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The use of traditional approaches to teach computer organization usually generates misconceptions in
the students. The simulated computer ALFA-1 was designed to fill this gap. DEVS was used to attack this
complex design of the chosen architecture, allowing for the definition and integration of individual com-
ponents. DEVS also provided a formal specification framework, which allowed reduction of testing time
and improvement of the development process. Using ALFA-1, the students acquired some practice in the
design and implementation of hardware components, which is not usually achievable in computer organi-
zation courses.
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1. Introduction
Educators in operating systems and computer organization
courses usually face several problems derived from the learn-
ing process in the area. Computer architecture concepts are usu-
ally analyzed theoretically, leaving students with incomplete and
sometimes erroneous views of how a computer works. These
misconceptions remain in higher level courses, making it diffi-
cult for thorough learning in the area.

Computer organization literature [1, 2, 3, 4, 5] usually at-
tacks the complexity of computer systems by using several lay-
ers to describe them. Each layer describes one abstraction level,
providing higher insight when analyzing a given subsystem.
These levels usually include assembly language, instruction sets,
microprogramming, and digital logic. Lower levels (such as tran-
sistor or electronic levels) are usually not described. The layers
are studied using different modeling techniques. For instance,
many existing books express assembly language syntax using
state machines, while circuits are described using Boolean logic.
This diversity contributes to loose comprehension of systems
operation as a whole. Likewise, detailed behavior of the sub-
systems and their interaction are too complex to be attacked.
The introduction of higher levels (programming languages, op-
erating systems) makes the task even more complex.

Even practice helps to make theory clear; experimental tasks
are difficult to accomplish in the area of architectural design.
The construction of computer architectures requires expensive
laboratories and expertise in some areas not widely known in
early career courses. Very few software tools can be used for
educational purposes. It is also difficult to provide experimen-
tal assignments to complete in the schedule of a standard course.
At present, most practical experience is achieved at the assem-
bly language level, where the available tools are well known.
Nevertheless, assembly programming does not provide experi-
ence in instruction set designing, microprogramming or digital
logic.

With this in mind, we proposed building a simulated com-
puter to be used as an educational tool. We have approached
this project with several objectives in mind, which include de-
veloping a program with the following characteristics:

1. The ability to describe the multiple abstraction levels stud-
ied in computer organization courses;

2. The possibility of being programmed by students in early
stages of their careers (considering that students usually take
courses on programming before studying computer organi-
zation);

3. The capacity of defining different components using a unique
approach;

4. Extensibility of the components;
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5. Modifiability of the architectures;
6. Good testing facilities;
7. Pedagogical values: The chosen tools should have a fast learn-

ing curve due to the lack of time available in one-term
courses; and

8. Availability in public domain, to be used in any existing
course without restrictions.

We undertook this project with the goal of meeting these
requirements. We will explain now several existing ways of ap-
proaching the problem of modeling and simulating computer
architectures, and how we faced the task to meet our goals.

1.1. Overview of Related Efforts

Simulations of computer architectures have been around since
the 1970s and this problem has been approached using several
points of view. Nevertheless, none of the available tools meets
our requirements, which is explained as follows. In this section,
we attempt to cover the entire spectrum in the area, but at present
many more tools are available. We include a few examples of
each available type of environment, as other existing tools dif-
fer only slightly.

1.1.1. General Purpose Tools

Many of the existing tools are general purpose and can be ap-
plied in building any kind of processor by defining an instruc-
tion set, the computer organization, and its components. Most
of these tools are devoted to analyzing the performance of ar-
chitectural properties. For instance, SimpleScalar [6] allows the
flexible simulation of modern processors. The environment de-
fines its own architecture, and it is provided with a GNU C++
compiler. It allows a complete architecture to be defined as build-
ing blocks and can include advanced architectural aspects (non-
blocking caches, speculative and out-of-order execution). HASE
(Hierarchical Architecture design and Simulation Environment)
was built for the rapid development and exploration of com-
puter architectures with multiple abstraction levels [7]. The en-
vironment includes a design editor, object libraries for each ab-
straction level, and validation facilities. SimOS [8] is a complete
machine simulation environment designed to study uniprocessor
and multiprocessor systems. It defines different details of an
architecture by providing different CPU models. It includes a
high level description of the architecture, and different compo-
nents can be included: caches, multiprocessor memory buses,
disk drives, consoles, and other devices.

These tools (and many other similar ones) allow for the de-
fining of the main building blocks of an architecture and their
interaction, but none meets our educational goals. They are de-
voted to analysis of processor performance under architectural
changes and for research on architectures and operating sys-
tems. Therefore, they are too complex to be used in early courses.
In addition, several of the levels needed (for instance, digital
logic or assembly language) are not supported. Often, the build-
ing blocks cannot be extended or modified. Many are unavail-
able for public domain or use in large courses. Nevertheless,
extensibility and modifiability can be achieved when higher level
constructions are considered; also, good testing facilities are
available.

1.1.2. Specific Purpose Tools

Many existing tools are built to emulate existing architectures.
This is a good approach from a pedagogical perspective, but in
general, the goals of extensibility and modifiability are con-
strained by the underlying architecture. All the platforms de-
scribed in this section lack these facilities and most of them
cannot describe all of the abstraction levels needed.

Several tools focus on the Intel™ 80x86 architectures. For
instance, the p86 [9] defines the Instruction Set level and the
Assembly Language level of 8086-based computers. It includes
an assembler and debugger, allowing students to experience a
reduced version of the 8086 processor in a simulated environ-
ment. A similar set of tools is included in the Simx86 environ-
ment [10]. This set of tools includes a family of simulators for
the Intel 80x86 family, including a simulator for the 8088 and
the 80286 and a partial simulator for 80386. SimpleScalar [6]
was used to build the functional simulation of the x86 instruc-
tion set, providing a specific purpose tool tailored to Intel archi-
tectures.

Other environments use the MIPS architecture. For instance,
the previously discussed SimpleScalar [6] and SimOS [8] were
used to define complete architectures based on different MIPS
processors. The MPS simulator [11] is based on the MIPS R3000
processor. It includes the definition of RAM, ROM, processor,
disks, tapes, printer, and terminal. This simulator provides a good
understanding of the general computer organization and instruc-
tion set levels. It also provides good facilities for teaching early
undergraduate courses. Nevertheless, it does not allow the defi-
nition of other levels, and the goals of extensibility and modifi-
ability cannot be achieved.

A tool almost adequate for our purpose is Spim, a simulator
of the MIPS R2000/R3000 assembly language programs [12].
It implements the assembler-extended instruction set, omitting
some of the complex details. A good feature of this tool is that it
is associated with a renowned book on computer architecture.
Nevertheless, this simulator does not define many of the mul-
tiple abstraction levels described in other literature, and there-
fore it is not useful for many existing courses in the area. Also,
extensibility and modifiability are limited.

Several other currently used architectures have been built
using simulation. For instance, SimOS [8] also was used to model
Silicon Graphics and Digital Alpha processors. Alpha proces-
sor simulators were also presented in [16]. In the latter case, the
authors have used simulation to find an architectural solution
that satisfies some of the product goals for the Alpha architec-
ture. They have used the tools to analyze pipelining levels and
instruction-level parallelism.

As we can see, several modern architectures have been mod-
eled and can be analyzed using simulation. However, none of
them is suitable for undergraduate courses. These tools  do not
meet our pedagogical needs as it is difficult to extend them or
use them to model other architectures.

Several other architectures have been used to build simula-
tors. The CHIP (Cornell Hypothetical Instructional Processor)
is a simulated computer emulating a PDP-11 processor. It was
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designed as an educational tool for undergraduate courses and
includes dynamic memory mapping, two modes of processor
operation and eight interrupt priority levels. It also supports emu-
lated I/O devices, a debugger and a C compiler. PROVIR [14]
is a virtual processor based on the IBM 360 architecture. It in-
cludes the instruction level definition, an assembler, a debugger,
and the kernel of an operating system. In [15], the authors de-
scribe a method for simulating the Z80 processor using spread-
sheets. The user can write assembly language programs, which
are assembled and executed using a spreadsheet. In all these
cases, the authors focused on defining the instruction set. No
detailed specification of lower levels was included. Worse yet,
the environments are based on processors that are not used nowa-
days, and students do not gain experience with current architec-
tures.

Many other simulators are designed to analyze multiproces-
sor systems. For instance, Limes [17] simulates N processors
running a parallel application. The tool implements the assem-
bly language level and can be used to evaluate architectures or
parallel algorithms. PROTEUS is a high performance simulator
for MIMD multiprocessors [18]. It was developed to simulate a
wide range of architectures, with the goal of improving accu-
racy and performance. Several processors are connected via a
bus or a network, but it is devoted to executing an application in
multiple CPUs. In [19], a tool for the modeling and simulation
of clustered computers was presented. The goal was to construct
architectures of symmetric multiprocessors and clusters of
uniprocessors and to evaluate their performance through
benchmarking. Several other examples of multiprocessor simu-
lation can be found in [20-29]. We do not describe these in de-
tail because none of them are adequate in the educational sense,
none meets our requirements. They could be used in higher level
courses to support computer architecture lectures, but they are
not suited to our project due to their complexity.

