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ABSTRACT Proactive edge caching has been regarded as an effective approach to satisfy user experience in
mobile networks by providing seamless content transmission and reducing network delay. This is particularly
useful in rapidly changing vehicular networks. This paper addresses the proactive edge caching (at the
roadside unit (RSU)) problem in vehicular networks by mobility prediction, i.e., the next RSU prediction.
Specifically, the paper proposes a distributed Hybrid cMAB Proactive Caching System where RSUs act as
independent learners that implement two parallel online reinforcement learning-based mobility prediction
algorithms between which they can adaptively finalize their predictions for the next RSU. The two parallel
prediction algorithms are based on Contextual Multi-armed bandit (cMAB) learning, called Dual-context
cMAB and Single-context cMAB. The hybrid system is further developed into two variants: Vehicle-Centric
and RSU-Centric. In addition, the paper also conducts comprehensive simulation experiments to evaluate
the prediction performance of the proposed hybrid system. They include three traffic scenarios: Commuting
traffic, Random traffic and Mixed traffic in Las Vegas, USA and Manchester, UK. With the different road
layouts in the two urban areas, the paper aims to generalize the application of the system. Simulation results
show that the hybrid Vehicle-Centric system can reach nearly 95% cumulative prediction accuracy in the
Commuting traffic scenario and outperform the other methods used for comparison by reaching nearly 80%
accuracy in Mixed traffic scenario. Even in the completely Random traffic scenario, it also guarantees a
minimum accuracy of nearly 60%.

INDEX TERMS Proactive edge caching, reinforcement learning, multi-armed bandit learning, mobility
prediction, vehicular networks, roadside units (RSUs).

I. INTRODUCTION
The automobile industry has been making road vehicles more
and more intelligent over the past decade, thanks to the
development in electronics and communication technologies.
Vehicles are embedded with onboard units (OBUs) and able
to communicate with road infrastructures e.g., roadside units
(RSUs), and even with other vehicles. What is even more
incredible is the upcoming era of electric and autonomous
vehicles. This means that the vehicle no longer provides
just transportation in the traditional sense but will become
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a mobile information and entertainment center [1], [2].
All of these are essential elements of vehicular networks
that are considered as one of the most important enabling
technologies of the next generation intelligent transportation
system [3].

However, such a revolution also poses unprecedented
challenges to conventional vehicular networks from the
perspective of content transmission. Currently, tremendous
data demands from vehicular users are satisfied by the remote
content provider through network infrastructure such as
RSUs. This inevitably causes problems such as high network
latency and poor quality of experience for the users, given
the limitation of link capacity and bandwidth resources [4].
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In addition to this, as fast-moving objects, vehicles may
experience frequent intermittent connections with RSUs,
which results in a rapidly changing vehicular environment.
High-speed mobility causes frequent link re-connections,
which means that a content transmission between a vehicular
user and an RSUmay not be completedwithin the coverage of
the RSU and the user has to re-request the remaining content
after reconnecting to a new RSU at a dramatically reduced
data rate [3], [4].

The edge caching technique, which brings content closer
to end users, is considered to be an effective approach
to resolve the challenge of network latency and backbone
network congestion due to a massive amount of remote
requests to the content provider. On top of this, proactive
edge caching has been recognized as a promising solution to
the intermittent connectivity challenges caused by the highly
dynamic vehicular network. It not only provides content close
to the vehicular users but also predicts where they may need
content in advance through prediction algorithms. Proactively
caching the desired content at the future RSU(s) beforehand
allows vehicles to continue their earlier incomplete content
transmissions immediately after accessing the new RSU
without having to request the content again from the remote
server. Thanks to the rapid development of mobile edge
intelligence, mobile edge computing (MEC) [5] servers
deployed at the network edge (i.e., RSUs) are the key enabler
of proactive caching by providing both local storage and
computation functionalities, where the computation is crucial
in regard to mobility prediction.

As the name implies, proactive caching relies on predic-
tions. Since the focus of this paper is proactive edge caching
at the targeted RSU, the problem then becomes predicting the
next RSU that is most proper to perform proactive caching.
For this purpose, machine learning (ML) techniques can be
useful. In the literature, most studies using ML models for
this purpose used recurrent neural networks (e.g., [4], [6]).
However, one disadvantage of them is the high reliance on
the offline training stage, which limits their adaptability in
a time-varying environment. Vehicular networks, however,
give rise to a rapidly changing environment. Therefore,
it is meaningful to find an online learning approach for
the purpose of increasing the adaptability of the prediction
algorithms. Reinforcement learning (RL) provides this option
and in fact, this problem can be seen as a direct application
of RL because every prediction is a decision to make. The
agent in RL learns in a trial and error manner and tries to learn
a policy that is usually associated with states and actions.
None of the past work investigated the effectiveness of RL
techniques in next-RSU prediction-based proactive caching,
except for our previous paper [7] which proposed Multi-
armed bandit (MAB) learning [8], [9] and contextual MAB
(cMAB) learning algorithms to address the problem. MAB
learning is a special instance of RL and it is single-state
and model-free RL. The agents in MAB learning just have
one state and no state transition (i.e., it is stateless), and
do not have to build up a model of the environment. This

significantly reduces the number of trials needed to learn
a mature strategy, speeds up the learning process [7], [10],
and solves the difficulty of representing every single state
of the environment in the traditional RL, which is of great
benefit to a dynamically changing vehicular environment.
Excellent prediction performance of the single-context (i.e.,
one-dimensional) cMAB was achieved in [7] and we believe
it is of great significance to keep exploring the potential of
cMAB learning, which is the main motivation of this paper.

The objective of the paper is to address the proactive
caching problem in vehicular networks using cMAB learning.
Specifically, we develop a distributed Hybrid cMAB Proac-
tive Caching System where each RSU in the network is an
independent learning agent and predicts the next RSU for
proactive caching for every connected vehicle as required.
In the system, each independent RSU learner is enabled with
adaptive prediction between its two underlying prediction
algorithms: Dual-context cMAB and Single-context cMAB.
Despite the earlier work in [7] which focused only on the
single-context cMAB learning system, the motivation here
is to design a hybrid system that can fully exploit the
potential of both dual-context and single-context cMAB in
order to seek better proactive caching performance in a
variety of scenarios. This paper further fills the gap in the
studies on using independent multi-agent contextual MAB
to solve proactive caching problems. Specifically, the main
contributions of the paper can be summarized as follows:
• We propose a Hybrid cMAB Proactive Caching System
with a specifically designed switching mechanism to
allow RSUs to adaptively finalize their predictions
between the dual-context and single-context cMAB
algorithms. The system is further developed into
two variants: Vehicle-Centric System that realizes
vehicle-level switching and RSU-Centric System with
RSU-level switching, for comprehensive performance
comparison.

