
Received 25 October 2022, accepted 4 January 2023, date of publication 16 January 2023, date of current version 19 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237075

A Generic Interface for x-in-the-Loop Simulations
Based on Distributed Co-Simulation Protocol
MIKEL SEGURA 1, TOMASO POGGI 2, AND RAFAEL BARCENA 3, (Member, IEEE)
1Embedded Systems Group, IKERLAN, Arrasate, 20500 Basque Country, Spain
2Mondragon Unibertsitatea, Arrasate, 20500 Basque Country, Spain
3Department of Electronic Technology, University of the Basque Country (UPV-EHU), Bilbao, 48013 Basque Country, Spain

Corresponding author: Mikel Segura (msegura@ikerlan.es)

This work was supported by Basque Government through the ELKARTEK Program under the AUTOEV@L Project
under Grant KK-2021/00123.

ABSTRACT Co-simulation is a key step in the development of today’s complex cyber-physical systems
(CPS), specially in the integration and validation activities. However, performing a co-simulation involving
models developed in different environments and possibly deployed in different platforms with mixed
real-time and non real-time constraints is a challenging engineering task. A promising technology that could
help overcome communication and synchronisation difficulties is the non-proprietary standard Distributed
Co-simulation Protocol (DCP). This standard defines an application-level communication protocol, indepen-
dent of the platform and the communication medium, that regulates the exchange of information between the
co-simulation entities. This paper presents a co-simulation interface based on the DCP standard. It offers a
novel approach to apply the DCP standard. Instead of using it as a model encapsulation mechanism, having
to develop an specific DCP slave for each application, it is proposed to use it as a generic co-simulation
interface. To this end, a Simulink library has been developed, allowing to connect models developed in
Simulink with the outside world in an standardised way. Moreover, by exploiting the code generation
potential of Simulink, a wide variety of devices become accessible, thus enabling x-in-the-loop simulations,
which are commonly used tests in the verification and validation process of CPSs. This library has been tested
in a soft real-time co-simulation application between a Simulink instance and an application running on a
Xilinx Zynq Ultrascale+ System-on-Chip. As an additional contribution, an analysis of DCP synchronisation
problems when simulating closed-loop systems composed of two slaves is performed. Finding that the main
causes are the occurrence of random delays and that the simulations of the two slaves start at an arbitrary
time. A possible solution to this problem is also presented.

INDEX TERMS Control systems, co-simulation interface, distributed co-simulation protocol, model-based
design, model testing, simulink, x-in-the-loop.

I. INTRODUCTION
The concept of Cyber-Physical System (CPS) is defined in
multiple ways throughout the literature, however, two charac-
teristics are always present [1]: i) they are distributed systems
where computational processes interact with the physical
world; and ii) they are strongly influenced by communication
aspects, such as interconnection or collaboration. Commonly
mentioned examples include autonomous automobile sys-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohsin Jamil .

tems, smart grid systems, process monitoring and control sys-
tems, or automatic aeronautical pilot systems. All of them are
composed of multiple components, designed separately and
integrated once their operation has been tested [2]. This vari-
ety of elements of which the CPS are composed, make them
complex systems, in which it is common that both discrete
and continuous dynamic elements converge [3]. Therefore,
the process of development and subsequent verification and
validation of a CPS is not exempt from challenges. However,
there is a methodology that helps to address them, namely
model-based design (MBD) [4]. This process is based on

5578 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-8782-5464
https://orcid.org/0000-0003-3649-253X
https://orcid.org/0000-0002-0799-5675
https://orcid.org/0000-0002-8835-2451


M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

the creation of a model of each component, where only
its relevant characteristics to perform a specific task are
considered [1].

CPS are characterised by a heterogeneous nature, since
different abstraction levels are required for their physical and
computational components, as well as for their interactions.
Therefore, each component is usually modelled in a differ-
ent modelling and simulation (M&S) environment [5]. This
can cause problems when integrating and simulating them
for testing, either because of the communication interface
between environments or because errors have arisen when
porting a model created in one tool to another [6]. There-
fore, to carry out the tasks involved in the whole design
and validation process, interoperability between the tools
plays a significant role [7]. To tackle this issue, the concept
of co-simulation has emerged, where a framework is used
to couple different execution environments, thus enabling
the simulation of such complex systems. The concept of
co-simulation is not limited to the interaction between sim-
ulation environments, but also to the interaction between a
model simulated in some M&S environment and a physical
element [2].

Nowadays, to deal with the development of the model-
based systems, the market offers numerous M&S environ-
ments, such asMATLAB/Simulink byMathworks or Dymola
by Dassalt Systèmes, that allow to generate code from the
developed models and to deploy it directly in a hardware
platform. If exploited correctly, this workflow helps to reduce
the design time and to eliminate errors caused by hand cod-
ing. On a parallel level, there exist associations dedicated
to the development of standards to facilitate the analysis,
management and (co-)simulation of models. Of particular
interest is the Modelica Association, which promotes and
maintains open access standards, such as: Modelica Lan-
guage, Functional Mock-up Interface (FMI), and Distributed
Co-Simulation Protocol (DCP) [8]. Modelica Language is a
proposal for standardizing the modelling language. FMI is
oriented to the exchange of models between different M&S
tools. It was created with the aim of fostering the collabo-
ration and innovation between suppliers and developers of
the final products. DCP aims at defining a non-proprietary
co-simulation protocol for integrating real-time systems into
co-simulation environments, specially for use in distributed
HIL simulations.

Despite the availability of these tools, performing a
co-simulation between a M&S environment and a hard-
ware platform remains difficult, mostly due to interfacing
issues [6]. As it is proposed in [9], the first step in tackling
this specific problem is to establish a real-time co-simulation
architecture. The need for a real-time multidisciplinary com-
munication framework is also mentioned in [10]. At the same
time, [11] claims that a standardised solution is needed for
the coupling of simulation tools and/or test benches. After
a literature review on different simulation standards, we con-
cluded that DCP can solve this problem, as it was specifically

designed to integrate real-time systems into (co-)simulation
environments. Additionally, as it is a non-proprietary stan-
dard, its usage is opened to the whole community. At the same
time, we observed that DCP is a relatively new standard, thus,
a few implementation of it are available. Moreover, the few
mentions on Matlab/Simulink are particularly remarkable,
as it is one of the most popular MBD tool in the field of
CPS design. Indeed there is not a direct DCP plugin for
Simulink and previous integrations of a Simulink model
into a DCP co-simulation scenario were performed by using
additional tools such as xMOD [12] or Model.Connect [13].
Therefore, we decided to implement the DCP standard in
MATLAB/Simulink to reach a large sector of the engineering
community. Another aspect that we have detected in the DCP
literature is that it is used as a wrapper for the model to be
communicated [14]. Thus, in order to communicate different
models/systems, it is necessary to create a particular DCP
slave for each one. In this article, instead, we propose to
use the DCP as a generic communication interface, where
several instances of the same slave can be used to perform the
communication. In this way, we split the modelling and co-
simulation tasks, allowing the user to focus on the modelling
activities.

Even though our solution is based on Simulink, which is a
proprietary environment, the possibility to generate C/C++

allows us to overcome this limitation. Our implementation
will bring clear benefits to the state of the art of co-simulation.
First of all, it constitutes an interface between Simulink
and other M&S environments. Thus, it will be possible to
co-simulate Simulink models with other simulators, provided
that they implement a DCP interface. This interface could
be implemented either by adapting the pre-existent C++

code [15] or by generating C code from our solution and than
integrating it in another simulator. Moreover, the availability
of a model implemented in DCP together with the possibility
to generate code for embedded systems open the doors to per-
form Processor-in-the-loop (PIL) or FPGA-in-the-loop (FIL)
simulations on real-time platforms. Indeed, in these type of
simulations our model of DCP could be deployed on a remote
embedded platform.

Summing up, the main contribution of this paper is a
Simulink library based on the non-proprietary DCP standard.
The aim of this implementation is to provide a generic co-
simulation interface, allowing to link Simulink models with
the outside world in an standardised way. On this basis, two
further interesting contributions are also made. First, to test
the library, we present an use case in which a closed-loop is
simulated, linking a plant modelled in Simulinkwith a control
implemented in an embedded device, concretely in a Xilinx
Zynq Ultrascale+ development board. Second, we conduct
an analysis of timing and synchronisation issues when using
DCP for closed-loop systems simulation. From this analysis
we propose a DCP synchronisation mechanism. It is impor-
tant to remark that DCP does not include any synchronisation
mean between models and simulations.

VOLUME 11, 2023 5579



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

The paper is structured as follows. Section II establishes
the bases of the research explaining three core concepts:
MBD, co-simulation, and review of standards for model
analysis and simulation. Section III explains the Simulink
implementation of DCP. Section IV focuses on timing and
synchronisation issues. Section V mentions the limitations
of the aforementioned implementation. Section VI introduces
the use case. Finally, Section VII resumes the main achieve-
ments of this work.

II. BACKGROUND AND RELATED WORK
The work behind this paper is based on three pillars: MBD,
co-simulation, and simulation standards. Therefore, for a cor-
rect understanding of the paper, it is convenient to understand
these concepts and to analyse related works on these topics.

