
Performance Analysis of an Optimistic Simulator for CD++

Qi Liu Gabriel Wainer
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ont., Canada

{liuqi, gwainer}@sce.carleton.ca

Abstract

DEVS is a formalism to describe generic dynamic

systems in a hierarchical and modular way. We pre-
sent new techniques for executing DEVS and Cell-
DEVS models in parallel and distributed environments
based on the warped kernel. The parallel simulator
PCD++ has been extended to support optimistic simu-
lations. A non-hierarchical approach is employed to
reduce the communication overhead. A two-level user-
controlled state-saving mechanism is proposed to
achieve efficient and flexible state saving at runtime.
It is shown that optimistic PCD++ markedly outper-
forms other alternatives, and considerable speedups
can be achieved in parallel and distributed simula-
tions.

1. Introduction
Modeling and simulation (M&S) has become an im-
portant tool for analyzing and designing a broad array
of complex systems where a mathematical analysis is
intractable. As a sound formal M&S framework based
on generic dynamic system concepts, the DEVS [1]
formalism supports hierarchical and modular con-
struction of models, allowing model reuse, reducing
development and testing time. Since its first formal-
ization, DEVS has been extended into various direc-
tions. The Parallel DEVS or P-DEVS [2] formalism
is an extension that eliminates the serialization con-
straints. Cell-DEVS [3] combines Cellular Automata
[4] with DEVS theory to describe n-dimensional cell
spaces as discrete event models, where each cell is
represented as a DEVS basic model that can be de-
layed using explicit timing constructions.

Parallel discrete event simulation (PDES) has re-
ceived increasing interest as simulations become more
time consuming and geographically distributed. Syn-
chronization techniques for PDES systems generally
fall into two categories: conservative approaches that
strictly avoid violating causality [5], and optimistic

approaches [6] that allow violations to occur, but pro-
vide mechanisms to recover from them through a
process known as rollback. Usually, optimistic ap-
proaches can exploit higher degree of parallelism,
whereas conservative approaches tend to be overly
pessimistic and force sequential execution when it is
not necessary. Moreover, conservative approaches
generally rely on application-specific information to
determine which events are safe to process. While
optimistic algorithms can execute more efficiently if
they exploit such information, they are less reliant on
the application for correct execution, allowing more
transparent synchronization and simplifying software
development. On the other hand, optimistic algo-
rithms may require computations with higher over-
head, degrading system performance to a certain ex-
tent. The WARPED simulation kernel [7] is a configur-
able middleware that implements the optimistic
mechanisms and various optimizations.

CD++ [8] is an M&S toolkit that implements P-
DEVS and Cell-DEVS formalisms. In [9], a parallel
conservative simulation engine, called as PCD++, was
incorporated into CD++. It uses a centralized syn-
chronization mechanism where the entire simulation
is managed by a single root coordinator. In this work,
we extend the conservative PCD++ to support
optimistic simulations. While the simulator employs
the same layered architecture [9], it adopts a flattened
simulation structure that eliminates the need for
intermediate coordinators [10]. The message-passing
organization is analyzed using a high-level abstraction
called wall clock time slice (WCTS). Various
enhancements and optimizations are proposed and
integrated into the optimistic simulator, showing that
this new aproach markedly outperforms other
alternatives.
2. Parallel DEVS

The DEVS [1] formalism provides a framework for
the definition of hierarchical models in a modular
way. A real system modeled using DEVS can be de-

scribed as a composition of behavioral (atomic) and
structural (coupled) components. The P-DEVS [2]
formalism eliminates the restrictions that forced the
original DEVS definition to sequential execution. The
Cell-DEVS [3] formalism allows the specification of
discrete event cell spaces, improving their definition
by using explicit timing delays. Various DEVS-based
M&S toolkits have been implemented, including:
• DEVS/CORBA [12]: a runtime infrastructure on

top of CORBA to support distributed simulation
of DEVS components.

• DEVS/HLA [13]: an HLA-compliant M&S envi-
ronment implemented in C++ that supports high
level model construction.

• DEVSCluster [14]: a CORBA-based, multi-
threaded distributed simulator. It transforms a hi-
erarchical DEVS model into a non-hierarchical
one to ease synchronization.

• DEVS/Grid [15]: an M&S framework imple-
mented using Java and Globus toolkit for Grid
computing infrastructure.

