
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326446840

Testing Autonomous Cars for Feature Interaction Failures using Many-Objective

Search

Conference Paper · July 2018

CITATIONS

0

READS

40

5 authors, including:

Some of the authors of this publication are also working on these related projects:

ModelME: Model-Driven Software Engineering for the Maritime and Energy Industry View project

ModelFusion: Model Management for Distributed Software Development View project

Annibale Panichella

Delft University of Technology

68 PUBLICATIONS 804 CITATIONS

SEE PROFILE

Shiva Nejati

University of Luxembourg

65 PUBLICATIONS 1,035 CITATIONS

SEE PROFILE

Lionel C. Briand

Simula Research Laboratory

281 PUBLICATIONS 16,361 CITATIONS

SEE PROFILE

All content following this page was uploaded by Annibale Panichella on 17 July 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326446840_Testing_Autonomous_Cars_for_Feature_Interaction_Failures_using_Many-Objective_Search?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326446840_Testing_Autonomous_Cars_for_Feature_Interaction_Failures_using_Many-Objective_Search?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ModelME-Model-Driven-Software-Engineering-for-the-Maritime-and-Energy-Industry?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ModelFusion-Model-Management-for-Distributed-Software-Development?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annibale_Panichella?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annibale_Panichella?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Delft_University_of_Technology?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annibale_Panichella?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva_Nejati?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva_Nejati?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Luxembourg?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva_Nejati?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Briand?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Briand?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Simula_Research_Laboratory?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel_Briand?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Annibale_Panichella?enrichId=rgreq-3a58736e29aa14f8d2a4ea4eaa7b58e8-XXX&enrichSource=Y292ZXJQYWdlOzMyNjQ0Njg0MDtBUzo2NDkzOTYxMzE3NDU3OTJAMTUzMTgzOTUxMTI5Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Testing Autonomous Cars for Feature Interaction
Failures using Many-Objective Search

Raja Ben Abdessalem∗, Annibale Panichella∗†, Shiva Nejati∗, Lionel C. Briand∗, Thomas Stifter‡
∗SnT Centre, University of Luxembourg
†Delft University of Technology
‡IEE S.A., Luxembourg

{benabdessalem,panichella, nejati,briand}@svv.lu, thomas.stifter@iee.lu

Abstract—Complex systems such as autonomous cars are
typically built as a composition of features that are independent
units of functionality. Features tend to interact and impact one
another’s behavior in unknown ways. A challenge is to detect
and manage feature interactions, in particular, those that violate
system requirements, hence leading to failures. In this paper,
we propose a technique to detect feature interaction failures by
casting our approach into a search-based test generation problem.
We define a set of hybrid test objectives (distance functions) that
combine traditional coverage-based heuristics with new heuristics
specifically aimed at revealing feature interaction failures. We
develop a new search-based test generation algorithm, called
FITEST, that is guided by our hybrid test objectives. FITEST ex-
tends recently proposed many-objective evolutionary algorithms
to reduce the time required to compute fitness values. We evaluate
our approach using two versions of an industrial self-driving
system. Our results show that our hybrid test objectives are able
to identify more than twice as many feature interaction failures as
two baseline test objectives used in the software testing literature
(i.e., coverage-based and failure-based test objectives). Further,
the feedback from domain experts indicates that the detected
feature interaction failures represent real faults in their systems
that were not previously identified based on analysis of the system
features and their requirements.

Index Terms—Search-based Software Testing, Many-Objective
Optimization, Automotive Systems, Feature Interaction Problem

I. INTRODUCTION

Feature-based development aims to build complex systems
consisting of units of functionality known as features. In-
dividual features are typically traceable to specific system
requirements and are mostly independent and separate from
one another [1], [2], [3]. By closely mirroring requirements,
features make it easier for engineers to develop complex
systems iteratively and incrementally. Self-driving cars, and in
general automotive systems, are among well-known examples
of feature-based systems [4], [5], [6]. A self-driving system,
for example, may include the following features, each automat-
ing an independent driving function: An automated emergency
braking (AEB), an adaptive cruise control (ACC) and a traffic
sign recognition (TSR).

Although features are typically designed to be independent,
they may behave differently when composed with other fea-
tures. A feature interaction is a situation where one feature
impacts the behavior of another feature [3], [7], [8]. For
example, in a self-driving system, feature interactions are

likely to arise when several features control the same actuators.
More specifically, in a self-driving system, both ACC and
AEB control the braking actuator. A feature interaction may
arise when a braking command issued by AEB to immediately
stop the car is overridden by ACC commanding the car to
maintain the same speed as that of the front car. Some feature
interactions are desirable, and some may result in violations
of system safety requirements and are therefore undesired. For
example, the above feature interaction between AEB and ACC
may lead to an accident, and hence, is undesirable.

The feature interaction problem has been extensively studied
in the literature [3], [7], [8], [9]. Some techniques focus on
identifying feature interactions at the requirements-level by
analysis of formal or semi-formal requirements models [10],
[11], [12]. Several techniques detect feature interaction errors
in implementations using test cases derived from feature
models capturing features and their dependencies [13], [14],
[15], [16]. Other approaches devise design and architectural
resolution strategies to eliminate at runtime undesired feature
interactions identified at the requirements-level [17], [18], [3],
[5]. For self-driving systems, however, feature interactions
should be identified as early as possible and before the imple-
mentation stage since late resolution of undesired interactions
can be too expensive and may involve changing hardware com-
ponents. Further, feature interactions in self-driving systems
are numerous, complex and depend on several factors such as
the characteristics of sensors and actuators, car and pedestrian
dynamics, weather condition, road traffic and sidewalk objects.
Without effective and automated assistance, engineers cannot
detect undesired feature interactions within the space of all
possible interactions and cannot assess the impact of complex
environmental factors on feature interactions.

In this paper, we develop an automated approach to detect
undesired feature interactions in self-driving systems at an
early stage. Our approach identifies undesired feature inter-
actions based on executable function models of self-driving
systems embedded into a realistic simulator capturing the self-
driving system hardware and environment. Building function
models at an early stage is standard practice in model-based
development of control systems and is commonly followed
by the automotive and aerospace industry [19], [20], [21].
Function modeling takes place after identification of system
requirements and prior to software design and architecture

activities. Function models of control systems capture algorith-
mic behaviors of software components and physic dynamics
of hardware components. As is common in the automotive and
aerospace industry, the function models and the simulator of
the self-driving system used in this paper are specified in the
Matlab/Simulink language [22].

In this paper, we cast the problem of detecting unde-
sired feature interactions into a search-based testing problem.
Specifically, we aim to generate test inputs that expose unde-
sired feature interactions when applied to executable function
models of self-driving systems. Search-based techniques have
been successfully applied to simulation-based testing of con-
trol systems and self-driving features [23], [24], [25], [26],
[27], [28] as well as various other testing problems such as
unit testing [29], [30], [31], regression testing [32], [33] and
optimizing machine learning components [34].
Contributions. Our contributions are as follows:

First, we define novel hybrid test objectives that determine
how far candidate tests are from detecting undesired interac-
tions. Our test objectives combine three different heuristics:
(i) A branch coverage heuristic [29] ensuring that the gen-
erated test cases exercise all branches of the component(s)
integrating features. (ii) A failure-based heuristic based on
system safety requirements ensuring that test cases stress the
system into breaking its safety requirements. (iii) An unsafe
overriding heuristic that aims to exhibit system behaviors
where some feature output is overridden by other features such
that some system safety requirements may be violated.

Second, we introduce FITEST (Feature Interaction
TESTing), a new many-objective test generation algorithm
to detect undesired feature interactions. We opt for a many-
objective optimization algorithm since test generation in our
context is driven by many competing test objectives resulting
from the combination of heuristics above. Specifically,
FITEST builds on the recently proposed many-objective
genetic algorithms [35], [36] that effectively generate test
cases satisfying a large number of test objectives. In our
work, computing test objectives is expensive. Hence, at each
iteration, FITEST dynamically selects the minimum number
of test cases closest to satisfying test objectives, thus reducing
the total number of fitness computations.

Third, we evaluate FITEST using two industrial self-driving
systems from our partner company IEE [37]. Both systems
represent a (partial) self-driving car consisting of four features.
The engineers at Company IEE had developed alternative
strategies to resolve the known feature interactions in these two
systems. FITEST, however, was able to identify, on average,
5.9 and 7.2 undesired feature interactions in the two systems,
respectively. The engineers confirmed that the detected in-
teractions represent real faults that were not a priori known
to them1. Further, we compared our hybrid test objectives
used by FITEST with two baseline test objectives from the
software testing literature (namely, coverage-based [29], [31]
and failure-based test objectives [27], [23], [39], [40]). Our

1The material we used to get the industry feedback is available online [38].

