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Abstract: A simulation model, and more generically, a model, is founded on its assumptions. As-
surance of the model’s correctness and correct use is needed to achieve accreditation. Often the
exercise of working with a specific code misunderstands the overall process, focusing the resources
on the model coding and forgetting the needed resources to ensure the validation of every step of
the model definition and coding. The goal of this work is to present a methodology to help in the
definition and use of the assumptions in the modeling process. To do so, we present a process to
conduct a simulation project, an assumptions taxonomy, and a method that simplifies working with
those assumptions. We propose to extend the traditional Validation, Verification, and Accreditation
processes to a process composed of eight Validation, Verification, and Accreditation phases that cover
the overall life cycle of a model. Although this paper is focused on a simulation model, we can extend
the proposed method to a more general modeling approach.
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1. Introduction, the System, and the Model

We want to start with a brief discussion regarding the system and the model. The
system is the subject of our analysis; that can be something real, something physical that
exists or not. On the other side, we have the model, the abstraction we will use to represent
this system.

More specifically, a system is defined in the frame of systems engineering as “a
construct or collection of different elements that together produce results not obtainable by the
elements alone.” (“Systems INCOSE-Systems Engineering-UALR”) [1], while a model is
“( . . . ) a representation and abstraction of something such as an entity, a real system, a
proposed system design or an idea” [2].

Therefore, following the proposal of [3], the main properties a model owns are:

1. Mapping: The goal of models is to represent something, i.e., mappings from natural
or artificial systems or models.

2. Reduction: Models, in general, do not describe all the features of the original system,
rather, only those features that seem important to modelers or system stakeholders.

3. Pragmatism: The models themselves are not explicitly assigned to their originals.
They fulfill their surrogate functions (a) for certain cognitive and/or behavioral model-
like subjects, (b) over certain time intervals, and (c) restricted to certain mental or
practical processes.

These properties must be taken into consideration when one builds a model. Specifi-
cally, the process of building a simulation model is iterative, usually involving different
personnel. This process starts by describing the system we want to represent, that is, the
object of our analysis, and from it, we start a description of the key elements that must
be considered to define the model. Once we understand what is “my system” we can go
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further to describe the problem that we are trying to solve. A good thought is that “all
models are wrong ( . . . )”, but some of them are useful [4]. Therefore, to ensure that we are
applying a useful model, we follow a validation process since our model, although not
completely correct, can be useful to our purposes: “A simulation model should always be
developed for a particular set of objectives. In fact, a model that is valid for one objective may not be
for another” [5].

The core of the model is its assumptions. They represent how we understand the
system and express how we will conceptualize the model and, from this, how we develop
the coding. In simulation [6,7], the Validation and Verification of the model’s assumptions
become key aspects to ensure the correctness of the conclusions obtained from a model. The
model can be viewed as an experimental framework able to conduct new experiments [8],
whereas wrong models can provide interesting insights [9] for both modelers and clients.

Validation, Verification, and Accreditation processes in simulation have been widely
discussed, defining structures, diagrams, and recommendations that help the modeler
ensure that the modeling process will succeed. One can review [10] for a simplified version
of the model development process, and a more complex view developed by the same
author can be found in [11]. The experimental design for a simulation model is detailed
in [12], while [2] proposes a set of rules for the Validation, Verification, and Certification of
simulation applications. The progress and challenges of a key element in the process of a
description of a simulation model, the conceptual modeling, are discussed in [13].

In this work, we will present a pragmatic approach with practical use for modeling,
allowing us to identify guidelines to follow in the process of defining a simulation model
that must be accredited to eventually implement some solutions in the system. We discuss
the current state of the techniques that can be used for the validation of the assumptions,
presenting their integration with an improved cycle of a simulation model and showing
their application in an industrial case. We will also discuss how this approach has an impact
on the creation of a digital twin in the frame of Industry 4.0.

Also, in this paper, coded means writing: that is, implementing the program that
is going to execute the model. Implementation means the modification of the system
according to the accepted results. Validation means ensuring that the model is correct,
while Verification means ensuring that the model has been correctly coded. Accreditation
means that the stakeholders believe in the model and will use it to implement or modify
(according to the model results) the system. We also want to mention that assumptions
and hypotheses are often considered equivalent but are not. A hypothesis must be tested
by an experiment, while an assumption can be accepted tacitly. In any simulation model,
all the assumptions will be formulated through a conceptual model or a computerized
model in a mathematical framework and must be assessed continuously. Therefore, we
will be able to define an explicit method to evaluate the validity of these assumptions;
hence, we will talk about hypotheses and not assumptions when explicit processes to test
these assumptions exist. However, since we do not know if this process will exist in the
development of our simulation model, we will use the term assumptions in this document
for the sake of simplicity.

This paper is structured as follows. First, in Section 2, we review the existing ap-
proaches. Next, in Section 3, we present the process to define a simulation model, an
iterative approach that generates different products. In Section 4, we present the assump-
tions taxonomy. In Section 5, we discuss how to validate those assumptions using the
iterative cycle presented in Section 3. We present a table (W3H) that systematizes the selec-
tion of a subset of the tests one can use to perform the validations; moreover, we discuss
the utility of work with non-validated assumptions. In this section, we also present the
assumptions table, a product that helps in the model conceptualization and assumptions
use and maintenance. In Section 6, we present an example based on a real project developed
in the context of the definition of a Digital Twin for a factory. Finally, some conclusions are
drawn in Section 7.
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2. Existing Approaches

The classic Software Development Life Cycle (SDLC) is composed of four stages (i)
planning; (ii) analysis; (iii) design, and (iv) implementation [14]. From this, we can note that
several different Software Development Models exist, such as Waterfall, V-Model, RAD
model Iterative model, Agile, Spiral, and Prototyping models, among others [15,16].

In the case of a simulation model that will end up in the coding of a computer
program, we will conduct similar phases for the implementation and verification of the
simulator. This process will be guided continuously through the Validation, Verification,
and Accreditation (VV&A) processes. This guidance is because of the specific particularities
of modeling and due to the experimental nature of the results that must be implemented
in the system. Therefore, during the process, it is necessary to ensure that not only the
computer program fits well with the conceptual model but also that the conceptual model
and the assumptions they represent are correct enough to obtain valid conclusions regarding
the system [10]. In the case of a simulation model, the system (our object of the analysis) is
not necessarily a piece of software, but a factory, the environment, a society, or any other
system. Therefore, the VV&A process guides the complete development of a model to
ensure that all the assumptions we will use in the model development are correct.

Several proposals exist to conduct the VV&A cycle in a simulation project; [10] presents
an approach to ensure the validity of a model using a simplified cycle that presents the key
elements of the simulation model building. A more complete vision is presented in [11],
including a distinction between the real world and the simulated world. There is a distinc-
tion between the “System”, “System Theories”, “Conceptual Model”, “Simulation Model
Specification”, “Simulation Model”, “Simulation Model Data/Results”, and the “System
Data/Results”, composing a process that conducts the modeling process. Another proposal
for a detailed cycle for modeling and simulation is presented in [17]. It encompasses the
different elements that one can find in a simulation model like documents (“Formulated
Problem”, “Requirements Specification”, “Conceptual Model”, “Architecture Specification,
“Design Specification”, “Executable Submodels”, “Simulation Model”, “Simulation Results”
and “Presented Results”). This proposal is categorized, according to [18], with the different
phases where a simulation model could be: the Problem and Requirement phase, the
Design and Programming phase, the Simulation and Certification phase, and the Storage
and Reuse phase.