• DEVS/P2P [16]: an M&S framework based on P-
DEVS and P2P message communication protocol.
It uses a customized DEVS simulation protocol to
achieve decentralized inter-node communication.

• DEVS/RMI [17]: provides a fully dynamic re-
configurable infrastructure for handling load bal-
ancing and fault tolerance in distributed simula-
tions. It uses the Java RMI for synchronization.

However, none of them supports optimistic simula-
tion of Cell-DEVS models in parallel and distributed
environments. In [18], a risk-free optimistic simula-
tion algorithm is presented. In this approach, only
correct outputs with the minimum global time are sent
to avoid the spread of causality errors to remote proc-
esses. This mechanism is well suited for shared mem-
ory architectures, but has limitations in distributed
heterogeneous environments. Optimistic PCD++ is
built on top of WARPED, which provides services for
defining different types of processes (simulation ob-
jects). Simulation objects mapped on a physical proc-
essor are grouped by an entity called as logical proc-
ess (LP). WARPED relies on the Message Passing Inter-
face (MPI) for both massively parallel machines and
workstation clusters.

3. Optimistic simulation in CD++
PCD++ provides two loosely coupled frameworks: the
modeling and simulation frameworks. The former
consists of a hierarchy of classes rooted at Model to
define the behavior of the DEVS and Cell-DEVS mod-
els; the latter defines a hierarchy of classes rooted at

Processor, which, in turn, derives from the abstract
simulation object definition in the kernel, to imple-
ment the simulation mechanisms. That is, the PCD++
processors are concrete implementations of simulation
objects to realize the abstract DEVS simulators. Based
on [10], optimistic PCD++ employs a flat structure
with four DEVS processors: Simulator, Flat Coordi-
nator (FC), Node Coordinator (NC), and Root. Intro-
ducing FC and NC eliminates the need for intermedi-
ary coordinators in the DEVS processor hierarchy.
Root is no longer the global scheduler in the simula-
tion: the simulation is managed by a set of NCs run-
ning on different machines in a decentralized manner.

Simulation is message-driven. PCD++ processors
exchange messages that can be classified as content
and synchronization messages. The former includes
the external message (x, t) and output message (y, t),
while the latter includes the initialization message (I,
t), collect message (@, t), internal message (*, t), and
done message (D, t). These messages are wrapped in
kernel events and transmitted between the PCD++
processors using the functions provided by WARPED.
Figure 1 shows an example of the processor structure
in two machines. An LP is created on each machine,
grouping PCD++ processors. Root is created only on
LP0 (to start/end the simulation and perform I/O op-
erations). NC/FC are created on each LP. FC is in
charge of intra-LP communications between its child
Simulators. NC is the local central controller on its LP
and the end point of inter-LP communications. Simu-
lators execute the DEVS functions defined in its
atomic model.

0 DFKLQH� 0 DFKLQH�

3DUWLWLRQ�/ LQH

� 3,�FRP P XQLFDWLRQ
� LUHFW�FRP P XQLFDWLRQ

6LP XODWRU

/ 3 / 3

) &

6LP XODWRU

1 &

5 RRW

6LP XODWRU

) &

6LP XODWRU

1 &

Figure 1. Distributed processor structure

We show a message-passing scenario using an
event precedence graph, where a vertex (black dot)
represents a message, and an edge (black arrow)
represents the action of sending a message. A line

with a solid arrowhead denotes a (synchronous) intra-
LP message and a line with a stick arrowhead denotes
an (asynchronous) inter-LP message. A lifeline
(dashed line) is drawn for each PCD++ processor.
Figure 2 illustrates the flow of messages on a LP with

an NC, an FC, and two Simulators (S1 and S2). We do
not consider out-of-order execution of messages since
the rollback operations are performed automatically
and transparently in the kernel.