System Under Test (SUT)

...

sensors

cameras

feature 1

feature 2

feature n

 Integration
component actuators

Fig. 1. Overview of a typical function model capturing the software subsystem
(SUT) of a self-driving car.

results show that our hybrid test objectives are able to identify
more than twice as many feature interaction failures as the
coverage-based and failure-based test objectives.
Structure. Section II motivates our work. Section III presents
our approach. Section IV describes our evaluation. Section V
compares with related work. Section VI concludes the paper.

II. MOTIVATION

Figure 1 shows an overview of a typical function model
capturing the software subsystem of a self-driving car. The sys-
tem under test (SUT) consists of a set of self-driving features
and a component capturing the decision algorithm combining
feature outputs. SUT receives its inputs from sensors/cameras
and sends its outputs to actuators. Both inputs and outputs
are sequences of timestamped values. The entire SUT runs
iteratively at regular time steps. At every time step, the features
receive sensor/camera values issued in that step, and output
values are computed and sent to actuators by the end of the
step. Each feature controls one or more actuators. Actuators
may receive commands from more than one feature at the same
time step, and sometimes these commands are conflicting.
The integration component has to generate final outputs to
actuators after resolving conflicting feature outputs.

As discussed in Section I, our goal is to identify feature
interactions at the requirements-level and in terms of system
functional behavior. Hence, we base our analysis on function
models specifying algorithmic and control behaviors. Feature
interaction failures due to software architecture and design
issues are not studied in this paper.

We use a case study system, called SafeDrive, from Com-
pany IEE. SafeDrive contains the following four self-driving
features: Autonomous Cruise Control (ACC), Traffic Sign
Recognition (TSR), Pedestrian Protection (PP), and Automated
Emergency Braking (AEB). ACC automatically adjusts the car
speed and direction to maintain a safe distance from a car
ahead (or a leading car). TSR detects traffic signs and applies
appropriate braking, acceleration or steering commands to
follow the traffic rules. PP detects pedestrians in front of a car
with whom there is a risk of collision and applies a braking
command if needed. AEB is the same as PP but it prevents
accidents with objects other than pedestrians. Once the risk
of an accident is over and the road is clear, both PP and
AEB issue acceleration commands to bring back the car to
the same speed that the car had before their intervention. All
the features generate braking and acceleration commands to

respectively control the brake and the throttle actuators. TSR
and ACC, additionally, generate steering commands.

The SafeDrive features may issue conflicting commands to
the same actuators. For example, Scenario-1: ACC orders the
car to accelerate, while a pedestrian starts crossing the road.
Hence, at the same time, PP starts sending braking commands
to avoid hitting the pedestrian. Scenario-2: The car reaches an
intersection while the traffic light turning from orange to red.
ACC orders the car to accelerate since the leading car has also
accelerated to pass the intersection while the light is orange.
At the same time, TSR orders to brake since it detects that a
red light is about to come.

When feature interactions are known, engineers can develop
the decision logic of the integration component (see Figure 1)
such that the interactions do not lead to failures (e.g., using
existing feature interaction resolution techniques [3], [5]). For
example, for Scenario-1, engineers may decide to prioritize
the braking command of PP over the acceleration command of
ACC to avoid hitting a pedestrian. The resolution strategy for
Scenario-2 can be prioritizing TSR if the car can safely stop
by the traffic light, and otherwise, prioritizing ACC. However,
feature interactions in SafeDrive are numerous and many of
them may not be known, particularly at early development
stages. Further, the feature interaction resolution strategies
cannot always be determined statically and may depend on
complex environment factors. For example, deciding “if the
car can safely stop” in the resolution strategy for Scenario-2
depends on the speed and the position of the car, the distance
to the car behind, road topology and the weather condition.
Therefore, we need techniques that, at early development
stages, (1) detect undesired feature interactions in SafeDrive,
and (2) test whether the proposed resolution strategies can
avoid failures under different environment conditions.

In the next sections, we present and evaluate a technique
that tests the functional behavior of autonomous cars to detect
their undesired feature interactions. Our technique accounts
for the impact of the environment factors on the self-driving
system behavior. It, further, ensures that feature interaction
resolution strategies devised by engineers satisfy system safety
requirements under different environment conditions. We note
that in Section III-C, we will provide a precise formalization of
the context upon which we build. The formalism is generic and
based on simple assumptions that can be accommodated by
many feature-based systems. Hence, in addition to autonomous
cars, our work applies to any feature-based system expressible
using our formalism.

III. APPROACH

In this section, we present our feature interaction detection
technique. As discussed earlier, our technique generates test
inputs for function models of self-driving systems, exposing
their undesired feature interactions. Section III-A describes
how we integrate the function models into a high-fidelity,
physics-based simulator for self-driving systems. Section III-B
characterizes the test inputs and outputs for self-driving sys-
tems. Section III-C introduces our hybrid test objectives.

SUT

Simulator

Model of the
(ego) car or
the physical

plant Pedestrians

Other cars

- Roads
- Traffic signs
- Weather

Outputs
Time-stamped vectors for:
- the SUT outputs
- the states of the physical
plant and the mobile
environment objects

sensors

cameras

actuators

Environment

mobile objects

static properties

Inputs
- the initial state of the
physical plant and the
mobile environment
objects
- the static environment
aspects

Fig. 2. Early testing of control system function models using simulators.

Section III-D presents FITEST, our proposed many-objective
test generation algorithm that utilizes our test objectives to
generate test inputs revealing feature interaction failures.

A. Testing Feature-Based Control Systems

Testing Cyber-Physical Systems (CPSs) at early stages is
generally performed using simulators. To test the function
model in Figure 1, we connect the SUT model to a simulator
such that it receives inputs from the sensor and camera models
of the simulator and sends its outputs to the actuator models of
the simulator (see Figure 2). The sensor, camera and actuator
models are within a physical model of a car (or a physical plant
according to general CPS terminology) in the simulator. To
run the simulator, we specify the initial state of the simulator
physical plant and mobile environment objects as well as the
static environment properties (e.g., weather condition and road
shapes for self-driving systems). The simulator can execute the
SUT in a feedback loop with the plant and the environment.
For SafeDrive, we use PreScan, a physics-based simulator for
self-driving systems [41]. PreScan relies on dynamic Simulink
models to compute movements of cars and pedestrians and is
able to capture the environment static properties such as the
weather condition and the road topology. Some examples of
SafeDrive simulations are available online [38].

B. Test Inputs and Outputs

The test inputs for a self-driving system are the inputs
required to execute the simulation framework in Figure 2.
For example, to test SafeDrive, we start by instantiating the
simulation framework so that the simulator is able to exercise
the behaviors of the PP, AEB, TSR and ACC features. Our
simulation framework contains the following objects: (1) An
ego car equipped with SafeDrive, (2) a leading car to test
both the ACC and the AEB features of the ego car, and (3) a
pedestrian that crosses the road starting from an initial position
on the sidewalk and is used to exercise PP. The simulation
environment, further, includes one traffic sign to test the TSR
feature. We only consider a stop sign or a speed limit sign for
our case study. This setup is meant to reduce the complexity
of simulations and was suggested by the domain experts.

The test inputs of SafeDrive are shown in Figure 3. They
include the following variables: (1) The initial position xe0,
ye0 and the initial speed ve0 of the ego car. (2) The initial
position xl0, yl0 and the initial speed vl0 of the leading car.

xe
0 xl

0xp
0

yp
0

ye
0, y

l
0

✓p

xts x � axis

y � axis

~vp
0

~ve
0

~vl
0

X = (xp
0, y

p
0 , ✓p, ~vp

0 , ~ve
0,

~vl
0, x

l
0, x

ts, fg)Test input vector

Fig. 3. Test inputs required to simulate SafeDrive, our case study system.

(3) The initial position xp0, yp0 , the initial speed vp0 and the
orientation θp of the pedestrian. (4) The position xts of the
traffic sign that varies along the x-axis, but is fixed along the
y-axis. (5) The fog degree fg . In our simulator, among different
weather-related properties (e.g., snow and rain), the fog level
has the largest impact on the object detection capabilities of
SafeDrive. Hence, we include the fog level in the test inputs.