1.2 Development Approaches

After concluding that existing simulation tools were not appro-
priate, we decided to build a toolkit to meet all of our require-
ments. The first step was to choose which kind of development
environment to use. Any simulation language could have been
applied: GPSS [30], Maisie [31], Simulink [32], ACLS [33],
ModSim [34], Simscript [35], etc. Many of the simulators in-
cluded in Section 1.1. were built using this approach. For in-
stance, in [7] the tools were built using Sim++ [36]. In [19],
BONeS, a Block-oriented Network Simulator, was used as the
building tool [21]. Another possibility included the use of a
Hardware Description Language (HDL).

HDLs are indispensable for computer and digital design.
Presently, VHDL, Verilog, and SDL are three of the most widely
used description languages. VHDL [37] was developed by IBM,
TI and Intermetrics in 1983, and became an IEEE standard in
1987 (and 1993). VHDL can be used for documentation, verifi-
cation, and synthesis of large digital designs. Three different
approaches can be used to describe hardware using this lan-
guage: structural, data flow, and behavioral. To make designs
more understandable and maintainable, a design is typically sepa-

rated into several blocks. This might be done with a block dia-
gram editor or with the use of hierarchical drawings to repre-
sent a block diagram. Once the basic building blocks of a de-
sign are defined, they can be interconnected to create a larger
design.

Verilog [38] is less sophisticated than VHDL. It was devel-
oped in 1983, becoming IEEE standard in 1995. Verilog is easier
to learn than VHDL but lacks constructs to support system level
design. Structural models are built from gate primitives and other
modules and describe a circuit using logic gates, letting the user
specify the function and delay for a gate. Test modules can be
associated with designs. Once the structural models are defined,
behavioral models can be included to define submodels in terms
of inputs and outputs. A behavioral model can be used to test
structural designs. Logic synthesis can be achieved from the
model specifications, providing alternative implementations.

SDL [39] is a Specification and Description Language, stan-
dardized as ITU recommendation Z.100 (in 1980, latest version
in 2000). It is a wide spectrum language used to specify from
requirements to implementation. It was developed as a descrip-
tion language for reactive systems, which allows the presenta-
tion in a graphical form as extended finite states. The basic theo-
retical model of an SDL system consists of a set of state machines
that run in parallel. These machines are independent of each
other and communicate with discrete signals. An SDL system
consists of structure (including system, block, process, and pro-
cedure hierarchy), communication (signals with optional signal
parameters and channels), behavior, data (in the form of ab-
stract data types), and inheritance. It is a language widely used
in telecommunications, but it has also been applied to other ar-
eas.

The use of a simulation language or HDL could have pro-
vided good results for many of our goals. We would have prefered
HDLs to simulation languages for a variety of reasons. A pro-
posed architecture can be extended or modified easily. Most
HDLs include verification and validation tools. Multiple abstrac-
tion levels can be described in detail. Nevertheless, we face sev-
eral educational problems if we intend to use an HDL or a simu-
lation language. The main problem is that learning any of these
languages could take most of the term before they can be used
in a simulated architecture. Some computer engineering careers
include early courses on HDLs, and they could be a prerequisite
for computer organization. But this is not the case with many
computer science degrees; computer organization is taught only
to support future courses. Moreover, in several cases, the lan-
guage constructions constrain the components that can be simu-
lated and suffer from limitations; for instance, VHDL is inad-
equate in representing mixed analog and digital processing [40].

Due to these reasons, we preferred to develop models using
a general purpose language (especially if a public domain com-
piler is available). Standard programming languages are flex-
ible enough to describe multiple levels and extend or modify a
given architecture, and programming courses are prerequisites
for computer organization subjects. This approach was used in
several of the simulation tools presented in Section 1.1. Some
of these simulators were built using standard languages (C, C++
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or Java; even in [15], the tool was developed using an spread-
sheets).

As a first stage of this project, we built a simple computer
called Alfa-0 [41] using C++ to develop each of the system’s
levels. This set of tools lets the students better understand the
complete behavior in each layer. We built an environment simi-
lar to Spim, but emulating a SPARC processor [42], and a com-
plete emulator of the ATARI processor [43]. The emulator al-
lowed standard ATARI games to run on any Intel processor by
defining the behavior of the processor and input/output sub-
system.

Assembly language, microarchitecture, and digital logic lev-
els were simulated individually, providing a complete outlook
of the system’s organization. Unfortunately, the models were
too complex to be integrated. Likewise, the use of a standard
programming language caused students to confuse the models
developed with their simulators. This also led to difficulties in
extending or modifying the architecture. To avoid these prob-
lems, the simulated computer was completely redesigned using
DEVS [44] as the modeling framework. This paradigm was
chosen due to the hierarchical and discrete event nature of the
problem under study. The following section will explain some
basic aspects of this decision.

1.3. Overview of the DEVS Modeling Paradigm

DEVS provides a systems theoretic framework for describing
discrete event systems as composites of submodels. Each
submodel can be behavioral (called atomic) or structural (called
coupled), consisting of a time base, inputs, and states that are
used to compute the next states and outputs. Every model can
be integrated into a hierarchy, allowing the reuse of tested mod-
els. A DEVS atomic model is described by:

M = < X, S, Y, δint, δext, λ, D >

X: input events set;
S: state set;
Y: output events set;
δδδδδint: S → S,  internal transition function;
δδδδδext: Q × X → S, external transition function, with Q = {(s, e) /
s ∈ S, and e ∈ [0, D(s)]};
λλλλλ: S → Y, output function; and

D: S →     R0
+ , duration function.

Models use input/output ports to communicate. Each state in a
model has a given lifetime, defined by the duration function.
Once the lifetime of a given state finishes, the internal transi-
tion function is activated to produce an internal state change.
Before this change, the present state of the model can be spread
through the output ports. These ports allow events to be sent to
other models. The values are sent by the output function, which
must execute before activating the internal transition. At any
moment, a model can receive input external events from other
models through its input ports. When an external event arrives,
the external transition function is activated. The external transi-
tion function computes a new state for the model using the

present state, the input values, and the elapsed time for the model
(defined by the duration function). Every time a transition func-
tion is activated, a new lifetime must be associated with the
new state.

DEVS atomic models can be used to build coupled models,
defined by:

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select >

X is the set of input events;
Y is the set of output events;
D is an index of components, and ∀i ∈ D,
Mi is a basic DEVS model;
Ii are the influencees of model i, and ∀ j ∈ Ii
Zij: Yi → Xj is the i to j translation function, and
select is the tiebreak selector.

Each coupled model consists of a set of basic models (atomic or
coupled) connected through the input/output ports of the inter-
faces. Each component is identified by an index number. The
influencees of each model define other models to which output
values must be sent. The translation function uses an index of
influencees, created for each model (Ii). The function defines
which outputs of model Mi are connected to inputs in model
Mj. When two submodels have simultaneous events, the select
function defines which of them should be activated first.

Unlike the other approaches presented earlier, DEVS meets
all of our goals:

1. DEVS is a hierarchical and modular technique that allows
the description of the multiple levels of an architecture. The
SES/SB technique [45] even lets the user define different
architectures in the same class hierarchy, choosing between
different versions as needed.

2. There are different DEVS development environments that
can be adapted to different teaching programs. According to
the programming paradigm taught in the first-year courses,
different existing DEVS toolkits can be used: those with
the procedural paradigm (mainly written in C/C++), those
that are object-oriented (written in Java or C++), or the func-
tional versions (DEVS/Scheme [45]).

3. DEVS supports the definition of models specified in differ-
ent paradigms, allowing definition of multicomponents, each
defined using a different technique.

4. DEVS allows any existing model to be extended easily.
5. Coupled or atomic models can be modified.
6. Each model can be associated with an Experimental Frame-

work (a set of DEVS atomic models that can be coupled
with other DEVS models, providing an environment for con-
ducting experiments) used as a testing module. This approach
improves testing facilities.

7. The learning curve for DEVS is fast enough to be applied in
undergraduate courses. Our students learned the basic as-
pects of the methodology and related tools in approximately
16 man/hours (two man/hours to learn the basic
aspects and a two-hour training session) [46].

8. Many of the existing DEVS environments are public domain.
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Besides meeting our individual goals, DEVS provides sev-
eral advantages over the other approaches:

(a) DEVS is a formal approach. Formal specification mecha-
nisms are useful in improving the security and development
costs of a simulation. A formal conceptual model can be vali-
dated, improving the error detection process and reducing
testing time. DEVS models are closed under coupling; there-
fore, a coupled model is equivalent to an atomic one, im-
proving reuse. DEVS supplies facilities to translate the for-
mal specifications into executable models. In this way, the
behavior of a conceptual model can be validated against the
real system, and the response of the executable model can
be verified against the conceptual specification.