A. MODEL BASED DESIGN
MBD is a widely used strategy in the development of engi-
neering systems [7]. It is intended to reduce development time
and to improve the quality of the system. To this end, the
reuse of models and tests is promoted, thus avoiding iterative
manual work and optimising the testing phase [16]. With
this methodology instead of using physical prototypes and
textual specifications, a model of the system to be developed
is created and, through a series of simulations, its behaviour
is verified in order to check its veracity. A model is a virtual
representation of the system that includes every component
relevant to reproduce its desired behaviour. Following the
standard MBD approach, the model of each part of the tar-
get system is modified and tested while undergoing various
simulation processes until the required behaviour is achieved.
Once this incremental process is terminated, it is possible
to generate the software code (e.g. C, C++, or HDL) that
define the model to deploy it directly in a specific hardware
platform [17]. Therefore, the use of this methodology not
only implies a reduction of the development time, but also
lowers costs and, by avoiding the use of real prototypes, also
prevents physical damage, either material or human [18].
Some examples where MBD is used to develop complex
systems can be found in [16], [18], and [19].

B. CO-SIMULATION
Co-simulation has emerged as the solution for the develop-
ment of the complex CPSs that are being created nowadays.
It is common for the elements that compose these systems
to be developed separately, not only with different tools, but
also by different vendors. Therefore, all these partial solutions
have to be integrated and this is where co-simulation comes
into play [20]. Within co-simulation, a growing practice is
distributed co-simulation [21], [22]. It refers to performing
an online co-simulation, linking systems that are located in
different geographical locations. It is especially useful for
integrating externally provided elements that have Intellec-
tual Property (IP) [23].

Hence, in short, co-simulation allows communication
between models developed in different M&S tools, thus
enabling each part of the system to be developed in a suitable
environment. Furthermore, it promotes modularity, which
means that it is possible to perform independent testing of the
models that compose the system. This way, it ease the replace-
ment of modules/models that compose the system, while at
the same time permitting the reusability of models. For these
reasons, it can be said that co-simulation is consistent with
the MBD paradigm.

In order to boost this potential, several projects have
emerged, such as MODELISAR, ACOSAR or EMPHYSIS;
which have led to the creation of different standards, such as
FMI, DCP or eFMI respectively. In Section II-C some of these
standards will be explained, with special emphasis on DCP.

Standard simulations and co-simulations are common
practice in MBD, since it is usual to pass through different
simulation phases, known as X-in-the-loop (XIL), to test and
verify the developed models, e.g. in [22], [24], and [25].
Figure 1 shows the main simulations that compose the XIL
concept in the field of control system design: Model-in-the-
loop (MIL), Software-in-the-loop (SIL), Processor-in-the-
loop (PIL) and Hardware-in-the-loop (HIL). It is important to
remark that a HIL simulation requires real-time conditions,
which implies that the response of the system should be
consistent with the timing of its environment [26]. That is to
say, rather than being fast, the system must react within the
precise time it is predicted to work. This and other features
that define HIL systems are discussed in [27]. Finally, FPGA-
in-the-loop simulations are special subset of PIL, where the
processing unit is an FPGA instead of a micro-controller.

FIGURE 1. X-in-the-loop simulations.

The market offers various solutions to perform these kind
of simulations, especially for HIL [28], [29]. However, these
tools lack of interoperability, i.e. it is usually hard or impossi-
ble to exchange models between them or to perform simula-
tions involving models developed in different environments.
This paper aims at addressing this interoperability problem
through the use of non-proprietary standards, fostering the
development of a co-simulation tool that can be integrated
in different environments and thus, to find a cost effective

5580 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

solution. Moreover, a generic SoC with an integrated
FPGA will be used, which also allows to perform such
simulations [24], [30].

C. STANDARDS FOR MODEL ANALYSIS AND SIMULATION
There exist three association specially focused in the
development of these kind of standards, namely, Modelica
Association, Institute of Electrical and Electronics Engineers
Standards Association (IEEE-SA), and Association for Stan-
dardization of Automation and Measuring Systems(ASAM).
Each of them has developed a number of standards, those of
which result of special interest:

• Standards of Modelica Association: Modelica Lan-
guage, Functional Mock-up Interface (FMI) and Dis-
tributed Co-Simulation Protocol (DCP).

• Standards of IEEE-SA: High-Level Architecture (HLA)
and Standard SystemC Language Reference Manual.

• Standards of ASAM: ASAM XIL, ASAM XIL-MA.
Within the literature, it is common to find works in which

these standards are used collaboratively. For instance, FMI
and HLA are combined in [31] and [32]. On the other hand,
there are works that compare them. This is the case of [33],
where the co-simulation potential of FMI and HLA, among
others, is discussed. The authors of [34] analyse the extent
in which some of these standards are used in continuous,
discrete and hybrid time simulations. After analysing these
standards, it clearly emerged that DCP is a non-proprietary
standard oriented to the integration of real-time systems into
co-simulation environments caught our attention. The fact
that it is a relatively new standard is also interesting, so its
potential is yet to be discovered. Seeing this, together with
the fact that it had no direct application in Simulink, a widely
used tool for modeling and simulation, we had the idea of
using DCP slaves as a generic interface that links Simulink
models with the outside world. This is the reason why this
paper will only focus on DCP standard, therefore, this is the
only standard that will be discussed in depth in this section.

The DCP standard originated from an ITEA project called
ACOSAR with the aim of introducing real-time devices into
co-simulation environments. It was later adopted and main-
tained by the Modelica Association. Regarding the docu-
mentation about DCP, the Modelica Association provides
the specification document [35] and an example of the DCP
library implemented in C++ [15]. For the reader convenience
the main characteristics of the protocol are summarised in the
remainder of this section.

DCP is an application-level communication protocol, inde-
pendent of the platform and the communication medium.
To enable the exchange of information between the co-
simulation entities, underlying transport protocols such as
Bluetooth, UDP or CAN can be used. It operates on a
master-slave architecture. Despite of this, its specification
only covers the definition of the slave, which includes the
data model, a finite state machine, and the communica-
tion protocol. The particular description of the slaves is
represented by XML files (DCPX), which includes

information such as supported transport protocol, operation
mode (i.e., Non Real Time (NRT), Soft Real Time (SRT),
or Hard Real Time (HRT)), time resolution, inputs, outputs,
etc. If SRT or HRT is chosen as operation mode, the commu-
nication will be done according to absolute real time, i.e., the
DCP entities must work synchronised with the Newtonian
time represented by a UNIX time stamp in UTC format,
which is defined in seconds with reference to January 1st,
1970, 00:00:00 UTC. The present work is focused on SRT
and HRT modes only.

The information exchange is done though packages called
protocol data unit (PDU). They are categorized in fami-
lies, namely: Control, Notification and Data. Within Control
families there are other two families, named Request and
Response. The functionality of each family is explained in
Table 1. All of them are structured by predefined fields,
the first one, called type_id, is common to all PDUs and
is where their type is specified. Thanks to these families,
DCP can perform different actions: exchange of simulation
data using DAT PDUs; transmit notifications through NTF
PDUs; and perform a configuration and control mechanism
based on a Request and Response pattern, where the master
is in charge of sending the PDUs of the Request family
(CFG, STC and INF), while the slaves confirm the reception
through RSP PDUs.

TABLE 1. Protocol Data Unit (PDU).

Regarding the provided library [15], it consists of sev-
eral source (.cpp) and header (.hpp) files that describe the
behaviour of a generic slave, i.e., they implement the descrip-
tion indicated in the specification document. Additionally,
an example which consist of a communication between a
master and a slave is also provided. In this example, the
definition of both entities is provided in different header
(.hpp) files. The particular functionality and the configuration
of the slave are hard coded in one of this files. Therefore in

VOLUME 11, 2023 5581



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

order to modify the functionality, this file must be manually
modified. The slave configuration affects different aspects,
such as the number of inputs and outputs, time resolution,
etc., and must be set in accordance with the previously men-
tioned DCPX file. It is worth to mention that in this example,
the DCPmaster reads the slave’s information from the DCPX
file, however, the slave do not use it. In the configuration
process, the master sends this information to the slave. The
latter compares it to see if the configuration that the master
is sending corresponds to the one programmed in the source
files.

Additionally, there are several works that help understand-
ing the standard and provide interesting contributions to DCP.
This is the case of [36], where the specification is summarised
and different examples for its application are also given. The
paper [37] provides a configuration mechanism based on a
bin packing algorithm. Specifically, the effect of changing the
distribution of the sizes of the PDUs is analysed with respect
to the variation of network load and to the robustness against
packet loss. In [38] a DCP master state machine is proposed;
it should be remembered that the specification only covers
the definition of the slave. In [39] time synchronisation is
discussed, which is one of the points that is not defined in this
protocol. This issue is also addressed in the current work, as it
has been one of the problems encountered when simulating
closed-loop dynamical systems. In [40] a working methodol-
ogy based on the IEEE1730 standard that is compatible with
the DCP standard is presented. In the presented use case, it is
of particular interest that one of the slaves is encapsulated in
an FMU. To accomplish this, the authors use the C++ library
provided in [15] and map the states of the DCP state machine
with the states of the FMI state machine. In [41] a proposal
to simplify the slave configuration process is made based on
the modelling of the co-simulation scenario.

