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Abstract—Quantum Machine Learning methods are 

becoming a key component for various types of tasks making 

predictions or decisions based on datasets. Recent efforts and 

researches on quantum computing point out the significance of 

quantum speedup advantage, especially for learning processes 

that require enormous amount of computational resources. 

Advances in both quantum hardware design and hybrid 

quantum-classical software frameworks accommodate a 

paradigm shift from classical to quantum. In consideration with 

this quantum leap notion, we investigate the capability of 

variational quantum algorithms (VQA) on a real world problem 

of user localization dealing with the binary classification task. 

This paper introduces a VQA with four variants that differ in 

the number of layers related to the variational quantum circuit 

(VQC) part of the VQA. The samples from a publicly available 

user localization dataset are first preprocessed through 

padding, scaling and normalization. Next, they are mapped into 

three qubit quantum states using amplitude encoding as a data 

embedding scheme. Unitary transformation of the mapped 

quantum data in the VQC is followed by a measurement in 

computational basis to produce predictions for the labels. The 

error between true and predicted labels is computed in a 

classical manner and a cost function minimization process is 

executed with the aid of gradient descent algorithm. The 

updated training parameters from the optimization stage are 

fed into the VQC and this process is repeated until the learnable 

parameters converge. The simulation results demonstrate that 

the designed VQA for binary classification achieves an accuracy 

value of 99% in the training phase. Moreover, the ratio of 

predicted labels to true labels approaches to 93% during the 

validation of actual user locations based on the signal strength 

received from the routers that are positioned at different places 

in a facility. 

Keywords—quantum machine learning, user localization, 

variational quantum algorithm, variational quantum circuit, 

amplitude encoding 

I. INTRODUCTION 

Quantum computing is a fascinating computer science 
field that has attracted the attention of scientists and 
professionals from various disciplines. Although the intense 
curiosity might be reasoned in a variety of ways, the foremost 
argument that can be raised against the profound interest in 

this emerging technology is twofold: (1) Current methods in 
producing classical computers are in the eve of encountering 
size related problems. As electronic devices get smaller, 
quantum effects start to influence the precise functioning of 
computers [1]. (2) Quantum computation is proved to be much 
more efficient than its classical counterpart for some 
computational tasks of practical importance such as integer 
factorization [2], search for an element in unstructured 
database [3] and simulation of quantum systems [4].  

The massive computational power of quantum computers 
has led major IT companies (e.g., IBM, Google, and D-Wave) 
to produce quantum hardware, some of which are exposed via 
cloud platforms. However, currently available quantum 
computers are in infancy period suffering from environmental 
noise and it is the major difficulty in building large-scale 
quantum computers [5]. Noise causes disturbances in the state 
of the basic information unit quantum bit (qubit) and affects 
the computational accuracy. Due to the issue of noise, the 
current state of the art in the fabrication of quantum processors 
is described as Noisy Intermediate Scale Quantum (NISQ) era 
[6], where intermediate scale refers to the qubit number used 
in quantum computers varying from 50 to a few hundred 
qubits. With the introduction of NISQ devices, researchers 
have started to investigate the potential uses of quantum 
computers in various fields including finance, robotics, 
cybersecurity, energy management and chemical engineering 
[7]. Among all the research areas in relation to the quantum 
computing, the quantum machine learning (QML) is one of 
the most promising one [8] and has become an active subfield 
of quantum computing research [9]. 

The main goal of Machine Learning (ML), which spans a 
wide range of disciplines and has numerous applications, is to 
learn from data. Statistical patterns in data are recognized and 
inferences are drawn during the learning process. Despite 
advances in GPUs for parallel processing, the volume of data 
generated recently exceeds the computational power of 
conventional computers [10]. Thus, quantum computing has 
opened up a new playground for machine learning namely 
QML, which investigates the approaches and methods that 
harness the fields of machine learning and quantum 
computing [11]. Researchers are focused on using the power 
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of quantum computers to solve machine learning problems at 
considerably faster rates than classical counterparts [12] with 
the aid of QML. 

