

A DEVS/MAS-based Framework for Modeling/Simulation of Complex

Systems

 Noureddine Seddari
1,2

, Mohammed Redjimi
1
, and Mohamed Belaoued

2

1Department of Computer Science, 20 August 1955 University of Skikda, Algeria.

2LIRE Laboratory, Software Technologies and Information Systems Department,

University of Abdelhamid Mehri, Constantine, Algeria.
1
n.seddari@univ-skikda.dz
1
medredjimi@gmail.com

2
belaoued.mohamed@gmail.com

Abstract. This paper presents an approach for modeling and simulation of

complex systems. This approach is based on the decomposition of the

considered systems into sub-systems which appear on two levels: On the lower

level; the decomposition concerns the division of a global system into atomic

and coupled models based on DEVS formalism (Discrete Event Systems

Specification). The system components are then represented using the DEVS

mathematical equations. This step allows the formal system checking. At the

higher lever, the implementation of the obtained DEVS models is realized using

Multi-Agents Systems (MAS) based on Agent/Role/Group (AGR). Moreover, a

set of procedures and functions permitting to transform DEVS to MAS models

are defined and implemented. The main advantages of this approach are its

adaptability for various domains, its flexibility (easy to implement), its

extensibility (adding new components). A version of this work will be

implemented using a functional extension of the Multi Agent Development KIT

platform (MAD-KIT).

Keywords: Complex Systems, Discrete Event Systems Specification (DEVS),

Modeling and Simulation, Multi-Agent Systems (MAS), AGR Model

(Agent/Group/Role), MAD-KIT.

1 Introduction

Nowadays, complex systems are made of a large number of interacting entities into

interaction, and the overall behavior of these systems emerges from these interactions

[1, 2]. The increasing complexity of the studied systems and the requirements of the

designers have led to the introduction of many categories of formalisms into the

modelling and simulation process. Indeed, there is no single model, or formalism, to

model all aspects or components of a system. Thus, different levels of explanation,

different theories, and different formalisms or dedicated languages are necessary to

properly describe the different aspects or components of the system.

 The modeling and simulation [3-10] of complex systems can be used for several

purposes. For instance, in ca be used in order to handle the modeled system without

risks, to observe and analyze the phenomena emerging when we change the system

inputs, and also to improve the understanding and to prevent eventual damages of the

system. Therefore, the challenge of the modeling and simulation process of complex

mailto:1noureddine.seddari@univ-constantine2.dz
mailto:medredjimi@gmail.com

systems is to provide adequate formalism to model these systems on one hand, and to

use the appropriate tools for implementation, on the other hand.

 This work presents a hybrid method that combines DEVS (Discrete Event System

Specification) formalism [11] and AGR model (Agent/Group/Role) for modeling and

simulating complex systems.

 First, DEVS formalism [11] is used to define the structures of entities that make up

the system by using both atomic and coupled models. The DEVS representation

encapsulates the structure and the behavior of the model. Thus, DEVS models provide

mathematical representations that can be formally checked and validated.

 Second, multi-agent systems (MAS) present a strong theoretical and practical tool

to implement the solution and provide several advantages such as autonomy, pro-

activity, distribution, self-organization and adaptation. The agents cooperate for

collective problem solving, since an isolated agent cannot solve the entire problem

because it has not large perception and capabilities. Therefore, the system of agents

provides a collective solution that emerges from collective actions within the

population of the agents.

 The idea developed here is focused on the transformation of models checked and

validated in DEVS to agent model representation. The Agent/Role/Group (AGR)

concept presents the most convenient paradigm in this scope. Moreover, a set of

procedures allowing transition between DEVS model and AGR model has been

determined and integrated in MAD-KIT platform. The latter has been developed by

the team of Professor J. Ferber in LIRMM [12] and based on the principles of AGR.

 This paper is organized as follows: The second and third sections present the Multi-

Agent Systems and DEVS formalism. The fourth section describes related works,

where we categorize combinations of DEVS and MAS from which our approach was

inspired. Both approach and algorithms transformations that we propose are shown in

the fifth section. Finally, section 6 concludes the work and underlines our

perspectives.

2 The Multi-Agent Systems (MAS)

J. Ferber [13] [14] [15] represents a multi-agent system by the couple <A, W> where

A is an agent and W an environment, and considers an agent in interaction with the

world as a system composed of dynamic coupled two subsystems, the coupling taking

place through perceptions that the agent has for environment and actions that modify

this environment.