Coherently in [5], assume that Validation, and specifically Data Validation [11], owns
a central role in the VV&A process. Therefore, a proper understanding of the nature of
the assumption becomes relevant. In [19], the authors provide a taxonomy for modeling
assumptions, hypothesizing them, and proposing a use in simulation experiments. They
argue that depending on how the assumptions are constructed, one can classify them as
either constructive or non-constructive and phenomenological or mechanistic, depending
on the abstraction level. With this initial classification, the proposed taxonomy classifies
hypotheses as (i) phenomenological hypotheses, which should make statements about
the relationship between the simulated inputs and outputs; (ii) mechanistic hypotheses
that define the theoretically grounded model’s fundamental mechanisms that produce and
maintain the desired behavior, and (iii) control hypotheses related to the optimization of
behavior. In [20], the authors provide a detailed process for conducting hypothesis-driven
simulation studies and show how such explicit hypotheses models can facilitate validation
processes. Both [21,22] present a more general approach, describing the phases of the
life cycle of a simulation study based on the use of assumptions. These studies try to
accommodate the structure of the assumptions used in a simulation model but not by
outlining how one can perform a validation of the model assumptions.

However, currently, there is no complete view of the overall process that combines
the description, classification, and use of the model assumptions and how to manage them
in a detailed Validation, Verification, and Accreditation process. This will help to detect
what tests can be applied to each assumption to increase the credibility and accountability
of the models. Moreover, there is no description of the impact of the Digital Twin concept
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in the context of this process. In this work, we propose an approach that, from a very
pragmatic point of view, allows for an understanding of the nature of the assumptions we
use and how to use them in a complete VV&A life cycle that also encompasses the Digital
Twin concept.

3. Defining a Simulation Model

The complete VV&A cycle that guides the development of a simulation model by
introducing all aspects that must be validated in the cycle of a modeling project is presented
in Figure 1. With the emergence of the Digital Twin concept (in the frame of Industry 4.0),
some validations, like “Solution Validation”, emerge as a key element to ensure the cor-
rectness of the proposed solution and the implementations completed in the system. This
allows us to define the concept of model-based discussion that starts from the software
engineering concept of Model-Based Systems Engineering [23]. This is in line with the
hypothesis-driven simulation studies as proposed in [24], the formal specification hypothe-
sis [21], and also the goal [19]. Notice that due to the cyclic nature of modeling, different
versions or prototypes can appear. This will be a source of discussion to understand the
validity of the assumptions by performing an analysis between different assumptions used
on the different model versions.

The Goals, that is, why we are building the model, determines the definition of the
Problem Entity that defines the assumptions that are going to be used on the project and
formalized with the Conceptual Model, along with the Scenarios/Configurations definition.
Although the goals have a clear impact on the Problem Entity and consequently on the
Conceptual Model and the Scenarios/Configurations of the model, they rule the overall devel-
opment of the project. As an example, the selection of the software (or tools) that must be
used to do the model coding and the subsequent experimentation with the model must
be guided by a clear definition of the goals that will be translated into a set of metrics that
allow this selection following a proper methodology [25,26]. Therefore, depending on the
goals, the software to be used to code the model must own some specific features or others.

Each one of these products can end up with different documentation. Here we
propose to define a document for each of these products, as is presented in Table 1. This
documentation allows presenting the product, but also it will be present the process of its
development; hence, these documents are living documents updated continuously along
with the life of the system and the model they represent.

To transform one product into another product, we have the actions. They are
(i) Problem Definition, (ii) Analysis and Modelling, (iii) Coding, (iv) Parametrization, (v) Calibra-
tion, (vi) Experimentation, (vii) Understanding of the solutions, and (viii) Implementation. All
these actions finish with a product that is going to be enough for our purposes depending
on the validation processes that must be done continuously.

The different validation processes one must do are the: (i) Conceptual Model validation,
which allows detecting if the definition of the model is complete and the model allows
to answer the questions proposed by the Goals; (ii) Data validation; (iii) Verification of the
model coding; (iv) Operational validation; (v) Experimental validation; (vi) Accreditation, and
finally (vii) Solution validation. These validation processes can be done depending on the
status of the development of the model. Notice that the definition of the goals also implies a
validation, (viii) Goals Validation, related to the system management, which will be focused
on assuring that the goals are aligned and detailed completely and correctly, with the main
purposes of the system stakeholders.

As modeling is an iterative process, it generates several prototypes during the different
iterations. In each of these iterations, the assumptions can be modified according to the
goals and the evolution of the several products that answer those goals, driven by the
actions and the validation processes. The iterative nature of modeling makes it natural to
use an approach to coding like Agile, Prototyping, Iterative, and Incremental or also Rapid
Application Development (RAD) methodologies.



Mathematics 2023, 11, 845 5 of 25

Before entering more details regarding the different validation processes to be done,
in the next section, we discuss the assumptions of the model and how a taxonomy of those
assumptions helps in the different validation processes that must be done to ensure the
correctness of the products.
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Figure 1. The proposed life cycle for a simulation project. The squares represent products, like the
definition of the problem, the model coding, or the solutions obtained. The stars represent validation
and verification actions that must be done to ensure the correctness of the products. If this process
fails, we will come back to the previous product. In order to navigate from one product to another,
an action must be done, like the coding to obtain the “Computerized Model” from the “Conceptual
Model”. On the diagram, the cycle is mapped on the different phases proposed by [19]. In Figure 1,
the various products that are going to be affected or created by the simulation project are represented
in a square. There are eight of these: (i) the Goals, since the clarification of the relevant elements
that rule the organization are a product by itself; (ii) the Problem Entity, which is the definition of
the problem that we are going to analyze that is generated by the Goals of the organization; (iii) the
Conceptual Model, that represents a complete and unambiguous representation of the model; (iv) the
Scenarios/Configurations to be analyzed; (v) the Computerized Model, that is the simulator that codes the
model; (vi) the Solutions, (vii) the Accepted Solutions, accepted because a model-based discussion, and
the (viii) System itself since it will be modified based on the Accepted Solutions.
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Table 1. Proposed documents were obtained in each product of the modeling cycle.

PRODUCT DOCUMENTATION EXPLANATION

SYSTEM System documentation
All the documentation regarding the system operations. Tacit
and informal information can also be used here to understand
the system’s true behavior.

GOALS Goals document A document that contains the goals that drive the
development of the model.

PROBLEM ENTITY Assumptions document A document that contains the assumptions of the model.

CONCEPTUAL MODEL Conceptualization of the model
The conceptual model constitutes a specification and includes
all the assumptions (not the simplifications) detailed in the
Hypotheses document.

SCENARIOS/
CONFIGURATIONS Experimental design definition

A document containing the experimental design. A
discussion regarding the quality of the RNG used in the
experimentation can be added here if needed.

COMPUTERIZED
MODEL

Code and technical
documentation of the code

Along with the code, the technical documentation explains
the code and the needed configurations of the computational
infrastructure needed to execute and maintain the model.

SOLUTIONS Solutions document Description and data containing the solutions obtained from
the model’s execution.

ACCEPTED SOLUTIONS Executive summary of the project Conclusions of the modeling project and suggestions to
perform the implementation on the system.

4. Working with the Assumptions

Systems can be complex realities. Even though when we can work with simple
systems, we need to use assumptions to describe what the system is. Once it is clear what
the system is, we must define a model that represents and connects all the assumptions
through the model structure and the behavior.