• We design a Dual-context cMAB algorithm that utilizes
vehicle ID and the previous RSU together as two-
dimensional context. Together with the Single-context
cMAB algorithm that uses previous RSU as context,
they serve as the two underlying parallel prediction
algorithms in the hybrid system. The hybrid system
outperforms the single-context cMAB system proposed
in [7] in various experimental scenarios.

• We extend traffic scenarios on top of [7] intoCommuting
traffic, Random traffic, Mixed traffic, in order to evaluate
the system performance in a more comprehensive way.
They are generated in two urban areas in Las Vegas,
USA, and Manchester, UK with significantly differing
road planning characteristics. The results demonstrate
the adaptability of the proposed algorithms and systems
to different road layouts.

The rest of the paper is structured as follows. In Section II,
some related studies on proactive caching in vehicular
networks and the applications of MAB in relevant fields
are discussed. Section III introduces the architecture of
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the MEC-enabled vehicular network that this work is
based on. The proposed hybrid cMAB system and the two
parallel cMAB-based prediction algorithms are elaborated
in Section IV. Section V discusses the simulation setup,
traffic scenarios, and performance evaluation and analysis.
SectionVI conducts an extended study on an additional traffic
scenario and provides in-depth insight into the proposed
learning systems. Section VII concludes this paper.

II. RELATED WORK
This section discusses some relevant studies and is divided
into two parts: Proactive Caching in Vehicular Networks and
Reinforcement Learning and MAB in mobile networks.

A. PROACTIVE CACHING IN VEHICULAR NETWORKS
Research on the problem of proactive caching in mobile
networks can be broadly classified into two categories: what
to cache and where to cache. To anticipate what to cache
in advance mostly depends on content popularity prediction.
Hassine et al. [11] used a two-level prediction model for
video popularity prediction to pre-store popular videos in
a content delivery network. Popularity-based video caching
techniques in cache-enabled networks have been summarized
in [12]. Nevertheless, the reliance on collecting vehicular
users’ personal data makes these methods less effective given
the increasing restrictions and users’ attention on security and
privacy. Therefore, this paper focuses on solving where to
cache problems by predicting where a vehicle is going next,
more precisely the next RSU it is going to access. From the
network operator’s point of view, this is moremanageable and
applicable.

The most recent work on next-RSU proactive caching
based on offline learning is in [13] where the authors
proposed a sequence-prediction-based proactive caching
system to address the problem. The model is based on the
Compact Prediction Tree plus (CPT+)model [14], a sequence
prediction algorithm, by training vehicle-specified simulated
traffic traces. Hou et al. [4] and Khelifi et al. [6] both used the
Long Short Time Memory (LSTM), a deep neural network
model, to predict the direction of a vehicle is going and
thus infer the next RSU instead of directly predicting it. For
a similar purpose, Zhao et al. [15] used a hybrid Markov
chain model for future RSU prediction, depending on the
availability and quality of vehicles’ traces. Yao et al. [16]
also proposed using Prediction by Partial Matching (PPM),
a tree-based Markov chain model, for mobility prediction of
reaching different hot spot regions, but they concentrated on
caching on individual vehicle nodes. Despite these meaning-
ful studies, the first fundamental difference is that they all
rely on massive offline training with labeled data in order to
get a proper prediction model, which is the main limitation
of their adaptability in a fast-changing environment. This
work, however, focuses on online learning with a model-free
learning algorithm. Additionally, in contrast to the centralized
way of prediction in [4], [6], and [15], our approach considers

a distributed system where RSUs are learning and predicting
independently.

B. REINFORCEMENT LEARNING AND MAB IN MOBILE
NETWORKS
One of the most widely used model-free RL techniques is
Q-Learning proposed by Watkins [17]. However, a challenge
of traditional Q-learning is its applicability to realistic
vehicular environments. As mentioned earlier, traditional RL
techniques are required to represent the states of the learning
agent and this restricts its adaptability in mobile networks
including vehicular networks. Therefore, it is helpful to
consider the agents with a discrete action set as stateless in
vehicular networks as this will potentially reduce the number
of trials needed to learn a sophisticated strategy and improve
the adaptability of RL-based cognitive devices (e.g., RSUs).

The MAB problem is representative of the stateless RL
problem.While it has attracted significant attention in various
applications ranging from recommendation systems and
advertisement replacement to healthcare and finance [18],
its application on proactive caching in vehicular networks
and other mobile networks seem to be rare. To the best of
our knowledge, our previous work in [7] is the only study
that proposed two proactive caching schemes in vehicular
networks based on MAB and cMAB. RSUs in [7] act
as independent stateless learning agents and observe the
previous RSU as the context in cMAB scheme. In addition,
there are some applications of MAB to other aspects of
mobile networks. Dai et al. [19] proposed a Utility-table
based Learning algorithm based on MAB to solve distributed
task assignment problem in a MEC-empowered vehicular
network. The authors in [20] proposed an intelligent task
caching algorithm based on MAB and evaluated its benefits
to task caching latency performance in the edge cloud.
Xu et al. [21] investigated collaborative caching problems in
small-cell networks by learning the cache strategies directly
at small base stations online by utilizing multi-agent MAB.

Despite the advantages of MAB learning, we believe it is
worth more investigations in the area of proactive caching
in vehicular networks. In particular, it is meaningful to
exploit the potential of cMAB with contexts from different
dimensions i.e., dual-context. Meanwhile, it is also practical
to develop a hybrid system that can fully exploit the advan-
tages of cMAB algorithms with different context dimensions.
To the best of our knowledge, no prior study has focused
on these technical aspects. The novelty of the present work
is the proposed adaptive hybrid cMAB proactive caching
system that exploits both dual-context cMAB and single-
context cMAB algorithms, and the evaluation of system
performance using this approach under various realistic-like
traffic scenarios.

III. NETWORK ARCHITECTURE
The vehicular network considered in the paper is deployed
with RSUs that are MEC-enabled, as depicted in Figure 1.
The RSUs are capable of edge computing and caching with
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MEC servers. With computing units, they are intelligent to
learn and predict the next possible RSU a vehicular user
may connect to next and the caching units enables them to
pre-caching content when the pre-caching request is received
from other RSUs. Vehicular users frequently request content
from RSUs after they enter the network. Despite the equipped
MEC servers, computing resource consumption and content
replacement techniques are out of the scope of this paper.

Consider a vehicular network G in an urban area with M
RSUs in a setM = {m1,m2, . . . ,mM }. There are residential
areas and workplace areas in G where L vehicles in the set
V = {v1, v2, . . . , vL} depart and arrive on a daily basis.
An RSU mi ∈ M has neighboring RSUs and it predicts
the next RSU by selecting one of its neighbors. In addition,
a central node is available to help coordinate RSUs in a
distributed way. One of its main responsibilities is to observe
the result of a previous prediction and feedback a reward to
a prior RSU so that the RSU can refine its learning policies
(which shall be discussed in the next section). Furthermore,
a content database C = {c1, c2, . . . , cK } exists in the Content
Provider that stores K types of content with various sizes,
represented by fck∈C fragments, each of which is of size Fc.

