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Abstract 

 
DEVS is a formalism to describe generic dynamic 

systems in a hierarchical and modular way. We pre-
sent new techniques for executing DEVS and Cell-
DEVS models in parallel and distributed environments 
based on the warped kernel. The parallel simulator 
PCD++ has been extended to support optimistic simu-
lations. A non-hierarchical approach is employed to 
reduce the communication overhead. A two-level user-
controlled state-saving mechanism is proposed to 
achieve efficient and flexible state saving at runtime. 
It is shown that optimistic PCD++ markedly outper-
forms other alternatives, and considerable speedups 
can be achieved in parallel and distributed simula-
tions.  
 
1. Introduction 
Modeling and simulation (M&S) has become an im-
portant tool for analyzing and designing a broad array 
of complex systems where a mathematical analysis is 
intractable. As a sound formal M&S framework based 
on generic dynamic system concepts, the DEVS [1] 
formalism supports hierarchical and modular con-
struction of models, allowing model reuse, reducing 
development and testing time. Since its first formal-
ization, DEVS has been extended into various direc-
tions. The Parallel DEVS or P-DEVS [2] formalism 
is an extension that eliminates the serialization con-
straints. Cell-DEVS [3] combines Cellular Automata 
[4] with DEVS theory to describe n-dimensional cell 
spaces as discrete event models, where each cell is 
represented as a DEVS basic model that can be de-
layed using explicit timing constructions. 

Parallel discrete event simulation (PDES) has re-
ceived increasing interest as simulations become more 
time consuming and geographically distributed. Syn-
chronization techniques for PDES systems generally 
fall into two categories: conservative approaches that 
strictly avoid violating causality [5], and optimistic 

approaches [6] that allow violations to occur, but pro-
vide mechanisms to recover from them through a 
process known as rollback. Usually, optimistic ap-
proaches can exploit higher degree of parallelism, 
whereas conservative approaches tend to be overly 
pessimistic and force sequential execution when it is 
not necessary. Moreover, conservative approaches 
generally rely on application-specific information to 
determine which events are safe to process. While 
optimistic algorithms can execute more efficiently if 
they exploit such information, they are less reliant on 
the application for correct execution, allowing more 
transparent synchronization and simplifying software 
development. On the other hand, optimistic algo-
rithms may require computations with higher over-
head, degrading system performance to a certain ex-
tent. The WARPED simulation kernel [7] is a configur-
able middleware that implements the optimistic 
mechanisms and various optimizations. 

CD++ [8] is an M&S toolkit that implements P-
DEVS and Cell-DEVS formalisms. In [9], a parallel 
conservative simulation engine, called as PCD++, was 
incorporated into CD++. It uses a centralized syn-
chronization mechanism where the entire simulation 
is managed by a single root coordinator. In this work, 
we extend the conservative PCD++ to support 
optimistic simulations. While the simulator employs 
the same layered architecture [9], it adopts a flattened 
simulation structure that eliminates the need for 
intermediate coordinators [10]. The message-passing 
organization is analyzed using a high-level abstraction 
called wall clock time slice (WCTS). Various 
enhancements and optimizations are proposed and 
integrated into the optimistic simulator, showing that 
this new aproach markedly outperforms other 
alternatives.  
2. Parallel DEVS 

The DEVS [1] formalism provides a framework for 
the definition of hierarchical models in a modular 
way. A real system modeled using DEVS can be de-



scribed as a composition of behavioral (atomic) and 
structural (coupled) components. The P-DEVS [2] 
formalism eliminates the restrictions that forced the 
original DEVS definition to sequential execution. The 
Cell-DEVS [3] formalism allows the specification of 
discrete event cell spaces, improving their definition 
by using explicit timing delays. Various DEVS-based 
M&S toolkits have been implemented, including:  
• DEVS/CORBA [12]: a runtime infrastructure on 

top of CORBA to support distributed simulation 
of DEVS components.  

• DEVS/HLA [13]: an HLA-compliant M&S envi-
ronment implemented in C++ that supports high 
level model construction.  

