Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University

ATLAS: A Language For M odeling
And Simulating Urban Traffic

Visualization Of Traffic Models

By

Shannon Borho and Jan Pittner

Supervisor: Professor Gabriel Wainer

A report submitted in partial fulfillment of the requirements
of the 94.498 Engineering Project

April 4, 2003

Abstract

Thereport Visuaization Of Traffic Model (hereinafter referred to as the report) written by

Shannon Borho and Jan Pittner is the culmination of work done on the fourth year project
ATLAS: A Language For Modeling And Simulating Urban Traffic - Visualization Of Traffic
Models. The work was done under the supervision of Professor Gabriel Wainer. Work on the
project began in late September 2002 and was completed with the delivery of the final report in
April, 2003.

The report addresses several problems with the ATLAS Traffic smulation (ATV) system. The
system had required the manual generation of ATLAS files, atedious process that did not lend
itself for rapid changes to the system input. The output of the system also suffered from a non
user friendly interface. The smulation output was converted into severa different file types with
primitive ASCII drawings of the simulation results. An earlier attempt by another project
produced a primitive VRML program that was extremely limited in its capabilities. Thus, it was
not easy for a user to define the input for the ATV system, or easily absorb the smulation results.
These problems led to another issue — the slow and unwieldy process of testing the main

simulation engine, known as cell-DEV'S, with urban traffic smulations.

The solutions to these problems were addressed in two parts. For the front-end, the option of
using existing GIS systems was to be explored. No existing system was found to meet al the
requirements. The details of this investigation are outlined in the report. This result leads to the
creation of agraphical front-end. The program allows the user to draw a small city section
complete with roads, intersections, and decorations, and then parse the drawing to create avalid
ATLASfile. The report gives a brief summary of the ATLAS language. The front-end, known as
MAPS, was built on the JHotDraw framework. The frameworks details are outlined in the report,
as well as the changes and new classes along with some relevant algorithms that were created for
MAPS. Jan Pittner completed the MAPS subsystem. Working in parallel on the output side,
Shannon Borho upgraded the visual output system. Starting with the primitive existing program,

the output went from a single segment of road with blocks as cars to a full-blown city section
with realistic 3D graphics. Parsing the ATLAS file, building the city section in a VRML world
and then mapping the simulation output results onto the system accomplished this result. Details
of VRML, the parsing, and the processing of the simulation results into a visua display of cars
moving on acity section are discussed. A brief overview of other componentsin the ATV

system are covered as well, specificaly the TSC and the simulation engine.

The report outlines the accomplishments made by Shannon Borho and Jan Pittner on the
visualization of the ATLAS urban traffic simulation system. These accomplishments entail the
creation of agraphical input program MAPS by Jan Pittner. MAPS provides the core ATLAS
functionality using the drawing capabilities of the JHotDraw framework. As well, the output of
the system can now be easily understood by watching it unfold in the 3D VRML world created
by Shannon Borho. Finaly, the final report itself provides a solid completion to the work on the
project.

Acknowledgements

Jan Pittner would like to acknowledge all the members of the JHotDraw team at
http://jhotdraw.sourceforge.net. Their determination, creativity and generous donation of time
have led to a valuable drawing framework. I’d aso like to acknowledge all those that have been

involved in the ATLAS project up to this point, including Professor Wainer, Mariana Lo Tartaro,
César Torres, et al.

Shannon Borho would like to thank the other members of the VRML GUI output team who
provided the previous version of the VRML GUI and offered support when it was needed
especialy early in the term for the new version of the VRML GUI. A big thanksisin order for
Huayi Du and Wenhong Chen. | would aso like to express thanks to Professor Wainer for his
support throughout the term.

Table Of Contents

1.0 INTRODUCTION (Written by Shannon Borho and Jan PIittner)..........cccceeevenenenenencnennns 1
2.0 EXISTING GIS SYSTEMS (Written by Jan PIttner)cccooeveienenenceeee s 4
2L MAPDMEKEY ...ttt st b et et e s bt e be e atesa e e neeenteeReenbeentesreenneenneeneenrens 4
P2 Yo 1 {0 T SO P U RTOR PSRRI 5
2.3 ESRI MBPODJECEScuviveieitirieeie ettt bbbttt bbbt be et 5
2.4 Conclusions Regarding Use of EXisting GIS SystemsS.........ccccveieevieciiee e 6
3.0 ATLAS (Written Dy Jan PItINEN)cccooiiiiiiiieeeeeee et 7
S < 0 101 1TSS PR PSP 7
G O 01 o PR 8
BB RAINELS......cceeiitiee et sa e ae et e ane e beenteereenaeeeeeneenrens 8
G o0 == SRS SSRSS 9
BB POIHOIES. ...ttt bbbttt bR b e reene e 9
3.6 CONLrOl EIEBMENES......cueiieiiiieeie ettt a ettt sreenaeennesne et 9
3.7 SAMPIE ATLAS FIE ..ottt 10
BB ATLAS CONCIUSION.....cviiiiiiisiieiieiieie ettt sttt st sttt nb et bbb be e e enes 11
4.0 HOTDRAW FRAMEWORK (Written by Jan Pittner)........ccccoeverinininiese e 12
4.1 JHOtDIraw BaCKGrOUNG...........c.oierieiiieiesiesie sttt s 12
V| [0 11 L= VT I L= oo S 12
4.3 PaCKage SITUCIUIE......c..ee ettt ettt e b e e e e enbeesreeeneenneeas 13
4.4 Model View Controller Paradigim..........cooioereririneeeeiese st 14
4.5 Key DeSign PatterNSUSEAcoeiiiiiieieriesie sttt 14
N 00 (T O = S5 =SSP 15
4.7 JHOtDraw DeSigN CONCIUSION........coiiiiirieeieniiesiee et ettt see s esbe et sneesse e e e 18
5.0 MAPS (Written Dy Jan PITENEE)coeiiieeee e 19
5.1 Key FEAUreS Of MAPS.......c.oo ettt st sreesse e neenneeneeens 19
5.2 Plan for BUildiNg MAPS ...ttt sttt e sbe e neennee s 19
B.3 IMAPS ClaSSES.....ceiuieiieiistiesieeeestee e eeesteestesaeeste e eesseesseeneesseesseenseaseesseentesseenseensesseenseeneesnes 20
5.4 ParsiNg the DIaWING........ccveieeieieereeieseesiesee s esae s e ste e e sseesseesesseesseesesseesseessesseessennsnsses 22
5.5 Creating SegmentS from LanES.........ccveiieie ettt st 23
5.6 KNOWN ISSUBS ...ttt ettt sttt st e et e st e e b e e st e e be e s s e e be e smbeanbeesnneenneens 25
5.7 FULUre ENNBNCEMENLS.........coiieieieeie ettt ae et aesreenseeneesneenseenennnes 25
5.8 MAPS SUMIMAIYviiiiiii ittt s nse e s sbae e s be e sbe e sabe e e sabe e e nnneeennns 26
6.0 TSC - TRAFFIC SIMULATOR COMPILER (Written by Shannon Borho)ccccee..e. 27
7.0 N-CD++ SIMULATOR (Written by Shannon Borho)ccceeeveeeieneneneeeseseee 28
8 R 0 1SS o =TSP PR 29
T2DRAW FlES.....oieeii ettt sttt b e st e st e te st e besbesbesreeneeneeneas 29
8.0 VRML (Written by Shannon BOrN0)c.ooeeeiiiieieiecse e 30
B.LTNEVRML NOUE ..ottt bbbttt enes 30
o = = S Lo = o - S 32
8.3 COMPIEX SNAPES......eoeeeeiteeieeie ettt bbbt e et et b bbb e e enes 32
B EVENTS ...ttt ettt b e et e b et e e be et e e reenateenbeennneenree s 33
9.0 THE EXTERNAL AUTHORING INTERFACE (Written by Shannon Borho) 34
9.1 Obtaining a Reference to a VRML NOGE..........ccooviiiiiiiiiiie e s 34

10.0 THE VRML GUI SUBSY STEM (Written by Shannon Borho)...........ccceevecivieiecieciee, 36

1O.1 REGUITEIMENLSueieeeieeiesiiesieeiesiee it e eesseesteseesseesseeeesseessesssesseesseansesseesbesnsesseessesnsesseensens 36
10.1.1 FUNCtioNal REQUITEMENTSoiviitirierieriieieeie ettt se st sre e sbe e eneas 36
10.1.2 ACLOrS Of the SYSLEIM....c.eeeiece ettt s neenne s 37
JO.1.3USE CBIESeoieeiieeetie ettt sttt ettt e et e e be e e e e e sbe e sat e e ebe e e aneease e eae e e ebeeenreenbeesareenneeennan 37
10.1.4 USE CaSE DIBGIAM......coiiiiieite ettt st e e st e sbe e 40
10.1.5 Initial ANAlYSIS ODJECES.......ecieieeiececeee e enae s 40
10.1.6 Nonfunctional and Pseudo ReqUIrEMENES..........ccceeiieeriieciiecsee e s 41

20,2 ANAIYSIS. ..ottt E R R Rt R Rt R e e e e e R R e b nreeneene e 41
10.2.1 ENLItY ODJECES....ccveeiteeiieiiesieeiesieesteeeesteesteeeesseesaeeseesseessesseesseeseaseesseessesseessennsesneessens 41
10.2.2 BOUNAAry ODJECES......c.eicueeiecie ettt et st e e sreene e e nne s 42
10.2.3 CONEIOl ODJECEScoveeiiieiieiieeie sttt sttt sttt e seesbeeeesaeesbeeneesneanaeas 43
10.2.4 SEQUENCE DIGOIAIMS.......coieiiirtiriesie ettt sttt sre b b neas 44
10.2.5 1dentifying ASSOCIALIONSccceiveerieeiesieeiteeieeseesteeee s e e steeaesreessesseesseesesseesseesesneensens 48
10.2.6 Identifying Attributes and OPErationsSoccevereereerereeseerie e seeas 49

(L0 RC DT= To o U T U RO T PPV PR PRURORO 50
10.3.1 Segment, Crossing and Car VRML ODJECLS........cccvieereeierieerieceeseeee e eseeseeneens 50

0 30 0 R I T RS 51
10.3.1.2 The Segment and CrOSSINGcoeeeererierieriestesresesieseee e see e e eeenes 51
10.3.2 Attributes of Crossings and SEgMENESc.cieereeieeeeere e ere e neeas 52
10.3.3 Overcoming Visualization Problems with the PLAN file ..o 55
10.3.4 Performing the INItialiZatiON..........cocueiieiiie e 58
10.3.5 Overcoming Problems While Visualizing the OUIPULcccooererinenenenenceeens 58

10.4 IMPIEMENLALIONeeitieiecieeie et e st e s e e sre e s e te e e sseesseenseeseesseensesseesseenseaneensens 61

O = 1] o RS SRURRR 65
LO.5. 1 UNIE TESMG. ... eveeeeeueeueeieiesieste sttt e e e b s e s e s e ns et e b s b sbeeneeneennas 65
10.5.2 INtEGration TESHING .. .cveeeerieeeesreesieeiesteeseeeeseeseeeeesseesesseesseesseeseesseessesseessensesneensens 66
10.5.3 SYSLEM TESHING...veeueeuieieriesiesie st ee e see e sae st sre s se e e e e eesestesbessessesseenenneeneas 67

10.6 VRML GUI CONCIUSIONSveiiiiieiieiesiiesieeiesseestes e sseessessesseessesssesseessesnsessesssesnsessesssens 68

11.0 CONCLUSIONS (Written by Shannon Borho and Jan Pittner)ccccevveceveevecceseenens 70
12.0 REFERENCES (Written by Jan Pittner and Shannon Borho)cccceceevveieviececcie s 73
L13.0 APPENDICEScotiiiie sttt sttt sae ettt e tesbeebesteeseese e e e nsensentesaeabensenneeneans 74
Appendix A - The MA (MOGE]) FilE.....ccoiiiiieeeee e 74
Appendix B - An Example of aDRW Fil@.......ccviuiiieiececeeece et 76

List Of Figures

Figure 3.1 - SamMPIE CItY SECHION.....c..eiiiieieierie sttt s 10
Figure3.2- ATLAS code for the figure 3.1 City SECHION.......ccciveeieeieeiecee e 10
Figure 4.1 - JHOtDraw Class DIaQramM........ccocueieerieriereenieeiee et es s ssesee e ssesessseesaeseesneeseens 15
Figure 5.1 - A SMall CItY SECHON.. .cueiuiiiiiiieie e s 22
Figure 5.2 - RoadView of aroad with parking, a stop sign, and roadworkcccceeevuvieenens 23
Figure8.1- The VRML group NOUE........c.cciieiiiieiiecitee e eitee sttt stee s sse e ssae e sneesne s e snre e 30
Figure 8.2 - Nested group NOGEScoeeierieieriesie sttt 31
Figure 8.3 - The transform Node SKeY flalds.......ccviviieiicecee e 31
Figure 8.4 - Adding abox to the VRML WOrldcccoiviiiiiiiciie e 32
Figure9.1- A VRML world with ared box of Size IX3X5........cccvirireriniriecsee e 34
Figure 9.2 - Java code to change the colour of abox to blUue..........ccccoverieiiiiiie, 35
Figure 10.1 - The use case diagram for the VRML GUI System..........ccceevveeeveeiesieseeie e 40
Figure 10.2 - The sequence diagram for the View City USE CaSE.........ccooerrrreererinneenieniee s 45
Figure 10.3 - The sequence diagram for the Initialize City USE CaSE.......ccecvreerieniineneneseeeee 46
Figure 10.4 - The sequence diagrams for the Move CarS USE Case.........cccvuvreereeieeseesieeieeseennens 47
Figure 10.5 - The sequence diagrams for Load File and Invalid File respectively..................... 48
Figure 10.6 - A simplified class diagram for the new VRML GUI system.........cccccevcvnvrerennene 49
Figure 10.7 - The class diagram for the VRML GUI with attributes and operations shown....... 50
Figure 10.8 - The car, segment and crossing VRML ODJECESccooveiiieiiiiciee e 51
Figure 10.9 - Two crossings, one with a stop light, the other with astop SIgn.........ccccevveeenneee. 52
Figure 10.10 - ATLAS representation of atwo-Way SIEEL.........ccvvvirereeiereere e 55
Figure 10.11 - A two-way four-1ane SEgMENLtcccoveeiieiie i 56
Figure 10.12 - An example of two two-way four-lane segments that overlap at a crossing. 57
Figure 10.13 - ATLAS representation of two two-waly, two-lane Segments...........ccoceeerereennn 57
Figure 10.14 - An output message indicating that a car has appeared...........cccccveeevieeveeceseenens 59
Figure 10.15 - An output message indicating that acar hasleftacellcccccveiviiieiiecnee, 60
Figure 10.16 - The VRML hierarchy for the VRMLNOGE...........ccccorireriririeenee e 64
Figure 10.17 - The static view of the city with just segments and Crossings.........ccccceveervereennens 69
Figure 10.18 - Cars moving Within the Citycccoeiiieii e 69

vi

List Of Tables

Table 2.1 — Prosand Cons Of MapMaKEY ... 4
Table2.2 — Evauation of MapMaKEScc.eeiuiieiiicie ettt 5
Table2.3- Prosand Cons Of MapINfOcceeiiiiiirienereeeee e 5
Table 2.4 —Evaluation Of MapInfoccoeiiiiiiiisee e 5
Table 2.5 - Prosand Cons 0f MapODJECEScc.ecvirieeieiie ettt sneenne s 5
Table 2.6 — Evauation of MapODjECES.........uiiiieiicee e 6
Table4.1 - JHOtDraw DeSIgN PattErMSooiiiriiereeeeeee e 15
Table 4.2 — JHotDraw Contributed PaCkageccccevveieiieiece e 16
Table 4.3 - JHotDraw FigureS PaCKage.........ccovviiiieiieiiie ettt ettt 16
Table 4.4 - JHotDraw Framework PaCKagEoovieeeeieiieieresie st 16
Table 4.5 - JHotDraw JavaDraw PaCkage..........ccouiireririeieiesiesie sttt 17
Table 4.6 - JHOtDraw Util PaCKageccevueeiieee ettt 17
Table 4.7 - JHotDraw Standard PaCKagecceeueiieririe e 17
Table 5.1 — MAPPropertyPane] ClaSS.........ccooiiiiiriiinieeeie ettt 20
Table 5.2 — RoadFigure and LaneDirection Figure Classes...........cccveveieeveeiesee s 20
Table 5.3 — INterseCtioNFIQUIE ClaSS........coiiiiiiiecie ettt 21
Table5.4 — MAPDECOIatiON ClaSS.......cccueiuiiierieiieie et ee e ee e sae et sre e sesneesseense e 21
Table 5.5 — CityDrawiNgViewW ClaSS........cccvueieeieieese e ciese e see s eae e sae e ssee e esesneesneense e 21
Table 5.6 — ROAIDIrawiNgVieW ClaSS........ccuiiiiiiieiieciie et sre e sne e sre e 21
TabIE 5.7 — ATLASPAISEN ClESSoiiieiiiierieesie ettt ae e sae et sseesae e tesneesreenee e 21

vii

1.0 INTRODUCTION

Traffic in an urban areais a problem in almost every major city in North America. Gridlock
occurs on adaily basis on major routes into and out of a city and traffic jams happen all the time
within amajor centers. Thislarge amount of traffic can be predicted ahead of time, as there
already exists sensors reading the amount of traffic on particularly busy roads. The existing
problem is how to determine where the traffic is going to build up and how soon and what would

be the optimal route to follow to avoid the gridlock.

Another problem in any urban city is construction. Construction happens on ayearly basisin
many urban cities and affects not only traffic at the point of the construction but kilometers
ahead and behind as traffic can build up at the bottleneck. People want to know what will be the
result of setting up a construction zone ahead of time to determine if it would be a good decision

to shut down alane of traffic for weeks at a time to complete construction.

The best way to determine resultsis through asimulation. If we can predict the amount of traffic
that is flowing into a specified city section, and can predict how individual drivers are going to
react on city streets, then we can predict how the city traffic is going to develop in advance. A
simulation can give city planners the ability to make modifications to an existing city map or
even create their own city section and see the results based on parameters that they set that
determine the amount of traffic that will be entering the city section and the normal destined

route for the traffic when the get to the city section.

