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Abstract — Tanenbaum’s MINIX operating system was 
extended with real-time services to conform RT-MINIXv2. It 
is a Real-Time Operating System to teach concepts related to 
real-time kernels but keeps compatibility with MINIX. This 
article discuss how processes are managed, created and 
terminated, and finally describes the scheduling algorithm 
performed by the real-time kernel..  

Keywords— Operating Systems, Minix, Process 
Management,  Real-Time Scheduling. 

I. INTRODUCTION 
.  

eal-Time Operating Systems (RTOS) instructors 
can choice among commercial or free licence software 

to develop their laboratory practice. Commercially 
available RTOS as RTLinux (http://www.fsmlabs.com/) or 
QNX  (http://www.qnx.com) are too costly and proprietary 
to be used by academic institutions. Free licence and open 
source RTOS, as RTAI (http://www.rtai.org/) or the Kansas 
University real-time variant KURT 
(http://www.ittc.ku.edu/kurt) have been designed focusing 
on  performance as a key design feature with complex 
source code readability for grade course students. The first 
real-time version of MINIX have same drawbacks an it 
have limited features [1]. 

A new real-time version of the well known MINIX [2] 
academic operating system (OS) named RT-MINIXv2 [3] 
is proposed to teach concepts of real-time programming, in 
particular those related to real-time kernels.  

This article address the Process Management and 
Scheduling of this version. Also describes an approach to 
allow that two operating systems, a general purpose 
operating system and a predictable real-time kernel, co-
exist on the same hardware. 

The design constrains established for RT-MINIXv2 are: 
- Compatibility with MINIX: All process that run on 

MINIX must run on RT-MINIXv2 without 
modifications and sensible performance impact. 

- Minimal MINIX source code changes: As MINIX is 
often used in OS design courses, students have deep 
knowledge of its source code. Therefore reducing 
the changes keep the students experience to learn a 
MINIX based RTOS. Most new code must be added 
in separeted functions with few changes in the 
original MINIX code. This also helps for system 
updates when new versions of MINIX are released. 

- Source Code readability: As RT-MINIXv2 is 
focused for academic uses, its source code must be 
easily understood, perhaps sacrifying performance.  

RT-MINIXv2 will let instructors make easily a 
multiplicity of grade courses assignments, laboratory tests, 
projects and other academic uses with an open source 

RTOS. Much of the existing MINIX tools, as text editors, 
browsers, compilers, linkers, etc. could be used for those 
practices minimizing the students’ apprenticeship. 

The aim of the RT-MINIXv2 project is to provide an 
educational tool for RTOS courses as MINIX does for OS 
Design and Implementation courses. 

The rest of this work is organized as follows. Section II 
presents an overview of RT-MINIXv2. Section III and 
Section IV are about MINIX and RT-MINIXv2 process 
management respectively. Section V, describes the RT- 
process scheduler. Finally, Section VI presents conclusions.  

To simplify the notation, for the following paragraphs all 
Real-Time related words will be preceded by "RT" prefix 
and Non Real-Time words will be preceded by “NRT“ 
prefix. 

II. OVERVIEW 
As Bollella [4] describes, there have three identifiable 

approaches to marrying RT and NRT technologies, but 
Yodaiken [5] proposes a new one where a RT-microkernel 
threats a time-sharing OS as the lower priority task. This 
approach was adopted for the RT-MINIXv2 kernel. It have 
the following advantages: 

A. By allowing the co-existence of two OS, a clean 
separation exists between NRT and RT-services 

B. The RT-kernel executes in a predictable manner, so 
it is possible to analyze the conditions under which 
RT-processes will be guaranteed to be feasible. 

C. The time sharing OS can function correctly with few 
modifications. 

RT-MINIXv2 has two execution modes:  
- NRT-mode: the system runs as MINIX. No RT-

processes and interrupt handlers are admited. 
- RT-mode: The system runs under the RT-kernel 

control. 
To change the execution mode the rtm_RTstart() and 

rtm_RTstop()  system calls are provided. They are 
implemented using a special task named RTMTASK that is  
RT-kernel agent that  function as glue among processes and 
the RTOS. 

Only NRT-process can be created and terminated under 
RT-MINIXv2. The RT-kernel does not add new system 
calls to create RT-processes. On the other hand a NRT-
process is converted into a RT-process using the 
rtm_setproc() system call. To terminate a RT-process it 
must be converted back into a NRT-process (explained in 
Section IV). 

