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ABSTRACT The evolution of distribution networks to active systems as a consequence of the increased
penetration of distributed energy resources and the electrification of traditionally fuel-based activities have
changed drastically the landscape of power systems operation promoting the necessity of benchmarking tools
for planning studies. Nevertheless, there is a scarcity of such tools that enable the holistic analysis of modern
power systems according to the new grid standards. In this paper, a multi-purpose benchmarking testbed for
low-voltage active distribution networks is introduced. The testbed comprises a granular residential appliance-
level dataset, a benchmarking framework based on quasi-static simulations, a set of technical indices and a
non-intrusive load monitoring tool. A suite of benchmark case studies including overvoltage, undervoltage
and line congestion is presented, supported by ancillary trouble-shooting services, such as voltage control
and demand response. The proposed testbed can be a useful tool for distribution system operators to evaluate
the operating conditions of the grid without violating technical limitations, test new technologies, identify
operational challenges, and foresee grid investments.

INDEXTERMS Benchmarking, bottom-upmodeling, demand response, distribution network, non-intrusive
load monitoring, quasi-static simulations.

I. INTRODUCTION

NOWADAYS, the ever-increasing penetration of dis-
tributed renewable energy sources (DRESs), such as

photovoltaics (PV) and small wind turbines, into low-voltage
(LV) networks gradually transforms the conventional dis-
tribution networks (DNs) to active distribution networks
(ADNs). Accompanied by a new electrification era that rises
through the adoption of power-intensive appliances, such
as electric vehicles (EVs) and heat pumps, this inevitable
shift towards ADNs poses unprecedented technical chal-
lenges to distribution system operators (DSOs) jeopardiz-
ing the reliable operation of power systems [1], due to
e.g., power fluctuations, voltage violations, and network
overloading.

To comprehensively assess the repercussions of the
aforementioned problems on the DN performance and to

effectively remedy them, systematic studies based on power
flow analysis are necessary [2]. Traditional power flow analy-
ses focus on a single snapshot of the power system under cer-
tain operating conditions aiming to identify potential voltage
or thermal violations. Nevertheless, due to the stochastic vari-
ation of loads and the intermittent nature of DRESs, the appli-
cability and effectiveness of the conventional static power
flow approach in ADNs is limited, since only major opera-
tional conditions at specific time instants can be analysed.
To alleviate these constraints, the IEEE Std 1547.7-2013
[2] has defined the quasi-static approach as ‘‘a sequence of
steady-state power flow conducted at a time step of no less
than 1 s’’ by using consumption and generation timeseries
as input. By means of quasi-static analysis, the limitations
imposed by the stochastic nature of loads and DRESs are
effectively addressed.
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Besides the need of quasi-static analysis, recent develop-
ments in DNs, such as DRESs, battery energy storage (BES)
systems, and demand response (DR) mechanisms, dictate
the need of new benchmark systems [3]. In the existing
literature, LV benchmark networks are passive or present
low installed DRES capacity deviating from modern ADNs
[4], [5]. Through the prism of facilitating the integration of
new technologies, the introduction of benchmark networks
incorporating DRESs, BES systems, and DR mechanisms is
pivotal.

The motivation of this paper is to create a multipur-
pose testbed for modern power systems analysis supporting
the requirements of grid modernization associated with the
integration of DRESs, BES, EVs, DR and novel control
schemes. In this context, the ‘‘Bottom-Up Modeling and
Power flow analysis (BUMP)’’ simulation testbed is intro-
duced, comprising of a granular residential appliance-level
dataset, a benchmarking framework, a set of technical indices,
and a non-intrusive load monitoring (NILM) tool. According
to the authors’ knowledge, there is no similar bottom-up
testbed in the relevant literature that includes real high-
resolution (1 s) appliance-level timeseries data with proper
temporospatial diversity [6]. This allows the design, test and
analysis of new, flexible and scalable ancillary services and
features, e.g., load shifting, voltage regulation schemes, etc.

