
Annals of Telecommunications manuscript No.
(will be inserted by the editor)

A Simulation as a Service Cloud Middleware

Shashank Shekhar, Hamzah Abdelaziz,
Michael Walker, Faruk Caglar, Aniruddha
Gokhale, Xenofon Koutsoukos

Received: date / Accepted: date

Abstract Recent advances in cloud computing have opened up new avenues
for individuals and organizations with limited resources to obtain answers to
problems that hiterto required expensive and computationally-intensive re-
sources. One such problem is determining the right thermostat settings for
different rooms of a house based on a tolerance range specified by a user such
that energy consumption in the house can be maximally reduced while still
offering comfortable temperatures in the house. Since models of these systems
are often stochastic, the simulations require stochastic model checking where a
large number of complex simulations of the models must be executed in paral-
lel and the results aggregated to ascertain if the outcomes lie within specified
confidence intervals. A cloud offers an attractive platform for these use cases.
To support these capabilities, this paper describes a Cloud-based Simulation-
as-a-Service (SIMaaS) middleware. We demonstrate how lightweight solutions
using Linux containers (e.g., Docker) are better suited to support such services
instead of heavyweight hypervisor-based solutions, which are shown to incur
substantial overhead in provisioning virtual machines on-demand.

Keywords Cloud Computing · Middleware · Linux Container · Simulation-
as-a-Service

Shashank Shekhar, Hamzah Abdelaziz, Michael Walker, Faruk Caglar, Aniruddha Gokhale
and Xenofon Koutsoukos
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37235, USA

E-mail: {shashank.shekhar,hamzah.abdelaziz,michael.a.walker.1,faruk.caglar,
a.gokhale,xenonfon.koutsoukos}@vanderbilt.edu



2 Shekhar et al

1 Introduction

With the advent of the Internet of Things (IoT) [6] paradigm, which involves
the ubiquitous presence of sensors, there is no dearth of gathered data. When
coupled with technology advances in mobile computing and edge devices, users
are expecting newer and different kinds of services that will help them in their
daily lives. For example, users may want to determine appropriate tempera-
ture settings for their homes such that their energy consumption and energy
bills are kept low yet they have comfortable conditions in their homes. Other
examples include estimating traffic congestion in a specific part of a city on a
special events day. For all these new services, users expect a sufficiently low
response time from the services.

Deploying these services in-house is unrealistic for the users since the mod-
els of these systems are complex to develop and stochastic in nature, which re-
quire a large number of compute-intensive simulations to obtain outcomes that
are within a desired statistical confidence interval. Users cannot be expected
to acquire the needed resources in-house. The cloud becomes an attractive
option to host such services particularly when hosting high performance and
real-time applications in the cloud is gaining traction [22, 4]. Examples include
soft real-time applications such as online video streaming (e.g., Netflix hosted
in Amazon EC2), gaming (Microsoft’s Xbox One and Sony’s Playstation Now)
and telecommunication management [13].

Insights from prior efforts [11, 17, 18, 19] that focused on deploying parallel
discrete event simulations (PDES) [10] in the cloud reveal that performance
of the simulation deteriorates as the size of the cluster distributed across the
cloud increases. This occurs due primarily to limited bandwidth and the over-
head of time synchronization protocols [30] needed on the cloud. Thus, cloud
deployment for this category of simulations is still limited.

Despite these insights, we surmise that there is another category of simula-
tions that can benefit from cloud computing. Complex system simulations that
require statistical validation or those that compare simulation results under
different constraints often need to run repeatedly. Running these simulations
sequentially is not a viable option as user expectations in terms of response
times have to be met. Hence there is a need for a simulation platform where in-
dependent simulation instances can be executed in parallel and the number of
such simulations can vary elastically to satisfy specified confidence intervals for
the results. A cloud is an attractive platform to host such capabilities, which
we have architected in the form of a Simulation-as-a-Service (SIMaaS) [29]
middleware for the cloud.

A SIMaaS built on top of traditional cloud infrastructure would likely
utilize a virtual machine (VM)-based data center to provide resource sharing.
However, in a scenario where real time decisions have to be made based on
running large number of multiple, short-duration simulations in parallel, the
considerable setup and tear down overhead imposed by VMs is unacceptable. A
solution based on maintaining a VM pool that is used by many cloud resource



A SIMaaS Cloud Middleware 3

management frameworks such as [16, 8, 32, 12], however, leads to resource
wastage and may not be able to cater to sudden increases in service demand.

