
VI SIMPOSIO ARGENTINO DE TECNOLOGIA EN COMPUTACION: AR-AST-OPS001 1

Abstract — Tanenbaum’s MINIX operating system was
extended with real-time services to conform RT-MINIXv2. It
is a Real-Time Operating System to teach concepts related to
real-time kernels but keeps compatibility with MINIX. This
article discuss how processes are managed, created and
terminated, and finally describes the scheduling algorithm
performed by the real-time kernel..

Keywords— Operating Systems, Minix, Process
Management, Real-Time Scheduling.

I. INTRODUCTION
.

eal-Time Operating Systems (RTOS) instructors
can choice among commercial or free licence software

to develop their laboratory practice. Commercially
available RTOS as RTLinux (http://www.fsmlabs.com/) or
QNX (http://www.qnx.com) are too costly and proprietary
to be used by academic institutions. Free licence and open
source RTOS, as RTAI (http://www.rtai.org/) or the Kansas
University real-time variant KURT
(http://www.ittc.ku.edu/kurt) have been designed focusing
on performance as a key design feature with complex
source code readability for grade course students. The first
real-time version of MINIX have same drawbacks an it
have limited features [1].

A new real-time version of the well known MINIX [2]
academic operating system (OS) named RT-MINIXv2 [3]
is proposed to teach concepts of real-time programming, in
particular those related to real-time kernels.

This article address the Process Management and
Scheduling of this version. Also describes an approach to
allow that two operating systems, a general purpose
operating system and a predictable real-time kernel, co-
exist on the same hardware.

The design constrains established for RT-MINIXv2 are:
- Compatibility with MINIX: All process that run on

MINIX must run on RT-MINIXv2 without
modifications and sensible performance impact.

- Minimal MINIX source code changes: As MINIX is
often used in OS design courses, students have deep
knowledge of its source code. Therefore reducing
the changes keep the students experience to learn a
MINIX based RTOS. Most new code must be added
in separeted functions with few changes in the
original MINIX code. This also helps for system
updates when new versions of MINIX are released.

- Source Code readability: As RT-MINIXv2 is
focused for academic uses, its source code must be
easily understood, perhaps sacrifying performance.

RT-MINIXv2 will let instructors make easily a
multiplicity of grade courses assignments, laboratory tests,
projects and other academic uses with an open source

RTOS. Much of the existing MINIX tools, as text editors,
browsers, compilers, linkers, etc. could be used for those
practices minimizing the students’ apprenticeship.

The aim of the RT-MINIXv2 project is to provide an
educational tool for RTOS courses as MINIX does for OS
Design and Implementation courses.

The rest of this work is organized as follows. Section II
presents an overview of RT-MINIXv2. Section III and
Section IV are about MINIX and RT-MINIXv2 process
management respectively. Section V, describes the RT-
process scheduler. Finally, Section VI presents conclusions.

To simplify the notation, for the following paragraphs all
Real-Time related words will be preceded by "RT" prefix
and Non Real-Time words will be preceded by “NRT“
prefix.

II. OVERVIEW
As Bollella [4] describes, there have three identifiable

approaches to marrying RT and NRT technologies, but
Yodaiken [5] proposes a new one where a RT-microkernel
threats a time-sharing OS as the lower priority task. This
approach was adopted for the RT-MINIXv2 kernel. It have
the following advantages:

A. By allowing the co-existence of two OS, a clean
separation exists between NRT and RT-services

B. The RT-kernel executes in a predictable manner, so
it is possible to analyze the conditions under which
RT-processes will be guaranteed to be feasible.

C. The time sharing OS can function correctly with few
modifications.

RT-MINIXv2 has two execution modes:
- NRT-mode: the system runs as MINIX. No RT-

processes and interrupt handlers are admited.
- RT-mode: The system runs under the RT-kernel

control.
To change the execution mode the rtm_RTstart() and

rtm_RTstop() system calls are provided. They are
implemented using a special task named RTMTASK that is
RT-kernel agent that function as glue among processes and
the RTOS.

Only NRT-process can be created and terminated under
RT-MINIXv2. The RT-kernel does not add new system
calls to create RT-processes. On the other hand a NRT-
process is converted into a RT-process using the
rtm_setproc() system call. To terminate a RT-process it
must be converted back into a NRT-process (explained in
Section IV).

When the system runs in NRT-mode, any process that
calls rtm_setproc() trying to convert itself into a RT-
process, receives an error return code.

RT-MINIXv2: Real-Time Process Management
and Scheduling

Pablo A. Pessolani
Departamento de Sistemas - Facultad Regional Santa Fe- Universidad Tecnológica Nacional

ppessolani@hotmail.com

R

VI SIMPOSIO ARGENTINO DE TECNOLOGIA EN COMPUTACION: AR-AST-OPS001 2

It must be considered that on RT-MINIXv2 co-exist two
kernels with a shared set of processes but with their own
process states and transitions each.