The core of BUMP is the detailed quasi-static analysis of
ADNs and the thorough evaluation of the grid conditions by
incorporating high-resolution appliance-level measurements
of active and reactive power into the open-source distribution
system simulator, OpenDSS [7]. The granular sampling rate
enables the support of other services such as near real-time
NILM to enable DR strategies. The integrated benchmark
framework provides a PV and BES sizing tool and generates
scenarios of PV/BES penetration to identify benchmarking
test cases, e.g., voltage or thermal violations, in any topology
provided by the user. These are of utmost importance and can
be used by system operators and academia as reference to test
the impact of new technologies and control schemes. In addi-
tion, this framework can be a diagnostic tool enabling predic-
tive network maintenance, outage avoidance and investment
planning. Additional strengths and contributions of BUMP
are:
• Active elements of DNs (PVs and BES) and mod-
ern power-intensive loads (EVs and heat pumps) are
considered; their impact on the reliable grid operation
and potential integration in ancillary services are also
investigated.

• Unlike other well-known and publicly available datasets
[8], [9], appliance-level reactive power measurements
are used for more accurate load modeling to capture the
changing trends in the reactive power demand of modern
DNs.

• A LV multi-purpose test system is proposed based on
the IEEE European LVDN [4]. Modifications have been
applied to address cases of modern DNs. The cable
ampacities have been provided, allowing operational

studies focused on thermal violations which were hin-
dered due to the absence of such information in the
original work.

• By means of the benchmarking framework, a suite of
benchmark case studies is developed investigating over-
voltage, undervoltage, unbalance, and congestion oper-
ational aspects. Such operational challenges appear in
modern ADNs due to the high penetration of active ele-
ments and power-intensive loads in contrast to relevant
works focusing on passive DNs [4], [10], [11], [12] or
ADNs with limited PV penetration [5], [13].

• To facilitate sound benchmarking and identification of
critical assets for planning studies, a set of evaluation
metrics [1] is incorporated.

• A NILM model capable of detecting the load status
of network end-users is developed and integrated into
DR services to support the DN operation under critical
conditions.

• Finally, the simulation testbed is shared via a publicly
available repository encouraging other users to create
new benchmarking cases and test new technologies and
control schemes.

II. BUMP ARCHITECTURE
This section introduces BUMP and shortly presents the pri-
mary functionalities. BUMP is an open-source toolbox incor-
porating a dataset of granular appliance-level daily profiles
used to model the aggregated consumption of end-users
in ADNs. Such a dataset enables i) quasi-static simula-
tions to capture the PV and load stochasticity, and ii) the
integration and testing of new DR services. Additionally,
BUMP can generate case studies of overvoltage, undervolt-
age, and line congestion, in any provided DN topology,
allowing users to benchmark their solutions and control
schemes.

The backbone of BUMP testbed consists of software writ-
ten in Python. By utilizing object-oriented programming,
BUMP can model the load, generation, and storage profiles
of multiple LV prosumers forming an ADN. Additionally,
by providing the grid topology and line parameters, quasi-
static analysis is performed to assess the grid operation and
identify benchmarking test cases. This is attained by using
OpenDSS software as the main power flow solver. BUMP is
generic in terms of supporting any unbalanced three-phase
topology provided by the user. The necessary input/output
communication is achieved via the filesystem. Furthermore,
a pre-trained deep neural network (DNN) is adapted to
provide near real-time NILM for DR services. BUMP is
modular allowing the user to select specific functionalities,
e.g., load modeling, quasi-static analysis, benchmarking and
DR. An overview of BUMP including the core components,
algorithms, and functionalities is illustrated in Fig. 1. The
‘‘Control schemes’’ block refers to any custom-made con-
trol mechanism imported by users in the form of Python
code. All components are described in detail in the following
subsections.
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FIGURE 1. BUMP overview.

A. MODELING OF GRID COMPONENTS
The main grid components are residential end-users and solar
parks.

1) RESIDENTIAL END-USERS
BUMP simulates residential end-users as potential PV/BES
prosumers. In order to model the electricity consumption of
each end-user, a bottom-up approach is adopted. The end-user
daily demand is generated by aggregating its elementary
load components, i.e., individual appliances, by exploiting a
high-resolution dataset [14]. The dataset includes daily active
and reactive power profiles of commonly used appliances
in European houses considering both working (WDs) and
non-working days (NWDs). The appliances, their rated power
and the number of the available profiles are summarized in
Table 1. The dataset is structured as a filesystem directory
per appliance containing a file with the active and reactive
power timeseries for each available profile. This structure
promotes the extensibility of the dataset; a new appliance
profile can be easily added by creating the corresponding
file in the directory and a new appliance by creating a new
directory. BUMP automatically detects the new directories
and files, extending the dataset.