To address these challenges, we make the following key contributions in
this paper:

– We propose a cloud middleware for SIMaaS that applies Linux container [20]-
based infrastructure which has low runtime overhead, higher level of re-
source sharing, and very low setup and tear down costs.

– We show how the middleware intelligently generates different configura-
tions for experimentation, intelligently schedules the simulations on the
Linux container-based cloud to minimize cost, and meets deadlines.

– Using a case study, we show the viability of a Linux container-based SIMaaS
solution, and illustrate the performance gains of a Linux container-based
approach over a hypervisor-based traditional virtualization techniques used
in the cloud.

The rest of this paper is organized as follows: Section 2 deals with relevant
related work comparing it with our contributions; Section 3 provides a use
case and formulates the problem we solve in this research; Section 4 presents
the system architecture in detail; Section 5 validates the effectiveness of our
middleware; and finally Section 6 presents concluding remarks alluding to
lessons learned and opportunities for future work.

2 Related Work

This section presents relevant related work and compares them with our con-
tributions. We provide related work along three facets: simulations hosted in
the cloud, cloud frameworks that provide resource management with deadlines,
and container-based approaches. These facets of related work are important
since realizing SIMaaS requires effective resource management at the cloud
infrastructure-level to manage the lifecycle of containers that host and exe-
cute the simulation logic such that user-specified deadlines are met.

2.1 Related Work on Cloud-based Simulations

The mJADES [25] effort is closest to our approach in terms of its objective of
supporting simulations in the cloud. It is founded on a Java-based architecture
and is designed to run multiple concurrent simulations while automatically ac-
quiring resources from an ad hoc federation of cloud providers. DEXSim [9]
is a distributed execution framework for replicated simulations that provides
two-level parallelism, i.e., at CPU core-level and at system-level. This organi-
zation delivers better performance to their system. In contrast, SIMaaS does
not provide any such scheme; rather it relies on the OS to make effective use
of the multiple cores on the physical server by pinning container processes to
cores. The RESTful interoperability simulation environment (RISE) [3] is a



4 Shekhar et al

cloud middleware that applies RESTful APIs to interface with the simulators
and allows their management remotely through Android-based handheld de-
vices. Like RISE, SIMaaS also uses RESTful APIs for clients to interact with
our service and for the internal interaction between the containers and the
management solution. In contrast to these works, SIMaaS applies an adap-
tive resource scheduling policy to meet the deadlines based on the current
system performance. Also, our solution uses the Linux container-based simu-
lation cloud that is more efficient and more suitable to the kinds of simulations
hosted by SIMaaS than the VM-based approach used by these solutions.

2.2 Related Work on Cloud Resource Management

There has been some work in cloud resource management to meet deadlines.
Aneka [8] is a cloud platform that supports quality of service (QoS)-aware
provisioning and execution of applications in cloud. It supports different pro-
gramming models, such as bag of tasks, distributed threads, MapReduce, ac-
tors and workflows. Our work on SIMaaS uses a resource management algo-
rithm that is a variation of the one used by Aneka in the context of our Linux
container-based lightweight virtualization solution. It also provides algorithms
to provision hybrid clouds to minimize the cost and meet deadlines. Although
SIMaaS does not use hybrid clouds, our future work will consider some of the
functionalities from Aneka.

CometCloud [16] is a cloud framework that provides autonomic work-
flow management by addressing changing computational and QoS require-
ments. It adapts both application and infrastructure to fulfill its purpose.
CLOUDRB [28] is a cloud resource broker that integrates deadline based job
scheduling policy with particle swarm optimization-based resource scheduling
mechanism to minimize both cost and execution time to meet a user-specified
deadline. Zhu et al. [32] employed a rolling-horizon optimization policy to de-
velop energy-aware cloud data center for real-time task scheduling. All these
efforts provide scheduling algorithms to meet deadlines on virtual machine-
based cloud platform where they maintain a VM pool and scale up or down
based on constraints. In contrast to these efforts, our work uses a lightweight
virtualization technology based on Linux containers which provides significant
performance improvement and mitigates the need to keep a pool of VMs or
containers. Nonetheless, our solution also requires container scheduling.

2.3 Related Work using Linux Containers

The Docker [24] open source project that we utilize in our framework auto-
mates the deployment of applications via software containers utilizing operat-
ing system (OS)-level virtualization. Docker is not an OS-level virtualization
solution; rather it uses interchangable execution enviroments such as Linux
Containers (LXC) and its own libcontainer library to provide Container ac-
cess and control.