(b) The existence of an internal transition function is a unique
feature that eases the definition of certain properties. Inter-
nal state changes can be captured, describing complex inter-
nal interactions in a simple and natural way. For instance, if
we intend to model a timer with different skews from a unique
clock, we can use one signal generator, and the internal state
of the clock could define the different output signals. Cer-
tain circuits (for instance, synchronous buses) react accord-
ing to their internal state, which can be modeled straightfor-
wardly using internal transition functions. Modeling of these
phenomena is difficult under other methodologies.

(c) DEVS is a complete modeling and simulation technique. It
provides a way to specify models that can be coupled into
higher level ones, which are later simulated by independent
abstract entities (in centralized or parallel fashions). Each
model can be associated with an experimental framework,
allowing for the individual testing of components and mak-
ing integration testing easier.

(d) DEVS, as a discrete event paradigm, uses a continuous time
base, which allows accurate timing representation. Precision
of the conceptual models can be improved and CPU time
requirements reduced. Higher timing precision can be ob-
tained without using small discrete time segments that would
increase the number of simulation cycles.

(e) Recently, a theory of DEVS quantized models was devel-
oped [47]. The theory has been verified when applied to pre-
dictive quantization of arbitrary ordinary differential equa-
tion models. Quantized models reduce substantially the
frequency of message updates. As the information inter-
change is reduced, the models potentially incur error. In this
way, DEVS can be used to express hybrid digital/analog sys-
tems. GDEVS [40] also enables the definition of hybrid
models, which are expressed in a combined discrete event/
differential equation formalism approximated by DEVS. In
GDEVS, the accuracy of an analog subsystem is preserved
using piecewise polynomial segments. The error introduced
in this approximation can be controlled by increasing the
order of the polynomials that represent analog signals be-
tween successive digital events.

Considering these advantages, we have designed and imple-
mented our simulated computer, called Alfa-1 using the CD++
development environment [48]. This toolkit implements the theo-
retical concepts defined by the DEVS formalism. Atomic mod-
els can be programmed in C++, and can be later incorporated
into a model class hierarchy. A specification language allows
for the definition of coupled models.

Alfa-1 was developed to model the architecture of a SPARC
processor and includes memory, a bus, and an input/output sub-
system. If we compare our proposal with the ones defined in
Section 1.1., Alfa-1 was developed as a specific purpose archi-
tecture. Nevertheless, as all the components of the architecture
have been developed independently, they can be used to define
new components or other architectures. Several versions of each
element have been developed using different abstraction levels.
As the models have been developed using DEVS, they can be
reused without further complication.

We have chosen the SPARC architecture because these pro-
cessors include several interesting features (for instance, mul-
tiple registers organized as overlapping windows) that cannot
be found in other architectures. Many existing workstations are
based in this processor, which are usually expensive. As we have
reproduced the complete architecture, we have provided a way
of running SPARC applications in other platforms provided with
a GNU C++ compiler.

In the following sections, we present some of the results ob-
tained. We first include a definition of the underlying architec-
ture. Then, the specification of some of the DEVS submodels is
presented, exemplifying the definition of each model using
CD++. Finally, we show some execution results.

As explained in the conclusions, we encountered none of
the problems associated with other tools, and all of our goals
were achieved. An important remark is that the approach proved
to accomplish our educational goals because undergraduate stu-
dents developed the whole architecture and its components. They
had taken a previous course on computer programming in C++
and had a background in mathematics. The definition of the for-
mal models was performed by third-year students from a dis-
crete event simulation course, and these formal specifications
were used by students in the second-year computer organiza-
tion course to build all the models that are described in the fol-
lowing sections.

2. A Model of the Processor Architecture
Alfa-1 uses a processor organization based in the specification
of the Integer Unit of the SPARC processor (Sun Microsystems).
Figure 1 is a sketch of this architecture showing the main com-
ponents of the model developed. This figure presents the main
subcomponents of the Integer Unit, which were defined as the
components of a DEVS coupled model. Each of the compo-
nents was defined as an atomic or a coupled model, specified
by using DEVS.

This RISC processor is provided with 520 integer registers.
Eight of them are global (RegGlob, shared by every procedure),
and the remaining 512 are divided in windows of 24 registers
each (RegBlock).
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Each window includes input, output, and local registers for
every procedure that has been executed recently. When a rou-
tine begins, 16 new registers are reserved (8 local and 8 output),
and the 8 output records of the calling procedure are used as
inputs. A specialized 5-bit register, called CWP (Circular Win-
dow Pointer) marks the active window. Every time a new pro-
cedure starts, CWP is decremented. The processors’s registers
organization is sketched in the following figure (Figure 2).

Besides these general purpose registers, the architecture in-
cludes:

• PCs: The processor has two program counters. The PC con-
tains the address of the next instruction. The nPC (next PC)
stores the address of the PC after the execution of the present
instruction. Each instruction cycle finishes by copying the nPC
to the PC, and adding four bytes (one word) to the nPC. If the
instruction is a conditional branch, nPC is assigned to PC, and
nPC is updated with the jump address (if the jump condition is
valid).
• Y: This is used by the product and division operations.
• BASE and SIZE: The memory is considered flat (that is, nei-
ther segmentation nor pagination mechanisms are included).
Likewise, multiprogramming is not supported. The BASE reg-
ister points to the lowest address a program can access. The
SIZE stores the maximum size available for the program.
• PSR (Processor Status Register): This stores the current sta-
tus for the program. It is interpreted in Table 1.
• WIM (Window Invalid Mask): This 32-bit register (one bit
per window) is used to avoid the overwriting of a window in
use by another procedure. When CWP is decremented, these
circuits verify if the WIM bit is active for the new window. In
that case, an interrupt is raised and the interrupt service routine
stores the content of the window in memory. Usually, WIM only
has one bit in 1 marking the oldest window.
• TBR (Trap Base Register): It points to the memory address
storing the position of a trap routine. It is interpreted in Table 2.

The first 20 bits (Trap Base Address) store the base address
of the trap table. When an interrupt request is received, the num-

Figure 1. Organization of the Integer Unit

Figure 2. Organization of the Processor’s Registers
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ber of the trap to be serviced is stored in the bits 11..4. There-
fore, the TBR points to the table position containing the address
of the service routine. The last 4 bits in 0 guarantees at least 16
bytes to store each routine.

When the instruction set level of the SPARC architecture is
analyzed, we see that each instruction has a fixed size of 32 bits.
Memory operands may be 8, 16, or 32 bits. There are basic Load/
Store operations, classified according to the size and sign of
their operands.

Arithmetic and Boolean operations include add, and, or, div,
mul, xor, xnor, and shift. These are able to change the PSR ac-
cording to the operation code used. Several jump instructions
are available, including relative jumps, absolute jumps, traps,
calls, and return from traps. Other instructions include the move-
ment of the register window, NOPs, and read/write operations
on the PSR.

Multiplication uses 32-bit operands, producing 64-bit results.
The most significant 32 bits are stored in the Y register, and the
remaining are stored in the ALU-RES register. Integer division
operations take a 64-bit dividend and a 32-bit divisor, produc-
ing a 32-bit result. The Y register stores the 32 most significant
bits of the dividend. One ALU input register stores the least
significant bits of the dividend, and the other, the divisor. The
integer result is stored in the ALU-RES register, and the remain-
der in the Y register. Most instructions are carried out by the
ALU, whose structure is depicted in Figure 3. It includes two
multiplexers connected to the ALU, Multiplier/Divider unit, and
shifter.

There are two execution modes: User and Kernel. Certain
instructions can be executed only in Kernel mode. Also, the Base
and Size registers are used only when the program is running in
User mode.

The CPU executes under the supervision of the Control Unit.
It receives signals from the rest of the processor using 64 input
bits (organized in 5 groups: the Instruction Register, the PSR,
BUS_BUSY_IN, BUS_DACK_IN, and BUS_ERR). Its outputs
are sent using 70 lines organized in 59 groups. Some of them
include reading/writing internal registers activating lines for the
ALU or multiplexers. Also, connections with the PC, nPC, Trap
controller, and PSR registers are included. Finally, the Data,
Address, and Control buses can be accessed.

The memory is organized using byte addressing and Little-
Endian to store words. The processor issues a memory access
operation by writing an address (and data, if needed) in the bus.
Then, it turns on the AS (Address Strobe) signal, interpreted by
the memory as an order to start the operation. The memory uses
the address available and analyzes the RD_WR line to see which

Table 1. Contents of the Process Status Register

Table 2. Contents of the Trap Base Register

Figure 3. Organization of the ALU
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operation was asked. If a read was issued, one word (4 bytes) is
taken from the specified address and sent through the data lines.
In a write operation, the address stored in the Byte Select regis-
ter (lines BSEL0..3) defines the byte to be accessed in the word
pointed to by the Address register. If an address is wrong, the
ERR line is turned on. A Data Acknowledge (DTACK) is sent
when the operation is finished.

The system components are interconnected using a bus (see
Figure 4). The bus Masters use the BGRANT (Bus Grant) and
IACK (IRQ Acknowledgment) lines to be connected to the two
devices with the following lower and upper priorities. The de-
vice with the highest priority is connected to a constant “1” sig-
nal in the BGRANT line. The BGRANT signal is sent to the
lower priority devices up to the arrival to a device that requested
the bus. When the device finishes the transfer, a IACK is trans-
mitted. Input/output operations are memory mapped. Each de-
vice has a fixed set of addresses. Data written in those addresses
are interpreted as instructions for a device. Fifteen IRQ lines

(IRQ1..IRQ15) are provided, and devices are connected to these
lines. Higher priority devices are connected to lower IRQs.