BUMP supports both single- and three-phase supplied res-
idential end-users. For single-phase end-users, all appliances
and the PV/BES system are connected to the same phase
(selected by the user). For three-phase houses, the major-
ity of appliances are single-phase and are allocated to the
three phases by applying a greedy algorithm [14] after being
sorted in descending order according to their rated power (see
Table 1). Finally, EVs, PV and BES systems are considered
three-phase symmetrical.

BUMP supports PV systems as the main generation source
in LV DNs. To capture multiple stochastic weather condi-
tions such as overcast days, the PVGIS platform [15] was
employed to obtain 120 hourly PV generation profiles, 10 for
each month of the year. The profiles are normalized at 1 kWp
and Akima interpolation [16] was used for upsampling at 1 s.
The generation timeseries for each prosumer is derived by
multiplying the normalized profile by the installed capacity.

Regarding BES, the adopted control strategy is based on
maximizing the self-consumption ratio (SCR) [17]. Under
SCR strategy, PV power covers the load demand and any

TABLE 1. Appliances dataset [14].

potential surplus of generated power is used for charging.
The discharging mode is activated when the PV generation
is lower than active power load demand. Additionally, a dis-
crete-time low-pass filter is applied to smooth the charg-
ing/discharging power of BES system extending its lifetime
expectancy [14].

2) SOLAR PARKS
Apart from residential prosumers, the smart DN can also
include small three-phase LV solar parks. Their generation
profiles are derived by multiplying their installed capacity
with the available normalized PV profiles.

B. DISTRIBUTION NETWORK MODELING
Different network configurations and scenarios can be sim-
ulated by adding/removing end-users and modifying their
parameters summarized in Table 2. For solar parks, the
user can determine the installed capacity and the net-
work node. The network topology is provided via a ‘‘.dss’’
file supported by OpenDSS including information for the
network frequency, medium-voltage (MV) to LV distribu-
tion transformer, and line properties (length, resistance and
inductance).

C. BENCHMARKING FRAMEWORK
Quasi-static simulations constitute the cornerstone of BUMP
and are conducted via application programming inter-
face (API) calls to OpenDSS. Based on these simulations, the
testbed incorporates a scenario-based framework to generate
benchmark scenarios addressing undervoltage, overvoltage
and/or thermal violations as depicted in Fig. 2. For this
purpose, Monte Carlo (MC) simulations are performed to
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TABLE 2. Residential end-user parameters.

FIGURE 2. Benchmarking framework flowchart.

determine the placement (sizing and sitting) of the PV/BES
systems and the solar parks. The proposed benchmarking
framework consists of the following steps:

• Step 1: the electricity demand of each household is
derived, based on the demand and network parameters
of Table 2 determined by the user; for three-phase users
the phase-allocation algorithm is applied.

• Step 2: the PV/BES system of each household can be
automatically sized by BUMP or determined by the user,

• Step 3: MC quasi-static simulations are performed for
the sitting of the PV/BES systems and the solar parks,

• Step 4: benchmark test cases are detected and technical
indices are calculated.

In particular, all households are considered as potential
prosumers owning a PV/BES system. The PV/BES system
size is determined in Step 2 by maximizing the SCR for each
household, i. The procedure is summarized in Algorithm 1
and the inputs are presented in Table 3. The outputs are
PV i

rated, P
i
bat and E

i
bat.

TABLE 3. Algorithm inputs and outputs.

