
Applying Cell-DEVS in 3D Free-Form Shape
Modeling

Pengfei Wu, Xiuping Wu, Gabriel Wainer

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, ON, K1S 5B6, Canada

{pfwu, xpwu, Gabriel.Wainer}@sce.carleton.ca

Abstract. Modeling free-form shapes in 3D spaces based on strict physical
laws require a considerable amount of computation time. Previous experiences
with Cellular Automata demonstrated substantial improvements for these ap -
plications. Here, we describe an efficient approach applying the Cell-DEVS
formalism to model the deformation of free-form shape objects in a 3D space.
The objects are treated as virtual clay, and the values assigned to each cell in the
model represent a certain amount of clay in the cell. The clay object is deformed
in accordance with the physical conservation laws.

1 Introduction

3D modeling techniques have become increasingly attractive, ranging from CAD sys-
tems up to image morphing in computer graphics. The representation of solid 3D ob-
jects requires to use restrictive geometrical operations. Different studies on the simula-
tion of such deformations for objects use strict physical models, such as finite element
methods, methods based on elasticity theory, and applications of particle systems. All
these methods and applications need considerable time for computing deformations
according to the laws, and human interactions are not permitted especially for complex
shapes.

Instead, imagining the 3D objects as clay that can be freely deformed, we can un-
derstand problems on 3D objects. Some of the undergoing efforts considering volume
sculpting in a 3D virtual space use a discretization of the space in 2D or 3D cells. In [1],
a solution based on Cellular Automata (CA) was presented. A 3D CA is used to simu-
late plastic deformations of clay, and each cell is allocated a finite state automaton,
which is given the simple distribution rules of the virtual clay instead of complicated
physical laws. Each automaton repeats state transitions according to the state of their
neighbors. This approach tries to avoid the considerable computation time for plastic
deformation and make the deformation process natural by showing the behavior of real
clay. An extension of this work, presented in [2], includes new repartition algorithms.

We will show how to model a 3D free-form object using Cell-DEVS [3], and we will
simulate deformation using the CD++ toolkit [4]. Cell-DEVS is a novel approach to
represent models of real systems as cell spaces. Cell-DEVS uses the DEVS (Discrete
Events systems Specifications) formalism [5] to define a cell space where each cell is
defined as a DEVS model. This technique permits to build discrete-event cell spaces,
and it improves their definition by making the timing specification more expressive.
The Cell-DEVS presented here describes the behavior of each cell in a 3D free-form
virtual clay model using the state transition rules presented in [1]. This model de-
scribes effectively the behavior of free-form object: compression (from outside) and
deformation (from inside).

2 Background

Cell-DEVS [3] is a combination of CA and DEVS [5] that allows the implementation of
cellular models with timing delays. A Cell-DEVS model is defined as a lattice of cells
holding a state variable and a computing apparatus to update the cell state. This is
done using the present cell state and a set of inputs coming from cells in the
neighborhood. Cell-DEVS improves execution performance of cellular models by using
a discrete-event approach. It also enhances the cell’s timing definition by making it
more expressive [6]. Each cell, defined as TDC=< X, Y, S, N, delay, d, δINT, δEXT, τ, λ, D
>, uses N inputs to compute its next state. These inputs, which are received through
the model's interface (X, Y), activate the local computing function (τ). State (s) changes
can be transmitted to other models, but only after the consumption of a delay (d). Two
kinds of delays can be defined: transport delays model a variable commuting time, and
inertial delays, which have preemptive semantics (scheduled events can be dis-
carded). Once the cell behavior is defined, a coupled Cell-DEVS is created by putting
together a number of cells interconnected by a neighborhood relationship.

Fig. 1. Description of a Cell-DEVS model.

A coupled Cell-DEVS is composed of an array of atomic cells, with given size and
dimensions, defined as GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. Each cell is
connected to its neighborhood through standard DEVS input/output ports. Border

cells have a different behavior due to their particular locations. Finally, the model’s
external couplings can be defined in the Xlist and Ylist. Each cell in a Cell-DEVS is a
DEVS atomic model, and the cell space is a DEVS coupled model. DEVS is an increas-
ingly accepted modeling and simulation framework. DEVS is a sound formalism based
on generic dynamic systems, including well defined coupling of components, and
hierarchical modular construction. A DEVS model is described as a composite of sub-
models, each of them being behavioral (atomic) or structural (coupled). Each atomic
model, defined by AM = < X , Y, S, δext, δint, λ, ta>, has an interface consisting of input
(X) and output (Y) ports to communicate with other models. Every state (S) in the
model is associated with a time advance (ta) function, which determines the duration
of the state. Once this time is consumed, an internal transition is triggered. At that
moment, the model generates results through the output ports by activating an output
function (λ). Then, an internal transition function (δint) is fired, producing a state
change. Input external events, which are received in the input ports, activate the exter-
nal transition function (δext). Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the model's interfaces. The
model’s coupling defines how to convert the outputs of a model into inputs for the
others, and to inputs/outputs to the exterior of the model.