Finally, an external cache memory is defined. The generic
structure for the cache controller is defined in Figure 5. The
design and implementation of these modules were not included
in the original version of Alfa-1. They were defined as an as-
signment done by undergraduate students, following the proce-
dures that will be presented in the following sections. In a first
stage, the circuits were tested separately, different algorithms
were implemented, and finally the device was integrated into
the architecture. Each model was developed as a DEVS model
that was integrated into a coupled model. This extension to the
original architecture (which will not be explained in detail) shows
some of the capabilities for extensibility and modifiability of
Alfa-1.

3. Implementing the Architecture as DEVS Models
The architecture presented in the previous section was com-
pletely implemented using CD++. First, the behavior of each
component was carefully specified, with an analysis of inputs,
outputs and timing for each element. The specification also pro-
vided test cases. Then, each component was defined as a DEVS
model following the specification. Afterwards, each model was
implemented in CD++, including an experimental framework
following the test cases defined in the specification. Finally, the
main model was built as a coupled model connecting all the
submodels previously defined. This model follows the design

Figure 4. Organization of the Bus

Figure 5. Organization of the Cache Memory
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presented in Figure 1, and its detailed definition can be found in
[49].

Two implementations were considered. First, we reproduced
the basic behavior of each circuit, coded as transition functions.
Then, some of them were implemented in detail using Boolean
logic. The basic building blocks were developed as atomic mod-
els, coupling them using digital logic concepts. In this way, two
different abstraction levels were provided. Depending on the
interest, each of them can be used. Once thoroughly tested, the
basic models were integrated into higher level modules up to
completing the definition of the architecture. The following sec-
tions will be devoted to presenting some of the components
implemented as assignments completed by our students. We
show how different abstraction levels can be modeled and present
examples of modifiability of Alfa-1.

3.1 Inc/Dec

As explained earlier, we use 520 general purpose registers or-
ganized as overlapped windows. In a given time, only one win-
dow can be active. The Inc/Dec model is the component that
chooses the active window using a 5-bit CWP register. The
models that are part of the CWP logic are shown in the Figure 2.
The CWP is incremented or decremented, and its value (stored
in a d-latch represented as another DEVS) is received through
the lines OP0-OP4. The outputs are transmitted through the lines
RES0-RES4. This atomic model can be defined as:

INC/DEC = < X, S, Y, δint, δext, λ, D >

X = OP ∈ {0,...,25–1} ∪  FCOD ∈ {0,1} ;
S = OP, OLD ∈ {0,...,25–1}, delay_time_ID ∈ R0+; Y =
RES ∈ {0,...,25–1};

The behavior for the transition functions can be informally de-
fined as shown in Figure 6.

The FCOD value is used to tell if the value must be
incremented or decremented. The ALU model is used to per-
form this operation. Here, we can see that when an external
event arrives, the hold_in function is activated. This macro rep-

resents the behavior of the DEVS time advance function (D),
and it is in charge of manipulating the sigma variable. This is a
state variable predefined for every DEVS model representing
the remaining time up to the next scheduled internal event. The
model will remain in the current state during this time, after
which output and internal transition functions are activated. The
hold_in macro makes this timing definition easier. Passivate is
another macro, which uses an infinite sigma, and puts the model
in passive phase (hold_in(passive, infinite)).

Figure 7 shows the implementation of these functions using
CD++. As we can see, the external transition function (δext)
receives five operands as inputs, together with a function code.
According to this code, the parameter is incremented or
decremented. Afterwards, the model keeps the present value dur-
ing a delay related to the circuit operation. The output function
(λ) is activated, and if the circuit changed its state, the present
value is transmitted. Then, the internal transition function (δint)
passivates the model (that is, an internal event with infinite de-
lay is scheduled, waiting for the next input). The constructor
allows for specification of the model’s name, input/output ports,
and parameters.

As we can see, the definition of a DEVS atomic model is
simpler than the use of any standard programming language.
We have explained some of the advantages of using DEVS in
Section 1, but in this case, we can see how to apply it in build-
ing our models. DEVS provides an interface, consisting of only
four functions to be programmed. This modular definition is
independent of the simulator, and it is repeated for every model.
Therefore, one can focus on the model development. The user
concentrates only on the behavior under external events, the
outputs that must be sent to other submodels, and the occur-
rence of internal events. Behavior for every model is encapsu-
lated in these functions, together with the elapsed time defini-
tion. Testing patterns can be easily created, as the model can
only activate these functions.

Once we have defined the atomic model, we can test it by
injecting input values and inspecting the outputs. An experi-
mental frame can be built, including pairs of input/output val-
ues to test the model automatically. In any case, we have to

Figure 6. Behavior of the transition functions for the INC/DEC model [50]
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IncDec::IncDec( const string &name ):
 Atomic( name )
, OP0( this->addInputPort( "OP0" ) ), OP1( this->addInputPort( "OP1" ) )
, OP2( this->addInputPort( "OP2" ) ), OP3( this->addInputPort( "OP3" ) )
, OP4( this->addInputPort( "OP4" ) ), FCOD( this->addInputPort( "FCOD" ) )
, RES0( this->addOutputPort( "RES0" ) ), RES1( this->addOutputPort( "RES1" ) )
, RES2( this->addOutputPort( "RES2" ) ), RES3( this->addOutputPort( "RES3" ) )
, RES4( this->addOutputPort( "RES4" ) ), preparationTime( 0, 0, 10, 0 )   {

string time( MainSimulator::Instance().getParameter(
            this->description(), "preparation" ) ) ;
   if( time != "" ) preparationTime = time ;
}
Model &IncDec::externalFunction( const ExternalMessage &msg ) {

// Check the input ports, assigning the input values.

    if( msg.port() == OP0 ) _OP[0] = (int) msg.value();
    if( msg.port() == OP1 ) _OP[1] = (int) msg.value();
    if( msg.port() == OP2 ) _OP[2] = (int) msg.value();
    if( msg.port() == OP3 ) _OP[3] = (int) msg.value();
    if( msg.port() == OP4 ) _OP[4] = (int) msg.value();
    if( msg.port() == FCOD ) _FCOD = (int) msg.value();

    if (_FCOD == 1) {  // Increment
for (int i=0; i<=4; i++) v[4-i] = _OP[i];

alu.activate(v,"00000","11",'1'); // Increment the va value useing the ALU
 alu.output(res);

    for (int i = 0; i<=4; i++)
        _RES[i].activate(res[i]);
    }
    else
    { // Decrement

for (int i=0; i<=4; i++) v[4-i] = _OP[i];
alu.activate(v,"11111","11",'0'); // Decrement the v value useing the ALU

 alu.output(res);

    for (int i = 0; i<=4; i++)
        _RES[i].activate(res[i]);
     }
    this->holdIn(active, preparationTime); // Schedule a delay for the circuit
  return *this;
}

Model &IncDec::internalFunction( const InternalMessage & ) {
    this->passivate(); // When the delay is consumed, activate the output

return *this ;
}

Model &IncDec::outputFunction( const InternalMessage &msg )  {
    if (_RES[0]!=_OLD[0] || _RES[1]!=_OLD[1] || _RES[2]!=_OLD[2] || 

_RES[3]!=_OLD[3] || _RES[4]!=_OLD[4]) {
 sendOutput(msg.time(), RES0, _RES[0] );

        sendOutput(msg.time(), RES1, _RES[1] );
        sendOutput(msg.time(), RES2, _RES[2] );
        sendOutput(msg.time(), RES3, _RES[3] );
        sendOutput(msg.time(), RES4, _RES[4] );

    _OLD[0]=_RES[0];      _OLD[1]=_RES[1];
    _OLD[2]=_RES[2];     _OLD[3]=_RES[3];
    _OLD[4]=_RES[4];

    }
return *this ;

}

Figure 7. INC/DEC model definition: Transition functions [50]
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build a coupled model including the model to be tested. This is
defined in Figure 8.

These definitions follow the DEVS specifications. They are
defined by its components (in this case, I_D, an instance of the
IncDec model) and external parameters. Then, the links define
the influencees and translation functions including the input/
output ports for the model. In this case, the I_D model is related
with the Top model, using the input/output ports defined earlier.