This model must be conceptualized using a formalism independent of the selected
implementation tool. The tool must be selected depending on a clear set of metrics ruled
by the goals and never by any other preference [25]. Several books and papers detail the
advantages of using a conceptual model. Here, we want to focus on three aspects. First,
the model conceptualization can be considered a product by itself [27]. We support this,
as represented in Figure 1, because the knowledge representation that rules the different
processes in a system can sometimes be more interesting than the simulation by itself. The
conceptual model transforms the tacit knowledge of the system into explicit knowledge
that can later be used to make decisions. A formal representation of a system, through the
model conceptualization, helps to understand how the system behaves.

Second, a formal model representation simplifies its coding and enhances its main-
tainability. Third, a conceptual model simplifies the model understanding by the different
actors that participate in the simulation project. This improves the communication between
diverse profiles simplifying the validation processes, a key aspect of the IT/OT convergence
(Information Technology and Operations Technologies) in the frame of Industry 4.0.

Since the conceptual model is founded on assumptions, the process of validating
a model is the process of validating the different assumptions used to build the formal
representation of the simulation model and accepting the needed assumptions as valid.
The conceptual model starts with the definition of the assumptions document. This docu-
ment represents how we understand the behavior and the structure of the System under
the lens of the Problem Entity: the reason we build the model. The conceptual model
is the formal representation of the assumptions we are going to validate in the process
of building the model. However, it is first necessary to detail the nature of the assump-
tions. An initial proposal of this taxonomy is presented here [28], defining three main
types of assumptions: Systemic Data assumptions, Systemic Structural assumptions, and
Simplification assumptions.
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Assumptions Taxonomy

First are those assumptions that allow us to define how the system behaves. If we
have a deeper knowledge of the system, more assumptions describing its behavior can be
used. We want to add as many as we can of these assumptions (if they are useful for the
model goal) since they help us in the description of the model. We suggest naming these
assumptions Systemic since they describe the behavior of the system. These assumptions
represent our current knowledge of the system and are assumed to be true (but may not be
true). These assumptions can also be divided into two categories.

(i) Systemic Data assumptions are those related to the data, for example, those that
define the probability distributions that represent the model element’s behavior.

(ii) Systemic Structural assumptions can be those that represent the relations between
the different elements that compose the model, the model behavior, and the causal
relations between the elements.

Second, there is a category composed of assumptions that simplify the model we are
going to build.

(iii) Simplification assumptions are useful to reduce the complexity of the model. Be-
cause of the resources, the time we own to code the model, and the limited knowledge
we have of the system, we must always use these kinds of assumptions. They repre-
sent our current limitations in two directions: (i) system knowledge or (ii) resource
knowledge and are assumed to be false (but may be true, becoming Systemic). We
want to keep the model small enough to be useful, keeping the model simple but not
simplistic. Notice that in the hypothetical case that we have a complete understanding
of the system and infinite resources, there is no need to use simplification assumptions
in our models.

This taxonomy has the main goal of simplifying and helping in the VV&A process
and informing the understanding of the nature of the decision taken during the modeling
process. They also represent the current limitations and understanding of our system;
hence, as we will show next, it will be interesting to store this information in a structure
named the assumptions document.

As an example, considering a linear model, one can introduce an error (i) when
omitting a relevant variable (because we do not know it, in that case, this is a Systemic
Structural assumption error, or because we assume that it is not relevant, in which case
we are using a Simplification assumption erroneously); (ii) when including an irrelevant
variable (using a false Systemic Structural assumption), or (iii) when specifying a linear
relation that does not exist (again, using a false Systemic Structural assumption). The
meaning of the assumptions is the key to interpreting the causality of the model and
performing an accurate Validation. In addition, following the example of a linear model,
the hypotheses regarding the data (independency, normality, homoscedasticity . . . ) are
Systemic Data assumptions that must be satisfied. As we will see next, we can use a model
that does not have all the assumptions validated if we clearly understand our model goal
and what is the nature of the assumptions that fail.

5. Validating a Simulation Model

Validated means that the Systemic assumptions are tested (or assumed) as true, and
the Simplification assumptions are tolerable by all the parts involved in the modeling
project and supported by the results. However, we cannot ensure that a model obtained
from a set of assumptions is true (we can only ensure that a model is false [29].) but useful
for our goals. Modeling can also be useful for many other reasons, instead of predict [30],
we can assume that a model is valid for a specific purpose (but false for others), implying
that the underlying assumptions are valid for this purpose.

Hence, what do we mean by Validation? Validation can be seen differently depending
on the view used to understand the assumptions [31], with the following being the more
common approaches [32]: (i) the rationalist view (where the model becomes a structure
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that starts from premises that act as axioms); (ii) the empiricist view (where the model must
be tested empirically with experimental data), and (iii) positivist view (where a model is
going to be considered valid only if accurate predictions are going to be obtained).

To conduct the Validation process in a simulation project, Naylor and Finger [32]
proposed combining the three historical methods of rationalism, empiricism, and posi-
tivism into a multistage process of validation, the multistage or utilitarian approach. This
validation method consists of [32]:

(i) Developing the model’s assumptions, observations, and general knowledge.
(ii) Validating the model’s assumptions and testing them empirically if possible.
(iii) Comparing the input-output relationships of the model with the real system.

Of the different processes we propose in Figure 1 that one must conduct to ensure the
correctness of the solutions implemented in the system, the essential steps that must be
completed are:

1. Data validation to ensure that the data we are going to use on the model, the prob-
ability distributions, the data sources that are used to obtain the data, the support
structures to keep the data, etc., are accurate and correctly defined. To validate the
data, we must focus our efforts on the Systemic Data assumptions. The tests must
focus on analyzing the data we are going to use in the model in two directions:
(i) assuring that the data fits well with the system process it wants to model (data
fitting) and (ii) ensuring that the data expiration constraints are valid, therefore, guar-
antee that the institutions (structures, enterprises, data warehouses, etc.) needed to
obtain the data works and keep this data valid during the life of the model. Defining
data expiration constrain is a key aspect to ensuring the validity of the simulation
models (that eventually will be part of a Digital Twin in the frame of Industry 4.0)
since the model is going to be a representation of a real system, analyzed along with
the life of the system that emulates.

2. Conceptual model validation is determining (i) the correctness of the conceptual
model assumptions and (ii) that the problem entity model’s representation, the
model’s structure, and behavior, represented by the logic and the mathematical
and causal relationships, are “reasonable” for the goals. To validate the conceptual
model, we must focus on the formal representation of the model or on the coding
of this formal representation to validate the Systemic Structural and Simplification
assumptions. The conceptual model represents the structural relations of the different
model elements and the behavior of the different elements that compose the model.
This implies that we must define techniques to ensure that (i) the Systemic Structural
assumptions are correct for our purposes and (ii) the Simplifications assumptions do
not transform the model into a simplistic version of the reality it represents. Several
formal languages like Specification and Description Language (SDL) [33–35], Petri
Nets [36–39], and DEVS [40–42] allow an analysis of its behavior before the coding
(reachability analysis, etc.). Moreover, there are methods to transform a conceptual
model from one to another, becoming excellent tools to ensure that the underlying
assumptions are correctly defined [43,44]. This also simplifies the integration between
different conceptual models that express the same system or different parts of a sys-
tem that must be defined as one following meta-formalism, common formalism or
co-simulation approaches [45,46].