CD++ [4] is a modeling tool that was defined using DEVS and Cell-DEVS specifica-
tions. DEVS Atomic models can be incorporated onto a class hierarchy programmed in
C++. Coupled models can be defined using a built-in specification language, in which
the model is specified by including the size and dimension of the cell space, the shape
of the neighborhood and borders. The cell’s local computing function is defined using
a set of rules with the form: POSTCONDITION DELAY { PRECONDITION }. These
indicate that when the PRECONDITION is satisfied, the state of the cell will change to
the designated POSTCONDITION , whose computed value will be transmitted to other
components after consuming the DELAY.

3 A Virtual Clay Model

In virtual clay models, a 3D object deformation is considered as a physical process
that equally distributes the virtual clay to the adjacent areas. A threshold is associated
with the deformation of the object [1]: when the density is under the threshold, the
object keeps its shape. If a portion receives an external force, its density changes; if
the density is above the threshold, the object is deformed, and clay is transported from
high-density to low-density portions. However, the total mass of the clay should be
conserved. We model the object as a 3D Cell-DEVS. A positive value assigned to each
cell represents the mass of clay in the piece. In [1], the authors define the model using
a Margolus neighborhood, and the following rules for each block:

[Step A] For each cell i whose state is 1,
dmi = mi * a;
mi = mi - dmi;

[Step B] For each cell j whose state is 0,

mj = mj + ((dm1 + dm2 +…+ dmt) / n);
where a is a constant rate for distribution (0 < a < 1), t is the number of cells over

threshold and n is the number of cells under threshold. Here, we denote the state of a
cell as 1 if its virtual clay is over the threshold. Otherwise, the state is 0. The value dmi
represents the excessive clay in cell i, which will be distributed to the neighboring
cells. From these two steps, we can see that the total mass of virtual clay within a
block is conserved during the state transitions. Figure 3 illustrates the transition rules
in 2D.

Cell over threshold Cell under threshold

Fig. 2. 2D block patterns.

The deformation of a virtual clay object is based on a push operation. The clay is
transported from a cell into the adjacent ones along the direction of pushing. The
surface of a virtual clay object can be pushed at most one cell in depth per step.

Fig. 3. Push operation by a moving plate.

Figure 3 shows an example of the push operation by a moving plate. This plate is
modeled as a set of special cells to which virtual clay cannot be distributed. When the
threshold is surpassed as the result of pushing, virtual clay is distributed according to
the transition rules. The state transitions are repeated until there are no cells over
threshold (a stable state). The number of steps to reach the stable state depends on
the total mass of virtual clay, the threshold and the parameter a.

4 Modeling a Virtual Clay Object in Cell-DEVS

We used Cell-DEVS model to simulate the behavior of the deformation of a virtual clay
object. Our focus is on a 3D free-form object, using the transition rules presented in

the previous section. Figure 4 illustrates the 3D Margolus neighborhood we used, in
which the nearest 8 cells make one block. Similarly to the 2D neighborhood, each cell
belongs to different blocks in odd and even steps.

Objective Cell

Neighborhood (odd step)

Neighborhood (even step)

Fig. 4. 3D Margolus neighborhood

The values in each cell represent the density (mass) of that cell. A cell with a value
of zero means this cell is out of the object, while a positive value means the cell is
within the object. The final state contains the free-form object in stable state after
deformation. The transition procedure is done in two stages as follows.

• Deformation: if there are cells with density over the threshold, the deformation
transition rules are applied.

• Compression: we assume that there is a moving plate and the virtual clay next to
the plate is transferred from a cell into the adjacent cell along the dire ction of
pushing. In the model, this plate is handled as a dummy plate with each cell
having a value of zero, staying right on top of the object.

During the transition procedure, each cell has its different neighbors at odd and
even steps. The neighborhood of each cell is identified according to its location in the
block. Meanwhile, each cell has different transition policies for the deformation and
compression stages. Therefore, we used a four-dimensional Cell-DEVS model, in which
each 3D hyperplane of (x, y, z) represents a set of state variables and the fourth dime n-
sion is a control variable, as follows.

