavior, requiring
the behavior to not be abstract. This means that the

correct modeling of domain-specific aspects (e.g., which

transitions can be connected to which states) needs to

be considered implicitly when modeling the behavioral

{abstract}
Structure

DomainStructure

Behavior

StructuralTrace1 Behavior4StructuralTrace1M0

M1

M2 En ty

«associa on»Legend«instanceOf» «inheritance»
Figure 9: Implementation of the open behavior model pattern.

traces (Behavior4StructuralTrace1) on M0. The struc-

tural trace (StructuralTrace1) is connected by an associa-
tion relation to this implicitly modeled domain behavior in

the behavior trace.

Instantiation on the running example: Applying this

pattern to the running example on M0, as visualized in

Figure 10, the particular Printer1 on M0 is connected

to its StateMachine4Printer1, which is instantiated

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 431

State Transi on

name: String
isStart: bool
isAc ve: bool

name: String
fires: bool

StateMachine

Opera onal4Printer1

name: Opera onal
isStart: false
isAc ve: false

Prin ng4Printer1

name: Prin ng
isStart: false
isAc ve: false

name: Print
fires: true

Print4Printer1

StateMachine4Printer1

M1

M0

«associa on»Legend«instanceOf» «inheritance»

1..1

1..1

{abstract}
Class

3DPrinter

id: String [1..1]
temp: Float [1..1]
x: Float[1..1]
y: Float[1..1]
z: Float[1..1]

Printer1

id: 1
temp: 45
x: 0
y: 1
z: 0

0..* 0..*

0..1

Figure 10: Open behavior model pattern applied to the running example.

directly from the StateMachine. In the same way,

Operational4Printer1, Printing4Printer1, and

Print4Printer1 are instantiated from State or

Transition of the behavioral language on M1. As a

result, there are no restrictions on how to link these

elements on M0. For instance, Printer1 may be also

connected to any other state machine, or Operational
could be linked via a transition to the StandBy state, even
though this is not reasonable semantically. In addition, the

isStart attribute needs to be set for each instantiation of

the individual states on M0. However, if the state machine

from Figure 10 is extended by, e.g., another state called

Scanning, this can easily be incorporated onM0 by creating
a new instance of State, without requiring any adaptations
on M1. The same applies to changes in the semantics of

the state machine, e.g., changing the start state of the state

machine from StandBy to Operational.

4.2 Representing behavioral traces in Digital
Twin platforms

With the patterns described above, we have provided

blueprints for augmenting DT models with behavior. How-

ever, although these patterns enable the representation of

behavior as behavioral traces for one particular point in

time (cf. Challenge 1), the history of these traces (cf. Chal-

lenge 2) is still an open question. In order to enable the

representation of historical traces, we propose two patterns

that can be used in addition to the open and closed behavior

model patterns.

4.2.1 Temporal annotation-based history pattern

Purpose: The purpose of the Temporal Annotation-Based

History Pattern is to represent historical execution traces of

behavioral descriptions of DTs, with a focus on scalability

concerning storage.

Structure: In this pattern, the used DTML has to be

equipped with temporal annotations [20, 21] which are

applicable for attributes of elements. In previous work, we

have shown that such annotations are commonly available

in DT platforms [5]. In case such annotations are not sup-

ported, Fowler [22] shows alternatives that can be used in

order to implement this kind of support. The application

of temporal annotations on the language and model level

can be used in order to preserve the history of attribute

values (cf. Model (incl. TA) in Figure 11). In the runtime
traces, temporal annotated attributes contain beside the

currentmodel trace (cT) also the historical model trace (hT),
whereas the non-annotated attributes simply contain the

current attribute value at the current timestamp (cT). The
historical model trace consists of a list of timestamps and

associated attribute values.

432 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

DTML

Model

cT

hT

M2

M1

M0 «associa on»

Legend
DTML Digital Twin Modeling Language
TA Temporal Annota on
T Trace
cT current Model Trace
hT historical Model Trace

Temporal annota on-based
history pa ern

«instanceOf»T

(incl. TA concept)

(incl. TA)

Figure 11: Structure of the temporal annotation-based history pattern.

Consequences: Applying this pattern leads to scalabil-

ity with respect to storing models and performing certain

queries, as the historical traces can be persisted in dedicated

databases, such as time-series database (e.g., shown in [17,

23]). It is however more difficult to reproduce complete

historical states from these traces, as they only contain the

attribute values in a fragmented way, but not the system

structure at a given point in time. Thus queries are limited

to historical traces without reproducing the complete states

as snapshots.

Implementation: Implementing this pattern (cf.

Figure 12 for the pattern implementation for the closed

behavior model pattern) means that attributes whose

history should be traced on M0 have to be annotated

as temporal in the Behavior. The same is applied to

attributes of the DomainStructure. On M0, the respective

traces contain the current values of attributes that are

not annotated as temporal and a collection of historical

values of the temporal annotated attributes. These

implementation details apply to both the closed and

open behavior model pattern. In the closed behavior

model pattern, the annotations are simply reused by the

DomainBehavior from the corresponding Behavior on

the language level, whereas in the open behavior model

pattern, the annotations are directly applied from the

Behavior to the behavior traces on M0.
Instantiation on the running example: When applying

this pattern to the running example, the isActive attribute
of the State and the fires attribute of the Transition
are annotated in the Behavior (please recall that the

fire() operation from Figure 5 is represented by the fire
attribute that is set to true every time the respective oper-

ation is called as we are in the observation setting which

produces only data-oriented views). Additionally, the temp
attribute of the 3DPrinter in the DomainStructure is

annotated as well. As a result, the structural and behavioral

traces on M0 contain a reference to the historical values for

these annotated elements (isActive, fires, temp).