A SIMaaS Cloud Middleware 5

Previous work exists on the creation [23] and benchmark testing [27] of
generic Linux-based containers. Similarly, there exists work that use containers
as a means to provide isolation and a lightweight replacement to hypervisors
in use cases such as high performance computing (HPC) [31], reproducible
network experiments [14], and peer-to-peer testing enviroments [7]. The de-
mands and goals of each of these three efforts focuses on a different aspect of
the benefit stemming from the use of containers. For HPC, the effort focused
more on the lightweight nature of containers versus hypervisors. The peer-to-
peer testing work focused on the isolation capabilities of containers whereas
the reproducible network experiments paper focused more on the isolation fea-
tures and the ability to distribute containers as deliverables for others to use
in their own testing. Our work leverages or can leverage all these benefits.

3 Motivating Use Case and Problem Statement

We now present a use case scenario belonging to a specific class of systems
modeling that we have used in this paper to demonstrate the capabilities of
the SIMaaS cloud middleware.

3.1 Systems Modeling Support in SIMaaS

System modeling for simulation is a very rich area that has been used in a
wide range of different engineering disciplines. The type of system modeling
depends on the nature of the system to be modeled and the level of abstraction
needed to be achieved through the simulation.

In this paper we target complex engineering systems which exhibit continu-
ous, discrete, and probabilistic behaviors, known as stochastic hybrid systems
(SHS), such as air traffic control systems. The computer model we use to con-
struct a formal representation of a SHS systems and to mathematically analyze
and verify it in a computer system is discrete time stochastic hybrid system
(DTSHS) models [1].

3.2 Use Case: The Multi-room Heating System

For this paper we have used a DTSHS model in a multi-room heating sys-
tem scenario [5] with its discretized model developed by [2]. The multi-room
heating system consists of h rooms and a limited number of heaters n where
n < h. Each room can have at most one heater at a time. Moreover, each room
has its own user setting (i.e., constraints) for temperature setting. However,
each room has an exchangeable effect with its adjacent rooms and with the
ambience.

Each room heater switches independently of the heater status of other
rooms and their temperatures. The system has a hybrid state where the dis-
crete component is the state of individual heater, which can be in ON or OFF



6 Shekhar et al

state, and the continuous state is the room temperature. A discrete transition
function switches the heaters status in each room based on using a typical
differential controller which switches the heater on if the room temperature
get below a certain threshold xl and switches the heater off if the room tem-
perature exceed a certain threshold xu.

3.3 Problem Statement and Key Requirements

The main challenge for our use case is the limited number of heaters and the
need for a control strategy to move a heater between the rooms. The system
requirements to evaluate the model are:

– The temperature in each room must always remain above a certain thresh-
old (i.e., user comfort level).

– All rooms share heaters with other rooms (i.e., acquire and relinquish a
heater).

We have used one strategy where room i can acquire a heater with a
probability pi if:

– pi ∝ geti − xi when xi < geti.
– pi = 0 when xi ≥ geti.

where geti, difi are control thresholds that are used to determine when
room i needs to acquire a heater and when room i can actually retrieve a
heater from room j, respectively.

These requirements can be evaluated through model simulations; however,
every simulation may yield a different simulation trajectory and results because
of the model’s stochastic nature. To overcome this problem, we use the statisti-
cal model checking (SMC) approach based on Bayesian statistics [32, 33]. SMC
is a verification method that provides statistical evidence to check whether a
stochastic system satisfies a wide range of temporal properties with a certain
probability and confidence level or not. The probability that the model satisfies
a property can be estimated by running multiple simulation trajectories of the
model and dividing the number of satisfied trajectories (i.e., true properties)
over the total number of the simulations.

It is precisely for this purpose that the cloud platform is an attractive choice
to execute the multiple different simulation trajectories of the stochastic model
in parallel, and perform SMC to obtain results within a desired confidence
interval. The challenge stems from provisioning these simulation trajectories
in the cloud in real-time so that the response times perceived by the user
are acceptable. This is the challenge we address through our SIMaaS cloud
middleware.

4 SIMaaS Cloud Middleware Architecture

In this work our goal is to support a simulation-as-a-service in the cloud.
We expect the users to access our service using traditional web technologies.



A SIMaaS Cloud Middleware 7

Consequently, our system requires a web server to handle user requests. On a
per user-basis we require our system to provide elastic resource provisioning
such that a sufficient number of simulation runs can be instantiated on-demand
for the stochastic model checking and results returned to the user within the
deadlines specified by the user. Finally, the system should scale to a large
number of users. To address these needs, we have architected the SIMaaS cloud
middleware as shown in Figure 1 and described in the rest of this section.