FIGURE 1. Architecture of MEC-enabled vehicular network (redrawn
from [7]).

The communication model implemented in this paper only
characterizes some basic features of transmission because the
goal of the work is to anticipate where to cache precisely.
Therefore, the following assumptions and simplifications are
made:

• A vehicle connects to the geographically closest RSU
• Problems such as interference and re-transmission in
the underlying layers (e.g., physical and medium access
control layers) in vehicular communications are not
considered in this paper and thus the transmission rate
e is a constant

• The dwell time of vehicles in an RSU is extracted from
the test trace being simulated and is known so that the
number of content fragments can be derived

• The network is completely proactive which means that
content will not be cached in a reactive way

• A vehicle will not request new content until it finishes
consuming the current one; when handover occurs, the
vehicle continues its unfinished transmission

A representative proactive caching procedure can be
described as follows. After a vehicle vi ∈ V accesses an
RSU mi ∈ M, mi uses the prediction algorithm to predict
the next RSU that the vehicle is likely to access next, say
mj ∈ M. While the vehicle is in this network, it may
request content transmissions from RSUs in a random way.
Now say vi requests a new transmission ck ∈ C from
mi. mi then starts requesting the content from the content
provider to transmit ck to vi. If mi calculates that vi cannot
complete this transmission within the dwelling time, then mi
sends the proactive caching request message to mj to ask
it to perform proactive caching on the remaining fragments
fr of ck . Next, vi hands over to a new RSU. If this new
RSU happens to be mj, then this is a correct prediction
and the pre-cached content is hit. In this case, mj satisfies
the remainder of vi’s previous transmission by its cache
instead of having to request that from the content provider,
hence realizing seamless transmission and reducing network
delay. Otherwise, the new RSU has to finish the remaining
transmission through the content provider via the backhaul
network. A transmission delay µ is thereby introduced via
fr×Fc

ω
where ω is the backhaul link rate. In either case, a

prediction feedback message (positive reward or negative
reward) is sent back to mi via the Central Node (depicted in
Figure 1) so that it can update its prediction policy.

IV. SYSTEM AND ALGORITHM DESIGN
The first focus of this section is to introduce the designed
hybrid cMAB proactive caching system. Then the underlying
dual-context cMAB and single-context cMAB prediction
algorithms will be elaborated on in more detail. The section
starts with a brief theoretical background of cMAB problems.

A. BACKGROUND OF CONTEXTUAL MULTI-ARMED
BANDIT PROBLEM
The contextual multi-armed bandit (cMAB) problem is a
useful extension of the general multi-armed bandit (MAB)
problem which is a special instance of reinforcement learn-
ing. Different from a full RL problem where a learning agent
may have multiple states associated with the environment
(e.g., positions in a game) and may transfer from one
state to another, it only has a single state in the MAB
problem [9] (i.e., no state transitions). From this perspective,
MAB is essentially identical to stateless Q-Learning [22] and
can also be treated as a model-free reinforcement learning
technique. Despite the additional context used in cMAB to
assist the decision-making process, it shares many common
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features with the general MAB problem including single-
state agent, action selection and update strategy, exploration-
exploitation dilemma [23], etc. A well-known scenario of
the MAB problem is where a gambler in a casino sits in
front of a slot machine with multiple arms and tries to
get payoffs by pulling one of them. The ultimate goal of
the gambler is to achieve the highest cumulative rewards
through learning the inherent reward pattern of each arm and
gradually concentrating on the best lever. During this process,
the gambler will face the exploration-exploitation dilemma:
where the gambler tries out the potential arms that may return
high payoffs (exploration) or pulls the arm that has yielded
the highest reward from the past experiments (exploitation).
cMAB under the gambling scenario can be thought of as if
the gambler has been given a ‘‘clue’’ and this is used to learn
the best action.

A cMAB problem can be formally given as a tuple:
⟨A,S,R⟩, where A = {a1, a2, . . . , ak} is a set of k actions
(i.e., arms), S =

{
s1, s2, . . . , sj

}
is a set of j contexts, and

R =
{
θ1−1, θ2−1, . . . , θj−k

}
associates action ak and context

sj with its reward probability distribution defined by θj−k .
This is formally formulated as follows:

• Contextual multi-armed bandit Consider a cMAB prob-
lem ⟨A,S,R⟩. The aim of any agent in the cMAB
problem is to learn a policy that maps contexts to actions,
that is, π (a ∈ A | s ∈ S). Another viewpoint
is that they now become multiple independent MAB
tasks associated with contexts, and the agent aims to
learn the best policy under these various contexts. Every
time an agent is assigned a MAB task (possibly with
a certain probability), it will observe context, take the
action by looking at the current context, and eventually
learn the best action. The agent takes an action ak from
its action set A under context sj ∈ S and this will
generate a success (reward 1) or failure (reward 0). The
action ak ∈ A produces a success with probability
θj−k ∈ R. In other words, for an action ak reward
r = 1 is produced with probability θj−k and r = 0
with probability 1− θj−k . In this case, θj−k can be seen
as the expected reward of taking action ak at situation
sj and is unknown to the agent. We can denote the
estimated value of θj−k at time step t as Qt (ak | sj) =
sum of rewards when ak is taken under sj prior to t
total number of times ai is taken under sj prior to t

. The cumulative
rewards are now to be maximized across S over a certain
amount of time T .

Generally, the agent can do better in cMAB than in a
non-contextual MAB with the assistance of context that dis-
tinguishes one bandit problem from another [7], [9]. In addi-
tion, the approaches to resolve the exploration-exploitation
dilemma in MAB problems are plenty such as
ϵ-greedy, upper-confidence bound algorithm, Thompson
sampling [23], etc. The purpose of this paper is not to
find out a sophisticated way to balance exploration and
exploitation so the most straightforward ϵ-greedy is adopted.
Despite the fact that cMAB involves learning policies, it still

resembles the general MAB tasks, as the action taken only
affects the immediate reward, and makes no difference to
the next situations, as well as their rewards. Therefore, it is
an intermediate between the MAB problem and the full RL
problem.

B. HYBRID cMAB PROACTIVE CACHING SYSTEM
The topic of this subsection is to introduce the design of the
proposed Hybrid cMAB Proactive Caching System (HCPC)
used for proactive caching. The basic concept behind the
hybrid system is that it implements a switching mechanism
that allows an RSU to adaptively finalize its prediction
between two cMAB-based prediction algorithms: Single-
context cMAB and Dual-context cMAB algorithms.

In general, the agents in cMAB problems use context to
help choose which action to play in the current iteration. The
context observed is actually anN-dimensional context, where
each dimension is a source of side information that may or
may not be the same type. Therefore, single-context cMAB
is a one-dimensional cMAB problem where the agent only
observes one source of information (e.g., previous RSU) to
consider as context. The agent in dual-context cMAB, on the
other hand, is able to detect information from two sources
(e.g., previous RSU and vehicle ID), together forming a two-
dimensional context.