• DEVSCluster [14]: a CORBA-based, multi-
threaded distributed simulator. It transforms a hi-
erarchical DEVS model into a non-hierarchical 
one to ease synchronization. 

• DEVS/Grid [15]: an M&S framework imple-
mented using Java and Globus toolkit for Grid 
computing infrastructure.  

• DEVS/P2P [16]: an M&S framework based on P-
DEVS and P2P message communication protocol. 
It uses a customized DEVS simulation protocol to 
achieve decentralized inter-node communication.  

• DEVS/RMI [17]: provides a fully dynamic re-
configurable infrastructure for handling load bal-
ancing and fault tolerance in distributed simula-
tions. It uses the Java RMI for synchronization. 

However, none of them supports optimistic simula-
tion of Cell-DEVS models in parallel and distributed 
environments. In [18], a risk-free optimistic simula-
tion algorithm is presented. In this approach, only 
correct outputs with the minimum global time are sent 
to avoid the spread of causality errors to remote proc-
esses. This mechanism is well suited for shared mem-
ory architectures, but has limitations in distributed 
heterogeneous environments. Optimistic PCD++ is 
built on top of WARPED, which provides services for 
defining different types of processes (simulation ob-
jects). Simulation objects mapped on a physical proc-
essor are grouped by an entity called as logical proc-
ess (LP). WARPED relies on the Message Passing Inter-
face (MPI) for both massively parallel machines and 
workstation clusters.  

 
3. Optimistic simulation in CD++ 
PCD++ provides two loosely coupled frameworks: the 
modeling and simulation frameworks. The former 
consists of a hierarchy of classes rooted at Model to 
define the behavior of the DEVS and Cell-DEVS mod-
els; the latter defines a hierarchy of classes rooted at 

Processor, which, in turn, derives from the abstract 
simulation object definition in the kernel, to imple-
ment the simulation mechanisms. That is, the PCD++ 
processors are concrete implementations of simulation 
objects to realize the abstract DEVS simulators. Based 
on [10], optimistic PCD++ employs a flat structure 
with four DEVS processors: Simulator, Flat Coordi-
nator (FC), Node Coordinator (NC), and Root. Intro-
ducing FC and NC eliminates the need for intermedi-
ary coordinators in the DEVS processor hierarchy. 
Root is no longer the global scheduler in the simula-
tion: the simulation is managed by a set of NCs run-
ning on different machines in a decentralized manner.  

Simulation is message-driven. PCD++ processors 
exchange messages that can be classified as content 
and synchronization messages. The former includes 
the external message (x, t) and output message (y, t), 
while the latter includes the initialization message (I, 
t), collect message (@, t), internal message (*, t), and 
done message (D, t). These messages are wrapped in 
kernel events and transmitted between the PCD++ 
processors using the functions provided by WARPED. 
Figure 1 shows an example of the processor structure 
in two machines. An LP is created on each machine, 
grouping PCD++ processors. Root is created only on 
LP0 (to start/end the simulation and perform I/O op-
erations). NC/FC are created on each LP. FC is in 
charge of intra-LP communications between its child 
Simulators. NC is the local central controller on its LP 
and the end point of inter-LP communications. Simu-
lators execute the DEVS functions defined in its 
atomic model. 
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Figure 1. Distributed processor structure  
 

We show a message-passing scenario using an 
event precedence graph, where a vertex (black dot) 
represents a message, and an edge (black arrow) 
represents the action of sending a message. A line 



with a solid arrowhead denotes a (synchronous) intra-
LP message and a line with a stick arrowhead denotes 
an (asynchronous) inter-LP message. A lifeline 
(dashed line) is drawn for each PCD++ processor. 
Figure 2 illustrates the flow of messages on a LP with 

an NC, an FC, and two Simulators (S1 and S2). We do 
not consider out-of-order execution of messages since 
the rollback operations are performed automatically 
and transparently in the kernel. 