Fig. 1 System Architecture

4.1 System Design and Rationale

We now justify the need for the key artifacts of our design.

4.1.1 Request Handling and Dynamic Resource Provisioning

The central component of the SIMaaS middleware that is responsible for re-
source provisioning and handling user requests is the SIMaaS Manager (SM).
All the coordination and decision making responsibilities lie with this entity.
It has a pluggable design that is used to strategize the virtualization approach
to be used by the hosted system. Additionally, it also acts as the interface to
the user by including a web server. To ensure that the web server does not
become a bottleneck, we have used Cherrypy [15] to accept user inputs for
simulation and receiving feedback from other SIMaaS components.

SM has a modular architecture and can plug in different resource and
scheduling policies, such as time-based, cost-based or resource consumption-
based. For this paper we have defined a QoS-based resource provisioning policy



8 Shekhar et al

shown in Algorithm 1, which calculates the extra number of hosts needed at
runtime to meet user-specified deadlines.

Input: Host Capacity
forall the User Simulation Requests do

while Has Pending Simulations do
Input: Average Execution Time, Remaining Time, Remaining Simulation

Count, Assigned Capacity, Buffer Time
Output: Extra Hosts Needed
Remaining Time = Remaining Time - Buffer Time ;
Containers per Cycle = (Remaining Simulation Count * Average Execution
Time) / Remaining Time) ;
Extra Hosts Needed = (Containers per Cycle - Assigned Capacity) / Host
Capacity ;

end

end

Algorithm 1: QoS-based Resource Allocation Policy

4.1.2 Lightweight Virtualization Management

A cloud platform typically uses virtualized resources to host user applica-
tions. Different forms of virtualization include full virtualization (e.g., KVM),
paravirtualization (e.g., Xen) and lightweight containers (e.g., LXC Linux con-
tainers). Since full and para virtualization require the entire OS to be booted
from scratch whenever a new virtual machine (VM) is needed, this bootup
time incurs a delay in availability of new VMs not to mention the cost of the
application’s initialization time. Hence, SIMaaS uses the lightweight contain-
ers, which suffice for our purpose.

The lifecycle of these containers is managed by the Container Manager
(CM). The pluggable architecture of SM allows CM to switch between vari-
ous container providers that can be Linux container or hypervisor-based VM
cloud. The Linux container is the default container provider. Specifically, we
use Docker [24] container virtualization technology since it provides portable
deployment of Linux containers and provides a registry for images to be shared
across the hosts with significant performance gains over hypervisor-based ap-
proaches. Thus, the CM is responsible for keeping track of the hosts in the
cluster and provision the running and tear down of the Docker containers. It
downloads and deploys different images from the Docker registry for instanti-
ating different simulations on the cluster hosts.

Our earlier design of the CM leveraged Shipyard [26] for communicating
with the Docker hosts, however, due to sluggish performance we observed,
we had to implement a custom solution with reduced role of Shipyard. Over-
coming the reasons for the sluggish performance and reusing existing artifacts
maximally is part of our future investigations.



A SIMaaS Cloud Middleware 9

4.1.3 Cloud Instrumentation Design

Recall that meeting user-specified deadlines is an important goal for SIMaaS.
These deadlines must be met in the context of the stochastic model checking
that requires multiple simultaneous runs of the stochastic simulation models.
Thus, SIMaaS must be cognizant of overall system performance and make
dynamic resource management decisions, which requires effective system in-
strumentation.

Since SIMaaS uses Linux containers, we leveraged the Performance Monitor
(PerfMon) package from the JMeter Plugins group of packages on Linux. Perf-
Mon is an open-source Java application which runs as a service on the hosts to
be monitored. Since the monitored statistics are required by the Performance
Manager (PM) component instead of a visual rendition, we implemented cus-
tom software to tap into PerfMon via its TCP/UDP connection capabilities.
PerfMon is by no means the only option available but it sufficed our needs.

PerfMon depends on the SIGAR API and uses that for its gathering of
system metrics. The metrics available are classified into 8 broad catagories.
These catagories include: CPU, Memory, Disk I/O, Network I/O, JMX (Java
Management Extensions), TCP, Swap, and Custom executions. We are cur-
rently not using the JMX, TCP, or Swap merics, but they are available for use
if needed. Each of these catagories have parameters to allow customization of
desired returned metrics, e.g., Custom allows for the returning of any custom
command line execution. We use this to execute a custom script that returns
the process id and container id pairs of each running Docker container. This
allows us to monitor each individual container performance precisely.