Variational quantum algorithms (VQA), also referred to as 
hybrid quantum-classical algorithms, are described as 
encouraging approaches that employ NISQ devices to perform 
QML and to address real world problems that are beyond the 
capabilities of classical computers [13]. Variational Quantum 
Eigensolver and Quantum Approximate Optimization 
Algorithm are examples of the VQA algorithms. In this 
framework, computational tasks are split between quantum 
and classical resources. The quantum part of the framework 
employs parameterized (variational) quantum circuits to 
predict the labels of the training data through approximations. 
On the other hand, the classical part iteratively executes the 
update routines for the parameters of the parametrized 
quantum circuit (PQC) [14]. The functionality of these 
parameters bears resemblance to the weights of an artificial 
neural network. The fault-tolerant quantum computers are still 
an open research issue. However, the effect of noise on NISQ 
devices can be mitigated by keeping the circuit depth shallow 
[15]. This strategy provides an advantage for the QML 
methods using PQCs. 

ML methods are broadly grouped under three different 
types: Supervised learning, unsupervised learning and 
reinforcement learning. In this work, we address one of the 
ML methods, which is binary classification as a supervised 
learning approach. We aim at supplying the practical 
implementation of required QML-based classification method 
by tackling a problem known as user localization in an indoor 
environment. Also, we investigate the layered structure of the 
utilized VQC in the context of improved classification 
outcomes. 

This paper is organized as follows: We give a brief 
literature overview in Section II. The background about the 
concepts of quantum computation and quantum circuits is 
covered in Section III, while Section IV deals with the 
proposed quantum circuit for the classification problem. The 
results and the corresponding interpretations are drawn in 
Section V. We conclude the paper with summary and future 
research directions in Section VI. 

II. RELATED WORK 

The authors of [16] propose a model for the indoor 
localization of users in a building. The Received Signal 
Strength Indicator (RSSI) data gathered from the user 
equipments is exploited to perform an estimation on indoor 
occupancy count. The occupancy issue is handled as a binary 
classification problem, for which the following machine 
learning algorithms are used: k-nearest neighbor, decision 
tree, support vector machine and logistic regression. 
Recurrent neural networks are also studied in regard to 
locating people or objects within a building. The research 
presented in [17] focuses on a learning algorithm named as 
Speed Conscious Recurrent Neural Network, which provides 
a way to predict the locations. Furthermore, the authors 
propose fault-tolerant approaches such as nearest RSSI and 
most recent RSSI with the aim of improving the location 
accuracy. 

In [18], remote health monitoring and smart homes are 
stated as some of the IoT applications, which are in need of 
location estimation techniques. The authors introduce a 
device-free localization system consisted of passive infrared 

(PIR) sensors. The data collected through PIR sensors is 
evaluated with deep learning algorithms such as convolutional 
neural networks and recurrent neural networks in order to 
estimate the user locations. Variances in received signal 
strength from user terminals, device heterogeneity and 
environment complexity such as obstacles in a building can 
cause challenges on the localization problem. Due to this fact, 
the work in [19] introduces a high adaptability indoor 
localization method using a backpropagation neural network. 
The devised approach reveals the similarities on the received 
signal strength fingerprints and provides an improved 
localization accuracy. 

One of the first researches related to classification problem 
using quantum computers is included in [20]. The authors 
exploit the idea of Hamming Distance measurement on a 
quantum computer in order to classify the handwritten digits 
from the well-known MNIST dataset. 

  As an effort of adapting the deep neural networks into the 
quantum realm, the work in [21] introduces a variational 
quantum deep neural network model for the problem of image 
classification. The proposed three classifiers are executed on 
both a simulation platform and a quantum hardware. The 
experimental results for the binary classification of the 
handwritten digits in the MNIST database achieved an 
accuracy of 100%, while ten-label classification task for the 
RGB images from the UCI database obtained an accuracy rate 
of 91%.  