3. Operational validation is focused on the results that we can obtain from a model
implementation. Some of the methodologies that we present next, like Black Box
validation, among many others, imply the use of all the model assumptions since
the modeler tries to validate the whole behavior of the computer program that codes
the model. In that case, we often cannot distinguish if the results (in case the results
are wrong) are due to incorrect Systemic assumptions (Data or Structural), due to
a wrong Simplification assumption, or an incorrect model coding, introducing the
verification phase into account. However, Operational Validation is one of the most
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widely used approaches to do validations and must always be done to ensure that all
the connections between the distinct parts have been correctly defined.

4. Verification ensures that the code has been completed correctly. The techniques at
this point are not focused on understanding if the assumptions are correct, but if they
have been correctly represented in the computational framework, we use them to
implement the model.

5. Experimental validation analyzes if the experimental procedures used to obtain the
results are good enough. A simulation model needs to be executed based on an
experimental framework; hence the design of experiments and the execution of those
experiments must be validated. One must ensure that the factors needed and the
levels to be analyzed are correctly defined for the goals proposed. We must also
ensure that the number of replications for each scenario in the experiment has been
correctly obtained (along with the methods used to obtain these replications and the
length of the replications). Without this validation, the results of a model cannot be
considered for its implementation in the system.

6. Solution validation focus on the accuracy of the results obtained from the model
proposed solution and the data obtained on the implemented solution. This is a key
validation in the frame Industry 4.0 Digital Twin concept since it ensures that the
model and the system are close enough to be useful for the goals proposed. Solution
Validation is a useful validation for the modelers that will eventually learn about the
divergences between the model proposed solutions and the implementation of the
accepted solutions on the system. This will allow further modeling improvement
through the detection of errors. It is also useful for the owners of the system to
understand if the different validation processes, specifically those related to the
accreditation, are working properly. Notice, however, that because this validation
can show flaws in the accreditation process, in the model validation and verification
processes, or during the system implementation, this validation is sensible and often
forgotten. However, in the frame of cyber-physical systems (in Industry 4.0), this
validation becomes a key element since the Digital Twin must accurately represent the
current system, which is prone to change. This solution validation traditionally has
been used to test if the model can also be used as a product, often to test the behavior of
the system in other scenarios, see [47,48]; in the context of Industry 4.0 is a continuous
process to ensure that the simulation model is yet valid. The nature of techniques one
can use in the Solution Validation process and the assumptions that are going to be
involved are similar to the ones used in the Operational Validation process.

To detect the assumptions that are validated depending on the method used, we
propose a classification in the next section of some of the well-known validation methods
and what the assumptions are that they try to validate. This is not an extensive list of the
methods that can be used, but just a starting point to define a taxonomy that systematizes
the overall Validation, Verification, and Accreditation process in a model.

5.1. Testing the Model Assumptions

In [2,5,11,49–53], one can review a description of the different tests one can apply for
simulation validation. In Appendix A.1 VV Tests, we present a description of those tests
following the proposed method of this paper. However, since the resources we have are
finite, we must establish some classification to select the more appropriate test to be used.
In [54,55], is presented a classification of the tests one can apply to a model according to
the formal, informal, static, or dynamic nature of the techniques. We adapt this table using
the Informal/Formal and Static/Dynamic categories as dimensions. With this idea, we
propose Table 2. Informal tests are those tests where a high range of subjectivity exists
because they are based on human perception. Informal tests require the intervention of
specialists. Hence in this type of test, specialists are a needed resource. Static tests are those
tests that do not need the execution of the simulation model to be applied. Static tests will
always be focused on the model structure, while dynamic tests can be focused on the model
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structure but also on the output data we obtain from this execution. Dynamic tests need
the coding of the simulation model to be conducted. Formal/Dynamic tests can need real
data (focused on testing the model logic) or can use fake data (focused on testing model
data, mainly its output). This generates a subcategory, as is presented in Table 2.

Table 2. Classification of different validation tests, depending on their nature.

STATIC DYNAMIC

INFORMAL

X Face Validation
X Walkthroughs
X Audit
X Desk Checking
X Documentation consistency checking
X Inspections
X Reviews
X Traceability Assessment
X Interface Analysis (model interface; user

interface)

X Visualization/Animation
X Turing Test
X Graphical Comparisons
X Acceptance Testing
X Object-Flow Testing
X Compliance Testing (authorization; performance;

security; standards)
X Product Testing
X Alpha Testing
X Beta Testing

FORMAL

X Induction
X Inference
X Logical Deduction
X Lambda Calculus
X Predicate Calculus
X Predicate Transformations
X Proof of Correctness
X Cause-Effect Graphing (State Transition

analysis . . . )
X Goodness-of-fit
X Data Analysis (data dependency; data

flow)
X Control Analysis (state transition; calling

structure; analysis of concurrent process;
control flow)

X Semantic Analysis
X Structural Analysis
X Syntax Analysis
X Fault/Failure Analysis

X Partition analysis
X Path Analysis
X Symbolic Execution
X Assertion Checking
X Inductive Assertions
X Fault/Failure Insertion Testing
X Interface Testing (data; model; user)
X Special Input Testing (boundary value; equivalence

partitioning; degenerative; extreme input; invalid
input; real-time input; self-driven input; stress;
trace-driven input; fixed values)

T
ES

T
M

O
D

EL
LO

G
IC

X Black-Box Testing
X Bottom-Up Testing
X Top-Down Testing
X Debugging
X Execution Testing (monitoring; profiling; tracing)
X Field Testing
X Predictive Validation (historical data)
X Regression Testing
X Sensitivity Analysis
X Statistical Techniques
X Sub-model/Module Testing
X Symbolic Debugging
X Structural (White-Box) Testing (branch; condition;

data flow; loop; path; statement)
X Comparison Testing
X Event Validity

T
ES

T
M

O
D

EL
O

U
T

PU
T

D
A

TA

Using this table as a starting point, we go further, analyzing what assumptions will
usually be tested in each test and when (the validation process) the test can be applied.
This classification is intended to be used as an approximation to understand when applying
a specific test.
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5.2. W3H Testing Table

Table 3 details when to do the test, what test to do, how to do the test (if the test is
Dynamic, needs the model execution, and if it is Informal, needs the experts on the system
participation), and why, that is the nature of the assumptions that will be tested. The final
goal is to test whether all the assumptions are valid or useful for our model. Following this
table, if we want to validate our simulation model, we need to apply at least one test to each
assumption. This implies the selection of the tests that allow doing this better if we can
select tests that are strongly focused on specific assumptions rather than all assumptions to
allow us to detect possible sources of error.

Table 3. The final classification of the assumptions validated in each test depends on how the team is
implementing the tests, but this table helps in the understanding of where to put the effort in the
validation process. Finally, all the different validation processes must be done, and ideally, all the
assumptions must be tested through the different validation phases.

WHEN WHAT HOW WHY

Formal
(F)/Informal (I)

Static
(S)/Dynamic (D)

Systemic
Structural

Systemic
Data Simplification

C
O

N
C

EP
T

U
A

L
M

O
D

EL
V

A
LI

D
A

T
IO

N

Audit I S + +
Cause-Effect Graphing F S + +
Desk Checking I S + +
Documentation consistency checking I S + +
Face Validation I S + +
Induction F S + +
Inference F S + +
Inspections I S + +
Interface Analysis I S + +
Lambda Calculus F S + +
Logical Deduction F S + +
Predicate Calculus F S + +
Predicate Transformations F S + +
Proof of Correctness F S + +
Reviews I S + +
Traceability Assessment I S + +
Walkthroughs I S + +

D
A

TA
V

A
LI

-
D

A
T

IO
N

Events F D +

Goodness-of-fit F S +

Statistical Techniques F D +

V
ER

IF
IC

A
T

IO
N

Control analysis F S +
Data Analysis F S +
Debugging F D +
Execution Testing F D +
Fault/Failure Analysis F S +
Interface Testing F D +
Semantic Analysis F S +
Structural Analysis F S +
Symbolic Debugging F D +
Syntax Analysis F S +
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Table 3. Cont.