All the above variables except for fg are float numbers vary-
ing within ranges specified by domain experts. The variable
fg is an enumeration specifying ten different degrees of fog.
In addition to the domain value ranges, there are often some
constraints over test inputs to ensure that simulations start
from a valid and meaningful state. Specifically, we have the
following two constraints for SafeDrive: (i) The ego car starts
behind the leading car with a safety distance gap, denoted sd ,
and with a speed close to the speed of the leading car. This
constraint is specified as follows: sd − ε ≤ xl0 − xe0 ≤ sd + ε
and |ve0−vl0| ≤ ε′ where ε and ε′ are two small constants, and
sd , which is the safety distance gap between the ego and the
leading cars, is determined based on the car speeds. (ii) The
traffic sign is located within a sufficiently long distance from
the ego car to give enough time to the TSR feature to react
(i.e., |xts − xe0| < c where c is constant value). Finally, to
simulate the system, we need to specify the duration of the
simulation T and the simulation step size δ.

As shown in Figure 2, the simulator outputs are time-
stamped vectors specifying (1) SUT outputs, (2) states of
the physical plants and (3) states of any mobile environment
object. All these outputs are vectors with T

δ elements where
the element at position i specifies the output at time i · δ.
For example, Figure 4 illustrates the SUT outputs generated
by simulating SafeDrive. Specifically, the SUT outputs in that
figure include both the outputs of each feature inside the SUT
and the output of the integration component, i.e., the final
command vector sent to the actuators.

C. Hybrid Test Objectives

Our test objectives aim to guide the test generation process
towards test inputs that reveal undesired feature interactions.
We first present our formal notation and assumptions and then
we introduce our test objectives. Note that since in this paper,
we are primarily interested in the feature interaction problem,
we design our test objectives such that they focus on detecting
failures that arise due to feature interactions, but not failures
that arise due to an individual feature being faulty.

PP

AEB

bPP
aPP

TSR

aAEB

bAEB

aTSRbTSR sTSR

ACC

sa

b

 : braking
 : acceleration
 : steering

b
a
s

if (condition)

IntC

T

�

0

T

�

0 40%(bAEB (0))

40%(bAEB (1))

80%(bPP (2))

80%(bPP (3))

80%(bPP (T/�))

....

80%

80%

80%
80%

...
T

�

0

PP
40%
40%

...
T

�

0

bACCaACCsACC

T

�

0

bPP

20%

0%

60%

40%

Fig. 4. Actuator command vectors generated at the feature-level and at the
system-level by simulating SafeDrive.

TABLE I
SAFETY REQUIREMENTS AND FAILURE DISTANCE FUNCTIONS FOR

SafeDrive.

Feature Requirement Failure distance functions (FD1, . . . ,FD5)

PP No collision with
pedestrians

FD1(i) is the distance between the ego car and the
pedestrian at step i.

AEB No collision with
cars

FD2(i) is the distance between the ego car and the
leading car at step i.

TSR Stop at a stop sign Let u(i) be the speed of the ego car at time step i
if a stop sign is detected, and let u(i) = 0 if there
is no stop sign. We define FD3(i) = 0 if u(i) ≥
5km/h; FD3(i) = 1

u(i)
if u(i) 6= 0; and otherwise,

FD3(i) = 1.
TSR Respect the speed

limit
Let u′(i) be the difference between the speed of the
ego car and the speed limit at step i if a speed-
limit sign is detected, and let u′(i) = 0 if there
is no speed-limit sign. We define FD4(i) = 0 if
u′(i) ≥ 10km/h; FD4(i) = 1

u′(i) if u′(i) 6= 0;
and otherwise, FD4(i) = 1.

ACC Respect the safety
distance

FD5(i) is the absolute difference between the safety
distance sd and FD2(i).

Notation. We define a feature-based control system F as a
tuple (f1, . . . , fn, IntC) where f1, . . . , fn are features and
IntC is an integration component. The system F controls a set
Act of actuators. Each feature fi controls a set Act fi ⊆ Act
of actuators. Since we are interested in identifying feature
interaction failures and not failures due to errors inside individ-
ual features, our approach does not require any visibility into
the internals of features. But, in our work, IntC is a white-
box component. The IntC behavior is typically conditional
where each condition checks a specific feature interaction
situation and resolves potential conflicts that may arise under
that condition. We assume F has a set of safety requirements
such that each requirement is related to one feature which is re-
sponsible for the satisfaction of that requirement. For example,
the second column of Table I shows the safety requirements
for SafeDrive. The feature responsible for satisfying each
requirement is shown in the first column.

As discussed earlier, testing F is performed by connecting
F to a simulation framework (see Figure 2). A test case for
F is a vector X of inputs required to execute the simulation
framework into which F is embedded (e.g., Figure 3 shows the
test input vector for SafeDrive). The test output of F includes:

(1) a vector vfact generated by every feature f and for every
actuator act ∈ Act f ; (2) a vector vact generated by IntC for
each actuator act ∈ Act ; and (3) a trajectory vector for the
physical plant and every mobile environment object.

Test objectives. A key aspect in search-based software test-
ing [29], [42] is the notion of distance functions D(.) that
measure how far a candidate test X is from reaching testing
targets (e.g., covering branches in white-box testing). Our
testing targets aim to reveal undesired feature interactions.
An undesired feature interaction is revealed when: (1) Some
safety requirement r is violated such that (2) the integration
component (i.e., IntC) overrides the output of the feature
responsible for r. We note that if r is violated while IntC
selects the output of the feature responsible for r, then the
violation is likely to be due to the internals of that feature
and not due to feature interactions. Therefore, we define two
distance functions, namely failure distance and unsafe over-
riding distance to respectively capture the conditions (1) and
(2) above. Further, we ensure that the generated tests exercise
all branches of IntC . Hence, our third distance corresponds to
the well-known distance used in coverage-based testing [29].
In the following, we present each distance separately and then
we describe how we combine them to build our test objectives.

Coverage distance. First, the generated test cases have to
exercise every branch of IntC . Given that IntC is white-box,
we rely on two widely-used heuristics in branch coverage,
namely the approach level [29] and the normalized branch
distance [29], [31]. Each branch bi in IntC has its own
distance function BD i to minimize which is defined according
to the two heuristics above. The distance BD i is equal to zero
iff a candidate test case tc covers the associated branch bi.

Failure distance: The failure distance evaluates how close
the system F is into violating its safety requirements at each
simulation time step. For each system safety requirement
j ∈ {1, . . . ,m}, we define a failure distance FDj such that
FDj(i) = 0 iff requirement j is violated at time step i. FDj

is a black-box heuristic, i.e., it relies on system outputs only.
For example, the third column of Table I describes func-

tions FD1(i) to FD5(i) for the five safety requirements of
SafeDrive in the second column of that table. Since self-
driving safety requirements typically concern mobile envi-
ronment objects and physical plants, the failure distance is
computed based on the trajectories of the physical plant
and the environment mobile objects generated by simulation.
Recall that for each safety requirement of F , there is only
one feature that is responsible for its satisfaction. Hence,
each FDj is related to a feature f of F such that f is the
feature responsible for satisfying j. When any of the FD1(i)
to FD5(i) functions in Table I yields a zero value at step
i, it means that a requirement failure corresponding to that
function is detected. Further, small or large values of these
functions indicate that the system is, respectively, close to or
far from exhibiting a failure. For example, function FD1(i)
related to PP measures the distance between the ego car and
the pedestrian. A search algorithm guided by FD1 generates

simulations during which the distance between the ego car and
the pedestrian is minimized, hence increasing the likelihood
of an accident. As another example, the distance functions
related to the TSR requirements are defined as the inverse of
the speed of the ego car for the stop sign, and the inverse of
the difference between the speed of the ego car and the speed
limit for the speed limit sign. According to domain experts,
the stop sign requirement is certainly violated when the speed
of the car never falls below 5km/h after detecting the stop
sign, and the speed limit sign requirement is certainly violated
when the speed of the car exceeds the speed limit by more than
10km/h. For both cases we set the concerned failure function
to zero indicating that a safety violation has occurred.

Unsafe overriding distance: This distance function aims
to prioritize behaviors that violate safety requirements due
to errors inside IntC over the behaviors that fail due to
errors inside features. At each simulation time step, the IntC
component prioritizes the output of some feature and overrides
those of the rest. Recall that for each actuator act , IntC
always generates the vact vector, and every feature f generates
vfact iff f controls act (i.e., act ∈ Actf). If vact(i) = vfact(i),
it means at time step i, IntC prioritizes f over other features
controlling act . Dually, if vact(i) 6= vfact(i), it means at time
step i, IntC overrides the command issued by f for act .
For example, in Figure 4, the IntC component of SafeDrive
prioritizes AEB over the other three features to control the
braking actuator at time steps 0 and 1.