Figure 2. An example message-passing scenario on an LP

We can see that the execution of messages at any
simulation time on a LP can be decomposed into at
most three distinct phases: initialization (I), collect
(C), and transition (T), as demarcated by done mes-
sages (bold black arrows) received by the NC. Only
one initialization phase exists at time 0 ([I1, D7]). The
collect phase at time t starts with a (@, t) sent from
the NC to the FC and ends with the following (D, t)
received by the NC (i.e., the collect phase at 0 com-
prises messages [@8, D24]). This phase happens if
there are imminent Simulators on the LP at that time.
Finally, the transition phase at simulation time t be-
gins with the first (*, t) sent from the NC to the FC
and ends at the last (D, t) received by the NC at time t
(messages [*25, D46] belong to the transition phase at
time 0). The transition phase is mandatory for each
individual simulation time. Furthermore, a transition
phase may contain multiple rounds of computations,

each starts with (x, t) followed by a (*, t) sent from the
NC to the FC and ends with a (D, t) returned to the
NC (in the example, the transition phase 0 has three
rounds: R0 with messages [*25, D30], R1 with messages
[x31, D38], and R2 with messages [x39, D46]). On each
round, state transitions are performed incrementally
with additional external messages and/or for poten-
tially extra Simulators. Hereinafter, we will denote a
transition phase of (n+1) rounds as [R0…Rn].

Sequential simulation on a LP can be viewed as a
sequence of computation units, one for each group of
simultaneous events. Each unit is performed during a
timespan as measured by a physical wall clock. Such
computation unit is referred to as wall clock time slice
(WCTS). A WCTS comprising simultaneous events
occurred at virtual time t is denoted as WCTS-t, and t
is called as the virtual time of the WCTS.

Figure 3. WCTS representation for the simulation on a LP

Figure 3 shows the sequential simulation on an LP
in terms of WCTS. The simulation is viewed as a se-

quence of wall clock time slices linked together along
the time axis, each stands for the execution of simul-
taneous events at a specific simulation time on all the

neous events at a specific simulation time on all the
PCD++ processors associated with the LP. Each
WCTS-t may contain one mandatory transition phase
and one optional collect phase. Several properties of
the WCTS are summarized as follows:
• The simulation on a LP starts with WCTS-0, the

only WCTS with all three phases.
• Wall clock time slices are linked together by mes-

sages sent from NC to FC (black arrows). When
NC determines the next simulation time at the
end of a WCTS, it sends out messages to be exe-
cuted by FC, initiating the next WCTS on the LP.

• Completion of the simulation on a LP is marked
by a WCTS sending out no linking messages, e.g.
WCTS-tn in the diagram. The whole simulation
finishes only when all participating LPs have
completed their corresponding parts of the simu-
lation.

• Wall clock time slices are atomic computation
units during rollback operations. A typical roll-
back scenario is shown in Figure 4.

Figure 4. Typical rollback scenario shown in terms of wall clock time slices

In the diagram, the simulation on LPi is executing

in WCTS-tn when a straggler with timestamp t2 ar-
rives at the NC (1). Based on the rollback mecha-
nisms, the received straggler (2) is inserted into
WCTS-t2 (a message implosion happens in WCTS-t2
if it is an anti-message). Then, rollbacks are propa-
gated among the PCD++ processors, restoring their
states to those saved at the end of WCTS-t1 (3), and all
messages in WCTS-t2 up to WCTS-tn are undone. Af-
ter, simulation on LPi resumes forward execution from
the unprocessed linking messages between WCTS-t1
and WCTS-t2 (4).

4. Enhancements to PCD++ and Warped
This section covers essential enhancements to the
PCD++ and the WARPED kernel to ensure correct and
efficient execution of simulations.

4.1. Rollbacks at virtual time 0
During rollbacks, the state of a process is restored to a
previously saved copy with virtual time strictly less
than the rollback time. However, the problem of han-

dling rollbacks at virtual time 0 is left unsolved. If a
process receives a straggler with timestamp 0, the state
restoration will fail since no state with negative virtual
time can be found in its state queue. There are two
different approaches to solving this problem. One is to
save a special state that has an artificial negative vir-
tual time at the head of each state queue. The other is
to synchronize the processes at an appropriate stage
with MPI Barriers so that no straggler message with
timestamp 0 will ever be received. The former ap-
proach is pure optimistic; however, there is a perform-
ance hazard in this approach. The probability of roll-
back echoes [5] increases significantly at virtual time
0. In this case, the processes in the system are forced
to restart execution from time 0 repeatedly, resulting
in an unstable situation where there is no progress in
simulation time. The second approach tries to avoid
the problem altogether by using explicit synchroniza-
tions. In the optimistic PCD++, the best place to im-
plement the MPI Barrier is after the collect phase in
WCTS-0 (Figure 5).