3.2 RegGlob

This model defines the behavior of the global registers. It keeps
the contents of the eight global registers, allowing read/write
operations on them. Two auxiliary state variables, olda and oldb,
store the last outputs, and output signals are transmitted only
for the bits that changed. This model is defined by:

RegGlob = < X, S, Y, δint, δext, λ, D >

X = ASEL ∈ {0,..., 23–1 } ∪ BSEL ∈ {0,..., 23–1} ∪ CSEL ∈
{0,..., 23–1} ∪ CEN ∈ {0,1} ∪ RESET ∈ {0,1} ∪ CIN ∈ {0,...,
232–1 };
Y = AOUT ∈ {0,..., 232–1 } ∪ BOUT ∈ {0,..., 232–1 }.
S = OLDA, OLDB, INPUT ∈ {0,..., 232–1}, IN ∈ {0,..., 232–1}8,
BCEN, BRESET ∈ {0,1}, SELECTA, SELECTB, SELECTC ∈
{0,..., 232–1}, delay_time_RG ∈  R0+;

A sketch of this model was shown in the Figure 2. As we can
see, it uses three select lines (asel, bsel, and csel) to choose two
output registers and a register to be modified. An array of 32
integers (IN) keeps the present values of the registers. The Bool-
ean line cen (C enable line) is used to allow write operations.
The external transition function models the reception of an in-
put. The function stores the desired operation according to the
signal received. Also, we store an input value in the number of
registers to be activated. A new internal event is scheduled with
a predefined delay, which models the circuit delay. If an exter-
nal event arrives before the end of the delay, the operation is
cancelled.

The output function decides if the register has changed, que-
rying olda and oldb, which store the previous status of the A
and B lines. When the register changes, its value is sent through
the chosen output (A or B). This model shows a more interest-
ing use of the internal transition function. In this case, we are
considering the internal state to decide how the model must re-
act. The internal transition function sees if the reset line has
been activated. In that case, it clears the contents of every regis-
ter. Then, if the cen line was activated, the value of the chosen
register is updated with the new input.

3.3 Other Basic Components

The architectural description is completed with several other
DEVS models. We include generic aspects, making a brief de-
scription of their behavior. We do not include the definition of
the model’s transition functions, built as in the previous ex-
amples. Details of these models can be found in [49].

WIMCheck = < X, S, Y, δint, δext, λ, D >

X = CWP ∈ {0,..., 25–1 }  ∪ WIM ∈ {0,..., 232–1};
S = dlLastRES, RES ∈ {0,..., 25–1 } ∪ delay_time_WC ∈  R0+;
Y = RES ∈ {0, 1};

This circuit checks whether the next window to be used will be
overwritten. The component consists of a Window Invalid Mask
register. It returns the value of the CWP-eth bit of the WIM
register.

MEMORY = < X, S, Y, δint, δext, λ, D >

X = DATA ∈ {0,..., 232–1 } ∪ ADDRESS ∈ {0,..., 231–1} ∪
ADDRESS_STROBE ∈ {0,1} ∪ BSEL ∈ {0,..., 24–1} ∪
RD_WR ∈ {0,1} ∪  RESET ∈ {0, 1};
S = memory: array(memsize: default 32 Kb), delay_time_M ∈
R0+;
Y =  DATA ∈ {0,..., 232–1 } ∪ DTACK ∈ {0, 1} ∪ ERR ∈ {0, 1}.

Figure 8. INC/DEC coupled model definition [50]
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The memory is provided with three basic operations: read, write,
and reset. When a reset is issued, the memory initial image is
loaded. The processor writes an address in the bus and signals
the memory using the AS signal when the address is ready. Then,
a read/write signal is issued. The memory reacts according to
this signal, using an output after a time related with the memory
latency.

ADDER = < X, S, Y, δint, δext, λ, D >

X = OPA, OPB ∈ {0,..., 232–1 };
S = delay_time_A ∈ R0+;
Y = RES ∈ {0,..., 232–1 } ∪ CARRY ∈ {0, 1}.

The adder receives two inputs. Depending on the result, the Carry
bit can be turned on.

ALIGNL/ALIGNS = < X, S, Y, δint, δext, λ, D >

X = OP ∈ {0,..., 232–1 } ∪ SIZE ∈ {0,..,3} ∪ KIND ∈ {0,..,3} ∪
SIGN ∈ {0,1};
S = delay_time_AL ∈ R0+;
Y = RES ∈ {0,..., 232–1 }.

These models are used to align data read/written during the Load/
Store operations.

ALU = < X, S, Y, δint, δext, λ, D >

X = OPA, OPB ∈ {0,..., 232–1}  ∪ FCOD ∈ {0,..., 24–1} ∪
CIN ∈ {0,1};
Y = RES ∈ {0,...,232–1 } ∪ CARRY ∈ {0,1} ∪ ZERO ∈ {0,1} ∪
NEGAT ∈ {0,1} ∪ OVFLW ∈ {0,1}.
S = delay_time_ALU ∈ R0+;

This model represents the behavior of the integer Arithmetic-
Logic Unit. It is capable of executing the following operations:
add, sub, addx, subx (add/sub with carry), and, or, xor, andn,
orn, xnor (negated and, or, xor).

BOOLEAN GATE = < X, S, Y, δint, δext, λ, D >

X = OP1, OP2 ∈ {0,1};
S = delay_time_BG ∈ R0+;
Y =  RES ∈ {0,1}.

This group of models was included to provide the behavior of
the most used Boolean gates: AND, OR, NOT, and XOR. They
receive binary inputs, producing a result according to the de-
sired operation.

BUS = < X, S, Y, δint, δext, λ, D >

X = Y = DATA, ADDRESS ∈ {0,..., 232–1} ∪ BSEL ∈ {0,...,
24–1} ∪ IRQ ∈ {0,..., 215–1} ∪ CLOCK, AS, RD/WR, DTACK,
ERR, RESET, BUSY ∈ {0,1};
S = delay_time_Bus ∈ R0+.

The bus interprets each of the input signals, providing outputs
related to them. If a device which received a 1 in the BGRANTin
port needs to write data in the memory, it writes a 0 in the
BGRANTout port (no smaller priority device is able to use the
bus). Then, the device starts a bus cycle, turning on the BUSY
signal. The device writes the address to be accessed in the AD-
DRESS lines and the data to be written in DATA. Afterwards,
the Byte Select Mask BSEL defines which byte in the word is
used. Finally, it turns on the RD/WRout and AS lines to tell if a
Write operation was issued. When the memory receives the AS
signal, it executes a memory cycle that finishes when the
DTACKout line is turned on. The device that issued the write
operation receives this signal in its DTACKin line. When the
cycle has finished, if BGRANTin is still in 1, the device is able
to transfer new data. Otherwise, it turns off the BUSY line, al-
lowing a new bus operation by other device.

CCLOGIC = < X, S, Y, δint, δext, λ, D >

X = CARRY, ZERO, NEGAT, OVFLW ∈ {0,1} ∪ COND ∈
{0,..., 24–1};
S = delay_time_CC ∈ R0+;
Y = RES ∈{0,1}.

This model is used in conditional jumps to decide if a branch
must be executed.

CLOCK = < X, S, Y, δint, δext, λ, D >
X = ∅; S = period ∈ R0+;
Y = RES ∈ {0,1}.

This represents the CPU clock, for which periods can be con-
figured.

CWPLOGIC = < X, S, Y, δint, δext, λ, D >

X = CWP ∈ {0,..., 24–1} ∪ SEL ∈ {0,..., 24–1};
S = delay_time_CWP ∈ R0+;
Y = GSEL ∈ {0,..., 23–1} ∪ RSEL ∈ {0,..., 29–1} ∪ R/G ∈ {0,1}.

This model is used to determine if access to the global registers
or the register window is required. It returns the kind of register
(Register window/Global) and its number.

INC4 = < X, S, Y, δint, δext, λ, D >

X = OP ∈ {0,..., 232–1};
S = delay_time_INC ∈ R0+;
Y = RES ∈{0,...,232–1 }.

This model updates the nPC.

IRQLOGIC = < X, S, Y, δint, δext, λ, D >

X = IRQ1,..., IRQ15, PIL0, ..., PIL3 ∈ {0,1};
S = int_latency ∈ R0+;
Y = TF {0,1} ∪ TT ∈ {0,..., 28–1 }.
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This model manages the actions that take place when an inter-
rupt is received. The PIL (Processor Interrupt Level) lines mask
the interrupts. If one or more IRQs whose numbers are greater
than the PIL are received, the interrupt must be serviced. Then,
we see which one has the higher priority, and the TF (Trap Found)
bit is turned on. The TT (Trap Type) register is loaded accord-
ing to the highest level interrupt.

LATCH = < X, S, Y, δint, δext, λ, D >

X = IN ∈ {0,..., 232–1} ∪ EIN, CLEAR ∈ {0,1};
S = delay_time_LA ∈ R0+;
Y = OUT ∈ {0,..., 232–1}.

This model represents a processor register, implemented as a d-
latch. The EIN line enable inputs, and the CLEAR line resets
the register to zero.