If asimulation is performed according to sensors that are currently set up ahead of a known
location for traffic buildup, we can predict the best possible route a driver can take to get to a
specific location and avoid the hassles of heavy traffic. Once we determine the best route for the
drivers, then viatraffic signs on the side of the road or even existing GIS (Geographical
Information System) systems that are becoming predominant in today’ s cars we can inform the

drivers of what was determined to be the most efficient route to a particular location.

This report discusses the visualization of the ATV (ATLAS Traffic Visualization) system that is
based on ATLAS (Advanced Traffic LAnguage Specifications). ATLAS isatraffic
specification language used to generate simulation specifications for the cell-DEV S (cellular
Discrete EVent System specification) system. Using ATLAS, asmall city section can be
modeled on which to simulate urban traffic. These city sections are composed of streets,
intersections, railnets, construction sites and various decorations such as potholes and stop signs.
However, generating the ATLAS files that describe these city sections is a tedious chore to do by
hand. This slows down the entire process of simulating urban traffic, which in turn slows down
the process of testing the cell-DEV S engine. We need away to allow designers to focus their
attention on creating the city instead of the semantics of ATLAS. The developed city can then
be compiled and ssimulated and produce a results file from the simulation. From this resultsfile,
it is very difficult for a human to make sense of the results. People would be more apt to use the
system if the results contained a graphical output representing traffic flowing through a city.
This project's aim was to make the system more visua and thus user-friendlier. A user should be
able to easily draw a city section, have the smulation file automatically generated, and the
output displayed graphically. The visualization of ATLAS would thus make simulation of urban

traffic using the cell-DEV S engine a smple process with more understandable results.

The solution involved two main aspects. One, a program had to be developed to allow usersto
easily generate ATLASfiles by letting the user draw and decorate the city section. The program
should also eiminate the need for the user to comprehend ATLAS specific abstractions (such as
segments). The program would have to then parse this drawing to create the ATLAS file, which
in turn could be compiled and simulated. Next, the output of the simulation engine had to be
parsed and displayed in a human friendly manner. A program utilizing VRML was extended
upon to give the user athree-dimensional visua output, displaying car shapes moving along the

defined city section removing the need for the user to read text based results.

The group managed the following accomplishments, adding extra visualization subsystems to the
current ATV system. A beta graphical drawing program known as MAPS was devel oped.
MAPS is based on the JHotDraw graphical drawing framework. A user can draw a small city
section with severa supported ATLAS components on which to model urban traffic. The

program parses the drawing to generate avalid ATLASfile. The visual output component called
the VRML GUI subsystem is able to display the text-based simulation resultsin a 3D virtual
reality world. This allows the user to easily understand the results of the simulation on a web-
based interface allowing the use of the tool over a network. This report is the culmination of the
project. It outlines the problem, its solution, and the accomplishments made by the group

members starting with the MAPS subsystem and progressing to the VRML GUI subsystem.

The report starts by describing the results of our exploration of existing GIS systems. GIS was
explored to determine if there were any existing systems that could be imported by the ATV
system giving a starting structure for a city section. Next we describe ATLAS, its semantics and
uses for the MAPS subsystem. The TSC (Traffic Simulator Compiler) compiler and N-CD++
simulator are briefly touched upon before getting into the VRML GUI subsystem. Finally, we
will state our conclusions and give some references to works cited.

20EXISTING GISSYSTEMS

Prior to work on the MAPS program, several existing GIS systems were examined for potential
use with the ATLAS system. The requirements for such an existing system were set out by the
authors as:

Low cost or open source
Can access existing urban maps

Maps can be exported and then parsed into the ATLAS format

A w D P

The system must also allow the user to easily add/modify decorations such as stop

signs, pot holes, road work, parking etc.
The following programs were examined for use with the ATLAS system.

2.1 MapM aker

This program comes in two forms. The free version, known as Gratis, and the Pro
version. The free version will be examined by virtue of it being free. The source is not available
for MapMaker, so direct enhancement for ATLAS requirements would require another program.
This automatically increases complexity for the end-user. There are however, benefits with
MapMaker that could make it a worthwhile addition to the ATLAS system, such asits ability to
provide a 3D perspective view of alocation.

PRO |Canimport existing GIS data, Available for free

CONS |Many extra features that distract user from sole focus of roads and their

decorations. Takes several hoursto learn asit is a full featured map making
program

No easy way of adding decorations such as potholes, parking, etc. Would
require the user draw the map, save the output, load another program to parse
that map onto which the user could draw or manually input parameters such

as parking and other decorations (eg road speed, €etc.)

Table 2.1 — Pros and Cons of MapM aker

Grade Requirement
PASS Low cost or open source
PASS Can access existing urban maps
PASS* Maps can be exported and then parsed into the ATLAS format
FAIL* Allow the user to easily add/modify decorations such as stop signs, pot

holes, road work, parking etc.

* indicates that an additional program would have to be used, increasing complexity.
Table 2.2 — Evaluation of MapMaker

2.2 Mapinfo
A full featured enterprise level mapping application.

PRO

Supports GIS databases, importing of existing maps.

CONS

Expensive, not open source, does not allow easy addition of ATLAS specific

functionality.

Table 2.3 - Prosand Cons of Maplnfo

Grade Requirement
FAIL Low cost or open source
PASS Can access existing urban maps
FAIL Maps can be exported and then parsed into the ATLAS format
FAIL Allow the user to easily add/modify decorations such as stop signs, pot

holes, road work, parking etc.

Table 2.4 — Evaluation of Maplnfo

2.3 ESRI MapObjects
$5000 (USD) collection of Java objects for GIS systems. A framework/collection of

specificaly designed JavaBeans for GIS systems.

PRO |Readily allows for use of existing GIS data such as ESRI ArcView
StreetM aps extension
CONS |Very expensive, contains many more objects than needed

Table2.5 - Pros and Cons of MapObjects

Grade Reguirement
FAIL Low cost or open source

PASS Can access existing urban maps
PASS* Maps can be exported and then parsed into the ATLAS format
PASS* Allow the user to easily add/modify decorations such as stop signs, pot

holes, road work, parking etc.

* indicates that an additional programming and design would be required.
Table 2.6 — Evaluation of MapObjects

2.4 Conclusions Regarding Use of Existing GIS Systems

After analysis of the aforementioned products, it was concluded that a solution could be
created to meet the requirements in a much more affordable manner. The existing GIS systems
analyzed (except for ESRI MapObjects) aso didn't provide an easy way to integrate ATLAS
functionality. Additionaly, the discovery of the JHotDraw framework gave even more reason to

create an in-house solution for the visualization of ATLAS.

3.0ATLAS - ADVANCED TRAFFIC LANGUAGE SPECIFICATION

ATLAS is a specification language for describing small city sections. The relevance of ATLAS
inthe ATV system has aready been discussed, so this section will briefly cover the formal
specification itself. For a complete detailed look at ATLAS, the reader is referred to the papers
“Definicion de un language de especificacion para simulacion de tréfico urbano siguiendo e paradigma
Cdl-DEVS’ by Davidson et al and an English paper “ TSC — Traffic Simulator Compiler” by
Tartaro et a [2]. The following section contains excerpts from that paper.

Of main interest to the authors of this paper is the specification of the city section itself. The
following ATLAS components are described: segments, crossings (also known as intersections),
rail- nets, jobsites (roadwork), holes (potholes) and control elements (stop signs, etc.). Their
implementation in the MAPS program is discussed in the MAPS section of this report.

3.1 Segments

Segments are the only mandatory componentsin an ATLAS file. They describe the
general layout of the roads, as well form the basis on which ATLAS decorations (such as stop
signs, potholes, and parking) are added. A segment can be a single lane or aroad with several
lanes. The segment can have parking or no parking (but it may not have parking in one location
but not another). Segments cannot cross other segments. A crossing (see below) must be placed
between two or more other segments. The names of segments are important, as they are used to

describe where various decorations are placed.

Thisisthe format for an ATLAS segment [2]:

id = pl, p2, lanes, shape, direction, speed, delay, parkType
where,
id: alphanumeric, is the segment identifier.
pl: point, indicates the begining of the segment.
p2: point, indicates the ending of the segment.
lanes: integer, amount of lanes of the segment.

shape: [curvelstraight], defines the shape of the segment.

direction: [go|back], defines the car movement sense of the segment.

speed: integer, defines the maximum car speed in the segment.

delay: integer, definesthe car delay in the parking lanes.

parkType: [parkNone|par kL eft|parkRight|parkBoth], defines the parking lanes of the segment.

A collection of segments is delineated in the ATLAS file by the “begin segments’ and “end segments’
statements.

3.2 Crossings

Crossings, aso known as intersections, are located between two or more segments. In cell-DEVS
they are modelled as roundabouts. The following is the format of an ATLAS crossing [2]:

id = p, speed, tLight, crossHole, delay, pout
where,
id: alphanumeric, isthe crossing identifier.
p: point, defines the placement of the crossing.
speed: integer, defines the maximum car speed in the crossing.
tLight: [withTL|withoutTL], indicates if the crossing has traffic lights.
crossHole: [withHole|lwithoutHole], indicatesif the crossing has holes
delay: integer, defines the car delay produced by the presence of a hole inside the crossing.
pout: integer, defines the probability of getting out from the crossing.

Similiarly to segments, crossings are grouped in the ATLAS file and surrounded by
“begin crossings’ and “end crossings’.

3.3 Railnets
Railnets are used to model railroads crossing segments. Railnets do not split a segment in
two. The following describes arailnet in ATLAS [2]:

id= (t,, d1) {,(t;, d)}, delay
where,
id: alphanumeric, isthe railnet identifier.
t;: alphanumeric, indicates a segment identifier crossed by the railnet.
d:: integer, indicates the distance between the beginning of the segment t; and the railnet.

delay: integer, indicates the car delay crossing the segments cells affected by the railnet.

3.4 JobSites

Jobsites, aso known as road work, indicate where there is construction on the road. [2]

int: firstlane, distance, lanes, delay
where,
t: alphanumeric, isthe segment identifier where the jobsiteis placed.
firstlane: integer, indicates the first lane affected by the jobsite.
distance: integer, indicates for the first lane the distance between the central column of the jobsite and
the begining of the segment.
lanes: integer odd, indicates the amount of lanes affected by the jobsite.

delay: integer, not used and reserved for future utilization.

3.5 PotHoles
The holes section is delimited by the sentences " begin holes' and " end holes’ and contains one or
more sentences with the following syntax [2] :
int: lane, distance, delay
where,
t: alphanumeric, is the segment identifier where the hole is placed.
lane: integer, indicates the segment lane where the holeis placed.
distance: integer, indicates the distance between the hole and the begining of the segment.
delay: integer, indicates the car delay crossing the segments cells affected by the hole.

3.6 Control Elements

The control elements section is delimited by the sentences " begin ctrElements' and "end
ctrElements’ and contains one or more sentences with the following syntax [2]:

int: ctrType, distance, delay

where,
t: alphanumeric, , is the segment identifier where the control element is placed.
ctrType: [sawhorse|depression|intersection|saw|stop|schoal], defines the type for the control element.
distance: integer, indicates the distance between the control €l ement and the begining of the segment.

delay: integer, indicates the car delay crossing the segments cells affected by the control element.

3.7 Sample ATLAS File

The following (figure 3.2) is a sample ATLAS file from “TSC — Traffic Smulator Compiler” by
Tartaro et a. It describes theb city section in figure 3.1 As the reader can see, it would be a tedious

process even to make relatively smple changes to the layout of the roads, or adding parking to a certain

section of aroad.

£
J: o A
40 ¢ s 6
= . ¥]
T e} tjﬁ
- . -
e i
- i
e
j[al’ Tap [1 LY== 3

= FRailway
® Crossing (Mo TL, no haoles)

® Crossinz (TL, 10 2ole)

D Crossinz (Me TT hales)
O Hole

¢ Tsobsils

I Control Element

Figure 3.1 - Sample city section taken from “TSC — Traffic Simulator Compiler” by Tartaro et al [2].

Teoln owoumerbs

cl = {1,%1,41,1),%, 3tealght, o, 21, 2200, paTkNane

Li= 3 00 45 1) F sheaighl, g, 22, 0 200, pr cF R cghil.

LE = 15,51 A5) A pomraiighin, g, 25, 2 500, p rENome

Ed — I, 13,410, 10,), steaight, go, 24, 2400, parklone=

£l - {11,404 1, cupvs, oo, 23,1500, par Eiooe

EC — d1I.0h, 10,10, 2, stemight, back, 24, 1409, parkleft
CR- TOQIE TS

LESIT GECEELITE
zl = {1,11,11, wWitrmoubll, withHolec, 221, 271
Cio= g, l).lé, Witnlh, wWwithoitHole, 224, Z°2
i = {12,1),12, WichoucTL, WithoutHole, 223, 113

Sezin railrecs
EEL = NEL L) a4z 2 1), ith 2] 33%
=it rHilr=in

mamir jemmices
it e F R S |
mrs Jrheitea

oegin holes
Ir T2 2 L d, B2
kgl el R
i BE
sra helzs

eZin CTEI1EMSNCE
in ©F = etap, 0,651
[T ™ e
slid LLEElemedils

Figure3.2 - ATLAS codefor thefigure 3.1 city section [2]

10

3.8 ATLAS Conclusion

ATLAS provides a much simpler to read and work with format for describing city sections than
pure cell-DEVS specification. However, ATLAS can be simplified even further by eliminating the need
to work with the ATLAS language itself. This can be done by letting a user draw the city section and
having a program automatically parsing the drawing to create avalid ATLASfile.

11

4.0 JHOTDRAW FRAMEWORK

The JHotDraw Framework [1] forms the foundation for the MAPS project. As such, it requires
key representation in this document to give the reader a firm understanding of how it was used
to form the MAPS program. Its background, design, core classes, and key design patterns used
will be discussed. Understanding the JHotDraw framework was the first requirement to be met
before MAPS could be developed.

4.1 JHotDraw Background

HotDraw was initially designed by Erich Gamma (of Group of Four fame) and Thomas
Eggenschwiler. First written in SmallTalk, HotDraw's was initially just an exercise in design. It
was since then ported to Java and renamed JHotDraw. The code was released as open source. Its

godls, from the JHotDraw homepage [1], are:

gain awider audience for this framework among devel oper

build new applications based upon JHotDraw

let application development influence the development of JHotDraw
add new and advanced features

drive its further development

port JHotDraw to new Java GUI toolkits

enhance and refactor the exisiting code

identify new design patterns and refactorings

make it an example for a well-designed and flexible framework
examine the relevance of new Java APIsto JHotDraw (e.g. usefulness of Java 2D API
for JHotDraw)

learn and to have fun.
4.2 JHotDraw Design

The simplicity of JHotDraw's design should not in any way lead one to conclude that

JHotDraw is aweak drawing program. Nor should one conclude that its implementation is

12

trivial. Understanding its design will however allow a user to extend its functionality to meet

his or her new requirements.

The design will be covered firstly by looking at the package structure. Next, key design patterns
will be analyzed. Thisis followed by the core JHotDraw classes, and how they fit into the
aforementioned design patterns. Armed with this knowledge, extending the framework to have
ATLAS functionality proves to be an interesting challenge in the application of design patterns

and implementation.

4.3 Package Structure
Knowing what goes where is the first step in learning an existing system that will be

extended. Fortunately, the JHotDraw package structure is designed so that cohesion is high
between files in each package. The files are logically placed in the following structure [1]:
CH.ifa.draw.util

This package provides generally useful utilities that can be used indeperdently of JHotDraw.
CH.ifa.draw.framework

The framework package includes the classes and interfaces that define the JHotDraw
framework. It doesn't provide any concrete implementation classes.

CH.ifa.draw.standard

The standard package provides standard implementations of the classes defined in the
framework package. It provides abstract classes that implement a framework interface and
provide default implementation. The convention is to prefix such classes with Abstract, e.g.,
AbstractFigure, AbstractHandle. Classes that implement a framework interface and can be used
asis start with Standard, e.g., StandardDrawing, StandardDrawingView.
CH.ifa.draw.figures

A kit of figures together with their associated support classes (tools, handles).
CH.ifa.draw.contrib

Classes that where contributed by others, such asthe MDI classes.

CH.ifa.draw.application

The application package defines a default user interface for standalone JHotDraw applications.

13

Additionally, there are severa other packages of lesser importance rot discussed here.

4.4 Model View Controller Paradigm

The basis of almost any program that interacts with the user is the Model View Controller
paradigm (MVC for short).

In the MVC paradigm the user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three types of object, each
specialized for its task. The view manages the graphical and/or textual output to the portion of
the bitmapped display that is allocated to its application. The controller interprets the mouse
and keyboard inputs from the user, commanding the model and/or the view to change as
appropriate. Finally, the model manages the behavior and data of the application domain,
responds to requests for information about its state (usually from the view), and responds to
instructions to change state (usually fromthe controller).

Quoted from “How To Use Model View Controller” [6]

How each of these three parts of the MV C are handled in JHotDraw is discussed in the Core
Classes section of this paper.

4.5 Key Design Patterns Used
There are severa key design patterns used by the JHotDraw framework. Understanding
these patterns is essential to understanding how the framework functions. There are other
patterns used in addition to those listed here (such as Strategy and Singleton) however these
four patterns are the absolute core and thus will be discussed further.

Pattern Description
Observer The observer pattern allows you to have an object notify other objects that
its state has changed.
Command The command pattern abstracts user input as an object. Menus and

parameterized calls can thus be quickly and easily created. This pattern also

allows for undo/redo to be implemented, critical for a program with heavy

user interaction and where the user can be prone to change their minds.

14

Pattern Description
Composite The composite pattern makes it possible to treat individua objects and

compositions of these objects the same way. Drawings will often be
composed of many smaller drawings, which themselves can be composed
of drawings as well. It is thus possible to treat a drawing of a square the

same way as a drawing of a square with asquarein it.

Prototype The prototype pattern allows for the specification of an instantiation of a
class and for that instantiation to be copied to create a new object.

Table 4.1 - JHotDraw Design Patterns

See [7] for more info on each pattern.