III. BACKGROUND ABOUT MINIX PROCESS MANAGEMENT
As is described by Tanenbaum [2], a process in MINIX

have 3 basic states and 4 state transitions. The READY
state, the BLOCKED state and the RUNNING state.

When MINIX runs under the RT-kernel control, a fourth
process state named REALTIME is added (Fig. 1). A NRT-
process is in this state when it has been converted into a
RT-process. It will be ignored by the ready() MINIX kernel
function and ineligible by its scheduler.

The following are the process states transitions under
MINIX:

1. READY to RUNNING
2. RUNNING to READY
3. RUNNING to BLOCKED
4. BLOCKED to READY

Fig. 1: NRT-Process States and Transitions.

When MINIX is running under the RT-kernel control, two
new transitions states are added.

5. BLOCKED to REALTIME: The NRT-process has
done a rtm_setproc() system call to convert it into a
RT-process.

6. REALTIME to BLOCKED: The RT-process has
done a rtm_setproc() system call to convert itself
into a NRT-process, or when the RT-process calls
exit() or when it receives a NRT-signal.

IV. RT-MINIXV2 PROCESS MANAGEMENT

A. Real-Time Process Creation
When a NRT-process invokes rtm_setproc() system call,

it will be in a BLOCKED state. Therefore, there is no need
to remove that process from any MINIX READY queue and
could be converted into a RT-process.

Because there are two process schedulers that run on RT-
MINIXv2 (the real-time and the MINIX scheduler), some
bits in one field in the process descriptor are used to
distinguish among RT-processes and NRT-processes.
Those bits avoid that a NRT-process could unlock a RT-
process and could be inserted into one of the MINIX
READY queues and be eligible by the NRT-scheduler.

B. RT-Process States and Transitions
The following are the states of a RT-process (Fig. 2):
- RT-READY: The RT-process is ready to run and

waiting to be selected by the RT-process scheduler.
- RT-BLOCKED: The RT-process is suspended

(sleeping) because it has done a blocking RT-system
call to the RT-kernel.

- RT-RUNNING: The RT-process is running under
RT-kernel control.

- STANDARD: The RT-process has been converted
into a NRT-process and must be ignored by the RT-
kernel.

Fig. 2: RT-Process States and Transitions.

The RT-process state transitions are:

A. RT-READY to RT-RUNNING: The RT-process
has been selected to run by the RT-scheduler.

B. RT-RUNNING to RT-READY: The running RT-
process has been preempted by other RT-process
with higher priority.

C. RT-RUNNING to RT-BLOCKED: The RT-process
has done a blocking RT-system call.

D. RT-BLOCKED to RT-READY: The process has
returned from a RT-system call.

E. RT-BLOCKED to STANDARD: The RT-process
has done a rtm_setproc() system call to convert it
back into a NRT-process. This transition also
occurs when the RT-process calls exit() or when a
RT-process receives a NRT-signal.

F. STANDARD to RT-BLOCKED: The NRT-process
has done a rtm_setproc() system call to convert it
into a RT-process.

The two states called STANDARD and REALTIME are
compound states. REALTIME is the set of RT-process
states and STANDARD is the set of NRT-process states.

C. Process Descriptor Real-Time fields
The MINIX kernel uses a process descriptor table to

keep the status information of every process in the system.
Each process descriptor has a field named p_flags to

indicate the reason why a process is blocked. If p_flags =
0, the process can be scheduled by the MINIX process
scheduler.

The RT-scheduler recognizes two kinds of processes:
periodic and sporadic. A periodic process runs repeatedly,
and within a fixed time (period). A sporadic process runs
when one event trigger it. There are two bits assigned in

VI SIMPOSIO ARGENTINO DE TECNOLOGIA EN COMPUTACION: AR-AST-OPS001 3

p_flags to distinguish among periodic and sporadic task.
The RT-scheduler can only schedule processes with one of
these bits set.

New fields were added to the process data structure for
RT-process management and statistics collection. Some of
these fields are RT-process characterization parameters as:
- priority: The efective scheduling priority used by the

RT-scheduler to select the next RT-process to run. It is
explained in Section V.

- baseprty: The base priority used by the Basic Priority
Inheritance Protocol (BPIP) to restore the efective
priority. It is explained in Section V.

- period: The scheduling period of a RT-periodic
process. It is specified in RT-timer ticks.

