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ABSTRACT Heterogeneous ultra-dense networks (HUDNGS) are one of the key enabling technologies for
the fifth-generation (5G) networks. They aim to provide high capacity, low installation cost, and distributed
traffic loads. The cell selection is a challenging issue in HUDNS, due to the different characteristics of base
stations (BSs) and the existence of a large number of them. Thus, the traditional cell selection scheme is
not applicable in such a network. In this paper, a novel adaptive cell selection strategy is proposed, called
adaptive two-tier based on adaptive boosting (A2T-Boost). It can adapt to the various characteristics of base
stations, as well as the different movement features of mobile stations such as vehicles and pedestrian.
It is a software-defined networking (SDN)/machine learning (ML)-based scheme. A real-world case is
considered in the downtown of Los Angeles city. Simulation results demonstrate that A2T-Boost achieves
high prediction performance and it outperforms other related schemes in terms of average number of
handovers (HOs) by up to 50%. Moreover, it enhances the average achievable downlink sum-rates and
network energy efficiency achieved by vehicles by up to 33.76%. Furthermore, the average packet delay

is decreased using the proposed scheme by up to 12.87%.

INDEX TERMS 5G, small cells, SDN, Los Angeles, machine learning, HUDNSs, adaptive selection.

I. INTRODUCTION
5G wireless cellular network is the current generation
technology that developed by the 3rd Generation Mobile Part-
nership Project (3GPP) community. 5G networks have devel-
oped to meet the increasing needs for higher data rates, lower
delays, efficient energy consumption, and reliable connectiv-
ity [1]. 5G technology will change our life, work, and the way
of communication between with each other. It will support
emerging services and new applications such as autonomous
vehicle, smart home and factory, and remote surgery [2].
Vehicular networks are emerging technology that provides
low-cost and reliable solution for the intelligent transport
system (ITS) [3]. Vehicle-to-everything (V2X) technology
is an evolution towards the intelligent transportation system.
It aims to enhance road safety, the reliability of communica-
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tions, and traffic efficiency [4], [5]. 5G revolution and beyond
will support V2X communication to allow a vehicle to be
connected to an entity such as a pedestrian, another vehicle,
infrastructure and a network to provide a robust transportation
solution [6].

Building a sustainable communication of a vehicular net-
work is a critical requirement for the future Connected and
Autonomous Vehicle (CAV). A stable vehicular network
infrastructure has an important role in driving safety such as
collision warning, slippery road detection, and traffic lights
warning signs [7].

Software-defined networking is an emerging solution that
is used to handle network management [8]. The major idea
of the SDN architecture is the separation of the data and the
control planes to perform fast data forwarding and to achieve
central control [9]. Network devices have the responsibility
of data forwarding, while SDN controllers are responsible
for manage network operations [10]. Southbound interface
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connects the data and the control planes [11]. In addition,
there is an application plane that composes of end user appli-
cations which interact with the SDN controllers via the north-
bound interface to perform specific tasks such as mobility
management, routing, access control, security, file transfer,
and supervising [12], [13], [14].

Machine learning is a branch of artificial intelligence (AI)
that focuses on learning computers how to use data to provide
a solution of a problem [15]. It can find a simple solution
to a complex problem by analyzing a large amount of data
and predicting a solution in a short time and with high
accuracy. 5G cellular networks are becoming complex due
to new types of services and a large number of connected
devices [16]. Machine learning techniques should be used
to make 5G network operations more effective [17]. There
are three classes of learning techniques, which are super-
vised, unsupervised, and reinforcement learnings. Supervised
learning uses labeled training datasets to identify patterns
or behaviors, while unlabeled training datasets are used by
unsupervised learning. In reinforcement learning, rewards
and punishments are used as signals for correct and wrong
actions, respectively [15], [18].

Heterogeneous ultra-dense network is one of the most
promising technology for 5G cellular networks. HUDNs
refers to networks that combine a very dense deployment
of small cells with traditional Long-Term Evolution (LTE)
macrocell. In other words, HUDNSs are a multi-tier networks
that involves very dense low-power small cells and high-
power legacy macrocells [19]. Small cells can be installed on
utility pole and street light, and light poles [20], [21].

In 5G cellular networks, small cells are used to increase the
achievable throughput and minimize the energy consumption
[22]. The traditional scheme of cell selection is based on
the received signal strength indicators. In 5G HUDNS, this
method is inefficient and leads to ping-pong effect [23].
Ping-pong effect means the number of handovers in a spe-
cific period exceeds a threshold [24]. The cell selection in
HUDN:Ss is a challenging task and it faces many issues as
shown in Figure 1. The existence of high-density of 5G
small cells in addition to the legacy macrocells increases the
complexity of selection process. The macro cells are still
required in HUDNs for high-speed mobile stations (MSs),
while the small cells are used by low- and medium-speed
MSs [25], [26]. 5G HUDNSs differ in terms of density, dis-
tribution, and sizes of cells. In additions, city roads differ
in their types and associated features such as speed limits,
lane widths, and traffic volumes. Furthermore, the moving
stations have different velocities and directions based on
moving behavior and the followed path. Due to these dif-
ferences, there is a high probability that a non-ideal base
station will be selected. A non-ideal base station means a
base station that leads to ping-pong effect or a failing in
handover [23].

The cell selection decision can be coordinated by using
SDN solution [27], and the combination of SDN and ML
creates a new network management approach [28], [29].
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A. MAIN CONTRIBUTIONS
The main contributions of this paper are as follows:

1) Proposing an adaptive cell selection scheme called
A2T-Boost for mobile stations, such as vehicles, bikes
and pedestrian. It has the ability to adapt to different
characteristics of HUDNs and mobile station move-
ments. In addition, it aims to maximize the dwell time
of a vehicle within a serving cell based on time estima-
tion by relying on four parameters.

2) Modeling the heterogeneous ultra-dense networks
based on a real-world dataset that was collected in the
city of Los Angeles, where a high-density area of small
base stations is selected to be studied.

3) Creating a new network management solution by com-
bining of SDN and ML techniques. AdaBoost model is
trained and it achieves prediction accuracy of 99.58%.

4) Modeling vehicle movement behaviour on the LA map
based on the principle of reackoning, where the geo-
graphical coordinated, direction, and speed of a MS are
considered.

5) Achieving superiority over the traditional and recent
related works in terms of average number of han-
dovers by up to 50%. In addition, the average achiev-
able downlink sum-rates and network energy efficiency
achieved by vehicles are enhanced by up to 33.76%.
Furthermore, the average packet delay is decreased
using the proposed scheme by up to 12.87%.

B. PAPER OUTLINE

The rest of this paper is organized as follows: Section II
provide a review of related works. The proposed A2T-Boost
approach is described in detail in Section III. Section IV
explains the methodology of the study in terms of simulation
tool, datasets, and system model. The performance evaluation
of the proposed approach is discussed in Section V. The paper
is concluded in Section VI.

Il. RELATED WORKS

In this section, recent related cell selection (CS) methods
are explained. Some of these methods depend on machine
learning techniques to predict the optimal wireless cell, while
others do not use ML to solve the selection issue. At the end
of this section, the limitations of the existing works are given
and the recent trends that have been followed by our proposed
approach are discussed.

A. NON ML-BASED CELL SELECTION STRATEGIES

In [30], topology-aware skipping methods are introduced by
Arshad et al. to solve the problem of unnecessary handovers.
The Poisson point process is used to model a single-tier net-
works, while the Poisson cluster process is utilized to provide
a model for two-tier networks. According to the location of a
user and/or the size of a wireless cell, the handover decision
is initiated. Simulation results demonstrate that the proposed
strategies have superiority over the traditional cell selection
scheme in terms of the mean user throughput by up to 47%.
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FIGURE 1. Cell selection issue in HUDNs.

Tesema et al. proposed a fast cell select scheme in [31],
where the serving wirless cell is selected according to the
value of the signal-to-interference-plus-noise ratio. The pro-
posed scheme supports multi-connectivity in order to enhance
the reliability of the communication in 5G networks. Simu-
lation results show that achievable sum rate is improved and
the radio link failures issue is overcome.