The single-context cMAB algorithm which makes use of
the previous RSU has been exploited in [7] and excellent
prediction performance was achieved. As one of the two
underlying prediction algorithms in the HCPC system,
it is enhanced in this paper with a Win-or-Learn-Fast
variable learning rate to increase the robustness of the
algorithm. In contrast to dual-context cMAB, the advantage
of single-context cMAB is that it has sufficient learning
opportunities for every related context s in the early stage of
learning, but in some situations, it may suffer from a similar
dilemma as in the non-contextual MAB problem as described
in [7], hence the limitation in prediction performance. On the
other hand, the dual-context cMAB designed in this paper
utilizes two-dimensional context which consists of vehicle ID
and previous RSU. It reinforces the single-context cMAB and
could result in a more explicit context for an agent RSU to
distinguish different tasks. Nevertheless, its disadvantage is
the shortage of learning samples in the early stages, since
a vehicle passes through an RSU from a particular prior
RSU only once a day. Therefore, the motivation behind
the HCPC system is to combine the advantages of both in
order to ensure the accuracy of the prediction as much as
possible. The designed switchingmechanism is the enabler of
adaptive selection between single-context and dual-context,
depending on the comparison of their historical prediction
performance. In the meantime, it guarantees a lower bound
on its prediction performance, i.e., single-context cMAB.

A complete procedure of an RSU predicting the next RSU
as the proactive caching node in the HCPC system starts
when a vehicular user connects to the RSU. It makes two pre-
dictions (performs two action selections) with dual-context
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and single-context cMAB algorithms, respectively, denoted
as PD and PS . It then performs the switching mechanism to
finalize its decision PF ∈ {PD,PS} and sends its proactive
caching request to the predicted RSU (i.e., PF ). In other
words, the final decision can also be seen as the result of either
dual-context cMAB or single-context cMAB.

The key point in the switching mechanism is the way
to compare the historical prediction accuracy of the two
cMAB algorithms. One thing to consider in the comparison is
whether the RSU extracts its past predictions made for all the
vehicles that have connected to it or just the prediction data
of the current vehicle, which corresponds to RSU-Centric
and Vehicle-Centric, respectively. In the HCPC RSU-Centric
system, the RSU finalizes its prediction (PD or PS ) for all
of the connecting vehicles, once it computes which cMAB
algorithm may benefit its overall prediction performance
in the current simulation cycle. On the other hand, the
RSU in the HCPC Vehicle-Centric system does this on a
vehicle level. It uses the past prediction performance of
this particular vehicle to compute and determine what is
the best option for the vehicle in the current cycle. The
advantage of the Vehicle-Centric system is that it allows
‘‘customization’’ for different vehicular users, which will
intuitively benefit individual users because the best decision
is customized for them. The two systems use different
window sizes (WS) for backtracking length to calculate
past prediction performance because for the Vehicle-Centric
system, to obtain a similar past prediction sample size it needs
longer backtracking length i.e., larger WS than RSU-Centric
system. We summarize the switching mechanism of HCPC
system in Algorithm 1 and meanwhile, a comprehensive
flow of the system in the flowchart is shown in Figure 2.

In a proactive caching-enabled vehicular network, the
objective is to realize seamless content delivery to vehicular
users. This is achieved by a high cache hit ratio which
relies on accurate mobility prediction. Therefore, achieving
high prediction accuracy is the objective of the hybrid
cMAB proactive caching system. In the following, the
detailed implementation and design of the two parallel cMAB
prediction algorithms will be discussed.

C. TWO PARALLEL cMAB-BASED MOBILITY PREDICTION
ALGORITHMS
Finding the best RSU to pre-cache relevant content for a
vehicular user is a matter of mobility prediction. It is crucial
that the currently associated RSU is able to predict the next
possible RSU the vehicle is about to access, as accurately as
possible. As discussed earlier, a cMAB problem is composed
of action set, context set, and rewards. By taking appropriate
actions, the agent hopes to maximize its payoff eventually.
In the next RSU proactive caching problem, the currently
connected RSU helps a vehicle to continue the unfinished
content transmission immediatelywhen it reconnects to a new
RSU, provided that the new RSU has the requested content.
This completely depends on whether the last RSU predicts or
selects the correct RSU from its neighboring RSUs. If it was

Algorithm 1 SwitchingMechanism in Hybrid cMAB
Proactive Caching System

while not the end of the test do
if Vehicle Vu connects to RSU m then

Predictions by parallel algorithms:
PD← Dual-context cMAB;
PS ← Single-context cMAB;
Finalize prediction PF - switching scheme:
Vehicle-Centric System: Extract past
predictions of Vu made by RSU m in the last
WS tests;
RSU-Centric System: Extract past predictions
of all vehicles made by RSU m in the lastWS
tests;
Compute cumulative average accuracy:
AccD← Dual-context cMAB;
AccS ← Single-context cMAB;
if AccD > AccS then

PF ← PD;
else

PF ← PS ;
end

end
end

a correct prediction, positive feedback is given; otherwise,
negative feedback is generated. From this point of view, they
resemble each other in terms of action (RSU) selection and
reward (feedback) generation. How the mobility prediction
is modeled as a single-context cMAB problem has been
elaborated on in [7]. However, the proposed dual-context
cMAB algorithm differs in terms of the dimension of
context. The remainder of this subsection will focus on the
composition of the context in the dual-context cMAB in
contrast to the single-context cMAB, and introduces how to
solve them with the variable learning rate proposed in this
paper.

1) Context in cMAB In cMAB problems, a specific
Q-table that consists of multiple actions’ quality values
(Q-value) is associated with specific context s ∈ S.
The agent aims to learn a Q-table of s. Generally, the
purpose of introducing context is to help the agent
make better decisions compared to a general MAB
problem (i.e., non-contextual MAB). The effectiveness
of single-context cMAB with the previous RSU as the
context has been proved in [7] since this information
is a useful source to help RSUs distinguish the
incoming directions of vehicles. Despite its excellent
performance, there may still exist occasions where
the RSU’s actions have close Q-values, which results
in high uncertainty and limits the prediction accu-
racy. Therefore, it is meaningful to investigate the
performance of cMAB with additional context from a
different dimension and this motivates the proposal of
the Dual-context cMAB-based algorithm.
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FIGURE 2. Flowchart of the Hybrid cMAB Proactive Caching System: this is a general cycle of an agent RSU serving a connecting vehicle, from
Start when a vehicle connects to the RSU, to Finish when its action-value table is successfully updated with corresponding rewards and relevant
prediction data is stored sufficiently.