Model &Regglob::externalFunction( const ExternalMessage &msg ) {
switch (msg.port()) {

 case cen: bcen = (int)msg.value(); // C enable line turned on
 case reset: breset = (int)msg.value(); // Reset

   }

if( msg.port() == "cin+i" ) input[i]=(int)msg.value();  // Store the input lines

if( msg.port() == "asel+i" ) {   // The i-eth line of the A input was enabled
  selecta= msg.value(); // Store the register number received
}

if( msg.port() == "bsel+i" ) { // The i-eth line of the B input was enabled
  selectb= msg.value(); // Store the register number received
}

if( msg.port() == "csel+i" ) { // The i-eth line of the C input was enabled
  selectc= msg.value(); // Store the register number received
}

 this->holdIn ( active, delay );
 return *this;
}

Model &Regglob::internalFunction( const InternalMessage &msg )  {

if (breset) // A reset signal was issued
  for (int i=0; i<255; i++) in[i]=0; // The 8 register (32 bit each) are deleted

   if (bcen) // The write line was enabled
 for (int i=0; i<32; i++)   // Update the desired register

in[(selectc*32)+i]=input[i];

  this->passivate(); // Wait the next internal event
  return *this ;
}

Model &Regglob::outputFunction( const InternalMessage &msg )  {

if (olda[i] != in[selecta*32+i]) {  // The register has changed
 this->sendOutput(msg.time(), aout, in[selecta*32+i]);
 olda[i] = in[selecta*32+i];  } // Transmit it through the output line

if (oldb[i] != in[selectb*32+i]) { // The register has changed
   this->sendOutput(msg.time(), bout, in[selectb*32+i]);

oldb[i] = in[selectb*32+i];  } // Transmit it through the output line

  return *this ;
}

Figure 9. RegGlob model definition: Transition functions [50]

MUL/DIV = < X, S, Y, δint, δext, λ, D >

X =  OPA, OPB, YIN ∈ {0,..., 232–1}  ∪ FCOD ∈ {0,..., 22–1};
S = delay_time_MUL ∈ R0+;
Y = RES, YOUT ∈{0,...,232–1 } ∪ ZERO, NEGAT, OVFLW ∈
{0,1}.

This model is in charge of performing multiplication and divi-
sions, and turns on the condition bits.

MUX/ MUX4 = < X, S, Y, δint, δext, λ, D >

X = OPA, OPB, OPC, OPD ∈ {0,..., 232–1} ∪ SELA, SELB,
SELC, SELD ∈ {0,1};
S = delay_time_MUX ∈ R0+;
Y = OUT ∈ {0,...,232–1}.
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Model &UC::externalFunction( const ExternalMessage &msg ) {

  if( msg.port() == CLCK ) {

    if( ! waitfmc ) {
      cycle = (cycle + 1) % numcycles;
      this->holdIn( active, 0 );
    }

else this->passivate();
  } else if( msg.port() == DTACK ) {
    if( msg.value() == 1 ) waitfmc = 0;
    this->passivate();
  } else if( msg.port() == CCLOGIC ) {
    cclogic = bit( msg.value() );
    this->passivate();
  } else

        {  string portName;
    int portNum;

    nameNum( msg.port().name(), portName, portNum );
    if( portName == "ir" ) ir[portNum] = bit( msg.value() );
    else psr[portNum] = bit( msg.value() );
    this->passivate();
   }
  return *this;
}

Model &UC::internalFunction( const InternalMessage & )  {
  if( as.val ) waitfmc = 1;
  this->passivate();
  return *this;
}

Model &UC::outputFunction( const InternalMessage &msg )  {
   ...

  // See if the c_en line must be activated
  c_en.val = cycle == c_W && !isBranch( ir ) && !isStore( ir ) && !isWr( ir );

  // Read the Instruction Register and decode the instruction
  ...

  if( isArit( ir ) ) {
    copyBits( ir+19, alu_fcod, 4 );
    enable_mul.val =  isMulDiv( ir );
    enable_alu.val =  isAlu( ir );
    enable_shft.val =  isShft( ir );
  } else {
    enable_mul.val = 0;
    enable_alu.val = 1;
    enable_shft.val = 0;
    if( isWr( ir ) )
      toBits( ALU_XOR, alu_fcod, 4 );
    else
      toBits( ALU_ADD, alu_fcod, 4 );
  }

  ...
  // See branches
  if( isJmp( ir ) )   
    incdec_fcod.val = INCDEC_INC;
  else
    incdec_fcod.val = ir[19];

    ...
   // Transmit the outputs

  for( int i = 0; i < numsports; i++ )
    if( needSend( *sportbits[i] ) )
      this->sendOutput( msg.time(), *sOUT[i], sportbits[i]->val );
  for( int i = 0; i < nummports; i++ )
    for( int j = 0; j < mportsizes[ i ]; j++ )
      if( needSend( mportbits[i][j] ) )

this->sendOutput( msg.time(), *mOUT[i][j], mportbits[i][j].val );
  return *this;
}

Figure 10. Control unit: Transition functions
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These models represent 2 or 4 input multiplexers. To choose
them, we receive the 4-bit select signal whose bit turned on marks
which indicate that the input will be sent through the output.

REGBLOCK = < X, S, Y, δint, δext, λ, D >

X = ASEL, BSEL, CSEL ∈ {0,..., 29–1} ∪ CEN, RESET ∈
{0,1} ∪ CIN ∈ {0,...,232–1 };
S = delay_time_RBL ∈ R0+;
Y = AOUT, BOUT ∈ {0,...,232–1 } ∪ ZERO, NEGAT, OVFLW ∈
{0,1}.

This model is in charge of managing the register window.

SHIFTER = < X, S, Y, δint, δext, λ, D >

X = OPA, OPB ∈ {0,..., 232–1} ∪ FCOD ∈ {0,1};
S = delay_time_SH ∈ R0+;
Y = RES ∈ {0,...,232–1 }.

This model is in charge of implementing a shifter.

SIGNEXT13/SIGNEXT22 = < X, S, Y, δint, δext, λ, D >

X = OP ∈ {0,..., 213–1} ∪ {0,..., 222–1};
S = delay_time_SE ∈ R0+;
Y = RES ∈ {0,...,232–1 }.

These models extend the sign of an operand of 13 or 22 bits to
32 bits.

TRAPLOGIC = < X, S, Y, δint, δext, λ, D >

X = TRAPS ∈ {0,..., 217–1} ∪ TRAP_NUMBER ∈ {0,...,
26–1};
S = delay_time_TL ∈ R0+;
Y = TRAP_FOUND ∈ {0, 1} ∪ TRAP_INSTRUCTION ∈
{0,..., 231–1} ∪ TRAP_TYPE ∈ {0,..., 28–1};

This component defines which trap must be serviced based on a
priority system. One of the input lines defines a non-masked
trap. The other seven bits are used to receive the number of a

Figure 11. Sketch of the Address Unit

Table 3. Available Traps

trap that can be masked. The model returns a bit telling if the
trap must be serviced, and eight bits telling the trap type. Table
3 shows the kinds and priorities for each trap available.

According to this table, the model analyzes which is the
higher priority trap to be serviced. After a delay, it sends the
corresponding index through the output ports.

3.4 Control Unit

The Control Unit is in charge of driving the execution flow of
the processor. As explained earlier, this model uses several in-
put/output lines. According to the input received, it issues dif-
ferent outputs, activating the different circuits that were defined
previously. Figure 10 describes part of the behavior of the Con-
trol Unit. The specification of the input/output sets is not in-
cluded because of its size (details can be found in [49]).

As we can see, this model is activated by the occurrence of a
clock tick. In this case, we check whether the Control Unit is
waiting for a result coming from the memory (waitfmc). In that
case, we have nothing to do and the model passivates. Other-
wise, we register that a clock tick has finished. Other external
inputs correspond to the signal DTACK coming from the
memory or the CCLOGIC (that is, an input arriving from a reg-
ister). We also recognize inputs for the Instruction Register (to
store a new instruction to execute) or for the PSR (to update the
condition codes). The internal transition function records that
when the Address Strobe is up, we are waiting for the end of a
memory transfer. The main tasks of the control unit are executed
by the output function. As we can see in the description, the
present input values are queried. Depending on the number of
clock ticks in the instruction cycle, different output lines are
activated.

4. The Digital Logic Level
The abstraction levels of several models were further detailed,
allowing students to analyze the digital logic level of the cir-
cuits. In the previous stage, the behavior of these circuits was
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I AND_n_2 = {Self};
I AND_n_1 = { AND_n_2 };
I self = { Self, NOT_n_1, AND_n_1, XOR_n}; and
Zij is built using I, as described earlier, and Select = D.

The definition of this coupled model using CD++ is presented
in Figure 13.

First, we define the components of the coupled model (cor-
responding to the D set). Then, the input/output ports are in-
cluded (which are related with the X/Y sets defined earlier).
Finally, the links show the model influencees (which define the
translation function). The select function is implicitly defined
by the order of definition for the model components.

4.2 Chip Selector

The Chip Selector (CS) circuit (Figure 14) is devoted to deter-
mining if an address is between two others. The model receives
a 32-bit address and an Address Strobe (AS), and it returns a
Boolean value telling if the address is between the boundaries.

The MASK models provide two 32-bit sets (MAX Mask,
MIN Mask) containing the boundaries of the address to be com-
pared. These models, defined originally as latches, were rede-
fined using Boolean gates. The input address for the chip selec-
tor is checked using two comparators, instances of the model
were defined in the previous section.