4.1.4 Result Aggregation

Stochastic model checking requires that results of the multiple simulation runs
be aggregated to ascertain if the specified probabilistic property is met or not.
To do this, a key component of our middleware is the Result Aggregator (RA).
RA receives the simulation results from the Docker containers. It uses ZeroMQ
for reliable result delivery and sends feedback to the SM for decision making.
Since the aggregation logic and model checking is application-dependent, it is
supplied by the user when the service is hosted, and is used when a sufficient
number of results are received. We realize that due to the large number of
messages received by this system, it can become the bottleneck for the system
and we plan to use a load balanced architecture in future that can also provide
fault tolerance.

4.2 SIMaaS Workflow and User Interaction

We now describe how a user interacts with SIMaaS and the workflow triggered
by a user interaction. A user contacts the SM component of SIMaaS and
provides the initial configuration which includes the simulation executables,



10 Shekhar et al

resource requirement for each simulation and the aggregation logic. An image
is generated and deployed on the cloud registry accessible by the container
hosts. The aggregation logic is deployed on the Result Aggregator component.

Figure 2 depicts the runtime flow of SIMaaS. After the user input, the
SM applies a resource allocation and scheduling policy, and calculates the
minimum number of hosts needed. It then contacts the CM and starts the
simulation containers. The containers log the result to RA that keeps sending
feedback to the SM and performs the aggregation when the desired number of
simulation results are received. SM also runs a service to determine if deadlines
will be met based on current performance data, and accordingly contacts the
CM to acquire additional resources and start simulations.

System Interaction

SIMaaS

Manager
Container

Manager

Container

Host
Containers

Result

Aggregator

Initiate

Result

Simulation Result Feedback

Loop

Calculate resources to

 meet deadline

Acquire Hosts

Host List

Run Simulation Container

Run Simulation Container
Start Container

Log Result

If solution found

Solution

Fig. 2 SIMaaS Interaction Diagram

5 Experimental Validation

This section evaluates the performance properties of the SIMaaS middleware
in the context of hosting the use case described in Section 3.2. Since SIMaaS
has a pluggable strategy, we also compare the performance differences between
using a container and traditional virtualization approaches.



A SIMaaS Cloud Middleware 11

5.1 Experimental Setup

Our setup consists of six nodes each with the configuration defined in Table 1.
The same set of machines were used for experiments for both Linux contain-
ers and virtual machines. Docker version 1.2.0 was used for Linux container
virtualization and QEMU-KVM was used for hypervisor virtualization with
QEMU version 2.0.0 and Linux kernel 3.13.0-24.

Table 1 Hardware & Software Specification of Physical Servers

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Disk Space 500 GB

Operating System Ubuntu 14.04 64-bit

Note that the SM, CM, RA and PM components of the SIMaaS middleware
reside in individual traditional virtual machines, each having 4 virtual CPUs,
8 GB memory and Ubuntu 14.04 64-bit operating system in our private cloud
managed by OpenNebula 4.6.2. The SM was hosted on Cherrypy 3.6.0 web
server. The CM uses Shipyard version v1 for managing Docker hosts along with
custom python code we developed. The PM relies on a customized Perfmon
Server Agent 2.2.3.RC1 residing on each Docker host to gather performance
data. The RA utilizes ZeroMQ version 4.0.4 for receiving simulation results
from the Docker containers.

5.2 Evaluating SIMaaS for Meeting Deadlines and Resource Consumption

We evaluate the ability of the SIMaaS middleware to the meet user-specified
deadline and its effectiveness in minimizing the resources consumed. The DT-
SHS used for the experiments provides the approximate number of simulations
needed for stochastic model checking as an input to attain the desired con-
fidence level for the output [33]. These studies were conducted for different
resource overbooking ratios, number of simulations executed, deadlines, and
simulation duration. Overbooking refers to the number of times the capacity of
a physical resource is exceeded. For example, each container is assigned a sin-
gle CPU; thus for a 12-core system, an overbooking ratio of 2 translates to 24
containers running on the host. This strategy is cost effective when the guest
does not consume all the assigned resources. The experiments were conducted
over six Docker hosts. We run the scheduling policy defined in Algorithm 1 at
an interval of 0.5 secs that dynamically allocates extra hosts if the deadline
cannot be met with the assigned hosts.