4.6 Core Classes

A Tk

DrawWiandowr

zelection

| DrawingView

cutrent
tool

Figure4.1 - JHotDraw Class Diagram (from JHotDraw documentation [1])

The following classes are of utmost important in the operation of JHotDraw. As such, they are
discussed to give the reader a firm understanding of their design and capability.

It is these classes that must be understood in order to be able to expand upon the JHotDraw
framework. The classes not mentioned play a supportive role which for the most part the user

need not concern themsalves with.

15

Package

Class Names

Description

contributed

CustomSel ectionT ool

Tool used to allow the user to select different
drawings. Notifies selection listeners of
changes. The is extended to allow further
capabilities such as right clicking pop-up

menu's, double clicking, etc.

MDI_DrawApplication

Allows for multiple documents to be opened

in the same program, as well as multiple

views.
Table4.2 — JHotDraw Contributed Package
Package Class Names Description

figures FigureAttributes Assortment of figures that store important
LineFigure information about themselves. what they ook
AttributeFigure like, where they are drawn, how they are
RectangleFigure drawn, etc. The foundation is the
AbstractFigure AbstractFigure which stipulates what a figure

class must have in order to be afigure.

Table4.3 - JHotDraw Figures Package

Package Class Names Description
framework |Drawing The interface that defines a drawing.
DrawingChangeEvent The event that is broadcast when adrawing is

changed.

DrawingEditor

the interface for the editor for drawings.

DrawingChangeL istener

the observer that receives broadcasts of

DrawingChangeEvents

FigureChangeEvent
FigureChangeL istener
FigureSel ectionL istener
ViewChangeL istener

Assortment of various events, listeners that
implement the Observer pattern to allow the
Model to update the view when the controller
affects a change to the drawing, or which

current view is used.

Table 4.4 - JHotDraw Framework Package

16

Package

Class Names

Description

JavaDraw

JavaDrawApp

a skeleton application that can be modified to

meet a user's particular needs.

Table4.5 - JHotDraw JavaDraw Package

Package Class Names Description
Util Command implementation of the Command pattern.
CommandButton brings the Command features to Button form

Table 4.6 - JHotDraw Util Package

Package Class Names Description
Standard | AbstractCommand the implementation of the Command pattern,

forms the basis of the commands present in
programs (eg, copy, cut, paste, etc.)

CompositeFigure the implementation of the Composite pattern
as an abstract class. A figure can contain
other figures.

CreationTool the abstract factory implementation, allows

for the dynamic creation of figures such as
rectangles, lines, and ellipses (among others)

on thefly.

GridConstrainer

class that serves the need to constrain user
input to agrid.

DrawingView

interface of the View component of the MVC
paradigm. StandardDrawingView provides a

ready to use implementation.

ToolButton

Class that encapsulates the behavior of a
button which can have different tools

assigned to it.

Table 4.7 - JHotDraw Standard Package

17

4.7 JHotDraw Design Conclusion

Understanding the interfaces of these core classes, knowing how they apply the discussed
design patterns, and having a plan on how to extend and re-use the framework was the first step
in building MAPS. Although documentation is sparse for the JHotDraw framework, by
understanding the key design elements the user can learn the system quite rapidly.
Understanding how to fix, adapt, or upgrade existing systems is a common problem for newly
graduated engineersin junior level engineering positions. JHotDraw proved to be a well
designed training ground for future work with existing small to medium sized systems.

Additionally it proved to be an excellent framework for the basis of the MAPS program.

18

5.0 MAPS

The goa of MAPS is to provide a visua front-end for the ATV. MAPS alows usersto draw
small city sections which are then automatically parsed into ATLAS files. Users can quickly and
easily change the layout of the city section, aswell as ATLAS specific parameters. MAPS
eliminates the need to know the ATLAS language, and it dramatically reduces the time it takes to
create ATLAS .plan files. This alows for rapid simulation of urban traffic, which in term tests
the cell-DEV S engine.

5.1 Key Features of MAPS:
Intuitive interface alows user to quickly draw streets
Intersections are automatically generated for the user
Roads, instead of segments, allow the user to ignore ATLAS abstractions
Decorations can be easily added, changed, or removed
ATLAS parameters can be easily modified to change simulation parameters
Save/L oad files
Parses user's drawing into ATLAS format
Undo/Redo

Multiple document interface

5.2 Plan for Building MAPS

The first step was understanding the JHotDraw framework. This was done mainly by
running the provided samples, reading through the code and learning about the underlying design
patterns used. The requirements for MAPS were simple — allow the user to quickly and easily
create a small city section which will then be parsed by the program to create valid ATLAS
output. The user should be able to cortrol the layout and attributes of the streets, as well as the

decorations on those streets.

Given these requirements, the required classes were devised and implemented. Most are

inherited or implement interfaces from the JHotDraw framework.

19

The following sections will briefly outline the more important classes created, which classes they

inherit from, which interfaces they implement, and their key role. Should the algorithm used be
of interest (specifically parsing for ATLAS) it is aso discussed.

5.3 MAPS Classes

Class Superclass || mplements

MAPPropertyPanel |[JPanel FigureChangeL istener, ViewChangeL istener,
DrawingChangeL istener, SelectionChangel istener

Function Property panel which is constantly updated with the current

view/selection (it is an observer of these events). User has to be
able to input the various ATLAS parameters for the object.

Table5.1 — MAPPropertyPanel Class

Class

Super class

Implements

RoadFigure
LaneDirectionFigure

LineFigure

Function

LaneDirecti

prevent the

RoadFigure is the primary figure used for ATLAS functionality.
It stores the road information such as name, speed, curvature, and
SO on. It extends the store/read functionality dictated by the

Storable interface so that a user can save their map for later use.

onFigure overrides certain methods in order to

arrow from being moved around on the screen, but

still be accessible via mouse clicks to change the direction.

Table 5.2 — RoadFigure and LaneDirection Figure Classes

20

Class

Super class Implements

IntersectionFigure

EllipseFigure

Function

Just like LaneDirectionFigure, the primary purpose of extending
this class was to override certain methods to prevent moving the
figure around (all crossings are automatically generated in MAPS)
but still be accessible via mouse clicks.

Table 5.3 — IntersectionFigure Class

Class Super class Implements
MAPDecoration Object serializable, storable
Function Simple class used to store MAP decorations and their information

(eg, location on the road, affected lanes, etc). If available, the
figure associated with the decoration is stored as well (eg,
RectangleFigure with a blue “fillColor” for parking.)

Table5.4 — MAPDecoration Class

Class Super class Implements
CityDrawingViev StandardDrawingView
Function Provides the background view with grids, rulers.

Table5.5 — CityDrawingView Class

Class Super class | mplements
RoadDrawingView |CityDrawingView
Function Extends the CityDrawingView by painting on the road that the user|

has salected. The user can then draw road decorations onto that
road.

Table 5.6 — RoadDrawingView Class

Class Super class I mplements
ATLASPar ser Object
Function Parses the user's drawing. Validates the drawing and generates the

ATLAS code.

Table5.7 — ATLASParser Class

21

5.4 Parsing the Drawing

o1 2 3 4 5 6 7 8 9 10111213214 15 16

[e T 7 R L R L = R LSS T

=]

10 |
11
12
13 1

14]
Figure5.1 - A small city section. The orange circles are crossings. Note that the arrow indicates user-drawn
direction of the road, not necessarily the direction of the lanesin that road.

The parser first removes and stores old crossings to preserve their settings (such as pout). City

level decorations are then stored (e.g. rail- nets). All roads are then stored.

The parser then loops through each road to see if it intersects with other roads. If a previously
generated crossing exists at the intersection point it is used. If it isn't, a new intersection is
created. The parser also checksto see if the road contains arail-net. If it does, a boolean value is
set to inform the parser to check which segment the rail- net belongs to as the segments are

created.

A new list of breakpoints (a simple class that stores the location of the cut, and the type — eg,
start of the road, end of the road, intersection, parking start, parking end) will determine how to
cut up the road into segments. This list does not contain intersections that do not form segments

(eg, at the start and end of the road being segmented).

22

Breakpoints can also created by parking, as the parking can be on only certain parts of the road.
The parser 1oops through the parking decorations of that road for each lane to create breakpoints
for that lane. Each lane is its own segment, which can be further segmented by parking
decorations on that lane. Each segment must have a unique identifier. This unique identifier is
tagged to other decorations that that lane is affected by (eg, roadwork spanning multiple lanes,
potholes, etc).

The lane breakpoints are then sorted and the segments are created, named and decorated. The
process repeats for as many lanes and as many roads. The creation of segments from lanes is
discussed further below. The segments and decorations are stored in vectors for each. The parser
goes through the vectors for the segments and various decorations.

The crossings are parsed and their ATLAS code is added to the vector whichwill then be looped
through to generate the ATLASfile.

5.5 Creating Segments from Lanes

o1 2 3 4 45 B

igure5.2 - RoadView of aroad with parking, a stop sign, and roadwork

T oL ka2 — O
!

A road may have multiple lanes, multiple intersections, multiple places to park each with
different parameters. Additionally each part of the road can have other decorations like potholes
and stop signs. The process of portioning aroad is described above. This section describes how
the segments themselves are created from alane. Note the above figure contains four ATLAS
segments — one lane with the direction “go”, and three with reverse. Two of the “reverse”
segments have no parking, while one (the part of the lane that is colored blue) does. The user
need not worry about creating the segments, naming them, and ensuring the decorations are
attached to the correct segment. Thisis all done automatically by MAPS.

23

To parse the lane valid intersections found for the road are added to the lane's breakpoints. Next,
breakpoints are created from parking. The breakpoints are then sorted to be in ascending order
(from the start of the road to the end).

The following rules apply to parsing alane's decorations:
There is no parking available at the start and end of alane (the first and last grid units may
not have parking)
Parking objects may not overlap.
Parking objects may not be intersected by another road — that is, there is no parking allowed
in an intersection.

Segments with parking may not contain arail- net

These rules were formed by looking at typical rules for red life streets, as well as make parking
parsing logic simpler. The user is informed if any decorations violate the rules, and the locations
of the invalid objects are displayed.

The segments are created if the parking decorations are valid. The segments are then decorated
by looping through the decorations for that lane and checking to see if the decoration (such as
potholes, stop signs, etc) lay on that particular segment. If the user created a decoration that has a
length of more than one grid size, then multiple decorations are added as many times as the

length requires. The decorations differ in their position from the start of the road.

24

5.6 Known | ssues

There are currently several known issues with the latest build of MAPS:

missing option in ATLAS menu to generate intersections

property panel layout needs adjusted to give cleaner looking JTextField edit boxes
severa decorations have not been implemented yet

if auser closes the Road View without applying the changes, the changes are lost.
Likewise, if a user makes changes to properties of aroad, but then selects another figure,
those changes are lost.

“Update” button does not support undoabl e operations.

Graphical artifacts occur when the user draws an object. The image must be manually be
refreshed (by moving the entire window) in order for the artifacts to be removed.
Multiple road views can be opened for the same road.

Transparent/trans ucent objects are required for decorations where multiple decorations
must be used onthe same grid square. That, or priority in the Z level for an object should
be established (eg, stop signs and potholes have a higher Z level than parking).

It can be difficult to properly click an object (due to the use of LineFigure)

this release has ot been tested with the ATV system due to technical issues with the TSC

(Traffic Simulation Compiler, see section 6.0).
5.7 Future Enhancements

Future enhancements to MAPS may include the ability to parse existing GIS data from

existing map formats.

25

5.8 MAPS Summary

MAPS was created to do one thing — allow a user to quickly and easily draw a small city
section with decorations and have the program automatically create an ATLASfile. This solved
two problems. First, a user no longer has to understand ATLAS in order to manually generate
ATLASiles (atedious and slow process). Secondly, ATLAS files can be quickly generated with
different parameters in order to test the entire ATV system, at the heart of which exists the cell-
DEVS engine. With valid simulation files for urban traffic, the cell-DEV S engine can be tested
in yet another operational field. This can potentially broaden the wide number of applications for
which cell-DEVS s a practical and useable simulation engine.

The need: An easy to use graphical tool to quickly provide valid input for the ATLAS-
based urban traffic simulator.

The solution: MAPS allows a user to quickly and easily generate the valid input.

The accomplishment: MAPS provides the core ATLAS functionality with the drawing
capabilities of the open source JHotDraw framework.

The clever name: MAPS Makes ATLAS Pretty Simple.

26

6.0TSC - TRAFFIC SMULATOR COMPILER

The main goa of the TSC (Traffic Simulator Compiler) isto take an ATLAS input
representation of a city section, generated either by the MAPS subsystem or written manualy,
and generate, as an output, an mafile containing the appropriate smulation models. The models
generated will be written to afile that follows the supported structure of an input file for the N-
CD++ smulator. Once the modd file is executed using the N-CD++ simulation tool, the output
file from the smulator can be analyzed to determine the traffic flow within the ATLAS defined
city section. Manually defining the model file generated by the TSC would be very difficult and
tedious due to the high level of details that go into a city section. The TSC uses a set of code
generation templates for each element of the model to come up with an overall output mafile [2].
A portion of an ma file has been included in appendix A to illustrate the complexity of the model
file. Thiscompiler was developed severa years ago by a Master’ s student but still has design
issues and bugs that have to be dealt with.

27

7.0 N-CD++ SSIMULATOR

N-CD++ isatool that was also developed severa years ago for smulating cellular space models
using the DEV S (discrete event system specification) paradigm and asynchronous cellular
automates. DEVSisahierarchical simulation method that separates modeling from simulation
enabling correct, efficient, event-based, distributed smulation. Cell-DEVS (Cdlular DEVYS) is
an extension to the DEV S formalism that allows for defining cellular models that can be
integrated with other DEVS models. Each cell of a cellular space is defined to be an atomic
DEVS model with its own particular value [2]. At some specified point in time, each cell will
use inputs from neighboring cells to compute the future value of the cell. The new value of a
specific cell is dependant upon a set of rules that are defined in the model file along with each
cell’ s neighborhood.

The cell-DEV S formalism is used extensively in the smulation of ATLAS models. We can
think of aroad segment containing a specific number of cells that can hold at most one car with
the value of each cell depending whether or not the cell currently containsacar. The future
value of acell will depend on the current value of the cell and the value of the cell to the right
and left of it. For example, imagine we have a one-lane segment with five cells. The future
value of any one cell depends on its neighborhood. The neighborhood for cell (0,0) could be
defined to be cell (-1,0), (0,0) and (1,0). The rule that determines the next value within a cell
could be defined to be if a car exists in the neighboring cell to the left (-1,0) and no car existsin
the current cell (0,0), then after the next event time a car will exist in the current cell. Another
rule could be if a car is present in a specified cell (0,0) and no car exists in the cell of the
neighbor to the right (1,0), then there is no longer a car is present in the specified cell (0,0). For
example, if acar existsin cell (2,0) but no car existsin cell (1,0) or (3,0), then after a delay time,
the cell (3,0) will contain a car, and cell (2,0) will no longer contain acar. The rules get more
complex as the number of lanes is increased because the neighborhood is extended. If there are
three lanes, then the neighborhood for cell (0,0) in the middle lane could be (-1,1), (-1,0), (-1,-1),
(0,2), (0,0), (0,-1), (1,2), (1,0), and (1,-1). There will be rules for many different situations and

they also can get complex. The simulator evaluates the entire model of segments and crossings

28

using the two-dimensional cell-DEV S based simulation tool N-CD++ following the rules and
neighborhoods defined in the model file for each model.

7.1 Log Messages

Whenever the smulator detects that the value within a cell has changed from aone to a
Zero or vice versa, an output event is generated. These messages can be recorded in alog file.
The output messages are indicated by the prefix Y message at the beginning of the statement.
The message informs the user of the model name that was changed, the cell location and the new
value that the cell contains. The simulator actually keeps track of all messages sent between
cells. At time O, there are many initialization messages that are passed between and within
models. Also during the ssimulation, there is input messages passed into the system along with
other messages passed between segments. These messages are logged by the simulator as well
but they are marked by either an I, *, X or D delimiter and with regards to viewing the output,
can be ignored. The only relevant message for understanding what is happening in the output is
the Y messages.

7.2 DRAW Files

Another application that has been developed in the past is the DRAWLOG program.
This program will interpret the log file generated by the N-CD++ simulator and generate a text-
based output for individual segments. The draw file shows the time and the status of the cellsin
asegment. A sample draw text file has been included in appendix B. From this sample draw
file, the limitations of the text-based outputs are obvious. For starters, only one segment can be
viewed at onetime. Generaly, city designers want to be able to see how the traffic is
progressing in their entire city. They would want atool that easily allows them to choose a
location to focus their attention and possibly watch traffic flow from segment to segment. The
draw file does not alow for this. Also the text-based output is not easy to follow. A graphical
tool with car shapes representing a car and no car present for a car not present in a cell, showing
the entire city at once would be ideal for the user visualizing the output of asimulation. To make
this possible, a modeling language that is capable of outputting car shapes to the screen is
needed.

29

8.0VRML

VRML stands for Virtual Reality Modeling Language and according to the VRML Consortium
is “an open standard for 3D multimedia and shared virtual worlds on the Internet. [8]” It is
considered an open standard because the International Organization for Standardization (1SO)
and the International Electrotechnica Commission (IEC) recognized it as an international
standard in December 1997, hence the name VRML97. VRML “worlds’ got their name from
the original inspiration; shared virtual worlds on the Internet. VRML was really the first 3D
application that has the ability to use the Internet to share 3D objects and scenes. VRML isa
scene description language that describes the geometry and behavior of a 3D scene or world but
itisn't ageneral purpose programming language like C++. A world can range from simple
objects to very complex scenes [8]. The VRML modeling language is appropriate for a system
that outputs traffic results from a smulator because it can allow the user to view acity section in
three-dimensions with the ability to browse around the roads and crossings to witness traffic

congestion under certain conditions.

Browsing around VRML worlds is very simple. There are three main modes that the browser
has; fly, walk and point. The fly mode gives the users the ability to fly around the 3D world as a
pilot would in an airplane. The user can also walk on an imaginary flat plane and then by
pressing a specific button, the user can move up and down. Lastly, point mode allows the user to

point and click on an object and the browser will move the user directly towards that object [9].