 A = (Pa, Percepta, Fa, Infla, Sa) (1)

 W = (E, Г, Σ, R) (2)

With

- Pa represents the function of perception of the agent,

- Percepta the set of stimuli and sensations,

- Fa the function of behavior of the agent that determines the agent’s state,

- Infla the function of action of the agent,.

- Sa the set of the agent’s internal states,

- E the space in which the agent evolves,

- Γ the space of influences produced by the agent and having like consequences to

modify the evolution of the environment,

- Σ the set of states of the environment,

- R the law of evolution of the environment,

2.1 AGR model

The model (AGR) is based on the concepts of agents, groups and roles [12] [16].

Agent. An agent is only specified as an active communicating entity which plays

roles within groups.

Group. Groups are defined as atomic sets of agent aggregation representing any usual

multi-agent system. Each agent is part of one or more group.

Role. The role is abstract representation of an agent function, service or identification

within a group. Each role handled by an agent is local to a group [17-20]. Figure 1

represents the diagram of AGR model.

Fig. 1. AGR model

3 The DEVS Formalism

The Discrete Event System Specification (DEVS) [3] [21] is an environment for

systems’ modeling and simulation. DEVS provides a means of specifying a

mathematical object called a system. In addition, DEVS allows gathering, in coherent

way, other formalisms of modeling. It is, in fact, a formalism fitted to significant

number of scopes of application [22-25].

3.1 Formal Specification of a DEVS Atomic Model

A Discrete Event System Specification is a structure

 ADEVS = (X, Y, S, δint, δext, δcon,ta , λ) (3)

Where

X is the set of inputs

S is a set of states

Y is the set of outputs

δint: S → S: is the internal transition function

δext: Q × X → S: is the external transition function, where

Q = {(s,e) | s ∈ S,0 ≤ e ≤ ta (s)} is the total state set

e is the time elapsed since last transition.

λ: S → Y is the output function

ta (s) is the time advance function

3.2 Formal Specification of a DEVS Coupled Model

A DEVS coupled model is described by the following equation:

 CDEVS = (Xself, Yself, D,{ Md/dЄD}, EIC, EOC, IC) (4)

Self: is the model itself.

Xself is the set of inputs of coupled model.

Yself is the set of outputs of coupled model.

D is the set of names associated with the components of the model, self is not in D.

{Md / d Є D} is the set of components of coupled model.

EIC, EOC and IC define the coupling structure in coupled model.

EIC is the set of external input couplings.

EOC is the external output couplings.

IC defines internal coupling.

Fig. 2. Graphical representation of an atomic model and a coupled model consisting of two

atomic models (A) and (B)

4 Related works

In this section, we presnt the most relevet tools and platforms for systems modeling

and simulation frameworks that combined both DEVS and MAS.

 The GALATEA platform [26] [27] provides a high level simulation concepts for

specification and design of MAS systems, Thus, one can modeling roles and action

plans and establishing communications, negotiations and dialogues between agents to

allowing the emergence of efficiency distributed solutions. GALATEA is based on

the Zeigler theory of simulation and the logical agents. This platform uses a set of

logical programming oriented languages and allows the modeling by using DEVS

formalisms. The major disadvantage of this platform is its difficulty of

implementation [28].

 The JAMES platform [29-31] allows dynamic simulations of MAS systems. An

agent is represented by atomic DEVS model, a group of agents is represented by

coupled DEVS model and the communication between models is determined by the

inputs and outputs events. The agent environment plays an important role and it is

perceived as a shared framework for the agents interactions [32-35].

 The VLE platform [36-37] is a high level simulation framework based on DEVS

formalism. This platform allows the simulation of the MAS systems by using DEVS.

An agent is represented by a DEVS atomic model, an external stimulus by a message

and the environment is characterized by CELL-DEVS [38-39].

 The DEVSimPy platform [34] considers the advantages and the disadvantages of

these latter platforms and provides a framework for agents modeling and simulation

by using DEVS formalism. Thus, both the agents and the environments are

represented by DEVS atomic models. A group of agents is represented by a DEVS

coupled model [40].

 By analyzing the aforementioned works, one can conclude that in these

approaches; the agents, the environments, the interactions between agents and the

groups of agents are represented by atomic and coupled DEVS models.