The algorithm calculates PV i
rated as the ceiling of the total

energy consumption of a household (Econsumed) over the
energy production (E1kW

produced) of the 1 kWp normalized PV
profile (PV i

1kW ). In Fig. 3, an example of the aforemen-
tioned process is presented, depicting the total household
consumption and the normalized PV profile, correspond-
ing to Econsumed and E1kW

produced. The constraints PV i
rated ≤

Pmax
PV-1 ph for single-phase end-users and P

min
PV-3 ph ≤ PV i

rated ≤

Pmax
PV-3 ph for three-phase end-users are applied; Pibat is esti-

mated by means of α. In case of low Pibat or small surplus
of generated energy, the BES is considered unnecessary,
thus Pibat (lines 11-12) and E ibat (lines 17-18) are both set
to zero. Eventually, based on Cmax, the final value of
Pibat, and thus the minimum charging/discharging period, is
determined.

Once the sizing algorithm is completed, Step 3 is initiated.
BUMP simulates a number of cases by randomly allocating
pre-sized PV/BES systems to residential end-users based
on two user-defined probabilities pPV and pBES|PV, i.e., the
probability for an end-user to be a prosumer (own a PV unit)
and the conditional probability of an end-user to own a BES
unit, given that is a prosumer. Additionally, a user-defined
number of solar parks are randomly allocated to the network;
a list of potential buses where solar parks can be placed and
their capacity are also provided by the user.
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FIGURE 3. Indicative profiles of the (a) total household demand
and (b) normalized PV generation.

At each case, 24-h quasi-static simulations are performed
to detect benchmarking scenarios. In particular, undervolt-
age/overvoltage events are identified by comparing the posi-
tive-sequence voltage magnitude, V1, of network buses with
the corresponding user-defined thresholds, Vmin

1 and Vmax
1 :

undervoltage if V1 < Vmin
1 ,

overvoltage if V1 > Vmax
1 . (1)

For congestion, the line current, IL , is compared with the
cable ampacity limits, Iamp:

IL > Iamp. (2)

Finally, the DN performance is assessed by using a set of end-
user- and network-oriented indices described in [1], [18], and
[19]; some of the most important indices are summarized in
Table 4.

TABLE 4. Most important supported indices.

D. INTEGRATED NILM MODEL
NILM, also known as energy disaggregation, refers to the
process of power consumption breakdown on appliance level

Algorithm 1 PV and BES Sizing

Input: Piload , PV
i
1kW , Pmax

bat Pmin
bat E

max
bat Emin

bat P
max
PV-1 ph P

min
PV-3 ph

Pmax
PV-3 ph α, Cmax

Output: PV i
rated, P

i
bat, E

i
bat

1: T = simulation hours
2: Econsumed = avg(Piload ) · T
3: E1kW

produced = avg(PV i
1kW ) · T

4: PV temp
rated = dEconsumed/E1kW

producede

5: if home is single-phase then
6: PV i

rated = min(PV temp
rated , P

max
PV-1 ph)

7: else
8: PV i

rated = min(Pmax
PV-3 ph, max(PV temp

rated , P
min
PV-3 ph))

9: end if
10: Pibat = dα · PV

i
ratede

11: if Pibat < Pmin
bat then

12: Pibat = 0
13: else
14: Pibat = min(Pibat, P

max
bat )

15: end if
16: Calculate energy_excess as the generated energy surplus

during hours of PV production
17: if energy_excess < Emin

bat then
18: E ibat = 0
19: else
20: E ibat = min(denergy_excesse, Emax

bat )
21: end if
22: Pibat = min(Pibat, Cmax · E ibat)
23: return PV i

rated, P
i
bat, E

i
bat

using the total consumption measurement at the main power
service entry [20]. In BUMP, NILM is used to support DR
strategies. Due to the ever-increasing energy demand, electric
power systems frequently encounter stress conditions and DR
has been envisioned to deal with such unexpected conditions
by e.g., selectively curtailing system loads and load shifting
[21]. By means of DR, the supply-demand equilibrium is
preserved increasing the reliability and efficiency of the DN.

Generally, a NILM system can be utilized to identify events
of various appliances for residential end-users [22]. Special
interest is given on EVs, due to their high power rating, long
duration, and charging flexibility that create significant DR
potentialities [23] and enable a series of smart services to
DSOs. This hasmotivated the development of a near real-time
NILM model for EV detection in BUMP.