8.1 TheVRML Node

After looking at the purpose and history of VRML, it istime to look at the actual
structure of a VRML file. In anutshell, aVRML world is made up of many nodes. A nodeis
simply atype of object with fields or attributes that are properties of the object. The simplest
node is a Group node that just groups together other nodes [10]. Figure 8.1 shows a group node
written in VRML.

G oup {
children []
}

Figure8.1 - The VRML group node

30

The fields of the group node go inside the curly braces. In this case there exists only one field,
the children field. The group node is an example of a grouping node. Grouping nodes are nodes
that can contain other nodes in their children field. Other examples include the transform node,
the collision node and the anchor node [10]. Figure 8.2 is an example of a group node nested in

another group node.

G oup {
children [
Goup {}
]

}
Figure8.2 - Nested group nodes

This gives somewhat of a hierarchy of nodes sometimes called the scene graph and in general the

Scene Graph can reach severd levels in the hierarchy [10].

Another useful grouping node, especialy in the VRML GUI system is the transform node. The
transform node has several fields that are useful for transforming and rotating nodes around a
world [10]. Figure 8.3 contains alist of key fields.

Transform{

eventln M-Node addcChi | dren

eventln M-Node renovecChi | dren

exposedFi el d MFNode chil dren [1]
exposedFi el d SFRotation rotation 0010
exposedFi el d SFVec 3f scal e 111
exposedFi el d SFVec 3f translation 00O

}
Figure 8.3 - The transform node’ skey fields

We see that the children field is of type MFNode, which represents alist of nodes. This means
that the transform node is like the group node in the way the programmer can nest other nodes
inside the transform node. Other useful fields for the project are the rotation, scale and
trandation fields. The rotation field will rotate the nodes that are in the children field of the
transform node by a specific number of radians about an axis. The trandation field trandates the
objects in the children field to a new location defined by the X, Y, and Z coordinates in the
corresponding SFVec3f field. Lastly the scale field will scale the object in the children field of

31

the transform node by the amount specified in the SFVec3f type. There are two other fields of
interest; the addChildren and removeChildren eventin’s. Most of the grouping nodes have the
addChildren and removeChildren event fields but no other nodes contain these fields [10].

Events will be explained later on in the report.

8.2 Basic Shapes

There are four basic shapes: box, cone, cylinder and sphere. These are the basic
geometry nodes. There are other geometry nodes but they are used to allow the user to create
their own shapes, as will be done in this project to create car and traffic light shapes. The

dimensions of the box can be defined in the box node's only field, the size [10].

Geometry nodes can only be placed inside the geometry field of a shape node. The shape node
has only two fields, the aforementioned geometry field that defines the 3D polygon and an
appearance node that defines how the shape looks in the field [10]. To add a box to the world
with the default values in the fields, we would simply build a hierarchy asin figure 8.4.
Shape {

geonetry Box {}

appear ance Appearance {
material Material {}

}

nge&4-AdhmabmuomeVRMmem
8.3 Complex Shapes

The basic shapes that VRML offer are just that, basic. For the most part, anything
advanced will require the user to either combine basic shapes together or designing their own
shapes. The developer can use a number of other geometry nodes to build up arbitrary or
complex shapes to enhance their world. There are five other geometry nodes that can help the
user create complex nodes: IndexedFaceSet, IndexedLineSet, ElevationGrid, Extrusion, and
PointSet. The IndexedFaceSet node is the most useful of the five complex geometry nodes and

consists of a set of faces, which is defined manually by the user, to build up complex shapes.

32

8.4 Events

Along with fields, most of the nodes also contain events. There are two types of events,
eventln and eventOut. eventOut events are outgoing events that inform other nodes of changing
values in the source node, such as avaue of afield changing or atime change. eventln events
are incoming information from nodes in the world that may cause the receiving node to change.

Each event has a data type associated with it [10].

There are fields in nodes that are events of type exposedField. This means that there are two
events associated with that field, the set_fieldName and fieldName_changed. These are the
eventln and eventOut for the field. If we look back at the transform node, we can see that there
is an exposedField called rotation. If we wanted to rotate a box based on the user clicking a
button, we would set the world up so an eventOut was generated when the user clicked the
button and route it to the set_rotation field of the transform node of the box. We would send
values 0 0 1 3.14 to rotate the box about the zplane by 180°, then arotation_changed event
would be generated that could be routed elsewhere to inform another object that the box has

rotated. Thisishow achain of events can happen based on a single user action.

33

9.0 THE EXTERNAL AUTHORING INTERFACE

The VRML GUI inthis project will be implemented using Java with VRML supplying the 3D
graphics. Because of this, learning how to use VRML in Javais essential. The External
Authoring Interface (EALI) is an interface that alows other programs, in our case a Java applet, to
communicate with VRML worlds. “[e]ssentially, to Java, the EAI is aset of classes with
methods that can be called to control the VRML world. To VRML the EAI isjust another
mechanism that can send and receive events, just like the rest of VRML. [11]” This quote comes
from VRML Is— Java Does — And the EAl Can Help and very accurately describes what EAI
can be used for. In theory, the EAI is not directly tied to Java or Java applets, but it isused in

practice by these tools [11].

The first step in using the EAIl in a Java applet is to get areference to the VRML browser. The
EAI offers a Browser class with a static method getBrowser that will retrieve the VRML browser

encapsulated in a Browser object [11].

9.1 Obtaining a Referencetoa VRML Node

To make VRML do anything useful, we will want to be able to send information to the
eventln of a node of interest (see section 8.4). To do this, we will need to be able to get a Java
reference to the node. Imagine we have some simple VRML scene such figure 9.1 containing a

simple red box.

Transform{
children [
Shape {
appear ance Appearance {
mat eri al DEF MAT Material {
di ffuseColor 1 0 0
}
}

geonetry Box {
size 1 35
}

}
]
}
Figure9.1 - A VRML world with ared box of size 1x3x5.

Now lets say that we want to change the colour of the box using the EAI. First we need to get a
reference to the node that contains the colour field. The “DEF MAT” part of the materia node
definition just gives the material node a name so it can be reused, or in this case, so it can be
referenced outside the VRML world. In this case the node named MAT contains the
diffuseColor field of the shape that we want to change. Next, we need to get a reference to the
diffuseColor field of the material node. In order to change the colour, we need to send avaueto
the referenced field that will change the shape to the desired colour [11].

The EAI offers a Node class that canencapsulate aVRML node, and an EventInSFColor class
that has methods that can send SFColor values to the event fields. Figure 9.2 will change the

colour of the box from figure 9.1 to blue.

Node material = browser.get Node(“MAT");
Event | nSFCol or set _di ffuseCol our =
(Event I nSFCol or) material.getEventln(“set_diffuseCol or”);
float[] colour = new float[3];
colour[0] = 0.0f; colour[1] = 0.0f; colour[2] = 1.0f;
di f f useCol our. set Val ue(col our);
Event Qut SFCol or diffuseCol our _changed =
(Event Qut SFCol or) material . get Event Qut (“di ff useCol or _changed”);

float[] colour = diffuseColour_changed.getValue();
Figure9.2 - Java code to change the colour of abox to blue, then get and store the colour of the box

The first two statements just get the references as mentioned. The diffuseColor field of the
Materia node is of type SFNode and in Java an SFNode is implemented as a three-element array
of float values, in this case defining the new colour. We then set the colour to blue and send the
value to the Material eventln diffuseColor and the colour of the shape is changed to blue. We
can then get the color value of the box by using the getValue method on the
diffuseColour_changed eventOut [11].

35

10.0 THE VRML GUI SUBSYSTEM

The VRML GUI isthe subsystem that | was required to reengineer for the ATV system. The
purpose of the VRML GUI isto allow the user to view the simulation results of the city section
that the user created using MAPS, after compiling with the TSC and simulating with the N-
CD++ simulator. The previous VRML GUI subsystem could only display basic shapes to
represent cars and had a limitation of alowing just one segment displaying at atime. The new
version of the VRML GUI will show the entire city as the user created it using MAPS, will
display road shapes to represent the segments and crossings, and will display car shapes moving
along the roads for every segment as the ssmulation output file specifies. The VRML GUI uses
VRML asits graphics representation of cars, segments and crossings. The software engineering
process will be described in detail starting with the requirements and analysis, then the design
and implementation, finishing with a description about the testing that was done on the VRML
GUI subsystem.

10.1 Requirements

10.1.1 Functional Requirements

The functional requirements of any software system describe the interactions
between the system and its environment without describing the unnecessary details of

implementation [12].

The VRML GUI is agraphical user interface that shows traffic flowing through a predefine city
based on the results of a simulation. The VRML GUI will use the created plan file to determine
astatic view of the city without cars present. The GUI uses the results file from a previous
simulation by the N-CD++ simulator, and determines the location and direction of specific cars
at aparticular point intime. A car shape will be displayed on the screen in the appropriate cell
on a segment for the amount of time specified in the log file. When that time expires, the car
will move to anew cell as per the results file. The entire city will operate in this manner with
cars moving within segments and from segment to segment. The user will be able navigate
around the city as they wish, watching cars pass through the various segments. The time will be

displayed as it changes so the user has an idea of the time as cars are moving.

36

10.1.2 Actorsof the System
The main user will be the person interacting with the VRML GUI. The user will
indicate to the GUI where the files are located that define the city and simulation. They will also

have the ability to navigate around the city when it is loaded, running or finished the results.

10.1.3 Use Cases

Use Case Name: View City
Includes the Load File use case
Extends | nvalid File use case

Participating Actor Instance: The GUI user (initiator)
Entry Conditions:
1. An ATLASfile has been created that represents a city section
2. The VRML GUI has been |oaded
Flow of Events:
3. Theuser clicksthe ATLAS panel
4. The VRML GUI informs the user that it is waiting for the user to
input the plan file
5. The user clicksthe load ATLAS file button
6. The system invokes the Load File use case to get the plan file
7. The system loads the plan file, extracts the segments ard crossings
and stores them
8. The system takes the segments and displays a VRML road shape in
the appropriate location for each segment
9. The system then takes each crossing and determinesif alight or
stop signis present. If so, aVRML crossing shape is displayed
with atraffic light or stop sign object, if not, then just aVRML
crossing shape is shown.
Exit Condition:
10. The system indicates that it is ready to load the ma file.
Exceptional Conditions:
The file loaded is not avalid plan file - The Invalid File use case is
invoked
Specia Requirements:
The user is able to navigate through the city section at any time.

Use Case Name: Initialize City
Includes Load File use case
Extends Invalid File use case

Participating Actor Instance: The GUI user (initiator)
Entry Condition:

37

1.
Flow of Events:

2.

3.

4.

5.
Exit Condition:

6.

Exceptional Conditions:

The city has been loaded and displayed by the VRML GUI

The VRML GUI informs the user that it is waiting for the user to
input the ma mode file

The user clicks the load ma file button

The system invokes the Load File use case to get the mafile

The system loads the ma file and verifies that al the segments and
crossings from the plan file are present in the city, that they are of
type cell and that their width and height dimensions are correct

The system indicates that it is ready to load the log file.

The file loaded is not avalid mafile, the segments or crossings are not
found in the plan file, or the dimensions of the segments don’t
correspond with the ATLAS plan file - The Invalid File use case
invoked

Specia Requirement:

The user is able to navigate through the city section at any time.

Use Case Name: Move Cars

Includes Load File use case
Extends Invalid File use case

Participating Actor Instance: The GUI user (initiator)

Entry Condition:

1.

Flow of Events:

2.

o Uk ow

~

The system has initialized the city with the correct mafile

The VRML GUI informs the user that it is waiting for the user to
input the log file

The user clicks the load log file button

The system invokes the Load File use case to get the log file

The system loads the log file

The system starts at the beginning of the log file and searches for a
Y (output) message

When a'’Y message is found, the system verifies that it is a valid
output message

If the fileisavalid output message, the system determines which
segment is affected by this message, which cell in the segment will
be affected and whether a car is moving to or from the correspond
cell. The system also checks the time associated with the message
and if it is different than the previous message, then the new time
is displayed.

If acar ismoving to this cell (i.e. the messageisal) acar shapeis
shown in thiscell. If acar is moving out of this cel (i.e. the
message is a 0) then the car shape that was present is removed

38

10. If the Y message is hot a valid output message, the message is
skipped
11. The system repests steps 7 - 10 for the entire log file until the end
is reached (i.e. the simulation ended)
Exit Conditions:
12. The system has reached its final state
13. The load plan button has been enabled again so another city can be
loaded
Exceptional Conditions:
1. Thefileloaded is not avalid log file - The Invalid File use case
invoked
2. Theuser clicksthe stop displaying results button - The display
stops at the time the user clicks the button so they can analyze the
city at that time.
Specia Requirements:
The user is able to navigate through the city section at any time.

Use Case Name: Load File

Participating Actor Instance: The GUI user
Entry Conditions:
1. A box that allows the user to browse their computer for afileis
displayed
Flow of Events:
2. The user browses their drives to locate the proper file
3. The user locates the file and double-clicks it
4. Thelocation of thisfileis stored in the system
Exit Condition
5. The box is no longer present
Exceptional Conditions:
The user clicks the cancel button - The system will go back the state it
was in before the load file button was pressed

Use Case Name: Invalid File

Participating Actor Instances. None
Entry Conditions:
1. Afilethat isinvalid has been loaded by the system
Flow of Events:
2. A message is shown to the user indicating that the file was invalid
3. Theload plan file button is re-enabled so the user can restart the
process and the button that was pressed is re-enabled to allow the
user to attempt to load the file again
Exit Condition
4. The user clicks one of the two enabled buttons or closes the GUI

39

10.1.4 Use Case Diagram
Figure 10.1 is the use case diagram for the functionality that will be added to the
current VRML GUI system. The use cases are described in section 10.1.3 above with details on
the entry conditions, flow of events, exit conditions and specia circumstances. The load file
functionality is used by the three main use cases, View City, Initialize City and Move Cars, in
the new system, hence the include relationship between the use cases. Also, the three main use
cases perform exceptional actions if the file that was inputted from the user did not contain the

proper information. For this situation, all three main use cases extend the Invalid File use case.

WREML GLI
______________ ’Luad File
T :

T ~z=includes= == -
/ == - -
— = -
o //
- = -
—— . e —
==includé=s, -~
-~
———italize City__3 p
- H\
GUI User T L -
\\\\ el ~=sgxtend==
-~ T -
T HE}:{TE_DU>> .

£
- -
- e R‘x

ove Care e ___
R Invalid File

Figure 10.1 - The use case diagram showing the added use cases tothe VRML GUI system

10.1.5 Initial Analysis Objects
Near the end of the requirements phase, it isimportant determine initial analysis
objects from the use cases [12]. For this system, | have determined several objects that fall into

this category.

Button - Represents the buttons that the user presses to indicate to the system that they want to
load a city, initialize a simulation, or run and view the results of a simulation.

Segment - Represents aroad that was built using the ATLAS specifications.

Crossing - Represents an intersection that joins multiple segments in the ATLAS specification.
Car - This object represents a car being present in a specific cell in a segment or crossing.

Log Output Message - A message from the log file indicating that an event has happened in the
system.

40

10.1.6 Nonfunctional and Pseudo Requirements
As part of any software system, there are pseudo requirements called for by the
consumer, client, or manager that really have no direct affect on the users' view of the system.
These generally restrict the implementation of the system and are usually requirements on
aspects such as the language and the platform that the software is to be implemented. There are
also nonfunctional requirements that describe user-visible aspects of the system that are directly
related with the functional behavior of the system such as quantitative constraints or accuracy

[12]. For the VRML GUI system there are few nonfunctional and pseudo requirements.

The reengineered system must be an extension of the current Java applet. The system is required
to use VRML asits virtua reality output and must work under the Cosmo Player virtua redity
tool. The future system must include distributed execution via the Internet using a web-based
interface. 1t must show the time of the simulation as per the results however, it currently does

not have to run in real-time but a future version of the software may be required to do so.

10.2 Analysis

Now that the requirements have been determined for the reengineered system, it istime
to produce a model of the system that is “ correct, complete, consistent, and verifiable’ [12]. The
analysis phase is used to verify the system specification produced by the client during the
requirements phase. The first step in the analysis phase is to determine the entity, boundary and

control objects of the system [12].

10.2.1 Entity Objects

These are the objects that store the persistent information tracked by the system
[12].

Segment - Represents aroad that was built using the ATLAS specifications. The segment
includes information on the start and endpoint, speed limit, the parking along the side of the

segment, number of lanes, and the direction the traffic travels along the segment.

41

Crossing - Represents anintersection that joins multiple segments in the ATLAS specification.
A crossing object includes information about the crossing such as its location, the speed limit as
cars pass through the intersection, whether the crossing includes a traffic light or a pothole, and
the probability that a car within the crossing will exit the crossing at the next possible segment.
Recall from section 3.2 that crossings are represented as roundabouts by the N-CD++ simulator.

VRMLNode - A VRMLNode is an object that gets sent to the VRML browser, the
smuUserClient, to eventualy be displayed. There are three different types of VRMLNodes for
the ATLAS output, a car shape, a segment shape or a crossing shape. The crossing shape has a
traffic light or stop sign present if the field in the crossing object indicates so.

LogOutputMessage - A message indicating to the system that a car is either moving to a specific
cell in asegment or crossing, or a car is moving out of a specific cell. The message indicates the
segment or crossing name, the time from the start of the smulation at which this event occurred,
the lane and cell number that is affected by the message, and whether a car is moving to or from
thiscell.

Model - This object represents amodel in the smulation. These models represent both crossings
and segments prior to the simulation being executed. This object stores the dimension of the
model (i.e. the length and number of cellsin a segment) as well as other information related to

the ssimulator.

10.2.2 Boundary Objects

Boundary objects represent the interactions between the actor and the system [12].

Button - These objects represent the physical buttons that the user presses to load the three
different files that are necessary to the system. There will be three instances of the Button

object: LoadCityButton is the button the user presses to indicate that they want to input a city
ATLASHile, InitializeCityButton is the button that the user presses to inform the system that they
want to initialize a city ard prepare to show the output, a RunCityButton that indicates that the

42

user wants to show the results from the simulation, and a StopRunningButton that freezes the

output so the user can analyze the traffic in a city at any instant in time.