Specifically, the context in the Dual-context cMAB-
based Mobility Prediction algorithm combines
two-dimensional context i.e., vehicle ID and previous
RSU. As in single-context cMAB, the information
of previous RSUs is easily accessed and used as a
reference to such directions compared to other sorts of
information e.g., road information, vehicle angle, etc.
Moreover, the use of vehicle IDs, sometimes referred

to as OBU IDs in literature e.g., [15], as additional
contextual information is also legitimate as the IDs are
important and useful identifiers in the next-generation
vehicular networks. In both algorithms, when the agent
RSU needs to predict the next RSU (action selection)
for a newly connected vehicle, the vehicle’s relevant
context will first be identified, which corresponds
respectively to vehicle ID plus previous RSU as
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dual context or previous RSU only as single context.
The task of the agent RSU is to learn the action
values associated with the identified context through
trial and error. This enables the agent RSU to solve
separate bandit tasks associated with them, thereby
guaranteeing a more effective policy learned. Since the
dual-context cMAB solution is tailored to a specific
vehicle, in principle it is likely to provide a more
accurate prediction than single-context cMAB. The
context of dual-context cMAB can be described as
follows:
• Given an RSU m ∈ M = {m1,m2, . . . ,mM }
and a connecting vehicle with ID v ∈ V =
{v1, v2, . . . , vL}, the RSU m can detect vehicle
v’s previous connected RSU n which should be
one of the neighbors of RSU m, i.e., n ∈

N = {n1, n2, . . . , nN }. Combined with the already
known vehicle ID v, the dual-context s can be
identified as s→ ⟨v, n⟩

• With the identified context s, the RSU m can
retrieve the Q-table associated with s so that an
action can be predicted properly according to the
action selection algorithm. If there does not exist
suchQ-table, it will initialize one for the combined
context s and perform its decision.

2) Mobility prediction Mobility prediction (i.e., next
RSU prediction) in the modeled cMAB-based predic-
tion algorithms is essentially an action decision for
an agent RSU. Action selection plays an important
role in solving cMAB problems and is fundamentally
based on the estimated true values of actions. In a
cMAB problem, the learning agent learns its actions’
quality values corresponding to a type of context
through trial and error. We use Q(a | s) to denote
this value and name it Q-value as in Q-learning
[10], [22], where a ∈ A and s ∈ S. The agent
then uses the corresponding exploration-exploitation
scheme (i.e., ϵ-greedy) to select the appropriate action
based on their Q-values: the best action is selected
with a probability of 1 − ϵ; Otherwise, with small
probability ϵ, actions will be selected randomly with
equal probability regardless of their Q-values.

A =

 argmax
a

Q(a | s), 1− ϵ

random, ϵ
(1)

3) Q-value update For economy and clarity, we use
the simplified term Q(a) of Q(a | s) to denote the
Q-values of the actions under context s. In [7], we have
derived the recursive action-value updating formula
using incremental implementation [9]:

Qn+1 = Qn +
1
n

(rn − Qn) (2)

where Qn+1 is the value after the action a has been
selected for n times.

Equation (2) is further generalized as follows by
replacing the so-called step-size 1

n with a constant
learning rate α. This is because vehicular networks are
dynamic environments with varying traffic densities,
which results in a nonstationary bandit problem.
Therefore, recent rewards should be given more weight
when updating action values.

Q(a)← (1− α)Q(a)+ αr (3)

The Q-values of actions under a particular context
s ∈ S are hence updated according to Equation (3).
The agent RSU accepts a reward after taking an action
and observing its relevant outcome. The outcome is
translated to a reward through the reward function R.
In other words, given an action a taken at time step t
and the observed outcome as b (which may or may not
occur immediately), its reward can be computed with
rt = R(b). In the cMAB-modeled mobility prediction
problem, the outcome of an agent RSU predicting one
of its neighboring RSU as the next possible RSU is
either b = True or b = False. In order to introduce
punishment for a wrong prediction and inspired by the
reward function used in the Dynamic Spectrum Access
problem in [10], the reward function R adopted by this
work is:

r = R(b) =

{
1, b = True
−1, b = False

(4)

4) Win-Or-Learn-Fast variable learning rate The
learning rate α is a key parameter for any RL problems
including cMAB. It has a significant influence on the
dynamics of the learning process. A fixed learning
rate for both the positive outcome and the negative
outcome is often seen in the literature such as [24]
and [25]. Bowling and Veloso proposedWin-Or-Learn-
Fast (WoLF)method in [26] and provided themethod to
adapt different learning rates when different outcomes
are observed. The principle behind this method is that
the authors stated that the learning agent should learn
faster when it is losing and more slowly when winning.
This principle of learning faster when unsuccessful
or ‘‘cautiously’’ when successful is also relevant in
dynamic vehicular environments, e.g., when a change
in network topology or traffic distribution requires the
RSUs to readjust their learned policies. Besides, this
feature of WoLF also encourages exploration in the
early stage of learning and is important in terms of
avoiding rapid convergence towards a local optimum
at the beginning of the learning process.
Therefore, a straightforward adaption of WoLF is to
split the value of the learning rate α in Equation (3)
into two cases, αwin and αlose: the Q-value is updated
with αwin if r = 1 and αlose if r = −1. Therefore,
the Equation (3) is rewritten using separate terms for
Q-value estimates before (Q(a)) and after the update
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Algorithm 2 cMAB-Based Next RSU Selection
Algorithm
Initialization (if not done): For RSU m ∈M with the
number of actions (RSU neighbors) Am, their
Q-values are initialized to Q(a) = 0 for a ∈ Am ;
while not the end of the test do

if A vehicle connects to RSU m then
Context detection:
Dual-context cMAB:
1. Detect context s1← previous RSU before
m;
2. Detect context s2← Vehicle ID ;
3. Dual context sD← s1 + s2 ;
Single-context cMAB:
Single context sS ← previous RSU before m
if s∗ (sD or sS ) is a new detection then

Create an entry of s∗ to its action values;
Initialize Q(a | s∗) = 0, ∀a ∈ Am;

end
Predict the next RSU a∗ (aD or aS ) by:
(aD | sD)← action taken based on Eq. (1);
(aS | sS )← action taken based on Eq. (1);

end
if Handover happens then

Reward r∗ (rD or rS ) generation:
rD← observe the reward of aD according to
Eq. (4);
rS ← observe the reward of aS according to
Eq. (4);
Update Q-tables of RSU m with rD and rS for
Dual-context cMAB and Single-context
cMAB by Eq. (5):
if r∗ is 1 then

Q(a∗ | s∗)← (1− αwin)Q(a∗ | s∗)+ αwin
end
if r∗ is -1 then

Q(a∗ | s∗)← (1− αlose)Q(a∗ | s∗)− αlose
end

end
end

(Q′(a)) as follows:

Q′(a) =

{
(1− αwin)Q(a)+ αwin, r = 1
(1− αlose)Q(a)− αlose, r = −1

(5)

Again, Q′(a) is still a simplified term of Q′(a | s) that
omits the context s. The learning agent RSU updates
Q-values of its actions for each independent context s
using Equation (5).