 Multi-agent systems (MAS), for their part, present a strong theoretical and

practical tool in the field of simulation. MAS include tools for managing the agents.

At this level, the implementation of the system can be easily realized. For these

reasons, we opted in our work for the combination

5 Proposed approach

In this work, we propose a new approach for modeling and simulation of complex

systems and precisely industrial ones. After studying the most relevant existing

approaches we distinguished the following correspondence between DEVS and AGR

models :

 A DEVS atomic model can be represented by agent model. The inputs and

outputs of the atomic models are represented by a set of stimuli and action of

the agent. The internal transition function and the external transition function

are represented by the function of behaviour and the function of perception of

the agent respectively. The output function represented by the function of

action of the agent. The sequences of states (S) of the DEVS atomic model

are by the set of the agent’s internal states.

 A coupled model materializes a group. The inputs and outputs of coupled

model are represented by transmitter coordinator agents. The external input

couplings, the external output couplings and the internal coupling are

represented by different interconnections between agents and groups of

agents.

According to the aforementioned points, we provide three major contributions:

 Industrial systems are classified as discrete event dynamic systems (DEDS)

and are characterized by a complex and hierarchical structure [41]. In our

approach, the structure of industrial system’s elements is formally defined and

represented in DEVS, and according to B.P. Zeigler [11]we can prove that this

formalism is adequate to model of this type of systems.

 Providing a mechanism which can systematically transform the DEVS to

AGR model.

 Integrating this mechanism in MAD-KIT platform in order to create a new

extension for DEVS formalism. Choosing MAD-KIT platform for

implementation can be justified by its advantages such as, its genericity, its

independence to a specific field of application, and finally, its simplicity of

implementation.

5.1 Mechanisms of DEVS to AGR transformation

The proposed Algorithm below transforms atomic and coupled model of DEVS model

to agent and groups of AGR model [41].

 The CDEVS_G (CDEVS) function creates the groups Gi, then, the procedures

CDEVS_EIC,CDEVS_IC and CDEVS_EOC define the various interconnections

between the agents (AGAj “agent corresponding to atomic model ADEVSj” created

by ADEVS_AGA (ADEVSj) function, AGCi_R “Agent representing the input ports

of coupled model CDEVSi” and AGCi_E “Agent representing the output ports of

coupled model CDEVSi “) and the groups Gi according to coupling type CDEVSi as

shown below.

 The ADEVS_AGA (ADEVS) function allows the creation of AGAj agents for

each atomic model ADEVSj. Thus, both receptors and effectors of AGAj agent

represent respectively the input ports (ADEVSj. Inportsi) and output ports

(ADEVSj.Outportsi) of atomic model. The function of perception AGAj.Pa

corresponds to the external transition function ADEVSj.δext.

 The behavior function AGAj.Fa represents the internal transition function

ADEVSj.δint. The action function of AGAj.Infla agent corresponds to the output

function ADEVSj.λ The dynamic evolution of an agent represents time advance

function ADEVSj.ta and the internal states of AGAj agent. This corresponds to the set

of states ADEVSj.S.

 The CDEVS_AGC (CDEVSj) function creates two coordinators agents AGC for

each coupled model CDEVSi, the first one is a receiver coordinator agent (AGCi_R)

and the second one is a transmitter coordinator agent (AGCi_E). The main objective

of those both coordinators is well to conserve the encapsulation of DEVS formalism.

The model is represented as a black box that acts with environment only via the input

and output ports .However, the agents have free interaction with their environment. In

this approach; the agents want to communicate with internal agents of a group

corresponding to a DEVS coupled model should necessary go through coordinators

agents of this group.

 The CDEVS_G (CDEVSi) function creates groups Gi for each CDEVSi coupled

model; then it creates AGAj agents that it will gather them in this group Gi. Then; it

creates both coordination agents AGCi_R and AGCi_E through CDEVS_AGC

function. The figure 3 below illustrate a graphical representation of elementary

transformation of our approach DEVS/AGR.