ATLASPanel - The interface object with which the user interacts. Thisis the object that allows

the user to view text results, instructions and press buttons.

SmuUserClient - The object that allows the user to view the VRML output of the system. Also,
the SimuUserClient object allows the user to navigate throughout the city section by zooming in

and out, rotating the city or panning along segments.

10.2.3 Control Objects
These objects represent the tasks that are performed by the user and supported by
the system [12].

ReadPlanFile - This object will take a valid plan file, parse through it and extract the segments

and crossings, and store them in a Segment object.

ReadMaFile - This object will take a valid mafile, and store important information such as the

length and number of lanes for each segment in a Model object.

ReadLogFile - This object will take avalid log file, and store each Y messagesin a
L ogOutputM essage object.

CityControl - Thisisthe main control object of the system. It handles user input received from
the boundary objects and makes the system run using the different entity objects. The
CityControl object handles the four different situations:
ShowCity - The CityControl object will take the segments and crossings from the
ReadPlanFile object and display a segment object for each segment and a crossing object
for each crossing to the SimuUserClient object.
InitializeCity - The CityControl object will take all the Model objects and ensure that they

match up with the segments and crossings from the plan file.

43

RunCity - The CityControl object will take the LogOutputM essage object and determine
if it isvalid, then if the message indicates that a car is moving to a cell, it will display a
Car object to the SmuUserClient object. If the message shows that a car isleaving a cell,
then the CityControl object will remove the car in that cell from the SimuUserClient
object.

SopCity- The object will stop the RunCity use case from processing
LogOutputMessages. Thiswill allow the user to view the city at afrozen moment in

time.

10.2.4 Sequence Diagrams
The sequence diagrams are an essential part of the software design process. Once
al analysis entity, boundary and control objects have been determined, the sequence diagrams
give the engineer an idea of the messages that will be passed amongst the objects. The sequence
diagram helps bridge the gap between analysis and system design since it really helps define the
rel ationships between the different objects of the system [12].

First we have the sequence diagram for the Load City use case. In section 10.2.3, we have
determined the entity, boundary and control objects. Figure 10.2 shows the objects that are
involved in this use case as well the messages that are passed amongst these objects. The user
only interacts with boundary objects, which in turn pass the events that the user generate to the
control objects that modify the entity objects and send events back to boundary objects for the
user to view [12]. The user clicks the load plan file button and control is passed to the
CityControl control object. This CityControl object will extract segments and crossings using
the other control object, ReadPlanFile, create entity objects, and send messages to the

SimuUserClient browser to display for the user.

| a1 2ereate

[5 . | |
|¥ 1121 moreSegs == true] MyetSedment

4112 ZfmoreSels == true] fereate :

41.1.2 TmoreSagh == true] //gelSeEﬂ}enl

ing

% SimuUserClient AtlasPanel LoadCityButton InitializeCityButton RunCityButton ReadPlanFile Segment Crossing CityControl VRMLNode
Guluser Button Button Buttan
T-oredte |11 erete I I I I I I | I I
1.1.1: create | | | | | | |
1.2 treate ! } } } : } }
1.1.3 create | u | | |] | |
igoeae | } 1] } } ! } |
| | | | | 1 u I
I I I I I I I
P — [I I I I I I I I
2o clickATLASPane| | | | | | | | | |
2.1 display | | | | | I | |
I I I I I I I I
e I I I I I I I I
F qlickLoadCityBution | | | | | | | | |
T I I I I I | I I
4 lick I L = | | I I | | |
! ! 41 clicked ! ! ! ! [! !
I - I I I I I I I
I I I I I I I I
I I I I I | I I
| 411 setUpCity | | | | 1 | |
| | | | | 4111 getFileMarne |
T T T T T T |
[N I A i M- o Fom o o o =| I
I I I
! I
I
I
I
I
I
I
I
I
I
I

|
4.1.1.3* numSegrnents] fcreate

411 47 nurBS e gaents] itranslate

4.1.1.5 TumSedients] frotate
4.1 62 numCrodsings] fereate

4,117 numCrodsings] itransiate

4.1.2: InadmaFile

L
|
|
|
|
|

L]
|
|

i | | | | | |

Figure 10.2 - The sequence diagram for the View City use case

The next use case is the Initialize City use case. Asdescribed in section 10.1.3, the Initialize

City use case takes al the segments and crossings from the plan file and ensures that they match

up with the cell models from the ma file that the user inputs. As explained in section 6.0, the ma

fileisthe compiled plan file that describes all the components of the simulation including

crossings and segments. The sequence diagram for this use case is shown in figure 10.3.

45

% AtlasPanel InitializeCityButton ReadMaFile Model CityControl

Button

Glluser
1: clickLoadhaBution | | | | |
| | | |
2 elick | | | |
} . 2.1: clicked } } }
‘2‘1.1 verifyCity 1 1 . 1
. i 2.1 1.1 getFnenam’e’
o | |
LJ— ——————— ———————— —r—————— —————— T4 —————— 2=
| | 210 Zicreate
. ‘2.1 1.3 getinitinfo
211317 fcregte
2113274 lfsemdel
e — ——
_______ F—————-
| |
| | 114 verifyCitySensCross
ot —— — — —— - e 4
2.1.2: lnadLogFile } } }
LJ" | | |
L] | | |
=			

Figure 10.3 - The sequence diagram for the Initialize City use case

After the plan and mafiles have been verified, the results from the simulation can be shown on
the city that is displayed on the screen Once the user inputs the log file, the system will extract
the relevant output message that indicate cars moving through the city. The system will make
the necessary changes to the car VRMLNode entity objects on the screen that reflect the results
of the output messages. Figure 10.4 shows the sequence diagram for the Move Cars use case.

46

% SimulserClient AtlasPanel RunCityButton ReadLogFile CityControl LogOutputMessage VRMLHNode

GUIUser Buttan
10 clicanadLngF\leBuﬂnn | | | | | |
T | | | | | |
| | | | | |
20 click | | = | | | I
} I 21 slicked I I } }
| EX runGity | | | |
. } 2‘{.1.1 getFilename } }
e I I [N ! !
_“ ! 2112 create } }
| | |
} 210,37 figetResult } }
} D:I _____ = | 2.1.1.4: create | }
	2.1.1.48: setOutpuiMessage
! ! (T TE el ‘	
I B	- .27 TIvalue == 1.0 rhddnodeToSeene
Lreeg] t	
u 21110 lvalue == 0.0] fremovbkodeFromSeene	
u—‘-. t	
et ——————— -	
2.‘LI.2 finishedOutput :	
=1	
L] \ I	
Ll	
	nn
LI | | | |

Figure 10.4 - The sequence diagrams for the Move Cars use case

Finally, there are two small use cases. Load File and Invalid File. The Load File use caseis
included in the above three use cases, which is the reason it exists as a separate entity. The Load
File use case is instantiated by another use case, unlike the other use cases that are instantiated by
the VRML GUI user. The Invalid File use case is an exceptiona use case that only gets
executed when the user inputs afile that is not a type the system was expecting, is inconsistent
with a previous file inputted, or contains errors. Figure 10.5 shows the sequence diagrams for

the Load File and Invalid File uses cases respectively.

47

j i: AttasPanel Bution CityControl % AtlasPanel aButton CityControl

GUlUser GUlliser Button

1. click | |

| 1:gefFileName |

[o !
11 clicked = i i
-
1 displayFi@ede . o, | === :— —————— —t —————— JT‘
! L sinvalirile S 2 validateFia
4:ilick | |
2 clickedFile T t Lo
|

2.1 filename

=

|

|

|

o= |

1,011 dhsplayGetFileBox ‘J

-
(1

|

|

|

|

|

|

7
L |
| |
| |
| |
| |
| |
| |
| |

Figure 10.5 - The sequence diagrams for Load File and Invalid File respectively

10.2.5 Identifying Associations
It isimportant to be able to determine the associations between two or more

classes. The sequence diagram can help show which objects need to communicate with one
another. An overall system diagram, like a class diagram, shows the various classes that
represent objects, and their associations. Also the multiplicity of associations is shown to give
the devel opers an idea of the cardinality between two classes. For example, from figure 10.2, the
sequence diagram for the View City use case, it is obvious that the CreatePlanFile object creates
and modifies Segment entity objects. However, it should be noted that the CreatePlanFile would
create and modify at least one but usually many Segment objects. Because of this, thereisan
association between the CreatePlanFile class and the Segments class with a multiplicity 1 to one
or more as shown in figure 10.6, the simplified class diagram for the VRML GUI. Figure 10.6
shows all the associations between al the classesin the VRML GUI system. The diagram only
shows the classes that are necessary for the modifications that are being done in this version of
the subsystem. The details of the existing system for the most part have been left out for

simplicity.

48

==houndary== ==houndary== ==gontrol== =<gntity==
ResultPanel InfoPanel ReadLogFile 0.7 | LogOutputMessage

==houndany== 0
SelectorPanel EventOutDbsener
«=phtitys=
VRMLNode
i — ==houndary== ==control== (1
SimuUserClient CityControl
<=houndary==
ChoicePanel
N <=gntitys=
Crossing
==control== 0.7
ReadPlanFile

==houndary== ==houndary=> ==houndary=>
EntityPanel NavigatePanel ATLASPanel

—

==houndary==
Button

1.7 1.7
<=gntitys=
Segment

==control==
ReadMaFile

Figure 10.6 - A simplified class diagram for the new VRML GUI system

10.2.6 Identifying Attributes and Operations
Each class from the class diagram in figure 10.6 has important attributes.

Attributes are properties of individual objects and define that object [12]. For example, each
Crossing object contains a name, two-dimensional Point location, and variables representing
properties of the crossing such as whether there exists a light, a pothole and the normal speed of
traffic passing through the crossing. Another example is a LogOutputMessage. Each message
contains the time the message was processed by the simulator, the segment or crossing name that
is affected by the message, the lane and cell number that is affected and a variable indicating
whether this message represents a car now present in the cell or not present. Figure 10.7 below
gives the attributes in a class diagram for every modified or new class in the VRML GUI system.
Also, each class contains operations that represent atomic behavior that is provided by aclass.

Figure 10.8 aso shows the operations for each class in the class diagram.

49

=<houndary==
ResultPanel

==houndary==
InfoPanel

<=control=>
ReadLogFile

SelectorPanel

8/

N

SimuUserClient

ChoicePanel | —

<<boundary=>

EntityPanel |~

-navigate:MavigatePanel
-info:InfoPanel
-resultResultPanel
-selectorSelectorPanel
-entity EntityPanal

-in:BufferedReader
-dir:String

-file:String

-readerinputStreamReadar
-inputFile:FilelnputStrean

+ReadLogFilexaid
+operation? woid

+giResultLogOuiputMessage

-ATLASATLASPanel
-browser Browser
-rootNode

<<tontrol=s
CityControl

-choice:ChoicePanel

void

==houndarys=

NavigatePanel J=<—

-gtBrowser.Browser
+enabButtons woid

-allSegsVector
-allCross:vector
-allCarsvector
-crossingsvectar

+di wvoid

+inityRMLvaid
+initvoid

Vg

==houndary==
Button

==houndary==
ATLASPanel

+CityControlwaid
+setupCityvoid
+runCityvoid
+verifyCityvoid
+piCrossings Wector
+piSegments:vector
+oiTranslateAmtioat]

.

-stopRunningButton: Button
-loadCityButton:Button
-runCityButton:Buttan
-initializeCityButton:Bution

+handleEventhoolean
+ATLASPanelvoid

==control=»
ReadMaFile

-file:5tring
-dirString
-in:BufferedReader

-readerinputStreamReader
-inputFile:Filelnputstream

o finat]
+moveCatdithinSeqwaid
+moveCariithinCrassvaid
+moveCarSegCrossvoid
+moveCarCrossSeyvoid
+addCarToSegmentvoid

+removeCarFromSegmentvoid

+addCarToCrossvoid
+removeCarFromcrossvoid
+gtSegmentSegment
+gtCrossing Crossing
+getFileNamevaid

EventOutObsaner
<antity->
VRMLNode

-set_url EventinkiF String
-set_shininessEventinSFFloat
-set_transparency EventinSFFloat
-set_emissiveColorEventinSF Colar
-set_diffuseColorEventinSF Color
-get_translation.EventinSivec3f
-get_scale.EventinSFyec3f
-shininess_changed:EventOutSFFloat
-ransparency_changed EventOutSFFioat
-emissiveColor_changed:EvertOutsF Color
-diffuseColor_changed:EventOutsFColor
-url_changed:EventOuthdF String
-touchTime_changed:EventOutSFTirme
-translation_changed:EventOutSFvec3f
-scale_changed:EventoutSPvec3t
-rotation_changed:EventOutSFRotation
-ohjectTypesint
-set_rotation:EventinSFRotation
*CYLINDER:int

+CUBEint

+CROBEING:nt

*+DIRECTIOM:nt
+CROBSLIGHT int
+GPHERE:int

+ReadMaFilevoid
+gtodelsVectar

Figure 10.7 - The class diagram for the VRML GUI with attributes and operations shown

10.3 Design

<2antity=> =zentity=>
LogOutputMessage Crossing
-valuefloat -name:string
-outsting -lighthoalean
0. |-int -hale:boolean
—yint -delayint
-rrodelMarme: String -where:Point
-time:String -poutint
-speed:int
+LogQutputhessagevoid
+stTimexoid +Crossingvoid
+sthodelNamevoid +gtivhere:Point
+stivoid +giDelayint
+strwaid +gtHolebaolean
0.* | +stOutvoid +gtlighthoolean
+stvaluevoid +tSpeead:int
+gtTime:String +gtPoutint
+gtModelName: String +gthame:String
+gtint +stDelayvoid
+gtyiint +stHolewoid
+gtOut:String +stlightvoid
+otvaluefioat +stapeedyvoid
0.% | #stPoutvaid
0 +stharmevaid
+stitherevoid
02
1.7 ==gniity=>
Segment
==control=>
ReadPlanFile -park:String
Enli, -lenath:int
Model -in:BufferedReader -delayint
-dir:String -speed:int
-cell¥aluesector -readerinputStreamReader 1.* | -gocboolean
1.7 | -rowtalues:vector -inputFile:FileinputStream “lanesint
= -inifTypesint file:String -straightboolean
~dimint -startPoint
-isCeliodelbonlean +gtCrassingsvector _endPaint
-resultString +gtSegments Vactor -name:String
-inivalue:String +ReadPlanFilevoid -rotation:double
-narme:String
~dini] +Segmentvoid
Doz +siRotationvoid
+Modelvoid +stParkvoid
+siDuvoid

+siCellValuesvoid
+siRowvaluesvoid

+atinitTypevoid
+stResultvoid
+stinivaluevaid
+stDim:vaid
+sllsCellvoid
+sihamewoid
+ptDint]]

+piCelWalues:Vectar
+piRowyaluesVector
+gtinitType:String

+gtResult:String

+gtinit/alue: String

+gtDirmzint

+glleCellboolean

+giName:String

+sthlamemoid
+stStartvaid
+stEndvoid
+stStraightvoid
+ziDelaywoid
+zilengthwoid
+ziSpeedvoid
+siGovoid
+siLanesvoid
+otLanesvoid
+gtGohonlean
+tSpeed:int
+otlengthiint
+giDelayint
+giEnd:Point
+gtStart.Point
+giName:String

+otPark:String

+giSiraighthoolean

+oiRotation:double

+LINKnt
*COMEint
FCARiNE
-hrowser.Browser
-attributed int
-attributeint

+addhodeToScenewoid
+remaveNodeFromScenevoid
+rascalevoid
+rotatervoid

+ptTranslate float]
+changeShininessyoid
+otURL Stringll
+gtShininessAoat
+gtErmissiveColorfloat]
+gtDiffuseColorfoat]
+gtTransparencyfloat
+gtScaleflaot]

+ptRotate float]
+changeEmissiveColorvoid
+changeDiffuseColorvoid
+changeURLvoid
+changeTransparenyvoid
+translatevoid
+callbackvaid

+stharme: String
+ptTypecint

+stTypevoid

+gthlame String
+WRMLModevoid

There were many design decisions that needed to be made before to the reengineered

system could be implemented. The basic structure for the Java applet was already developed so
the visualization tool itself did not need to be designed. The design decisions that had to be
made were related to the data that needed to be stored, how it was going to be presented to the

user and what was going to be shown.

10.3.1 Segment, Crossing and Car VRML Objects

The requirements of the project stated that the city section isto be view statically

when the plan file was |loaded, then when the log file was loaded, the user would be able to see

cars moving throughout the city. One of the nonfunctional requirements was to use VRML as its

50

virtual reality output and must work under the Cosmo Player virtual reality tool. In order for the
system to follow this condition, it was essential to find or create VRML objects that represented

cars, segments and crossings.

10.3.1.1 TheCar

In order to make the output look readlistic, the car shapes should look like
real cars. With the downfall of VRML in the past severa years, finding an existing car was more
difficult that expected. Several websites offered some different shapes and objects but the best
came from aVRML textbook that used the car as an example of VRML code on its
accompanying compact disc. The size of the file is very large however (more than 350kB).
Having a VRML object such as this car shape loaded in memory could have a negative effect on
the speed of the output however there was no restriction in the nonfunctional requirements about

the speed of the system so | decided to proceed with this car shape shown in figure 10.8.

10.3.1.2 The Segment and Crossing

In the requirements, it was determined that a static view of the city was
required. To do so, we needed to have a shape that represents a segment and crossing. After
browsing many websites and other resources, finding a road shape was more difficult than
originally thought. Because of this, | decided to design a simple road shape for the project. To
make it simple, | elected to make each cell in a segment an object. If a segment has five cells,
the same road shape will appear five times consecutively. The road will just have white lines on
the outside to indicate where a segment lane begins and ends. Figure 10.8 shows the final road
shape for the segment. Similarly, anormal crossing will look very similar to the segment but is

surrounded by a white line as shown aso in figure 10.8.
Figure 10.8 - The car, segment and crossing VRML objects

51

Some crossings in the plan file have traffic lights or stop signs. When the plan file is inputted
into the VRML GUI system, the crossings are encapsulated in a Crossing object. There are
attributes in the Crossing object indicating whether a crossing contains stop signs or traffic
lights. To make the city section realistic, | have decided to have crossings with stop signs and
traffic light shapes attached to them. Figure 10.9 shows two crossings, one with a traffic light

and the other with a stop sign.