The result obtained is transmitted through the ports LW and
EQ for each of the comparators. Both outputs are ORed for the
first register (as we are interested to see if CMP A ≤ MAX).
Afterwards, the LW output of the second register is inverted (as
we are interested to see if CMP B ≥ MIN). If the circuit is en-
abled, the result obtained is transmitted. Figure 15 shows the
coupled model definition of the Chip Selector.

defined by using atomic models. In this case, some of these
models were built using atomic models representing the basic
Boolean gates (AND, OR, NOT, and XOR). These models (de-
scribed in the previous section) were used as components that
were integrated using digital logic. A coupled model represent-
ing the complete circuit replaced the old atomic ones. These
modifications, also done in course assignments, show the ex-
tensibility and modifiability of Alfa-1. Two of the models imple-
mented this way will be explained.

4.1 CMP Model

The CMP is a part of the Address Unit that detects addresses
falling out of the program boundaries. The model receives two
inputs (through the lines OPA and OPB that are connected to the
BASE and LIMIT registers). As a result, it returns the signal
EQ if both values are equal or LW if A is lower than B.

The model is composed of several one-bit comparators, and
coupling n of them generates n-bit comparators. Figure 12 shows
the basic components of this building block.

This model is formally described by:

CM = < X, Y, D, {Mi}, {Ii}, {Zij}, select >

X = {OPAn, OPBn / OPAn, OPBn ∈ {0,1}};
Y = {EQ, LW / EQ, LW ∈ {0,1}};
D = {NOT_n_1, NOT_n_2, XOR_n, AND_n_1,  AND_n_2 };
where each is an atomic defining the corresponding building
block, presented previously in Section 3.3.;
I NOT_n_1 = {AND_n_1};
I XOR_n = {NOT_n_2};
I NOT_n_2 = {Self};

Figure 13. CMP coupled model

[top]
components : NOT_n_1@NOT NOT_n_2@NOT XOR_n@XOR AND_n_1@AND AND_n_2@AND
in : OPAn OPBn
out : LW EQ

Link : OPAn@top in@NOT_n_1
Link : OPBn@top ina@XOR_n
Link : OPAn@top inb@XOR_n
Link : OPBn@top inb@AND_n_1
Link : out@NOT_n_1 ina@AND_n_1
Link : out@XOR_n in@NOT_n_2
Link : out@AND_n_2 EQ@top
Link : out@NOT_n_2 LW@top

Figure 12. One-bit Comparator [50]

Figure 14. Sketch of the Chip Selector [50]
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[top]
components: MASMAX@MAS MASMIN@MAS CMPA@CMP CMPB@CMP and1@AND and2@AND or@OR not@NOT
in : A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 ... A4 A3 A2 A1 A0 AS
out : CS

Link: A31@top OPA31@CMPA A31@top OPA31@CMPB   Link: A30@top OPA30@CMPA A30@top OPA30@CMPB
...
Link: A1@top OPA1@CMPA A1@top OPA1@CMPB        Link: A0@top OPA0@CMPA A0@top OPA0@CMPB

Link: out31@MASMAX OPB31@CMPA out31@MASMIN OPB31@CMPB
Link: out30@MASMAX OPB30@CMPA out30@MASMIN OPB30@CMPB
...
Link: out0@MASMAX OPB0@CMPA out0@MASMIN OPB0@CMPB
Link: AS ina@and2
Link: eq@CMPA ina@or  lw@CMPA  inb@or
Link: lw@CMPB in@not
Link: out@or ina@and1 out@not inb@and1
Link: out@and1 inb@and2
Link: out@and2 CS@top

Figure 15. CS coupled model [50]

INPUT OUTPUT

00:00:00:00 cen 1
00:00:00:00 csel2 1
00:00:00:00 cin0 1
...
00:00:00:00 cin31 1
00:00:01:00 csel2 0
00:00:01:00 csel1 1
00:00:01:00 cin1 0
00:00:01:00 cin3 0
00:00:01:00 cin5 0
...
00:00:01:00 cin29 0
00:00:01:00 cin31 0

00:00:02:00 cen 0
00:00:02:00 asel2 1
00:00:02:00 bsel1 1

00:00:02:010 aout0 1
...
00:00:02:010 aout31 1
00:00:02:010 bout0 1
00:00:02:010 bout2 1
00:00:02:010 bout4 1
...
00:00:02:010 bout30 1

00:00:04:00 reset 1

00:00:05:00 asel2 1
00:00:05:00 asel1 0

00:00:05:010 aout0 0
00:00:05:010 aout2 0
...
00:00:05:010 aout28 0
00:00:05:010 aout30 0

INPUT OUTPUT
00:00:00:00 OP0 1
00:00:05:00 OP1 0
00:00:10:00 OP2 1
00:00:15:00 OP3 0
00:00:20:00 OP4 0
00:00:25:00 FCOD 1

00:00:05:000 res0 1
00:00:05:000 res1 0
00:00:05:000 res2 0
00:00:05:000 res3 0
00:00:05:000 res4 0

00:00:15:000 res0 1
00:00:15:000 res1 0
00:00:15:000 res2 1
00:00:15:000 res3 0
00:00:15:000 res4 0

00:00:30:000 res0 1
00:00:30:000 res1 0
00:00:30:000 res2 1
00:00:30:000 res3 0
00:00:30:000 res4 1

Figure 16.  Inputs and Outputs for the INC/DEC Model

Figure 17. Inputs/Outputs of RegGlob [50]

5. Simulation Results
The present section shows the results obtained when some of
the models previously presented are simulated. In the first case,
we show the results of a value of 20 incremented by the INC/
DEC model. Figure 16 shows the model inputs with their
timestamps and the output values obtained.

The first step consists of giving an initial value to the circuit
(zero by default). The first event (OP0 = 1 at 00:00:00:00) gen-
erates an output only when the model phase changes. As the
preparation time for the circuit is five time units, this occurs at
00:00:05:000. The second input does not generate changes in
the model and no output is issued. In simulated time 10, a new
input is inserted through the port OP2. As this value changed,
an output is generated at simulated time 15. The following two
inputs are not registered because the circuit keeps its present
state. The last one increments the value in the register by insert-
ing the value through the FCOD port. The incremented value
can be seen five time units later.

Figure 17 is an example of the execution of the RegGlob
model under different inputs. At the instant 0, the C enable line
is activated, allowing write operations in the register. In this
case, the register 4 is selected (csel2 = 1, csel1 = 0 and csel0 =
0), and the number 0xFFFFFFFF is used as input (cin0 = ... =
cin31 = 1). Afterwards in 00:00:01:00, the register 2 is selected
(csel2 = 0 and csel1 = 1), and the number 0x55555555 is input
(cin0 = cin2 = cin4... = cin30 = 1, and cin1 = cin3 = cin5 = ... =
cin30 = 1). The first value is stored in the register 4, and the
second in the register 2.

At 00:00:02:00, C Enable is deactivated. Therefore, the fol-
lowing operations are devoted to read registers. We see that the
value in the register 4 is sent through the A output (asel = 2) and
the register 2 is sent through B (bsel = 1). As a result, the values
previously loaded are transmitted (that is, 0xFFFFFFFF in A,
and 0x55555555 in B). Afterwards, Reset is activated. Now, we
try to read register 4 at 00:00:05:00, and we obtain the value
0x00000000.

The next test (Figure 18) corresponds to the TrapLogic model.
Here, we can see the result obtained after turning on all the trap
bits. Because of this, we expect to obtain the index of the high-
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ond. The source code was translated to binary using the GNU
MASM assembler Linker. The executable is used as the initial
memory image for the simulator. The first part of Figure 19
shows part of a program written in assembly language. The sec-
ond part presents the binary code generated, together with the
addresses for each instruction or data (one word each).

As we can see, this piece of code copies parts of the number
0x12345678 to certain memory addresses. We show the trans-

INPUTS OUTPUTS
00:00:00:001 / inst_acc_excep / 1.000
00:00:00:002 / illeg_inst / 1.000
00:00:00:003 / priv_inst / 1.000
00:00:00:004 / win_over / 1.000
00:00:00:005 / win_under / 1.000
00:00:00:006 / addr_not_align / 1.000
00:00:00:007 / data_acc_excep / 1.000
00:00:00:008 / inst_acc_err / 1.000
00:00:00:009 / data_acc_err / 1.000
00:00:00:010 / div_zero / 1.000
00:00:00:011 / data_st_err / 1.000
00:00:00:012 / trap_inst / 1.000

00:00:00:052 tf 1
00:00:00:052 tt7 1
00:00:00:052 tt6 1
00:00:00:052 tt4 1
00:00:00:052 tt2 1

Figure 18. Execution Results for the TrapLogic Model [50]

set 0x12345678, %r1 ! Load the register 1 with 0x12345678
st   %r1, [dest] ! Store it in the "dest" variable
sth  %r1, [dest+4] ! Store the high half-word
sth  %r1, [dest+10]
stb  %r1, [dest+12] ! Store the last byte
stb  %r1, [dest+17]
stb  %r1, [dest+22]
stb  %r1, [dest+27]
unimp

dest: .ascii "                                "

Initial Image

Addr.    Memory Image Interpretation
...
040 11000010 00100000 00100000 01001000  Store the register 1 in the address 72
044 11000010 00110000 00100000 01001100  Store the high part of reg. 1 in address 76
048 11000010 00110000 00100000 01010010  Store the high part of reg. 1 in address 82
052 11000010 00101000 00100000 01010100  Store the high byte of reg. 1 in address 84
056 11000010 00101000 00100000 01011001  Store the high byte of reg. 1 in address 89
060 11000010 00101000 00100000 01011110  Store the high byte of reg. 1 in address 94
064 11000010 00101000 00100000 01100011  Store the high byte of reg. 1 in address 99
068 00000000 00000000 00000000 00000000  unimp
072 00100000 00100000 00100000 00100000  "dest" variable (20: space character)
076 00100000 00100000 00100000 00100000
...