- limit: A limit for the number of RT-schedulings.
- deadline: The process deadline. It is specified in RT-

timer ticks.
- watchdog: The PID of a RT-process that provides

services to protect the RT-process against deadline
expiration. The watchdog can be programmed to
perform several actions on the occurrence of a process
overrun. When a RT-process does not complete it’s
work before it’s deadline expiration, the RT-kernel
could send a MT_WATCHDOG message to the
watchdog process specified in the descriptor.

D. RT-process Termination
When the system runs in RT-mode, the RT-kernel does

not terminate any RT-process, it delegates this task to the
MINIX kernel, but before a RT-process can be terminated,
it is converted into a NRT-process (Transition F on Fig. 2).

In MINIX, a process could be terminated by one of the
following reasons:

- Normal exit: Invoking the exit() system call by itself
(voluntary).

- Error exit: The process discover a fatal error and
invokes the exit() system call (voluntary).

- Fatal error: MINIX discovers a process fatal error
(often a program bug) and could terminate it sending
a signal (unvoluntary).

- Killed: Other process send an uncached signal to the
process (unvoluntary).

These four reasons show that a process could be
terminated by the exit() system call or by the signal()
system call.
1) RT-process Termination using the exit() system call

As RT-processes can not send/receive messages using
send()/receive() MINIX primitives (except to/from
RTMTASK), if a RT-process invokes the exit() system call it
is converted into a NRT-process before the MINIX exit()
function could be invoked. That conversion is
accomplished by the modified exit() library function that
uses the services of RTMTASK.
2) RT-process Termination using the signal() system call

If a NRT-process sends a signal to a RT-process, the
target is converted into a NRT-process before it can receive
the signal. That conversion is accomplished by the
modified check_sig() function of the Memory Manager
Server (MM) using the services of RTMTASK.
3) Freeing RT-process resourses and housecleaning

The RT-kernel makes some housecleaning tasks before
converting RT-process into a NRT one to keep the system
resouces and concistency. Those tasks free unused RT-

resources like virtual timers, mailboxes, etc. detailed as
following:

- Any RT-process that have a synchronous message
waiting in the Mailbox of the terminating RT-process is
woken up and the rtm_send() system call returns an error
code.

- A MT_SIGNAL message is sent to the terminating RT-
process watchdog.

- A MT_SIGNAL message is sent to all process with the
watchdog field equals to the terminating RT-process. The
watchdog fields are set to HARDWARE.

- All RT-interrupt descriptors watchdog fields equals to
the terminating RT-process are set to HARDWARE.

- All asyncronous messages sent by the terminating RT-
process to other mailboxes are removed.

The RT-kernel frees the terminating RT-process mailbox
and virtual timers.

V. RT-MINIXV2 PROCESS SCHEDULER

A. The RT-Process Scheduler
The process scheduler is the component of the kernel

that selects which process to run next. The scheduler can be
viewed as the code that divides, using a defined policy, the
finite resource of processor time between the runnable
processes on a system.

The set of rules used to determine when and how to
select a new process to run is called scheduling policy[6].
A scheduler's policy often determines the overall feel of a
system and is responsible for optimally utilizing processor
time. The policy behind RT-MINIXv2 scheduler is simple:

”A priority scheduled real-time system must ensure that
the highest priority runnable process can start to run in a
bounded time—and the bound needs to be small”. [7]

The RT-scheduler always selects the highest priority
runnable process for execution. All unvoluntary context
switches are triggered by interrupts. Timer interrupts can
cause preemption due to Timer-Driven process activation.
If the priority of the activated process is higher than the
priority of the currently running process, the execution of
current is interrupted and the RT-scheduler is invoked to
select another RT-process to run. The RT-scheduler tries to
find a ready RT-process with the highest priority. If there
are not such process, the MINIX process scheduler is
called.

The RT-scheduler uses an optimized process-selection
algorithm, based on a set of priority queues and a bitmap
[8]. Each bit in the bitmap represents a priority queue. If a
bit is set, it means that at least one process is ready in that
queue.

Typically, the bitmap is scanned for the highest priority
non-empty queue, and the first process in that queue is
selected to run.

The RT-scheduler implements fully O(1) scheduling.
The algorithm completes in constant-time, regardless of the
number of running processes.

RT-MINIXv2 does not use a timeslice for preempting a
RT-process. Only a higher priority RT-process can preempt
the running process or it must relinquish the CPU by itself.

When a higher priority RT-process enters the RT-READY
state, the kernel checks whether its priority is higher than
the priority of the currently executing RT-process. If it is,

VI SIMPOSIO ARGENTINO DE TECNOLOGIA EN COMPUTACION: AR-AST-OPS001 4

the RT-scheduler is invoked to pick a new RT-process to
run (presumably the process that just became runnable).