 
Figure 2. An example message-passing scenario on an LP 
 

We can see that the execution of messages at any 
simulation time on a LP can be decomposed into at 
most three distinct phases: initialization (I), collect 
(C), and transition (T), as demarcated by done mes-
sages (bold black arrows) received by the NC. Only 
one initialization phase exists at time 0 ( [I1, D7]). The 
collect phase at time t starts with a (@, t) sent from 
the NC to the FC and ends with the following (D, t) 
received by the NC (i.e., the collect phase at 0 com-
prises messages [@8, D24]). This phase happens if 
there are imminent Simulators on the LP at that time. 
Finally, the transition phase at simulation time t be-
gins with the first (*, t) sent from the NC to the FC 
and ends at the last (D, t) received by the NC at time t 
(messages [*25, D46] belong to the transition phase at 
time 0). The transition phase is mandatory for each 
individual simulation time. Furthermore, a transition 
phase may contain multiple rounds of computations, 

each starts with (x, t) followed by a (*, t) sent from the 
NC to the FC and ends with a (D, t) returned to the 
NC (in the example, the transition phase 0 has three 
rounds: R0 with messages [*25, D30], R1 with messages 
[x31, D38], and R2 with messages [x39, D46]). On each 
round, state transitions are performed incrementally 
with additional external messages and/or for poten-
tially extra Simulators. Hereinafter, we will denote a 
transition phase of (n+1) rounds as [R0…Rn]. 

Sequential simulation on a LP can be viewed as a 
sequence of computation units, one for each group of 
simultaneous events. Each unit is performed during a 
timespan as measured by a physical wall clock. Such 
computation unit is referred to as wall clock time slice 
(WCTS). A WCTS comprising simultaneous events 
occurred at virtual time t is denoted as WCTS-t, and t 
is called as the virtual time of the WCTS. 

 
Figure 3. WCTS representation for the simulation on a LP 
 

Figure 3 shows the sequential simulation on an LP 
in terms of WCTS. The simulation is viewed as a se-

quence of wall clock time slices linked together along 
the time axis, each stands for the execution of simul-
taneous events at a specific simulation time on all the 



neous events at a specific simulation time on all the 
PCD++ processors associated with the LP. Each 
WCTS-t may contain one mandatory transition phase 
and one optional collect phase. Several properties of 
the WCTS are summarized as follows: 
• The simulation on a LP starts with WCTS-0, the 

only WCTS with all three phases. 
• Wall clock time slices are linked together by mes-

sages sent from NC to FC (black arrows). When 
NC determines the next simulation time at the 
end of a WCTS, it sends out messages to be exe-
cuted by FC, initiating the next WCTS on the LP.  

• Completion of the simulation on a LP is marked 
by a WCTS sending out no linking messages, e.g. 
WCTS-tn in the diagram. The whole simulation 
finishes only when all participating LPs have 
completed their corresponding parts of the simu-
lation. 

• Wall clock time slices are atomic computation 
units during rollback operations. A typical roll-
back scenario is shown in Figure 4. 

 
Figure 4. Typical rollback scenario shown in terms of wall clock time slices 

 
In the diagram, the simulation on LPi is executing 

in WCTS-tn when a straggler with timestamp t2 ar-
rives at the NC (1). Based on the rollback mecha-
nisms, the received straggler (2) is inserted into 
WCTS-t2 (a message implosion happens in WCTS-t2 
if it is an anti-message). Then, rollbacks are propa-
gated among the PCD++ processors, restoring their 
states to those saved at the end of WCTS-t1 (3), and all 
messages in WCTS-t2 up to WCTS-tn are undone. Af-
ter, simulation on LPi resumes forward execution from 
the unprocessed linking messages between WCTS-t1 
and WCTS-t2 (4). 
 
4. Enhancements to PCD++ and Warped 
This section covers essential enhancements to the 
PCD++ and the WARPED kernel to ensure correct and 
efficient execution of simulations. 
 