Figure 5. Using MPI Barrier to avoid rollbacks at virtual time 0 in PCD++

As all outgoing inter-LP communication happens

in the collect phases, messages with timestamp 0 are
sent to remote LPs only in the collect phase of WCTS-
0. The LPs are synchronized by a MPI Barrier at the
end of this collect phase so that these messages can be
received by their destinations before the simulation
time advances beyond time 0. Therefore, no straggler
with timestamp 0 will be received by any LP after-
wards. Once the LPs exit from the barrier, they can
safely continue optimistic execution. The cost of this
approach is small, since the length of the synchro-
nized execution is trivial when compared with the
whole simulation.
4.2. User-controlled state-saving mechanism
In WARPED, the copy state-saving (CSS) strategy is
implemented using state managers of type StateMan-
ager, which saves a process’s state after executing
each event, and the periodic state-saving (PSS) strat-
egy is realized using state managers of type In-
freqStateManager that only saves a process’s state
infrequently every a number of events. Simulator de-
velopers can choose to use either type of state manag-
ers at compile time. This rigid mechanism has two
major disadvantages: (1) it ignores the fact that simu-
lator developers may have the knowledge as to how to
save states more efficiently to reduce the state-saving
overhead; (2) it eliminates the possibility that different
processes may use different types of state managers to
fulfill their specific needs at runtime. To overcome
these shortcomings, we introduced a two-level user-
controlled state-saving (UCSS) mechanism so that
simulator developers can utilize more flexible and
efficient state-saving strategies. The structure of the
UCSS mechanism is shown in Figure 6.

VNLS VWDWHVDYLQJ

&66

/ HYHO�

/ HYHO�

VNLS VWDWHVDYLQJ

GR VWDWHVDYLQJ

366 &66

/ HYHO�

/ HYHO�

D 8 &66�LQWHJUDWHG�ZLWK�&66

E 8 &66�LQWHJUDWHG�ZLWK�366
Figure 6. UCSS integrated with CSS/PSS

Therefore, a PCD++ processor can make state-
saving decisions based on application-specific criteria.

Further, it can dynamically switch between the CSS
and PSS strategies at level 1. Thus, the UCSS mecha-
nism virtually gives simulator developers the full
power to choose the best possible combination of state-
saving strategies dynamically at runtime.

4.3. Message type-based state saving
During rollbacks, the state of a PCD++ processor is
always restored to the last state saved at the end of a
WCTS with virtual time strictly less than the present
rollback time. Hence, it is sufficient for a processor to
save its state only after processing the last event in
each WCTS for rollback. The state-saving operation
can be safely skipped after executing all the other
events. The last event in a WCTS is processed at the
end of Rn in the transition phase. Although the actual
number of rounds in a transition phase cannot be de-
termined, we can identify the type of the messages
executed by a given processor. For NC and FC, it must
be a (D, t), and for the Simulators, it should be a (*, t).
Therefore, PCD++ processors need to save states only
after processing these particular types of messages.
Since Root only processes output messages, it still
saves state for each event. We call the resultant state-
saving strategy as message type-based state-saving
(MTSS). Considering that there are a large number of
messages executed in each WCTS, and that they are
dominated by external and output messages, MTSS
can significantly reduce the number of states saved
during the simulation. Further, the rollback overhead
is reduced as well because fewer states need to be re-
moved from the state queues during rollback opera-
tions. MTSS is risk-free in the sense that there is no
penalty for saving fewer states.

4.5. One log file per node
Previously, one log file is created for each PCD++
processor to log the received messages in a human
readable format. Depending on the size of the model,
this can consume many file descriptors. In addition,
creating these files and transferring data to them con-
stitute a large operational overhead, especially when
the files are accessed via a Network File System (NFS)
during the simulation. To reduce the overhead of file
I/O operations, a new optimization strategy, called as
one log file per node, is implemented. Only one log
file is created for the NC on each node. The NC’s file
queue is shared among all the processors on that node.
Messages received by the NC itself are logged directly
in the NC’s file queue, while the other processors on
that node must first get a reference to the local NC

(which can be done in constant time) and then log
their received messages into the NC’s file queue.