B. Process Priorities
A common type of scheduling algorithm is priority-based

scheduling. Processes with a higher priority will run before
those with a lower priority, while processes with the same
priority are scheduled round-robin (one after the next,
repeating).
1) NRT-Process Priorities

Minix scheduler uses multiple queue-scheduling
algorithms for all the processes. They are:

- TASK_Q: with the highest priority.
- SERVER_Q: with a medium priority.
- USER_Q: with the lowest priority.
All process in the same queue have the same priority and

the process scheduler selects the next runnable process for
execution in FCFS order for tasks and servers and in FIFO
order for user level processes.
2) RT-Process Priorities

A RT-processes can have a scheduling priority ranging
from 0 to 15; low numeric values correspond to high
priorities. A RT-process has both a base priority and an
effective priority and is scheduled in accordance with the
latter.

The RT-process itself can set its base and effective
priority together, but the effective priority may be changed
by the Basic Priority Inheritance Protocol [9] implemented
in RT-Interprocess Communications (RT-IPC).

The RT-ready queue is implemented as 16 separate
queues, one for each priority. Each ready RT-process is
appended to the queue corresponding to its effective
priority field in FIFO order. The first process descriptor in
the highest priority queue will be selected to run.

The priority field is also used by the RT-kernel to reduce
the interrupt blocking time. Only those interrupt handlers
with higher priorities are executed while the current RT-
process is running [3].

If all RT-queues are empty, the MINIX scheduler is
invoked to select a NRT-process for execution.

C. Priority Queues Management
To manage the RT-ready queues the RT-kernel uses the

following data structures:
- A set of queue descriptors: It assign one queue

descriptor for each priority level.
- A priority bitmap: Each bit of this bitmap is

allocated for a priority queue descriptor. Initially, all
the bits are zero indicating that all queues are empty.

When a RT-process becomes runnable (that is, its state
becomes RT-READY), the corresponding bit to its priority
is set in bitmap, and the process descriptor is appended to
the RT-ready queue in accordance with its priority.

Finding the highest priority RT-process on the system is
therefore only a matter of finding the first bit set in the
priority bitmap. Because the number of priorities is fixed,
the time to complete a search is constant and unaffected by
the number of running processes on the system.

Each priority queue descriptor have two pointers, one for
the head and one for the tail of the queue. The insertions in
the queue can be in FIFO or LIFO order. Processes of the
same priority will be managed under a FIFO policy. A

process that inherits priority by RT-IPC must be inserted
and removed from the queues in LIFO order.

Each queue descriptor also contains a field named inQ
that keeps the current number of runnable RT-processes in
the queue.

A set of RT-kernel helper functions let system
programmers append, insert or remove process descriptors
into/from priority queues.

VI. CONCLUSIONS
RT-MINIXv2 subkernel architecture, source code

readability and MINIX compatibility make it suitable for
course assignments and Real-Time project developments.
Its microkernel have simple process management and
efficient scheduling that make it a good choice to conduct
RT-experiences as implement Rate Monotonic or Deadline
Monotonic algorithms with simple changes.

Time Management, Real-Time Interprocess
Communications and Statistics Collections features are
being added to RT-MINIXv2, at time of this writing,

ACKNOWLEDGMENTS
The author gratefully acknowledges help received from

Telecom Argentina S.A. for sponsoring the author’s UNLP
Master and Dr. Silvio Gonnet for the revision of this article.

REFERENCES
[1] Gabriel A. Wainer, “Implementing Real-Time services in MINIX”,

ACM Operating Systems Review, July 1995.
[2] Tanenbaum Andrew S., Woodhull Albert S., “Operating Systems

Design and Implementation” 2nd Edition, ISBN: 0-13-638677-6,
Prentice-Hall , 1997

[3] Pessolani, Pablo A, “RT-MINIXv2: Architecture and Interrupt
Handling”, 33th JAIIO, Argentine Symposium on Computing
Technology (AST2004), 2004.

[4] Gregory Bollella, Kevin Jeffay ,“Support For Real-Time Computing
Within General Purpose Operating Systems”, 1995

[5] Victor Yodaiken, “The RTLinux Manifesto”, Department of
Computer Science New Mexico Institute of Technology.

[6] Daniel P. Bovet, Marco Cesati, “Understanding the Linux Kernel
Second Edition”, O'Reilly, 2003.

[7] Victor Yodaiken, “Against Priority Inheritance”, Fsmlabs Technical
Report, June 25, 2002

[8] “About UNIX and Real-Time Scheduling”,
http://www.pcengines.ch/schedule.htm., 1989,

[9] L. Sha, R. Rajkumar and J. P. Lehoczky, "Priority Inheritance
Protocols: An Approach to RealTime Synchronisation", IEEE
Transactions on Computers 39(9), pp. 1175-1185 (September 1990).