There are also other publications that show interesting use
cases. In [13], for instance, a distributed co-simulation is
performed, i.e. the DCP is used to link two slaves located
in different countries. One of the slaves takes data from
a co-simulation platform called Model.CONNECT, where
models developed in different environments (e.g. MATLAB/
Simulink, FMU from Dymola and CarMaker) are running,
while the second slave is a small scale test bed. Of particular
interest is the use case shown in [12], where DCP is used to
couple on one hand, a DCP master in xMOD co-simulation
platform and, on the other hand, a DCP slave that works as
a client of CARLA software to control the simulation of a
3D virtual vehicle.

Summing up, DCP is a suitable tool to carry out dis-
tributed co-simulations, both in real-time and in non-real-
time. Additionally, the fact that it is independent of the
communication medium (e.g. UDP or CAN), i.e. it works
in a higher abstraction layer, provides a high degree of
versatility and independence form the target platform. This
point is very interesting in order to develop a generic com-
munication interface. Observing the applications mentioned
above, a particular slave has been created for each of them.

Contrarily, we propose to develop a generic DCP slave that
acts as a general communication interface between two or
more models running in different M&S environments. This,
together with the development in Simulink, which apart from
being a widely used tool in the development of models has a
direct application on various hardware platforms, we obtain
a multi-purpose tool that can greatly facilitate co-simulation.

III. DCP IMPLEMENTATION IN SIMULINK
This section presents how the DCP standard has been imple-
mented in Simulink. As a guide for this development, two
elements have been consulted: the DCP specification docu-
ment [35] and the example developed in C++ provided by
theModelica Association [15]. The proposed implementation
is based on the DCP standard version V1.0.0 released in
March 2019, which is the latest release at the time of writ-
ing this paper. In the description of the implementation the
references to specific clauses of the standard will be in italics
to better guide the reader. For a deeper understanding of the
protocol the reader is referred to the standard itself, which is
available publicly.

For the implementation of the DCP in Simulink, four
aspects were taken into account:

• DCP slave: We only implemented the DCP slave,
whereas we reused the existing master provided in [15]
to perform tests. Indeed, as mentioned in Section II-C,
the protocol only covers the definition of the slave,
whereas the design of the master is left open. This
is possible thanks to how the communication between
slave and master has been designed, i.e, though Control
and Notification PDUs (see Table 1). Therefore, the
master must be able to: i) communicate at least with
one DCP slave; ii) manage the states of the slave(s)
by sending STC PDUs and checking the reception of
the corresponding RSP state acknowledgement PDUs;
iii) manage the configuration of the slave(s) by sending
CFG PDUs and checking the reception of RSP acknowl-
edgement PDUs.

• Limit of arrays size: Both the specification and the
C++ example contemplate that the arrays size is not
limited. This is not possible in Simulink, so it has been
necessary to limit the size of all the arrays. As a general
rule, it has been chosen to limit arrays to 32 elements,
with a few exceptions that will be discussed below.
Nevertheless, the size is an arbitrary upper limit and it
could be increased in future implementations.

• DCP slave functionality: Usually the system
modelled by the slave is embedded into the DCP imple-
mentation. This means that the communication func-
tionality is coded together with the model in single
software entity. On the contrary, the main idea of the
proposed implementation is to provide a way to link
an arbitrary Simulink model with another simulation
process performed in an external M&S tool or even in
another device, such as a Xilinx Zynq Ultrascale+. To do
this, a mechanism must be conceived to separate the

5582 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

FIGURE 2. Diagram of the implemented example to test the developed DCP library in simulink.

communication functionality from the model. This will
allow the user to focus on the development of the
Simulink model rather than on communication aspects.

• Fixed-step simulation: Due to the nature of DCP only
fixed-step simulations are taken into account in this
work.

We decided to develop a block library to implement the
DCP slave and the accessory functionalities (e.g. configura-
tion, type cast, or UDP communication). Figure 2 shows a
diagram where the main blocks of the library are instantiated.
Notice that this figure represent one of the experimental
setups that will be used in Section VI to verify the correctness
of the implementation. In the following subsections these
blocks will be explained in details.

A. INTERFACE BLOCK (DCP SLAVE)
This is the main block, which contains the main functionali-
ties of our implementation of DCP. That is, on the one hand,
a common functionality for all DCP slaves which consist of
the state machine and the elements described in the standard
specification. On the other hand, it implements an interface
compatible with any Simulink model.

To develop the state machine, the Stateflow tool of
Simulink has been used to code the scheme described in
the DCP specification document, concretely in the Figure 1:
DCP slave state machine, p. 21. The result can be observed
in Figure 3. As can be appreciated, thanks to the formal-
ism employed by Stateflow [42], it is possible to make
a direct graphical implementation of the state machine.
This provides a valuable visual aid to understand the
slave’s operation, which would be hard to get from a
C++ implementation.
In order to represent the data structures described in the

standard, it has been chosen to employ Simulink buses, the
equivalent of C structures. The most relevant data structures
are:

• The features of the slave and all of its sub-elements
(number of inputs and outputs, time resolution, under-
lying communication protocol, etc.). See the point 5

DCP Slave Description, pp. 78-99, of the specification
document.

• PDUs. PDUs are the messages that DCP slaves and
masters send to each others. In Table 62: Generic PDU
structure, p. 41, of the specification document.

• Enumerations such as data types (see Table 2: Sup-
ported data types of the DCP, p. 12), the ID of each
state machine state (see Table 13: State IDs, p. 23),
and the error codes (see 3.4.7.2 List of Error Codes,
pp. 55-57).

Additionally, other buses that are not considered in the
specification have been created, for instance to describe the
input and output variables to the Simulinkmodel. These buses
are named simulinkInputs and simulinkOutputs. This names
are given from the perspective of the DCP slave, i.e. simulink-
Inputs contains the data that a Simulinkmodel transmits to the
DCP slave for transmission to another DCP slave. Whereas
simulinkOutputs contains the data that the DCP slave receives
from another DCP slave to input into a Simulink model. The
use of these buses can be seen in the model of Figure 2 and
a description of their fields is provided in Table 2, Table 3,
and Table 4. As it is reported in the tables, inVars and outVars
fields can contain up to 8 elements. It is worth to mention that
when using DCP, each variable is assigned a unique identifier
called value-reference (see 3.1.18 Variables, p. 15).

As mentioned above, the main idea behind the proposed
implementation is to allow a Simulink model to commu-
nicate with the outside. This is achieved by the interface
provided by the simulinkInputs and simulinkOutputs buses,
that takes simulation data from Simulink and transmit them
through PDUs, and vice versa. The main advantage of this
solution is that, unlike the example provided in C++ [15],
the functionality of the model can be coded separately from
the communication, that it is handled by the slave, so that the
user does not have to modify the code. In this way, anyone
can design a functionality and link it to the slave via inputs
and outputs without the need for in-depth knowledge of the
protocol.

The interface of the DCP slave block is composed of
5 inputs, 4 outputs and 2 sets of parameters:

VOLUME 11, 2023 5583



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

FIGURE 3. DCP slave state machine done with Stateflow tool.

1) INPUTS
• in_DcpSlaveDescription. This input is a bus that defines
the particular slave description in accordance with the
DCPX file. This description is configured with the
library block explained in Section III-B.

• SIG_exit. Signal to stop the execution of the state
machine. Normally it will not be used but it is contem-
plated in the standard.

• in_Simulink. This is the port where the bus containing
the Simulink input variables arrives. That is, the data that
is to be passed to other slaves. The data in the bus is filled
by castToDcpIn block; see Section III-D.

• in_PDU. This port receive the PDUs received by other
DCP entities, i.e. by other slaves and by the master. The
PDUs are received by the ReceivePDU block which is
described in Section III-C.

• in_PDU_length. In this entry the length of each
received PDU must be entered. This value is also
obtained from the Transport Protocol Blocks described
in Section III-C.

2) OUTPUTS
• out_Simulink. The PDUs that have been converted into
Simulink data are transferred via this port. In order to
use this information in a Simulink model, it is necessary
to use castToSimData block (see Section III-D).

• out_logVaiables. The use of this port is optional, as its
use is limited to monitoring the variables (both inputs
and outputs) handled by the DCP slave.

• out_PDU. This port outputs the PDUs to be sent to other
DCP entities through the SendPDU block, described
in Section III-C.

5584 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

TABLE 2. SimulinkOutputs bus attributes.

• out_PDU_length. This port indicates the length of the
message to be transmitted, its use is optional, depend-
ing on whether it is needed in the SendPDU block
(Section III-C).

3) PARAMETERS
• Info logging parameters. Parameters that enable the log-
ging of debug information and that specify the name of
the log file.

• Error logging parameters. Parameters that enable the
logging of the errors defined in the DCP protocol and
that specify the name of the log file.

It is worth tomention that each of these slaves can support a
variable number of inputs and outputs, both limited to 8 units.
In other words, currently, a maximum of 16 variables can
be used: 8 input and 8 output variables. These variables are
the ones that compose the aforementioned simulinkInputs and
simulinkOutputs buses.