4.1. Rollbacks at virtual time 0 
During rollbacks, the state of a process is restored to a 
previously saved copy with virtual time strictly less 
than the rollback time. However, the problem of han-

dling rollbacks at virtual time 0 is left unsolved. If a 
process receives a straggler with timestamp 0, the state 
restoration will fail since no state with negative virtual 
time can be found in its state queue. There are two 
different approaches to solving this problem. One is to 
save a special state that has an artificial negative vir-
tual time at the head of each state queue. The other is 
to synchronize the processes at an appropriate stage 
with MPI Barriers so that no straggler message with 
timestamp 0 will ever be received. The former ap-
proach is pure optimistic; however, there is a perform-
ance hazard in this approach. The probability of roll-
back echoes [5] increases significantly at virtual time 
0. In this case, the processes in the system are forced 
to restart execution from time 0 repeatedly, resulting 
in an unstable situation where there is no progress in 
simulation time. The second approach tries to avoid 
the problem altogether by using explicit synchroniza-
tions. In the optimistic PCD++, the best place to im-
plement the MPI Barrier is after the collect phase in 
WCTS-0 (Figure 5). 

 
 

Figure 5. Using MPI Barrier to avoid rollbacks at virtual time 0 in PCD++ 



 
As all outgoing inter-LP communication happens 

in the collect phases, messages with timestamp 0 are 
sent to remote LPs only in the collect phase of WCTS-
0. The LPs are synchronized by a MPI Barrier at the 
end of this collect phase so that these messages can be 
received by their destinations before the simulation 
time advances beyond time 0. Therefore, no straggler 
with timestamp 0 will be received by any LP after-
wards. Once the LPs exit from the barrier, they can 
safely continue optimistic execution. The cost of this 
approach is small, since the length of the synchro-
nized execution is trivial when compared with the 
whole simulation. 
4.2. User-controlled state-saving mechanism 
In WARPED, the copy state-saving (CSS) strategy is 
implemented using state managers of type StateMan-
ager, which saves a process’s state after executing 
each event, and the periodic state-saving (PSS) strat-
egy is realized using state managers of type In-
freqStateManager that only saves a process’s state 
infrequently every a number of events. Simulator de-
velopers can choose to use either type of state manag-
ers at compile time. This rigid mechanism has two 
major disadvantages: (1) it ignores the fact that simu-
lator developers may have the knowledge as to how to 
save states more efficiently to reduce the state-saving 
overhead; (2) it eliminates the possibility that different 
processes may use different types of state managers to 
fulfill their specific needs at runtime. To overcome 
these shortcomings, we introduced a two-level user-
controlled state-saving (UCSS) mechanism so that 
simulator developers can utilize more flexible and 
efficient state-saving strategies. The structure of the 
UCSS mechanism is shown in Figure 6. 
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Figure 6. UCSS integrated with CSS/PSS 

Therefore, a PCD++ processor can make state-
saving decisions based on application-specific criteria. 

Further, it can dynamically switch between the CSS 
and PSS strategies at level 1. Thus, the UCSS mecha-
nism virtually gives simulator developers the full 
power to choose the best possible combination of state-
saving strategies dynamically at runtime. 

 
4.3. Message type-based state saving 
During rollbacks, the state of a PCD++ processor is 
always restored to the last state saved at the end of a 
WCTS with virtual time strictly less than the present 
rollback time. Hence, it is sufficient for a processor to 
save its state only after processing the last event in 
each WCTS for rollback. The state-saving operation 
can be safely skipped after executing all the other 
events. The last event in a WCTS is processed at the 
end of Rn in the transition phase. Although the actual 
number of rounds in a transition phase cannot be de-
termined, we can identify the type of the messages 
executed by a given processor. For NC and FC, it must 
be a (D, t), and for the Simulators, it should be a (*, t). 
Therefore, PCD++ processors need to save states only 
after processing these particular types of messages. 
Since Root only processes output messages, it still 
saves state for each event. We call the resultant state-
saving strategy as message type-based state-saving 
(MTSS). Considering that there are a large number of 
messages executed in each WCTS, and that they are 
dominated by external and output messages, MTSS 
can significantly reduce the number of states saved 
during the simulation. Further, the rollback overhead 
is reduced as well because fewer states need to be re-
moved from the state queues during rollback opera-
tions. MTSS is risk-free in the sense that there is no 
penalty for saving fewer states. 
 