Figure 10.9 - Two crossings, one with a stop light, the other with a stop sign

10.3.2 Attributes of Crossings and Segments

In order to show a static view of the city, the plan file needs to be inputted to the
system, read, the segments and crossings extracted and then displayed on the screen. Reading
the file and extracting the segments and crossings will be left for section 10.4, implementation
but a problem exists when the segments and crossings are extracted, how to display them to the
screen. VRML works on athree-dimensional Cartesian system and the ATLAS planfileis
implemented using a two-dimensional Cartesian system. | decided to display the segments using
just the two dimensions because roads and crossings do not have a zdimension.

An object that is 1-by-1 in size will be used to represent a cell in a segment. Each segment has a
start and end point. Using these points, the number of cells a segment contains has to be
determined. A segment that begins at (0,0) and ends a (O, 5) is quite obviously 5 cells long per
lane. However, determining the number of cells for a one-lane segment that starts at (12,5) and
ends at (-14, 26) is not so obvious. To determine the number of cellsin a segment with a starting
point (Pwx, P1y) and an end point (P2x, Py), the equation of the length of aline can be used as
shown in equation 10.1

52

length = \/(Ply - P2y)2 + (Plx - P2x)2 (101)

Generally, unless the segment goes in the x or y direction, the length will not be an integer value.
Since the N-CD++ simulator assumes that a full cell is required, the length must be rounded
down to make an integer length. So using the example presented above with a segment with
starting and ending points (12,5) and (- 14, 26) respectively, using equation 10.1 gives a length of
33.42. After rounding down, the segment ends up being 33 cellslong. Also, as seen in section
10.2.6, the analysis phase, each segment has a rotation field. This value is not given in the
ATLAS plan file for the segments so it has to be calculated. The rotation of a segment defines
the angle from the starting point that the segment is rotated. A segment starting at (2,2) and
ending at (5, 2) has arotation of 0 since it runs parallel to the x-axis whereas a segment starting
a (2,2) and ending at (2, 5) has arotation of 90° or p/2 radians. This rotation is important
because the segments must run smooth from the starting point to end point. To determine a

rotation for two points that don’t have the same x or y coordinate, equation 10.2 was used.

a,, - P, 0
rotation = tan 'g—r—> % (10.2)
I:)2x - I:)1x ﬂ

Equation 10.2 gives the rotation in radians, about a set of axes originating at the starting point.
Again using the previous example, the rotation of a segment starting at (12,5) and ending at (-14,
26) using equation 10.2, is-0.68rad. Thisresult is actually incorrect as the correct solution
should be -0.86 + p/2 = 0.71rads because of the CAST rule. The CAST rule states that the
tangent of an angle is positive when the angle is between 90° and 180° or between 270° and 0°
[13]. If the direction of the segment were reversed (i.e. starting point (-14, 26), ending point (12,
5)), the rotation would still be calculated to be -0.68rad, which is the correct vaue in this
situation. In order to figure out the correct value of the angle, the individual coordinates have to

be examined asin equation 10.3.

if (Plx > Py and Ply < sz) or (P]_X > P2x and Ply > sz)
rotation = rotation + p/2 radians (10.3)
Where the rotation has been calculated as in equation 10.2.

53

Once the length and rotation of the segments have been calculated, the segment objects can be
put together to form afull road. The objects have to be trandated and rotated to their appropriate
location to make the city section accurate. Equations 10.4 and 10.5 are the x and y trandlations
for the segment objects with starting point (P, Piy) and ending point (Pax, Pay).

- P, - P
_P,- B, ><(ce|INumb6f +1)+ P, +-2 Y yaneNumber (10.49)
length length
P, - P, -
y =22 qcelINumber +1)+ P, - P By X aneNumber (10.5)
length length

where cellNumber is the cell number in the segment that we are trandating starting from 0 and
laneNumber is the lane of the cell that we are trandating starting from O.

Continuing the example presented above, if the segment started at (12,5) and ended at (-14, 26),
the first cell would be centered at (11.21, 5.63) using equations 10.4 and 10.5 with cel[Number
and laneNumber both being zero. The length was calculated above to be 33 and gets stored in
the Segment object. The second cell is centered at (10.42, 6.27), calculated using the same
eguations but with cel[Number one. The distance between the centers of these two cells should
be equal to one since 1x1 cells are being considered. Using the same length equation in equation
10.1, the length between the two center pointsis close to one with some dlight rounding errors.
There was no requirement on the accuracy of the location of the segments in the nonfunctional
requirements so this small error is acceptable as long as the transition between segment objectsis
realistic. Using equations 10.4 and 10.5 with cellNum = 32, the final segment object will be
centered at (-13.21, 25.36) which is close to the destination point (-14, 26). It is not exact due to
the rounding of the length down from 33.42 to 33 when we calculated the length. These
equations were also tested when a trandation of a segment in alane greater than zero was
desired.

Once the trandation is calculated for every segment object, they have to be rotated by the
amount calculated using equation 10.2 so the segments look continuous. Once the segments
have been rotated and trandated, they can be displayed on the screen.

10.3.3 Overcoming Visualization Problemswith the PLAN file

One drawback with the plan file is that there is no room for crossings that join
segments when visualizing a city section. If a segment goes from (0,0) to (10,0), generally there
isacrossing at both the start point (0,0) and the end point (10,0) since other segments be
connected to this segment like an intersection in acity. The problem that exists is that the
segment is 10 cellslong and if the first segment starts one cell away from the (0,0) crossing, then
the last cell in the segment will be translated directly on the other crossing at (10,0). If thereis
another segment that joins the crossing at (0,0), there will not be room for the crossing at (0,0)
either since the joining segment’s last cell will be located at (0,0) and visualizing overlapping
VRML objectsis not possible. Ideally, a segment that starts at (0,0) and ends at (10,0) would be
only 9 cellslong so the first cell would trandate to (1,0) and the last cell to (9,0). Thiswould
allow room for the crossings at (0,0) and (10,0). Thisisnot possible at the current time since the

TSC would compile a segment with these start and end points to have 10 cells.

Ancther issue is visualizing two-way streets. As we know from section 3.1 above, each entry in
the segments section of the ATLAS file defines a one-way street. |If the city designer wantsto
have atwo-way street, they just add multiple entries of the segment with the same start and end
point but change one of the fields in one of the segments from go to back like in figure 10.10.

Segnent _A = (0, 0), (10, 10), 1, straight, go, 40, 300, parkNone
Segnent _Al = (0, 0), (10, 10), 1, straight, back, 40, 300, parkNone
Figure 10.10 - ATLAS representation of atwo-way street

When the VRML GUI displays the first segments from the start point to the end point, there is no
room for another segment that has the same coordinates but the opposite direction. | came up
with three alternatives for a solution. First, the two-way street could share the cells from the start
point to the destination. This would result in the cars traveling along the two-way street being
half the size as they would be on one-way streets. This size limitation could be solved by having
all one-way streets also half the normal size and leaving the other half of the cell blank (i.e.
without a road object present). Another solution would be to have multiple layers along the path
from the start point to the end. This could be done by using the zdimension of the VRML world

and have the one direction above the z=0 plane and the other direction below the z=0 plane. The

55

final solution was to have one lane in the two-way segment go to the left of the path from the

start to the end point and the other lane going to the right of the path.

Another problem that goes hand-in-hand with the previous problem is how to show a multilane
segment in the VRML GUI. A multilane segment is described in ATLAS using the lanes field of
a segment definition. For this problem, | will look at the same three solutions again. The first
was to divide the lane from the start to end points. In order to use this solution, we would have
to split the path from the start to end point into four equal parts because the segments contain
four lanes but if this segment was desired to be a two-way segment, the path would have to be
split into eight equal lanes. This would cause the lanes to be extremely small when visualized by
the user on the VRML GUI. The second solution was to have multiple layers. For the same
reasons, this solution is not preferred since a two-way four-lane segment would require eight
layers, which would be difficult for the user to visualize, especialy when cars change lanes since
the car objects would then be changing levels. This would aso not be very realistic, which was
oneof the functional requirements. The final solution seems to be the best in having the one
direction to the left of the path from start to end point and the other to the right of the path. With
the multiple lanes, this solution will just have the extra lanes continue further away from the
nomina path. The lane that flows from the segment’s start point to the end point will not
actually belong to either direction so it will act as a median. An example of atwo-way four-lane
segment is shown in figure 10.11. The problem with this solution is that the example in figure
10.11 has lanes that expand quite far away from the actual segment path. Two separate two-way,
four-lane segments that meet at a crossing are going to inevitably overlap at some point like in
figure 10.12. We do have to consider however that in red life, if two four-lane segments meet at
acrossing, the crossing will be larger than the size of one cell to make room for al eight lanes to

enter and exit the crossing.

Jac vy sive l wra vl i e |

......

Figure 10.11 - A two-way four-lane segment

56

Luwd A "y

AR
B o
ST |
S|
Figure 10.12 - An example of two two-way four-lane segments that overlap at a crossing.

Another problem could exist if the developer is not careful about where they place segmentsin

the city when multilane, two-way segments are involved like in figure 10.13.

Segnent _B = (0, 0), (10, 0), 2, straight, go, 40, 300, parkNone
Segnent _B1 = (0, 0), (10, 0), 2, straight, back, 40, 300, parkNone
Segnent _C = (4, 0), (4, 10), 2, straight, go, 40, 300, parkNone
Segnent _C1 = (4, 0), (4, 10), 2, straight, back, 40, 300, parkNone
Figure 10.13 - ATLAS representation of two two-way, two-lane segments

The code in figure 10.13 will result in two two-way segments, each having two lanesin each
direction. The only problem that existsis that the outside lanes from Segment_B1 will overlap
with the outside lanes of Segment_C. Thisis because Segment_B1's lane 0 goes from (0,1) to
(10,1) and lane 1 from (0,2) to (10,2). Segment_C’s lane O starts at (3,0) and ends at (3,10) and
lane 1 goes from (2,0) ard ends at (2,10). From this example, it can be seen that lane 1 of
Segment_C overlaps with lane 1 of Segment_B1. This hasto be avoided, and if attempted, give
the user an error somewhere in the overall system, either in the MAPS or TSC subsystems or
both.

The crossings are being modeled in the VRML GUI as a one-cell object even though a crossing
istreated as a roundabout by the smulator (see section 3.2). The ssimulator will simulate cars
traveling around the roundabout and send output message when cars move to another location
within the crossing. When these messages are received that indicate a car moving within a
crossing, the car will just remain in the crossing until a message is received that indicates a car
moving from the crossing to the segment. The crossings will not be rotated since segments can
be joining the crossing from any direction. Crossings will smply be trandated to the location

that is stored in the ‘where’ attribute of the Crossing object.

57

10.3.4 Performing the Initialization

Each segment and crossing from the plan file will have to be stored in the system
for the Initialize City use case. These segments are smply stored in an array in memory and
cross-referenced when the mafile is loaded in the system and the models are stored. The
verification that needs to be made is that al the segments and crossings match up with a cell-
DEVS model. The Model object stores the number of lanes and length of the model in the *d’
attribute that corresponds to an array with length equal to the number of dimensions; in ATLAS
segments and crossings are two dimensional. The first element of the d attribute holds the
number of cellsin the x direction of the model and matches up with the length of the segment.
The second element holds the number of cellsin they direction of the model, which corresponds
to the number of lanesin the segment. The model also stores the name of the model and whether
the model isacell-DEVS model. There must exist a cell-DEV S model that has the same name,
lanes and length for every segment or crossing in the city section. If thereisacell-DEVS mode
that does not have a corresponding segment or crossing, or a segment or crossing does not match
up with a cell-DEV S model, then the files entered by the user are not correct and the system
should stop and make the user reenter the plan and mafile, or restart the VRML GUI.

10.3.5 Overcoming Problems While Visualizing the Output

After initializing the city is complete, the smulation results can be shown. The
simulation results are stored in alog file that contain among many messages, output messages
that indicate cars entering and exiting cells of certain segments and crossings. The best solution
would be to create one VRMLNode object of type car and have it pass through the segments by
just trandlating the same node or even better, animating the object from one location to another.
However, having the cars move via animation was a difficult task because animationsin VRML
are based on timer sensors. The problem with basing animation on timing is that every
simulation result is going to run in VRML GUI at a different speed depending on the number of
segments, crossings, how busy the segments are, the speed of the computer on which the system
is running among other factors. If the cars were to move at a consistent speed, say move one cell
every second, then we could create a VRML node called a TimerSensor that sends an event to a
Positionlnterpolator node every 0.1s, that relays an event to all the car VRMLNodes to move

1/10 of its way towards its next location. Thisway, after one second, the cars would be at their

58

next location. Currently, thisis not possible since there could be hundreds or even thousands of
output messages every second for cars to move to new cells, and the system would have to
determine ahead of time the destination cell of each car. This solution is beyond the scope of the
project as animation was not part of the functional requirements but could be part of a future

version.

Another solution would be to create a new car VRMLNode when a car is introduced into the city
section and have it move throughout the city as the smulation output messages specify. This
would have been the best solution in terms of memory usage (the number of VRMLNodes
created would only the number of cars currently in the city), ease of implementation (would only
have to store the location of each car, then trandlate the car VRMLNode), and execution time
(only output messages that have a car appearing in the cell would have to be processed and al
others could be ignored, and nodes wouldn’t have to be added and removed from the scene).
The only drawback with this solution is that the output messages don’t indicate where the car
came from. If amessage indicated that a car is now in a cell, the system would not know which
car node to move to the cell specified in the output message. Determining where the car came
from would be difficult to determine, as the system would have to look at the rules for cars
moving amongst cells in the mafile for each segment. The trandation rules are difficult to read
and would take alot of execution time to read them every time a car moves within a segment and

they would take up a considerable amount of memory if they were stored by the system.

The solution that seemed most appropriate was to create a car VRMLNode for every cell in the
city, then add the node to the scene if a message indicates that a car is moving to a specific cell,
or remove it from the scene when the ouput message says that a car is moving away from the
cell. The output messages form is shown in figure 10.14.

Mensaje Y / 00:00:00:200 / t1(0,0)(15) / out / 1. 00000 para t1(14)
Figure 10.14 - An output message indicating that a car has appeared

This message is an output message as indicated by the Mensgje Y. The time that the message
occurred within the simulation was 200ms after the simulation started. The message states that
the segment or crossing that is affected is called t1, and at cell O, lane O, a car is appearing (as

59

indicated by the 1.00000). The message in figure 10.15 occurs at time 2 seconds after the

simulation started and indicates that a car has left cell 3, lane O of segment or crossing t2.

Mensaje Y / 00:00:02:000 / t2(0,3)(08) / out / 0. 00000 para t2(04)
Figure 10.15 - An output message indicating that a car hasleft a cell

When the messages in figure 10.14 is found, the system will look to an array of VRMLNodes
and find the one corresponding to cell 0, lane 0 of segmert t1 and add the car VRMLNode to the
scene at the appropriate location in the VRML world. When the second message from figure
10.15 isreached, there is a car present in segment t2 in lane 0, cell 2. The system will remove
this car VRMLNode from the world indicating to the user that the car has left the cell. The
system will also display the time the message was received with respect to the beginning of the
simulation. In this case, the time displayed will be 00:00:02:000.

One problem with this solution is the sheer number of VRMLNode object that will exist in the
system after along period of displaying results. Initialy, no car VRMLNodes are created until a
message indicates that a car is moving to acell. At that time, acar VRMLNode is created with a
location and direction equal to the trandation and rotation of the road VRMLNode that the car
will be displayed on top of. After creation, the car will be displayed on the screen indicating to
the user that a car is present in that cell. When amessage is sent indicating that the car has
moved to another cell, the car VRMLNode corresponding to that cell is not destroyed from the
system but instead just removed from the scene, thus making it invisible. The next time a
message indicates that a car is moving into the cell, the node aready exists so a new object does
not have to be created, but just added back to the scene, which saves a considerable amount of

time and makes the transitions of cars among cells smoother.

A drawback of this solutionis that the first time a car moves along a segment, a car VRMLNode
for each cdll that the car enters needs to be created as the car travels along the segment. This
first transition along each segment will be choppy as the system is creating several VRMLN odes.
With afast system and large amount of memory, these rough transitions can be avoided. The
second pass however, will be smooth since the nodes have been pre-created. All the
VRMLNodes could have been created at the same time during the initialization but this would

60

have consumed much time, so creating the VRMLNodes when the city is being displayed isa
better solution. Also if there exists a cell that a car never enters, the VRMLNode object for that
cell will not be created, thus saving memory and time. Another drawback is that once a car has
traveled along every segment lane, there will be as many twice as many VRMLNodes in the
system as there are cells; one for the road VRMLNode and another for the car VRMLNode. This
could put a strain on the main memory and cause a slowdown in the system performance but
once again, there was not a nonfunctional requirement on the amount of memory consumed by
the system.

Another issue that needs to be addressed is how to deal with the crossings. In the smulator, all
crossings were implemented as roundabouts (see section 3.2). However, as mentioned in section
10.3.3, we are showing the crossings as just one cell. This means that there will be messages
indicating that the car is leaving a crossing where in redlity, it is just moving to another cell
within the crossing. This problem is addressed by the proposed solution of adding and removing
car VRMLNodes because if this occurs, the car will be removed from the crossing when the
message indicates that the car is leaving the crossing. Immediately after there should be another
output message indicating that a car is still in the crossing since it moved to a new cell within the
crossing, so the system will add the same node back to where it was removed.

Another feature of the system is the ability to stop the results from being displayed and allow the
user to navigate around the city in a standstill. When the user clicks the stop-displaying button,
the system stops displaying the results by halting the ReadL ogFile control object from reading
the log file. Thiswill leave the cars in the position that they were in when the button was

pressed so the user can navigate around the “frozen” world.

10.4 Implementation

Once the requirements, analysis and design were complete, the implementation of the
system was relatively easy. As stated in the pseudo requirements in section 10.1.6, the
implementation was to be done using Java. The output needs to be converted to a VRML world

for the user view and navigate.