WHEN WHAT HOW WHY

Formal
(F)/Informal (I)

Static
(S)/Dynamic (D)

Systemic
Structural

Systemic
Data Simplification

O
PE

R
A

T
IO

N
A

L
V

A
LI

D
A

T
IO

N

Assertion Checking F D +
Black-box Testing F D + + +
Bottom-Up Testing F D + + +
Comparison to other models F D + + +
Compliance Testing I D +
Degenerative F D +
Extreme conditions F D +
Fault/Failure Insertion Testing F D +
Fixed values F D +
Graphical Comparisons I D + + +
Historical data F D + + +
Inductive Assertions F D +
Object-Flow Testing I D + + +
Partition analysis F D + + +
Path Analysis F D +
Sub-model/Module Testing F D + + +
Symbolic Execution F D +
Top-Down Testing F D + + +
Turing tests I D + + +
Visualization/Animation I D + + +
White-Box Testing F D +

EX
PE

R
I-

M
EN

TA
L

V
A

LI
D

A
-

T
IO

N Sensitivity analysis F D + +

A
C

C
R

ED
IT

A
-

T
IO

N

Acceptance Testing I D + + +

Alpha Testing I D + + +

Beta Testing I D + + +

Product Testing I D + + +

SO
LU

T
IO

N
V

A
LI

D
A

-
T

IO
N

Field Testing F D + + +

Regression Testing F D + + +

Notice that simplification assumptions are not validated in the strict sense. Since
they are not introduced in the model, they represent the limits of our knowledge or the
resources we own. This is the reason we do not detect a single validation method that is
focused only on the Simplification assumptions; doing so implies the modification of the
model, usually increasing its complexity and adding new Systemic assumptions to discard
the simplification.

5.3. Working with Not Validated Assumptions

Validate a simulation model is a time-demanding and iterative task: see Figure 1.
Achieving a fully validated model also needs a growing (exponential) number of re-
sources [56]. In our path to find a useful model, we must often accept working with
non-validated assumptions at some point to advance the model development. Table 4
shows if this situation is wanted, unwanted or useful because of the expected model results.
The desired situation for an assumption is represented by “wanted”; “useful” can be transi-
tory of a final situation for an assumption (consider it at the end of the completion of one
of the sub-products following our SDLC) that can be needed for the model construction,
and “unwanted” are those states that are not desirable for any purpose of the simulation
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model, hence are just transitory states. We want to mention that the use of Simplification
assumptions can be useful but never wanted. The final objective of a model is to work
with as few simplifications as possible (or without simplifications). As we noted previously,
simplification assumptions will always be false; we know that reality is more complex than
the model.

Table 4. Effects of using no validated assumptions.

Systemic Structural
Assumptions

Systemic Data
Assumptions

Simplification
Assumptions

Validated Wanted Wanted Useful
Non-validated Unwanted Useful Unwanted

Systemic Structural assumptions represent the relations between the different elements
that compose the model. If these relations are not well-defined, the model is not correct:
the causality is the crux of a simulation model [57]. For that, using no validated Systemic
Structural assumptions is an unwanted state.

For Systemic Data assumptions, using no validated data can be useful for testing
purposes and to allow advance in the model definition without waiting for a dataset that
needs time to be defined, prepared, etc. In some cases, it is necessary to use fake data to
validate the behavior of the model (as an example in extreme conditions tests). Therefore,
in these contexts, the use of no validated Systemic Data assumptions can be useful.

Finally, if we have validated Simplification assumptions in our model, we suppose
their utility to accomplish our expected result considering the project constraints (technol-
ogy level, budget, time, computational resources, knowledge, etc.). If these simplification
assumptions are not accepted, that implies that we are using some simplifications in our
model that the Stakeholders cannot assume. This situation is dangerous for the project,
and often reflects bad communication with the client. Communication with the client from
the beginning of the project and the definition of a good assumptions document are key
elements for the success of a simulation project [5]. Again, note that working with all the
assumptions in the “wanted” state is (often) unrealistic since this implies avoiding the use
of simplification assumptions.

From this table, we can understand that the status of an assumption can be true, valid
(when it is not true but is useful), and false.

5.4. Working with this Taxonomy, Writing the Assumptions Table, and Building the
Conceptual Model

For the success of a simulation project, the assumptions document is a key element [5].
This document can start with some initial meetings between the Stakeholders and modelers
and describes the model assumptions in natural language. This document must be simple
and clear and, as we will show next, defined as a structure. In the frame of Industry 4.0, we
propose to transform this document into a structured table that can be stored in a database,
with an identifier that allows us to automatically detect whether a specific assumption is
valid or not and where these assumptions are used on the model. We will also refer to a
condition for the assumptions that allow understanding if these assumptions need revision,
for example, the Systemic Data assumptions that have their own expiration date.

However, to accurately describe and use the Systemic assumptions, we must use
formal language. This allows us to describe the structure and the behavior of the model
completely and unambiguously. A formal language like SDL, DEVS, or Petri Nets, among
others, becomes an excellent tool to represent the Systemic Structural assumptions and
perform the conceptual model Validations. Hence along with the assumptions table, we
must take care to keep the conceptual model representation of the system up to date to
reflect our model.

The structure of the assumptions table must include the following:
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1. Type of the assumption: Systemic Structural assumptions, Systemic Data assumptions,
or Simplification assumption.

2. Identifier, which uniquely describes the nature of the assumption: as an example,
SD_01 refers to the Systemic Data Assumption number “1”.

3. Description of the assumption.
4. Location on the conceptual model, list of the diagrams that are affected by the assumption.
5. The validation status is true if the assumption is assumed correct by the Stakeholders

or false otherwise.
6. Review condition, a function that modifies the Validation Status to false when this

assumption must be reviewed: never (implying that the function is true), by time, or by
a more complex set of rules. Systemic Data assumptions often have a data expiration
value and hence must be reviewed at this time. In addition, Systemic Structural
assumptions can change (because of changes in the system). For the Simplification
assumptions, the introduction of a new technique means that we can now consider
adding more detail to the model (or eliminating detail).

A Review condition is a necessary element when we model a digital twin (in the frame
of Industry 4.0). In that case, the system and the model can follow separate paths, which
leads to the need for the revision of the assumptions to keep the model useful. Notice that
the assumptions table is a product by itself, and a company may be interested in keeping
a digital version of this table to understand the assumptions that rule the behavior of the
main company processes, to be used in conjunction with the model conceptualization and
the code of the simulation model (that eventually will be used as a part of a digital twin).

As the construction of a simulation model is an iterative task, once we achieve an
iteration where all the assumptions of the document have been accepted, we have a
simulation model that eventually can be used to make decisions and can be prepared
for Accreditation.

6. A Real Case Application Example

Now we are going to show how we will apply this to a real case: see [58]. The project
was developed for a real industry that wants to optimize the behavior of a specific area of a
production plant. Specifically, we want to perform a detailed simulation of the conveyor
that moves some material from one point to another point of the factory. Note that this is
not a short conveyor, and its behavior is critical for the good performance of the factory;
since it is composed of several sections, it is a complex element that must be accurately
represented. We want to configure the conveyor behavior, speed, and capacity to properly
configure the machines located at the beginning and the end of the conveyor. The conveyor
is connected with other elements, specifically in this example, with a machine named ADP,
which provides the input material that the conveyor transports to a robot that will process
them to other areas in the factory.