In [23], Kapoor et al. proposed four cell selection strategies
for urban wireless networks. The first strategy is called min-
imum distance in the vehicle direction (MD-VD), while the
second one is known as minimum load in the vehicle direction
(ML-VD). The third and the fourth strategies are next neigh-
bor on the same street (NN-S) and on the opposite street (NN-
0). To perform the selection task based on Kapoor’s methods,
K-nearest base stations are selected, which are known as
shortlisted stations. Then, BSs that are existed in the vehicle
direction and belong to shortlisted stations are chosen. After
that, based on the aim of the proposed strategy, the serving
BS is selected. A base station that has the minimum distance
and the minimum load in the vehicle direction will be chosen
by MD-VD and ML-VD approaches, respectively. Based on
NN-S approach, the BS that is located in the range of O to
7 /2 and has the minimum angle is selected. The base station
that is existed in the range of 7 /2 to 7 and has the minimum
angle will be chosen according to the NN-O approach. Sim-
ulation results prove that the MD-VD approach is the worst
one in term of the average number of handovers.
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5G Small
Base Station

Cacciapuoti introduced a cell selection strategy for 5G net-
works in [32] where a polynomial-time association algorithm
is proposed. It considers user mobility and cell loads and
thus the proposed strategy mitigates the congestion at base
stations. In addition, it avoids the issues of millimeter-wave
communications such as directionality, blockage and the
effects of non-line-of-sight propagation. The spatial distri-
bution is considered when the 5G small base stations were
distributed. The numerical result displays that the proposed
strategy has superiority over the conventional cell selection
scheme and the handovers rate is reduced.

In [33], a parallel dynamic cell selection method was
proposed by Naderializadeh et al. It based on the received
signal-to-interference-plus-noise ratio (SINR) and priority of
users. A set of transmission points and users are randomly
distributed in an area of 200 by 200 meters”. The proposed
method passes through four steps to achieve the cell selection
task. The fist step is the association between a user and a
transmission point based on the SINR value. The second step
is users ordering according to their priorities, while the third
step is users scheduling which performed when a transmis-
sion point works on multiple-users mode. The last step is link
scheduling to mitigate the interference effect by deactivating
a set of transmission points. The simulation results proved
the superiority of the proposed dynamic method in terms of
throughput and network coverage compared to some bench-
mark methods.
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A cell selection approach was proposed by Kishida et al.
in [34] for 5G multi-layered Radio Access Networks (RANSs).
It considers the direction and velocity of UE movement to
reduce the number of frequent handovers. The final decision
is based on the value of SINR, whereby the BS that has the
maximum SINR value will be selected. The RAN network
is modeled based on actual locations of base stations in
Shinjuku, Tokyo. Simulation results proved that the proposed
approach achieved an approximate 30% improvement in the
number of handovers while maintaining the average flow
time.

Elkourdi et al. developed a Bayesian-based user associ-
ation scheme in [35] for 5G heterogeneous networks. The
first player is user equipment (UE) that is classified into
delay sensitive and tolerant users. The second player of the
Bayesian game is access nodes. A two-tier heterogeneous
network is considered with random distribution of low-power
node (LPN) in an service area of 400 x 400 meters2 with
density of 20 LPNs/km?. The UEs are distributed based on a
homogeneous PPP. Simulation results demonstrates that the
proposed scheme has superiority over the conventional and
cell-range-expansion (CRE) approaches in terms of end-to-
end latency and the appropriate association probability.

A cell selection scheme is developed by Liu et al. in [36]
that achieves the selection task based on multiple attributes
decision-making (MADM) and fuzzy logic algorithms. The
selection of the serving cell is taken based on many factors
which are SINR, reference signal receiving power (RSRP),
and jitter. The process of generating the proper fuzzy mem-
bership function is performed based on subtractive clustering
algorithm. The simulation results show that the proposed
scheme outperforms the RSSI-based approaches in terms
of handover rates by 90% and it minimizes the ratio of
ping-pong effects by 10%, while the quality of service level
is maintained.

In [37], Sun et al. introduced two cell selection approaches
for HUDNs that based on the concept of coordinated
multipoint (CoMP). The first approach is known as
movement-aware CoMP handover (MACH), while the sec-
ond one is called improved MACH (iMACH). According to
the MACH strategy, a set of base stations are chosen that
have the highest signal power and residence time greater
than a certain threshold. Then, the handover is initiated when
the farthest base station in the set becomes the closest. The
iMACH strategy is an improvement of MACH strategy where
the nearest base station is added to the selected set of BSs,
instead of the station that has the lowest signal power in the
set. After that, the handover is triggered when the closet base
station becomes the farthest one. Simulation results show
that the average achievable sum rate, number of handovers,
and coverage probability are improved by both MACH and
iMACH approaches.

In [38], a cell selection method, known as called Handover
based on Resident Time Prediction (HO RTP), was proposed
by Qin et al. It was designed for 5G ultra-dense networks and
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the main idea of the HO RTP method is the estimation of the
residence time within the serving cell. Then, the cell that has
the strongest receiving power with a residence time longer
than a certain threshold will be selected. Simulation results
show that the HO RTP method outperforms the conventional
RSSI-based method in terms of average achievable user sum-
rates.

Alablani and Arafah developed an adaptive cell selection
(ADA-CS) strategy in [26], for 5G heterogeneous ultra-dense
networks. The selection of the serving BS is based on user’s
movement and network characteristics. To perform the cell
selection task, six phases should be achieved which are (1)
configuration, (2) decision-making, (3) filtering, (4) narrow-
ing, (5) selecting, and (6) handover triggering. Simulation
results proved that the ADA-CS method outperforms the
traditional and recent related strategies in terms of the mean
achievable downlink data rates. In addition, the spectral effi-
ciency and handover rate are enhanced.

Table 1 represents a comparison among recent non
ML-based cell selection schemes in terms of cell selection
factors and system model.

B. ML-BASED CELL SELECTION STRATEGIES

Dilranjan et al. introduced a cell selection method for 5G cel-
lular networks in [40]. A Recurrent Neural Network (RNN)
is used to predict the optimal BS that a mobile user will be
associated with. To train the proposed RNN model, received
signal strength (RSS) values are used. The proposed RNN
architecture has three layers, which are input, hidden, and
output. The RNN model has 640 neurons and the used acti-
vation functions are sigmoid and tanh. To evaluate the per-
formance of the proposed approach, Google’s Python- based
Tensorflow library was utilized. The learning rate is set to
0.0003 and the model training took 35 minutes. An area
of 36 km? is considered that has eight base stations that
are distributed randomly. A mobile node, which can be a
pedestrian or a vehicle, can connect with three nearest base
stations. Simulation results demonstrate that the proposed
RNN-based method yielded 98% prediction accuracy of the
serving cell.

Perez et al. developed in [41] an ML-based strategy for
5G heterogeneous networks that aims to perform the user
association task. The proposed strategy uses the Q-learning
algorithm and it based on BS load, the index of the base
station, and SINR value to predict the serving BS. Simulation
results proved that the proposed strategy has superiority over
other existed methods.

In [42], Zhang et al. proposed an ML-assisted cell selec-
tion approach in wireless cellular networks for drones. The
prediction method of the serving cell is based on a condi-
tional random field model that uses SINR values. Simulation
results proved that the proposed ML-based approach achieved
prediction accuracy of 90% and it has superiority over two
heuristic-based approaches.

VOLUME 11, 2023



1. A. Alablani, M. A. Arafah: A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks

IEEE Access

TABLE 1. A comparison among recent non ML-based cell selection schemes.

Ref Year Authors Cell selection factors System model

[30] 2016 Arshad et al. User position, cell size PPP and PCP distributions
[31] 2016 Tesema et al. RSRP, noise power Hexagonal grid

[23] 2017 Kapoor et al. Distance, vehicle direction, cell load, azimuth Deterministic distribution
[32] 2017 Cacciapuoti Cell load, distance Spatial distribution

[33] 2018 Naderializadeh et al. SINR, UE priority Uniform random distribution
[34] 2018 Kishida et al. SINR, direction and velocity of UE Metropolitan case study in Shinjuku, Tokyo
[35] 2018 Elkourdi et al. SINR, UE priority Random distribution

[36] 2019 Liu et al. RSRP, SINR, Jitter Deterministic distribution
[39] 2020 Zhang et al. Channel gain, cell load, UEs fairness Random distribution

[37] 2021 Sun et al. Dwell time, distance PPP distribution

[38] 2021 Qin et al. RSSI, residence time Tyson polygon distribution
[26] 2021 Alablani and Arafah RSSI, speed, azimuth, load, and cone angle Hexagonal grid

Zappone et al. developed a user association strategy for
massive multiple-input and multiple-output (mMIMO) net-
works in [43] to enhance the user throughput. It based on
deep learning where a feed-forward artificial neural network
is used to predict the optimal serving cell. The neural net-
work consists of four layers and the input to the neural
network is geographical locations of users. Rectified Linear
Unit (ReL.U) and sigmoid activation functions are used. The
adaptive moment (ADAM) is utilized as an optimizer. The
numbers of training and testing sets are 140,000 and 15,000
samples, respectively. Numerical results demonstrate that the
proposed strategy the computational complexity of the user
association process is reduced in comparison to the conven-
tional RSSI-based approach.