4.2.2 Snapshot-based history pattern

Purpose: The Snapshot-Based History Pattern has the pur-

pose of representing historical execution traces of behav-

ioral descriptions of DTs in cases where temporal anno-

tations are not provided by DT platforms or the focus is

on querying and reasoning on full model states, and the

evolution of these states over time.

Structure: In this pattern (cf. Figure 13), snapshots (S)
(as already introduced before for model validation and

verification purposes, e.g., see [24, 25]) are integrated

into the modeling capabilities of DT platforms using the

{abstract}
Structure

DomainStructure

{abstract}
Behavior

StructuralTrace1 DomainBehavior4StructuralTrace1

M0

M1

M2

En ty

a ribute1: Type«temporal» a ribute2: Type

a ribute1: Type«temporal» a ribute2: Type

Timestamp: Value
Timestamp: Value

…

a ribute1: Value a ribute1: Value

Timestamp: Value
Timestamp: Value

…

DomainBehavior

a ribute2 a ribute2

a ribute1: Type«temporal» a ribute2: Type

«associa on»Legend«instanceOf» «inheritance»
Figure 12: Implementation of the temporal annotation-based history pattern for the closed behavior model pattern.

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 433

DTML

Model

MTt=0

S

St=0

M2

M1

M0 «associa on»

Legend
DTML Digital Twin Modeling Language
MTt=0 Model Trace at me = 0
S Snapshot
St=0 Snapshot Instance at me = 0

Snapshot-based history pa ern

«instanceOf»
St=1MTt=1

Figure 13: Structure of the snapshot-based history pattern.

blueprints proposed in Section 4.1. Each snapshot has a

link to the elements in the model (representing structure

or behavior derived from the DTML) and a link to another

snapshot representing the previous model state. Thus, on

M0, the instantiations of these snapshots for a particular

point in time (St=0, St=1) contain the model trace for the

respective point in time (i.e., MTt=0, MTt=1). In order to

use this snapshot representation to log system traces, the

individual snapshots on M0 are linked with each other to

navigate from a specific snapshot to its predecessor and

successor.

Consequences: Applying this pattern induces some

additional modeling effort for creating snapshots. Addition-

ally, all snapshots are instantiated and loaded in-memory,

which means reduced scalability with respect to the size of

the execution trace. However, explicitly storing connections

between elements in historical states enables querying and

reasoning about a particular model state or the evolution of

model states over time.

Implementation: In this pattern, the snapshots need

to be created on the M0 level based on their definition

at M1. Therefore, structural and behavioral traces must

be orchestrated to snapshots (cf. Figure 14 for details on

the implementation of this pattern in combination with

the closed behavior model pattern). In the closed behavior

model pattern, the definition of the snapshot is associated

with the DomainStructure and the DomainBehavior on

M1. In the open behavior model pattern, these connections

of the Snapshot on M1 are already defined at the language

level (i.e., Structure and Behavior).
Instantiation on the running example: Applying

the current pattern to the running example means

that one snapshot contains the state of Printer1,
the associated StateMachine4Printer1, and the

contents of StateMachine4Printer1 at a given

point in time with a reference to the respective

predecessor and successor snapshots. For instance, in

one snapshot, the Operational4Printer1 trace can

be active, the Print4Printer1 trace is not firing, and

the Printing4Printer1 trace is not active. In the

successor snapshot, the Print4Printer1 is now firing,

changing Operational4Printer1 to non-active and

Printing4Printer1 to active.

{abstract}
Structure

DomainStructure

{abstract}
Behavior

StructuralTrace1t=0 DomainBehavior4StructuralTrace1t=0

DomainBehavior

M0

M1

M2
En ty

Snapshot

Snapshott=0

«associa on»Legend«instanceOf» «inheritance»

pred.

succ.

StructuralTrace1t=1 DomainBehavior4StructuralTrace1t=1

Snapshott=1

pred.

succ.

Figure 14: Implementation of the snapshot-based history pattern for the closed behavior model pattern.

434 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

5 Demonstration case: Digital Twin

of a 3D printer

We applied the patterns presented above to two different

use cases to validate their applicability, demonstrate their

trade-offs, and provide the resulting models in an online

repository.9 The purpose of this section is to demonstrate

the applicability of the patterns using an excerpt of the

models in the mentioned repository. More precisely, we

present the application of the open and closed behavior

model patterns to the aforementioned 3D Printer running

example and its realization in the Microsoft Azure DT plat-

form. We also compare the modeling effort required in

both patterns to create the 3D printer model as outlined in

Section 3.

5.1 Setup

We create a reference implementation of the class and state

machine diagramoutlined in Figure 3 using the EclipseMod-

eling Framework10 (EMF). It serves as base information to be

projected from the four-layermetamodeling stack (Figure 1)

to the presented patterns. The EMF models are then trans-

lated to represent the same information in a DT platform.

To this end, we show the application of both the closed

behavior model pattern and open behavior model pattern

by creating the respective DTDL models for the Microsoft

Azure DT Platform.

In DTDL, a set of metamodel classes constitutes the

elements for modeling the parts of the DT infrastructure

and their interconnections. Thereby, the Interface class

defines the contents of any DT, that is, e.g., its compo-

nents, properties, and relationships. Take the definition

of the 3DPrinter in Listing 1 for an example. It includes

properties for the temperature and coordinates of the axis

positioning system. Furthermore, the Command class is used
to describe operations supported by the DT. This allows

for a higher-level view of an asset’s functionality that is

decoupled from the underlying behavior, in this case, the

statemachine of the printer. A Relationship denotes a link
to another DT. Temporal information, i.e., properties that

will be emitted and ingested regularly at runtime, such as

the temperature and axis properties, are declared using the

in-built Telemetry class. To this effect, emerging data can
be persisted and leveraged for analysis, e.g., using the Time

Series Insights database.11

9 https://github.com/cdl-mint/at-journal.