As mentioned earlier, the single-context cMAB adopted
in [7] is enhanced in this paper to accommodate the
WoLF. To sum up, the two underlying parallel cMAB-based
prediction algorithms in HCPC Vehicle-Centric system are
summarized in Algorithm 2. They are referred to as
dual-context cMAB and single-context cMAB, respectively.

V. SIMULATION AND PERFORMANCE EVALUATION
A. SIMULATION SETUP
1) TEST SCENARIOS
Three vehicular test scenarios are designed in this paper
to simulate realistic traffic scenarios and the corresponding
test data is generated by Simulation of Urban MObility
(SUMO) [27]. They are summarized as the following:
• Scenario I - Commuting traffic:
This scenario aims to simulate daily commuters in
reality. Normally, such commuting vehicles depart and
arrive from one area in a city to another. We focus
on two urban areas, Las Vegas as the primary city
and Manchester as the secondary city to generalize
the application of the proposed HCPC Vehicle-Centric
system on two cities with two very different road
layouts. 5 traffic zones (TAZs) are defined in SUMO
to simulate realistic residential and workplace areas
(assuming that a TAZ contains both areas) and each two
of them form a TAZ pair, which results in 20 TAZ pairs.
10 vehicles commute between a TAZ pair, resulting in
200 vehicles in total. Figure 3a and Figure 3b show the
distribution of the TAZs and RSUs in two cities.
Another feature of commuting traffic is that commuters
generally follow a point-to-point daily routine. Thus,
to approximate this pattern, a specific vehicle traveling
between two TAZs departs from a specific road in the
originating TAZ as its home address and arrives at a
specific road in the terminating TAZ as its workplace
address, which is referred to as a ‘‘departure trip’’
and, conversely, as a ‘‘return trip’’. A ‘‘departure test
trace’’ and a ‘‘return test trace’’ consist of 200 departure
trips (i.e., vehicles) and 200 return trips, respectively.
Furthermore, an individual vehicle is associated with
an ID (ranging from 0 to 199 in this case) and its
ID remains unchanged throughout all the test traces
which reinforces the fact that they are commuters.
Figure 3c and Figure 3d show an example of routes of
all commuting vehicles in the two cities.

• Scenario II - Random traffic:
This scenario is an extremely random scenario where
vehicles randomly depart and arrive at locations on
the map, independent of TAZs, but still follow the
shortest path. Additionally, vehicle IDs in one test
trace are different from those in another test trace (i.e.,
no duplicated IDs exist). This scenariomay not be totally
realistic but is meaningful to assess the performance
of the proposed proactive caching system under such
extreme circumstances. For consistency, there are also
200 random trips in each test trace of this scenario.
Figure 3e and Figure 3f show an example of this scenario
in the two cities.

• Scenario III - Mixed traffic:
In reality, it is very likely that the daily traffic in an urban
area is mixed. In other words, it is composed of both
commuting traffic and random traffic. The former is the
commuters and the latter is generally new and random
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FIGURE 3. Vehicle routes of different test scenarios in two urban areas: for clarity, the positions of RSUs in (c) - (f) are shown in green dots. Their labels
can be mapped to (a) and (b), respectively.
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FIGURE 4. Cumulative prediction accuracy of the five proactive caching
systems in Las Vegas - Commuting Traffic Scenario.

FIGURE 5. Cumulative prediction accuracy of the five proactive caching
systems in Las Vegas - Random Traffic Scenario.

traffic going through the area. Therefore, the purpose of
Scenario III is to simulate this more realistic scenario
and is a mixture of Scenario I and II. For simplicity,
traffic is mixed with an equal percentage of 50%,
which results in two groups of vehicles: 200 commuting
vehicles and 200 random vehicles, in each test trace of
Scenario III. In addition to the mentioned traffic features
in Scenario I and II, this test scenario also differentiates
the two vehicle groups by their IDs (i.e., randomvehicles
do not use IDs ranging from 0 - 199). An example of
this scenario can be referred to as the combination of
Figure 3c and 3e or Figure 3d and 3f.

2) TRAFFIC SIMULATION
Each of the above scenarios has 200 test traces includ-
ing departure test traces and return test traces. These
200 test traces are organized in the order of departure-
return-. . . -departure-return during simulation for simulating

FIGURE 6. Cumulative prediction accuracy of the five proactive caching
systems in Las Vegas - Mixed Traffic Scenario.

a complete workday in an urban area, though this is not
important for Scenario II which simulates completely random
traffic.

On the other hand, 200 test traces also aim to simulate
200 workdays and the simulation period in SUMO is between
8 am to 9 am for departure trips and 5 pm to 6 pm for
return trips. The vehicles’ routes are defined by the tool
duarouter and follow the Shortest or Optimal Path Routing
rule. They depart at the maxSpeed and follow the default Car
The Following Model is used to set the maximum safe speed
in the sense of being able to stop in time to avoid a collision.
Other road behaviors apply as well such as lane changing,
acceleration/deceleration, intersections, etc. Technical details
about these settings can be found in SUMO documentation.1

3) NETWORK SIMULATION
Discrete event-driven system simulation [7], [13], [28] is
a common simulation method to use in wireless networks
including vehicular networks. It enables simulation to
perform through a series of events. Such discrete events are
generated from SUMO test traces as described earlier, which
include departure and arrival of vehicles, content request,
handover, and finishing of content consumption. A complete
cycle of the simulation is 200 test traces, each of which is
technically a workday. As this is an online learning process,
the RSUs make predictions as they learn throughout the
simulation cycle and become increasingly knowledgeable as
the simulation runs. In addition, Table 1 summarizes the
important parameters used in traffic simulation and network
simulation.

B. PERFORMANCE EVALUATION
Five proactive caching systems are studied to evaluate their
prediction performance:
• HCPC Vehicle-Centric System: The vehicle-centric
variant of the hybrid cMAB system. It implements the

1https://sumo.dlr.de/docs/
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TABLE 1. Simulation parameters.

switching mechanism at the vehicle level. The window
size WS chosen for extracting the historical prediction
data is 20 in order to obtain sufficient past prediction
samples.

• HCPC RSU-Centric System: The RSU-centric variant
of the hybrid cMAB system. Different from HCPC
Vehicle-Centric system, it focuses the switching mecha-
nism at the RSU level. The window size WS chosen for
extracting the historical prediction data is 3, because it is
sufficient to obtain a similar sample size with WS = 20
in the Vehicle-Centric system.

• Previous-RSU cMAB-based Proactive Caching System:
This is the system that only uses the previous RSU as
the context in cMAB. Its superiority has been tested and
verified in the work [7]. In this paper, theWoLF variable
learning rate is further implemented in order to maintain
consistency with the HCPC system.