5. Experimental results
Our experiments were conducted on a HP PROLIANT
DL Server, a cluster of 32 compute nodes (dual
3.2GHz Intel Xeon processors, 1GB PC2100 266MHz
DDR RAM) running Linux WS 2.4.21 interconnected
through Gigabit Ethernet and communicating over
MPICH 1.2.6. The Cell-DEVS models tested in our
experiments include a model for forest fire propaga-
tion [19] based on Rothermel’s mathematical defini-
tion [20] and a 3-D watershed model representing a
hydrology system [19]. The following simulation re-
sults are averages over 10 independent runs. We use
two different speedups in our analysis: the overall
speedup (i.e., the total execution time as perceived by
the users) and the algorithm speedup (i.e. without
considering the simulation bootstrap time) that is used
to assess the performance gain attributed to the paral-
lel algorithms alone.

5.1. Effect of one log file per node
The performance improvement derived from the one
log file per node strategy is tested using the fire
propagation model of 900 cells arranged in a 30×30
mesh.

18.7162
9.657

5.2253 2.6058
0.86140.2121

23.5872

24.3844

0

10

20

30

40

50

1 node
(strategy OFF)

1 node
(strategy ON)

4 nodes
(strategy OFF)

4 nodes
(strategy ON)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

Running time Bootstrap time

Figure 7. One log file per node: 1 and 4 nodes

The bootstrap time is even greater than the actual

running time. This clearly indicates that the bootstrap
operation is a bottleneck in the simulation. When the
strategy is turned on, the bootstrap time is reduced by
99.1% on 1 node and by 96.47% on 4 nodes. Further,
the running time is decreased by 72.08% on 1 node
and by 73.02% on 4 nodes due to more efficient com-
munication, I/O, and rollback operations.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Time(sec)

%
C

P
U

0

20

40

60

80

100

120

1 2 3 4 5

Time(sec)

%
C

P
U

Figure 8. CPU use: 1 logfile per node, 1 node

The CPU usage monitored in our experiments also

suggests that the file I/O operation is a major barrier
in the bootstrap phase. As shown in Figure 8, the CPU
is utilized much more efficiently with the one log file
per node strategy. A similar pattern was observed in
simulations running on multiple nodes.

5.2. MTSS
The same fire propagation model is used to test the
effect of MTSS strategy. The model was executed on 1
and 4 nodes with and without the MTSS strategy.

42278

21435
17356.75

9070.25

0

10000

20000

30000

40000

50000

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)

N
u

m
b

er
 o

f s
ta

te
s

sa
ve

d

1.4295

0.8373
0.6049

2.0394

0

0.5

1

1.5

2

2.5

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)

S
ta

te
-s

av
in

g
 ti

m
e

(s
ec

)

Figure 9. Number of saved states

Due to the MTSS strategy, the number of states

saved during the simulation is reduced by 49.29% and
47.74% on 1 and 4 nodes respectively. Accordingly,
the time spent on state-saving operations is decreased
by 29.9% and 38.18%. The state-saving time declines
more steeply on 4 nodes due to the distributed man-
agement of the state queues.

6.3447
5.2253

2.821 2.6058

0.2121

0.86140.9257

0.2131

0
1
2
3
4
5
6
7

1 node
(MTSS OFF)

1 node
(MTSS ON)

4 nodes
(MTSS OFF)

4 nodes
(MTSS ON)

E
xe

cu
ti

o
n

 t
im

e
(s

ce
)

Running time Bootstrap time

Figure 10. Running and bootstrap time

The corresponding running and bootstrap times are
shown in Figure 10. While the bootstrap time remains
nearly unchanged, the actual running time is reduced
by 17.64% and 7.63% on 1 and 4 nodes respectively
because fewer states are saved in the state queues and,
potentially, removed from the queues during rollbacks.

Figure 11 shows the time-weighted average and
maximum memory consumption with and without the
strategy on 1 and 4 nodes. The average memory con-
sumption declines by 26% in both cases, while the
peak memory consumption decreases by 25.13% and
27.44% on 1 and 4 nodes respectively.

445440

52436
969613112

284808

384917

38048

594944

0

100000

200000

300000

400000

500000

600000

700000

1 node (MTSS
OFF)

1 node (MTSS ON) 4 nodes (MTSS
OFF)

4 nodes (MTSS
ON)

M
E

M
 (

K
b)

avg. max

Figure 11. Memory consumption

5.3. Performance of the PCD++ toolkit
The key metrics for evaluating the performance of the
PCD++ simulator are the execution time and speedup.
Both the one log file per node and MTSS strategies
were applied to the simulator in the following experi-
ments. For all the Cell-DEVS models, a simple parti-
tion strategy was used that evenly divides the cell
space into horizontal rectangles. First, the fire propa-
gation model was tested using different sizes of cell
spaces: 20×20 (400 cells), 25×25 (625 cells), 30×30
(900 cells) and 35×35 (1225 cells). The total execution
time and running time of the fire model with different
sizes and executed on 1 up to 4 nodes are listed in
Table 1.