It is obvious that the earlier implementations of QML 
algorithms have mainly benefited from the MNIST images. 
The advances in the parametrized quantum circuits have led 
the researchers to investigate the potential of PQCs for other 
disciplines such as geoscience and medicine. In [22], the 
classification of satellite images is investigated. The 
experimental results show that the employed PQC performs 
better than a classic deep learning method. The effort of 
malaria disease diagnosis with the aid of quantum machine 
learning presented in [23] is one of the first instances delving 
into the detection of parasites that cause lethal illnesses. The 
work mainly focuses on the recognition of the malaria 
parasites by identifying the dots on the red blood cell images. 
The developed classification scheme emphasizes the 
significance of disease detection with fewer learnable 
parameters and features. The issue on the reduction of training 
parameters is also investigated by the authors of [24]. In 
comparison to the classical machine learning approaches, 
variational quantum circuit architecture is stated to pose an 
advantage in terms of parameter size. 

As can be seen, majority of the classification approaches 
in the field of quantum machine learning is about image 
classification, which is also intensively discussed in classical 
supervised learning context. However, it is crucial to attempt 
broadening the implementation domain of parametrized 
quantum circuits by taking the real world samples other than 
images into consideration.   

III. BACKGROUND 

A. Quantum Bit (Qubit) 

The information in classical computation is represented by 
bits, where one bit can be in one of the two states: 0 or 1. On 
the other hand, the basic unit of information in quantum 
computation is qubit. A qubit can be considered as a two-level 
system spanned by two orthogonal states. By definition, two 
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states are said to be orthogonal if their inner product is equal 
to the scalar value 0. In a 1-qubit system, those states 
satisfying the orthogonality condition form a basis known as 
computational basis and are denoted by: 

  0  = [1
0

]  ,   1  = [0
1

] (1) 

The notation  .  describing the state of a quantum system 
is a shorthand for writing the column vectors and referred to 
as ket notation. A generic qubit state   ψ   can be a in a 
superposition of the computational basis states and is 
formulated as a linear combination of  0  and  1 : 

  ψ  = α  0  +  β  1  =  [
α
β] (2) 

where ,  are complex numbers and the amplitudes of the 
state  ψ . Since each state vector is a unit vector in a complex 
vector space named as Hilbert space, the following condition 
must hold: 

 |α|2 + |β|2 = 1 (3) 

Hence, each state  ψ  has to be normalized according to 
the given formula above. When a state is measured in the 
computational basis, it collapses into either  0  state with a 
probability of |α|2 or  1  state with a probability of |β|2. The 
measurement in a quantum system changes the state implying 
that the original information is lost. 

The utmost power of quantum computation is based on (2) 
due to the fact that each qubit is represented by two complex 
amplitudes, which are theoretically capable of taking 
infinitely many different values. As a consequence, a quantum 
system with n qubits is specified by 2n amplitudes providing a 
natural way of storing and manipulating enormous amount of 
information simultaneously, usually referred to as quantum 
parallelism. The generalization of a 1-qubit state  ψ  to n-
qubits is as follows: 

  ψ  =  ∑ α𝑖   𝑖 

2𝑛−1

𝑖=0

 (4) 

where the normalization conditions is satisfied: 

 ∑ |α𝑖|
2 = 1  ,   α𝑖 ∈ ℂ 

2𝑛−1

𝑖=0

 (5) 

A qubit can be geometrically visualized on the surface of 
a 3-dimensional unit sphere called as Bloch Sphere (Fig. 1). 

The state  ψ  is associated with two spherical coordinates and 
its ket notation from (2) can be rewritten in terms of θ and ϕ: 

  ψ  = 𝑐𝑜𝑠 (
θ

2
)  0  + 𝑒𝑖ϕ 𝑠𝑖𝑛 (

θ

2
)   1  (6) 

B. Quantum Gates 

Classical bits are altered with logical gates. The number of 
bits that are manipulated depends on the type of deployed gate. 
For instance, NOT gate operates on only one bit flipping the 
input bit, whereas two bits are fed into the AND gate and the 
result is only one bit. Note that the classical logical gates are 
not reversible at all. It is obvious that it is not possible to 
deduce the input bits of an AND gate from the output bit. 