• CPT+ based Proactive Caching System: This system is
based on the sequence prediction algorithm Compact
Prediction Tree+ (CPT+). Different from the work [13],
we have adjusted the algorithm to be used in an online
mode. Briefly, an RSU trains its prediction tree model
with all the available vehicles’ data and when predicting
the next RSU for a vehicle, it matches all the past
RSUs this vehicle has connected and gives out the most
possible RSU (highest score). To some extent, CPT+
also makes use of ‘‘context’’.

• PPM based Proactive Caching System: This system
implements the first-order Prediction by Partial Match-
ing (PPM). It is a broadly used technique for context
modeling and prediction as in [16]. Again, we have
adjusted this technique to exploit online learning.

Remark: For clarity, the above five systems are referred to
and denoted in the following figures as: HCPC Vehicle-
Centric, HCPC RSU-Centric, PrevRSU-cMAB, CPT+ and
PPM, respectively.

1) EVALUATION METRICS
The performance of proactive caching system is assessedwith
cache hit ratio. For these systems, cache hit ratio completely

FIGURE 7. Cumulative prediction accuracy of the five proactive caching
systems in Manchester - Mixed Traffic Scenario.

FIGURE 8. Prediction accuracy of the Vehicle-Centric and RSU-Centric
hybrid systems showing only commuting vehicles in two cities - Mixed
Traffic Scenario.

depends on how accurately a learning RSU can predict or
select the correct next RSU. In other words, a selected action
is considered correct if and only if it matches the actual RSU
that a vehicle transits to. Therefore, we define the following
metrics for system evaluation:

• Cumulative Prediction Accuracy with Sliding Window:
Denoting the total number of predictions as Qpredictioni
and correct ones asQcorrecti of particular test trace i ∈ N .
A fixed sliding window sw is applied to the cumulative
accuracy. Thus, prediction accuracy PAn up till test trace
n ∈ N is defined as:

PAn =


∑n

i=1Q
correct
i∑n

i=1Q
prediction
i

, n ≤ sw∑n
i=n−sw+1Q

correct
i∑n

i=n−sw+1Q
prediction
i

, n > sw
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FIGURE 9. An illustration of a vehicle’s departure routes in Scenario IV - Commuting traffic with random Origin-Destination (OD). The figure shows all the
100 departure routes (overlapped) of a vehicle, where all hollow circles indicate the starting points and all solid circles indicate the ending points. All the
starting or ending points are located in their own TAZ, which means that the vehicle follows its daily routine from one TAZ to another but varies in
location.

2) SIMULATION RESULTS
We treat Las Vegas as our primary city for simulation.
Therefore, all three scenarios have been tested with the traffic
data of Las Vegas. As the purpose of using Manchester city is
to show the generalization of the proposed system to different
road layouts, only the most detailed Scenario III is included
to achieve this. In the following, we demonstrate and analyze
these results on a scenario basis.

A) Scenario I - Commuting traffic
Figure 4 demonstrates the prediction performance of
the five proactive caching systems under Commuting
traffic scenario in Las Vegas. As the traffic pattern of
this scenario focuses on purely commuting traffic, their
routes should be predictable. The accuracy of the two
HCPC systems that reach nearly 95% after convergence
further validates this. The lost 5% accuracy results from
ϵ-greedy exploration algorithm where 0.05 is adopted.
The significant superiority of HCPC systems benefits
from the switching mechanism which guarantees the
best accurate action to be taken. It is obvious that the
prediction accuracy of both HCPC systems does not
show a clear difference and again, this is due to 1) the
nature of the commuting traffic pattern in this scenario
and 2) the introduction of vehicle ID in the dual-context
cMAB algorithm. After a certain period of learning
(approximately 20 test traces as depicted in Figure 4),

overall the RSUs in both HCPC Vehicle-Centric and
HCPC RSU-Centric tend to finalize their decisions
with the prediction of dual-context cMAB.
They outperform the PrevRSU-cMAB system by 20%
and nearly 30% over the CPT+ system despite the
fact that it is experiencing a slow-growing trend as
the CPT+ model gets increasingly mature with more
data being used to establish its model. With this
trend, we could infer CPT+ may reach a similar
level of performance as HCPC systems perhaps after
1000 more test traces. Nevertheless, this is also its
limitation in terms of adaptability and flexibility. The
first-order PPM system performs the worst because
essentially it is the same to the baseline Probability-
based Proactive Caching System investigated in [7] and
therefore cannot break the intrinsic limit of a certain
scenario.

B) Scenario II - Random traffic
The performance of the systems under extreme Ran-
dom traffic in Las Vegas depicted in Figure 5 shows
obvious degradation, especially for cMAB-based sys-
tems. Recall the traffic pattern in this is extremely ran-
dom including both randomnesses in routes and vehicle
IDs. Due to this nature, the HCPC systems always
finalize their predictions with single-context cMAB
because the accuracy of dual-context cMAB is con-
stantly outperformed by single-context cMAB. This
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FIGURE 10. Overall prediction accuracy comparison in
Scenario IV - Commuting traffic with random Origin-Destination (OD).

makes both systems identical to the PrevRSU-cMAB
system that uses previous RSU only as context. Despite
this, they still outperform CPT+ and PPM-based ones.
Such randomness in this scenario is also reflected in the
oscillations of the result curves, unlike a much more
smooth curve as in the purely commuting scenario.

C) Scenario III - Mixed traffic
Prediction performance of the proactive caching sys-
tems in Las Vegas and Manchester under the mixed
scenario is shown in Figure 6 and Figure 7 respectively.
HCPC Vehicle-Centric system outperforms the other
four systems and shows a similar performance of nearly
80% accuracy in both cities. Therefore, the proposed
HCPC Vehicle-Centric system can be generalized and
applicable in various urban areas.
Compared to Commuting traffic and Random traffic
in Scenario I and II, its accuracy falls in between.
One reason for this is because of the co-existence of
both commuting traffic and random traffic. On the
other hand, it is in this relatively more realistic
scenario that the proposed HCPC Vehicle-Centric
system shows its superiority over its counterpart HCPC
RSU-Centric system that has 70% of overall prediction
accuracy. Thanks to its vehicle-centric feature, the most
possible prediction is always made for an individual
vehicular user (most likely a commuter vehicle)
independent from other users. However, an RSU in
the HCPC RSU-Centric system may make a less
accurate prediction for a vehicle due to its RSU-centric
feature. For instance, a vehicular user may benefit
if the RSU finalizes its prediction for this user with
dual-context cMAB but for historical reasons, the RSU
still believes the prediction of single-context cMAB
can benefit most of the users connecting to it. This
is when inaccurate predictions are made. In contrast,
the HCPC Vehicle-Centric system avoids such situ-
ations by guaranteeing that the finalized prediction

FIGURE 11. Prediction performance comparison of RSU 10 in two
commuting traffic scenarios in Las Vegas: Scenario I - Commuting Traffic
vs Scenario IV - Commuting traffic with random OD.

is vehicle-specific. To further validate this argument,
Figure 8 demonstrates the prediction accuracy of all
the commuting vehicles in the two HCPC systems
in Las Vegas and Manchester. For Las Vegas, the
cumulative accuracy of these vehicles in the HCPC
Vehicle-Centric system is the same as in the pure
commuting scenario and is not affected by the random
traffic, but they experience degradation in the HCPC
RSU-Centric system. Although not shown, this is also
a valid argument in the purely commuting traffic in
Manchester.