• Hyperplane 0 (x, y, z, 0) represents the free form object.
• Hyperplane 1 (x, y, z, 1) defines the odd or even step so that each cell in Hyper-

plane 0 can identify its Margolus neighborhood.
• Hyperplane 2 (x, y, z, 2) is a control Hyperplane. Compression will be performed

if (x, y, z, 2) = 1, and deformation if cell(x, y, z, 2) =0.
This Cell-DEVS coupled model is defined as follows:

Plastic = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.
X=Y=Xlist=Ylist= Ø; S = {s| s >= 0, s∈ R }; n=4; t1=10; t2=9; t1=12; t4=12;
N = {(-1,-1,-1,0),(-1,0,-1,0),(-1,1,-1,0),(0,-1,-1,0),(0,0,-1,0),(0,1,-1,0),(1,-1,-1,0),
(1,0,-1,0),(1,1,-1,0),(-1,-1,0,0),(-1,0,0,0),(-1,1,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0), (1,-
1,0,0),(1,0,0,0),(1,1,0,0),(-1,-1,1,0),(-1,0,1,0),(-1,1,1,0),(0,-1,1,0),(0,0,1,0), (0,1,1,0),(1,-
1,1,0),(1,0,1,0),(1,1,1,0),(-1,-1,2,0),(-1,0,2,0),(-1,1,2,0),(0,-1,2,0), (0,0,2,0),(0,1,2,0),(1,-
1,2,0),(1,0,2,0),(1,1,2,0),(0,0,0,1),(0,0,0,2)}

The definition of this Cell-DEVS coupled model using CD++ is illustrated in Figure 5
below.

[plastic]
dim : (10,9,12,3) delay : transport
border : nowrapped
neighbors:(-1,-1,-1,0)(-1,0,-1,0)(-1,1,-1,0)
(0,-1,-1,0)(0,0,-1,0)(0,1,-1,0)(1,-1,-1,0)
(1,0,-1,0)(1,1,-1,0)(-1,-1,0,0)(-1,0,0,0)(-1,1,0,0)
localtransition : deformation-rule
[deformation-rule]
...

Fig. 5. Cell-DEVS coupled model specification in CD++

This Cell-DEVS model that has three hyperplanes of 10*9*12 each. The cell’s be-
havior is defined by the localtransition clause, and it will be discussed in detail in the
following sections. We will present the rules at deformation and compression stages
and show how the transformation is controlled in Cell-DEVS formalism. The rules can
be generalized as follows.
1. Perform deformation if cell (0, 0, 0, 2) = 0 and this cell is on Hyperplane 0.
2. Perform compression if cell (0,0,0,2) = 1 and this cell is on Hyperplane 0
3. Even/odd step alternates if cell (0, 0, 0,1) = 0 and this cell is on Hyperplane 1
4. Deformation/compression control alternates if this cell is on Hyperplane 2

4.1 Deformation Rules in the Cell-DEVS model

The deformation stage involves the activating different rules at odd and even steps, in
which we decide the different neighbors that the objective cell receives clay from or
distributes clay to. Only hyperplane 0 (x, y, z, 0) performs the deformation transition,
while hyperplane 1 (x, y, z, 1) helps to judge whether the cell in Hyperplane 0 change in
odd step or in even step and hyperplane 2 (x, y, z, 2) identify the deformation stage. In
each step its neighborhood can be located in a 2x2x2 block. In Figure 6 we show the
mechanism to select the Margolus block. The origin cell is colored in gray and its
neighbors are defined according to the coordinates shown in the figure. We repeat the
procedure for other cells in the same Margolus block to obtain the neighbors of each
objective cell in the same hyperplane.

X

Y

Z
(0,0,0,0) (1,0,0,0)

(0,1,0,0) (1,1,0,0)

(0,0,-1,0) (1,0,-1,0)
(0,1,-1,0) (1,1,-1,0)

(0,0,0,1)

(0,0,0,2)

Neighbor in Plane 1

Neighbor in Plane 2 Margolus Neighborhood in Plane 0

Fig. 6. A cell and its neighborhood definition at the deformation stage

The pair < (x,y,z,0), (x,y,z,1) > define the step (odd or even). The neighbor on the
hyperplane 0 is described in the figure, and its value, together with the value of all the
neighbors in the same Margolus block, can be used to decide which transition rule
should be applied. The deformation rules can be generalized as follows (the detailed
definition of these rules in CD++ can be found in [7].