B. DCP SLAVE CONFIGURATION BLOCK
This block is used to set the bus that contains the slave config-
uration. The bus is defined in section 5 DCP Slave Descrip-
tion, pp. 78-99, of the standard and a schematic description
can be found in Figure 16: DCP slave description root level
XSD schema, p. 80, and Figure 17: dcpSlaveDescription
element attributes, p. 81. This block is a template that must

TABLE 3. SimulinkInputs bus attributes.

TABLE 4. VarData bus attributes.

be filled manually by modifying the values in the constant
blocks it contains. This procedure is similar to the C++

implementation [15], as it is configured by editing a header
(.hpp) file. As a future development it could be possible to
automate this process by implementing a parser of the DCPX
file.

C. TRANSPORT PROTOCOL BLOCKS
SendPDU and ReceivePDU blocks are in charge of send-
ing and receiving PDUs, respectively. As mentioned in
Section II-C, DCP is a layer that is placed on top of a
communication protocol, either UDP, TCP/IP or CAN. Once
a message is received, it must be formatted into a PDU.
Also, when a PDU is being sent is must be formatted to the
data structures of the communication protocols. As it can be
seen, at low level these operations depends on the specific
communication protocol.

For the moment, the only transport protocol implemented
in our library is UDP. Nevertheless, being aware that in the
future other communication modes may be used, these blocks
have been created so that they could be easily updated. In par-
ticular we employed a ‘‘Variant Subsystem’’, that allows to
include several different functionalities in it, leaving to the

VOLUME 11, 2023 5585



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

user the option to choose which of these functionalities has
to be executed during the simulation.

To implement the UDP communication functionality, the
blocks provided by the Simulink Real-Time toolbox have
been used as a baseline. Some extra logic has been added to
handle outbound messages queue and enables, accordingly
to the FSM in the DCP Slave Block. This is necessary since
more than one outbound PDU can be generated at the same
time. Moreover, apart from sending and receiving messages,
the possibility to save all sent and received PDUs to a file has
been implemented too. The latter is done by using another
block of the library, namely dataLogging block, which is
explained in Section III-F.

D. CAST BLOCKS
As mentioned in Section II-C, DCP uses DAT type PDUs to
exchange data. These PDUs contain a field called payload,
which consists of an array of uint8. The section 3.1.12 Data
Type Encoding, pp. 12-14, of the specification explains how
the data must be encoded in the payload. To comply with
these requirements, two blocks have been created, the first
of them, called castToDcpIn, converts the Simulink data to
payload field data. The second, called castToSimData, per-
forms the opposite operation, converting the payload field
data to a Simulink data type. Both blocks are based on the
aforementioned simulinkInputs and simulinkOutputs buses
(Section III-A). In this way, castToDcpIn block outputs a
simulinkInputs bus to pass data from a Simulink model to
the DCP slave. The maximum number of data that each DCP
slave can transmit from a Simulink model is set to 8. For this
reason, up to 8 DCP inputs can be configured in this block.
To use this block the user only have to select the amount of
data to be transmitted and to set the value-reference of each
input. In this way, the DCP slave knows to which output it has
to connect each of the inputs. In the sameway, castToSimData
block transforms simulinkOutputs bus to Simulink data types.

E. SLAVE SYNCHRONISATION BLOCK
This block had to be created because the DCP does
not include mechanisms for time synchronisation
(see 3.1.13 Timing, p. 14, of the specification). The need
for this block emerged from the analysis of synchronisation
problems in the simulation of closed-loop systems that will be
presented in Section IV. In brief, the analysis concludes that
although theDCPworked correctly and no data is lost, there is
a desynchronisation that prevented the system from behaving
exactly the same in all simulations. In order to avoid such a
situation, a synchronisation system has been developed. Both
analysis of the synchronisation issues and the algorithm used
to solve them are presented in Section IV.

F. ADDITIONAL BLOCKS
Additional blocks that perform sub-activities have also been
created. For instance, with the Data Logging block, error and
log messages can be stored. Instances of this block are used,
for example, in Transport Protocol blocks (Section III-C).

We developed also Debugging blocks, which can be used
to monitor some of the data buses that are defined in the
specification.

IV. TIME SYNCHRONISATION
As it will be explained in Section VI, to test the developed
DCP library, we decided to implement a closed-loop system
operating in SRT mode. This system is composed of two sub-
systems: a plant (first order system) and a control algorithm.
As mentioned in Section III-E, when performing the first
simulations with this system, we realised that the response
was not deterministic and that it varied in each simulation.

To find the reasons causing behind this behaviour, we con-
ducted an analysis of the synchronisation issues between
these two subsystems (Section IV-A). To do so, we assume,
for simplicity, that the co-simulation involves just two sub-
systems, Subsystem 1 and Subsystem 2, each running in a
different simulation environment. As depicted in Figure 4,
each subsystem is composed of the models under tests and
the DCP library blocks that allow the co-simulation. Both
simulation environment are configured with the same timing
parameters. The step size at which the simulation environ-
ment runs will be referred to as ‘‘simulation step size’’ and
it will be denoted by Sss. The state machine of the DCP
slave is also synchronous with this step-size, i.e. the states are
executed every Sss. Accordingly, the models will be executed
at bigger step sizes, that will be termed ‘‘model step size’’
and denoted by Mss. We assume that Mss is a multiple of
Sss, that is: Mss = α · Sss, α ∈ N, α > 0. Notice that this
is required by the fact that the simulation includes the DCP
framework, that requires two simulation steps to perform
the communication tasks between the simulators. In other
words, the state machine that compose the DCP slave and the
communication blocks needs two Sss to receive, process, and
send a data. This was discovered empirically, as running the
model and the slave with the same step sizes, i.e. ifMss = Sss,
the transmitted data take always a null value. Contrarily when
increasing the value of Mss to the double of Sss, i.e. when
Mss = 2 ∗ Sss, the data was transmitted correctly. It is also
important to remark that Sss is locked to the clock of the
platformwhere each simulator is running and that both clocks
must be synchronised, as a requirement of DCP.

FIGURE 4. Schematic concept of a system to which the synchronisation
algorithm is applied. We assumed that both subsystems.

In order to clarify the sequence of actions that take place
in the simulation of this system and to be able to explain
the subsequent analysis and algorithm, we will establish the

5586 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

following terms. At each Mss, Model 1 generates a set of
outputs that should be sent over the DCP channel (though the
developed DCP library blocks) to Model 2, running into the
other simulator. We call eM1 this event. Similarly, we call eM2
the dual event that is the generation of data byModel 2 that is
to be sent toModel 1.We call eM2_def the event corresponding
to the generation of outputs inModel 2 if no synchronisation
mechanism is applied. As it explained later in Section IV-B,
this event is delayed in order to achieve synchronisation. The
transmission time between the two simulators is a random
variable τT . We denote by tT the transmission time expressed
asmultiple of Sss, that is tT = ⌈τT /Sss⌉. The fact that the com-
munication takes an aleatory, although finite, time together
with the fact that the two simulations starts at arbitrary times
are the causes of the lack of synchronisation between the two
simulations.

A. SYNCHRONISATION ISSUES ANALYSIS
After multiple executions of a system that meets aforemen-
tioned assumptions, we saw that the synchronization error
came from the fact that, for a correct operation of the system,
each of the subsystems must receive an input value before
generating the output value. If at some point it happens that
an output is generated without having received a new input
value, the whole system is destabilised and do not behave
identically. Concretely, we noticed that the simulation of the
system do not always start in the same way, i.e, randomly, one
of the subsystems is started before the other. Additionally,
the time from the start of one, to the start of the other, was
also variable. This was particularly destabilising when the PI
subsystem started running first, as the time response to a step
of a PI control tends towards infinity [43].

It is worth mentioning that this problem will only arise
on DCP’s SRT and HRT operation modes, as NRT operates
independently from absolute time and requires the use of
external edge signals, i.e. STC_do_step kind PDUs, to work.
Therefore this analysis will be carried out considering that
both subsystems work in SRT or HRT operation modes.
Additionally, we have to consider that if one of the systems
cannot work on HRT, even if it works on SRT, the events may
not arrive periodically, which would cause an unpredictable
variation in the response of the system.

Therefore, in order to synchronise the simulation of a
closed-loop system, we have identified three issues to be
addressed:

• The simulation step sizes in Simulink should be tied to
the CPU clock time.

• The arrival period of PDUs is not deterministic, but it
varies randomly.

• The slaves are not initialised at the same time. Ran-
domly, one starts to simulate before the other.

To tackle the first issue, we developed a Simulink block
that forces simulation steps to coincide with computer time.
This block is implemented in C as an S-Function that calls the
underlying OS API. An alternative solution consists in either
using the Simulink Desktop Real-Time or in running the

simulation on a Simulink Real-Time target (e.g. a Speedgoat).
Anyway, both solutions require extra licensing or specific
hardware. This block cannot operate at times shorter than
1ms. Thus the lower bound on Sss that we can achieve with
the proposed DCP library is 1ms. Notice that locking the
simulation time to the computer time is a requirement of
DCP when it is configured to work in SRT or HRT operation
modes.