Just like the logical gates, the transformation of qubits are 
realized through quantum gates. Quantum gates can operate 
on single or multiple qubits preserving the length. In other 
words, they perform unitary operations so that the norm of the 
new output state is 1. Thus, a generic quantum gate provides 
a way of doing unitary transformations on a state  ψ  and of 

producing an output state  ψ′ : 

  ψ′ = 𝑈   ψ  (7) 

where 𝑈  denotes a unitary gate satisfying the following 

condition: 𝑈𝑈† = 𝐼. The matrix multiplication of 𝑈 with its 

conjugate transpose 𝑈† is equal to the identity matrix 𝐼. From 
the last statement, it can be deduced that it is possible to 
represent the quantum gates with matrices. So, (7) can be 
reformulated as matrix operations: 

 [
α′

β′] =  [
𝑢00 𝑢01

𝑢10 𝑢11
] [

α
β] ,  𝑢𝑖𝑗 ∈  ℂ (8) 

One of the most frequently used single-qubit quantum gate 
is X gate, which simply flips the state of the qubit. There also 
exist parametrized single-qubit gates such as RX, RY and RZ 
gates, which are the building blocks of variational quantum 
circuits. Each of those gates can manipulate the qubit state 
through a rotation of a specified angle θ  around the 
corresponding axis. On the other hand, CNOT is a two-qubit 
gate, where one of the qubits is the control qubit and the other 
one is the target qubit. As long as the control qubit is in state 
 1 , the target qubit is flipped. The graphical representations 
and the corresponding matrices for X, RY and CNOT gates 
are given in Table I. 

TABLE I.  FREQUENTLY USED QUANTUM GATES AND THEIR 

REPRESENTATIONS  

Quantum Gate as a Matrix Graphical Representation 

𝑋 =  [
0 1
1 0

] 
 

𝑅𝑦(θ) = [
𝑐𝑜𝑠 (

θ

2
) −𝑠𝑖𝑛 (

θ

2
)

𝑠𝑖𝑛 (
θ

2
) 𝑐𝑜𝑠 (

θ

2
)

] 
 

𝐶𝑁𝑂𝑇 =  [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] 

 

 

 
Fig. 1. Geometric representation of a qubit on Bloch Sphere 
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C. Variational Circuits 

As a machine learning model, variational quantum 
algorithms are comprised of quantum and classical 
computational resources, where the former includes the 
variational quantum circuits. This scheme introduces a hybrid 
quantum-classical approach in order to perform supervised 
learning tasks such as classification and regression. The main 
steps of a variational quantum algorithm depicted in Fig. 2 are 
as follows: 

• Data preprocessing 

• Mapping of data into a quantum state 

• Transformation of the quantum state with a 
variational quantum circuit  

• Generation of a predicted value through measurement 

• Comparison of the predicted label and the true label 
using a cost function. 

• Parameter tuning through optimization of the cost 
function 

• Performance evaluation 

IV. METHODOLOGY 

In this section, the proposed variational quantum circuit is 
explained that is a part of the variational quantum algorithm. 
First of all, the employed dataset and its ingredients are 
introduced. The issues of scaling and normalization are the 
next steps before the features of a sample in the dataset are 
mapped into a quantum state. After the unitary transformation 
of the prepared quantum state is detailed, the cost function 
optimization will be described. 

A. Dataset 

This work utilizes a publicly available dataset [25, 26] 
obtained by observing the signal strengths of Wi-Fi routers 
positioned at different locations of a facility. Each sample in 
the dataset constitutes of seven signal values from the routers 
and a label corresponding to a location in the facility. In total, 
there are four labeled locations, each of which are numbered 
through 1 to 4 and there exist 500 samples for each of the 
classes. Some samples from the dataset are given in Table 2. 