Final image

Addr.    Memory Image  Values
...
072 00010010 00110100 01010110 01111000  12 34 56 78
076 01010110 01111000 00100000 00100000  56 78 20 20 (20 = space)
080 00100000 00100000 01010110 01111000  20 20 56 78
084 01111000 00100000 00100000 00100000  78 20 20 20
088 00100000 01111000 00100000 00100000  20 78 20 20
092 00100000 00100000 01111000 00100000  20 20 78 20
096 00100000 00100000 00100000 01111000  20 20 20 78

Figure 19. Storing a value in memory

est priority trap that is pending. The result obtained after the
delay time corresponds to the highest one in Section 3.4, Data
Store Error (whose code is TT = 0x2B = 00101101, the result
we obtained). Also, the Trap Found flag is turned on.

Finally, we show two execution examples that are part of a
complete program. All the examples were executed in a Pentium
processor (133 MHz), using the Linux version of CD++. The
average performance for this model was one instruction per sec-
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lation of the binary codes based on the specification of the in-
struction set of the SPARC processor. Finally, we show the
memory image after the program execution. As we can see, the
values stored in memory follow the instructions defined by the
executable code.

The following example, illustrated in Figure 20, shows the
execution of part of another program. As we can see, the goal is
to place a 1 in a given address, and then shift this value to the
left, storing the result in the following address. The cycle is re-
peated 12 times.

set 1, %r1 ! Load the register 1 with the value 1
cycle: sll %r1, %r2, %r3 ! Shift the value the number of times in r2
       stb %r3, [%r2+dest] ! Store the result in the variable dest + r2

       subcc %r2, 12, %r0 ! Repeat the cycle 12 times
       bne cycle
       inc 1, %r2 !Delay slot

       unimp

dest:  .ascii "                        "
       .ascii "                        "
       .ascii "                        "
       .ascii "                        "

Initial Image
Addr.    Memory Image Interpretation
...
032 10000010 00010000 00100000 00000001  set <1>, 1
036 10000111 00101000 01000000 00000010  Take the register 1, shift and store in R3
040 11000110 00101000 10100000 00111100  Store in address 60 1 byte
044 10000000 10100000 10100000 00001100  substract 12 to R0
048 00010010 10111111 11111111 11111101  Relative jump to address –2 words (40)
052 10000100 00000000 10100000 00000001  increment 1
056 00000000 00000000 00000000 00000000  unimp
060 00100000 00100000 00100000 00100000  Destination variable
064 00100000 00100000 00100000 00100000
068 00100000 00100000 00100000 00100000
...
Final image
...
060 00000001 00000010 00000100 00001000  A value 0x01 shifted 12 times
064 00010000 00100000 01000000 10000000
068 00000000 00000000 00000000 00000000
...

Figure 20. Shifting and storing results in memory

Figure 22. Error message

set 274543375,  %r24   ! stores a value in register 24
set 13908050 , %r22   ! a second value is stored in the register 22
udiv %r24, %r22 , %r10   ! both values are divided and stored in r10
st %r10 , [dest]   ! The result is stored in memory

    unimp

.align 4
value:    .ascii "VALUE:"
dest:      .word  FFFFFFFF  !  Result of Test 100

Figure 21. Testing routine for the UDIV Instruction

Once the basic behavior of the simulated computer was veri-
fied, a thorough integration test was attacked. As explained ear-
lier, each circuit was defined together with a set of input/output
values that were encapsulated in an experimental framework.
Once each of the models was tested, each operation in the in-
struction set was checked. The procedure was developed using
the verification facilities of DEVS, defining 17100 test cases.
The mechanism consisted of creating an experimental frame-
work, which executed an instruction in the instruction set. The
execution result was stored in memory, and a memory dump
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Figure 23. Log file of a simple routine
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was executed, obtaining the memory state after the execution.
This value is checked against the value obtained when the same
program is executed in the real architecture, which is included
in the testing experimental framework. This procedure allowed
us to find some errors derived from the coupled model. For in-
stance, we could see that the division instruction was not work-
ing properly. The generated test included the sentences in Fig-
ure 21.

When this example was executed, the testing coupled model
found an error, shown in Figure 22.

In this case, the destination should have stored the value 19
(274543375 divided by 13908050). Instead, we have found the
value 1, allowing us to see that one of the instructions had an
unexpected behavior. In this way, we could find errors in some
of the instructions that could be fixed. We also found errors in
some addition instructions and in conditional jumps with pre-
diction.

Finally, we show part of the execution of the simulator for
the example presented in Figure 20. We show a log file includ-
ing the messages interchanged between modules in Figure 23.
As in other DEVS frameworks, there are four kinds of mes-
sages: * (used to signal a state change due to an internal event),
X (used when an external event arrives), Y (the model’s out-
put), and done (indicating that a model is finished with its task).
The I messages initialize the corresponding models. For each
message, we show its type, timestamp, value, origin/destina-
tion, and the port used for the transmission.

The execution cycle starts by initializing the higher level
models (memory, CPU, etc.). The message that arrived at the
CPU model is sent to its lower level components: Instruction
Register, PC Adder, PC multiplexer, Control Unit, etc.

When the initialization cycle finishes, the imminent model
is executed. In this case, the nPC model is activated, transmit-
ting the address of the next instruction. As we can see, the 2nd
and 5th bits are returned with a 1 value. That means that the
nPC value is 100100 = 36 (as we see in Figure 20, the program
starts in the address 32). The value is sent to the pc-inc model,
in charge of adding 4 to this register. The update is finished at
10:000, as the activation time of this model was scheduled us-

Figure 23. Log file of a simple routine

ing the circuit delay. At that moment, a 4 value is added to the
nPC, and we obtain the 3rd and 5th bits in 1 (res3 and res5), that
is, 101000 = 40, the next PC. Later, the PC is activated and the
value 010000 (that is, 32) is obtained. This is the initial address
of the program. The following event is the arrival of a clock
tick, sent to the processor. The CPU schedules the next tick (in
1:00:000 time units) and transmits the signal to the Control Unit,
which activates several components: a-mux, ALU, Addr-mux,
IR, etc.

We finally see in the simulated time 20:000 that the memory
has returned the first instruction (compare the results with the
bit configuration in the address 32). The instruction is sent to
the CPU to be stored in the Instruction Register and to follow
with the execution. The rest of the instruction cycle is com-
pleted in the same way.

We are able to follow the execution flow of any program by
analyzing this log file. To simplify the analysis of results, we
built a set of scripts using Tk that lets students choose which
components should be considered. In this way, behavior of each
of the subcomponents can be followed more easily, and stu-
dents can analyze the behavior of the desired subsystem in de-
tail.

6. Conclusion
We have presented the use of DEVS in simulating a simple com-
puter. The models were based on the architecture of the SPARC
processor, which includes features not existing in simpler CPUs.
The tools can be used in computer organization courses to ana-
lyze and understand the basic behavior of the different levels of
a computer system. The interaction between levels can be stud-
ied, and experimental evaluation of the system can be performed.

The use of DEVS allowed us to have reusable models (in
this case, Boolean gates, comparators, multiplexers, latches, etc.).
DEVS also allowed us to provide reusable code for different
configurations. We provided different machines, one running
the digital logic level and the other running the instruction set,
with different performance in each case, depending on the edu-
cational needs. The concept of internal transition functions can
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The hierarchical nature of DEVS provides the means to go
deeper into the hierarchy. For example, the logical gates could
be implemented by defining the transistor level (which has not
been implemented in this version). We planned to build an As-
sembler and Linker, but the code generated by those provided
by GNU for SPARC plattforms executed straightforwardly. Nev-
ertheless, the implementation of an assembler and linker are
interesting assignments that would complete the layered view
applied in these courses. Also, a debugger for the Alfa-1 archi-
tecture could be built, making study of the assembly language
level easier.

At present, Alfa-1 is being extended by defining components
of the input/output subsystem. Several input/output devices,
interfaces, and DMA controllers will be simulated. Different
transference techniques (polling, interrupts, DMA) will be con-
sidered. Likewise, the implementation of different cache man-
agement algorithms is being finished. Other tasks faced at present
include the definition of a graphical interface to enhance the
use of the toolkit. The set of scripts mentioned in Section 5 will
be used to gather the results of the simulations and will be used
as inputs to be displayed in a graphical way. In this way, the
study and analysis of the different subsystems will be improved.
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