To do so, we talk with the managers to understand the main assumptions of the
system, perform the classification, and define the assumptions document. From this, once
the different Stakeholders agree on the correctness of the Structural assumptions and
the suitability of the Simplification assumptions (to avoid unwanted states), we define a
conceptual model based on Specification and Description Language (SDL) and ITU-T formal
and graphical language. Note that the initial stages include Systemic data assumptions
that have not been validated and some Simplification assumptions that may or may not be
making the model too simplistic.

Following the cycle proposed in Figure 1, we must start with a clear definition of the
goals. Once this is completed, the assumptions table must be defined, and the different
validations are going to drive the achievement of the goals. If validation fails (see Figure 1),
we go back to the previous product, revise it, and build again an updated version of the
product that fails. The process will drive us back until a product supports the validations
that must be done to test the assumptions, and we can complete the actions to build a new
product that eventually is going to pass the Validations. The assumptions taxonomy helps
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to understand the assumptions to be tested in each phase (see Table 3), but sometimes, not
all the assumptions can be tested due to the incremental behavior of the modeling process.
In our approach, we always present the assumptions table, and on this table, those in red
are assumptions that are not yet validated but that we are going to use (considering them
valid) to continue with the prototyping modeling process. In order to do so, an identifier
for each assumption is proposed as an example. SD_01 is a Systemic Data assumption,
SS_01 a Systemic Structural assumption, and SM_01 a simplification assumption.

This identifier, used for each assumption, allows us to later connect the assumptions
table with the formal representation of the assumptions done in a formal language (SDL
in our case). As an example, Figure 2 shows the first page of an SDL conceptual model
for a conveyor element: see the details of the model [58]. The red squares represent those
assumptions that are described in the assumptions document. See Table 5. The table
contains the TYPE of the assumption, the IDENTIFIER of the assumption to simplify its
use, the DESCRIPTION that describes the assumption, the LOCATION that details the
element (or elements) of the conceptual model that receives the assumption, the STATUS
of the assumption, that can be true, false or valid, and the REVIEW CONDITION that
expresses when the assumption must be reviewed again to ensure that its STATUS did not
change. Note that the conceptual model formally represents all the assumptions. Hence
if all of the organization members are familiar with the language selected, this can be the
communication channel to be used in the organization.
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Figure 2. PCinta for the ROLLING state (1/3). Here is presented the PROCESS instantiation. The
time4position variable is a Systemic Data assumption that defines the movement of the elements on
the conveyor. It states that the time needed to arrive at a specific position depends on the TimeToRoll
(defined as 6 s to cross the conveyor) and the number of positions of this conveyor (defined in
MaxElems as 10). This Specification and Description Language diagram details unambiguously and
completely the assumptions of the model. However, like any conceptual model, it is not going to
depict the simplification assumptions used.
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Table 5. Assumptions table. The TimeToRoll variable is not yet validated on this iteration; hence all
the assumptions that are related to it are considered valid but not true. In this iteration, we also detect
that the maximum number of elements that can be on a conveyor is not 10; hence SD_02 is false; we
must go to the factory and measure the new number of elements that can be on the conveyor.

TYPE IDENTIFIER DESCRIPTION LOCATION STATUS REVIEW
CONDITION

STRUCTURAL SS_01 The previous element of the conveyor is the
machine named “BADP_PADP”. PCinta true If BADP_PADP

is modified

STRUCTURAL SS_02 The next element to the conveyor will be the
robot “BRobot_PRobot”. PCinta true

If
BRobot_PRobot
is modified

STRUCTURAL SS_03 When the conveyor is full, it sends a message
to the previous element to stop this machine. PCinta true never

STRUCTURAL SS_04

When the conveyor has empty spaces, the
previous element puts a new box in the
conveyor and starts its movement to the
position that lasts a time defined in SD_03.

PCinta true never

DATA SD_01 The time needed to cross the conveyor is 6 s,
defined by the TimeToRoll variable. PCinta valid It TimeToRoll is

modified

DATA SD_02
The maximum number of elements on the
conveyor is 10, defined by the MaxElems
variable.

PCinta false If MaxElems is
modified

DATA SD_03
The time needed for the element to reach its
position on the conveyor is represented by
the expression TimeToRoll

(MaxElems−1) .
PCinta valid never

The textual representation of the assumption in the conceptual models owns ambiguity,
but this document needs to be kept until not all the parts involved in the project feel
confident with the formal language used to define the conceptual model that finally replaces
this table, except for the simplification assumptions that may not be represented on the
conceptual model.

Following the proposed approach, once we have the conceptual model and the as-
sumptions from Table 3, we select a set of tests that covers all the assumptions we want to
validate in all the Validation Processes we follow. This allows us to define a table such as
Table 6.

Table 6. Validations to be completed in the project.

PHASE VALIDATION
METHOD

SYSTEMIC
STRUCTURAL

SYSTEMIC
DATA SIMPLIFICATIONS

CONCEPTUAL MODEL VALIDATION Face validation + +
DATA VALIDATION Goodness-of-fit +
OPERATIONAL VALIDATION Black Box + + +
EXPERIMENTAL VALIDATION Sensitivity analysis + +
VERIFICATION Symbolic debugging +
ACCREDITATION Acceptance testing + + +
SOLUTION VALIDATION Field testing + + +

The selection of the validations methods in each phase must be made to validate.
Before the Accreditation and Solution Validation phases, all the assumptions must consider
the resources (time, personnel) we have on the project. In each phase, we apply the test and
analyze different assumptions from the table. If some assumptions remain not validated, we
can add more tests to complete the validation. In short, we select this subset of validations
intending to ensure that all the assumptions are tested by a validation method and that all
the phases are also covered. Figure 1 helps to understand the flow we will follow in the
iterative modeling process, while the use of the assumptions table and Table 3 help to select
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the more appropriate tests. Table 6 is the one we follow in this project. However, other
validation approaches can be made to achieve the complete validation of the assumptions
and the different phases.

7. Conclusions

The development of a model must be guided by the needed Validation, Verification,
and Accreditation processes. This defines an iterative approach until the achievement of the
Accepted Solutions, a product that will be implemented in the system. The approach pre-
sented in this paper encompasses all the needed actions, products, and validation processes
that must be done to achieve a valid model. Moreover, considering the possibility that the
model belongs to a Digital Twin, the validation of the model continues while it is in use; this
iterative approach systematizes the Solution Validation, allowing understanding and detec-
tion of the assumptions that become false due to incorrect understanding or modifications
of the analyzed system. Therefore, the prototyping approach, often used in Industry 4.0 to
implement different testbeds, is supported by this approach. In a Digital Twin, composed
of the Digital Master, which represents the models, and the Digital Shadows, representing
the data, obtained from the model and the system, the continuous validation process done
in the Solution Validation can cause the reevaluation of the different products obtained
through the modeling process.