 

TABLE II.  SAMPLE INSTANCES FROM THE DATASET  

Router 1 Router 2 Router 3 Router 4 Router 5 Router 6 Router 7 Class 

-63 -52 -56 -59 -66 -80 -80 1 

-38 -55 -57 -41 -66 -73 -69 2 

-51 -53 -54 -53 -62 -83 -82 3 

-61 -52 -48 -61 -45 -90 -88 4 

 

The location of a user possessing a mobile device is 
determined via monitoring the above mentioned router 
signals. Although the original dataset contains four different 
classes, we will be dealing with a binary classification task. 
So, we have only extracted class 1 and class 2 samples from 
the dataset.  

B. Data Preprocessing 

The mentioned dataset 𝒟  having 𝑚  samples is a set of 

tuples (𝑥(𝑖), 𝑦(𝑖)), where 𝑥(𝑖) denotes the feature vector and 

𝑦(𝑖) is the corresponding label for the 𝑖𝑡ℎ sample. There exist 
seven features in each sample and every feature in the feature 

vector 𝑥(𝑖) =  [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … , 𝑥7
(𝑖)

 ]
𝑇
is transformed by scaling it 

into the range [0,1] with the following min-max scaler: 

 𝑥𝑗
(𝑖)

=  
𝑥𝑗

(𝑖)
−  min

𝑗
𝑋

max
𝑗

𝑋  −  min
𝑗

𝑋
 , 1 ≤ 𝑗 ≤ 7 (9) 

where 𝑋 =  {𝑥(𝑖)}
𝑖=1

𝑀
,  min

𝑗
𝑋  and  max

𝑗
𝑋  are the minimum 

and maximum of the 𝑗𝑡ℎ attribute in 𝑋, respectively; 𝑀 is the 
number of samples in the dataset 𝒟. 

Since the quantum states have norm 1, before mapping the 

features into a quantum state, the scaled feature vector 𝑥(𝑖) has 

to be normalized to unit length by updating each feature 𝑥𝑗
(𝑖)

 

of 𝑥(𝑖) (for the simplicity of the notation, the upperscript (𝑖) 

in 𝑥𝑗
(𝑖)

 is omitted in the following equation): 

 𝑥𝑗 =  
𝑥𝑗

√∑ 𝑥𝑘
27

𝑘=1

 (10) 

 
 

Fig. 2. Schematic representation of a variational quantum algorithm 

 

 



Journal of Millimeterwave Communication, Optimization and Modelling                                                                         v.3 (1) 2023 

5 

 

C. Data Encoding 

A feature map used in classical machine learning 
approaches is a function ϕ that maps the data vectors in an 
input domain 𝒳  to a feature space domain 𝒳′ . The 
transformation of ϕ: 𝒳 → 𝒳′ provides a better way of 
representing and manipulating data while dealing with 
supervised learning tasks. A similar approach is also available 
for quantum machine learning and is called as quantum 
feature map. The main logic behind a quantum feature map 
ϕ: 𝑥 ∈ 𝒳 →  ψ(𝑥)  ∈ ℋ is to transform the classical data 
into a quantum state, where the quantum state is described as 
a complex vector in the Hilbert space ℋ (see Section III.A). 
This mapping is in fact a unitary operation 𝑈ϕ(𝑥) applied on 

the initial state  0 ⊗𝑛
 using the vector 𝑥 , where  0 ⊗𝑛

 
denotes the tensor product of n-qubit  0  states. 