10 https://www.eclipse.org/modeling/emf/.

11 https://azure.microsoft.com/en-gb/products/time-series-insights/.

In the following, we describe the design-time elements

required to model the behavior of the 3D printer and how

it is linked to the structural model in Listing 1. We thereby

apply the open and closed behavior model pattern in the

DTDL, in contrast to modeling this example in EMF. There-

after, the created DTDL models are imported into the Azure

DTs Explorer12 in order to validate their usage within the DT

platform provided by Microsoft Azure. To assess the mod-

eling efforts, we also determine the number of modeling

elements required for the complete realization of the 3D

printer example.

5.2 Twin model at design-time

Next, we describe the application of the closed and open

behavior model pattern in combination with the tempo-

ral annotation history pattern for realizing the conceptual

description of a system.

Closed behavior model. Listing 2 shows an excerpt

of the interfaces necessary for modeling the 3D printer

and its state machine according to the closed behavior

model pattern. The class 3DPrinter corresponds to the

definition in Listing 1, but additionally derives from Class
and holds a relationship to PrinterStateMachine. Conse-
quently, printer instances can only refer to state machines

of this type, whose function as such is defined via the

type relation to StateMachine. Both 3DPrinter and Print-
erStateMachine form the base elements to derive structural

and behavioral twin representations, respectively. The lat-

ter is defined by relations to states and transitions, specif-

ically, the ones shown in Figure 3b, e.g., Operational,
which also contain the corresponding properties of interest.

Again, the semantic assignment is done via type relations.

Following the closed behavior model pattern, as with the

restriction of printer instances to PrinterStateMachines, the

relationships between states and transitions of the latter

are rigid. Hence, based on the definitions of correspond-

ing relationships for a transition, it can only lead from the

defined incoming state to the defined outgoing state. This

is ensured by the semantic type assignment of behavioral

elements via corresponding relations (cf. {unsettable} in
Figure 8) within class definitions rather than deriving from

the general type classes. Although the inheritance of an

interface is supported in DTDL, e.g., Operational as a descen-

dant of State or PrinterStateMachine as a descendant of

StateMachine, it would no longer limit the scope to the

intended workflow for printer instances in the runtime

model.

12 https://azure.microsoft.com/products/digital-twins/.

https://github.com/cdl-mint/at-journal
https://www.eclipse.org/modeling/emf/
https://azure.microsoft.com/en-gb/products/time-series-insights/
https://azure.microsoft.com/products/digital-twins/

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 435

Table 1: Elements required for modeling the structure and behavior of

the 3D printer example in EMF on the meta-model (M2) and model (M1)

level.

Meta-level # Elements

M2 6 classes/9 references/12 attributes

M1 37 objects/66 links/77 values

Open behavior model. The interfaces for realizing

the open behavior model pattern are defined in Listing 3.

Here, the general types Class and StateMachine consti-

tute the base elements to derive structural and behav-

ioral twin representations. The former relates to the lat-

ter with the relationship stateMachine, thereby allow-

ing for a behavior model to be defined for any descen-

dants extending the Class interface, e.g.,3DPrinter. Accord-
ingly, those classes that represent the twin of an asset

in the present domain are to be derived from Class.

The state machine is described by relations to State
and Transition, which carry the relevant properties and

telemetries. However, using the open behavior model pat-

tern, the actual behavioral elements depending on the

domain are not specified at this level. The specification

for the printer, i.e., the states and transitions reflect-

ing the dedicated workflow, is only done at the instance

level.

Comparison. Concerning modeling effort, the inter-

faces required for the closed behavior model pattern

(Table 2) are similar to the objects required on M1 in EMF

(Table 1). Furthermore, the required links and values add

up to 143, which is roughly equal to the total number of

content items in the interfaces, which are composed of

relationships and properties. This results from mimicking

the semantics of the EMF implementation as closely as pos-

sible. In the open behavior model pattern, this effort is

reduced considerably, even leading to less interfaces being

Table 2: Interfaces (top-level elements) and Interface Contents

(Properties, Telemetries, Commands, and Relationships) for modeling

the proposed open behavior model pattern (cf. open) and closed

behavior model pattern (cf. closed) in DTDL.

Pattern # Interfaces # Interface contents

Open 5 18

Closed 28 123

created than on M2 alone in EMF. The discrepancy in the

modeling effort between open and closed behavior model

pattern (Table 2) becomes even more evident when con-

sidering the number of interface contents that must be

created in DTDL to create the model for the 3D printer

example.

5.3 Twin instance at runtime

Regardless of whether the open or closed design pattern is

used, the DT infrastructure will superficially host the same

DT instances at runtime. However, each pattern yields dif-

ferent type assignments in the behavioral model and the

therewith associated consequences discussed in Section 4.

Figure 15 shows an excerpt respectively for the instanti-

ated models provided in Listings 2 and 3, to realize the

running example. In both cases the environment comprises

a single printer “p1” whose internal workflow is repre-

sented by its state machine “psm1”. States and transitions

of the latter such as Operational, Print, and Printing (cf.

Figure 3b), are each dedicated to a DT instance. Following

the closed behavior model pattern, Figure 15a shows these

instances being initialized using their respective interfaces,

and connected in conformance with the typed relations of

the transition print, that is, to state instances operational
and printing. In Figure 15b, the same is shown for the

open behavior model pattern, with all the behavior-related

print
:Transi on

opera onal
:State

prin ng
:State

psm1
:StateMachine

p1
:3DPrinter

:stateMachine

:transi on

:source :target

print
:Print

opera onal
:Opera onal

psm1
:PrinterStateMachine

p1
:3DPrinter

:printerSM

:print

:opera onal :prin ng

prin ng
:Prin ng

(a) (b)

Figure 15: Excerpt of the twin instances for the 3D printer example in a graph-based notation. (a) Closed behavior model pattern, (b) Open behavior

model pattern.