In [44], two hidden Markov-model (HMM) based ML
techniques suggested by Balapuwaduge et al. were intro-
duced to address a cell selection issue. The key objec-
tives of the suggested HMM-based ML methods were
the accessibility and reliability of network resources. The
proposed strategies outperformed a random cell selection
method in simulations in terms of channel availability and
dependability.

An ML-based cell selection method for automobiles in
mmWave networks was introduced by Khan et al. in [45].
The vehicle association problem is solved using distributed
deep reinforcement learning (DDRL). The Markov decision
process is used to formulate the reinforcement learning prob-
lem. This framework, known as Asynchronous Advantage
Actor Critic (A3C), combines actors and critics. Roadside
units (RSUs) transmit their actions to a centralized body
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that determines the RSUs’ compensation. When compared
to existing complex methods, the suggested technique has
lower control overhead and computational complexity. The
suggested DDRL-based approach outperforms existing cell
selection schemes in terms of possible sum rate by up to 15%,
according to numerical results.

Zhang et al. created an intelligent machine-learning-based
user association for 5G heterogeneous networks in [39].
A cross-entropy technique was used to label the ideal base
station to be associated with the challenge as a supervised
learning assignment. To address the user association problem
while adhering to the cell load constraint, a U-Net convo-
lutional neural network (CNN) was trained. The outputs of
the ML model were the user association matrices whereas
the inputs of CNN were channel gain matrices that were
translated onto pictures. Simulation findings showed that the
suggested strategies improved computing speed and network
robustness.

In [46], Anand et al. proposed an ML-based cell selection
approach for a single-tier LTE environment called Machine
Learning-Network Selector (ML-NetSel). It aims to improve
the quality-of-service for video applications. Two machine
learning predictors are trained to perform the network selec-
tion task which are Support Vector Machine (SVM) and
Random Forest (RF). The input features of the ML models are
QoS parameters which include throughput, packet loss ratio
(PLR), and delay. Two LTE base stations and up to 50 users
are considered in the study. The SVM predictor achieves an
accuracy of 92.4, while the RF predictor achieves an accuracy
of 97.1%. Simulation results demonstrate that the ML-NetSel
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enhances the network performance in terms of throughput,
delay and packet loss ratio.

C. LIMITATIONS OF RECENT CELL SELECTION WORKS

The limitations of recent cell selection works that are pre-
sented in this section are:

o The majority of modern works choose the serving base
stations in a static, non-adaptive manner. Given that
HUDNSs have many tiers, adaptive selection, which may
be carried out by establishing certain thresholds to tran-
sition between the network tiers, is favored. Macro-BSs
are preferred for vehicles that have very high speed to
preserve performance of the network. The serving BSs
for low- and medium-speed vehicles, however, will be
small BSs.

« Recent studies prioritize BSs with the highest receiving
power to increase the throughput that can be achieved.
The nearest BS with the best reception strength will be
far away in mobility situations while the user is going
forward. Because of the numerous handovers caused by
relying on this theory, network performance suffers.

o Some works rely on the estimation of the mobile sta-
tion’s cell dwell duration, which is a crucial element
in choosing the serving cell. However, these studies
estimate the dwell time by assuming the mobile station
is near the cell’s edge for simplicity’s sake, which is
incorrect.

o While there are less ML-based works than non-ML-
based works, forecasting serving BSs must be based on
ML techniques to minimize computational complexity
and thus shorten the cell selection delay. A machine
learning model’s input characteristics should also be
properly chosen in order for the trained model to effec-
tively handle the cell selection issue. To develop an
effective ML model, training and testing datasets should
also be created or acquired using trusted methods.

« Itisbetter to use a cell selection approach in a real-world
setting to examine the efficacy of the suggested tech-
nique. Applying these works to real-world scenarios will
result in suboptimal network performance because they
were designed for specific typologies.

Given the aforementioned restrictions, it is necessary to use
cell selection techniques that can be modified to choose the
serving cell to be linked with in order to preserve network
performance. Additionally, depending on machine learning
techniques is a modern trend that we ought to use in order to
decrease the computational complexity and prediction time.
Additionally, it is preferable to apply a suggested cell selec-
tion algorithm in a real-world setting to assess the efficiency
and viability of the suggested approach.

lll. THE PROPOSED A2T-BOOST APPROACH

In this section, the proposed adaptive cell selection scheme
is explained in terms of problem formulation, the proposed
SDN/ML-Based model building process, and the framework
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of the cell selection approach. At the end of this section,
a case study is given to show how the cell selection process is
performed based on this proposed method in comparison to
other recent related methods.

A. OPTIMIZATION PROBLEM AND FORMULATION

The macro- and small base stations (referred to as BSs,uacro
and BSsgpay), respectively, are included in the set of base
stations given by the notation BSs = {By, By, ..., By}. Total
network vehicles are spread throughout a HUDN and are
denoted as Vi, Vs, ..., V. A single BS can only have one
vehicle linked at once. The association matrix between base
stations and vehicles is represented by the notation A =
{A11,A12, ..., Ay}, where A;; represents the association vari-
able between base station B; and vehicle V; and has two
possible values: 0 and 1.

1 1if Vjassociates with B;
Aj= , )
0 otherwise

The constrained optimization problem is posed for the
vehicle association in a HUDN, whose objective function is
to maximize the dwell time of a vehicle within a serving
cell within the association duration (i.e., t € {fg, t2.., In}).
Therefore, the optimization problem is shown in equation 2.

1 1
max > Aj(t) Tdy(t), YV; e VB;eBS. ()

i=1 t=tg

B. VEHICLE ASSOCIATION CONSTRAINTS
The vehicle association process is restricted by a set of con-
straints which are

1) Number of simultaneous association constraint: A
vehicle can connect with only one base station at a time.

Cl: D> Aj=1, VVeV. A3)
1

2) Maximum BS Load constraint: The maximum load of
a BS B;, which is referred to as L,,,y, should not be
exceeded.

C2: D Aj=L, VB €BS; 0<Li <Ly (4
J

3) Transmission power constraint: The maximum trans-
mission power (py,,,.) of vehicle V; should be consid-
ered. Therefore, we have

C3: ) Aipiy < Pixy» VB €BS. (5
J

4) Quality of Service constraint: The minimum achievable
sum rate (R;,) for a vehicle V;, must be maintained.

C4: D Ayryj = Ryin, VV; €V, (©6)
1
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C. THE PROPOSED SDN/ML-BASED MODEL BUILDING

PROCESS

To build the proposed SDN/ML-based model, five main
stages have been passed through, as shown in Figure 2 which

are:

o Stage 1: Data Preparation: The objective of this stage
is to gather, create, and prepare data from vehicles as
well as from large and small base stations. The data
needed to train and test the suggested machine learning
model will be ready at the conclusion of this phase.

1)

2)

3)

Dataset Collecting: The proper dataset for the
macro and small base stations should be gathered
in this step. The BSs dataset, which includes data
on both macro and minor BSs, may be downloaded
from the Internet as a single file. The informa-
tion on macro and mini BSs may be discovered
in other hands as two independent databases. The
BS dataset must contain the geographic location
data for BSs in the form of latitude and longi-
tude coordinates. In addition, vehicle dataset is
collected based on the selected study area. Some
applications can be used to accomplish this task
such as Google Maps, MediaQ and Ultra GPS
Logger. We may find vehicle datasets available for
download on the Internet that have been collected
by other researcher. The most important things
that must be available in the vehicle dataset is the
geographical locations, directions and speeds of
vehicle samples.

Data Cleaning: The data that is not utilized by the
suggested cell selection technique to forecast the
serving BS is eliminated in the cleaning step.
Data Labeling: The adaptive two-tier (A2T)
method is used to accomplish the labelling pro-
cess. Algorithm 1 shows the pseudocode of A2T
labeling algorithm which is used to assign a label
of a serving base station ID for each sample in
the vehicle dataset to train the machine learning
model. As shown in Algorithm 1, the proposed
cell selection scheme targets the small BS located
in the service range that has longest dwell time and
with load lower than the load threshold, if a vehi-
cle speed is lower than the predetermined speed
threshold. Otherwise, the proposed A2T scheme
aims to prevent frequent handovers by selecting a
serving BS from the macro BS tier.