4.5. One log file per node 
Previously, one log file is created for each PCD++ 
processor to log the received messages in a human 
readable format. Depending on the size of the model, 
this can consume many file descriptors. In addition, 
creating these files and transferring data to them con-
stitute a large operational overhead, especially when 
the files are accessed via a Network File System (NFS) 
during the simulation. To reduce the overhead of file 
I/O operations, a new optimization strategy, called as 
one log file per node, is implemented. Only one log 
file is created for the NC on each node. The NC’s file 
queue is shared among all the processors on that node. 
Messages received by the NC itself are logged directly 
in the NC’s file queue, while the other processors on 
that node must first get a reference to the local NC 



(which can be done in constant time) and then log 
their received messages into the NC’s file queue. 
 
5. Experimental results 
Our experiments were conducted on a HP PROLIANT 
DL Server, a cluster of 32 compute nodes (dual 
3.2GHz Intel Xeon processors, 1GB PC2100 266MHz 
DDR RAM) running Linux WS 2.4.21 interconnected 
through Gigabit Ethernet and communicating over 
MPICH 1.2.6. The Cell-DEVS models tested in our 
experiments include a model for forest fire propaga-
tion [19] based on Rothermel’s mathematical defini-
tion [20] and a 3-D watershed model representing a 
hydrology system [19]. The following simulation re-
sults are averages over 10 independent runs. We use 
two different speedups in our analysis: the overall 
speedup (i.e., the total execution time as perceived by 
the users) and the algorithm speedup (i.e. without 
considering the simulation bootstrap time) that is used 
to assess the performance gain attributed to the paral-
lel algorithms alone. 

 
5.1. Effect of one log file per node 
The performance improvement derived from the one 
log file per node strategy is tested using the fire 
propagation model of 900 cells arranged in a 30×30 
mesh.  
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Figure 7. One log file per node: 1 and 4 nodes 
 
The bootstrap time is even greater than the actual 

running time. This clearly indicates that the bootstrap 
operation is a bottleneck in the simulation. When the 
strategy is turned on, the bootstrap time is reduced by 
99.1% on 1 node and by 96.47% on 4 nodes. Further, 
the running time is decreased by 72.08% on 1 node 
and by 73.02% on 4 nodes due to more efficient com-
munication, I/O, and rollback operations. 
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Figure 8. CPU use: 1 logfile per node, 1 node 

 
The CPU usage monitored in our experiments also 

suggests that the file I/O operation is a major barrier 
in the bootstrap phase. As shown in Figure 8, the CPU 
is utilized much more efficiently with the one log file 
per node strategy. A similar pattern was observed in 
simulations running on multiple nodes. 

 
5.2. MTSS 
The same fire propagation model is used to test the 
effect of MTSS strategy. The model was executed on 1 
and 4 nodes with and without the MTSS strategy. 
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Figure 9. Number of saved states  

 
Due to the MTSS strategy, the number of states 

saved during the simulation is reduced by 49.29% and 
47.74% on 1 and 4 nodes respectively. Accordingly, 
the time spent on state-saving operations is decreased 
by 29.9% and 38.18%. The state-saving time declines 
more steeply on 4 nodes due to the distributed man-
agement of the state queues. 
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Figure 10. Running and bootstrap time  
 

The corresponding running and bootstrap times are 
shown in Figure 10. While the bootstrap time remains 
nearly unchanged, the actual running time is reduced 
by 17.64% and 7.63% on 1 and 4 nodes respectively 
because fewer states are saved in the state queues and, 
potentially, removed from the queues during rollbacks. 

Figure 11 shows the time-weighted average and 
maximum memory consumption with and without the 
strategy on 1 and 4 nodes. The average memory con-
sumption declines by 26% in both cases, while the 
peak memory consumption decreases by 25.13% and 
27.44% on 1 and 4 nodes respectively. 
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Figure 11. Memory consumption  
 
5.3. Performance of the PCD++ toolkit 
The key metrics for evaluating the performance of the 
PCD++ simulator are the execution time and speedup. 
Both the one log file per node and MTSS strategies 
were applied to the simulator in the following experi-
ments. For all the Cell-DEVS models, a simple parti-
tion strategy was used that evenly divides the cell 
space into horizontal rectangles. First, the fire propa-
gation model was tested using different sizes of cell 
spaces: 20×20 (400 cells), 25×25 (625 cells), 30×30 
(900 cells) and 35×35 (1225 cells). The total execution 
time and running time of the fire model with different 
sizes and executed on 1 up to 4 nodes are listed in 
Table 1. 