Test 1 – Varying Host Overbooking Ratios: This set of experiments were per-
formed to measure the capabilities of the system to handle multiple paral-
lel requests made to hosts with varying overbooking ratios, and study their



12 Shekhar et al

performance while running the containers. Table 2 shows the results of the
experiments conducted for performing statistical model checking with 1,000
simulations and a user-specified deadline of 300 seconds. Our DTSHS uses
sampling rate as an input to the simulations that determines the amount of
time simulation takes for execution. A 10 ms sampling rate in ideal conditions
takes approximately 5 seconds to execute per simulation run for our use case.

Table 2 System Performance with Varying Host Overbooking Ratios

Overbooking
Ratio

Hosts
Acquired

Response Time to
User (in secs)

Turnaround Time
per Sim (in ms)

Measured
Overhead(%)

0.5 5 251.7 6609.85 37.13
1 3 259.9 7525.41 56.63
2 2 254.3 9167.99 66.14
3 3 284.6 14604.72 84.73
4 2 272.1 16811.32 87.64
5 2 267.2 18396.4 91.15
6 2 269.2 19162.75 109.84
7 6 Exceeded Deadline 20838.18 121.38
8 6 Exceeded Deadline 16906.13 144.76

We measure the total number of hosts acquired by the system to meet
the deadline. The system’s goal is to minimize this number to keep the eco-
nomic cost within the bounds. We also measure the response time observed
by the system user after the system finds the desired solution, the average
turnaround time per simulation from the instant it gets requested till the re-
sults get logged, and the system overhead with respect to the actual simulation
execution time. This overhead includes the performance interference overhead,
resource contention, time consumed in data transfer at different components
of the workflow and also the time consumed in aggregation logic.

From the results we can conclude that for CPU-intensive applications –
simulations tend to fall in this category – the non-overbooked system provides
the best results, however, the number of hosts needed is also high, which in
turn increases the economic cost. A highly overbooked system too has high
cost and will be unable to meet the deadlines due to performance overhead
and should be avoided. Based on empirical results, a lower overbooked scenario
provides ideal trade-off as it needs less number of hosts and is able to meet
the deadlines. We also note that the system overhead increases nearly linearly
with the overbooking ratio as the contention increases.

Based on the experiments, we also illustrate the CPU utilization and mem-
ory utilization in Figures 3 and 4, respectively. The simulations have a low
memory footprint but the CPU utilization is quite high. This conforms to our
earlier result that having no or low overbooking for the host will provide better
performance.

Test 2 - Varying Number of Simulations: The purpose of these tests is to
demonstrate the scalability of SIMaaS middleware with increasing number



A SIMaaS Cloud Middleware 13

Fig. 3 CPU Utilization Variations with Simulation Count

Fig. 4 Memory Utilization Variations with Simulation Count

of simulations that are needed as the fidelity of statistical model checking
increases. The tests were run with a deadline of 600 seconds with a sampling
rate of 10 ms and overbooking ratio of 2. Table 3 shows the results. The system
is able to scale to 5,000 simulations without any additional overhead.

Test 3 - Varying Simulation Duration: For these experiments, we vary the
sampling rate of our simulation model. Increasing the sampling period pro-
vides more accuracy for the results but also increases the simulation duration.
Table 4 measures and presents the simulation performance for varying dura-
tions. We observe that the overhead reduces significantly as the duration of the



14 Shekhar et al

Table 3 System Performance with Varying Number of Simulations

Number of
Simulations

Hosts
Acquired

Response Time to
User (in secs)

Turnaround Time
per Sim (in ms)

Measured
Overhead(%)

500 1 266.3 10317.5 91.75
1000 1 538.6 9873.18 93.12
2500 3 254.3 9607.45 79.03
5000 5 593.9 9625.59 78.88

container execution increases, which is attributed mainly to less percentage of
time spent in scheduling and start up of containers.

Table 4 System Performance with Varying Simulation Duration

Sampling
Rate (in ms)

Hosts
Acquired

Response Time to
User (in secs)

Turnaround Time
per Sim (in ms)

Measured
Overhead(%)

10 1 266.3 10317.5 91.75
5 2 234.6 19600.57 11.67
1 5 481.9 93664.98 2.65

Test 4 - Varying Simulation Deadline: Table 5 displays how the system is able
to meet varying deadlines by scaling to consume higher resources but without
adding any significant additional overhead per simulation.