For an actuator act and at time step i, we say IntC unsafely
overrides f if the command at vact(i) is less safe than the
command at vfact(i) for act . We say a command c is less safe
than a command c′ for an actuator act , when act executing
c is more likely to break some requirement compared to act
executing c′. For example, in the SafeDrive system, a mild
and late braking more likely leads to violating one of the
requirements in Table I compared to a firm and early braking.
Dually, the requirements in Table I are more likely to fail when
we accelerate faster than when we accelerate more slowly.

Note that test cases that violate safety requirements without
IntC unsafely overriding any feature do not fail due to faults
in IntC . This is because, for such test cases, either IntC
does not override any decision of any individual feature or its
decision to override a feature does not increase the likelihood
of violating a safety requirement. Hence, such test cases fail
due to a fault in a feature. For IntC to be faulty, it is necessary
that vact unsafely overrides vfact in some simulation time step.
For each feature f , we define an unsafe overriding distance
UODf such that UODf = 0 iff IntC unsafely overrides the
output of f at least once during the simulation, and otherwise,
UODf > 0. Such a distance guides the search towards
generating tests that cause IntC to unsafely override f .

To compute UODf , we define UODact
f for each actuator

act controlled by f . For actuators where higher force values
are safer (e.g., braking), IntC unsafely overrides f when
vfact(i) > vact(i) (i.e., when, at step i, f orders to brake more
strongly than IntC). We use the traditional branch distance

for the greater-than condition [43] to translate this condition
into a distance function. That is, for such actuators, we define
UODact

f at each simulation step i, as follows:

UODact
f (i) =

{
vact (i)− v f

act (i), if v f
act (i) < vact (i)

0, otherwise

Dually, for actuators that lower force values are safer (e.g.,
acceleration), IntC unsafely overrides f when vact(i) >
vfact(i) (i.e., when the accelerating command of f is less
than that of IntC at step i). Following the traditional branch
distance for the less-than condition [43], we define UODact

f

for this kind of actuators as follows:

UODact
f (i) =

{
v f
act (i)− vact (i), if vact (i) < v f

act (i)
0, otherwise

We compute UODf (i) =
∑

act∈Act f UODact
f (i) where

each UODact
f is defined as either one of the above equations

depending on the type of act . The UODf function is our un-
safe overriding distance function. Specifically, UODf (i) = 0
implies that IntC unsafely overrides the output of f at step i.
Similarly, a small or large value of UODf (i) indicates that a
test case is, respectively, close to or far from causing IntC to
unsafely override f at step i.

Combined distances. We now describe how we combine
the three distance functions to obtain our final hybrid test
objectives for detecting undesired feature interactions. Note
that coverage distance, failure distance and unsafe overriding
distance have different units of measure (e.g., km/h, meters)
and different ranges. Thus, we first normalize these distances
before combining them into one single hybrid function. To this
aim, we rely on the well-known rational function ω1(x) =
x/(x + 1) since prior studies [44] have empirically shown
that, compared to other normalization functions, it provides
better guidance to the search for minimization problems (e.g.,
distance functions in our case). In the following, we denote
the normalized forms of the functions above as FD , UOD
and BD , respectively.

To maximize the likelihood of detecting undesired feature
interactions, we aim to execute every branch of IntC such
that while executing that branch, IntC unsafely overrides
every feature f , and further, its outputs violate every safety
requirement related to f . Therefore, for every branch j of
IntC , every safety requirement l of F , and every simulation
time step i, we define a hybrid distance Ωj,l(i) as follows:

Ωj,l(i) =

BDj(i) + UODmax + FDmax (1) If j is not covered (BDj(i) > 0)
UODf (i) + FDmax (2) If j is covered, but f is not unsafely

overridden (BDj(i) = 0 ∧UODf (i) > 0)
FD l(i) (3) Otherwise (BDj(i) = 0 ∧UODf (i) = 0)

where f is the feature responsible for the requirement l, while
FDmax = 1 and UODmax = 1, indicating the maximum
value of the normalized functions.

Each hybrid distance function Ωj,l(i) is defined for each
simulation step i. Corresponding to each hybrid distance func-
tion, we define a test objective Ωj,l for the entire simulation
time interval as follows: Ωj,l = Min{Ωj,l(i)}0≤i≤Tδ . Given a
test case tc, each test objective Ωj,l(tc) always yields a value

in [0..3]; Ωj,l(tc) > 2 indicates that tc has not covered branch
j; 2 ≥ Ωj,l(tc) > 1 indicates that tc has covered branch j,
but has not caused IntC to unsafely override some feature
f related to requirement l; 1 ≥ Ωj,l(tc) > 0 indicates that
tc has covered branch j, and has caused IntC to unsafely
override some feature f related to requirement l, but has not
violated requirement l; and finally, Ωj,l(tc) is zero when tc
has covered branch j, has caused IntC to unsafely override
some feature f related to l and has violated requirement l.

D. Search Algorithm

When testing a system we do not know a priori which safety
requirements may be violated. Neither do we know in which
branches of IntC the violations may be detected. Therefore,
we search for any violation of system safety requirements that
may arise when exercising any branch of IntC. This leads
to k × n test objectives where k is the number of branches
of IntC and n is the number of safety requirements. More
formally, given a feature-based control system F under test,
our test generation problem can be formulated as follows:

Definition. Let Ω = {Ω1,1, . . . ,Ωk,n} be the set of test
objectives for F , where k is the number of branches in IntC
and n is the number of safety requirements of F . Find a test
suite that covers as many objectives Ωi,j as possible.

Our problem is many-objective as we attempt to optimize a
relatively large number of test objectives. As a consequence,
we have to consider many-objective optimization algorithms,
which are a class of search algorithms suitably defined for
problems with more than three objectives. Various many-
objective metaheuristics have been proposed in the literature,
such as NSGA-III [45], HypE [46]. These algorithms are
designed to produce different alternative trade-offs that can
be made among the search objectives [47].

Recently, Panichella et al. [35], [36] argued that the purpose
of test case generation is to find test cases that separately cover
individual test objectives rather than finding solutions captur-
ing well-distributed and diverse trade-offs among the search
objectives. Hence, they introduced a new search algorithm,
namely MOSA [35], that (i) rewards test cases that cover at
least one objective over those that yield a low value on several
objectives without covering any; (ii) focuses the search on the
yet uncovered objectives; and (iii) stores all tests covering one
or more objectives into an archive. MOSA has been introduced
in the context of white-box unit testing and has shown to
outperform alternative search algorithms [35], [36].

In this paper, we introduce FITEST, a novel search algo-
rithm that extends MOSA and adapts it to testing feature-
based self-driving systems. Below, we describe the main loop
of FITEST whose pseudo-code is shown in Algorithms 1. We
then discuss the differences between FITEST and MOSA.

Main loop. As Algorithm 1 shows, FITEST starts by
generating an initial set P of randomly generated test cases
(line 2), called population. Each test case X ∈ P is a vector of
inputs required to simulate the SUT (e.g., see Figure 3). After
simulating each test X ∈ P , the test objectives Ωj,l for X are
computed based on the simulation results (see Section III-C).

Algorithm 1: Feature Interaction Testing (FITEST)
Input: Ω: Set of objectives
Result: A: Archive

1 begin
2 P ←− ADAPTIVE-RANDOM-POPULATION(| Ω |)
3 W ←− CALCULATE-OBJECTIVES(P , Ω)
4 [Ωc, Tc]←− GET-COVERED-OBJECTIVE(P ,W)
5 A←− Tc

6 Ω←− Ω− Ωc

7 while not (stop condition) do
8 Q←− RECOMBINE(P)
9 Q←− CORRECT-OFFSPRINGS(Q)

10 W ←− CALCULATE-OBJECTIVES(Q, Ω)
11 [Ωc, Tc]←− GET-COVERED-OBJECTIVE(P ,W)
12 A←− A ∪ Tc // Update the archive
13 Ω←− Ω− Ωc // Update the set of objectives
14 F0 ←− ENVIRONMENTAL-SELECTION(P ∪Q,Ω)
15 P ←− F0 // New population

16 return A

Next, tests are evolved through subsequent iterations (loop in
lines 7-16), called generations. In each generation, the binary
tournament selection [48] is used to select pairs of fittest test
cases for reproduction. During reproduction (line 8), two tests
(parents) are recombined to form new test cases (offsprings)
using the crossover and mutation operators. Finally, fittest tests
are selected among the parents and offsprings to form the
new population for the next generation (line 14). Below, we
describe the new and specific features of FITEST.