Fig. 3. DEVS/AGR transformation

Algorithm 1:Transformation CDEVS_AGR

 Input CDEVS

 Output AGR

1: for all CDEVSi do

2 : call CDEVS_G (CDEVSi) // Creation of groups and agents

3 : call CDEVS_EIC (CDEVSi) // Definition of interconnections corresponding to

 // DEVSi.EIC

4 : call CDEVS_IC (CDEVSi) // Definition of interconnections corresponding to

 CDEVSi.IC

5 : call CDEVS_EOC (CDEVSi) // Definition of interconnections corresponding to

 //CDEVSi.EOC

6 : end for

Function 1: ADEVS_AGA (ADEVS : AtomicDEVS) : AGA

1 : Create AGAj // Agent model corresponding to ADEVSj

2 : Create a mailbox Mb of size =ADEVSj.Inports.Size

3 : Create a sending box Sb of size =ADEVSj.Outports.Size

4 : if an external event is appeared in a port : ADEVSj.Inports then

5 : Run AGAj.Pa //corresponding to ADEVSj.δext

6 : end if

7 : if the life time ta of state S is elapsed then

8 : Run AGAj.Fa // corresponding to ADEVSj.δint

9 : Run AGAj.Infla // corresponding to ADEVSj.λ

10 : end if

Function 2: CDEVS_G (CDEVS : CoupledDEVS) : G

1 : Create a group Gi // corresponding to CDEVSi

2 : for all ADEVSj do

3 : call ADEVS_AGA (ADEVSj) // creation of agents AGAj

4 : add AGAj within Gi // regrouping of agents

5 : end for

6 : call CDEVS_AGC (CDEVSi)

7 : add AGCi_E and AGCi_R within Gi

Function 3: CDEVS_AGC (CDEVS : CoupledDEVS): AGC

1 : Create AGCi_R // Receiver agent for CDEVSi.Inports

2 : Create a mailbox Mb of size = CDEVSi.Inports.Size

3 : Create a sending box Sb of size = CDEVSi.EIC.Size

4 : if an external event is appeared in a port CDEVSi.Inports then

5 : Run AGCi_R.Pa

6 : end if

7 : if the mailbox Mb non empty then

8 : Run AGCi_R.Fa

9 : end if

10 : if the sending box non empty then

11 : Run AGCi_R.Infla

12 : end if

13 : Create AGCi_E // emitter agent for CDEVSi.Outports

14 : Create a mailbox Mb of size = CDEVSi.EOC.Size

15 : Create a sending box Sb of size = CDEVSi.Outports.Size

16 : if an external event is appeared in a port : CDEVSi.Outports then

17 : Run AGCi_E.Pa

18 : end if

19 : if the mailbox Mb non empty then

20 : Run AGCi_E.Fa

21 : end if

22 : if the sending box non empty then

23 : Run AGCi_E.Infla

24 : end if

Procedure 1: CDEVS_EIC(CDEVS : CoupledDEVS)

1 : for m = 1 until the number of CDEVSi.Inports do

2 : for j = 1 until the number of internal models M do

3 : for k = 1 until the number of Mj.Inports do

4 : if (CDEVSi.Mj = ADEVSj) then

5 : if (CDEVSi.Xm = ADEVSj.Xk) then // EIC between coupled model and

 atomic model

6 : Define the set of messages between Gi.AGCi_R and Gi.AGAj

7 : end if

8 : end if

9 : if (CDEVSi.Mj = CDEVSj) then

10 : if (CDEVSi.Xm = CDEVSj.Xk) then // EIC between two coupled models

11 : Define the set of messages between Gi.AGCi_R and Gj.AGCj_R

12 : end if

13 : end if

14 : end for

15 : end for

16 : end for

Procedure 2: CDEVS_IC(CDEVS : CoupledDEVS)

1 : for j = 1 until the number of internal models

 M do

2 : for k = 1 until the number of internal Models M do

3 : if j ≠ k then // an outports should not be coupled with an inports of the same

 model.