Table 5 System Performance with Varying Simulation Deadline

Specified
Deadline (in

secs)

Hosts
Acquired

Response Time
to User (in secs)

Turnaround
Time per Sim (in

ms)

Measured
Overhead(%)

600 1 538.6 9873.18 93.12
300 3 188.8 10071.29 74.34
150 5 122.4 10388.9 67.18
120 6 117.5 11112.11 92.14

5.3 Comparison of Linux Container-based Cloud and Traditional Cloud

This set of experiments affirm the large difference in startup time of container
in Linux container-based cloud and virtual machine in hypervisor-based tra-
ditional cloud. In [21], the authors showed that there is a high start up time
requirement on different popular public clouds. We tested the same on our pri-
vate cloud, managed by OpenNebula and running QEMU-KVM hypervisor.
We used overbooking ratios of 1, 2 and 4 with a minimal image. While the
startup time were in the order of sub-seconds for our Linux container host,
they were 176, 300 and 599 seconds, respectively on the hypervisor host. The



A SIMaaS Cloud Middleware 15

large start up time can be ascribed to the time taken in copying the image to
the VM and booting of the operating system.

Another set of experiments were performed to compare the performance
of a host running simulations using Linux container versus virtual machines.
Table 6 shows that Linux container host performs better in most of the cases
as it does not have the overhead of running another operating system that a
VM has.

Table 6 Comparison of Simulation Execution Time

Overbooking
Ratio 1

Overbooking
Ratio 2

Overbooking
Ratio 4

Linux Container
(10 ms sampling)

4.74s 7.19s 13.32s

Virtual Machine
(10 ms sampling)

5.17s 9.71s 19.05s

Linux Container
(1 ms sampling)

50.5s 98.29s 180.45s

Virtual Machine
(1 ms sampling)

52.4s 97.56s 202.5s

6 Conclusions

This paper described the design and empirical validation of a cloud middle-
ware solution to support the notion of simulation-as-a-service. Our solution is
applicable to those systems whose models are stochastic and require a poten-
tially large number of simulation runs to arrive at outcomes that are within
statistically relevant confidence intervals.

Many insights were gained during this research as follows and resolving
these form the dimensions of our future investigations:

– Several competing alternatives are available to realize different aspects of
cloud hosting. Effective use of software engineering design patterns is nec-
essary to realize the architecture for cloud-based middleware solutions so
that individual technologies can be swapped with alternate choices.

– Our empirical results suggested that an overbooking ratio of two and host
counts of two provided the best configuration to execute the simulations.
However, these conclusions were based on the existing use case and the
small size of our private data center. Moreover, no background traffic was
considered. Our future work will explore this dimension of the work as well
as determine a mathematical bound for the optimal configuration.

– In our approach the number of simulations to execute for stochastic model
checking were based on published results for the use case. In future there
will be a need to determine these quantities through modeling and empirical
means.



16 Shekhar et al

Acknowledgments.

This work was supported in part by the National Science Foundation CAREER
CNS 0845789 and AFOSR DDDAS FA9550-13-1-0227. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NSF and AFOSR.

References

1. Abate A, Prandini M, Lygeros J, Sastry S (2008) Probabilistic reacha-
bility and safety for controlled discrete time stochastic hybrid systems.
Automatica 44(11):2724–2734

2. Abate A, Katoen JP, Lygeros J, Prandini M (2010) Approximate model
checking of stochastic hybrid systems. European Journal of Control
16(6):624–641

3. Al-Zoubi K, Wainer G (2011) Distributed simulation using restful interop-
erability simulation environment (rise) middleware. In: Intelligence-Based
Systems Engineering, Springer, pp 129–157

4. Alamri A, Ansari WS, Hassan MM, Hossain MS, Alelaiwi A, Hossain
MA (2013) A survey on sensor-cloud: architecture, applications, and ap-
proaches. International Journal of Distributed Sensor Networks 2013

5. Alur R, Pappas G (2004) Hybrid Systems: Computation and Control: 7th
International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-
27, 2004, Proceedings, vol 7. Springer

6. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey.
Computer networks 54(15):2787–2805

7. Bardac M, Deaconescu R, Florea AM (2010) Scaling peer-to-
peer testing using linux containers. In: Roedunet International
Conference (RoEduNet), 2010 9th, IEEE, pp 287–292, URL
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5541555

8. Calheiros RN, Vecchiola C, Karunamoorthy D, Buyya R (2012) The aneka
platform and qos-driven resource provisioning for elastic applications on
hybrid clouds. Future Generation Computer Systems 28(6):861–870

9. Choi C, Seo KM, Kim TG (2014) Dexsim: an experimental environment
for distributed execution of replicated simulators using a concept of single-
simulation multiple scenarios. Simulation p 0037549713520251