436 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

instances and relations based on the general classes State,
Transition, and StateMachine.

Listing 2 JSONCode excerpt for the running example; closed

behavior model pattern.

Listing 3 JSON Code excerpt for the running example; open

behavior model pattern.

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 437

6 Discussion and limitations

This section critically discusses the presented patterns and

the limitations of this work.

6.1 Pattern comparison

The demonstration of the presented patterns for a specific

case using a current DT platform shows their applicability.

In this respect, the 3D printer example leads to observations

concerning initial modeling effort and model maintenance

during design and runtime.

The closed behavior model pattern requires dedicated

modeling effort on M1 by explicitly specifying the behavior

model, which is not required by the open behavior model

pattern. On M0, however, the effort is reduced by the infor-

mation already available at M1, e.g., default values for prop-

erties, such as whether a state acts as the initial state for a

state machine or not. In contrast, using the open behavior

model pattern, it has to be set manually for each instanti-

ated state machine for each structural entity on M0. This

becomes more significant as the number of entities to be

created increases. Thus, with respect to the modeling effort

and rigor, there is a trade-off between the initial effort for

modeling M1 and the long-term effort for modeling the

runtime on M0. However, model transformations may be

developed in order to automatically populate the model

fragments used for representing the behaviormodels onM0

for both patterns.

Besides the modeling effort for creating an initial sys-

tem, the patterns further differwith respect to the flexibility

they imply towards evolving the created model (e.g., adding

states or changing the starting state of a state machine). In

this regard, the change effort varies for adapting the DT

model to system changes that occur over time. Please note

the flexibility of the openbehaviormodel pattern as the run-

time model can be changed directly on M0. With the closed

behavior model pattern, such changes must first be carried

out on M1. Performing these changes on M1, however, (i)

requires redeploying the model to the DT platform, and (ii)

breaks instance-level relations of the existing elements on

M0 to the respective model elements on M1. Accordingly,

elements on M0 have to be adapted as well in order to

represent a valid model again.

As an alternative to temporal annotations to represent

historical traces, a snapshot-based representation may be

used. This can be achieved by defining an additional inter-

face type on M1 that is associated with objects whose state

should be recorded. Following this approach, objects would

have to be replicated and linked to a new snapshot instance

again and again. As a benefit, queries about object states

including their behavioral states are supported, providing

insights about the complete state of the system over time

in a coherent structure. However, for each change in the

system, the whole snapshot (i.e., the current structure and

behavior of the system) must be stored. This may lead to a

considerable overhead with respect to memory consump-

tion compared to storing the value updates individually for

each annotated property, as would be the case using the

temporal annotation pattern.

With respect to data history and storage, the Azure DT

platform has also implemented a realization.13 However, it

only dealswith lifecycle events in a rudimentaryway,which

include creation anddeletion of DTs. Through our presented

patterns, the functionalities are extended and a variety of

states can be reflected.

6.2 Limitations

Wenowpoint out limitationswith respect to the scope of our

study as well as the potential applicability of the presented

patterns. For this, we discuss the following two threats to

validity types.

Internal validity. In this work, we do not demonstrate

the application of the patterns using a concrete runtime

simulation nor do we evaluate the resulting solutions using

software complexity metrics. Therefore, no conclusions can

be made yet about the quality criteria such as perfor-

mance, maintainability, and scalability, with respect to the

involved DT infrastructures. Indeed, the extension of the

DT model for behavioral properties leads to a higher data

volume, which consequently leads to higher data storage

and retrieval costs, especially with respect to the complete

representation of the systemstate in the snapshot-basedpat-

tern. We plan to investigate these aspects and to utilize the

obtainedbehavioral information in furtherwork.Moreover,

the patterns, especially the closed behavior model pattern,

may benefit from multi-level modeling features. Substitut-

ing the instanceOf relationshipwith an association is clearly

a workaround and only provides meta-information for the

modeling elements but no support from a type system per-

spective. Furthermore, certain attributes should have only

values on a certain level and not on others, e.g., the attribute

isActive should only get a value assigned on M0. Future

studies are required to evaluate the application of multi-

level modeling concepts for the presented patterns such as

having more flexible instantiation levels and concepts such

13 https://learn.microsoft.com/en-US/azure/digital-twins/concepts-

data-history.

https://learn.microsoft.com/en-US/azure/digital-twins/concepts-data-history
https://learn.microsoft.com/en-US/azure/digital-twins/concepts-data-history

438 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

as potency to control the usage of attributes on dedicated

levels.