Initialization. The size of the initial population in FITEST
is equal to the number of test objectives. This is because, in
our context, running each single test case is expensive, taking
up to few minutes, as it requires running computationally
intensive simulations. Hence, in FITEST, we aim to cover
each test objective at most once by using at most one test
case. Therefore, we do not need to start the search with a
population larger than the number of test objectives.

We select the initial population such that it includes a
diverse and randomly selected set of test input vectors. This
is because we aim to include different traffic situations, (e.g.,
different trajectory angles and speeds of pedestrians) in our
initial population. To do so, we use an adaptive random search
algorithm [49], which is an extension of the naive random
search that attempts to maximize the Euclidean distance be-
tween the vectors selected in the input space. In contrast to
FITEST, the initial population in MOSA is a set of randomly
generated tests without any diversity mechanism, and the size
of the population is an input parameter of the algorithm.

Genetic recombination. Since our test inputs (i.e., X) are
vectors of float values (see Figure 3), we use two widely-used
genetic operators proposed for real number solution encodings:
the simulated binary crossover [50] (SBX) and the gaussian
mutation [51]. Prior studies [52], [51] show that, for numerical
vectors, these operators outperform the more classical ones.
In contrast, MOSA uses the classical single-point crossover
and uniform mutation implemented in EvoSuite [31] to handle
different types of test data, e.g., strings, Java objects, etc.

Correction operator. Recall from Section III-B that our

test inputs are characterized by constraints. Hence, genetic
operators may yield invalid tests (e.g., a test input where the
leading car is behind the ego car). To modify and correct
such cases, FITEST applies correction operators (line 9 in
Algorithm 1). For example, in SafeDrive, if after applying
genetic operators, the leading car position (xl0) and speed
(vlo), and the traffic sign position (xts) violate any of the
constraints described in Section III-B, we discard their values
and randomly select new values for these variables within
ranges enforced by the ego car position (xe0) and speed (ve0).

Archive. Similar to MOSA, every time new tests are
generated and evaluated (either at the beginning or during
the search), FITEST uses the GET-COVERED-OBJECTIVE
routine to identify newly covered objectives and the test
cases covering them. These objectives are removed from the
set of test objectives (line 6, 13) to not be used by the
environmental selection in the subsequent iterations. Further,
test cases covering the removed test objectives are put in
an archive [35], [36], [53] (i.e., A). The archive at the end
contains the FITEST results. Each test case in the archive
covers one of the test objectives being satisfied during the
search. Note that some test objectives may not be covered
within the search time or they may be infeasible (unreachable).

Environmental selection. In FITEST, at each iteration, a
new population with a size not necessarily the same as the
previous population size is formed (line 15 in Algorithm 1) by
selecting, for each uncovered test objective Ωi,j , the test case
in P ∪Q that is closest to covering that objective (preference
criterion [35]). The population size at each iteration is lower
than the number objectives. It can even be less than the number
of test objectives because a single test case may be selected
as the closest (fittest) test for multiple objectives. Further, the
population size is likely to decrease over iterations since, at
each iteration, test objectives are covered and excluded from
the environmental selection in the subsequent iterations.

The population size represents the main difference between
FITEST and similar search-based test generation algorithms.
In classical many-objective search algorithms, the environment
selection chooses a fixed number N of tests (i.e., to maintain
a constant population size) from offsprings and their parents
(i.e., from P ∪ Q) using the Pareto optimality [48], [54]
(i.e., selecting solutions that are non-dominated by any other
solutions in P ∪ Q). In MOSA, the population size is kept
constant as well but the selection is performed by first selecting
the test cases in the first front F0 built using the preference
criterion; then, if the size of F0 is less than N , MOSA uses
the Pareto optimality criterion to select enough test cases such
that in total N test cases are selected.

In contrast, FITEST minimizes the number of test cases
generated at each search iteration by evolving only test cases
that are closest to satisfying uncovered objectives, i.e., those in
F0. This helps reducing the search computation time compared
to existing many-objective search algorithms that typically
maintain and evolve a fixed number of solutions at each
iteration. This is particularly important in the context of our
work, since running each test case is expensive.

IV. EVALUATION

In this section, we evaluate our approach to detecting unde-
sired feature interactions using real-world automotive systems.

A. Research Questions

The goal of our study is to assess how effectively our
hybrid test objectives (hereafter referred to as Hybrid) guide
the search toward revealing feature interaction failures. As
described in Section III-C, Hybrid builds on three distance
functions: (1) coverage, (2) failure and (3) unsafe overriding.
Among these, coverage distance is a well-known heuristic
that has been extensively used in white-box testing [29], [29],
[31], [55]. For example, Fraser and Arcuri at al. [55] showed
that pure coverage-based distance can be used to generate
unit tests capable of detecting real faults. Variations of the
failure distance have also been used in different contexts to
generate tests revealing requirements violations [23], [39],
[40]. Therefore, we want to assess whether Hybrid provides
any benefits compared to pure coverage-based and failure-
based objectives. In particular, we formulate the following
research questions:

RQ. Does Hybrid reveal more feature interaction failures
compared to coverage-based and failure-based test objectives?

Coverage based-objectives, hereafter referred to as Cov,
correspond to the BD functions described in Section III-C
and are computed as the sum of the approach level [56] and
the normalized branch distance [56]. Therefore, Cov aims to
execute as many branches of IntC as possible.

Failure-based test objectives, hereafter referred as to Fail,
aim to generate test cases that execute as many branches
of IntC as possible while violating as many system safety
requirements as possible when executing each branch. Thus,
Fail is defined by combining branch distance BD and fail-
ure distance FD functions described in Section III-C. More
precisely, for each branch j of IntC and every safety re-
quirement l of F , a failure-based test objective is defined as
Min{Fail j,l(i)}0≤i≤Tδ where

Fail j,l(i) =

{
BDj(i) + FDmax if j is not covered
FD l(i) otherwise

In this paper, we focus our empirical evaluation on com-
paring Hybrid with alternative test objectives, but we do
not compare FITEST with alternative many-objective search
algorithms because, as discussed in Section III-D, our changes
to MOSA are primarily motivated by the practical needs
of (1) using genetic operators for numerical vectors (often
called real-coded operators [52], [51]) and (2) lowering the
running time of our algorithm by reducing the number of
(expensive) fitness computations at each generation. In our
preliminary experiments, running MOSA with its default pop-
ulation size of 50 [35] required more than 24 hours for only
10 generations. Further, previous studies showed that MOSA,
which is the algorithm underlying FITEST, outperforms other
alternative search-based algorithms in unit testing, such as
random search [57], whole suite search [57], [35], and other
many-objective evolutionary algorithms [36].

B. Case Study Systems

We evaluate our approach by applying it to two case study
systems developed by IEE. Both systems contain the four self-
driving features introduced in Section II. However since engi-
neers had developed two alternative sets of rules to prioritize
these features and to resolve their undesired interactions, they
developed two different function models for the integration
component (i.e., IntC). Due to confidentially reasons, we do
not share the details of the IntC models used in these two
systems. Both systems are developed in Matlab/Simulink and
can be integrated into PreScan, the simulator used in this paper.
We refer to these two systems as SafeDrive1 and SafeDrive2.

C. Experimental Settings

For the genetic operators used in FITEST, we use the param-
eter values suggested in the literature [58], [59], [48]: We use
the simulated binary crossover (SBX) with a crossover prob-
ability 0.60, as the recommended interval is [0.45, 0.95] [58],
[59]. The gaussian mutation changes the test inputs by adding
a random value selected from a normal distribution G(µ, σ)
with mean µ = 0 and variance σ2 = 1.0. As the guidelines
suggest [48], the mutation probability is set to 1/l where l is
the length of test inputs (chromosomes). In FITEST, we do not
need to manually set the population size since, as described
in Section III-D, it is dynamically updated at each generation.
The search stops when all the objectives are covered or when
the timeout of 12 hours is reached. We set a timeout of 12
hours because as we will discuss in Section IV-D, the search
results start to stabilize and reach a plateau within this time
budget. Further, according to domain experts, longer search
time budgets are not practical.

To account for the randomness of the search algorithm,
FITEST was executed 20 times on each case study system
and with each of the three test objectives. The total duration
of the experiment was 20 (repetitions) × 2 (systems) × 3
(test objectives) × 12 (hours) = 1440 hours (60 days). All
experiments were executed on the same machine with a 2.5
GHz Intel Core i7-4870HQ CPU and 16 GB DDR3 memory.