Table 1. Execution/running times for the fire model

Total Execution Time (sec)
No.nodes 20×20 25×25 30×30 35×35

1 2.0733 3.2949 5.0442 7.8702
2 1.9719 2.7959 3.5232 4.7138
3 1.8787 2.5237 3.1573 3.9667
4 1.9254 2.6091 3.0922 3.8138

Running Time (sec)
No.nodes 20×20 25×25 30×30 35×35

1 1.9515 3.1273 4.3566 7.6428
2 1.4232 2.1225 2.8838 3.9952
3 1.3574 1.8953 2.5237 3.2959
4 1.4296 1.8656 2.3314 3.0224

For any given number of nodes, the execution time

always increases as the size of the model goes up.
Moreover, the execution time rises less steeply when
more nodes are used to do the simulation. For exam-
ple, as the model size increases from 400 to 1225
cells, the execution time ascends sharply by nearly
280% (from 2.0733 to 7.8702 seconds) on 1 node,
whereas it merely rises by 98% (from 1.9254 to 3.8138
seconds) on 4 nodes. On the other hand, for a fixed
model size, the execution time tends to, but not al-
ways, decrease when more nodes are utilized. How-
ever, when the number of nodes increases further, the
downward trend in execution time is reversed. When a
model, especially a small one, is partitioned onto more
and more nodes, the increasing overhead involved in
inter-LP communication and potential rollbacks may
eventually degrade the performance. Hence, a trade-off
between the benefits of higher degree of parallelism
and the concomitant overhead costs needs to be
reached. We can also find that better performance can
be achieved on a larger number of nodes as the model
size increases. The shortest execution time is achieved
on 3 nodes for the 20×20 and 25×25 models, while it
is obtained on 4 nodes for the other two larger models.

Overall Speedup

1.2628

1.6313

1.0514 1.1036 1.0768

1.1785
1.3056

1.5976

1.4317

2.0636
1.9841

1.6696

0.0

0.5

1.0

1.5

2.0

2.5

2 3 4

Number of nodes20×20 25×25 30×30 35×35

Algorithm Speedup

1.3713 1.4377 1.3650
1.4734

1.6501
1.67631.5107

1.7263 1.8687

2.5288
2.3189

1.9130

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4

Number of nodes20×20 25×25 30×30 35×35

Figure 12. Overall/algorithm speedups

Using the execution and running times, we can cal-

culate the overall and algorithm speedups, as shown in
Figure 12. The algorithm speedup is always higher
than its counterpart overall speedup, an evidence
showing that the Time Warp optimistic algorithms are
major contributors to the overall performance im-
provement.

A more computation-intensive 3-D watershed
model of size 15×15×2 (450 cells) was tested to evalu-
ate the performance of PCD++ for simulating models
of complex physical system. Table 2 shows the result-
ing total execution and running times. The best per-
formance is achieved on 5 nodes with execution and
running time of 6.1538 and 5.6743 seconds respec-
tively. The speedups are illustrated in Figure 14. The
best overall and algorithm speedups are 2.7306 and
2.9373 respectively, higher than those obtained with
the fire models.

2.7306

2.2954
2.0176

1.4249

1.4945

2.1592
2.4460

2.9373

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5

Number of nodes

S
p

ee
d

u
p

Overall speedup Algorithm speedup

Figure 13. 15×15×2 watershed model

6. Conclusion
We tackled the problem of executing DEVS and Cell-
DEVS models in parallel and distributed environ-
ments based on the Time Warp synchronization proto-
col. The algorithms for the PCD++ processors and
Cell-DEVS models with transport and inertial delays
were redesigned to address the need of distributed op-
timistic simulation. The simulation process on each
LP was abstracted using the notion of WCTS, which
greatly simplifies the task of analyzing the complex
message exchanges between the PCD++ processors
involved in the simulation. A two-level UCSS mecha-
nism was proposed so that simulator developers can
utilize more flexible and efficient state-saving tech-
niques during the simulation. Mechanisms were pro-
vided to handle various issues in optimistic simula-
tions such as rollbacks at virtual time 0 and messaging
anomalies. Several optimization strategies were im-
plemented in the optimistic PCD++ such as the MTSS
strategy and the one log file per node strategy. We
showed that optimistic PCD++ simulator markedly
outperforms the conservative one in all testing scenar-
ios. Considerable speedups were observed in our ex-
periments, indicating the simulator is well-suited for
simulating large and complex models.