The second problem is related to the UDP communication
protocol, that is not a real-time protocol. Since we do not
assume the availability of anymechanism to enforce real-time
communication over UDP, it is not possible to ensure that
messages are received at constant intervals. Figure 5 shows
an example of the effects of the random communication time
tT on the exchange of events eM1 and eM2 during a simulation.
In this example, eM1 takes a time tT = 2 to pass from system 1
to system 2, while the dual communication, that is eM2 from
system 2 to system 1, takes tT = 3. Therefore, as the precise
time of receiving cannot be known, we concluded that to
overcome this problem, we should set two step sizes, one
for the model (Mss) and the other for the simulation (Sss),
making Sss significantly smaller thanMss. With this in mind,
in the simulation process we have tested several different
step size configurations, mentioning the most relevant ones
in Section VI-B.
Finally, the third issue is related to the fact that the DCP

does not have a mechanism to synchronise the beginning of
the simulations; see 3.1.13 Timing, p. 14, of the specification.
Concretely, the problem is that even if the simulation step
sizes (Sss) of both simulations are synchronised, the execution
steps of the models are not. For instance, if we look at the
example in Figure 5, between the events eM1 and eM2_def
there are 8 steps, however this value changes from one sim-
ulation to another. That is to say, in each simulation, the
difference in steps between the execution of one model and
the other varies. This prevent the simulations from starting in
the same way, thus the transient response of the system varied
significantly from run to run.

B. SYNCHRONISATION MECHANISM
In order to ensure a deterministic start, the synchronisation
block presented in Section III-E has been developed. This
block was created on the basis of the following assumptions:

• The models to be synchronised must operate at the same
step sizeMss.

• The simulation step size Sss must be smaller than that of
the modelMss, i.e. Sss < Mss.

• The Slave synchronisation blockmanages the simulation
period of each model. Therefore, any model connected
to theDCP slave block must have an enable input signal,
which will be connected to an enable output of this
block.

• The models under co-simulation compose a closed-
loop system, where only two slaves are involved. For
instance, an example case would be the simulation of
a plant and a control system. Although this point limits

VOLUME 11, 2023 5587



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

FIGURE 5. Developed synchronisation mechanism.

the scope of the synchronisation block, it is required to
make the synchronisation problem treatable.

It should be noted that system 1 refers to the control system
and system 2 to the plant, and that the Slave synchronisation
block is located in the last one.

With this inmind, this blockwas designed to be placed only
in one of the subsystems, in this case in the plant modelling
environment, i.e. Simulink. Its interface consists of one input,
two outputs and three parameters. The input is the structure
outVars received through DCP (see Table 2), that contains
the output data coming from the other subsystem and an
enable signal that indicates when a new data is available.
The outputs consist of both models enable signals. Finally,
the parameters are the simulation step size (Sss), the model
step size (Mss), and the step delay (Ds). Both step sizes (Sss
and Mss) are known parameters of the simulation, whereas
Ds is set by the user to control the synchronisation. Ds is
used to set the number of steps to delay eM2 with respect
to eM1 and it is determined by trial and error. The synchro-
nization mechanism is based on delaying the execution of the
subsystem where this block is placed. The block works as
follows:

1) It disables the simulation of the plant model, while
enabling the control model.

2) After receiving the first control signal, based on the
configured Ds value, it calculates how many steps the
plant’s response needs to be delayed.

3) It modifies the plant’s simulation steps to be synchro-
nised to the control’s ones.

This functionality is graphically depicted in the example of
Figure 5. In order to explain the synchronisation mechanism
in more detail, we will analyse this figure from the system 2
perspective. Sss andMss are known from the beginning, while
the time at which the input signals from the other system
(eM1) will be received is unknown. Taking into account that
each system expects to receive a data before generating a
response, in the situation described, it is possible that System
2 receives eM1 at a moment when it does not have enough
time to process it and send the response eM2d ef before System
1 starts a new eM1 execution step. Thanks to this block, it is
possible to delay the execution instant of the Model 2 by Ds
number of steps after the reception of eM1, i.e., delay it from
EM2d ef to EM2. This synchronisation mechanism implies that
the System 1 will execute the two first steps consecutively
without receiving any input. Therefore, it is necessary to
assess whether this is a problem for the specific use case.

V. COMPLIANCE WITH DCP
This section comments on the identified limitations, unfin-
ished parts and other untested aspects of the proposed
implementation.

Regarding the specification, the functionality of the Non-
RealTime (NRT) superstate has not been developed, however,
as it can be seen in Figure 3, dummy states have been created
to ease its future implementation. For this reason theDCPwill
only be able to work in SoftRealTime (SRT) or HardReal-
Time (HRT) modes. Automatic simulation restart after an
error has not been implemented either. However, to perform
this task, the involvement of the master is required, and the

5588 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

version provided in the C++ example [15] that we used in
this work does not support it. Therefore, in order to run a
simulation after an error occurred, the slave has to be stopped
and restarted. Contrarily, it is possible to restart a simulation
after the previous one has been successfully completed.

On the other hand, there are aspects included in the spec-
ification that have been modelled but not tested, such as
the correct processing of some configuration PDUs (CFG):
CFG_parameter, CFG_param_network, CFG_logging and
CFG_clear; and the information PDUs (INF): INF_log and
INF_state.

Concerning the connectivity, at the moment, a slave
can only communicate with a second slave. This is
because the PDU transmission block that it was created
(see Section III-C) is not prepared for more. Moreover, the
Simulink library blocks do not allow to configure the IP
addresses during the simulation, but they have to be con-
figured manually before running the simulation. Anyway,
although the use of the network configuration PDUs (CFG_
source_network_information and CFG_target_network_
information) is not necessary at this time, they have been been
implemented and tested to comply with the standard.

Apart from these limitations, we checked that our imple-
mentation of the standard is correct by testing it in a
co-simulation with the DCP slave and the DCP master pro-
vided by the Modelica Association.

VI. PROOF-OF-CONCEPT
To test this implementation, we decided to use the interface
in a simulation of a closed-loop system, composed of two
subsystems: a plant and a PID control algorithm, as shown
in Figure 6. The main idea is to partition the system by simu-
lating each subsystem in a simulation environment and check
that the use of the interface does not affect the behaviour of
the overall system. For this purpose, it has been decided to
perform five different experimental setups of the simulation
with increased complexity in terms of subsystem partitioning,
that are detailed in SectionVI-A. After that, the results of sim-
ulating each of these experimental setups with different step
sizes will be shown in Section VI-B. It is worth mentioning
that, as our objective is to test the data flow between different
systems, we did not consider necessary to use amore complex
use case.

FIGURE 6. Use case: a closed-loop system composed of a control system
and a plant, interfaced by the DCP slaves that have been developed.

Regarding the closed-loop system, we employed a simple
PI algorithm to control the plant, that it is modeled as a
first-order time discrete dynamical system (see Equation 1).
The PI control was modeled by a Discrete PID Controller
Simulink block (see Equation 2). It is worth to mention that,

the configuration of the plant model has been maintained
constant in all experimental setups. In contrast, the tuning of
the PI has been modified accordingly to the variation of the
time step, in order to obtain similar dynamical behaviour of
the closed-loop system in all the test setups. The analysis of
the simulation is done by observing the time evolution of the
response of the closed-loop system to a step input, comparing
both the transient and the steady-state part of the response.

y(k) = a · y(k − 1) + b · u(k) (1)

where:
• u is the control signal (see Figure 6).
• y is the plant output (see Figure 6).
• a is a constant parameter, and it was permanently set to
b = 0.99.

• b is a constant parameter, and it was permanently set to
a = 0.01.

u(k) =

[
Kp + KiTs

1
z− 1

]
e(k) (2)

where:
• u is the control signal (see Figure 6).
• Kp is the proportional gain coefficient.
• Ki is the integral gain coefficient.
• Ts is the sampling period, which must coincide with
the model sample size (i.e.: Ts = Mss) introduced in
Section III-E.

• e(k) = r(k) − y(k) is the error signal (see Figure 6).
• r(k) is the target reference signal.
• z is the unit delay operator.
The experimental setups differs for simulation environ-

ments, as will be explained in Section VI-A. In particular,
we employed three environments: simulations in Simulink
on a standard PC, C++ program running directly on an
Ubuntu 18.04 operating system (OS) and simulations in an
embedded platform. Indeed, the control was deployed in a
Xilinx Zynq Ultrascale+ MPSoC ZCU102 Evaluation Kit.
The general architecture of this device consists of an ARM-
based CPU, called Processing System (PS), and a FPGA-like
Programmable Logic (PL). Both the PS and the PL can be
used independently or together. The PS features the ARM
Cortex-A53 64-bit quad-core and ARM Cortex-R5 dual-core
real-time processing units, which are capable of supporting an
operating system such asUbuntu.Whereas the PL, is based on
Xilinx’s programmable logic fabric, which has been designed
to implement high-speed logic, solve arithmetic operations
and perform data exchange between subsystems. In this work
we only exploited the ARM Cortex-A53, were we deployed
an Ubuntu 18.04 OS.

To perform the (co)-simulations between these subsys-
tems, three DCP entities have been used: a master and two
slaves. They have been configured to work in SRT operation
mode. The master is an adaptation of the one provided in
the C++ example [15] and will be in charge of coordinating
the (co)-simulations. While the slaves, depending on their

VOLUME 11, 2023 5589



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

location, will be those developed in this work (Section III-
A), if the subsystem is implemented in Simulink; or a mod-
ification of the one provided in the C++ example, if the
subsystem is implemented in an Ubuntu operating system.
These slaves will take care of transmitting the data between
the two subsystems we have just described.