The definition of a model through its assumptions is the key element that rules its
behavior, depicting the suggested causality rules. However, not all the assumptions used
in a model have the same effect on its definition. The classification of the assumptions
simplifies the model’s reevaluation and maintenance. Furthermore, the tests we can use to
prove the validity of the model are not working with any typology of assumptions; in our
taxonomy, the three classes of assumptions that exist are Systemic Structural assumptions,
Systemic Data assumptions, and Simplification assumptions. The use of a taxonomy allows
focusing our efforts on a selected subset of the validation tests; the W3H table is the first step
to understanding and systematizing the validation test selection. We show that during the
iterative process, it is not necessary to ensure that all the assumptions are valid. Sometimes
it could be desirable to work with no validated Systemic Data assumptions to validate the
Systemic Structural assumptions, or to obtain data related to extreme conditions situations
to perform the validations. Working with the proposed approach clarifies the need to
increase the Systemic assumptions to represent better and with more detail the structure
and the data. On the other hand, we want to decrease the number of Simplification
assumptions used to represent a deeper understanding of the system.

The definition of an assumptions table can also be a valuable tool for a company that
wants to perform a digitalization of its processes, not only to drive the modeling process.
We also note that we must take care of expiration conditions for the assumptions, like
the data expiration for the Systemic Data assumptions, to ensure that a model is valid
during the life span of the model and take care of any modification in the system that will
affect the Systemic (Data and Structural) assumptions. Modifications in the technology,
or improvements to the scientific framework used to develop the model, will eventually
trigger some simplification assumptions to be discarded.

The life cycle of the modeling process we present depicts all the actions, processes, and
products one can obtain in an iterative validation and verification process. This diagram
understands the specific features of the new Industry 4.0 requirements and the continuous
Validation Verification and Accreditation process that must be done in the context of a
Digital Twin creation. The validation and Verification process are the key aspects that must
drive any simulation as proposed on the iterative cycle. No model can be considered true
but useful, and this depends strongly on how this validation process has been done. The
review and the classification of the different Validation techniques one can use will serve
precisely to simplify, orientate, and accelerate this Validation process.

This work proposes a complete life cycle guided through the Validation and Verifica-
tion processes that simplifies the assumptions used and clarifies the products obtained in
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each phase. Following the proposed process guides simplifies the Validation Verification
and Accreditation actions, increasing the confidence of both modelers and Stakeholders in
the final solution.

Finally, we want to mention that, at the beginning of this work, we presented a
juxtaposition between the model and the system. Notice that with this approach and
understanding the possibility of the interaction between model and system through the
Solution Validation, a new entity emerges, including both elements, the system and the
Digital Twin.
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Appendix A

Appendix A.1. VV Tests

Here we present some validation and verification tests that can be applied to modeling.
They are based on [54,55] and contextualized following our proposal. We are not focused
on analyzing if the tests are supported by software to facilitate its application, but just
mention that more and more software exists that tries to automatize the software creation,
like [59,60], and also independent institutions [61,62] focused on the Validation of mission-
critical software.

Appendix A.1.1. Informal and Static Validation Techniques

In all the tests of this category, no results will be analyzed since no execution of the
model will be done; hence the correctness of the Systemic Data assumptions used on the
model cannot be tested here. The assessment of the model will be completed based on the
subjective knowledge of the experts by analyzing the documentation, the processes, and
the conceptual model.

Conceptual Model Validation

As an example of a test for this category on Face validation [11,55], the experts analyze
the conceptual model description. From this analysis, they can recognize the correctness
of a model. This validation is focused on conceptual model representation, hence on
the analysis of the Systemic Structural assumptions that the model conceptual model
represents, one can analyze the correctness of the relations, and one can discuss the missing
assumptions that do not appear on the conceptual model, or some assumptions that seem
oversimplify the model, the Simplification assumptions.

Walkthroughs, Inspections, and Reviews are focused on detecting documentation
faults based on the expertise of a team of experts. Each of these techniques differs in
the steps that must be followed and how the teams will be selected. On these types of
validations, only Systemic Structural and Simplification assumptions can be analyzed. A
similar case is an Audit where the simulation study will be audited.

Desk Checking refers to the individual analysis of the work done. Here we are
focused on the informal and static analysis of the model, not in any sense the analysis
of the results obtained from the model or the correctness of the distributions used (that
can be done using statistical techniques). Hence, here we test the Systemic Structural and
simplifications assumptions, like Documentation consistency checking, which analyzes
the completeness of the documentation to ensure that all is up to date.

Traceability Assessment is a technique to ensure that the modeling process accom-
plishes all the requirements and that the requirements match the design. Currently, there
is some effort to systematize and automate these methods exists, like [63,64], but since
this process is not fully automated and relies on subjective appreciations, we keep this
technique informal. This will be similar to Interface Analysis, both for User Interface
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analysis [65] and for Model Interface Analysis [66], where some subjective approaches still
must be made.

All these techniques allow us to provide insights regarding the correctness of the
Systemic Structural and Simplification assumptions but not regarding the Systemic Data
assumptions since no statistical tests have been done, and no model execution is done.
These types of techniques can be done in the initial stages of the model development, in
the Conceptual Model Validation process (but also can be applied in other stages).

Appendix A.1.2. Informal and Dynamic Validation Techniques

In the Informal/Dynamic category, the model will be executed, but the validity of
the model will be recognized through the subjective analysis of the experts. No statistical,
mathematical, or computational methods will be applied here.

Operational Validation Process

Visualization/Animation tests [55,67] are focused on a graphical, usually a virtual
representation, of the simulation model during its executions. We are focused on detecting
if the behavior of the elements we see is consistent with the knowledge we have of the
system. On Turing tests [5,11,68], the simulator generates results that are merged with
system data. Again, by examining the documentation that contains simulation results
and system data, the experts determine what the reports generated by the simulator are.
Statistical analysis can be done, as presented in [68], to detect if the model accuracy is
enough. This is a dynamic test, needs the execution of the simulation model, and is an
informal test since it is based on expert knowledge. Since the data will be used subjectively
by the expert to do the classification, we will review not only the structure of the model but
also the correctness of the data we use.

Other Informal/Dynamic tests are Graphical Comparisons, which will be based on
the analysis of the graphical output of the simulation model and the experts again ensure its
validity, or Object-Flow Testing, which analyzes the behavior of a specific object (usually
an entity) during its execution, and the experts validate its correctness.

In all these tests, we analyze the Systemic assumptions, but we can also discuss the
correct use of the Simplification assumptions. Hence these tests encompass all the assump-
tions that compose the model (as a whole). These tests can be used in the Operational
Validation process.

In this category, we can find Compliance Testing, also known as Conformance testing.
It is a non-functional testing technique that is done to validate the authorization, perfor-
mance, security, or standards, among other non-functional features, and to detect whether
the code of the model accomplishes the organization’s prescribed standards: see [69].
Although this type of test refers to non-functional testing, this must be included in the op-
erational Validation process to ensure that the model code meets the needed requirements
that must be Accredited on the Acceptance Testing. Systemic Structural assumptions will
be tested.

Accreditation Process

Product Testing is the set of tests to be done by the developer before the Acceptance
testing. Acceptance Testing is not a single test but a set of tests conducted to determine if
the requirements of a contract are met. It may involve different tests, some of which can be
informal. This test is conducted by the customers and is focused on the model’s capabilities
as the last step to start using the model in a production environment. Like this, Alpha and
Beta Testing are not referring to a specific technique, but operational testing is done to test
the alpha or Beta stage of the product.

These tests are not referring to a specific test but a set of tests that must be done
to ensure the correctness of the project. In that sense, they are in the Informal category
since the techniques that one can apply can be either formal or informal. If all the tests
to be conducted in our accreditation process are formal, then we can move them to the
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Formal/Dynamic category. In these tests, we are focused on the validation of all the
assumptions.

Appendix A.1.3. Formal and Static Validation Techniques

In the Formal/Static category, we will use formal techniques over the model repre-
sentation, but as they are static techniques, no execution of the simulation model will
be done.