The proposed NILMmodel is based on the recurrent neural
network (RNN) described in [24]. The original model per-
forms post-event disaggregation; as the required input is a
time window of the total consumption containing the entire
target appliance event, disaggregation is performed only after
the appliance event is over. In this work, the model has been
extended to perform near real-time disaggregation. To that
end, although the model architecture has been preserved,
the input consists of a sliding non-overlapping window of
active power with a length of five minutes (300 samples) and
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the output indicates the EV consumption at the end of the
window; thus themodel estimates the EV power consumption
once every five minutes. The model architecture is presented
in Fig. 4 and consists of [24]:
• a 1-d convolutional layer [25] including 16 filters with a
receptive field of four samples to automatically extract
low level temporal features for the time-varying behav-
ior of the input window without user supervision.

• two bidirectional long-short term memory (bi-LSTM)
cells [26] to capture the long-term dependency of the
consecutive windows without suffering from the vanish-
ing gradient problem [24]. The existence of these cells
is important since they present an internal memory of
previous inputs in contrast to other kinds of layers which
forget the last input vector when a new input is fed to
them.

• two fully connected layers [25] as the regression model
to map the bi-LSTM output to the EV consumption.

More information about the model architecture and the
selected layers can be found in [24]. Additionally, the math-
ematical formulation of the layers is discussed in [27].

FIGURE 4. Architecture of the NILM model.

In order to train, validate and evaluate the model, three
distinct datasets were created. In particular, by using the
proposed bottom-up modeling approach, the total consump-
tion timeseries for 14 residential end-users owning an EV
were created for seven days; 10 timeseries were used for
training, two for validation and two for testing. All timeseries
were normalized to speed up learning and achieve a faster
convergence. A backpropagation algorithm was used during
training to optimize the mean squared error (MSE) between
the predicted and the actual EV consumption; Adam opti-
mizer [28] was selected assuming an initial learning rate of
10−4. To avoid over-fitting, early stopping with patience was
used; the training process stopped once the validation error
did not decrease after three consecutive iterations. Once the
training was over, the model was evaluated on the testing
dataset and the MSE of the normalized power prediction
was 1.5 · 10−3.

III. BENCHMARK TEST SYSTEM
A. NEED OF BENCHMARK LV TEST SYSTEM
Benchmark systems are standard networks that provide the
basis for assessing different technologies and test upon.
A number of LV benchmark systems for steady-state anal-
ysis can be found in the literature [4], [5], [10], [11],
[12], [13]. However, their majority refers to passive network

configurations without incorporating DRESs [4], [10], [11],
[12]; if done [5], [13] their penetration is limited, being
unsuitable to address new challenges encountered in modern
DNs. This is further intensified by the increasing number of
EV owners. As the EV active power demand is notably higher
than other residential appliances, high penetration of EVs is
more likely to cause overloading of distribution transformers
or other network assets [23]. For such analyses, the knowl-
edge of cable ampacity, i.e., the thermal limits of the network
cables, is crucial; however, such information is missing in
these test systems [4], [5], [10], [11], [12], [13].

B. ORIGINAL NETWORK
To address the above deficiencies, an enhanced LV bench-
mark system is proposed based on the IEEE European DN
[4]. The IEEE DN is a typical European 50 Hz, three-phase
LV feeder of radial structure. It contains 55 single-phase
residential loads and is connected to the MV system via
a 800 kVA, 11 kV / 0.416 kV delta-wye transformer [29].
Acceptable bus voltages during system operation should be
limited in the range 0.9 - 1.1 per-unit (pu) as defined by
the Standard EN 50160 [30]. This benchmark topology has
been selected as a generalized and representative system for
European LV feeders. Nevertheless, it is worth reiterating that
BUMP can support any provided topology by the user.

C. CABLE AMPACITY
In the original test system, 10 types of cables are used as
backbone and supply cables. Besides the pu-length param-
eters, cable ampacity is an important cable property for over-
load and thermal violation studies. Determining the ampacity
of each cable is not a trivial task since this information is
not readily available in the original datasheet. On the con-
trary, only the pu-length positive sequence resistance R′1 and
inductance X ′1 of each cable are provided as summarized
in Table 5.