The small and macro- BSs are represented by
BSsgmnan and BSsyqcr0. The vehicle speed thresh-
old, the received signal strength indicator thresh-
old, and the BS’s load threshold are expressed by
S , RSSI , and i respectively. The cell radius is
denoted by R and the dwell time of a vehicle within
a cell is represented by 7g,. The distance and
azimuth between a base station B; and vehicle V;
are represented by d;; and 0j;, respectively. Thresh-
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Algorithm 1 A2T Labeling Algorithm Pseudocode

input : BSsgnai, BSsmacro, V-
output: BS

SetL, S, RSSI, and R.

for each V; € V do

if Vj.kspeed < S then

end

=== Determine a serving small BS ===
BSs?,,,.u= Thresholding (BSssnai, RSSI);

smal

Z = {Bj|B; € BSs,,, ; and load < L};

dij cos(0y)+/R*—dj; sin®(6;)

Ta; = 5 ;VBieZ
BS = {Bi|B; € Z & has max(Tq4;)};

end
if Length (BS==0) then

=== Determine a serving macro BS ===
BSS),uero= Thresholding (BSsmacro. RSSI);

Z = {Bj|B; € BSs’/ }

macro

BS = {Bi|B; € Z & has max(RSSI;;);

end

4)

old function is applied to speed-up the searches for
the serving base station where the BSs that pass the
RSSI threshold condition will be checked [47]. Our
proposed A2T-Boost considers the traffic load of
base stations to avoid blocking probability, which
refers to the probability that a connection request is
blocked due to lack of resources. The adaptability
of the proposed protocol is clear by its ability to
switch to the macro BS tier if the speed of vehicle is
greater than the predefined speed threshold, where
the macro BS that has the largest RSSI value is
selected to be the serving BS. This adaptability
feature of the proposed protocol helps to maintain
a good performance in terms of average of dwell
time, number of HOs, sum rate, and packet delay.
The dwell time of a vehicle within a serving base
station is estimated based on Equation 7. The time
estimation depends on four parameters which are
(1) the radius of a cell, (2) the distance between
the current location of a vehicle and the BS, (3)
the angle between the vehicle direction and BS,
and (4) the vehicle’s speed. Considering all factors
influencing the staying time will help to choose the
serving cell with the longest residence duration.

Ty = (d cos(0) +R? — d? sin(0))/s  (T)

where s is vehicle speed. The raduis of the serving
cell is expressed by R.

Data Splitting: The samples of data are split
into two datasets: a training set for building ML
models and a testing set for evaluating models.
An 80/20 (training/testing set) ratio was applied
in this study. Items from the entire dataset were
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FIGURE 2. Stages of construction for the proposed SDN/ML-based model.

randomly chosen for the training sample, while the
remaining items were used for the testing sample.
It is worth mentioning that all classes should be
existed in training and testing sets.

o Stage 2: ML Model Training: The machine learn-
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ing model was trained using the training samples at
this stage. In this work, K-Nearest Neighbors (KNN),
SVM, Naive Bayes (NB), Artificial Neural Network
(ANN), XGBoost, RF, Decision Tree (DT), Adaptive
Boost (AdaBoost) classifiers were trained to perform
classification task based on supervised learning.

Stage 3: ML Model Testing: The testing samples
were used to evaluate the trained ML classifiers. In
Section V-A, the effectiveness of the trained ML models
is described in detail.

Stage 4: ML Model Deployment: AdaBoost classifier,
a trained machine learning model with the highest pre-
diction accuracy, is deployed on the SDN controller.
An SDN-based vehicular network’s central part, the
SDN controller, is physically coupled to other net-

Model
Deployment

Model
Testing

work components, such as wireless base stations [48],
[49]. It is in charge of carrying out the adaptive cell
selection task using the set up ML model. Algorithm
2 gives the pseudocode for the proposed A2T-Boost
scheme. The inputs for the trained adaptive boost model
(AdaBoostMdl) are the latitude (V.lat) and the lon-
gitude (V.lon) coordinates of the moving vehicle, the
azimuth between the direction of the vehicle and the
north (V.Azimuth) and the vehicle speed (V.kspeed).
According to the given vehicle information, AdaBoost-
MdI can predict the serving BS to be connected with.

The idea of turning off some BSs to reduce the power con-
sumption can be applied using our proposed A2T-Boost pro-
tocol if a list of sleeping BSs is given to be excluded when
performing the prediction task using the trained machine
learning model.

D. THE ARCHITECTURE OF THE PROPOSED
SDN/ML-BASED CELL SELECTION STRATEGY
As seen in Figure 3, the architecture is built by involving
SDN and ML solutions. SDN is used to carry out effective
cell selection and traffic management duties based on the

VOLUME 11, 2023



1. A. Alablani, M. A. Arafah: A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks

IEEE Access

Algorithm 2 Pseudocode for A2T-Boost Algorithm

input : V.at, V.on, V.azimuth, V .kspeed.
output: Output:BS.
while Vehicle V moves do
if RSSI < Th || Length(BS) == 0 then
Input =
[V.lat, V.lon, V.azimuth, V .kspeed, ];
BS = AdaBoostMdl (Input);

Trigger handover to BS# BS;
end

end

installed trained machine learning model. The geographic
coordinates of the vehicle (i.e., latitude (LAT) and longitude
(LON)), the azimuth between the direction of the vehicle and
the north (AZIMUTH), and the vehicle speed in kilometres
per hour are the inputs for the ML-model (KSPEED). The
ML model can forecast the ideal BS to be associated with,
whether it is a macro- or small BS, based on the provided
vehicle information.

IV. THE METHODOLOGY

In this section, the methodology for performing the cell selec-
tion task in 5G HUDN:S is presented in detail in terms of
simulation tool, datasets, and system model.

A. SIMULATION TOOL

Due to its robust capabilities, the MATLAB 2021b simula-
tor was utilized to model and analyze the effectiveness of
the suggested cell selection technique. Additionally, the cell
selection process can be carried out in a realistic setting using
one of the various tool boxes available in the MATLAB
simulator. The simulation was carried out using a powerful
gaming machine that has AMD Rayzan 7 processor, 64GB
DDR RAM, and NVIDIA EVGA GeForce RTX 2070 Super
GPU.

B. DATASETS

In this work, three datasets were used for to built and evaluate
the proposed cell selection scheme in the city of Los Angeles.
The first two are for macro and small BSs and the third one
is for vehicles.

o Macro BSs Dataset: This dataset stores information
of 5,248 microwave towers in the country of LA [50].
It was published by LA GeoHub governmental website
on September 16, 2016 and it was updated on November
10, 2020. It includes many columns, the most important
of which are the BS object identifier (OBJECTID) and
the latitude and longitude coordinates of the macro BSs.
Figure 4 shows a snapshot of the used LA macro BSs
dataset.

« Small BSs Dataset: The city of Los Angeles’s 1,796
5G small base stations mounted on streetlight poles
are included in this collection. The primary website
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TABLE 2. Numbers of macro and small BSs and vehicle samples.

Number of macro BSs 38
Number of small BSs 198

74,170

Training (80%): 59,336

Number of vehicle samples Testing (20%): 14,834

for LA, data.LAcity.org, is the one that publishes it
[51]. On November 10, 2020, metadata was created,
and on October 8, 2021, it was updated [52]. It has
two columns: small BS IDs (SLID) and the geometry of
SBSs (the_geom). The small BSs’ latitude and longitude
coordinates are listed in the the_geom column.

The distributions of the macro and small BSs in
Los Angeles based on the mentioned BSs datasets are
shown in Figure 5.

o Vehicles Dataset: A dataset of vehicles in a high-density
area of small cells in Los Ang is used in this work, which
was proposed in [53]. It called Vehicle Dataset in the
city of LA (VehDS-LA). It was generated using Google
Maps and the MATLAB simulator. The VehDS-LA has
74,170 samples that are existed on fifteen LA streets
and each vehicle sample has four features. The vehicle
dataset has five columns which are street name, latitude,
longitude, azimuth and speed.

C. SYSTEM MODEL

1) NETWORK MODEL

In this paper, a two-tier mmWave-based heterogeneous
ultra-dense network is considered. The first tier, which
consists of traditional LTE macro-cells, runs at a carrier
frequency of 2 GHz with a bandwidth of 10 MHz. The
second tier, which includes 5G small cells, works at a carrier
frequency of 28 GHz with a bandwidth of 500 MHz. The
system model represents the distribution of base stations in
selected areas in Los Angeles that have a high-density of
small cells. Figure 6 shows the system model in the selected
area in LA, showing the positions of macro and small cells
and the distribution of vehicle samples on the surrounding
streets. Table 2 gives the numbers of macro and small BSs and
vehicle samples in the selected area in LA. The vehicles sam-
ples were divided into 80% for training and 20% for testing
purposes.