Conceptual Model Validation Process

In Cause-Effect Graphing, and specifically on State Transition analysis, one will be
focused on analyzing how the model change from one state to another depending on the
events received in a specific state. We will be focused on the analysis of the conceptual
model. As an example, in a Petri Net, we will create the reachability tree [38], or in
Specification and Description Language, the reachability graph [70]. Induction, Inference,
and Logical Deduction are based on the premise that if a conclusion can be justified based
on its premises, this conclusion will be validated, hence true. Lambda Calculus works with
the model representation, being transformed to a single string (large) to apply correctness
proofs, similar to the Predicate Calculus, where we will focus on the trueness of a predicate
that is formally represented on the conceptual model. Predicate Transformations [71]
analyze the transformation of the states of the model outputs to the mode inputs. This
defines the semantics of the model that can be used to perform the validation process.
Proof of Correctness depends on the nature of the formal language used to express the
model since it needs a mathematical structure to apply the technique.

In these methods, we will be focused on the Systemic Structural assumptions, with a
glimpse of the Simplification assumptions.

Verification Process

Control analysis, Data Analysis (data dependency; data flow), Semantic Analysis,
Structural Analysis, Syntax Analysis, and Fault/Failure Analysis are formal techniques
that are focused on understanding if the model has been correctly coded rather than
describing if the model is correct (that can, however, be also detected here). Hence these
techniques will be focused on the Verification process.

Notice that on Verification, we are focused on understanding if we do the model coding
correctly, not on analyzing if the model assumptions are correct. For this, verification can
provide only insights regarding the Systemic Structural assumptions.

Data Validation Process

One special category is the Goodness-of-fit tests that analyze if the distributions we
use on the model are accurate in understanding the data we have, see [72]. These kinds of
tests usually are related to Systemic Data assumptions. Notice that this is a static technique
since here we are only focused on analyzing the distributions we will use in our model,
hence is no need to execute the model.

Appendix A.1.4. Formal and Dynamic Validation Techniques

In the Formal/Dynamic category, we can find a plethora of different techniques
that will be focused on the validation of Systemic assumptions. However, not all these
techniques are going to be focused on the Structural and Data assumptions. Depending on
how we use the data from the model, we will be focused on Structural assumptions, Data
assumptions, or both.

Operational Validation Process

The Degenerative Tests analyze the model’s behavior-modifying, the values of input
and some selected internal values. The objective is to test if the modification of these
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parameters is coherent with the expected result. As an example, if we increase the service
time of a server, we expect that the number of elements in the queue will increase. Like
this, on Extreme Condition Tests is supposed that the model structure and outputs should
be credible although using an extreme and unlikely combination of values for the variables.
On Fixed Values tests, we analyze the outputs for well-known values for the parameters of
the model. In this test, we look at the outputs to compare them with the expected results.
Like this, Fault/Failure Insertion Testing introduces submodules that are not working
correctly to detect the incorrect model behavior as expected.

Following other approaches, the Assertion Checking test analyzes if, in some parts of
the code, an undesired behavior appears through the definition of small pieces of code that
are going to be checked. Like this, Symbolic Execution uses symbolic values rather than
real values to verify the accuracy of the output. Path Analysis executes the model with test
data to analyze the paths they follow, and going a little further, on Inductive Assertions,
all input-to-output relations are transformed to assertions and form it is analyzed if on all
the paths the assertions remain true. White-Box Testing is focused on the internal flows of
the model and how it is coded rather than on the results obtained.

In these tests, we are focused on understanding if the relation between the elements is
correctly described. Therefore, these tests focus on the Systemic Structural assumptions.
Note that in these tests, we analyze if the relations between the model elements are correct.
Often no Simplification assumptions are tested here.

Predictive validation (using Historical Data) allows us to understand if the model
is behaving as expected, at least for a scenario that is reproducing the behavior of an
existing system. In comparison with other models, where the underlying idea is that if
other models work fine, their outputs (selecting appropriate inputs) must be similar. Black
Box validation analyzes the model as a Black Box [51,73], hence as a whole, implying that
the validation is done over the complete set of assumptions. Like this, Sub-model/Module
Testing, like Bottom-Up Testing and Top-Down Testing, divides the model into different
submodules and performs an Operational Validation for each submodule. As an example,
we can apply a Black Box validation to ensure the correctness of each submodule. This will
be similar to Partition analysis, which relies on the comparison of different model subparts
with the operation we currently know.

Looking at these tests, we see that the model is tested as a whole, for the assumptions
tested are all the Systemic and the Simplification assumptions. Here the data used is
relevant since we will use the results for the analysis.

Solution Validation

Although a plethora of techniques can be applied to Solution Validation, two tests will
be interesting to be used for this category.

The first is Field Testing, which implies putting the model in an operational situation,
in the situation that it will be used, as an example, as a digital twin of some factory
subsystem and see how it operates. This testing must be done formally; although the
expert’s involvement could be interesting, the implementation we did (on the system)
modifies the system. Hence we must be aware of implementing formal mechanisms to
ensure the proper validation of the models without relying on the expert’s continuous
intervention.

Along with this method, to perform the validation, we must ensure that the modifica-
tion of the model does not introduce new errors. This analysis is named Regression Testing,
which analyzes the model continuously with the previous datasets used (and passed).

Solution Validation is a key Validation process in the frame of Industry 4.0, where the
digital twin must be continuously validated because continuously will be modified because
of the continuous modifications due to implementations on the system.
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Verification Process

The usual Debugging of the code will also be located in this category, where we can
use a plethora of techniques, like Symbolic Debugging, using breakpoints on the tool used
to perform the code to see the variable’s values during this coding process. Execution Test-
ing refers to a plethora of different techniques that can be applied (monitoring; profiling;
tracing), with the main intention of testing being if the execution is performing correctly. It
is a technique that is related to the coding of the model conducted during the debugging
process. Interface Testing is focused on the analysis of the interfaces between the data (in-
put/output mechanisms), the model (between the different sub-models), and the user and
the model (being interesting for human-in-the-loop and interactive and training models).

All these techniques are focused on determining if the model has been correctly coded,
not on the correctness of the assumptions used. However, during the verification process,
we can detect issues in the Structural assumptions of the model.

Data Validation Process

Several Statistical Techniques can be applied to the outputs of the model to compare
them with the system data to test the overall Systemic assumptions, but often are focused
on testing the Systemic Data assumptions.

On the Event Validity, we will compare the occurrences of selected events with the
real occurrence of those events in the system. As an example, the number of “broken”
event occurrences in a specific machine of the model. This kind of test can be useful to
test the Systemic Data assumptions because usually, the events that rule the behavior of
a simulation model are defined using a known probability distribution or an empirical
distribution obtained from a database.

These tests, although they can test the overall assumptions since they are focused on
the data analysis, can be used to test Data assumptions using a preliminary or complete
version of the model.

Experimental Validation

Analyze the variability of the parameters and perform a sensitivity analysis that
allows analyzing the factors that have the greatest impact on the performance measures.
This allows for determining what elements must be modeled carefully and detecting errors
in the definition of the relations of the model elements. In this sort of test, we are focused on
the Systemic Structural and Data assumptions. We can detect if the probability distributions
are correctly represented and if the relations between the different elements are correctly
implemented. As an example, if we add between two model elements a causal relation,
while in the system only a correlative relation exists, we are introducing an error that can
be detected with this test.

Those tests are related to Experimental validation since we need to define an experi-
mental framework and select the variables and factors we want to analyze.
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