• Cells gain clay from neighbors on hyperplane (x,y,z,0) if (0,0,0,2) = 0, (0,0,0,0) is
below the threshold, and at least one neighbor is above the threshold.

• Cells distribute clay to neighbors on Hyperplane (x,y,z,0) if (0,0,0,2) = 0, (0,0,0,0)
is above threshold and at least one neighbor is u nder threshold.

4.2 Compression Rules in the Cell-DEVS model

Similar to deformation, the compression only takes place on hyperplane 0. Hyperplane
2 controls when compression occurs: only when cell (x, y, z, 2) =1. During compression
the clay in the cells right under the moving plate is transferred into the adjacent cells
along the direction of pushing. The moving plate is represented by a set of cells with
values of zero sitting on the top of the object. We assume the plate moves down along
z-axis as shown in Figure 7. For each cell (x,y,z,0), if all neighboring cells (-1,-1,2,0), (-
1,0,2,0), (-1,1,2,0), (0,-1,2,0), (0,0,2,0), (0,1,2,0), (1,-1,2,0), (1,0,2,0), (1,1,2,0) are zero and at
least one of neighbor cells (-1,-1,1,0), (-1,0,1,0), (-1,1,1,0), (0,-1,1,0), (0,0,1,0) , (0,1,1,0),
(1,-1,1,0) , (1,0,1,0), (1,1,1,0) is greater than zero, the cell should gain all clay in its
neighbor (0,0,1,0). The neighbors of each cell are defined in Figure 7.

X

Y

Z

(0,0,0,2)

Neighbor in Plane 2
Pushing direction

(0,0,2,0) (1,0,2,0)

(0,1,2,0) (1,1,2,0)

Neighbors in Plane 0

(0,-1,2,0) (1,-1,2,0)

(-1,0,2,0)

(-1,1,2,0)

(-1,-1,2,0)

(0,0,0,0)

(0,0,1,0) (1,0,1,0)

(0,1,1,0) (1,1,1,0)

(0,-1,1,0) (1,-1,1,0)

(-1,0,1,0)

(-1,1,1,0)

(-1,-1,1,0)

Fig. 7. A cell and its neighbor definition at the compression stage

The definition of these rules in CD++ is as follows:

[compression-rule]
%plate moving
rule : {(0,0,0,0)+(0,0,1,0)} 100 {(0,0,0,2)=1 and

cellpos(3)=0 and cellpos(0)>0 and cellpos(0)<9 and
cellpos(1)>0 and cellpos(1)<8 and cellpos(2) <10 and
((-1,-1,2,0)+(-1,0,2,0)+(-1,1,2,0)+(0,-1,2,0)+(0,0,2,0)
+(0,1,2,0)+(1,-1,2,0)+(1,0,2,0)+(1,1,2,0))=0 and
((-1,-1,1,0)+(-1,0,1,0)+(-1,1,1,0)+(0,-1,1,0)+(0,0,1,0)
+(0,1,1,0)+(1,-1,1,0) +(1,0,1,0)+(1,1,1,0))>0 }
%step 1: add the first row to the second row
rule : 0 100 {(0,0,0,2) = 1 and cellpos(3)=0 and
cellpos(0)>0 and cellpos(0)<9 and cellpos(1)>0 and
cellpos(1)<8 and cellpos(0) < 11 and ((-1,-1,1,0)+
(-1,0,1,0)+(-1,1,1,0)+(0,-1,1,0)+(0,0,1,0)+(0,1,1,0)+
(1,-1,1,0) +(1,0,1,0)+(1,1,1,0))=0 and ((-1,-1,0,0)+
(-1,0,0,0)+(-1,1,0,0)+(0,-1,0,0)+(0,0,0,0)+(0,1,0,0)+
(1,-1,0,0) +(1,0,0,0)+(1,1,0,0))>0}
%step2 :change the first row to 0, the plate has moved
one step further

Fig. 8. Cell-DEVS specification of the compression rules in CD++.

4.3 Control Hyperplane in Cell-DEVS model

Hyperplane 2 controls when the deformation or compression stages occur. The value
of each cell on hyperplane 2 switches between 0 (deformation) and 1 (compression).
We assume that the transport delay of performing a compression step is 3000 ms,
thirty times longer than the delay of a deformation. The 3D free-form object will reach
stable state within 3000 ms if deformation occurs.