4 : for n= 1 until the number of Mj.Outports do

5 : for m= 1 until the number of Mk.Inports do

6 : if (CDEVSi.Mj = CDEVSj) and (CDEVSi.Mk = CDEVSk) then

7 : if (CDEVSj.Yn= CDEVSk.Xm) then // IC between two coupled models

8 : Define the set of messages between Gj.AGCj_E and Gk.AGCk_R

9 : end if

10 : end if

11 : if (CDEVSi.Mj = ADEVSj) and (CDEVSi.Mk = ADEVSk) then

12 : if (ADEVSj.Yn = ADEVSk.Xm) then // IC between two atomic models

13 : Define the set of messages between Gi.AGAj and Gi.AGAk

14 : end if

15 : end if

16 : if (CDEVSi.Mj = ADEVSj) and (CDEVSi.Mk = CDEVSk) then

17 : if (ADEVSj.Yn = CDEVSk.Xm) then // IC between atomic model and

 // coupled model

18 : Define the set of messages between Gi.AGAj and Gk.AGCk_R

19 : end if

20 : end if

21 : if (CDEVSi.Mj = CDEVSj) and (CDEVSi.Mk =ADEVSk) then

22 : if (CDEVSj.Yn = ADEVSk.Xm) then // IC between coupled model and

 // atomic model

23 : Define the set of messages between Gj.AGCj_E and Gi.AGAk

24 : end if

25 : end if

26 : end for

27 : end for

28 : end if

29 : end for

30 :end for

Procedure 3: CDEVS_EOC (CDEVS: CoupledDEVS)

1 : for j = 1 until the number of internal models M do

2 : for p = 1 until the number of Mj.Outports do

3 : for q = 1 until the number of CDEVSi.Outports do

4 : if (CDEVSi.Mj = ADEVSj) then

5 : if (ADEVSj.Yp = CDEVSi.Yq) then // EOC between atomic model and

 // coupled model

6 : Define the set of messages between Gi.AGAj and Gi.AGCi_E

7 : end if

8 : end if

9 : if (CDEVSi.Mj = CDEVSj) then

10 : if (CDEVSj.Yp = CDEVSi.Yq) then // EOC between two coupled models

11 : Define the set of messages between Gj.AGCj_E and Gi.AGCi_E

12 : end if

13 : end if

14 : end for

15 : end for

16 :end for

The table 1 below shows a set of passage rules between AGR and DEVS model

according to equations (1) and (2) regarding AGR model and equations (3) related to

DEVS as well as the algorithms shown above.

Table 1. Correspondence between DEVS and AGR.

5.2 Architecture for Simulation System

The figure 4 presents a global system architecture based on the proposed approach.

The interaction module (1) allows the system agent to determinate all coupled and

atomic models of system to be simulated through a set of pre-defined models in base

of models (2). This base contains a set of re-used models (The system agent can grow

it progressively).

 The capture of models is done through a set of files code of system simulation.

Thus, the system agent may follow the simulation evolutions on the display system (7)

by having the possibility to interact with the system thanks to interaction module (1).

The parameters are the components of equation of atomic and coupled models. An

analysis of data integration is carried out in this level.

 The files are saved in XML models (3). Then, the system transforms them thanks to

CDEVS/AGR extension (4). The management module of agents (5) allows obtaining a

set of agents and groups of agents according to AGR model. Those agents are

integrated into MAD-KIT multi-agent platform (8) to obtain the executable code of

system simulation.

DEVS AGR

Atomic X Agenta Percepta

Y AGC_E

δext Pa

δint Fa

λ Infla

S Agent behaviour (Role)

Coupled

X Group

AGC_R

AGC_E Y

M Group / M ∈ CDEVS ||

Agent / M ∈ ADEVS

EIC Interconnection between AGCi_R & AGCj_R /

Mj∈ CDEVS, (i,j)∈ N || AGCi_R & AGAj /

Mj∈ ADEVS, (i,j)∈ N

EOC Interconnection between AGCj_E & AGCi_E /

Mj∈ CDEVS, (i,j)∈N || AGAj & AGCi_E / Mj∈

ADEVS, (i,j)∈N

IC Interconnection between AGCj_E & AGCk_R /

Mj ∈ CDEVS, Mk ∈ CDEVS, (j,k)∈N & j≠k ||

AGAj & AGAk / Mj∈ADEVS, Mk∈ADEVS,

(j,k)∈N & j≠k || AGAj & AGCk_R / Mj ∈

ADEVS, Mk∈ CDEVS, (j,k)∈N & j≠k ||

AGCj_E & AGAk / Mj ∈ CDEVS, Mk∈

ADEVS, (j,k)∈N & j≠k

Fig. 4. Overall architecture of the simulation system.

6 Conclusion

In this paper we have proposed a new framework for modeling and simulation of

complex systems using multi-agent platform MAD-KIT. The proposed approach is

based on the DEVS formalism for system modeling and the AGR of MAD-KIT for

their simulation. The main idea behind our approach is to take advantage of the formal

power of DEVS formalism for verification and validation and the power of the MAD-

KIT platform advanced simulation tools.

The advantage of our approach is that it offers an environment for the design and

development of a very flexible and extensible modeling and simulation framework.