Amplitude encoding [27] is one of the data encoding 
schemes in order to associate the classical data with the 
probability amplitudes of a quantum state. Supposing that the 
scaled and normalized feature vector 𝑥 = [𝑥0, ⋯ , 𝑥𝑁−1]  is 
real and of dimension 𝑁 satisfying the condition 2𝑛 = 𝑁, the 
amplitude encoding can be formally described as: 

 𝑈ϕ(𝑥): 𝑥 ∈  ℝ𝑁 →   ψ(𝑥)  =  ∑ 𝑥𝑖   𝑖 

𝑁−1

𝑖=0

 (11) 

Here,  𝑖  is the 𝑖𝑡ℎ  computational basis state encoded in 
binary format. It has to be noted that the size of the feature 
vector in the user localization dataset is 7 and therefore all of 
the vectors have to be padded with a 0 so that the vector size 
is equated to an amplitude of 2 . A further and important 
implication from the last statement is that the number of qubits 
required for amplitude encoding is ⌈𝑙𝑜𝑔2𝑁⌉. 

D. Proposed VQC and Measurement Process 

The main component of a VQA is the variational quantum 
circuit transforming the encoded input state  ψ(𝑥)   into a 
new state  ψ′(𝑥)  . The parameter θ in the proposed VQC 
(Fig. 3), which is a vector of trainable parameters, is evolved 
during the learning phase. The unitary transformation 𝑈(θ) 

applied on  ψ(𝑥)  is composed of the following gates: 1-
qubit parametrized RY rotation and 2-qubit CNOT gates that 
provide the entanglement between the qubits in the circuit. 
The used VQC in this work is cascaded as multiple layers in 
order to allow the learning model to fit more complex 
functions and it is repeated 𝑁 times in the QML model. The 
functionality of a VQC is formally described as: 

  ψ′(𝑥)  = 𝑈(θ)  ψ(𝑥)   (12) 

where θ =  [θ1, θ2, … , θ𝑚]  and 𝑚  is the number of 
parameters in the VQC. 

The qubits in the circuit are numbered in a sequential 
manner from top to down. The top qubit is referred to as the 
least significant qubit. It is measured in the computational 
basis that is also known as a Pauli-Z measurement. Depending 
on the fact that the eigenvalues of the Pauli-Z gate are -1 and 
1, the obtained measurements results are associated to 
continuous values in the range from -1 to 1. 

The operator used in the measurement process is the 

observable 𝐵̂ of the quantum circuit. The expectation value 
𝑓(𝑥;  θ)  out of the measurement is the counterpart of the 
predicted label in the classical machine learning: 

 𝑓(𝑥; θ) =   ψ′(𝑥)  𝐵̂  ψ′(𝑥)  (13) 

Since the labels of the dataset are discrete values for the 
classification task (e.g., 1 for class 1 and 2 for class 2), the 
value of 𝑓(𝑥; θ) has to be adjusted accordingly: 

 𝑓(𝑥; θ) =  {
1 𝑖𝑓 𝑓(𝑥; θ) < 0 

2 𝑖𝑓 𝑓(𝑥; θ)  ≥ 0
 (14) 

E. Postprocessing 

The task of postprocessing is executed on the classical part 
of the variational quantum algorithm. Firstly, the predicted 
label and true label are passed to a cost function in order to 
quantify the error between the predicted and actual outcomes. 
This work utilizes the Mean Squared Error (MSE) as the cost 
function: 

 
 

Fig. 3.  Variational quantum algorithm applied on the user localization dataset 
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 𝐽(θ) =  
1

2𝑀
 ∑(𝑓(𝑥(𝑖); θ) − 𝑓(𝑥(𝑖)))

2
𝑀

𝑖=1

 (15) 

where 𝑥(𝑖) is the 𝑖𝑡ℎ sample in the dataset 𝒟 with 𝑀 samples. 