The architecture of the proposed SDN-based heteroge-
neous network is represented in Figure 7. The network
is split into many areas and a distributed set of SDN
controllers are working in a flat formation. Each SDN
controller manages a specific area and performs the cell
selection task based on the installed trained ML model.
Organizing the SDN controllers in flat fashion reduces the
control delay and improves the resiliency of the system.
SDN switch is responsible for directing the flow of data
in the determined area. Eastbound/westbound interfaces are
used to connect all SDN controllers to exchange network
information.

7093



IEEE Access

I. A. Alablani, M. A. Arafah: A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks

LAT LON

Vehicle Info

AZIMUTH KSPEED

| |

ML Model

|

Best BS ID

)

()
(N A
@ 1.7 (@)
A I A
(

((”>>>) )

(%)

()
A T.1.7

(N

(V)
A
()
A

(N
)

A

FIGURE 3. The architecture of the Proposed SDN/ML-Based solution.
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OBJECTID city state latitude longitude

1 139706 Los Angeles CA 33.40222222 -118.4138889
2 |39707 Los Angeles CA 33.34305556 -118.3208333
3 _:39708 Los Angeles CA 33.40222222 -118.4138889
4 [39709 Los Angeles CA 33.34305556 -118.3208333
5 [39736 Los Angeles CA 34.35166667 -117.6744444
6 :39737 Los Angeles CA 34.32416667 -118.5816667
7 39741 Los Angeles CA 34.35166667 -117.6744444
8 39742 Los Angeles CA 34.32416667 -118.5816667
9 39922 Los Angeles CA 34.26777778 -118.237

10 39936 Los Angeles CA 34.32638889 -118.5870278
117 ;39942 Los Angeles CA 34.325 -118.5775833
12 39943 Los Angeles CA 34.325 -118.5775833
13 139959 Los Angeles CA 34.325 -118.5775833
14 :39961 Los Angeles CA 34.35222222 -117.6778333
15 139972 Los Angeles CA 3431777778 -118.50925

FIGURE 4. A snapshot of the LA macro BSs dataset.

D. PROPAGATION AND TRAFFIC MODELS

In this study, path-loss (PL), fading, and shadowing are con-
sidered, which are the three essential parts of the propa-
gation channel model. The principal losses that impact the
strength of wireless transmissions are those mentioned above.
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To determine the received signal power at a specific separa-
tion from the serving base station, the 3GPP path loss models
are employed. According to 3GPP Technical Report (TR)
38.901 version 16.1.0 [54], the urban macro-cell-non-line-
of-sight (UMa-NLOS) PL model is used by the macro-BSs
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FIGURE 6. System model in Los Angeles.

tier, whereas the urban microcell-line-of-sight (UMi-LOS) a close approximation of true wireless channel conditions.
(street canyon) model is used by the small BSs tier. Rayleigh It has a unit mean and follows an independent exponen-
fading is taken into account in this study because it provides tial distribution [55]. Additionally, because it is frequently

7095

VOLUME 11, 2023



IEEE Access

1. A. Alablani, M. A. Arafah: A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks

©

(®

ATI
((iA

TII.T Macro SDN @ SDN o %;::3;);::(;
BS Switch Controller
Interface
FIGURE 7. The architecture of the proposed SDN-based HUDN.
employed to describe the link between RSSI and range, log-
normal shadowing is taken into account [56]. It has a standard Gl e
deviation of 4 dB and 6 dB for small BS tier and macro-BS position of a vehicle
tier, respectively based on the used 3GPP specifications. The AT, PORY 4
formula of RSSI is given in Equation 8. poﬁfﬁngf}g[f: el
Movement distance (D)= Ridbanig (LAT,, 1, LON, )

RSSIj = py — §i(d) VV; € Vand V B € BSs.  (8)

For the traffic model, file transfer requests are considered
which follow a Poisson point process that has arrival rate A.

1) MOVEMENT BEHAVIOUR MODEL

Vehicle movement behaviour is modeled based on a process
called reckoning. The new geographical position of a vehicle
is reckoned based on the current vehicle location (latitude
and longitude coordinates), the movement distance, and the
azimuth between vehicle direction and the north (Figure 8).
In MATLAB simulator, reckon function belongs to Mapping
Toolbox, which is a toolbox that includes many algorithms
and functions for transforming and visualizing the geographic
information. Figure 9 shows vehicle movement process on S
San Perdo and the 6th streets based on the reckoning process.

V. PERFORMANCE EVALUATION

In this section, the performance metrics, which are the key
performance indicators (KPIs) that are used to evaluate the
trained machine learning models and the proposed cell selec-
tion scheme, are discussed.

A. EVALUATION OF THE TRAINED ML MODELS

Common metrics for measuring prediction mistakes include
root mean square error (RMSE) and mean absolute error
(MAE) [57], [58]. The root mean square error calculates
the deviation between the predicted and actual values. The
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FIGURE 8. Modeling vehicle movement behaviour based on reckoning
process.

average of the absolute difference between the predicted and
the target values is calculated using the mean absolute error.
Equations (9) and (10) show the definitions of RMSE and
MAE, respectively.

1
RMSE = \/ % =N Gi — v ©)

MAE = — N 1yi — $il, (10)

1
N
where the expected and the target small BSs are represented
by ¥ and y, respectively, and the number of testing samples is
given by NV.

A confusion matrix, also known as a contingency table,
is built to assess the performance of a trained ML-based
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(b) A moving vehicle on the 6th Street.

FIGURE 9. Displaying vehicle movement on some LA streets based on reckoning process.

model [59]. An efficient tool for reporting the percentages
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) is the confusion matrix [60].
The TP refers to the number of samples that are predicted as
positive and they are actually positive, while the TN refers
to the number of samples that are predicted as negative and
the target class is also negative. When the ML model clas-
sifies a sample as positive but the target class is negative,
FP classification occurs. If a sample is classified as negative

VOLUME 11, 2023

and it is actually positive, the classification is considered as
FN [61]. Accuracy refers to ratio of the number of samples
that are classified correctly to the total number of testing
samples [62], as given in Equation (11). Sensitivity is defined
as the ratio of true positives to the summation of true positives
and false negatives (Equation (12)). Specificity means the
ratio of true negatives to the summation of false positives and
true negatives (Equation (13)) [63]. Precision is the ratio of
true positives to all positives (Equation (14)) [64]. F-score
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is a combination of precision and sensitivity, as shown in
Equation (15) [65]. Geometric mean (G-mean) refers to the
square root of the product of sensitivity and specificity [66],
as given in Equation (16).

Number of correctly classified samples

Accuracy = -
Total number of testing samples
(11
Sensitivi TP (12)
ensitivity = ———
Y= TP EN
Specifici dd (13)
ecificity = ————
pectiety = Fp 1IN
- TP
Precision = —— a4
TP + FP
2TP
F-score = ———— (15)
2TP + FP+ FN
G-mean = \/(Sensitivity x Specificity). (16)

In this paper, KNN, NB, SVM, ANN, DT, RF, AdaBoost,
and XGBoost are trained to perform the prediction of the best
serving base station based on the proposed scheme, as shown
in Figure 10. Based on the selected area in LA, the number of
BS classes is 178 of which 142 are for small BSs and the rest
are for macro BSs. A grid search (GS), which is the process
of finding the optimal combination of the hyperparameters
of the targeted ML model [67], is performed. In addition,
cross-validation (CV) is used, which is the standard method
for testing the validity of the trained ML model by splitting
the data into K folds (10 in this work) and then the model
is trained K times using all data folds except one [68]. The
parameters of the trained ML models are given in Table 3.
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TABLE 3. The parameters of the trained ML models.

ML models | Parameters
max_depth=20

AdaBoost num_estimators=100
learning rate = 0.1
max_depth=20

RF num_estimators=300

learning rate = 0.1
DT max_depth=20
max_depth=20
n_estimators=300

XGBoost
learning rate = 0.1
k=1

KNN metric="minkowski’

p=2

C=1000

SVM gamma =1

kernel = ’rbf’

batch size = 16

epochs = 200
optimization algo= "adam’

ANN .
learning rate = 0.01

num_neurons=10

activation func="ReLU’

The evaluation values of the trained ML models in the
selected area in LA is provided in Table 4. Figure 11 rep-
resents the prediction accuracy of the trained ML classifiers.
As illustrated in the results, the AdaBoost model achieves a
high prediction performance with low percentages of error
compared with the other trained models. Therefore, it is
selected as the classifier model in this work.