Table 1. Execution/running times for the fire model 

Total Execution Time (sec) 
No.nodes 20×20 25×25 30×30 35×35 

1 2.0733 3.2949 5.0442 7.8702 
2 1.9719 2.7959 3.5232 4.7138 
3 1.8787 2.5237 3.1573 3.9667 
4 1.9254 2.6091 3.0922 3.8138 

Running Time (sec) 
No.nodes 20×20 25×25 30×30 35×35 

1 1.9515 3.1273 4.3566 7.6428 
2 1.4232 2.1225 2.8838 3.9952 
3 1.3574 1.8953 2.5237 3.2959 
4 1.4296 1.8656 2.3314 3.0224 

 
For any given number of nodes, the execution time 

always increases as the size of the model goes up. 
Moreover, the execution time rises less steeply when 
more nodes are used to do the simulation. For exam-
ple, as the model size increases from 400 to 1225 
cells, the execution time ascends sharply by nearly 
280% (from 2.0733 to 7.8702 seconds) on 1 node, 
whereas it merely rises by 98% (from 1.9254 to 3.8138 
seconds) on 4 nodes. On the other hand, for a fixed 
model size, the execution time tends to, but not al-
ways, decrease when more nodes are utilized. How-
ever, when the number of nodes increases further, the 
downward trend in execution time is reversed. When a 
model, especially a small one, is partitioned onto more 
and more nodes, the increasing overhead involved in 
inter-LP communication and potential rollbacks may 
eventually degrade the performance. Hence, a trade-off 
between the benefits of higher degree of parallelism 
and the concomitant overhead costs needs to be 
reached. We can also find that better performance can 
be achieved on a larger number of nodes as the model 
size increases. The shortest execution time is achieved 
on 3 nodes for the 20×20 and 25×25 models, while it 
is obtained on 4 nodes for the other two larger models.  
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Figure 12. Overall/algorithm speedups  

 
Using the execution and running times, we can cal-

culate the overall and algorithm speedups, as shown in 
Figure 12. The algorithm speedup is always higher 
than its counterpart overall speedup, an evidence 
showing that the Time Warp optimistic algorithms are 
major contributors to the overall performance im-
provement. 

A more computation-intensive 3-D watershed 
model of size 15×15×2 (450 cells) was tested to evalu-
ate the performance of PCD++ for simulating models 
of complex physical system. Table 2 shows the result-
ing total execution and running times. The best per-
formance is achieved on 5 nodes with execution and 
running time of 6.1538 and 5.6743 seconds respec-
tively. The speedups are illustrated in Figure 14. The 
best overall and algorithm speedups are 2.7306 and 
2.9373 respectively, higher than those obtained with 
the fire models. 
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Figure 13. 15×15×2 watershed model 
 

6. Conclusion 
We tackled the problem of executing DEVS and Cell-
DEVS models in parallel and distributed environ-
ments based on the Time Warp synchronization proto-
col. The algorithms for the PCD++ processors and 
Cell-DEVS models with transport and inertial delays 
were redesigned to address the need of distributed op-
timistic simulation. The simulation process on each 
LP was abstracted using the notion of WCTS, which 
greatly simplifies the task of analyzing the complex 
message exchanges between the PCD++ processors 
involved in the simulation. A two-level UCSS mecha-
nism was proposed so that simulator developers can 
utilize more flexible and efficient state-saving tech-
niques during the simulation. Mechanisms were pro-
vided to handle various issues in optimistic simula-
tions such as rollbacks at virtual time 0 and messaging 
anomalies. Several optimization strategies were im-
plemented in the optimistic PCD++ such as the MTSS 
strategy and the one log file per node strategy. We 
showed that optimistic PCD++ simulator markedly 
outperforms the conservative one in all testing scenar-
ios. Considerable speedups were observed in our ex-
periments, indicating the simulator is well-suited for 
simulating large and complex models. 
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