VI. EXTENDED STUDY ON AN ALTERNATIVE
COMMUTING TRAFFIC SCENARIO
This section aims to provide insights into situations that
may impact the accuracy of dual-context cMAB, through
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FIGURE 12. Partial Departure routes of vehicle 90 in Las Vegas.

analysis of individual vehicles and RSUs in a special
commuting traffic scenario which is an intermediate between
Scenario I and Scenario II in Las Vegas in Section V.
In fact, it is identical to the scenario in [7], except that [7]
did not consider return trips of vehicles. In addition to
showing the general prediction performance of the proactive

caching systems, there will be a comprehensive compar-
ison to the point-to-point commuting traffic scenario in
Section V. By analyzing the unfavorable factors that limit
the performance of dual-context cMAB, this section also
aims to conclude the common limitations of MAB-based
algorithms.
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The following is a detailed description of this scenario:

• Scenario IV - Commuting traffic with random
Origin-Destination (OD) This is a special variant of
Scenario I in Section V. The only difference is that
commuters in this scenario do not follow a fixed point-
to-point daily routine. Instead, they may depart and
arrive at random locations within the departing and
arriving TAZs. Therefore, it is still called a commuting
scenario and may exist in reality where people do not
own fixed parking places and park anywhere nearby.
Figure 9 shows a concrete example of this scenario.

As depicted in Figure 10, while both HCPC systems still
outperform other proactive caching systems, they experience
a degradation in accuracy compared to Scenario I - Com-
muting traffic. This is mainly because of the randomness
in origins and destinations within TAZs. To provide more
insight into this, RSU 10 is selected for further analysis. Note
that only its performance in the Vehicle-Centric system is
analyzed here. As shown in Figure 3(a), RSU 10 has four
actions: {6, 9, 11, 15}, and it is very close to TAZ 2. However,
its overall prediction accuracy in Scenario I - Commuting
traffic and Scenario IV - Commuting traffic with random
OD shows a disparity in Figure 11(a). RSU 10 only predicts
around 75% accurately in Scenario IV in contrast to 95%
accuracy in Scenario I.

Figure 11(b) further disaggregates its overall performance
into the separate performance of the two underlying cMAB
algorithms. It is obvious that in both scenarios, dual-
context cMAB dominates the performance at some point
during the simulation, though this happens much later
in Scenario IV than in Scenario I. Despite the notable
oscillations of single-context cMAB in random OD scenario,
the performance difference of single-context does not seem
to be significant (both around 62%). Given the final
overall accuracy, the gain brought by dual-context cMAB is
considerable.

However, for some vehicles that RSU 10 predicts for
in Scenario IV, dual-context cMAB does not work accu-
rately and is even outperformed by single-context cMAB.
Therefore, the problem now becomes what causes such a
remarkable degradation of dual-context cMAB in the two
scenarios. Take vehicle 90 as an example and consider the
last 30 test traces, i.e., from trace 171 to 200. The followings
are some observations based on the analysis of the data of
vehicle 90:

• Prediction accuracy of the last 30 traces is 50%
• Dual-context combinations, (Vehicle ID, Previous
RSU), used by RSU 10 to make a prediction for vehicle
90 are: (90, 6), (90, 9), and (90, 15)

• Basically, all the wrong predictions happened in vehicle
90’s departure trips, from TAZ 3 to TAZ 2 (referred to
Figure 3(a)), under context (90, 15)

• The prediction accuracy under context (90, 15) is
only 6.67%

As mentioned earlier, the main contributor to this inaccuracy
is the randomness in the arrival TAZ, TAZ 2 in this case.
Figure 12 illustrates some partial departure routes of vehicle
90 before it arrives TAZ 2. As shown in Figure 12a, vehicle
90 connects to RSU 6 or RSU 9 after RSU 10 because
its destination is somewhere in TAZ 2. The proportions of
such transitions to RSU 6 and RSU 9 in the last 30 test
traces are 53% vs 47%, respectively. Consequently, the
Q-values of context (90, 15) of RSU 10 end up converging
to ⟨−0.9980,−0.9965,−0.9980,−0.9980⟩. This means that
RSU 10 believes that no convincing action exists and it is very
easy to make inaccurate predictions with Q-values like these.
In contrast, such a situation is rare in Scenario I as shown
in Figure 12b, because it simulates point-to-point traffic and
such randomness in TAZs is minimized. As a result,Q-values
of ⟨−0.5000, 0.9927,−0.5000,−0.500⟩ of context (90, 15)
is achieved at the end of the simulation, which means that the
second action i.e., RSU 9 is a convincing action to take to
achieve accurate prediction.

To sum up, the above situation where Q-values are all
negative or even close to −1 may happen in any MAB-based
algorithms including dual-context cMAB, single-context
cMAB as well as non-contextual MAB as studied in [7].
Every dimension of context introduced is to help reduce the
uncertainty of the agent RSU about its actions. Therefore,
to resolve the above dilemma, the agent RSU may need
further information on top of dual context, e.g., the lane
in which the vehicle is currently positioned. This will be
discussed in future works.

VII. CONCLUSION
This paper addressed the problem of proactive caching at
the next RSU with a Hybrid cMAB Proactive Caching
System that exploits two parallel underlying cMAB-based
prediction algorithms: Dual-context cMAB and Single-
context cMAB. The system allows RSUs to adaptively
finalize their predictions between two algorithms. The hybrid
system is further developed into two variants, Vehicle-Centric
System and RSU-Centric System, and their prediction
performance is evaluated by comparing with three other
systems, namely Previous-RSU cMAB, CPT+, and PPM,
under three realistic-like traffic scenarios in two urban areas
of Las Vegas, USA and Manchester, UK. Simulation results
have shown the excellent performance of the proposed hybrid
proactive caching system. It has reached approximately 93%
prediction accuracy under the Commuting traffic scenario
and the Hybrid Vehicle-Centric System, in particular, still
reaches nearly 80% accuracy in the Mixed traffic scenario
while keeping the excellent prediction performance for
commuting vehicles the same as in the Commuting traffic
scenario. In addition, an extended study was conducted to
provide discussion on and insight into the potential limitation
on the performance of MAB learning systems. The results
of the two cities demonstrate its superiority over the other
three proactive caching systems, as well as its adaptability
and applicability to different test scenarios and road layouts.
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