Inference time, which is the time taken to predict a serving
base station ID of a vehicle test sample, has been calculated
using the MATLAB commands. We found that our proposed
AdaBoost model takes 0.23612 milliseconds to predict the BS
ID based on the specifications of the gaming computer that
are mentioned in IV-A. Based on our findings, the prediction
duration is very short and the maximum round-trip end-to-end
delay is less than 10 ms. Therefore, our proposed A2T-Boost
cell selection scheme is suitable for 5G networks because it
meets the latency requirement.

B. EVALUATION OF THE PROPOSED A2T-BOOST

1) EVALUATION METRICS

To evaluate the performance of our proposed A2T-Boost
approach, nine performance metrics were utilized. These
metrics are the average of (a) dwell time, (b) number of HOs,
(c) number of HO failures and unnecessary HOs, (d) down-
link sum rate, (e) achievable spectral efficiency, (f) network
energy efficiency, (g) packet delay, (h) radio link failure rate,
and (i) handover interruption time.

o Average Dwell Time The average dwell time of a vehi-
cle within a serving base station (E(7y)) is calculated
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TABLE 4. The trained ML models evaluation values in Los Angeles.

Performance | AdaBoost Random Decision XGBoost KNN NB SVM ANN ANN
Metrics Forest Tree (1 Layer) (2 Layers)
RMSE 5.18 5.24 5.95 7.18 7.43 60.81 35.25 32.35 36.12
MAE 0.28 0.29 0.36 0.50 0.57 17.43 12.14 10.88 13.42
Accuracy 99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92
(%)
Sensitivity 99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92
(%)
Specificity 99.998 99.997 99.996 99.995 99.99 99.92 99.88 99.88 99.86
(%)
Precision 99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92
(%)
F-score (%) 99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92
G-mean (%) | 99.79 99.78 99.69 99.59 99.43 92.62 89.27 88.91 87.07
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FIGURE 11. Accuracy of the trained ML classifiers.
based on Equation (17). (E(NHo)) is calculated based on Equation (18).
Z](Z[ Td/NHO) Z] Nyo
E(Ty) = = 7 E(NHo) = =5 (18)

where J stands for the number of vehicles and 7 is the
amount of time a vehicle V; € J spends within a serving
base station B; € I. The symbol Ny represents the
number of a vehicle handovers.

Average Number of Handovers Handover occurs when
the wireless connection from a current serving BS is
switched to another BS. The average number of HOs
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Average Number of Handover Failures HO failure
happens when a vehicle’s dwell time inside a cell is
smaller than the HO delay(z;) [69]. The probability of
HO failure (Pr) can be calculated based on the following
lemma.

Let HO latency to move into a cell be denoted by
7; and the time threshold of HOF
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be denoted by Tt ; then,

2 n-! ol
71[ (—) (—)] 0<hh <
0 7, < T

Py =

(19)
Ty = oinin 15y~ 2Py 0<Pr <1 (20)
= “—sin(sin” ' (—) — —Py); < Pr <
! K 2R T 4 !

where s is the speed of a vehicle and T is the time
threshold of HO failures. The acceptable value of Py in
this study is 0.02.

The calculation of the average number of HO failures,
E(Ny), is presented in Equation (21).

E(Ny) = Py x E(Ngo) 21

Average Number of Unnecessary Handovers Unnec-
essary HO, often referred to as false HO, is a-inessential
procedure that occurs when the total amount of time
taken to move into (z;) and out (7,) of a small cell
exceeds the time spent there [70]. The following lemma
gives the calculation of the probability of unnecessary
HO (P,).

Let HO latencies to move into a cell and to move out of
the cell be t; and 1, and the time threshold of UHO be
denoted by T»; then,

2 1 0 —_
~{sin *l(s(’ F5) sin D21
Py = 0< < ('Cz + 1) (22)
0 (mi+ To) <T
T, = 2R Singsin™ (S(t’zﬂ) — %Pu) 0< P, <1
S
(23)

Based on Equation (24), the mean of unnecessary of HO,
E(N,), is estimated. The allowable value of P, in this
study is 0.04

E(Ny) = Py, x E(Ngo) (24)

Average Downlink Sum Rate The sum-rate of a mov-
ing vehicle V; is obtained by summing the data rate
values achieved by the vehicle over the network [37],
as given in Equation (25).

> Rj. VV;eV&VB eBSs. (25)

i

SumRate; =

where R;; is the achievable DL data rates of the vehicle
V; serving by small base stations B;. It can be calculated
based on Shannon’s formula, as given in Equation (26).

Rij = BW loga(1 + y;) (26)

The signal-to-interference-plus-noise ratio is calculated
by dividing the strength of the signal received from the
serving BS by the sum of interference power from other
BSs and the power of the noise [71]. The SINR at vehicle
V; associated with the base station B;, which is expressed

as y;j, can be calculated as given in Equation (27). The
thermal noise is considered as an additive white Gaus-
sian noise (AWGN) with noise power spectral density
(Np), and channel bandwidth (BW).

P Gij(d)hij
Zk;&i(ptxk Sk (d)hyj) + NoBW
VVjeVandV B; € BSs. (27)

Vi =

The transmitted power of BSs is expressed as piy.
The path loss, ¢(d), is based on the 3GPP PL
model. The channel gain, which is denoted by #h,
composes of the effects of log-normal shadowing and
Rayleigh fading. A graph-coloring algorithm is used in
this work to manage frequency resources and to control
interference issue between cells [72]. It is an efficient
way to manage interference problems in a random topol-
ogy network, such as ultra-dense networks [72], [73].
The available frequency resources are modelled as col-
ors. The graph is represented by the equation G = (n, [),
where n denotes BS node nodes and [/ denotes links
between BSs. Each node must have a color, with the
requirements that two neighbouring nodes use distinct
frequency resources and that there be a minimum num-
ber of colors. As a result, interference can be prevented
by allocating various colors (resources) to nearby BSs.
Average Downlink Spectral Efficiency Spectral effi-
ciency (SE) refers to the achievable data rate in bits
per second (bps) per channel bandwidth in hertz [74].
The SE of vehicle V; provided by BS B;, is shown in
Equation (28).

R;j

SE,'j(bpS/HZ) = ﬁ (28)
Average Network Energy Efficiency An important
consideration while creating cell selection methods is
energy efficiency (EE). It is the entire data rates that
can be achieved divided by the total power used [75].
Equation (29) provides the energy efficiency formula,
which is expressed in bits/joules.

Achievabl te(b,

EE(bitsjoule) — chievable sum rate(bps) (29)

Total consumed power(watts)

Average Packet Delay One of the QoS requirements
for 5G networks is to reduce the amount of delays [76],
[77]. A packet’s downlink delay is a result of delays
in transmission, propagation, processing, and queuing
[78], [79]. It can be written as Equation (30) shows,
where Djj. stands for the vehicle V; ’s download delay
when downloading packet k through BS B;.

Dy = D+ D7 + D+ DY G
Equation (31) illustrates that the transmission delay,
DZ,?’” is equal to the packet length (L) divided by the
available transmission rate (R;;) [80]. The file transfer
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protocol (FTP) paradigm is taken into consideration in
this study with packet sizes up to 1500 Bytes.

Ly

frans — % 31
=R 31
The amount of time needed for a packet to travel
between a base station and a vehicle is referred to as
the propagation delay, or D/, It can be calculated by
dividing the speed of light (c) by the distance between
a small BS B; and a vehicle V; (dj), as shown in

Equation (32).
Db = @ (32)

ijk c

The processing delay, D, is the time taken to pro-
cess a packet and it is measured in microseconds [81].
A packet must wait in line at a small base station for
a certain amount of time before being sent, or Dqueu.
We take into account an M/M/1 queuing system with
an average service rate ;0 and an average traffic arrival
rate A. Equation (33) illustrates how Little’s theorem,
a well-known law in queuing theory, is used to compute
queuing delay [82].

1
D(']'ueu - 33
ik Mn — Ay 53
Equation (34) can be used to calculate the system’s
average downlink latency.

E(D) _ ZJ(%:Dz'jk)

VVieVandV B; € BSs. (34)

« Average Radio Link Failure Rate SINR is a term used
to describe the radio link’s quality. When the SINR
of a vehicle V; from the serving base station B; drops
below the out-of-synchronization threshold (SYN,,,;) for
an RLF detection time, which is also referred to as Trir,
radio link failure (RLF) occurs. The vehicle faces an
RLF issue when the Tgyr timer, which is also known
as T310, has run out and the value of SINR does not
enhanced to be above the in-synchronization threshold
(SYN;;,). The conditions of a radio link failure and recov-
ery, are shown in equations (35) and (36) [83], [84].