10. Fujimoto RM (1990) Parallel discrete event simulation. Communications
of the ACM 33(10):30–53

11. Fujimoto RM, Malik AW, Park A (2010) Parallel and distributed simula-
tion in the cloud. SCS M&S Magazine 3:1–10

12. Gao Y, Wang Y, Gupta SK, Pedram M (2013) An energy and deadline
aware resource provisioning, scheduling and optimization framework for
cloud systems. In: Proceedings of the Ninth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
IEEE Press, p 31



A SIMaaS Cloud Middleware 17

13. Garćıa-Valls M, Cucinotta T, Lu C (2014) Challenges in real-time virtual-
ization and predictable cloud computing. Journal of Systems Architecture

14. Handigol N, Heller B, Jeyakumar V, Lantz B, McKeown N (2012)
Reproducible network experiments using container-based emulation.
In: Proceedings of the 8th international conference on Emerging
networking experiments and technologies, ACM, pp 253–264, URL
http://dl.acm.org/citation.cfm?id=2413206

15. Hellegouarch S (2007) CherryPy Essentials: Rapid Python Web Applica-
tion Development. Packt Publishing Ltd

16. Kim H, El-Khamra Y, Rodero I, Jha S, Parashar M (2011) Autonomic
management of application workflows on hybrid computing infrastructure.
Scientific Programming 19(2):75–89

17. Ledyayev R, Richter H (2014) High performance computing in a cloud
using openstack. In: CLOUD COMPUTING 2014, The Fifth International
Conference on Cloud Computing, GRIDs, and Virtualization, pp 108–113

18. Li Z, Li X, Duong T, Cai W, Turner SJ (2013) Accelerating optimistic
hla-based simulations in virtual execution environments. In: Proceedings
of the 2013 ACM SIGSIM conference on Principles of advanced discrete
simulation, ACM, pp 211–220

19. Liu X, He Q, Qiu X, Chen B, Huang K (2012) Cloud-based computer
simulation: Towards planting existing simulation software into the cloud.
Simulation Modelling Practice and Theory 26:135–150

20. LXC (2014) Linux container. URL https://linuxcontainers.org/, last ac-
cessed: 10/11/2014

21. Mao M, Humphrey M (2012) A performance study on the vm startup time
in the cloud. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, IEEE, pp 423–430

22. Mauch V, Kunze M, Hillenbrand M (2013) High performance cloud com-
puting. Future Generation Computer Systems 29(6):1408–1416

23. Menage PB (2007) Adding generic process containers to the linux kernel.
In: Proceedings of the Linux Symposium, Citeseer, vol 2, pp 45–57, URL
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-45-58.pdf

24. Merkel D (2014) Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J 2014(239), URL
http://dl.acm.org/citation.cfm?id=2600239.2600241

25. Rak M, Cuomo A, Villano U (2012) Mjades: Concurrent simulation in the
cloud. In: Complex, Intelligent and Software Intensive Systems (CISIS),
2012 Sixth International Conference on, IEEE, pp 853–860

26. Shipyard (2014) Shipyard project. URL http://shipyard-project.com/, last
accessed: 10/11/2014

27. Soltesz S, Pötzl H, Fiuczynski ME, Bavier A, Peterson L (2007)
Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors. In: ACM SIGOPS
Operating Systems Review, ACM, vol 41, pp 275–287, URL
http://dl.acm.org/citation.cfm?id=1273025



18 Shekhar et al

28. Somasundaram TS, Govindarajan K (2014) Cloudrb: A framework for
scheduling and managing high-performance computing (hpc) applications
in science cloud. Future Generation Computer Systems 34:47–65

29. Tao F, Zhang L, Venkatesh V, Luo Y, Cheng Y (2011) Cloud manufactur-
ing: a computing and service-oriented manufacturing model. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture p 0954405411405575

30. Vanmechelen K, De Munck S, Broeckhove J (2012) Conservative dis-
tributed discrete event simulation on amazon ec2. In: Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), IEEE Computer Society, pp 853–860

31. Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose
CA (2013) Performance evaluation of container-based virtualiza-
tion for high performance computing environments. In: Parallel,
Distributed and Network-Based Processing (PDP), 2013 21st Eu-
romicro International Conference on, IEEE, pp 233–240, URL
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6498558

32. Zhu X, Chen H, Yang LT, Yin S (2013) Energy-aware rolling-horizon
scheduling for real-time tasks in virtualized cloud data centers. In: High
Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing (HPCC EUC), 2013
IEEE 10th International Conference on, IEEE, pp 1119–1126

33. Zuliani P, Platzer A, Clarke EM (2013) Bayesian statistical model check-
ing with application to stateflow/simulink verification. Formal Methods in
System Design 43(2):338–367