When the system runs in NRT-mode, any process that 
calls rtm_setproc() trying to convert itself into a RT-
process, receives an error return code. 
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It must be considered that on RT-MINIXv2 co-exist two 
kernels with a shared set of processes but with their own 
process states and transitions each. 

III.  BACKGROUND ABOUT MINIX PROCESS MANAGEMENT 
As is described by Tanenbaum [2], a process in MINIX 

have 3 basic states and 4 state transitions. The READY 
state, the BLOCKED state and the RUNNING state. 

When MINIX runs under the RT-kernel control, a fourth 
process state named REALTIME is added (Fig. 1). A NRT-
process is in this state when it has been converted into a 
RT-process. It will be ignored by the ready() MINIX kernel 
function and ineligible by its scheduler. 

The following are the process states transitions under  
MINIX: 

1. READY  to RUNNING  
2. RUNNING to READY 
3. RUNNING to BLOCKED 
4. BLOCKED to READY 
 

Fig. 1: NRT-Process States and Transitions. 
 
When MINIX is running under the RT-kernel control, two 
new transitions states are added. 

5. BLOCKED to REALTIME: The NRT-process has 
done a rtm_setproc() system call to convert it into a 
RT-process. 

6. REALTIME to BLOCKED: The RT-process has 
done a rtm_setproc() system call to convert itself 
into a NRT-process, or  when the RT-process calls 
exit() or when it receives a NRT-signal. 

IV. RT-MINIXV2 PROCESS MANAGEMENT 

A. Real-Time  Process Creation 
When a NRT-process invokes rtm_setproc() system call, 

it will be in a BLOCKED state. Therefore, there is no need 
to remove that process from any MINIX READY queue and 
could be converted into a RT-process. 

Because there are two process schedulers that run on RT-
MINIXv2 (the real-time and the MINIX scheduler), some 
bits in one field in the process descriptor are used to 
distinguish among RT-processes and NRT-processes. 
Those bits avoid that a NRT-process could unlock a RT-
process and could be inserted into one of the MINIX 
READY queues and be eligible by the NRT-scheduler.  

B. RT-Process States and Transitions 
The following are the states of a RT-process (Fig. 2): 
- RT-READY:  The RT-process is ready to run and 

waiting to be selected by the RT-process scheduler. 
- RT-BLOCKED: The RT-process is suspended 

(sleeping) because it has done a blocking RT-system 
call to the RT-kernel. 

- RT-RUNNING: The RT-process is running under 
RT-kernel control. 

- STANDARD: The RT-process has been converted 
into a NRT-process and must be ignored by the RT-
kernel. 

 

Fig. 2: RT-Process States and Transitions. 
 
The RT-process state transitions are: 

A. RT-READY to RT-RUNNING: The RT-process 
has been selected to run by the RT-scheduler.  

B. RT-RUNNING to RT-READY: The running RT-
process has been preempted by other RT-process 
with higher priority.  

C. RT-RUNNING to RT-BLOCKED: The RT-process 
has done a blocking RT-system call. 

D. RT-BLOCKED to RT-READY:  The process has 
returned from a RT-system call. 

E. RT-BLOCKED to STANDARD: The RT-process 
has done a rtm_setproc() system call to convert it 
back into a NRT-process. This transition also 
occurs when the RT-process calls exit() or when a 
RT-process receives a NRT-signal. 

F. STANDARD to RT-BLOCKED: The NRT-process 
has done a rtm_setproc() system call to convert it 
into a RT-process. 

The two states called STANDARD and REALTIME are 
compound states. REALTIME is the set of RT-process 
states and STANDARD is the set of  NRT-process states. 

C. Process Descriptor Real-Time fields 
The MINIX kernel uses a process descriptor table to 

keep the status information of every process in the system.  
Each process descriptor has a field named p_flags to 

indicate the reason why a process is blocked. If  p_flags = 
0, the process can be scheduled by the MINIX process 
scheduler. 

The RT-scheduler recognizes two kinds of processes: 
periodic and sporadic. A periodic process runs repeatedly, 
and within a fixed time (period). A sporadic process runs 
when one event trigger it. There are two bits assigned in 
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p_flags to distinguish among periodic and sporadic task. 
The RT-scheduler can only schedule processes with one of 
these bits set. 