CRrLF : Vij < SYNour; for tour > Trrr  (35)
CRecovery Vi > SYNin; for tin > TrLF (36)

« Handover Interruption Time A crucial parameter for
evaluating the effectiveness of cell selection strategies is
handover interruption time (HIT), which is also known
as HO delay. The time when the vehicle’s connectivity
is lost while the handover operation is being carried out
is referred to as the HIT [85]. The formula for HIT
is provided in equation (37) and is the product of the
break time (Tgreqr), processing time (Tpyoc), interrup-
tion time (Tnzerrupr ), radio access channel time (Tracn ),
and handover completion time (Tyc). The 3GPP has
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TABLE 5. Simulation parameters.

Simulation Parameters Macro BS Valuessma“ BS
Number of BSs in LA 38 198
Carrier frequency (GHz) 2 28
System bandwidth (MHz) 10 500
Transmit power (dBm) 46 30
Path loss model (dB) 3GPP UMa | 3GPP
Model Model
Standard deviation of shadow factor | 6 4
(dB)
Base station height (meters) 25 10
Cell radius (meters) 1400 600
SY Nout (dB) -8 -12
Number of training samples 59,336
Number of testing samples 14,834
Vehicle speeds (km/h) [10-40]
Vehicle height (meters) 1.8
RSSI threshold (dBm) -90
Speed threshold (km/h) 30
Load threshold (%) 90
Thermal noise density (dBm/Hz) -174
Shadowing Log-normal
Fast fading Rayleigh fading
Handover delay (ms) 50 [89]
TrLF (sec) 1
Simulation time (sec) 500

accepted 50 millisecond to be the typical HO interrup-
tion time [86], [87].

Trir = Tgreak + TProc + Tlnterrupt + TracH + THC
(37)

2) RESULTS AND DISCUSSION

The simulation results are given and discussed in this section.
In comparison to the conventional max-RSSI, Qin et al.
HO RTP [38], and Zappone et al. ANN-based [43] tech-
niques, the performance of the new A2T-Boost is evaluated.
In addition, Kapoor et al. cell selection approaches [23],
which are MD-VD, ML-VD, NN-S and NN-O, are compared
to our proposed scheme. The simulation parameters that were
utilized in the evaluation of the cell selection strategies are
shown in Table 5. Figure 12 depicts the correlation between
the average number of handovers and vehicle speeds, whereas
Figure 13 illustrates the average dwell duration of vehicles
at various driving speeds. The findings indicate that when a
vehicle’s speed increases, the dwell duration lowers, leading
to an increase in the frequency of HOs. In terms of average
dwell duration and average number of HOs, the suggested
A2T-Boost algorithm outperforms the conventional scheme,
which is based on the maximum RSSI values, Qin et al.
HO RTP, Zappone et al. ANN-based, and Kaproor et al.
approaches. The suggested A2T-Boost chooses the small BS
with the longest dwell time when it is implemented for this
reason. When the speed threshold is exceeded, the nearest
macro BS is chosen to prevent needless HOs. The NN-O
scheme selects a BS in the vehicle direction that has the
smallest azimuth in the range between /2 and, making it
the second-best technique in terms of average stay time and
number of HOs. In other words, the little BS that is chosen
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is the one that is closest to the vertical line from the car’s
location and is in the left quadrant of the vehicle. As a result,
the car is linked to the serving BS for a longer time, which
lowers the average HO rateHowever, the average dwell time
and the quantity of HOs are superior than the NN-O scheme
by 44.47% and 28.57%, respectively, for the suggested A2T-
Boost. The BS with the smallest azimuth within the NN-
O scheme’s allowed range does not always result in the
longest dwell time. Due to the fact that the ML-VD scheme
depends on selecting the cell with the least amount of load
facing the direction of the vehicle, the cell selection will
not be fixed regardless of the vehicle density on the streets.
In terms of average dwell duration and the number of HOs,
our suggested strategy outperforms the ML-VD scheme by
45.78% and 34.78%, respectively. However, depending solely
on traffic load does not ensure the longest life of the vehicle
within the serving cell. Due to their reliance on a similar
method for selecting the serving small cell, the HO RTP
and MD-VD schemes perform equally in terms of average
dwell time and number of horizontal HOs. Both plans give
the closest cell to the vehicle top priority, however relying on
this idea will shorten dwell times and increase the number
of HOs. In terms of the average number of HOs, our A2T-
Boost technique exceeds others by 45.91%. The serving cell
is chosen using the NN-S method based on which cell has
the smallest angle between O and pi. Thus, the cell in the
right quadrant for the vehicle that is closest to the lowest
horizontal line will be chosen. When the car is travelling
forward, picking the cell that is on the lowest horizontal line
will result in more HOs. In terms of average dwell duration
and the quantity of HOs, our suggested approach performs
better than it by 46.27% and 46.43%, respectively. In terms
of average dwell time and quantity of HOs, the conventional
max-RSSI and Zappone et al. ANN-based systems perform
the poorest. Without taking into account the direction and
speed of a vehicle, the max-RSSI approach chooses a base
station that has the highest RSSI values. Based on the idea of
boosting the achievable sum-rate by relying on the shortest
distance between a base station and a vehicle, regardless of
the direction and speed of the vehicle, the Zappone et al.
method uses a trained FF-ANN model to predict the next base
station. As a result, when the speed threshold is not surpassed,
our A2T-Boost performs better than the conventional and
Zappone et al. techniques in terms of average dwell time and
number of HOs by 53.49% and 50%, respectively. Due to
the adaptive feature of the proposed algorithm, the suggested
AT?2-Boost also achieves additional improvements in terms of
the average staying duration and quantity of handovers with
vehicles that exceed the speed threshold.

Figures 14 and 15 show the typical amount of HO failures
and unnecessary HOs at various speeds in the chosen areas
of Los Angeles. It is obvious that increasing speed causes an
increase in the average number of unnecessary and unsuc-
cessful HOs. However, we discovered that when compared
to the conventional max-RSSI, Qin et al. HO RTP, Zappone
et al. ANN-based, and Kapoor et al. techniques, the suggested
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FIGURE 12. Average dwell time vs vehicle speed.
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FIGURE 13. Average number of handovers vs vehicle speed.
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FIGURE 14. Average HO failures vs vehicle speed.

A2T-Boost algorithm obtains the lowest average numbers
of HO failures and unnecessary HOs. This is because the
A2T-Boost technique depends on precisely calculating dwell
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FIGURE 15. Average unnecessary HOs vs vehicle speed.

time and has the adaptability to switch between multiple
BS:s tiers based on a particular speed threshold. As a result,
when the vehicle speed is below the speed threshold, the
suggested strategy is 28.05% better than the NN-O scheme.
The A2T-Boost performs 49.57% better than the classic
max-RSSI and Zappone et al. ANN-based approaches, and
it performs 39.18% better than the HO RTP and MD-VD
methods. Additionally, the proposed strategy outperforms
the ML-VD approach by 34.44%. When the vehicle speed
exceeded the threshold as a result of the association upgrading
to the macro-BS tier, the A2T-Boost method achieved further
improvements. Figure 16 shows the cumulative distribution
function (CDF) of a vehicle’s possible downlink data rate
during the simulation period at a particular speed (15 km/h
in this case). The proposed A2T-Boost protocol, as shown in
the figure, reaches data rate peaks that are not reached by
any other techniques. When a vehicle moves forward while
using the A2T-Boost protocol, it approaches close to the
middle of a serving wireless cell where the BS is situated,
allowing the A2T-Boost to achieve the highest possible value
of the data rate. However, relying on signal strength values
and giving them a high priority does not ensure that the
highest data rates will be reached when a vehicle. Addi-
tionally, because of the HO latencies required to complete
the handover process, handover across cells results in lower
attainable datarates. According to the previously discussed
average number of HOs, our A2T-Boost method is the best
one. In terms of the average achievable sum rate, the A2T-
Boost scheme outperforms the max-RSSI and Zappone et al.
ANN-based methods by 5.19% and the HO RTP and MD-VD
approaches by 6.84%. is moving. In addition, it is superior to
NN-O, NN-S and ML-VD schemes by 3.08%, 33.76%, and
20.96%, respectively. Figures 17 and 18 illustrate the CDF
of spectral efficiency and network energy efficiency during
the simulation time. As the spectral efficiency is the achiev-
able sum-rate divided by channel bandwidth and the energy
efficiency is the achievable sum data rate divided by total
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FIGURE 16. CDF of achievable downlink data rates by a vehicle during
simulation time.