We use the number of feature interaction failures that each
of the test objectives in our study can reveal as our evaluation
metric. We compute this metric by automatically checking test
cases generated by each test objective to determine whether
or not they reveal a feature interaction failure. A test case
reveals a feature interaction failure iff: (1) it violates some
system safety requirement in Table I when it is applied to
a system consisting of multiple features, but (2) it does not
violate that same safety requirement when it is applied to the
feature responsible for the satisfaction of that requirement.
Specifically, a test case tc reveals a feature interaction if
FD i(tc) = 0 for some safety requirement i when tc is applied
to SafeDrive1 or SafeDrive2, but FD i(tc) > 0 when tc is
applied to the feature responsible for requirement i.

D. Results

In this section, we answer our research question by com-
paring Hybrid, Fail and Cov test objectives. Specifically, we

run FITEST with Hybrid, Fail and Cov as test objectives
separately and repeat each run for 20 times. Figures 5(a)
and (b) compare the number of feature interaction failures
identified over different runs of FITEST with Hybrid, Fail
and Cov applied to SafeDrive1 and SaveDrive2, respectively.
We show the results at every one-hour interval from 0 to
12h. As shown in the two figures, the average number of
feature interaction failures computed using Hybrid is always
larger than those identified by Fail and Cov. Specifically,
after 12h, on average, Hybrid is able to find 5.9 and 7.2
feature interaction failures for SafeDrive1 and SaveDrive2,
respectively. In contrast, Fail uncovers, on average, 2.1 and
2.8 feature interaction failures for SafeDrive1 and SaveDrive2,
respectively; and Cov only uncovers, on average, 0.4 and 1.8
feature interaction failures for SafeDrive1 and SaveDrive2,
respectively. Further, after executing the algorithms for 10h,
the results obtained by the three test objective alternatives
reach a plateau.

4 80 2 6 10 12
Time (h)

0
2

8
10

4
6

(a) SafeDrive1

(b) SafeDrive2

N
um

be
r o

f f
ea

tu
re

 in
te

ra
ct

io
n

fa
ilu

re
s

0
2

8
10

4
6

Hybrid (mean)

Fail (mean)
Cov (mean)

Fig. 5. The number of feature interaction failures obtained by Hybrid, Fail
and Cov over time for (a) SafeDrive1 and (b) SafeDrive2 systems.

Note that every run of FITEST with Hybrid, Fail and Cov
achieved 100% branch coverage on the function model of
the integration component (i.e., IntC) for both SafeDrive1
and SafeDrive2. Hence, Fail and Cov, despite being able to
exercise all branches of IntC, perform poorly in terms of the
number of feature interaction failures that they can reveal.
Further, we note that, among the Hybrid, Fail and Cov test
objectives, only Cov was fully achieved by the generated test
suites, while the Hybrid and Fail test objectives were only
partially achieved. This is expected since, as discussed in
Section III-D, Hybrid and Fail search for violations of every
safety requirement at every branch of IntC. Some of these
test objectives may be infeasible (uncoverable) because not
all safety requirements may be violated at every branch of
IntC . However, we cannot know a priori which objectives are
infeasible, and hence, we include all of them in our search.

We compare the results in Figure 5 using a statistical
test. Following existing guidelines [60], we use the non-
parametric pairwise Wilcoxon rank sum test [61] and the
Vargha-Delaney’s Â12 effect size [62]. Table II reports the

TABLE II
STATISTICAL TEST RESULTS COMPARING THE NUMBER OF FEATURE

INTERACTION FAILURES OBTAINED BY Hybrid, Fail AND Cov OVER TIME
FOR SafeDrive1 AND SafeDrive2 SYSTEMS (SEE FIGURE 5).

SafeDrive1 SafeDrive2
Hybrid vs. Cov Hybrid vs. Fail Hybrid vs. Cov Hybrid vs. Fail

time p-value Â12 p-value Â12 p-value Â12 p-value Â12

1h NA 0.5 (N) NA 0.5 (N) NA 0.5 (N) NA 0.5 (N)
2h 0.663 0.53 (N) 0.663 0.53 (N) 0.33 0.58 (S) 0.33 0.58 (S)
3h 8.83e-6 0.89 (L) 5.16e-5 0.86 (L) 0.003 0.77 (L) 0.009 0.73 (L)
4h 7.02e-8 0.98 (L) 4.68e-6 0.91 (L) 1.97e-7 0.97 (L) 5.27e-7 0.95 (L)
5h 3.08e-8 0.99 (L) 4.71e-7 0.95 (L) 9.97e-8 0.99 (L) 1.65e-7 0.98 (L)
6h 3.2e-8 1 (L) 1.43e-7 0.98 (L) 7.14e-8 0.99 (L) 1.0e-7 0.98 (L)
7h 3.32e-8 1 (L) 1.02e-7 0.98 (L) 5.52e-8 0.99 (L) 6.65e-8 0.99 (L)
8h 3.25e-8 1 (L) 7.78e-8 0.99 (L) 5.40e-8 1 (L) 4.74e-8 1 (L)
9h 2.9e-8 1 (L) 4.3e-8 1 (L) 5.54e-8 1 (L) 4.86e-8 1 (L)

10h 2.84e-8 1 (L) 4.16e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
11h 2.96e-8 1 (L) 4.4e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
12h 2.96e-8 1 (L) 4.23e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)

results of the statistical tests obtained when comparing the
number of feature interaction failures uncovered by Hybrid,
Fail and Cov, over time for SafeDrive1 and SafeDrive2. As
shown in the Table, the p-values related to the results produced
when the search time ranges between 3h and 12h are all lower
than 0.05 and the Â12 statistics show large effect sizes. Hence,
the number of feature interaction failures obtained by Hybrid
is significantly higher (with a large effect size) than those
obtained by Fail and Cov.

The answer to RQ is that our proposed test objectives (Hy-
brid) reveals significantly more feature interaction failures
compared to coverage-based and failure-based test objec-
tives. In particular, on average, Hybrid identifies more than
twice as many feature interaction failures as the coverage-
based and failure-based test objectives.

Feedback from domain experts. We conclude this section
by summarizing the qualitative feedback of the domain experts
from IEE with whom we have been collaborating on the
research presented in this paper. During two meetings, we
presented to our domain experts four test scenarios revealing
different feature interaction failures. The four test scenarios
were selected randomly among the ones detected by our
approach. Each test scenario tc was presented by showing:
(1) a video simulation of tc generated by PreScan based on
one of our case study systems (SafeDrive1 or SafeDrive2) and
violating one of the safety requirements in Table I and (2) a
video simulation of tc generated by PreScan based on running
only the feature related to the violated requirement. Note that
since tc reveals a feature interaction failure, the latter simula-
tion videos (i.e., the ones based on running individual features)
do not exhibit any requirements violation. After presenting
the simulations, we discussed with our domain experts each
failure, its root causes and whether or how it can be addressed
by modifying the current feature interaction resolution rules
implemented in IntC. We drew the following conclusions from
our discussions: (1) Our domain experts agreed with us that
the four failures were due to interactions between the features
and were not caused by faults in individual features, (2) they
confirmed that the failures were not previously known to them
and (3) they identified ways to modify or extend the integration
component (IntC) to avoid the failures. The simulations and

the detailed failure descriptions used in our meetings are
available online [38].

V. RELATED WORK

In this section, we discuss and compare with different
strands of related research in the areas of testing autonomous
cars, and testing and model checking feature-based systems.
Testing autonomous cars. Search-based approaches have
been used for black-box testing of driver-assistance fea-
tures [27], [63], [23], [24]. Bühler and Wegener use a single-
objective search algorithm to test a vehicle-to-vehicle braking
assistance [27] and an autonomous parking feature [63]. Ben
Abdessalem et. al. rely on multi-objective search [23] and
learnable evolutionary algorithms [24] to generate test cases
violating safety requirements of self-driving systems. Recently,
Tian et. al. [64] proposed a notion of neuron coverage and used
it to guide the generation of tests for neural networks used in
autonomous cars. None of these approaches study the feature
interaction problem in autonomous cars. We advance the
research on testing autonomous cars by devising test objectives
that specifically detect feature interaction failures. Our test
objectives combine existing software testing heuristics (i.e.,
branch-coverage [29], [30], [31] and failure-based [23], [27],
[40], [39]) with our proposed unsafe overriding heuristic. Fur-
ther, we tailor existing many-objective search algorithms [35],
[36] to detect feature interaction failures in our context.
Feature interactions in software product lines. In the
context of software product lines (SPL), testing approaches are
proposed to ensure product implementations satisfy their fea-
ture specifications [13], [14], [65]. These approaches largely
follow a model-based testing paradigm [66]. For example, they
use combinatorial testing to drive test cases and oracles from
feature models to verify individual products [13], [14]. Our
work, in contrast, is model testing [67]. Specifically, we take
advantage of the availability of executable function models
and test executable function models of the system and its
environment. Further, in contrast to the SPL testing work,
our approach does not need descriptions of features and their
dependencies to be provided.