External validity. In our demonstration of the pre-

sented patterns for statemachines,we present some general

structures which may be also utilized for other behavioral

modeling languages. However, the general suitability of the

presented patterns for other languages such as other dis-

crete behavior modeling languages, e.g., activity diagrams,

sequence diagrams, or continuous behavior modeling lan-

guages has to be studied in future work. Especially for the

latter, there are optimized modeling languages and tools

for example Modelica14 or Matlab Simulink.15 These lan-

guages also have their own mechanisms and support for

mapping DTs and handling behavioral simulations of sys-

tems.16 Besides using other modeling languages, targeting

other DT platforms with the presented patterns is required

to generate further evidence that the presented patterns

are general enough to be usable in other contexts. In par-

ticular, the patterns shown assume the availability of cer-

tain modeling concepts in the target DT platform. This

becomes evident in our example about the implementa-

tion of the closed behavior model pattern on M1 in DTDL,

which does not support any concept for defining abstract

interfaces. In this respect, interfaces like “Class” can also

be instantiated in the runtime model on M0, which is only

intended to serve for the type assignment. Furthermore,

it is neither possible to set property values on M1 nor

to declare them as unchangeable, which means that the

relevant property in the start state, i.e., “isStart” in our

example, cannot be set on M1. Anticipating these limita-

tions, the model as well as runtime instances could be cre-

ated in EMF, which supports these concepts, and then be

transformed into the DTML of the target platform ready

for deployment. However, this raises the question of how

the DT model will be updated as the system changes. For

the actual reproduction, the patterns nevertheless require

a minimum set of concepts, the absence of which must be

specifically dealt with. Moreover, the applicability of the

presented patterns in other DT platforms seems promis-

ing based on the results from a previous study [5] about

the modeling features of DT platforms. However, additional

studies are required to provide evidence that the patterns

can be indeed realized by themodeling features of the other

platforms. Finally, future studies are needed to validate

the applicability and performance of the proposed patterns

14 https://modelica.org/.

15 https://www.mathworks.com/.

16 https://www.mathworks.com/discovery/digital-twin.html.

for the different DT types and architectures as described

in [26].

7 Related work

Regarding related work, we first consider work which is

highlighting the need for behavioral models in DTs. Then,

we discuss model-driven approaches for engineering DTs.

Finally, we discuss semantic lifting approaches for runtime

data. For a general overview of the various disciplines that

have adopted DTs, and the applications therein, the inter-

ested reader is referred to [3, 6].

Addressing behavioral models for Digital Twins.

The need for the availability of behavioral models in

DT systems is becoming increasingly important. Rovere

et al. [27] outline a supporting infrastructure for managing

DTs, emphasizing the relevance of behavioral models for

enabling simulations and the accessibility of these models

throughout the factory lifecycle. Building on the DEVS for-

malism, Niyonkuru & Wainer [28] present an environment

that includes DTs but also foresees a physical model to

support simulations and study behavior under real-world

conditions, e.g., time constraints in real-time systems. Using

Reinforcement Learning, a model was learned from data

collected at runtime and used to optimize behavior [29,

30]. Stary et al. [31] take a human-centric view of DTs by

proposing behavioralmodels for capturing components and

interactions in a Cyber-Physical System (CPS). They provide

a subject-oriented approach formodeling both the structure

and behavioral aspects of the system, aiming to provide a

unified view for the various stakeholders involved in the

design process of DTs. Tekinerdogan and Verdouw present

a design pattern catalog for developing DTs [26]. Different

from our mapping of specific object behaviors, the authors

define the general behavior of DTs using Sequence Dia-

grams. In [32], Verdouw et al. discuss the typologies of differ-

ent types of DTs which also utilize behavioral models in the

context of smart farming. In contrast to our approach, the

mentionedworks address the requirements forDTs in terms

of planning, validation, and implementation at a conceptual

level rather than concrete blueprints for capturing DTs in

existing DT platforms.

Model-driven Digital Twin engineering. In the area

of MDE for DTs, there are several different approaches to

facilitate their development and deployment. Whereas Bor-

deleau et al. [33] give an overview of opportunities and

challenges for integratingMDE andDTs, there are alsomany

concrete implementations available already. For instance,

Muñoz et al. [34] engineer DTs with UML and apply struc-

tural system snapshots for the runtime information. Binder

https://modelica.org/
https://www.mathworks.com/
https://www.mathworks.com/discovery/digital-twin.html

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 439

et al. [35] present an approach that automatically trans-

forms the logical architecture of a system into the technical

implementation using AutomationML (AML) and evaluate it

by a case study according to the concepts of the Reference

Architecture Model Industry 4.0 (RAMI 4.0). Zhang et al. [36]

also present an approach for Cyber-Physical Production Sys-

tems (CPPS) information modeling based on DTs and AML.

They show an integration of various physical resources into

CPPS by DTs and AML. Mazak et al. [37] take an approach

in this area where the strengths of AutomationML and

MDE are combined to reduce the manual effort required to

implement a runtime data acquisition system and simplify

subsequent analyses. In the area of communication and

data exchange between systems and DTs, there are also

other approaches [38, 39] that exploit the use of higher-level

models (e.g., AML models). In addition, these models are

used to generate web services and visualization.

Regarding the modeling of DTs, Tao et al. [6] give an

overview of current modeling techniques and tools, and

Atkinson and Kühne [40] point out shortcomings of cur-

rent modeling standards for improving them with respect

to (i) the rigid heterogeneous technology stack and (ii) the

evolving nature of DTs. They propose a multi-level mod-

eling approach with a universal language as one possible

countermeasure, e.g., to preserve consistency while accom-

modating different abstraction levels and to enforce typing

constraints along hierarchy levels. Our suggested patterns

follow this general direction by providing a solution to

overcome the hierarchical constraint one faces with cur-

rent DTMLs that are set to a 2-level modeling approach

for behavioral models. However, we consider the usage of

multi-level modeling techniques for behavioral models as

an interesting research line, e.g., how to integrate multi-

level concepts in current platforms which then can be used

for developing behavioral modeling support. Especially, the

closed behavior model pattern would benefit from such

approaches. In Bibow et al. [14] events are logged to detect

when, e.g., properties are changed in a CPPS. For this pur-

pose, a domain-specific language is specified that defines the

communication between the system and its DT using OPC-

UA. Brockhoff et al. [41] address the intersection of DTs and

process mining, emphasizing the need for a common view

regarding architectural design. In their proposed architec-

ture they aim at self-adaptive DTs, therefore adopting a

generative approach that enriches MDE capabilities with

processmining techniques to exploit the obtained data. Sim-

ilar to [14], they plan to react when predefined changes are

detected. Our approach on the other hand aims at making

temporal aspects traceable by integrating behavior models

into the DT model and providing a general architecture for

DTs with an explicit behavior view that could also support

evolution in the future.