To determine the cable ampacity, an exhaustive review
through various datasheets was performed to identify cables
with known ampacity corresponding to a similar R′1 and X ′1
as the cables of the benchmark system. The resulting cable
ampacity is provided in Table 5.

D. ENHANCED NETWORK
The single-line diagram of the proposed test system is shown
in Fig. 5. The network topology and cable electrical properties
are those of the original test system. Modifications have been
applied to the end-users, retaining the network unbalance.
Specifically, three-phase end-users have been considered,
e.g., at buses 8, 12, 19, etc. Additionally, for some of the
single-phase end-users, the connected phase to the power grid
has been modified, e.g., bus 55 is connected to phase a (orig-
inally was connected to phase c). Details on the end-users as
well as terminal nodes where solar parks can be installed are
provided in Fig. 5.
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TABLE 5. Cable ampacity.

FIGURE 5. Network topology.

IV. CASE STUDIES
By using the enhanced LV test system and the benchmarking
framework, three benchmark case studies are proposed inves-
tigating scenarios of i) overvoltage, ii) overvoltage and line
congestion, and iii) undervoltage and line congestion. The
case studies have been selected from a number of 100 MC
simulations generated by BUMP assuming high PV, BES, EV,
and heat pump penetration. The obtained results are evaluated
by using the indices of Table 4 on the basis of the assessment
framework of [1]. The mean execution time for a full-day
simulation at a resolution of 1 s is 96 min., and the RAM
usage is 1,238 MB. Calculations were performed using an
Intel Core i7-4790, 3.6 GHz, RAM 8 GB personal computer.

A. BENCHMARK PARAMETERS
For the design of the case studies, first, the electricity demand
of each house is derived on the basis of the BUMP dataset
and the phase-allocation algorithm. The number and type
of appliances were selected considering typical real-world
households. For example, common major and small house-
hold appliances are the refrigerator and conventional or smart

light bulbs. The vast majority of households are equipped
with at least one TV and a washing machine. In Fig. 6, the
histogram of ownership of each appliance, i.e., the number of
residential users owning a specific appliance, is depicted. The
validity of the generated demand profiles has been verified
via comparisons with findings in the relevant literature in
terms of energy. An indicative example is shown in Fig. 3
where the daily energy consumption equals to 15.82 kWh.
In particular, the mean daily energy consumption of the gen-
erated 29 household profileswithout EVs is 12.76 kWhwhich
complies with themean daily consumption for a four-member
family in Germany, i.e., approximately 13 kWh [31].

FIGURE 6. Appliance ownership.

Afterwards, the size of the residential PV/BES systems
is calculated by applying Algorithm 1. The BES parameters
and algorithm inputs are presented in Table 6. A C-rate of
two hours, denoted as 0.5C, is assumed meaning that BES
can be fully discharged in two hours. Finally, a series of
MC quasi-static simulations is performed to determine the
PV/BES system and the solar park locations. For all sce-
narios, pPV and pBES|PV are taken equal to 70% and 40%,
respectively, and a number of eight 20 kW solar parks is used.
All converter-interfaced units operate with unity power factor.

B. SCENARIO 1: OVERVOLTAGE
The first scenario is a case of overvoltage caused by high PV
penetration and the resulting reverse power flows. The sim-
ulated month is July, i.e., when PV production is maximum.
The voltage at the secondary of the MV/LV transformer is
set to 1.05 pu. The location of PV prosumers, BES and solar
parks is summarized in Table 7; the PV/BES size is within the
limits of Table 6.

The positive-sequence voltage, V1, for all buses from 04:00
to 18:00 of the simulated day is illustrated by means of
heatmap in Fig. 7. It is evident that during hours of high solar
production, i.e., 10:00-14:00, voltage is increased, especially
at buses close to the solar parks. The highest voltage is
observed at bus 143 at 11:16:50with a value of 1.11 pu. In this
case, no congestion appears as the current is lower than the
cable ampacities.
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TABLE 6. BES parameters and algorithm inputs.

TABLE 7. Scenario 1: PV, BES and solar parks.

FIGURE 7. Positive-sequence voltage of buses for Scenario 1.