Some SPL approaches are proposed to automatically de-
rive feature dependencies specifying valid feature combina-
tions [9], [68], [69]. For example, interactions between observ-
able feature behaviors (i.e., external feature interactions [9])
have been identified by static analysis of software code [68],
[69]. In contrast, our approach detects feature interactions
prior to any software coding. It dynamically detects undesired
feature interactions by testing function models capturing the
SUT and its environment.
Feature interaction detection via model checking. Several
approaches are proposed to detect feature interactions by
model checking requirements or design artifacts against formal
specifications [16], [6], [70], [71], [72]. For example, Apel et.
al. [16] verify features described in a formal feature-oriented
language against temporal logic properties [73]. Arora et. al.
verify features defined as state machines against live sequence
charts specifications. Dominguez et. al. [70] verify features

captured as StateFlows, and Sobotka and J. Novak [71]
specify features in timed automata [74]. Similar to our work,
these approaches verify early requirements and design models
against system requirements. However, our work differs with
this line of research in the following ways: First, most of
these approaches identify pairwise feature interactions only.
We can, however, identify feature interactions between an
arbitrary number of features. Second, these techniques model
system features only. However, to analyze autonomous cars,
we have to capture, in addition to features, system’s sensors
and actuators, and the system environment. Third, in contrast
to these approaches, our approach does not require additional
formal modeling. We take advantage of the availability of
function models, which are developed anyway in the CPS
domain, to test the system in its environment. Fourth, our func-
tion models use numerical and continuous Matlab/Simulink
computations to capture dynamics of cars and pedestrians.
These models are not, in general, amenable to model checking
due to scalability and incompatibility issues [25], [28], [75].
Therefore, as suggested in the recent research on testing CPS
models [25], [28], [75], [76], instead of model checking, we
rely on simulation-based testing guided by meta-heuristics to
analyze our function models.
Feature interaction resolution. Several approaches are pro-
posed to devise resolution strategies to eliminate undesired fea-
ture interactions, for example, by proposing specific feature-
oriented architectures [3], [18], by statically prioritizing fea-
tures [77], [17] or using runtime resolution mechanisms [78],
[5]. These techniques are complementary to our approach.
They can be used to develop the integration component (IntC)
to resolve undesired feature interactions, but our approach is
still necessary to test the system behavior and to determine
if the proposed resolution strategy can eliminate undesired
behaviors under different environment conditions.

VI. CONCLUSION

We presented a technique for detecting feature interaction
failures in the context of autonomous cars. Our technique
is based on analyzing executable function models typically
developed in the cyber physical domain to specify system
behaviors at early development stages. Our contributions over
prior work include: (1) casting the problem of detecting unde-
sired feature interactions into a search-based testing problem,
(2) defining a test guidance that combines existing search-
based test objectives with new heuristics specifically aimed
at revealing feature interaction failures, (3) tailoring existing
many-objective search algorithms [35], [36] to automatically
reveal feature interaction failures in a scalable way, and
(4) evaluating our approach using two versions of an industrial
self-driving system and demonstrating significant improve-
ment in feature interaction failure identification compared to
baseline search-based testing approaches. Finally, we note that
our research was motivated and carried out in the context of
a partnership with IEE. The feedback from domain experts
from IEE indicates that the detected feature interaction failures
represent real faults in their systems that were not previously

identified based on analysis of the system features and their
requirements.

In future, we plan to devise strategies to use feature inter-
action failures to localize faults and help engineers effectively
debug and refine their feature interaction resolution strategies.

REFERENCES

[1] K. Fisler and S. Krishnamurthi, “Decomposing verification by features,”
in Proceedings of the International Conference on Verified Software:
Theories, Tools and Experiments (VSTTE’05), Zurich, Switzerland,
2005.

[2] C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in
Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP’97), Jyvskyl, Finland, 1997, pp. 419–443.

[3] M. Jackson and P. Zave, “Distributed feature composition: a virtual
architecture for telecommunications services,” IEEE TSE, vol. 24, no. 10,
pp. 831–847, 1998.

[4] S. Bhne, K. Lauenroth, and K. Pohl, “Modelling features for multi-
criteria product-lines in the automotive industry.” in Proceedings of the
International Workshop on Software Engineering for Automotive Systems
(SEAS’04), co-located at ICSE’04, Edinburgh, UK, 2004, pp. 9–16.

[5] M. H. Zibaeenejad, C. Zhang, and J. M. Atlee, “Continuous variable-
specific resolutions of feature interactions,” in Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE’17).
Paderborn, Germany: ACM, 2017, pp. 408–418.

[6] S. Arora, P. Sampath, and S. Ramesh, “Resolving uncertainty in
automotive feature interactions,” in Proceedings of the International
Requirements Engineering Conference (RE’12), Chicago, Illinois, USA,
Sep 2012, pp. 21–30.

[7] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: a critical review and considered forecast,” Computer
Networks, vol. 41, no. 1, pp. 115–141, 2003.

[8] K. H. Braithwaite and J. M. Atlee, “Towards automated detection of
feature interactions,” in Proceedings of the International Workshop on
Feature Interactions in Telecommunications Systems (FIW’94). Ams-
terdam, Netherlands: IOS Press, 1994, pp. 36–59.

[9] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin,
“Exploring feature interactions in the wild: the new feature-interaction
challenge,” in Proceedings of the International Workshop on Feature-
Oriented Software Development (FOSD’13). Indianapolis, USA: ACM,
2013, pp. 1–8.

[10] P. Zave, “Feature interactions and formal specifications in telecommu-
nications,” Computer, vol. 26, no. 8, pp. 20–28, Aug 1993.

[11] J. Bredereke, “Families of formal requirements in telephone switching,”
in Proceedings of the International Workshop on Feature Interactions
in Telecommunications and Software Systems(FIW’00). Glasgow,
Scotland, UK: IOS Press, 2000, pp. 257–273.

[12] J. Blom, B. Jonsson, and L. Kempe, “Using temporal logic for modular
specification of telephone services,” in Proceedings of the Interna-
tional Workshop on Feature Interactions in Telecommunications Systems
(FIW’94). Amsterdam, Netherlands: IOS Press, 1994, pp. 197–216.

[13] S. Oster, M. Zink, M. Lochau, and M. Grechanik, “Pairwise feature-
interaction testing for spls: potentials and limitations,” in Proceedings
of the International Software Product Line Conference, Volume 2
(SPLC’11). Munich, Germany: ACM, 2011, p. 6.

[14] S. Patel, P. Gupta, and V. Shah, “Feature interaction testing of variability
intensive systems,” in Proceedings of the International Workshop on
Product Line Approaches in Software Engineering (PLEASE’13). San
Francisco, CA, USA: IEEE, 2013, pp. 53–56.

[15] S. Ferber, J. Haag, and J. Savolainen, “Feature interaction and depen-
dencies: Modeling features for reengineering a legacy product line,” in
Proceedings of the International Conference on Software Product Lines
(SPLC’02). San Diego, CA, USA: Springer, 2002, pp. 235–256.

[16] S. Apel, A. Von Rhein, T. ThüM, and C. KäStner, “Feature-interaction
detection based on feature-based specifications,” Computer Networks,
vol. 57, no. 12, pp. 2399–2409, 2013.

[17] J. D. Hay and J. M. Atlee, “Composing features and resolving interac-
tions,” in ACM SIGSOFT Software Engineering Notes (SEN’00), vol. 25,
no. 6. ACM, 2000, pp. 110–119.

[18] R. van der Linden, “Using an architecture to help beat feature in-
teraction,” in Proceedings of the International Workshop on Feature
Interactions in Telecommunications Systems (FIW’94). Amsterdam,
Netherlands: IOS Press, 1994, pp. 24–35.

[19] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing
for embedded systems. CRC press, 2017.

[20] G. A. Wainer, Discrete-event modeling and simulation: a practitioner’s
approach. CRC press, 2009.

[21] N. S. Nise, Control Systems Engineering, 4th ed. John-Wiely Sons,
2004.