The later will allow adding DEVS formalism to the modeling formalisms already

existing in the platform such as Petri Nets, UML, interaction diagrams, etc. As a

perspective, we will focus on testing our extension by modeling and simulating real

complex systems such as industrial petroleum systems.

References

1. Simon, H.A. (1969) The sciences of the artificial, Cambridge (MA). MIT Press.

2. Bertalanffy, L.V. (1968) Théorie générale des systèmes. Dunod.

3. Fishwick, P.A. (1995) Simulation Model Design and Execution. Building Digital Worlds,

Prentice Hall.

4. Sonnessa, M. (2004) Modelling and simulation of complex systems (doctoral dissertation,

PhD Thesis in “Cultura e impresa“, University of Torino, Italy).

5. Shannon, R.E. (1976) Simulation modeling and methodology. Proceedings of the 76

bicentennial conference on Winter simulation.9-15.

6. Oussalah, C. (1998) Modèles hiérachisés multi-vues pour le support de raisonnement dans

les domaines techniques. Technical report.

7. Ingalls, R.G. (2001) Introduction to simulation. Proceedings of the 33nd conference on

Winter simulation. IEEE Computer Society, 7- 16.

8. Shannon, R.E. (1998) Introduction to the art and science of simulation. Proceedings of the

30th conference on Winter simulation. IEEE Computer Society Press, 7-14.

9. Fishwick, P.A. (1997) Computer simulation: growth through extension. Transactions of the

Society for Computer Simulation International, 14(1), 13–23.

10. Vangheluwe, H. (2008) Foundations of modelling and simulation of complex systems.

Electronic communication of the EASST, 10: Graph Transformation and Visual Modeling

Techniques. http://eceasst.cs.tuBerlin.de./index.php/eceasst/issue/view/19.

11. Zeigler, B.P., Praehofer, H. and Kim, T.G. (2000) Theory of Modeling and Simulation,

Second edition, Academic Press.

12. Gutknecht, O. and Ferber, J. (2000) The MadKit agent plateforme architecture. Laboratoire

d'Informatique, Robotique et Microélectronique de Montpellier.

13. Ferber, J. (1995) Les systèmes multi-agents : vers une intelligence collective. Informatique,

intelligence Artificielle, Intereditions, Paris.

14. Ferber, J. (1997) Les Systèmes Multi-Agents : Un Aperçu Général, Revue Technique et

Science Informatiques, Hermes-Lavoisier.

15. Michel, F., Ferber, J. and Drogoul, A. (2009) Multi-Agent Systems and Simulation : A

survey from the agent’s community perspective. Multi-Agent systems : simulation and

application edited by A. M. Uhrmacher, D. Weyns– CRC Press- Taylor and Francis Group

, pp. 3-52.

16. Ferber, J. and Gutknecht, O. (1998) Aalaadin: a meta-model for the analysis and design of

organizations in multi-agent systems, ICMAS (International Conference on Multi-Agent

Systems), Paris, Y. Demazeau (ed), IEEE Press, pp. 128-135.

17. Seddari, N., Redjimi, M., & Benoudina, L. (2013, January). Operational approach for modeling and

simulation of an industrial process. In 2013 International Conference on Computer Applications

Technology (ICCAT) (pp. 1-6). IEEE.DOI: 10.1109/ICCAT.2013.6522031.
18. Seddari, N., & Redjimi, M. (2013, March). Multi-agent modeling of a complex system. In

2013 3rd International Conference on Information Technology and e-Services (ICITeS)

(pp. 1-6). IEEE.

19. Seddari, N., Belaoued, M., & Bougueroua, S. (2017). Agent/Group/Role Organizational

Model to Simulate an Industrial Control System. World Academy of Science, Engineering

and Technology, International Journal of Social, Behavioral, Educational, Economic,

Business and Industrial Engineering, 11(10), 2376-2385.

20. Seddari, N. and Redjimi, M. (2013). Multi-Agent Modeling of a Complex System . In

DLINE Journal - Transactions on Machine Design (TMD), Vol:1 Issue: 2, pp 61-75.

21. Vangheluwe, H. (2001) The Discrete EVent System specification DEVS Formalism.

Technical report, 2001.http ://moncs.cs.mcgill.ca/.

22. Barros, F. (1995) Dynamic structure discrete event system specification : a new Formalism

for dynamic structure modelling and simulation. In Proceedings of Winter Simulation

Conference.