Semantically lifting runtime data. Processing

recorded data against a knowledge base provides another

way to comprehend a system’s behavior or even respond

to it’s evolution. This is based on the formalization of

domain semantics, e.g., using the Resource Description

Framework17 (RDF). In [42], the authors propose an

RDF-based representation of the Asset Administration

Shell, a standard for describing assets in Industry 4.0. Their

vision entails automated integration of various assets as

well as validation of constraints and reasoning over the

data model. Kamburjan et al. [43, 44] use knowledge graphs

to align the DTwith its physical counterpart. To this end, the

DT infrastructure and simulation models are defined using

the Semantic Micro Object Language [45]. A language-based

approach bridging simulators with formalized domain

knowledge is shown in [43]. In [44], the DT infrastructure is

integrated with asset models, which are descriptions of the

physical assets, in order to form a knowledge graph. The

runtime state will be lifted into this graph to detect changes,

and determine and perform an appropriate reconfiguration

of the DT. Adaptation of structure and simulation models

takes place by querying and manipulating the knowledge

graph. In our view, the behavior could also be tracked

from the model properties and the knowledge graph using

this method. With our pattern, in contrast, the injection

of behavioral elements into the model is done directly,

which allows mapping from other behavioral modeling

languages. As a result, a flexible environment is provided

for data processing in terms of querying, validation, and

simulation.

Synopsis. While there have been several efforts of

using model-driven engineering for DTs and interpreting

runtime data on a semantically-enriched level, we are not

aware of any existing work which is integrating the con-

cept of behavioral models in current DT platforms. The

presented work of this paper aims to fill this gap.

8 Conclusions and future work

In this paper, we have presented several patterns on how

to augment DT models with behavior, covering design-

time and runtime viewpoints of current DT platforms.

The patterns have been illustrated for state machines and

with a demonstration case using the Microsoft Azure DT

platform.

17 https://www.w3.org/RDF.

https://www.w3.org/RDF

440 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

In future work, we consider the following lines of

research. First, we plan to perform studies about the scal-

ability of the presented patterns concerning runtime data

storage and query performance, e.g., of KPIs. Second, inte-

grating other viewpoints such as process or organizational

viewpoints would allow sophisticated interfaces to DTs for

higher layers of the automation pyramid. Finally, the usage

of multi-level modeling as discussed in [11, 40] within DT

platforms becomes of interest as it would allow using sev-

eral instantiation levels more explicitly. By this mechanism,

moreproduct-line-awareDTswhich also incorporate behav-

ioral models may be envisioned.

Author contributions: All the authors have accepted

responsibility for the entire content of this submitted

manuscript and approved submission.

Research funding: This work has been supported by the

Austrian Federal Ministry for Digital and Economic Affairs

and the National Foundation for Research, Technology and

Development (CDG).

Conflict of interest statement: The authors declare no con-

flicts of interest regarding this article.

References

[1] C. Yang, S. Lan, W. Shen, L. Wang, and G. Q. Huang,

“Software-defined cloud manufacturing with edge computing for

Industry 4.0,” in Proc. of the 16th International Wireless

Communications and Mobile Computing Conference (IWCMC), IEEE,

2020, pp. 1618−1623.
[2] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital

Twin in manufacturing: a categorical literature review and

classification,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016−1022,
2018..

[3] M. Dalibor, N. Jansen, B. Rumpe, et al., “A cross-domain systematic

mapping study on software engineering for digital twins,” J. Syst.

Softw., vol. 193, p. 111361, 2022..

[4] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in Industry:

state-of-the-art,” IEEE Trans. Ind. Inf., vol. 15, no. 4, pp. 2405−2415,
2019..

[5] J. Pfeiffer, D. Lehner, A. Wortmann, and M. Wimmer, “Modeling

capabilities of digital twin platforms − old wine in new bottles?”

J. Object Technol., vol. 21, no. 3, pp. 3:1−14, 2022,.
[6] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital twin modeling,”

J. Manuf. Syst., vol. 64, pp. 372−389, 2022..
[7] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software

engineering in practice,” in Synthesis Lectures on Software

Engineering, 2nd ed. Kentfield, Morgan & Claypool Publishers, 2017.

[8] J. Bezivin, “On the unification power of models,” Softw. Syst. Model.,

vol. 4, no. 2, pp. 171−188, 2005..
[9] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,

“Modeling software architectures in the unified Modeling

Language,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 1,

pp. 2−57, 2002..

[10] T. Kühne, “Matters of (meta-)modeling,” Softw. Syst. Model., vol. 5,

no. 4, pp. 369−385, 2006..
[11] C. Atkinson, R. Gerbig, and T. Kühne, “Comparing multi-level

modeling approaches,” in Proc. of the Workshop on Multi-Level

Modelling co-located with MoDELS, CEUR-WS.org, 2014, pp. 53−61.
[12] C. Atkinson and T. Kühne, “Reducing accidental complexity in

domain models,” Softw. Syst. Model., vol. 7, no. 3, pp. 345−359,
2008..

[13] T. Kühne, “Multi-dimensional multi-level modeling,” Softw. Syst.