The voltage unbalance caused by the single-phase loads
is evaluated by means of the zero- and negative-sequence
voltage unbalance factors, VUF0 and VUF2, respectively.
In Fig. 8 and Fig. 9, the corresponding heatmaps are presented
for all buses; the maximum VUF0 and VUF2 values are
3.964% and 1.258%, respectively.

To mitigate voltage violations and ensure the reliable oper-
ation of the power system, various control schemes have
been proposed in the literature [32]. In particular, in LV
networks, where a strong dependence between active power
and grid voltage exists, the P(V ) droop control strategy by
curtailing part of the PV injected active power has been

FIGURE 8. VUF0 heatmap for Scenario 1.

FIGURE 9. VUF2 heatmap for Scenario 1.

widely-used [33]. The P(V ) droop characteristic is depicted
in Fig. 10. In this control scheme, the active power of the
PV system is adjusted according to the voltage at the point
of interconnection (POI) with the grid; PMPP stands for the
maximum power point (MPP) that a PV can provide at a
specific time instant, and Vlow = 1.09 pu, Vhigh = 1.1 pu
are the voltage thresholds defining the magnitude of the
curtailment.

FIGURE 10. Droop characteristic of the P(V ) control scheme.

The impact of the droop control on the network voltages
can be quantified by means of two network-oriented indices,
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namely VLQI and σ 2. By applying the droop control scheme,
VLQI during hours of high solar production and maximum
σ 2 have been reduced by 0.36 % and 13.6 %, respectively,
compared to the case where no voltage regulation (VR)
control is used, indicating reduced network voltages and
decreased reverse power flow during high production periods.
This is also evident in Fig. 11 where V1 profile at bus 143,
i.e., the bus with the highest overvoltage violation, is com-
pared for the two cases.

FIGURE 11. V1 at bus 143 with and without VR control for
Scenario 1.

C. SCENARIO 2: OVERVOLTAGE AND LINE CONGESTION
In the second scenario, both overvoltage and line congestion
are demonstrated. As in the previous scenario, the simulated
month is July and the voltage of the secondary of the MV/LV
transformer is set to 1.05 pu. The location of PV/BES systems
is summarized in Table 8. The maximum V1 is 1.117 pu at bus
141 at 11:16:50; VLQI equals to 1.06255 and the maximum
σ 2 is 140.295.

TABLE 8. Scenario 2: PV, BES and solar parks.

A heatmap of ρ of phase a with respect to time for all
network lines is illustrated in Fig. 12. The highest value is
observed at line 1 at 09:53:40 and equals 1.068 (the cable
ampacity is 210 A and the maximum current 224.28 A).
Similar results are also observed for phases b and c.
In modern DNs, the accurate representation of the power

factor is of main importance due to changing trends in reac-
tive power demand. In literature, most analyses focus pri-
marily to active power, assuming a constant power factor
for residential end-users. To test this assumption, the power
factor of all end-users is calculated. During night and early

FIGURE 12. Scenario 2: Heatmap of current-to-ampacity ratio, ρ,
for phase a.

morning, when the demand is low and only refrigerators are
operating, the power factor is approximately unity. However,
during specific periods, e.g., 07:00-09:00, 21:00-22:00, when
appliances with operation cycles of low power factor such as
dishwashers and washing machines [34] turn on, the power
factor decreases to a minimum of 0.932. To investigate the
reactive power effect on network operation, SRC is calculated
assuming both reactive power timeseries (SRCQ) and a stan-
dard power factor of 0.95, typically used for residential end-
users (SRCpf). The relative percentage difference (RPD) [35]
between the two cases is calculated as:

RPD = 2 ·
SRCQ − SRCpf

SRCQ + SRCpf
· 100% (3)

and is depicted in Fig. 13 along with SRCQ. Generally, the
absolute RPD is lower than 1% although there are peri-
ods, e.g., 12:00-12:25 and 16:10-18:30, when the difference
increases; the highest absolute value is 2.768% appearing at
17:15:50. In addition, the impact of reactive power in network
losses is evaluated by means of LLR. In the original scenario,
LLR equals to 0.03853 whereas for a standard power factor
the value increases by 3.392%.

FIGURE 13. SRCQ and RPD for Scenario 2.