A. EXPERIMENTAL SETUPS
This section provides an explanation about the developed
experimental setups. From a general point of view, the three
entities that compose the co-simulation environment are dis-
tributed as follows. The plant and the DCP slave linked to it
(the subsystem 2 of Figure 6) have been placed, in all setups,
in Simulink. The master has been placed, in all setups, in a
virtual machine where an Ubuntu 18.04 is deployed. Finally,
the control algorithm and the DCP slave linked to it (the
subsystem 1 of Figure 6) have been placed in a different
environment in each experimental setup. The experimental
setups are built incrementally, by increasing the complexity
of the topology of the simulations.

Concerning the physical communication network, Ether-
net is employed to link the three entities. Simulink and the
Ubuntu virtual machine are located in the same PC, so they
communicate each other via virtual network ports. Whereas a
direct Ethernet cable is used to connect the PC and the Xilinx
Ultrascale board.

1) REFERENCE SETUP - REFERENCE CLOSED-LOOP SYSTEM
The closed-loop system is implemented entirely in Simulink
without using any DCP slaves. The results obtained from this
setup will be used as a baseline reference to be compared with
the other experimental setups. Ideally, all the experimental
setup should provide results identical to the baseline. See
Figure 8 for a schematic description of this setup.

2) EXPERIMENTAL SETUP I - PLANT AND CONTROL
ALGORITHM IN THE SAME SIMULINK MODEL
A DCP communication is introduced into the Reference
Setup while keeping the plant and the control system in the
same Simulink model. To do this, the two subsystems are
separated and two DCP slaves are introduced in the Simulink
model, each connected to the input and output ports of each
subsystem. To coordinate the simulation, the DCP master is
configured in the Ubuntu virtual machine. In this way, the
communication between the two subsystems is handled by
the DCP. See Figure 9 for a schematic description of this
experimental setup.

3) EXPERIMENTAL SETUP II - PLANT AND CONTROL
ALGORITHM IN DIFFERENT SIMULINK MODELS
Each subsystem is isolated in a separate Simulink simulation.
That is the same environment execute two simulations in
parallel. This experimental setup uses the same master as
the previous one. In order to run the complete system, it is
necessary to initialize two instances of Simulink and launch

two separate simulation at the same time. See Figure 10 for a
schematic description of this experimental setup.

4) EXPERIMENTAL SETUP III - PLANT IN SIMULINK AND
CONTROL ALGORITHM IN AN UBUNTU VIRTUAL MACHINE
The plant model is kept in Simulink and the control sys-
tem is deployed into the same virtual machine where the
master is located. As the virtual machine uses the DCP
library developed in [15], we developed a C++ version of
the control algorithm that behaves in the same way as the
Simulink algorithm. To do this, we used the Simulink Coder
tool to automatically generate the C++ code of the control
algorithm from the control system model. This code was then
embedded in the slave provided by the library, making for this
purpose additional modifications in the slave configuration.
Finally, the master was modified to indicate the new location
of the slave 1. See Figure 11 for a schematic description of
this experimental setup.

5) EXPERIMENTAL SETUP IV - PLANT IN SIMULINK AND
CONTROL ALGORITHM IN THE PS OF AN UltraScale+

The master is kept in the virtual machine and the plant
subsystem in Simulink, whereas, the control subsystem is
moved to a Xilinx Zynq Ultrascale+ board. Concretely, it has
been located in the PS part of the board, where an embedded
Ubuntu system has been deployed. The only limitation found
in this experimental setup is that it was not possible to work
with 64-bit pointers. Therefore, someminor adjustments have
had to be made to both the provided C++ DCP library [15]
and the control algorithm. The master has also had to be
modified to indicate the new location of slave 1. See Figure 12
for a schematic description of this experimental setup.

This experimental setup is the most interesting, as it opens
up a way to communicate in the future with models that are
deployed on SoC platforms. Either to speed up a simulation
or because they are computationally expensive to run on
conventional PC hardware. It also offers the possibility to
perform a PIL (or FIL) without the need for an external tool.

B. SIMULATION CONFIGURATIONS AND OBTAINED
RESULTS
In order to know the maximum speed at which it is possible to
communicate using the DCP, it has been decided to run each
of the previous experimental setups with different step sizes.
As explained in Section IV, before setting the configurations
we have to take into account that: the simulation step of the
simulation run (Sss) must be lower than that of the model
(Mss), and that Sss cannot be smaller than 1ms. This section
presents and analyses the results obtained after simulating
the experimental setups with the configurations in Table 5.
It should be noted that the reference value for y(k) is set to
10 for all simulations, i.e., r(k) = 10.
The same procedure has been followed for all experimental

setups with each configuration. First, the step size of the
model and of the simulation environment were set, and the PI
control was tuned. Second, 25 simulations were run. Finally,

5590 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

FIGURE 7. Comparison between reference setup and experimental Setup IV.

TABLE 5. Configurations for the simulations.

the time behaviour of the output y(k) of the closed-loop
system was obtained from the log files. Figure 7 compares
the plots of y(k) in the reference setup (green lines) with the
experimental setup IV (red lines). The first graph Figure 7a
shows this comparison when Configuration I is set, while the
second Figure 7b corresponds to Configuration VI. For the
sake of compactness, we decided to show only these results
graphically, indeed, notice that experimental setup IV is the
most interesting with a view to the future and also the most
challenging to implement. There are 25 red lines in each
graph, corresponding to the 25 repetitions that were executed

for each configuration. In Figure 7b this lines are not appre-
ciated since all simulations behaved identically. Therefore,
from Figure 7 two main observations can be made: i) the
higher Sss, the closer the tests are to the reference response;
and ii) the response of the system varies only in the transient
state, as the error in the steady state seems insignificant.

To explain these findings thoroughly, a more detailed anal-
ysis of the response y(k) can be seen in Table 6, where
the error between the reference setup and each of the other
experimental setups is shown. The error is calculated as the
mean square deviation from the response of the reference
setup yref (k), as shown in Equation 3.

err =

√√√√ 1
N

N∑
k=1

[
y(k) − yref (k)

]2 (3)

where N is the number of simulations steps, y(k) is the
response of the closed-loop system at step k under a particular
setup, yref (k) is the response of the closed-loop system under
the reference setup. The data for this analysis were obtained
by running 25 repeated simulations for each combination
of experimental setup and configuration. Table 6 reports the
mean, theminimum, themaximum and the standard deviation
of the error over the 25 repetitions.

Before discussing the results in Table 6, it should be noted
that each configuration represents a slightly different dynami-
cal system, and so comparisons between them should bemade
with care. Moreover, in close-loop systems, synchronisation
errors may cause the response to overshoot the setpoint value
due to the computational differences they induce. This results
in a significant increase in the mean, maximum and stan-
dard deviation of the error. In order to keep the difference
between configurations to a minimum, the PI has been tuned
to obtain a robust closed-loop behaviour. Indeed, since we
are working with discrete time, changing the execution times

VOLUME 11, 2023 5591



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

(Sss andMss) also changes the dynamics of the system. There-
fore, the controller must be retuned. Additionally, as a syn-
chronisation failure can also produce an overshoot, instead
of looking for the fastest possible response, we have chosen
to tune the control in such a way that it produces a slightly
slower response, thus ensuring more similar results. In this
way, we can ensure a correct qualitative comparison between
the different configurations. On the contrary, when compar-
ing the experimental setups of the same configuration, as the
system remains identical (same control tunning and same
step-sizes), both a quantitative and a qualitative comparison
can be made. Additionally, it is worth to point out some
obvious but important aspects about the mean, maximum,
minimum, and standard deviation indicators. The lower the
mean value, the more similar the responses will be to those
of the reference setup. The differences registered in the time
evolution of y(k) are greater in the transitory than in the
steady-state; therefore, an error appearing in the firsts sim-
ulation steps causes a greater deviation from the reference.
If the minimum value is 0, it means that at least the response
of one of the simulations is identical to that of the reference
setup. If the maximum value is 0, it means that all simulations
produced exactly the same results as the reference setup.

By looking at Table 6 and by taking each configuration
individually, comparing the mean errors of the experimental
setups, we can notice a main common behaviour: the mean
error in experimental setup II is significantly larger than that

TABLE 6. Error analysis.

of the other setups. Moreover, if we compare the mean error
of experimental setup II across all the configurations (i.e.,
the second column of Table 6), we cannot obtain any logical
tendency. This behaviour may be caused by the fact that
running two instances of Simulink, and a virtual machine,
may require too many computational resources from the PC.
Therefore, for the rest of the analysis we will not take into
account the results of the experimental setup II.

By analysing the results for each configuration, in other
words, by comparing the values of each row independently,
we can observe three different behaviours:

• In configurations I, II, and III, the mean error of exper-
imental setup I is the closest to the reference setup, while
the mean error of experimental setup IV is the largest
one. It should be noted that although the mean error of
experimental setup III is a value between the previous
ones, it is only slightly lower to that of experimental
setup IV. Additionally, it can be observed that the mean
error of experimental setup I in configurations I and II
is almost null, which means that their response y(k) is
almost identical to that of the reference setup.