[22] “Matlab/simulink,” https://nl.mathworks.com/products/simulink.html,
2018.

[23] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the International Conference on
Automated Software Engineering (ASE’16). Singapore: IEEE, 2016,
pp. 63–74.

[24] ——, “Testing vision-based control systems using learnable evolutionary
algorithms,” in Proceedings of the International Conference on Software
Engineering (ICSE’18). Gothenburg, Sweden: ACM, 2018, p. to appear.

[25] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Automated
test suite generation for time-continuous simulink models,” in Proceed-
ings of the International Conference on Software Engineering (ICSE’16).
Austin, TX, US: ACM, 2016, pp. 595–606.

[26] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull,
“Search-based automated testing of continuous controllers: Framework,
tool support, and case studies,” Information and Software Technology,
vol. 57, pp. 705–722, 2015.

[27] O. Bühler and J. Wegener, “Evolutionary functional testing,” Computers
& Operations Research, vol. 35, no. 10, pp. 3144–3160, 2008.

[28] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta,
“Probabilistic temporal logic falsification of cyber-physical systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 2s, p. 95, 2013.

[29] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[30] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’04), vol. 29, no. 4. Boston, MA, USA: ACM, 2004, pp. 119–
128.

[31] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[32] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, 2007.

[33] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selec-
tion,” in Proceedings of tthe ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA’07). London, UK: ACM,
2007, pp. 140–150.

[34] T. Suttorp and C. Igel, “Multi-objective optimization of support vector
machines,” in Multi-objective machine learning. -: Springer, 2006, pp.
199–220.

[35] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in Proceedings
of the International Conference on Software Testing, Verification and
Validation, (ICST’15), Graz, Austria, 2015, pp. 1–10.

[36] ——, “Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets,” IEEE Transactions on
Software Engineering, vol. 44, no. 2, pp. 122–158, Feb 2018.

[37] IEE, “International electronics & engineering,” https://www.iee.lu/,
2018.

[38] “Supplementary materials,” https://figshare.com/s/50193ea5652147d2f036,
2018.

[39] L. C. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems,”
Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp. 145–
170, 2006.

[40] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[41] TASS-International, “Prescan,” https://www.tassinternational.com/prescan,
2018.

[42] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys, vol. 45, no. 1, pp. 11:1–11:61, Dec 2012. [Online]. Available:
http://doi.acm.org/10.1145/2379776.2379787

[43] B. Korel, “Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, no. 8, pp. 870–879, 1990.

[44] A. Arcuri, “It really does matter how you normalize the branch distance
in search-based software testing,” Software Testing, Verification and
Reliability, vol. 23, no. 2, pp. 119–147, 2013. [Online]. Available:
https://doi.org/10.1002/stvr.457

[45] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: Solving problems with box constraints.” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[46] J. Bader and E. Zitzler, “Hype: An algorithm for fast hypervolume-
based many-objective optimization,” IEEE Transactions on Evolutionary
computation, vol. 19, no. 1, pp. 45–76, 2011.

[47] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 48, no. 1,
p. 13, 2015.

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2000.

[49] S. Luke, Essentials of Metaheuristics, 2nd ed. Fair-
fax, Virginie, USA: Lulu, 2013. [Online]. Available:
https://cs.gmu.edu/∼sean/book/metaheuristics/

[50] K. Deb, “Simulated binary crossover for continuous search space,”
Complex systems, vol. 9, pp. 115–148, 1995.

[51] K. Deb and D. Deb, “Analysing mutation schemes for real-parameter
genetic algorithms,” International Journal of Artificial Intelligence and
Soft Computing, vol. 4, no. 1, pp. 1–28, Feb 2014. [Online]. Available:
http://dx.doi.org/10.1504/IJAISC.2014.059280

[52] F. Herrera, M. Lozano, and A. M. Snchez, “A taxonomy for the
crossover operator for real-coded genetic algorithms: An experimental
study,” International Journal of Intelligent Systems, vol. 18, no. 3, pp.
309–338, 2003. [Online]. Available: http://dx.doi.org/10.1002/int.10091

[53] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed
investigation of the effectiveness of whole test suite generation,”
Empirical Software Engineering, vol. 22, no. 2, pp. 852–893, 2017.
[Online]. Available: https://doi.org/10.1007/s10664-015-9424-2

[54] K. Deb, “Multi-objective optimization,” in Search Methodologies.
Springer US, 2014, pp. 403–449.

[55] G. Fraser and A. Arcuri, “1600 faults in 100 projects: automatically
finding faults while achieving high coverage with evosuite,” Empirical
Software Engineering, vol. 20, no. 3, pp. 611–639, 2015.

[56] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing Verification and Reliability Journal, vol. 14, no. 2, pp.
105–156, 2004.

[57] J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for test suite generation,” in
Proceedings of the International Symposium on Search Based Software
Engineering (SSBSE’17), Paderborn, Germany, 2017, pp. 33–48.

[58] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in Proceedings of the International Conference
on Genetic Algorithms (ICGA’93). San Francisco, CA, USA: Morgan
Kaufmann Publishers, 1993, pp. 523–530.

[59] L. C. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems,”
Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp. 145–
170, 2006.

[60] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[61] J. A. Capon, Elementary Statistics for the Social Sciences: Study Guide.
Belmont, CA, USA: Wadsworth Publishing Company, 1991.

[62] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[63] O. Bühler and J. Wegener, “Automatic testing of an autonomous parking
system using evolutionary computation,” SAE Technical Paper, Tech.
Rep., 2004.

[64] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
International Conference on Software Engineering (ICSE’18). Gothen-
burg, Sweden: ACM, 2018, p. to appear.

[65] M. Lochau, S. Oster, U. Goltz, and A. Schürr, “Model-based pairwise
testing for feature interaction coverage in software product line engineer-
ing,” Software Quality Journal, vol. 20, no. 3-4, pp. 567–604, 2012.

[66] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[67] L. Briand, S. Nejati, M. Sabetzadeh, and D. Bianculli, “Testing the
untestable: model testing of complex software-intensive systems,” in
Proceedings of the International Conference on Software Engineering
Companion (ICSE’16). Austin, TX, US: ACM, 2016, pp. 789–792.

[68] S. Kolesnikov, N. Siegmund, C. Kästner, and S. Apel, “On the relation of
external and internal feature interactions: A case study,” arXiv preprint
arXiv:1712.07440, 2017.

[69] G. Ferreira, C. Kästner, J. Pfeffer, and S. Apel, “Characterizing complex-
ity of highly-configurable systems with variational call graphs: analyzing
configuration options interactions complexity in function calls,” in
Proceedings of the Symposium and Bootcamp on the Science of Security
(HotSoS’15). Urbana, IL, USA: ACM, 2015, p. 17.

[70] A. L. Juarez-Dominguez, N. A. Day, and J. J. Joyce, “Modelling feature
interactions in the automotive domain,” in Proceedings of the Inter-
national Workshop on Modeling in Software Engineering (MISE’08).
Leipzig, Germany: ACM, 2008, pp. 45–50.

[71] J. Sobotka and J. Novak, “Automation of automotive integration testing
process,” in Proceedings of the International Conference on Intelli-
gent Data Acquisition and Advanced Computing Systems (IDAACS’13),
vol. 1. Berlin, Germany: IEEE, 2013, pp. 349–352.

[72] M. Plath and M. Ryan, “Feature integration using a feature construct,”
Science of Computer Programming, vol. 41, no. 1, pp. 53–84, 2001.

[73] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[74] R. Alur, “Timed automata,” in Proceedings of the International Confer-
ence on Computer Aided Verification (CAV’99). Trento, Italy: Springer,
1999, pp. 8–22.

[75] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann, “Test generation
and test prioritization for simulink models with dynamic behavior,” IEEE
Transactions on Software Engineering, p. to appear, 2018.

[76] P. Zuliani, A. Platzer, and E. M. Clarke, “Bayesian statistical model
checking with application to stateflow/simulink verification,” Formal
Methods in System Design, vol. 43, no. 2, pp. 338–367, 2013.

[77] P. A. Zimmer and J. M. Atlee, “Ordering features by category,” Journal
of Systems and Software, vol. 85, no. 8, pp. 1782–1800, 2012.

[78] C. Bocovich and J. M. Atlee, “Variable-specific resolutions for feature
interactions,” in Proceedings of the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE’14). Hong Kong,
China: ACM, 2014, pp. 553–563.

View publication statsView publication stats

https://www.researchgate.net/publication/326446840