61

The structure of the GUI was aready completed in the original VRML GUI system so this was
not part of the requirements. | added a panel to the Java applet for ATLAS called the
ATLASPand. The ATLASPane has four buttons, allowing the user to load, initialize, run and
stop a city smulation. There is also a text output window for instructions to the user and for
debugging. The ATLASPand extends the Java Panel object that inherits the handleEvent
method from the Component class. Because of this, by overwriting the handleEvent method,
actions can be specified to the control classes when a button is clicked. In our case, as specified
in the sequence diagrams, the ATLASPanel just passes control to the CityControl object.

The CityControl classis the brain of the operation asiit is responsible for the majority of the
actions of the ATLAS portion of the VRML GUI. When afilename and location is required
from the user, a FileDialog object is created that allows the user to browse through their disks
and find the appropriate file graphically. When the filename has been identified, the CityControl
creates the appropriate file reader control object that is responsible for reading the important
information from the inputted file. To parse the text files, the file reader control objects create a
StringTokenizer object that makes parsing strings easier by reading portions of strings up to a
specified delimiter. The CityControl object is then responsible for creating, storing and
modifying the entity classes in the system.

There is a considerable amount of datato be stored in this project so the method of storing datais
an important issue. The Vector class offered in the java.util package provides the necessary data

structures for storing segments, crossings and VRMLNodes.

The segments read in from the plan file needed to be stored so they could be later verified in the
Initialize City use case. Also we needed to keep track of the length of each segment to determine
how many road VRML Node objects to create and where to trandate them. Two vectors were
created by the CityControl class, one storing Segment objects and the other storing Crossing
objects. Using these two Vectors, the model objects read from the ma file could be cross-
referenced against the segments and crossings of the city section. To find a segment with a
specific name, aloop is performed through the list of segments, and attempting to match the

62

name of the segment requested with the name of each segment in the vector. This could

smilarly be done for the list of crossings.

As described in the design section 10.3.5, the car VRMLNodes need to be stored so they can be
easily added or removed from the scene without having to create the VRMLNode over and over
again. There needs to be a storage position for every cell in the city section. There also needs to
exist amap to get from a specific cell in a segment to the array of VRMLNodes stored in the
system. To store the car VRMLNodes, | elected to place them in a two-dimensional vector (i.e. a
vector of vectors). The vector called allCars contains many other vectors. The number of
vectors that allCars will contain is equal to the number of crossings and segments in the city
section combined. The vectorsin allCars will be indexed according to the segments vector.

Then depending on the lane and cell number of the car required, acar VRMLNode will be
retrieved, then added or removed to or from the scene.

To clarify this process, an example will be used. The CityControl object has just received a
message to add a car to the Segment_E segment in lane 2, cell 5 (both indexed from 0). We can
assume that Segment_E has a length of 10. The first step isto find the index in allCars where the
VRMLNodes for Segment_E are located. To get the index, a scan is performed through the
segments vector until Segment_E isfound. Thisindex into the segments vector is then used to
retrieve a vector in the alCars vector. The retrieved vector from allCars could contain many

VRMLNodes. To find the correct car node, the mapping in equation 10.5 is used.

index_into_segment_vector = laneNumber * segmentLength + celINumber (10.5)

So lane 0, cell 0 would give an index of 0. In the example presented, lane 2, cell 5 will give an
index equal to 15. The 16th element (index 15 because of 0 indexing) in the vector of car
VRMLNodes for Segment_E will contain the correct car VRMLNode to be added. If thereisno
VRMLNode in this location (i.e. thisis the first time a car has reached this cell), then a new car
VRMLNode must be created and added to the scene, and then added to this location in the vector

for the next time a car arrives at this cell.

63

Most of the entity classes were easy to implement since classes such as Segment and Crossing
just store the data from atext file. Since the objects are just storage, the only methods that had to
be implemented were getters and setters that smply return or set the attributes for that type of

class.

The VRMLNode class however is an exception; it does more than just store the data. This class
ismore of an entity and control class at the same time since there exist methods to add and
remove nodes to and from the scene and getters and setters for the attributes of the class. When a
VRMLNode is created, the control class must indicate what type of VRMLNode they want to
create. For the ATLAS visudization, there will be car, segment and crossing VMRLNodes. The
crossing VRMLNodes will contain atraffic light, stop sign, or neither. When then node is
created, a VRML hierarchy is built as described in the background section 9.1. Five nodes are
created using the createV rmlFromString method offered with the vrml.external .Browser

package. The Transform, Shape, Material, ImageTexture, Appearance, and TouchSensor nodes
all get created and built in a hierarchy as in figure 10.16.

Transform {
children [
Shape {
Appear ance appearance {
Material material{}
Texture texture {}

}
}

TouchSensor {}

]
I}:igure 10.16 - The VRML hierarchy for the VRMLNode
Once the hierarchy has been built, we can add an external VRML file to the node using the
createVrmlFromURL method. The method takes a URL parameter that contains the location of
the VRML file. The secord parameter is the destination node that the VRML code in the file is
sent to. In this casg, it isthe transform node. The final parameter is the name of the MFNode
eventln location to send the nodes to. Since we are adding the code to the transform node, then
we want to send an event to the transform node' s eventin called addChildren. With this call we
will have a hierarchy the same as figure 10.16 but with the code in the external file added to the

children of the transform node. After the hierarchy has been built, it is necessary to obtain a

reference to the events of the transform node so the cars, segments or crossings can be trandlated,
rotated or scaled. If we want to trandate, rotate or rescale the node, then we just call the
setVaue method on the eventln of interest passing a parameter that defines the location, rotation
amount, or scaling values. If the current location, rotation or scale values are needed, then the
getValue method can be called on the eventOut of interest and the value will be returned [11].

As described in the design section 10.3.5, the car nodes need to be added and removed from the
VRML world with ease. Adding and removing nodes to and from a scene is very similar to
adding and removing nodes to or from other nodes. When adding an object such as a car to the
VRML world, the car object contained in the VRML transform node as in figure 10.16 has to be
added to the root node. The root node is the top most node of every VRML world and has just
two eventlns, addChildren and removeChildren. To obtain a reference to the root node's add and
removeChildren eventlns, we first need to obtain a reference to the root node itself. The root
node can be obtained from a Browser object by using the Browser.getNode(* ROOT”) method
call to the Browser class similarly to the way nodes were retrieved in section 9.1. This method
will return areference to the root node and hence allow subsequent VRML additions to the root
node. If wewant to add a car VRMLNode to the scene we send an event to the addChildren
eventin field of the root node with the node that needs to be added as the parameter. Similarly,

we can remove existing nodes from the root by sending an event to the removeChildren eventin.

10.5 Testing

Testing is necessary in every system. Finding differences between the expected
behaviors specified by the system models and the observed behavior of the system happensin
every software engineering project. The testing phase began with unit testing, followed by
integration testing and finally system testing [12].

10.5.1 Unit Testing
This phase of testing is done to find faults by isolating an individual component
using specific test cases. Unit testing was done extensively in the VRML GUI system. When a
new class such as the Segment class was implemented, the class was first tested to ensure that al

attributes contained the proper values after a test segment was constructed, and that the attributes

65

could be modified as they were designed. The Segment, Crossing, Model, and
LogOutputMessage classes are all derived from strings, and parsing strings can be very touchy if
the string from afile is not formatted the same every time, so the classes had to be tested
carefully. Several different segments, crossings, models and log ouput messages were created
and tested with different parameters to ensure that they reacted as predicted. Also involved in
this testing was attempting to create invalid objects of these types and ensuring that the system
responds properly. In general, since the parameter passed is a string generated by another
subsystem, the objects should be created properly. The MAPS subsystem creates the plan file
that generates the segments and crossings (although users can create these as well), the TSC
compiler will generate the mafile that is read for initialization and the smulator generates the

log output file that contains the log output messages.

The control and boundary classes were unit tested as well to ensure that when they were created,
the proper method invocations were made and the proper entity objects were created and

modified at the appropriate time according to the sequence diagrams from section 10.2.4.

10.5.2 Integration Testing
Integration testing is the task of integrating components together to ensure that

they operate together as a unit. The two main classes that had to be tested initially were the
ATLASPanel boundary class and the CityControl control class. The ATLASPanel object takes
events from the user and passes them on to the CityControl class to handle the events. Testing
was done to ensure that the proper method invocations in the CityControl class were being made
when each of the four buttons were pressed. Once all the bugs were ironed out of the integration
of these two classes, the integration of the CityControl control object with the entity objects had

to be ensured.

The first action that happens within the VRML GUI system is showing the static view of the city.
Many different segments and crossings were inputted into the system to ensure that the segments
were showing up in their correct location in the VRML world and that the proper objects were
present. Segments with along and short length, multiple lanes, one and two-way segments and

segments that are rotated at different angles were inputted and tested thoroughly. Also multiple

66

segments were added to the world either joined together with a crossing or separate to ensure that
they displayed on the screen in the proper location. As atest, cars were added to the world in
different locations in atest city section to ensure that they were placed in the proper lanes and
cells of the appropriate segments or crossings. This test was to ensure that the cars were rotated
by the same angle and trandated to the same location as the segment within which they were
contained. Additionally, it had to be ensured that when a car VRMLNode in a certain segment
with specific lane and cell number needed to be retrieved from the data storage, the correct one
returned. Similarly, arewly created car VRMLNode had to be stored in the correct entry of the
data storage. Also tested were the file reading control classes to ensure that they created the

proper entity objects with the correct attributes when they read in a string from afile.

10.5.3 System Testing

The system testing focuses on the system as a whole, ensuring that it’s functional,
nonfunctional and pseudo requirements are met as defined in section 10.1.1 of the requirements.
Thisis thefirst time that the entire system including the GUI is tested to ensure full functionality
of the VRML GUI (this version of the subsystem). At this point, unit and integration testing has
been completed so theoretically the functionality of the individual components should work
flawlessly. Thefirst step was to go through the testing of the functional requirements. This was
done using the use case descriptions from section 10.1.3. When the five use cases pass sample
tests successfully as they were designed, then the system is functionally correct. Incorrect user
input is also tested to ensure that the system doesn’t go into an inconsistent state, and that the
user receives proper feedback from the system to inform the user about their error. This also

tests the recovery ability of the system when the user inputs incorrect data.

The test input that was used were cases derived as part of afinal project for a graduate class

SY SC 5807 - Advanced topics on Computer Systems: Methodological Aspects of Modeling and
Simulation instructed by Prof. Gabriel Wainer. There were severa plan, maand log files
generated by the TSC and simulator that were used to test the ATLAS system. The examples
ranged from large city sections, to medium sections like Carleton University campus, to
examples with only afew segments and crossings to test the functionality for many city size

ranges. These variations test that the system is still functional when there exists many

67

VRMLNodes stored in the system. The only major problem encountered was when large city
sections were loaded, the performance of the system degraded and it was difficult to navigate
around the city when running. This however can be eliminated by running the program on a fast
system with a large amount of memory. Also when many cars are moving around the city at the
same time, the amount of real time that passes compared with the amount of simulation timeis
quite different. Thisis acceptable since timing issues were not part of the nonfunctional

requirements.

10.6 VRML GUI Conclusions

The above sections have shown the process of software engineering for the VRML GUI
subsystem. It started with the requirements to determine the needs of the client. This was done
by coming up with functional requirements, use cases and nonfunctional requirements for the
VRML GUI system. After the requirements were determined, the analysis phase came next
where the VRML GUI system was modeled as a complete solution. The analysis phase focused
on formalizing the system requirements by identifying problem domain objects, and determining
their behavior, relationships, and classification. A sequence diagrams for each use case and
system class diagram were realized to define the static and dynamic aspects of each object, along
with their properties. The design phase looked at the analysis of the system and determines how
to put the pieces together. Many design decisions had to be made to determine how the
information was going to be stored, how to access that information as well as how to present the
information to the user according to the specifications given in the requirements. The
implementation stage took the design decisions and put the system together as a whole following
the nonfunctional and pseudo requirements defined in the requirements phase. Finadly, the
testing phase was used to ensure that al functional requirements were followed to alow for a
product that was robust, complete and reliable.

The development of the VRML GUI subsystem was a success according to the agreed upon
requirements. The system allows the user to input a city plan file, and a static view of the city is
displayed asin figure 10.17. The system then needs to initialize prior to showing the results of a
previous smulation. To initialize, the system requires the user to input the mode file used for

simulation to ensure that the plan file matches up with the smulation performed. Finaly, the

68

user can input the log results file from a previous simulation to view the city and how the cars

proceeded throughout the segments and crossings as in figure 10.18.

\ po et] v e |
ATLAS
rﬁ;ﬁmth\ "

Figure 10.17 - The static view of the city with just segments and crossings

Figure 10.18 - Cars moving within the city

69

11.0 CONCLUSIONS AND RECOMMENDATIONS

The ATV system can be a very useful software product. It can allow usersto develop acity
section, simulate it under certain conditions and view the results. If acity is considering
construction or foresees adelay in traffic on a specific road, they can design the city section
affected by the delay using the MAPS subsystem, add in the construction site, smulate, and view
the city using the VRML GUI to determine how traffic will flow after the delay has been added.
If the city planner is considering adding a new highway or expanding lanes to an existing
highway that is traffic plagued and want to know ahead of time whether adding the road or lanes
will relieve some of the traffic, they can smulate the city with the changes and view the results

to give them arough idea of the effectiveness of the changes.

Prior to this project, the ATV system was purely text based. If acity developer wanted to create
acity section, they had to learn the ATLAS semantics, then, by hand design the city without
knowing exactly how the city looked. In order to get a rough idea of how the roads in the city
were made up, the user would have to plot al the segments, crossings and control elements by
hand. Even then visualizing the roads in the city would be difficult. Assuming that the city
developer managed to design the city asthey desired, they could set parameters as to how busy
the city was, and the amount of traffic that would flow throughout. They could then compile the
ATLAS code into a model file suitable for simulating. Once the model file was simulated, the
user could get a text-based results file of all the messages that were passed amongst segments
and crossings, but deciphering this file would have been a nightmare. A program was devel oped
to help the user visuaize the log output file from the ssimulator. The program called DRAWLOG
takes the log output file and generates a text file that shows the results of individual segments
with ones representing a car present and zeros when a car is not present as show in appendix B.
DRAWLOG was a definite step forward towards visualizing the city but still was not adequate
since the user could not see multiple segments at the same time, the time of the simulation was
difficult to follow, and the results still were not as user friendly as they could be. Overall, only
those experienced ATLAS programmers and those who could make sense of alog output file

could use the system.

70

Adding two extra subsystems to the ATV system was a definite step in the right direction with
regards to visualizing the city and the simulation output. The MAPS subsystem developed by
Jan Pittner allows the user to graphically input a city using a graphical user interface. MAPS
allows the user to venture away from the ATLAS abstractions and focus their attention on
designing the city itself. Using MAPS, the user can add full roads that intersect and MAPS will
automatically add in the crossings and divide the road up into segments for the user. The user
can easily add construction sites, potholes and control elements by ssimply dragging and dropping
the elements onto created roads. Once the city has been designed to the satisfaction of the user,
MAPS will parse the drawing and create an ATLAS plan file that can be compiled, and then
simulated generating output results for traffic flowing in the city. From there, the user can
activate the VRML GUI subsystem designed and developed by Shannon Borho that will display
the results of the smulation using VRML’s 3D virtual reality capabilities. The VRML GUI will
first show the city statically showing al the roads and crossings. After the initialization of the
city has been completed, the user can input the log results file and the city will come to life,
showing cars flowing throughout the roads and crossings as traffic would in the actual city. The
tool gives the user the ability to move around the city to focus their attention on specific areas of
concern, possibly a specific busy crossing or aroad that has construction. If the user was not
happy with the results of the traffic flowing throughout the city, they can go back and change the

design of the city again using MAPS, re-simulate and view the results again.

Also investigated for this project was the possibility of using existing GIS systems to
automatically input current city structuresinto the MAPS program. Thiswould alow acity
planner to have a map of their city ahead of time, without having to even graphically input the
roads and crossings. From there, the user could add extra parameters like jobsites, potholes,
crosswalks, or other control elements that GIS systems cannot provide. The user could then
simulate the modified city and view the results using the VRML GUI to determine if the control
elements added to the city were feasible without delaying traffic. In the distant future, it may be
possible to have sensors reading in information about the flow of traffic in a city to MAPS along
with other factors such as lanes being closed or traffic lights going out. With rea-time
information, we can simulate and view the results on the VRML GUI. From the output results, if

it is determined that drivers could take an optimal path to a particular destination, avoiding the

71

traffic jam that is likely to occur based on the information provided, then that path could be
provided to the drivers via signs on the side of the roads or even signals being sent to GIS
systems that exist inside many of today’s cars. Innovations such asthe ATV could drastically
help the traffic factor that plagues virtually every major city in the world.

72

12.0 REFERENCES

[1] HotDraw website, available at http:/jhotdraw.sourceforge.net as of April 2", 2003,

[2] M. Tartaro, C. Torres, G. Wainer, Departamento de Computacion, Universidad de Buenos
Aires “TSC - Traffic Simulator Compiler”, 2000.

[3] MapMaker website, available at http://www.mapmaker.com/ as of April 2" 2003

[4] Maplnfo website, available at http://www.mapinfo.com as of April 2, 2003

[5] ESRI MapObjects website, available at http://www.u i-s.com/software/descesri_other.htmas
of April 2, 2003

[6] “How To Use Model View Controller”, Steve Burbeck, no longer available at http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html as of April 2, 2003. A Google cacheis
available (Google for that website) as of April 2, 2003.

[7] “Design Peatterns, Elements of Reusable Object-Oriented Software”, Gamma et a, Addison
Wesley, 1995

[8] B. Crispen, “comp.lang.VRML FAQ Answers’ [online document], December 21, 2000,
(Version 2.53), Available: http://vrmlworks.crispen.org/fag/fagl.html#ql, (April 2, 2003).

[9] A Scott, Aeradl, Inc. “ Getting Started in VRML”, [online document], 1996, Available:
http://www.vrmlsite.com/oct96/spotlight/ga/gqa.html (April 2, 2003).