• In configuration IV, the mean error of experimental
setup I is again the lowest. Moreover, as it remains
almost null, we can also say that the response of experi-
mental setup I is almost identical to that of the reference
setup. On the other hand, the mean errors of experimen-
tal setups III and IV become similar. As this error is quite
low, this means that the response of both experimental
setups is also similar.

• In configurations V and VI, the mean error of all
experimental setups is very similar and almost null.
Therefore we can conclude that the response in almost
all simulations will be identical to that of the reference.

From these tests we can extrapolate some general consider-
ation about the DCP when simulating closed-loop systems.
Generally speaking, Experimental Setup I shows better per-
formances in terms of error compared to setups III and IV in
almost all configurations. This is reasonable, since setups III
and IV are more complex from a communication topology
point of view. In other words, since in experimental setup I
the entire system is simulated in a single Simulink instance,
there are few factors that can cause communication errors.
Indeed, themain factor is that Simulink is not a real-time envi-
ronment, thus an exactly periodic exchange of data cannot
be guaranteed. However, if we deploy one of the subsystems
to another simulation environment, such as the Ubuntu O.S
or the Xilinx Zynq Ultrascale+, the communication becomes
more error prone.

Observing the experimental setups independently, in other
words comparing the values of each column, the following is
evidenced:

• In experimental setup I, if Mss > 20ms the mean error
is almost null.

• In experimental setups III and IV, the higher Sss, the
closer the tests are to the reference response. Moreover,
with the same Sss, the higherMss, the closer the tests are

5592 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

to the reference response. Additionally, if Sss and Mss
are maintained and the system is modified, by changing
the parameters Kp and Ki of the PI (see configurations II
and III), themean errors remain similar. This implies that
the behaviour of the communication will be the same no
matter of the system that is being simulated.

• For all experimental setups, if Sss ≥ 4ms, the mean
error is almost null.

We see that if Sss is increased, the difference between the
responses of the experimental setups is reduced. In fact, when
Sss > 4ms the mean error is almost null, hence it can be said
that the response of all simulations are identical to that of the
reference. To be more precise, the difference lies in the fact
that some independent step arrives a little late, however this is
not something that affects the system’s behaviour. All in all,
as we already mentioned commenting Figure 7, almost all of
the error is due to differences in the transient state, while the
error in the steady state is zero or minimal.

VII. CONCLUSION AND FUTURE DEVELOPMENTS
This paper presents an implementation of DCP developed in
Simulink, which allows to perform a co-simulation between
a Simulink model and other M&S environment. Until now,
the connection to Simulink was only available through third
party tools, so in addition to offering direct integration into
Simulink, we have also extended the scope of the DCP.
Moreover, thanks to the code generation tools provided by
Simulink, the proposed implementation of DCP open the
gates to deployments in other environments and hardware
devices, thus offering new possibilities to perform distributed
co-simulations. That is, by putting hardware elements into
the co-simulation, we provide the possibility to speed up
simulations or to perform x-in-the-loop simulations. Further-
more, the DCP was designed with the aim of encapsulating
a real-time model/system and to link it with another device;
however, we have shown that it is possible to use it as a
general communication mechanism, independent from the
model/system to be simulated. This provide extra degrees
of flexibility to perform co-simulations since it separates
the modelling activities from the technical details of the co-
simulation. All of this has been demonstrated in a use case,
especially in the experimental setup IV.

Apart from these benefits, we have also shown that the lack
of synchronisation can cause undesired behaviours in some
simulations.We have proposed a synchronisationmethod that
allows all subsystems that are involved in the simulation to
start at the same instant.

Looking to extend our work in the future, it would be inter-
esting to add additional slaves to the co-simulation, to read
the configuration from an XML file (DCPX), and to imple-
ment the NRT usage mode. Regarding the synchronisation
mechanism, we intend to apply some improvements in order
to be able to work with slaves that work different step sizes.
In addition, it would also be interesting to compare it with
other synchronisation mechanisms, thus analysing if there is
any way to improve the results obtained in Table 6. In relation

to this table, it would also be interesting to know the reliability
of the results, e.g. how many simulation runs of the same
scenario are necessary to be confident enough. On the other
hand, we would like to port DCP to other hardware platforms,
for instance based on the RISC-V architecture, as it is an
emerging option in the research community. Finally, it would
be interesting to use DCP as middle layer to implement FIL
simulations, possibly comparing it to proprietary solutions,
such as the one provided by Mathworks. Indeed, we have
implemented the control algorithm on a platform such as the
Xilinx Ultrascale with the intention of a future deployment
of the plant model on the PL, that is the FPGA-like pro-
grammable logic.

APPENDIX A
GRAPHICAL DESCRIPTION OF PROOF-OF-CONCEPT
EXPERIMENTAL SETUPS

FIGURE 8. Reference Setup: Reference closed-loop system.

FIGURE 9. Experimental Setup I: Plant and control algorithm in the same
Simulink model.

FIGURE 10. Experimental Setup II: Plant and control algorithm in
different Simulink models.

FIGURE 11. Experimental Setup III: Plant in Simulink and control
algorithm in an Ubuntu virtual machine.

FIGURE 12. Experimental Setup IV: Plant in Simulink and control
algorithm in the PS of an UltraScale+.

VOLUME 11, 2023 5593



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

REFERENCES
[1] P. Marwedel, Embedded System Design-Embedded Systems Foundations

of Cyber-Physical Systems, and the Internet of Things, 4th ed. Berlin,
Germany: Springer, 2021, ch. 1.

[2] T. Pieper, ‘‘Distributed co-simulation framework for hardware- and
software-in-the-loop testing of networked embedded real-time systems,’’
Ph. D. thesis, Faculty Natural Sci. Eng., Institut für Praktische und Tech-
nische Informatik, Univ. Siegen, Siegen, Germany, 2020.

[3] C. Köhler, Enhancing Embedded Systems Simulation, 1st ed. Germany:
Vieweg+Teubner Verlag, 2011, ch. 2.

[4] I. Graja, S. Kallel, N. Guermouche, S. Cheikhrouhou, and
A. H. Kacem, ‘‘A comprehensive survey on modeling of cyber-physical
systems,’’ Concurrency Comput., Pract. Exper., vol. 32, no. 15, pp. 1–18,
2020.

[5] S. K. Khaitan and J. D. McCalley, ‘‘Design techniques and applications of
cyberphysical systems: A survey,’’ IEEE Syst. J., vol. 9, no. 2, pp. 350–365,
Jun. 2014.

[6] M. Faruque, V. Dinavahi, M. Steurer, A. Monti, K. Strunz, J. A. Martinez,
G.W. Chang, J. Jatskevich, R. Iravani, and A. Davoudi, ‘‘Interfacing issues
in multi-domain simulation tools,’’ IEEE Trans. Power Del., vol. 27, no. 1,
pp. 439–448, Jan. 2012.

[7] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe, and S. Schröck,Model-
Based Engineering of Collaborative Embedded Systems, 1st ed. Berlin,
Germany: Springer, 2021, ch 12&13.

[8] Modelica Association. Distributed Co-Simulation Protocol (DCP) Web-
site. Accessed: Sep. 2022. [Online]. Available: https://dcp-standard.org/

[9] M. Segura, T. Poggi, and R. Barcena, ‘‘Towards the implementa-
tion of a real-time co-simulation architecture based on distributed co-
simulation protocol,’’ in Proc. 35th Annu. Eur. Simul. Model. Conf., 2021,
pp. 155–162.

[10] N. Li, L. Zhao, C. Bao, G. Gong, X. Song, and C. Tian, ‘‘A real-time infor-
mation integration framework for multidisciplinary coupling of complex
aircrafts: An application of IIIE,’’ J. Ind. Inf. Integr., vol. 22, Jun. 2021,
Art. no. 100203.

[11] S. Klein, F. Xia, K. Etzold, J. Andert, N. Amringer, S. Walter, T. Blochwitz,
and C. Bellanger, ‘‘Testing and calibration of hybrid power testing and cali-
bration of hybrid power trains,’’ IFAC-PapersOnLine, vol. 51, pp. 240–245,
Jan. 2018.

[12] M.-A. Meyer, L. Sauter, C. Granrath, H. Hadj-Amor, and J. Andert,
‘‘Simulator coupled with distributed co-simulation protocol for auto-
mated driving tests,’’ Automot. Innov., vol. 4, no. 4, pp. 373–389,
Nov. 2021.

[13] P. Baumann, M. Krammer, M. Driussi, L. Mikelsons, J. Zehetner, W. Mair,
and D. Schramm, ‘‘Using the distributed co-simulation protocol for a
mixed real-virtual prototype,’’ in Proc. IEEE Int. Conf. Mechatronics
(ICM), Mar. 2019, pp. 440–445.

[14] M. Krammer, C. Kater, C. Schiffer, and M. Benedikt, ‘‘A protocol-based
verification approach for standard-compliant distributed a protocol-based
verification approach for standard-compliant distributed co-simulation,’’
in Proc. Asian Modelica Conf., 2020, pp. 1–10.