Model., vol. 21, no. 2, pp. 543−559, 2022..
[14] P. Bibow, M. Dalibor, C. Hopmann, et al., “Model-driven

development of a digital twin for injection molding,” in Proc. of the

International Conference on Advanced Information Systems

Engineering (CAiSE), Springer, 2020, pp. 85−100.
[15] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,

“Model-driven digital twin construction: synthesizing the

integration of cyber-physical systems with their information

systems,” in Proc. of the ACM/IEEE 23rd International Conference on

Model Driven Engineering Languages and Systems (MoDELS ’20), ACM,

2020, pp. 90−101.
[16] D. Lehner, J. Pfeiffer, E. Tinsel, et al., “Digital twin platforms:

requirements, capabilities, and future prospects,” IEEE Softw.,

vol. 39, no. 2, pp. 53−61, 2022..
[17] D. Lehner, S. Sint, M. Vierhauser, W. Narzt, and M. Wimmer,”

AML4DT: a model-driven Framework for developing and

maintaining digital twins with AutomationML,” in Proc. of the 26th

IEEE International Conference on Emerging Technologies and Factory

Automation, ETFA 2021, IEEE, 2021, pp. 1−8.
[18] B. Combemale, O. Barais, and A. Wortmann, “language

engineering with the GEMOC studio,” in Proc. of IEEE International

Conference on Software Architecture Workshops, ICSA Workshops,

IEEE, 2017, pp. 189−191.
[19] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides, “Design

patterns: abstraction and reuse of object-oriented design,” in Proc.

of the 7th European Conference on Object-Oriented Programming

(ECOOP), Springer, 1993, pp. 406−431.
[20] J. Cabot, A. Olivé, and E. Teniente, “Representing temporal

information in UML,” in Proc. of the 6th International Conference on

the Unified Modeling Language, Modeling Languages and

Applications, Springer, 2003, pp. 44−59.
[21] A. Gómez, J. Cabot, and M. Wimmer, “TemporalEMF: a temporal

metamodeling framework,” in Proc. of the 37th International

Conference on Conceptual Modeling (ER), Xi’an, China, Springer,

2018, pp. 365−381.
[22] M. Fowler, Patterns of Enterprise Application Architecture. Boston,

Addison-Wesley, 2012.

[23] A. Mazak, S. Wolny, A. Gómez, J. Cabot, M. Wimmer, and G. Kappel,

“Temporal models on time series databases,” J. Object Technol.,

vol. 19, no. 3, pp. 3:1−15, 2020..
[24] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and OCL

models in USE by automatic snapshot generation,” Softw. Syst.

Model., vol. 4, no. 4, pp. 386−398, 2005..
[25] F. Hilken, L. Hamann, and M. Gogolla, “Transformation of UML and

OCL models into filmstrip models,” in Proc. of the 7th International

Conference on Theory and Practice of Model Transformations (ICMT),

Springer, 2014, pp. 170−185.
[26] B. Tekinerdogan and C. Verdouw, “Systems architecture design

pattern catalog for developing digital twins,” Sensors, vol. 20,

no. 18, p. 5103, 2020..

D. Lehner et al.: A pattern catalog for augmenting Digital Twin models — 441

[27] G. Dal Maso, D. Rovere, P. Pedrazzoli, M. Alge, and M. Ciavotta, A

Centralized Support Infrastructure (CSI) to Manage CPS Digital Twin,

towards the Synchronization between CPSs Deployed on the Shopfloor

and Their Digital Representation. Gistrup, River Publishers, 2019,

pp. 317−335.
[28] D. Niyonkuru and G. A. Wainer, “A devs-based engine for building

digital quadruplets,” Simul., vol. 97, no. 7, pp. 2021−2506, 2021..
[29] C. Cronrath, A. R. Aderiani, and B. Lennartson, “Enhancing digital

twins through reinforcement learning,” in 15th IEEE International

Conference on Automation Science and Engineering (CASE), IEEE, 2019,

pp. 293−298.
[30] N. Tomin, V. Kurbatsky, V. Borisov, and S. Musalev, “Development

of digital twin for load center on the example of distribution

network of an urban district,” E3S Web Conf., vol. 209, p. 02029,

2020..

[31] C. Stary, M. Elstermann, A. Fleischmann, and W. Schmidt,

“Behavior-centered digital-twin design for dynamic cyber-physical

system development,” Complex Syst. Informatics Model. Q., vol. 30,

pp. 31−52, 2022..
[32] C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital

twins in smart farming,” Agric. Syst., vol. 189, p. 103046, 2021..

[33] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and

M. Wimmer, “Towards model-driven digital twin engineering:

current opportunities and future challenges,” in Proc. of the First

International Conference on Systems Modelling and Management

(ICSMM), Springer, 2020, pp. 43−54.
[34] P. Muñoz, J. Troya, and A. Vallecillo, “Using UML and OCL models

to realize high-level digital twins,” in Proc. of the ACM/IEEE

International Conference on Model Driven Engineering Languages and

Systems Companion (MODELS), IEEE, 2021, pp. 212−220.
[35] C. Binder, A. Calà, J. Vollmar, C. Neureiter, and A. Lüder,

“Automated model transformation in modeling digital twins of

industrial internet-of-things applications utilizing AutomationML,”

in Proc. of the 26th IEEE International Conference on Emerging

Technologies and Factory Automation, ETFA 2021, IEEE, 2021, pp. 1−6.
[36] H. Zhang, Q. Yan, and Z. Wen, “Information modeling for

cyber-physical production system based on digital twin and

AutomationML,” Int. J. Adv. Manuf. Technol., vol. 107, no. 3,

pp. 1927−1945, 2020..
[37] A. Mazak, A. Lüder, S. Wolny, et al., “Model-based generation of

run-time data collection systems exploiting AutomationML,”

Autom., vol. 66, no. 10, pp. 819−833, 2018..
[38] G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola,

“Digital twin data modeling with AutomationML and a

communication methodology for data exchange,”

IFAC-PapersOnLine, vol. 49, no. 30, pp. 12−17, 2016..
[39] G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques,

A. Rettberg, and C. E. Pereira, “A methodology for digital twin

modeling and deployment for Industry 4.0,” Proc. IEEE, vol. 109,

no. 4, pp. 556−567, 2021..
[40] C. Atkinson and T. Kühne, “Taming the complexity of digital twins,”

IEEE Softw., vol. 39, no. 2, pp. 27−32, 2022..
[41] T. Brockhoff, M. Heithoff, I. Koren, et al., “Process prediction with

digital twins,” in Companion Proc. of the ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems

Companion (MODELS), IEEE, 2021, pp. 182−187.