New fields were added to the process data structure for 
RT-process management and statistics collection. Some of 
these fields are RT-process characterization parameters as: 
- priority: The  efective scheduling priority used by the 

RT-scheduler to select the next RT-process to run. It is 
explained in Section V. 

- baseprty: The base priority used by the Basic Priority 
Inheritance Protocol (BPIP) to restore the efective 
priority. It is explained in Section V. 

- period: The scheduling period of a RT-periodic 
process. It is specified in RT-timer ticks. 

- limit: A limit for the number of RT-schedulings. 
- deadline: The process deadline. It is specified in RT-

timer ticks. 
- watchdog: The PID of a RT-process that provides 

services to protect the RT-process against deadline 
expiration. The watchdog can be programmed to 
perform several actions on the occurrence of a process 
overrun. When a RT-process does not complete it’s 
work before it’s deadline expiration, the RT-kernel 
could send a MT_WATCHDOG message to the 
watchdog  process specified in the descriptor.  

D. RT-process Termination 
When the system runs in RT-mode, the RT-kernel does 

not terminate any RT-process, it delegates this task to the 
MINIX kernel, but before a RT-process can be terminated, 
it is converted into a NRT-process (Transition F on Fig. 2). 

In MINIX, a process could be terminated by one of the 
following reasons: 

- Normal exit: Invoking the exit() system call by itself 
(voluntary). 

- Error exit: The process discover a fatal error and 
invokes the exit() system call (voluntary). 

- Fatal error: MINIX discovers a process fatal error 
(often a program bug) and could terminate it sending 
a signal (unvoluntary). 

- Killed: Other process send an uncached signal to the 
process (unvoluntary). 

These four reasons show that a process could be 
terminated by the exit() system call or by the signal() 
system call. 
1) RT-process Termination using the exit()  system call 

As RT-processes can not send/receive messages using 
send()/receive() MINIX primitives (except to/from 
RTMTASK), if a RT-process invokes the exit() system call it 
is converted into a NRT-process before the MINIX exit() 
function could be invoked. That conversion is 
accomplished by the modified exit() library function that 
uses the services of RTMTASK. 
2) RT-process Termination using the signal() system call 

If a NRT-process sends a signal to a RT-process, the 
target is converted into a NRT-process before it can receive 
the signal. That conversion is accomplished by the 
modified check_sig() function of  the Memory Manager 
Server (MM) using the services of RTMTASK. 
3) Freeing RT-process resourses and housecleaning 

The RT-kernel makes some housecleaning tasks before 
converting RT-process into a NRT one to keep the system 
resouces and concistency. Those tasks free unused RT-

resources like virtual timers, mailboxes, etc. detailed as 
following: 

- Any RT-process that have a synchronous message 
waiting in the Mailbox of the terminating RT-process is 
woken up and the rtm_send() system call returns an error 
code. 

- A MT_SIGNAL message is sent to the terminating RT-
process watchdog. 

- A MT_SIGNAL message is sent to all process with the 
watchdog field equals to the terminating RT-process. The 
watchdog fields are set to HARDWARE. 

- All RT-interrupt descriptors watchdog fields equals to 
the terminating RT-process are set to HARDWARE. 

- All asyncronous messages sent by the terminating RT-
process to other mailboxes are removed. 

The RT-kernel frees the terminating RT-process mailbox 
and virtual timers. 

V. RT-MINIXV2 PROCESS SCHEDULER 

A. The RT-Process Scheduler 
The process scheduler is the component of the kernel 

that selects which process to run next. The scheduler can be 
viewed as the code that divides, using a defined policy, the 
finite resource of processor time between the runnable 
processes on a system. 

The set of rules used to determine when and how to 
select a new process to run is called scheduling policy[6]. 
A scheduler's policy often determines the overall feel of a 
system and is responsible for optimally utilizing processor 
time. The policy behind  RT-MINIXv2 scheduler is simple: 

”A priority scheduled real-time system must ensure that 
the highest priority runnable process can start to run in a 
bounded time—and the bound needs to be small”. [7] 

The RT-scheduler always selects the highest priority 
runnable process for execution. All unvoluntary context 
switches are triggered by interrupts. Timer interrupts can 
cause preemption due to Timer-Driven process activation. 
If the priority of the activated process is higher than the 
priority of the currently running process, the execution of 
current is interrupted and the RT-scheduler is invoked to 
select another RT-process to run. The RT-scheduler tries to 
find a ready RT-process with the highest priority. If there 
are not such process, the MINIX process scheduler is 
called. 