[15] Modelica Association. DCP Library. Accessed: Sep. 2022. [Online].
Available: https://github.com/modelica/DCPLib

[16] K. Wang, Z. Gong, Y. Hou, M. Zhang, C. Liu, and R. Chen, ‘‘Model
based design and procedure of flight control system for unmanned aerial
vehicle,’’ in Proc. 3rd Int. Conf. Unmanned Syst. (ICUS), Nov. 2020,
pp. 763–768.

[17] R. Aarenstrup, Managing Model-Based Design. Natick, MA, USA:
The MathWorks, 2015.

[18] S. Gautham, A. V. Jayakumar, A. Rajagopala, and C. Elks, ‘‘Realization of
a model-based DevOps process for industrial safety critical cyber physical
systems,’’ in Proc. 4th IEEE Int. Conf. Ind. Cyber-Phys. Syst. (ICPS),
May 2021, pp. 597–604.

[19] A. Talaeizadeh, E. Najafi, H. N. Pishkenari, and A. Alasty, ‘‘Deploy-
ment of model-based design approach for a mini—Quadcopter,’’
in Proc. 7th Int. Conf. Robot. Mechatronics (ICRoM), Nov. 2019,
pp. 291–296.

[20] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, ‘‘Co-
simulation: State of the art,’’ 2017, arXiv:1702.00686.

[21] V. Schreiber, V. Ivanov, K. Augsburg, M. Noack, B. Shyrokau, C. Sandu,
and P. S. Els, ‘‘Shared and distributed X-in-the-loop tests for automo-
tive systems: Feasibility study,’’ IEEE Access, vol. 6, pp. 4017–4026,
2018.

[22] C. Shum, W.-H. Lau, T. Mao, H. S.-H. Chung, K.-F. Tsang, N. C.-F.
Tse, and L. L. Lai, ‘‘Co-simulation of distributed smart grid software
using direct-execution simulation,’’ IEEEAccess, vol. 6, pp. 20531–20544,
2018.

[23] L. I. Hatledal, A. Styve, G. Hovland, and H. Zhang, ‘‘A language and
platform independent co-simulation framework based on the functional
mock-up interface,’’ IEEE Access, vol. 7, pp. 109328–109339, 2019.

[24] J. Mina, Z. Flores, E. Lopez, A. Perez, and J.-H. Calleja, ‘‘Processor-in-
the-loop and hardware-in-the-loop simulation of electric systems based
in FPGA,’’ in Proc. 13th Int. Conf. Power Electron. (CIEP), Jun. 2016,
pp. 172–177.

[25] A. Etxebarria, R. Barcena, and I. Mancisidor, ‘‘Active control of regener-
ative chatter in turning by compensating the variable cutting force,’’ IEEE
Access, vol. 8, pp. 224006–224019, 2020.

[26] G. C. Buttazzo,Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Alphen aan den Rijn, The Netherlands:
Kluwer Academic, 1997.

[27] N. Brayanov and A. Stoynova, ‘‘Review of hardware-in-the-loop—A hun-
dred years progress in the pseudo-real testing,’’ Electrotechnica Electron-
ica, vol. 54, nos. 3–4, pp. 70–84, 2019.

[28] L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, ‘‘Overview
of real-time simulation as a supporting effort to smart-grid attainment,’’
Energies, vol. 10, no. 6, pp. 1–24, 2017.

[29] S. S. Noureen, N. Shamim, V. Roy, and S. B. Bayne, ‘‘Real-time dig-
ital simulators: A comprehensive study on system overview, applica-
tion, and importance,’’ Int. J. Res. Eng., vol. 4, no. 11, pp. 266–277,
Dec. 2017.

[30] A. Rothstein, T. Stoetzel, V. Staudt, and J. Wiesemann, ‘‘Asymmetric
multiprocessing: A promising option for SoC-based real-time control in
power electronics,’’ in Proc. 11th IEEE Int. Conf. Compat., Power Elec-
tron. Power Eng. (CPE-POWERENG), Apr. 2017, pp. 666–670.

[31] A. Falcone and A. Garro, ‘‘Distributed co-simulation of complex engi-
neered systems by combining the high level architecture and functional
mock-up interface,’’ Simul. Model. Pract. Theory, vol. 97, Dec. 2019,
Art. no. 101967.

[32] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar, ‘‘Model-based
integration platform for FMI co-simulation and heterogeneous simulations
of cyber-physical systems,’’ in Proc. Linköping Electron. Conf., Mar. 2014,
pp. 235–245.

[33] T. Jung, P. Shah, and M. Weyrich, ‘‘Dynamic co-simulation of Internet-
of-Things-components using a multi-agent-system,’’ Proc. CIRP, vol. 72,
pp. 874–879, Jan. 2018.

[34] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch, and
T. Nouidui, ‘‘An empirical survey on co-simulation: Promising standards,
challenges and research needs,’’ Simul. Model. Pract. Theory, vol. 95,
pp. 148–163, Sep. 2019.

[35] Modelica Association. DCP Standard Specification. Accessed: Sep. 2022.
[Online]. Available: https://github.com/modelica/dcp-standard

[36] M. Krammer, M. B. Msc, T. Blochwitz, K. Alekeish, N. Amringer,
C. Kater, S. Materne, R. Ruvalcaba, K. Schuch, J. Zehetner,
M. Damm-Norwig, V. Schreiber, N. Nagarajan, I. Corral, T. Sparber,
S. Klein, and J. Andert, ‘‘The distributed co-simulation protocol for the
integration of real-time systems and simulation environments,’’ in Proc.
50th Comput. Simul. Conf., vol. 50, 2018, pp. 1–14.

[37] M. Krammer and M. Benedikt, ‘‘Configuration of slaves based on the
distributed co-simulation protocol,’’ in Proc. IEEE 23rd Int. Conf. Emerg.
Technol. Factory Autom. (ETFA), Sep. 2018, pp. 195–202.

[38] M. Krammer and M. Benedikt, ‘‘Master for simulation control using the
distributed co-simulation protocol,’’ in Proc. IEEE 16th Int. Conf. Ind.
Informat. (INDIN), Jul. 2018, pp. 329–334.

[39] M. Krammer, P. Ferner, and D. Watzenig, ‘‘Clock synchronization in
context of the distributed co-simulation protocol,’’ in Proc. IEEE Int. Conf.
Connected Vehicles Expo (ICCVE), Nov. 2019, pp. 1–6.

[40] M. Krammer, C. Schiffer, and M. Benedikt, ‘‘ProMECoS: A process
model for efficient standard-driven distributed co-simulation,’’ Electron-
ics, vol. 10, no. 5, p.633, 2021.

[41] M. Krammer and M. Benedikt, ‘‘Design and application of a domain
specific modeling language for distributed co-simulation,’’ in Proc. IEEE
17th Int. Conf. Ind. Informat. (INDIN), Jul. 2019, pp. 677–682.

[42] D. Buck and A. Rau, ‘‘On modelling guidelines: Flowchart patterns for
stateflow,’’ Softwaretechnik-Trends, vol. 21, no. 2, pp. 7–12, 2001.

[43] L. Keviczky, R. Bars, J. Hetthéssy, and C. Bányász, Control Engineering.
Berlin, Germany: Springer, 2019, ch. 8.

5594 VOLUME 11, 2023



M. Segura et al.: Generic Interface for x-in-the-Loop Simulations Based on DCP

MIKEL SEGURA received the M.S. degree in
embedded systems from the University of the
Basque Country (UPV-EHU), in 2020, where he is
currently pursuing the Ph.D. degree in engineering
physics.

In 2019, he joined IKERLAN to develop his
master’s thesis, where he is still researching as
a Ph.D. student. The research focuses on how
to perform co-simulations between modeling and
simulation environments (e.g. Simulink and Open

Modelica) and high-performance hardware platforms using non-proprietary
standards. The aim is to ease the communication between the simulation
entities and to accelerate simulations through the use of FPGAs.

TOMASO POGGI was born in Varazze, Italy,
in 1982. He received theM.Sc. degree in electronic
engineering and the Ph.D. degree in mathematical
and simulation engineering from the University of
Genoa, Italy, in November 2006 and April 2010,
respectively.

In 2011, he collaborated with the Depart-
ment of Biophysical and Electronic Engineering,
University of Genoa, as a Research Assistant.
From 2011 to 2016, he worked as an Embedded

Systems Engineer at the RF Group, ESS-Bilbao, Spain, in the field of light
ion linear accelerator. From 2016 to 2022, he worked at IKERLAN, Spain,
in the field of dependable embedded systems. He is currently a Professor with
the Automation Department, Faculty of Engineering, University of Mon-
dragon, Spain. He is the author or coauthor of 21 scientific papers, published
in indexed international journals and conferences. His main research inter-
ests include digital signal processing and control and analysis of nonlinear
dynamical systems.

RAFAEL BARCENA (Member, IEEE) received
the M.S. and Ph.D. degrees in physics from the
University of the Basque Country (UPV/EHU), in
1994 and 2001, respectively.

Since 1998, he has been a Research Professor
with the Department of Electronic Technology,
UPV/EHU. His research interests include control
theory, hybrid control, and sampled-data systems.

Dr. Barcena has been a member of the IEEE
Control Systems Society and the IEEE Industrial
Electronics Society, since 2005.

VOLUME 11, 2023 5595