D. SCENARIO 3: UNDERVOLTAGE AND LINE
CONGESTION
The aim of this scenario is to demonstrate the abil-
ity of a NILM model to provide ancillary services to
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DSOs, i.e., enabling DR mechanisms and load-shifting, and,
by extension, to support the DN in critical conditions. The
violations introduced in this scenario are undervoltage and
extreme line congestion due to increased power demand.
A higher penetration of EVs is considered to increase net-
work overloading, i.e., 15 additional end-users are assumed
to own an EV. The voltage of the secondary of the MV/LV
transformer is set to 0.95 pu. The PV/BES system sites are
summarized in Table 9.

TABLE 9. Scenario 3: PV, BES and solar parks.

V1 ranges from 0.893 to 1.004 with the lowest value
appearing at bus 205 at 22:05:20; VLQI during hours of
high solar production equals to 1.07038 and the maximum
σ 2 value is 145.123. Additionally, congestion is observed at
the network lines. The maximum ρ appears in line 4 (phase c)
at 21:03:40 and equals 1.407.

Congestion and undervoltage management is based on
the near real-time monitoring of EVs in the DN. The pro-
posed solution includes two steps. During the first step, the
NILM model detects in real-time households with EV activ-
ity. In this step, disaggregation can be performed either in
a decentralized way by integrating the NILM model in the
house smart meters [20] or centrally where a cloud plat-
form can receive power measurements from multiple meters.
In both cases, the system provides a list of households with
EV charging activity to the DSO. In the second step, the DSO
can select end-users close to critical nodes and persuade them
to shift their charging session during off-peak hours. This can
be achieved through DR and monetary incentives, e.g., time-
of-use (ToU) rates and decreased cost per kWh [36].

In this scenario, the total demand after 17:00 is very high
leading to low V1 values. The integrated NILM model is
used to detect EVs charging after 17:00; overall, 30 EVs are
detected. Assuming that seven end-users (located at buses 7,
39, 56, 103, 170, 172, 204) shift their charging session to
off-peak hours, i.e., 00:00-08:00, the undervoltage problem
is ameliorated leading to a minimum V1 equal to 0.906 pu
and the maximum ρ decreases to 1.145. The total power
demand of the DN prior to and after load shifting is presented
in Fig. 14. Moreover, in Fig. 15, V1 at bus 205, where the
undervoltage problem was detected, is presented both in the
initial scenario and after the load shifting solution.

Finally, it should be noted that by shifting the
energy-intensive EVs to off-peak hours, a significant reduc-
tion to network losses is achieved; in the original scenario

FIGURE 14. Total demand at MV/LV substation with and without
load shifting.

FIGURE 15. V1 at bus 205 with and without load shifting.

LLR equals to 0.04215 and after load shifting the value drops
to 0.03676 resulting in a 12.787% decrease.

V. CONCLUSION
In this paper, a testbed incorporating a granular residential
appliance-level dataset, a benchmarking framework, a set
of technical indices and a NILM tool is introduced for
detailed quasi-static simulations. Given the high penetration
of PV/BES systems that DNs will host in the future, the
testbed has been used to propose an enhanced version of
the IEEE LV DN as well as three benchmark case studies
investigating scenarios of i) overvoltage, ii) overvoltage and
line congestion, and iii) undervoltage and line congestion.

The proposed testbed can be an ideal tool for DSOs to
perform detailed planning studies. By providing the topol-
ogy of a specific network and allocating DRES/BES units,
DSOs can analyse operational challenges encountered in their
systems, assess their severity, ensure the reliable operation
of the grid without violating technical limitations and test
the impact of different technologies, e.g., DR applications,
VR and congestion management algorithms. Furthermore,
by calculating various technical indices, the most critical
assets can be identified allowingDSOs to target their analysis.
Finally, the testbed enables DSOs to perform DRES/BES
sizing and detect candidate buses for sitting.

Additional data and modeling updates related to har-
monic analysis, economic dispatch, protection coordination
analysis, transient and dynamic performance studies, etc.,
will be reported in future BUMP updates.
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The Python source code, coding examples and neces-
sary input files for the three test cases are available online
https://github.com/christos21/bottom_up.
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