The transition rule for the control hyperplane is as follows.
• S ß1 if cell (0,0,0,1)=0 and cell (0,0,0,0) =0 and cell itself is on hyperplane 1
• S ß0 if cell (0,0,0,1)=0 and cell (0,0,0,0) =1 and cell itself is on hyperplane 1
• S ß 1 if cell (0,0,0,0) =0 and cell itself is on hyperplane 2
• S ß 0 if cell (0,0,0,0) =1 and cell itself is on hyperplane 2

The specification of these rules in CD++ is illustrated in Figure 9 below.

rule : 1 100 {(0,0,0,1)=0 and cellpos(3)=1 and
 (0,0,0,0)=0 }
rule : 0 100 {(0,0,0,1) = 0 and cellpos(3)=1 and
 (0,0,0,0)=1} %alternate Margolus neighborhood
rule : 1 3000 { cellpos(3)=2 and (0,0,0,0)=0 }
rule : 0 100 {cellpos(3)=2 and (0,0,0,0)=1}
%plate moving

Fig. 9. Cell-DEVS specification of control rules in CD++

5 Experimental Results

We executed this Cell-DEVS model, and studied the deformation process of a clay
object. We studied each cell at different time steps (compression or deformation), and
the total mass of the object was examined. We found that the total mass (represented
by cells in hyperplane 0) was conserved for every transition.

Some of the results obtained are presented in Figure 10. We show several steps
during the transition process, which includes the initial state, first three compression
steps and some related deformation steps. Figure (b) shows the immediate result after
the first compression step. Figures (c) and (d) show the object deformation. In Figure
(d), a stable state is reached. Figure (e) to (i) show the repartition of clay after the sec-
ond and third compression steps.

(a) Initial state

(b) Compression

(c) Deformation

(d) Deformation, stable

(e) Second compression

(f) Deformation, stable

(g) Third compression

(h) Deformation

(i) Deformation, stable

Fig. 10. The deformation of the free-form object using Cell-DEVS

6 Conclusion

We have showed how to model the deformation of 3D free-form object using the Cell-
DEVS formalism. The total mass of the free-form object is conserved during the stages
of deformation. The complex behavior has been simulated using simple and easy-to-
understand transition rules. These rules are defined using the specification language
in CD++, which is itself is simple and easy to learn. A similar study has been carried
out in [1] and [2]. However, in their work, a sophisticated simulation program was de-
veloped in order to simulate this complex behavior. The simulation program is applic a-
tion-specific, which can not be applied to general cases. By applying the Cell-DEVS
formalism along with the CD++ toolkit support, more generality can be achieved. This
allows us to model complex systems in a simple fashion. Likewise, changing parame-
ters for studying simple conditions is straightforward. Cell-DEVS permits defining
zones of cells with different behavior, which can be used to analyze objects composed
of different materials. Likewise, Cell-DEVS models can be integrated with other DEVS
and Cell-DEVS models, permitting defining multimodels interacting with each other,
using different modeling techniques.

One of the key aspects to simulate the deformation is to understand the characteris-
tics of the Margolus neighborhood. This has been studied and explored in the model
specification. The results, which have been illustrated by a vis ualization tool have
demonstrated the capability of Cell-DEVS modeling approach as well as the tool utili-
ties. The behavior of the deformation is well simulated with a simple, easy-understood
mechanism.

References

1. H. Arata, Y. Takai, N. K. Takai, T. Yamamoto: Free-form shape modeling by 3D cel-
lular automata. Proceedings of the International Conference on Shape Modeling and
Applications (1999)

2. S. Druon, A. Crosnier, L. Brigandat: Efficient Cellular Automata for 2D / 3D Free-
Form Modeling. Proceedings of the 11th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision'2003 (2003)

3. G. Wainer, N. Giambiasi: N-dimensional Cell-DEVS. Discrete Events Systems: The-
ory and Applications, Kluwer, Vol.12. No.1 (January 2002) 135-157

4. G. Wainer: CD++: a toolkit to define discrete-event models. Software, Practice and
Experience. Wiley. Vol. 32. No.3. (November 2002) 1261-1306

5. B. Zeigler, T. Kim, H. Praehofer: Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. Academic Press (2000)

6. G. Wainer, N. Giambiasi: Application of the Cell-DEVS paradigm for cell spaces
modeling and simulation. Simulation, Vol. 76. No. 1. (January 2001)

7. P. Wu, X. Wu.: A model of 3D deformation of free-form shapes in Cell-DEVS. Tech-
nical Report SCE-03-006. Dept. of Systems and Computer Engineering. Carleton
University. (2003)