The calculation of the aggregate cost value is followed by 
an optimization on the cost function 𝐽(θ) . The Gradient 
Descent approach is the employed optimization method, 
where the minimum of the function 𝐽(θ) is found by taking 
the partial derivative of this function with respect to the 
parameter vector θ  and updating each parameter in θ 
simultaneously based on a learning rate 𝜂  and the 
corresponding gradient: 

 θ𝑗 =  θ𝑗 −  𝜂 
𝜕

𝜕θ𝑗  
 𝐽(θ) (16) 

The Gradient Descent routine is repetitively run until the 
parameter vector θ  converges. On the other hand, the 
performance of the VQA is monitored through an accuracy 
metric, which is simply a measure for all of the labels 
predicted correctly: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (17) 

V. EXPERIMENTAL RESULTS 

The user localization dataset includes 2000 samples and 4 
classes in total. Those classes are associated to 4 different 
locations in a facility and there are 500 samples for each of the 

class. Every sample is composed of 7 features related to the 
signal strengths received from 7 routers and a class label 
representing the location of the user. In consideration of a 
binary classification task, 800 samples are extracted from the 
dataset equally split between Class 1 and Class 2. On the other 
hand, 75% of the data is used for the training purpose, whereas 
the proposed learning model is validated with the rest of the 
data. 

The simulations are carried out with Pennylane [28], a 
Python software framework for differentiable programming of 
quantum computers. It provides the necessary tools for the 
construction of gate-based quantum circuits, and in particular 
of the variational quantum circuit implemented in this work. 
In addition to the quantum computation based routines, 
Pennylane makes use of the classical optimization methods 
executed as a classical part of the hybrid quantum-classical 
environment. 

To evaluate the performance, the proposed QML model is 
prepared as the VQA depicted in Fig. 3. First, each sample in 
the dataset is padded with 0 in order to meet the condition of 
having 8 amplitudes required for a 3-qubit quantum system. 
The padded samples are scaled and normalized, which is also 
mandatory due to the fact that all quantum states have a unit 
length of 1. 

After the sample is mapped to a quantum state with the aid 
of amplitude encoding scheme, a unitary transformation of the 
quantum state is performed in the variational quantum circuit. 

 
(a) 

 
(b) 

Fig. 4.  Performance of the VQAs with different number of layers used in the corresponding VQCs. (a) Cost and accuracy values obtained for the training 

dataset. (b) Cost and accuracy values obtained for the test dataset. 
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The experimental setup provides 4 variants of the VQA 
depending on the number of layers varying between the range 
4 and 7. Each layer of the quantum circuit includes 3 RY 
rotation gates and 3 CNOT gates. Expectation values, which 
are the predictions, and the true labels are passed to the cost 
function aiming to determine the amount of error for the 
classification task. Next, a Gradient Descent Optimization 
takes place to obtain the best parameter values minimizing the 
cost function value. The updated parameters adjust the amount 
of qubit rotations in the VQC for the next iteration of the 
learning process. 

The mentioned variational quantum algorithm variants 
with different number of VQC layers are compared in terms 
of cost and accuracy at every epoch. In total, there are 10 
epochs, each of which includes 12 iterations since the training 
dataset of 600 samples are processed in batches of 50 samples. 
The means of cost and accuracy for each epoch are calculated 
through 12 iterations of the corresponding epoch. 

The cost value for the VQA with 4-layered VQC is 
significantly higher than that of the other VQA variants in the 
early stages of the epochs for both of training and test datasets 
(Fig. 4). As the VQC parameters converge, it is obvious that 
all of the cost values decrease smoothly. It is almost zero in 
the case of training dataset, whereas cost of testing phase 
remains in the range between 0.2 – 0.4. Similarly, the outcome 
for the accuracy metric shows that all of the VQAs achieve a 
score of almost 100% during the training phase. However, the 
case differs for predicting the unseen labels such that the 
accuracy values rise without any fluctuation except for the 4-
layered VQC until the range of 84% – 93% is reached. The 
highest achieved results are summarized in Table 3. 

The best accuracy value throughout the test epochs is 
obtained at Epoch 3 when the 7-layered VQC is utilized. 
Nevertheless, its accuracy curve drops below the curve of the 
VQC with 6 layers, which is an indication of overfitting. This 
fact forces us to follow one of the two precautions to mitigate 
the overfitting issue: 1) The 7-layered VQC setup has to be 
stopped at earlier epochs through capturing a possible lower 
value of the next epoch. 2) Use directly the 6-layered VQC, 
which has 18 trainable parameters. Note that the VQCs with 
4, 5, 6 and 7 layers contain 12, 15, 18 and 21 parameters, 
respectively. 