consumed power, the A2T-Boost algorithm is superior to the
other cell selection schemes. The reason behind this is that it
outperforms them in terms of the total achieved downlink data
rate, as illustrated in Figure 16. The percentage of improve-
ment in terms of average spectral efficiency and network
energy efficiency achieved by vehicles is 5.19% compared
with the conventional max-RSSI and Zappone et al. ANN-
based methods, while A2T-Boost outperforms the HO RTP by
6.84%. Furthermore, it is superior to Kapoor’s et al. schemes
by up to 33.76%. Figure 19 displays the average packet delay
by utilizing three packet sizes: 500, 1000, and 1500 Bytes.
We found that the average delay and packet size are directly
related. Due to the delay in packet transmission, the downlink
latency grows as the packet size does as well. Because it
reduces the average propagation time, the suggested A2T-
Boost system outperforms the other approaches in terms of
mean packet delay. The propagation delay is a function of
the separation between the attached vehicle and the serving
BS. When the vehicle is close to the cell centre, as is the
case with the A2T-Boost system, the propagation delay is at
its lowest value, although it may not be the case with other
approaches. Additionally, since a packet’s transmission delay
is based on the data rate, which is reaching its maximum
values, that delay is also lowered. The packet delay will also
be improved by lowering the number of HOs. As a result,
the suggested method outperforms both conventional and
Zappone et al. ANN-based systems by 6.05%. Additionally,
it exceeds ML-VD, NN-S, and NN-O by 11.55%, 12.87%,
and 2.81%, respectively, superior to HO RTP, MD-VD, and
both by a margin of 11.40%.

Figure 20 displays the CDF of SINR values that a vehicle
received during the simulation period. As a result, our A2T-
Boost system enhances downlink SINR since it produces
high SINR values that are not possible with the other cell
selection techniques. Using our A2T-Boost system and the
other cell selection scheme, we discovered that RLFs happen
when SINR values fall below SYN,,; for Tgrr, which does

7103



IEEE Access

1. A. Alablani, M. A. Arafah: A2T-Boost: An Adaptive Cell Selection Approach for 5G/SDN-Based Vehicular Networks

CDF of Spectral Efficiency Values

091 1
08 F ¥ H 4
07 1/ 1
06F 4 i
0 £
Q051 g
O
0.4 r Proposed A2T-Boost scheme
Traditional scheme
L/ N T Qin et al. HO RTP scheme ]
Zappone et al. ANN-based scheme
02 Kapoor et al. MD-VD scheme q
Kapoor et al. ML-VD scheme
01 H Kapoor et al. NN-O scheme 4
e Kapoor et al. NN-S scheme
0 . . . . L . . .
0 1 2 3 4 5 6 7 8 9

Spectral efficiency (bps/Hz)

FIGURE 17. CDF of achievable downlink spectral efficiency by a vehicle
during simulation time.
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FIGURE 18. CDF of network energy efficiency achieved by a vehicle
during simulation time.

not exceed 5.43%. This is because all simulation experiments
rely on the establishment of an RSSI threshold, and the
cell selection procedure is only applied if the received RSSI
value is below this threshold. In fact, by improving the SINR
values through the use of interference mitigation measures,
radio connection failures can be prevented. The RLF rate can
also be decreased by relying on soft handover, which entails
connecting to the new BS before breaking the old one.
Figure 21 depicts the relationship between average cumu-
lative handover interruption time and vehicle speed. The
graphic illustrates how our suggested A2T-Boost system per-
forms better than previous approaches since it tries to increase
the dwell time of cars inside serving cells and thereby reduce
the cumulative HIT. To prevent frequent HOs, the suggested
approach also applies switching between the small BS tier
and macro BS tier if the vehicle speed is higher than the prede-
termined speed threshold. The Max-RSSI and Zappone et al.
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time.

ANN-based schemes, according to our research, are the worst
cell selection techniques in terms of cumulative HIT. They
choose the next BS based on the strongest received RSSI
value, which leads to a rise in HOs and a worsening of the
cumulative HIT. In terms of cumulative HIT, our procedure
performs better than their by 50%. The HO RTP and MD-VD
approaches outperform the max-RSSI and Zappone et al.
ANN-based systems in terms of cumulative HIT because they
provide the cell with the strongest signal strength the highest
priority while also taking the vehicle direction into account.
As aresult, the A2T-Boost is 40% better than the HO RTP and
MD-VD techniques. The NN-O scheme is the second-best
method in terms of the cumulative HIT because it achieves
a long stay time based on selecting a BS that is located in
the left quadrant for the vehicle with the nearest vertical line
with respect to the vehicle’s location. Our proposed scheme
outperforms NN-O by 28.57%. The ML-VD does not guar-
antee decreasing the HO rate of vehicles, but is governed by
the distribution of loads between cell. The NN-S method is
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FIGURE 21. Average cumulative HIT vs vehicle speed.

based on selecting cells located on the lowest horizontal line
with respect to the vehicle and this way of selection does not
guarantee a reduction in the number of HOs. Therefore, our
proposed A2T-Boost outperforms ML-VD and NN-S in terms
of cumulative HIT by 34.78% and 46.43%, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an adaptive cell selection
scheme known as A2T-Boost, which has the ability to adapt to
the different features of base stations and of mobile stations.
The proposed A2T-Boost protocol can adapt to the changes in
(1) cells’ size, load, and geographic location, and (2) vehicles’
geographic location, speed, and direction. It is an SDN/ML-
based strategy that can solve the cell selection issue using a
trained AdaBoost model. The downtown of Los Angeles city
is taken as a study case in this paper. Simulation results prove
that our A2T-Boost can predict the next base station with high
prediction performance comparing with other related strate-
gies in terms of average number of handovers by up to 50%.
In addition, it improves the average achievable downlink
sum-rates and network energy efficiency achieved by vehicles
by up to 33.76%. Moreover, the proposed strategy decreases
the average packet latency by up to 12.87%. For future work,
further performance metrics can be evaluated and additional
study cases will be studied to show the applicability of our
proposed A2T-Boost scheme.

APPENDIX

LIST OF ABBREVIATIONS

The following table gives a list of abbreviations. Table 6 gives
a list of all abbreviations.
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TABLE 6. List of main abbreviations.

Abbreviation | Meaning

3GPP Third Generation Partnership Project
5G Fifth-Generation

A2T Adaptive two-Tier

A2T-Boost Adaptive two-Tier based on Adaptive Boosting
A3C Asynchronous Advantage Actor Critic
AdaBoost Adaptive Boost

ADA-CS Adaptive Cell Selection

ADAM Adaptive Moment

Al Artificial ilntelligence

ANN Artificial Neural Network

AWGN Additive White Gaussian Noise

BS Base station

CAV Connected and Autonomous Vehicle
CDF Cumulative Distribution Function
CNN Convolutional Neural Network

CoMP Coordinated Multipoint

CRE Cell-Range-Expansion

CS Cell Selection

CV Cross-Validation

DDRL Distributed Deep Reinforcement learning
DT Decision Tree

EE Energy Efficiency

FN False Negatives

FP False Positives

FTP File Transfer Protocol

G-mean Geometric mean

GS Grid Search

HMM Hidden Markov-Model

HO Handover

HO RTP Handover based on Resident Time Prediction
HUDNSs Heterogeneous Ultra-Dense Networks
iMACH improved MACH

ITS Intelligent Transport System

KNN K-Nearest Neighbors

KPIs Key Performance Indicators

LA Los Angeles

LPN Low-Power Node

LTE Long-Term Evolution

MACH Movement-Aware CoMP Handover
MADM Multiple Attributes Decision-Making
MAE Mean Absolute Error

MD-VD Minimum Distance in the Vehicle Direction
ML Machine Learning

ML-NetSel Machine Learning-Network Selector
ML-VD Minimum Load in the Vehicle Direction
mMIMO massive Multiple-Input and Multiple-Output
NB Naive Bayes

NN-O Next Neighbor on the Opposite street
NN-S Next Neighbor on the Same street
PLR Packet Loss Ratio

RANS Radio Access Networks

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RSRP Reference Signal Receiving Power
RSS Received Signal Strength

RSUs Roadside Units

SDN Software-Defined Networking

SE Spectral Efficiency

SINR Signal-to-Interference-plus-Noise Ratio
SVM Support Vector Machine

TN True Negatives

TP True Positives

UE User Equipment

UMa-NLOS Urban Macro-cell-Non-Line-of-Sight
UMi-LOS Urban Microcell-Line-of-Sight

V2X Vehicle-to-everything

XGBoost eXtreme Gradient Boosting
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