[10] J Smith, Vapour Technology Ltd. “Floppy’s VRML97 Tutoria”, [online document],
November 15, 2002, Available: http://web3d.vapourtech.com/tutorials/'vrml 97/ (April 2, 2003).
[11] D.K. Schneider, S. Martin-Michiellot, Faculte de Psychologie et des sciences de |'education,
University of Geneva, “VRML Primer and Tutorial”, [online document], March 18, 1998,
(Version 1.1a), Available: http://tecfa.unige.ch/guides/vrml/vrmliman/vrmliman.html (April 2,
2003).

[12] B. Bruegge, A.H. Dutiot, Object-Oriented Software Engineering - Conquering Complex and
Changing Systems, Upper Saddle River, NJ. Prentice Hall, 2000.

[13] P.Y. Woo, Biola University, “Trigonometry Formulas and Calculus Formulas’, [online
document], August 27, 1999, Available: http://www.woopy.woo.org/math/formulas.htm (April
2, 2003)

73

13.0 APPENDICES

Appendix A - TheMA (Model) File

components :
components :
components :
components :
components :
components :
components :
components :
components :
components :
components :

University A

Library_A

Library CCons@Consumer
Library C

Campus AGen@Generator
Campus A

Campus_B

c2

c3

c5

c4

link : y-co-hayautoO12@Anniversary A x-t-hayautoO@Anniversary ACons
link : y-co-hayautol12@Anniversary A x-t-hayautol@Anniversary ACons
link : y-t-hayautoO@University AGen x-ge-hayautoOO@University A

link : y-t-hayautol@University AGen x-ge-hayautol0@University A

link : y-co-hayauto022@Library C x-t-hayautoO@Library CCons

[Library B]
type : cdl
width : 27
height : 1

delay : transport

defaultDelayTime : 1

border : nowrapped

neighbors : Library B(0,-1) Library B(0,0) Library B(0,1)
initialvalue : 0

in : xc-hayauto0O0

out: y-c-haylugarOO

in : x-c-haylugar026

out: y-c-hayauto026

link : xc-hayautoOO x-c-hayauto@L.ibrary B(0,0)

link : y-c-haylugar@Library_B(0,0) y-c-haylugarOO
link : xc-haylugar026 x-c-haylugar@Library B(0,26)
link : y-c-hayauto@Library B(0,26) y-c-hayauto026
localtransition : Library B-laneO-rule

zone : Library B-segment1-cell00-rule { (0,0)}

zone : Library B-segment1-cellOn-rule {(0,26)}

zone : Library B-segmentl-laneO-rule {(0,1)..(0,26-1)}

[Anniversary A]

type : cdl

74

[c2-celllntrule]

rule: {1 + send(1, y-t-haylugar)} 20{ (0,0) =0and ((0,-1) = 1 or portvalue(x-t-hayauto) =1) }
rule : {0 + send(0, y-t-haylugar)} 20{ (0,0)=1and (0,1) =0and (0,-1) =0}

rule: {0 + send(1, y-t-haylugar)} 20{ (0,0)=1and (0,1) =0and (0,-1) =1}
#Macro(c2-Default)

[c2-cellOut-rule]

rule: {1 + send(O, y-t-hayauto)} 20{ (0,0) =0 and (0,-1) = 1 and (portvalue(x-t-haylugar) = 1
or (portvalue(x-t-haylugar) = 0 and random < 3)}

rule : {0 + send(1, y-t-hayauto)} 20{ (0,0) =0and (0,-1) = 1 and portval ue(x-t-haylugar) = 0
and random >= 3}

rule : {0 + send(0, y-t-hayauto)} 20{ (0,0) =1and (0,1) =0}

rule : {(0,0) + send(0, y-t-hayauto)} 20{ t}

[c3-celllnrule]

rule: {1 + send(1, y-t-haylugar)} 20{ (0,0) =0 and ((0,-1) = 1 or portvalue(x-t-hayauto) = 1) }
rule : {0 + send(0, y-t-haylugar)} 20{ (0,0)=1and (0,1) =0and (0,-1) =0}

rule: {0 + send(1, y-t-haylugar)} 20{ (0,0)=1and (0,1) =0and (0,-1) =1}
#Macro(c3-Default)

75

Appendix B - An Example of a DRW File

Ti me: 00: 00: 00: 000
0O 0 O O 0O OOO OOO OO O OOUO0OTWOTWOTUDO
0O 0 O O 0O OOO OO O O O OO0OOO0OOUO0DO0OTUDO0
00: 00: 00: 200
0O 0o 0O o 0o 0OOOO OO OO OOOUO0OTUOTUO OTUDO
0O 0o 0O o 0o 0OOOO OO OO OOOUO0OTUOTUO OTUDO
00: 00: 00: 400
0O 0o 0O o 0o OO0 O OO OOODO0OOWO0ODWO0OWO O0OTDO
1 0 0 0O OOO O O O O O O O0OO0ODO0OO0ODOo0 0O
00: 00: 00: 600
0O 0 O 0o 0O OOO OOO OO O OOUOTUWOTUOTUDO
0O 1 o0 0o 0O OOO O O O OO ODOOU OTU OTUO OSTUDOo
00: 00: 00: 800
0O 0o 0O o 0o 0OOOO OO O O OOOUO0OTWOTUO OTUDO
1 01 0 0O OO O OO O O O O OO OO0 0O
00: 00: 01: 000
0O 0o 0O o 0o OO0 O OO OOODO0OOWO0ODWO0OWO O0OTDO
0o 1 01 0 O OO O O O OOOOUOW OTU OO OoOTUOo
00: 00: 01: 200
0O 0 O 0o 0O OOO OOO OO OOUOTUOTW® OTUOTUDO
1 0 1 o0 1 0 O O OO O O O OO OUOTU OTUWOSFTO
00: 00: 01: 400
0O 0o 0O o 0o 0OOOO OO O O OO0OOUO0OWO0OTWU 0OTPDO
o 1 01 01 0 OO O O OO OOUO O OTU OU O OTPUDO
00: 00: 01: 600
0O 0o 0o o 0o OO0 O OO O O OO0OOUO0OWO0OOUO O0OTDO
1 0 1 0 1 01 0O O O OO OOTU OO OTU OFSTO
00: 00: 01: 800
0O 0 O 0o 0O OOO OOO OO ODOOUOTWOTWOTUDO
1 01 01 01 01 OO O O OO OUOTU OOTU OFUO
Time: 00:00: 02: 000
0O 0 0O OO OOO O OO OO O O OO0ODO0OO0ODTUDO0TDOo0
1 0 1 01 01 01 01 O O OUOWUOUOW OUOTU OTU WOFSUO

-
oaoo§HoaooaHoaooapoaooapoaoo

76

ATLAS:. A Language For Modeling And Simulating Urban
Traffic

Visualization Of Traffic Models

ADDENDUM

Jan Pittner

77

I ntroduction

This document serves to correct and complement the final report submitted April 4™ for the
ATLAS Traffic Visualization system. Shortly prior to submitting the final report, a severe bug
was found with the MAPS program. This document updates the changes made to MAPS and
corrects the final report.

As with any software project, bugs are bound to occur. The bug in question relates to how MAPS
parsed roads into segments. The submitted report refers to a method in which the roads are
segmented by their lanes. In some cases, this method would not be functional with the TSC or
the 3D visualization program written by Shannon Borho. The MAPS output was not tested with
the TSC due to the TSC's current semi-functional state. Nor was MAPS tested (prior to the
submittal of the final report) with the 3D visualization program (*VRML program ") written by
Mr. Borho.

Testing has since occurred, the results of which are shown in this addendum. Please note that due
to limiattions with the VRML program, testing is basic and only verifies the correct

segmentation of the roads. It does not test some of the mgjor components of MAPS, which is the
addition of decorations (although since parking decorations create segments, thisis the only
decoration whose effects on the city section can be observed in the VRML program).

The Segmentation Problem

When the final report was submitted, each lane in aroad was created as a segment. This lane-
segment was further segmented based on the parking available in the lane. This is unexpected
behaviour for the TSC and the 3D VRML program.

A road with two lanes

--PPPPPPPP----->

Created four segments, each with a unique segment ID corresponding to the lane number
and the parking available on that lane.

New Segmentation Procedure
Roads are now segmented vertically, across all lanes, based on the intersections with other roads

and parking decorations on the road. As such, the road in the previous example would create
three segments:

-->PPpPpPpPpPpP>----->
S Seemee>

This is the expected behavior by both TSC and the VRML program.

78

The following side effects are to be noted with this method:

parkBoth feature is not implemented: that is, a user may not draw aroad with 3 lanes (all in the
same decoration) and having parking on both the exterior lanes.

Not Permitted:

--PPPPPPP->

--PPPPPPP->

Decorations (such as roadwork) may not traverse two directions of traffic.

Not permitted:
______________ >
______ R—---->
R = S
[

italic):

Additionally, al decorations must have alength of 1 units, no more:

Not permitted:
______________ >
------ RR---->

In case of incorrectly drawn decorations, the program may not behave as expected (in most cases
it will give the user an error).

79

Finally, roads may not have a melee of lane directions. The direction of traffic must be uniform,
and there can only be one change in the direction of traffic across the road:

Permitted:

The lane direction rule will generate a parse error should it be violated.

ADDENDA:

The BreakPoint class was updated to store the type of parking decoration (valid only for Start
Parking points) and the delay associated with that parking.

A RailNet figure was added. Note that MAPS currently supports only one RailNet in the city
section.

The magicPoint method had minor bugs and now correctly returns the point in between two
points on aline at given distance dist from the start of the line. There is a self check that should
never faill now that the code is correct. The check fails if the point located is greater than 1 unit
away from the line (eg, a point that is 0.3 units away from the line is “on the line’ whereas a
point that is 1.1 units away from the line is off of the line). This check was important to verify
the functionality of the magicPoint function so that decorations could be properly located and
checked if they applied to a particular segment of aroad.

The MAPSPropertyPanel and toolbar was updated to support all attributes available for ATLAS
objects. New tools were added to support other ATLAS decorations.

Code was refactored to increase cohesion (parsing of CityDrawingView and RoadDrawingView
is now done through the ATLASParser2 class.)

The type of parking is “guessed” for a segment. If it isin the first lane, it is assumed to be
parkLeft. If it isin the last laneg, it is assumed to be parkRight. This should be verified with the
direction of the lane with respect to the direction of the road as it was drawn by the user.
Clarifications in the user interface must be made to clearly indicate to the user how the parking
will be classified.

80

A “Generate Intersections’ menu item has been added to the ATLAS menu. This allows the user
to generate the intersections and modify any of their properties prior to generating the ATLAS
code. Should the user not wish to do so, the intersections will be automatically generated when
the ATLAS code is created, with default values for the intersections.

The number of lanes can be updated via the MAPS property panel. The user is warned that
updating the number of lanes erases any decorations (and lane directions) previously set. As such
it is advised that users set the number of lanes for roads prior to adding decorations and changing
lane directions.

The program currently supports one railnet. The user must take care not to cross two roads with
the same railnet figure, and it is advised that the delay is set for all railnet figures. (note that only
one delay may apply so al delays should be the same).

Only the “Stop Sign” control element is supported. Additional support for other control elements
was not added due to unfamiliarity with pop up menus which would have been the best way to
select the type of control element. Additionally the problem arose of how to display the various
types of control elements with the given figures without having to create more. This problem was
deemed minor and not addressed.

All the tools are currently on one toolbar which does not enable/disable tools as the view changes
(for instance, drawing parking on the CityDrawingView is not allowed, however the user can do
it. These objects are ignored when the drawing is parsed). To rectify this, the toolbar would have
to implement the ViewSel ectionChangeL istener interface and adjust accordingly. There was
insufficient time to implement this.

81

Screenshot of MAPS:

H CHuifadraw.maps MAPSApp
eHe
File Edat align Window ATLAS

T4 AL(L00K) Wed 10:10 PM

MAPS

. MDY = KA [anSrest (Vi

O MAPT = Boad Wnodsideway O

01 2 3 4 3 8B F a8 10INA u12:15ﬂ.’5!1b1"2'}14:
0o il
1 1
_2 MAPS - Rinad] Walnerhay [WViea
i u12.1155.f391n11'1'31415'51r1a'n1n'|
1o
q
oz
: 24 25 38 27 26 39 30 31 32 33 34 38 1§ a7 2
L |E
&

[T 1T 1] 100

T
kil
il
12
th] | T T

MAPS - Rad: ShannonPlace (view)

d 3 4 8 6 7T A8 ‘U"'2‘11!-1ﬂ'b1§-1-"h|15|2|.|!:

S ;xl ior Tocd

Note the presence of railnets (black rectangle with white ling), crossings (yellow circles,

Mame:

Crid Sram:

Grid End

Lanes:

Spead

Delay

pows

Carved:

Poareala:

T-Light

Update

BN 1B S 0 P

Shian o Phaca

(3,83

(19,81

40

nja

Refresn

automatically generated), roadwork (yellow squares), stop signs (red squares), parking sections

(blue rectangles), multiple and bidirectional roads, ready accessto ATLAS parameters such as

speed, curvature of the road, etc.

82

Screenshot of generated ATLAS Code (partial):

Generating ATLAS Code...

begin segments &
ShannonPlaceC0OS1=(3,6),(19,6),1,straight,go,40,0,parkNone r
ShannonPlaceBACKS1=(3,6),(19,6),1,straight,back,40,0,parkNone
BorhoBlvdCOS1=(19,6),(24,12),1,curve,go,55,0,parkNone
BorhoBlvdC0OS2=(24,12),(24,12),1,curve,go,55,0,parkNone
BorhoBlvdBACKS1=(19,6),(24,12),1,curve,back,55,0,parkMNone
BorhoBlvdBACKS2=(24,12),(24,12),1,curve,back,55,0,parkNone
JanStreetGOS1=(11,12),(24,12),1,straight,go,55,0,parkNone
JanStreetGOS2=(24,12),(24,12),1,straight,go,55,0,parkNone
JanStreetGOS3=(24,12),(26,12),1,straight,go,55,0,parkNone
JanStreetGOS4=(26,12),(27,12),1,straight,go,55,0,parkNone

T AR T T

WainerWayGOS1=(23,18),(26,12),4,straight,go,55,0,parkNone k-

WainerWayG0S2=(26,12),(32,3),4,straight,go,55,0,parkNone

WoodsideWayG051=(3,9),(4,9),2,straight,go,70,0,parkNone |L

WoodsideWayG0S2=(4,9),(10,11),2,straight,go,70,20,parkLeft

WoodsideWayG0S3=(10,11),(11,12),2,straight,go,70,0,parkNaone

PittnerPlazaG0S1=(20,18),(24,12}),2,curve,go,90,0,parkNone

PittnerPlazaC0S2=(24,12),(24,12),2,curve,go,90,0,parkNone

end segments

begin crossings 4

ShannonPlace&BorhoBlvd = (19,6),40,withoutTL,withoutHole,0,0.5]

BorhoBlvd&)anStreet = (24,12),55 withoutTL withoutHole,0,0.5

JanStreet&WainerWay = (26,12),55,withoutTL,withoutHole,0,0.5 |

JanStreet&WoodsideWay = (11,12),55,withoutTL,withoutHole,0,0.5

end crossings]
i

begin ctrlElements !

in JanStreetCOS1 : stopsign,4,30 E

in JanStreetCOS1 : stopsign,10,20)

end ctriElements

begin jobsites|

in ShannonPlaceBACKS1 : 0,8,1,666

in JanStreetGOS1 : 0,6,1,80

end jobsites

begin railnets

ml = (ShannonPlaceGO51,7),(ShannonPlaceBACKS1,7),(BorhoBlvdG0S1,2), (BorhoBlvdBACKS 1,2),0

end railnets . u

83

Another sample (captured before crossings were generated):

E". CH.ifa.draw.maps.MAPSApp

‘806 MAPS

File Edit Align Window ATLAS

3 O (O MAPS - /Users/...
012 3 456 7 82

0

=
Ih|Al=] 2] @]
A=

0 Mame: Altavista
; Crid Start: {0,5)
3 Grid End: (6,5)
: # Lanes: 2
8 Speed: 40
‘PO O O MAPS - Road: Altavista (Vie... ety
01234586789 1M1 pout: n/a
1 1 I — Pothole:
2 T-Light: —
: (Update T“(Refresh
Y

Updated Road

MAPS generated the following plan file:

begi n segnents

Bank@0S1=(0, 0), (5, 0), 1, strai ght, go, 60, 0, par kNone
BankG0s2=(5, 0), (6, 0), 1, strai ght, go, 60, 0, par kNone
BankBACKS1=(0, 0), (5, 0), 1, strai ght, back, 60, 0, par kNone
BankBACKS2=(5, 0), (6, 0), 1, strai ght, back, 60, 0, par kNone

Li brary@0s1=(5, 0), (5, 2), 2, strai ght, go, 55, 0, par kNone

Li brary@0s2=(5, 2), (5, 5), 2, strai ght, go, 55, 0, par kNone

Li brar yBACKS1=(5, 0), (5, 2), 2, strai ght, back, 55, 0, par kNone

Li br ar yBACKS2=(5, 2), (5, 5), 2, strai ght, back, 55, 0, par kNone
Al taVi sta@s1=(0, 5), (5, 5), 1, strai ght, go, 40, 0, par kNone

Al taVi staG0s2=(5, 5), (6, 5), 1, strai ght, go, 40, 0, par kNone

Al t avi st aBACKS1=(0, 5), (1, 5), 1, strai ght, back, 40, 0, par kNone
Al t aVi st aBACKS2=(1,5), (4,5), 1, strai ght, back, 40, 45, par kLef t
Al t aVi st aBACKS3=(4,5), (5,5), 1, strai ght, back, 40, 0, par kNone
Al t aVi st aBACKS4=(5, 5), (6, 5), 1, strai ght, back, 40, 0, par kNone
BronsonG0S1=(2, 2), (5, 2),1, strai ght, go, 75, 0, par kNone

Br onsonG082=(5, 2), (12, 2), 1, strai ght, go, 75, 0, par kNone

end segnents

begi n crossings

Bank&Li brary = (5, 0), 60, wi t hout TL, wi t hout Hol e, 0, 0. 5
Li brary&Al tavista = (5,5), 55, w t hout TL, wi t hout Hol e, 0, 0. 5
Li brary&Bronson = (5, 2), 55, w t hout TL, wi t hout Hol e, 0, 0. 5
end crossings