TABLE III.  BEST RESULTS FOR COST AND ACCURACY  

VQC 

Layer 

Size 

Training Dataset Test Dataset 

Cost Accuracy Epoch Cost Accuracy Epoch 

4 0.02889 0.98556 10 0.31417 0.84292 10 

5 0.02000 0.99000 10 0.28250 0.85875 10 

6 0.01611 0.99194 10 0.18750 0.90625 9 

7 0.02167 0.98917 5 0.14417 0.92792 3 

 

With the aim of emphasizing the true potential of 
variational quantum algorithms, the devised VQA is 
compared against the well-known machine learning 
algorithms such as Naïve Bayes, K-Nearest Neighbor, 
Logistic Regression and Support Vector Machine. It is 
observed that the VQCs with 6 and 7 layers perform better 
than the classical counterparts in terms of testing accuracy 
(Table 4). In relation to the training performances of compared 
algorithms, the 6-layered VQC achieves the second best result 
after the K-Nearest Neighbor algorithm. 

TABLE IV.  COMPARISON WITH WELL-KNOWN MACHINE LEARNING 

ALGORITHMS 

Algorithms Training Accuracy Testing Accuracy 

Naïve Bayes 0.99166 0.89500 

K-Nearest Neighbor 0.99666 0.90500 

Logistic Regression 0.99000 0.86500 

Support Vector Machine 0.98666 0.84000 

VQC with 6 Layers 0.99194 0.90625 

VQC with 7 Layers 0.98917 0.92792 

 

A software simulation environment with a lot of tunable 
parameters holds the disadvantage of longer execution times. 
At the same time, increasing the layer size or the depth of a 
quantum circuit and running it on a real quantum hardware of 
NISQ era may result in decoherence, which negatively affects 
the expected outcomes and degrades the performance. The 
major consequence of the simulation results is that the 
potential of quantum computing is evident for machine 
learning tasks. Also, the key component for solving large 
learning problems is likely to be the QML approaches with the 
advances in the fault tolerant quantum computers having more 
qubits than the NISQ devices. 

VI. CONCLUSION 

This work presented the design of a variational quantum 
algorithm consisting of data preprocessing, sample encoding, 
unitary evolution of quantum states, predictions based on 
measurement results, cost function optimization and 
parameter tuning. We especially focused on layered structure 
of the variational circuit employed in the proposed VQA. One 
of the foremost findings of this research is that the number of 
layers is of great importance to attain better results out of the 
classification task. Secondly, keeping the layer size at a 
reasonable amount is a key factor to mitigate the overfitting 
issue. 

The implemented algorithm is evaluated with a publicly 
accessible dataset tackling with the problem of user 
localization. For detecting the actual locations of users 
possessing mobile devices, the signal strengths received from 
several routers are exploited. From the original dataset, we 
have extracted the samples associated with only two locations 
to present a two-label classifier scheme. The simulation results 
demonstrated the efficiency and applicability of quantum 
machine learning approaches on real world problems. An 
accuracy rate of 99% was achieved for the prediction of class 
1 and class 2 labels during the learning stage. We furtherly 
observed that the performance of our VQA while evaluating 
with test samples was around 93% in terms of accuracy. 

As a future direction, our research has to be extended to 
cover the multi-class classification ability on the employed 
dataset. This particularly requires a design update in the 
variational quantum circuit part. A further investigation can be 
maintained on the complex learning tasks with a bigger feature 
and sample space taking the limitations of near-term NISQ 
devices into the consideration. Furthermore, we plan to 
implement the developed quantum machine learning model on 
the cloud platforms, on which real quantum computers are 
accessible for public use. 
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