7. References
[1] Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous
Complex Dynamic Systems”. Academic Press. 2000.
[2] Chow, A. C.; Zeigler, B. “Parallel DEVS: A parallel,
hierarchical, modular modeling formalism”. Proc. of Winter
Computer Simulation Conference. Orlando. USA. 1994.
[3] Wainer, G.; Giambiasi, N. “N-dimensional Cell-DEVS
models”. Discrete Event Dynamic Systems. Springer Neth-
erlands. ISSN 0924-6703. Vol. 12. No. 2. 2002.
[4] Wolfram, S. “Theory and applications of cellular auto-
mata”. Vol. 1. Advances Series on Complex Systems. World
Scientific. Singapore. 1986.
[5] Fujimoto, R. M. “Parallel and Distributed Simulation
Systems”. Wiley-Interscience publication. 2000.

[6] Jefferson, D. “Virtual Time”. ACM Transactions on
Programming Languages and Systems. 7(3):405-425. 1985.
[7] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D.
M.; Wilsey, P.A. “An Object-Oriented Time Warp Simula-
tion Kernel”. Proceedings of the International Symposium
on Computing in Object-Oriented Parallel Environments
(ISCOPE’98). Vol. LNCS 1505. 1998.
[8] Wainer, G. “CD++: a toolkit to develop DEVS models”.
Software – Practice and Experience. Vol. 32, pp. 1261-
1306. 2002.
[9] Troccoli, A.; Wainer, G. “Implementing Parallel Cell-
DEVS”. Proceedings of the 36th Annual Simulation Sympo-
sium (ANSS’03). IEEE. 2003.
[10] Glinsky, E; Wainer, G. “New parallel simulation tech-
niques of DEVS and Cell-DEVS in CD++”. Proceedings of
the 39th Annual Simulation Symposium. 2006.
[11] Wainer, G. “Improved cellular models with Parallel
Cell-DEVS”. Transactions of the Society for Computer
Simulation International. Vol. 17, No. 2, pp. 73-88. 2000.
[12] Zeigler, B.; Kim, D.; Buckley, S. “Distributed supply
chain simulation in a DEVS/CORBA execution environ-
ment”. Proc. of 1999 Winter Simulation Conference. 1999.
[13] Zeigler, B.; Sarjoughian H. S. “Support for hierarchical
modular component-based model construction in
DEVS/HLA”. Simulation Interoperability Workshop. 1999.
[14] Kim, K.; Kang, W. “CORBA-based, Multi-threaded
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-hierarchical
One”. International Conference on Computational Science
and Its Applications. Assisi, Italy. 2004.
[15] Seo C.; Park, S.; Kim, B.; Cheon, S.; Zeigler, B. “Im-
plementation of distributed high-performance DEVS simula-
tion framework in the Grid computing environment”. Ad-
vanced Simulation Technologies Conference (ASTC). Ar-
lington, VA. USA. 2004.
[16] Cheon, S.; Seo, C.; Park, S.; Zeigler, B. “Design and
implementation of distributed DEVS simulation in a peer to
peer network system”. Advanced Simulation Technologies
Conference – Design, Analysis, and Simulation of Distrib-
uted Systems Symposium. Arlington, USA. 2004.
[17] Zhang, M.; Zeigler, B.; Hammonds, P. “DEVS/RMI –
An auto-adaptive and reconfigurable distributed simulation
environment for engineering studies”. DEVS Integrative
M&S Symposium. Huntsville, Alabama, USA. 2006.
[18] Nutaro, J. “Risk-free optimistic simulation of DEVS
models”. Military Government and Aerospace Simulation
Symposium. 2004.
[19] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of
complex physical systems using Cell-DEVS”. The 34th
IEEE/SCS Annual Simulation Symposium. 2001.
[20] Rothermel, R. “A mathematical model for predicting
fire spread in wild-land fuels”. Research Paper INT-115.
Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station. 1972.