The RT-scheduler uses an optimized process-selection 
algorithm, based on a set of priority queues and a bitmap 
[8]. Each bit in the bitmap represents a priority queue. If a 
bit is set, it means that at least one process is ready in that 
queue. 

Typically, the bitmap is scanned for the highest priority 
non-empty queue, and the first process in that queue is 
selected to run. 

The RT-scheduler implements fully O(1) scheduling. 
The algorithm completes in constant-time, regardless of the 
number of running processes. 

RT-MINIXv2 does not use a timeslice for preempting a 
RT-process. Only a higher priority RT-process can preempt 
the running process or it must relinquish the CPU by itself. 

When a higher priority RT-process enters the RT-READY 
state, the kernel checks whether its priority is higher than 
the priority of the currently executing RT-process. If it is, 
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the RT-scheduler is invoked to pick a new RT-process to 
run (presumably the process that just became runnable).  

B. Process Priorities 
A common type of scheduling algorithm is priority-based 

scheduling. Processes with a higher priority will run before 
those with a lower priority, while processes with the same 
priority are scheduled round-robin (one after the next, 
repeating). 
1) NRT-Process Priorities 

Minix scheduler uses multiple queue-scheduling 
algorithms for all the processes. They are: 

- TASK_Q: with the highest priority. 
- SERVER_Q: with a medium priority. 
- USER_Q: with the lowest priority. 
All process in the same queue have the same priority and 

the process scheduler selects the next runnable process for 
execution in FCFS order for tasks and servers and in FIFO 
order for user level processes. 
2) RT-Process Priorities 

A RT-processes can have a scheduling priority ranging 
from 0 to 15; low numeric values correspond to high 
priorities. A RT-process has both a base priority and an 
effective priority and is scheduled in accordance with the 
latter.  

The RT-process itself can set its base and effective 
priority together, but the effective priority may be changed 
by the Basic Priority Inheritance Protocol [9] implemented 
in RT-Interprocess Communications (RT-IPC). 

The RT-ready queue is implemented as 16 separate 
queues, one for each priority. Each ready RT-process is 
appended to the queue corresponding to its effective 
priority field in FIFO order. The first process descriptor in 
the highest priority queue will be selected to run. 

The priority field is also used by the RT-kernel to reduce 
the interrupt blocking time. Only those interrupt handlers 
with higher priorities are executed while the current RT-
process is running [3]. 

If  all RT-queues are empty, the MINIX scheduler is 
invoked to select a NRT-process for execution. 

C. Priority Queues Management 
To manage the RT-ready queues the RT-kernel uses the 

following data structures: 
- A set of queue descriptors: It assign one queue 

descriptor for each priority level. 
- A priority bitmap: Each bit of this bitmap is 

allocated for a priority queue descriptor. Initially, all 
the bits are zero indicating that all queues are empty. 

When a RT-process becomes runnable (that is, its state 
becomes RT-READY), the corresponding bit to its priority 
is set in bitmap, and the process descriptor is appended to 
the RT-ready queue in accordance with its priority. 

Finding the highest priority RT-process on the system is 
therefore only a matter of finding the first bit set in the 
priority bitmap. Because the number of priorities is fixed, 
the time to complete a search is constant and unaffected by 
the number of running processes on the system. 

Each priority queue descriptor have two pointers, one for 
the head and one for the tail of the queue. The insertions in 
the queue can be in FIFO or LIFO order. Processes of the 
same priority will be managed under a FIFO policy. A 

process that inherits priority by RT-IPC must be inserted 
and removed from the queues in LIFO order. 

Each queue descriptor also contains a field named inQ 
that keeps the current number of runnable RT-processes in 
the queue.  

A set of RT-kernel helper functions let system 
programmers append, insert or remove process descriptors 
into/from priority queues. 

VI. CONCLUSIONS 
RT-MINIXv2 subkernel architecture, source code 

readability and MINIX compatibility make it suitable for 
course assignments and Real-Time project developments. 
Its microkernel have simple process management and 
efficient scheduling that make it a good choice to conduct 
RT-experiences as implement Rate Monotonic or Deadline 
Monotonic  algorithms with simple changes. 

Time Management, Real-Time Interprocess 
Communications and Statistics Collections features are 
being added to RT-MINIXv2, at time of this writing, 
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