23. Uhrmarcher, A. (2001) Dynamic Structures in Modeling and Simulation : A Reflective

Approach. ACM Transactions on Modeling and Computer Simulation vol. 11 2001, pages

206–232.

24. Ntaimo, L. and Zeigler, B.P. (2004) Expressing a forest cell model in parallel DEVS and

timed cell-DEVS formalisms. Proceedings of the 2004 Summer Computer Simulation

Conference.

25. Troccoli, A. and Wainer, G. (2003) Implementing parallel cell-DEVS. In IEEE,

Proceedings of the 36th Annual Simulation Symposium.

26. Davilla, J. and Uzcategui, M. (2000) GALATEA: A multi_agent simulation platform, in

international conference on modelling, simulation and neural networks MSNN’2000,

Mérida Venezuela.

27. Davilla, J., Gomez, E., Lafaille, K., Tucci, K. and Uzcategui, M. (2005) Multi Agent

Distributed Simulation with GALATEA ; Proceedings of the 2005 Ninth IEEE

International Symposium on Distributed Simulation and Real-Time Applications (DS-

RT’05).

28. Mattei, S., Bisgambiglia, P.A., Delhom, M. and Vittori, E. (2012) Towards Discrete Event

Multi Agent Platform Specification, Computation Tools 2012 : The third International

Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking,

pp. 14-21.

29. Uhrmacher, A.M. and Shattenberg, B. (1998) Agents in Discrete Event Simulation, in

Proceedings of ESS98.

30. Himmelspach, J., Röhl, M. and Uhrmacher, A. M. (2010) Component based modelling and

simulation for valid multi-agent system simulations. International journal for Applied

Artificial Intelligence, 24(5):414–442.

31. Himmelspach, J. (2012) JAMES II: Extending, Using, and Expeiments, in: Proceedings of

the 5th Simutools Conference ICST, pp 208- 210.

32. Weyns, D., Van Dyke Panurak, H., Michel, F., Holvoet, T. and Ferber, J. (2005)

Environments for Multi agent Systems Statec of the art and Research Challenges. In

Environments for Multi-agent Systems, edited by D .weyns, H. Dyke Panurak, and F.

Michel , Vol 3374 of lecture Notes in Computer Science, 1-47. Berlin, Heidelberg :

Springer Berlin Heidelberg.

33. Weyns, D., Schumacher, M., Ricci, A., Viroli, M. and Holvoet, T. (2005) Environments in

Multi-agent Systems. The Knowledge Engineering Review, 20 (02).

34. Wooldridge, M. (2009) An introduction to Multi-agent Systems. 2nded. Chistester, UK Jhon

Wiley & Sons.

35. Steiniger, A., Krüger, F. and Uhrmacher, A.M. (2012) Modeling Agents and Their

Environment in Multi-level-DEVS, in Proceedings of the Winter Simulation Conference.

36. Ramat, E. and Preux, P. (2003) Virtual Laboratory Environment (VLE): a software

environment oriented agent and object for modeling and simulation of complex systems,

Simulation and modeling practice and theory, vol 11, N°01 pp. 45-55.

37. Quesnel, G., Duboz, R. and Ramat, E. (2009) The Virtual Laboratory Environment – An

operational framework for multi-modelling and analysis of complex dynamical systems,

Simulation and modeling practice and theory, vol 17, N°4 pp. 641- 653.

38. Ilachinski, A. (2001) Cellular Automata, a Discrete Universe, World Scientific Publishing

Co, ISBN 981-02-4623-4.

39. Wainer, G. A. et Giambiasi, N. (2001) Application of the Cell-DEVS Paradigm for Cell

Spaces Modelling and Simulation , Simulation , vol. 76, N° 01, p 22-39.

40. Seddari N., Redjimi, M. and Boukelkoul, S. (2014). Using of DEVS and MAS Tools for

Modeling and Simulation of an Industrial Steam Generator, CIT 22, pp.171–189.

41. Ben-Naoum, L., Boel, R., Bongaerts, L., De Schutter B., Peng, Y., Valckenaers, P.,

Vandewalle, J. and Wertz V (1995). Methodologies for discrete event dynamic systems: A

survey, Journal A, 36(4):3–14.

42. Seddari, N. (2015). Outils formels et opérationnels pour la modélisation et la simulation des

systèmes complexes (Doctoral dissertation, Université de Skikda).