[42] S. R. Bader and M. Maleshkova, “The semantic asset

administration shell,” in Proc. of the 15th International Conference on

Semantic Systems (SEMANTiCS), Springer, 2019, pp. 159−174.
[43] E. Kamburjan, and E. B. Johnsen, “Knowledge structures over

simulation units,” in Annual Modeling and Simulation Conference,

ANNSIM 2022, IEEE, 2022, pp. 78−89.
[44] E. Kamburjan, V. N. Klungre, R. Schlatte, S. L. T. Tarifa, D. Cameron,

and E. B. Johnsen, “Digital twin reconfiguration using asset

models,” in Proc. of the 11th International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation (ISoLA),

Springer, 2022, pp. 71−88.
[45] E. Kamburjan, V. N. Klungre, R. Schlatte, E. B. Johnsen, and

M. Giese, “Programming and debugging with semantically lifted

states,” in Proc. of the 18th International Conference on the Semantic

Web (ESWC), Springer, 2021, pp. 126−142.

Bionotes

Daniel Lehner

JKU Linz Christian Doppler Laboratory for

Model-Integrated Smart Production

(CDL-MINT), Department of Business

Informatics − Software Engineering,

Johannes Kepler University Linz, Altenberger

Straße 69, 4040 Linz, Austria

daniel.lehner@jku.at

Daniel Lehner is a PhD candidate at the Department of Business

Informatics − Software Engineering, and also associated with the

Christian Doppler Laboratory for Model-Integrated Smart Production

(CDL-MINT), both at Johannes Kepler University Linz. His research

interests include applying Model-Driven Engineering techniques and

practices to Digital Twins. For more information, please visit https://se

.jku.at/daniel-lehner.

Sabine Sint

JKU Linz Christian Doppler Laboratory for

Model-Integrated Smart Production

(CDL-MINT), Department of Business

Informatics − Software Engineering,

Johannes Kepler University Linz, Altenberger

Straße 69, 4040 Linz, Austria

sabine.sint@jku.at

Sabine Sint is currently working as PhD student in the Christian Doppler

Laboratory for Model-Integrated Smart Production (CDL-MINT) at the JKU

Linz in the module Reactive Model Repositories. Her topic of interest is

SysML-based modeling and execution of complex systems. Since 2013,

she has been working in the Research Unit of Building Physics at TU Wien

with a focus on project management and developing software solutions

for energy-efficient planning of buildings. For more information, please

visit https://se.jku.at/sabine-sint.

mailto:daniel.lehner@jku.at
https://se.jku.at/daniel-lehner
https://se.jku.at/daniel-lehner
mailto:sabine.sint@jku.at
https://se.jku.at/sabine-sint

442 — D. Lehner et al.: A pattern catalog for augmenting Digital Twin models

Martin Eisenberg

JKU Linz Christian Doppler Laboratory for

Model-Integrated Smart Production

(CDL-MINT), Department of Business

Informatics − Software Engineering,

Johannes Kepler University Linz, Altenberger

Straße 69, 4040 Linz, Austria

martin.eisenberg@jku.at

Martin Eisenberg is currently a master’s student in Computer Science.

Since joining the CDL-MINT in 2019, he has partaken in research around

model-driven technologies and AI applications. His research interests

include algorithms for optimization purposes such as in machine

processes and applied machine learning. For more information, please

visit https://se.jku.at/martin-eisenberg.

Manuel Wimmer

JKU Linz Christian Doppler Laboratory for

Model-Integrated Smart Production

(CDL-MINT), Department of Business

Informatics − Software Engineering,

Johannes Kepler University Linz, Altenberger

Straße 69, 4040 Linz, Austria

manuel.wimmer@jku.at

Manuel Wimmer is a Full Professor and Head of the Department of

Business Informatics − Software Engineering at JKU Linz, Austria. Since

2019, he has been also the Program Director of the Business Informatics

master study at JKU Linz. He received his Ph.D. and his Habilitation from

TU Wien. He has been a research associate at the University of Malaga,

Spain, a visiting professor at the University of Marburg, Germany, and at

TU Munich, Germany, and an assistant professor at the Business

Informatics Group (BIG), TU Wien, Austria. His research interests include

Software Engineering, Model-Driven Engineering, and Cyber-Physical

Systems. For more information, please visit https://se.jku.at/manuel-

wimmer.

mailto:martin.eisenberg@jku.at
https://se.jku.at/martin-eisenberg
mailto:manuel.wimmer@jku.at
https://se.jku.at/manuel-wimmer
https://se.jku.at/manuel-wimmer

	1 Introduction
	2 Background
	2.1 Model-Driven Engineering
	2.2 Digital Twins and Digital Twin platforms
	2.3 MDE for Digital Twins

	3 Running example: 3D printer
	3.1 3D printer models
	3.2 3D printer Digital Twin

	4 A pattern catalog for representing behavioral models in Digital Twin platforms
	4.1 Augmenting Digital Twin models with behavior
	4.1.1 Closed behavior model pattern
	4.1.2 Open behavior model pattern

	4.2 Representing behavioral traces in Digital Twin platforms
	4.2.1 Temporal annotation-based history pattern
	4.2.2 Snapshot-based history pattern

	5 Demonstration case: Digital Twin of a 3D printer
	5.1 Setup
	5.2 Twin model at design-time
	5.3 Twin instance at runtime

	6 Discussion and limitations
	6.1 Pattern comparison
	6.2 Limitations

	7 Related work
	8 Conclusions and future work
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

