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ABSTRACT Heterogeneous ultra-dense networks (HUDNs) are one of the key enabling technologies for
the fifth-generation (5G) networks. They aim to provide high capacity, low installation cost, and distributed
traffic loads. The cell selection is a challenging issue in HUDNs, due to the different characteristics of base
stations (BSs) and the existence of a large number of them. Thus, the traditional cell selection scheme is
not applicable in such a network. In this paper, a novel adaptive cell selection strategy is proposed, called
adaptive two-tier based on adaptive boosting (A2T-Boost). It can adapt to the various characteristics of
base stations, as well as the different movement features of mobile stations such as vehicles and pedestrian.
It is a software-defined networking (SDN)/machine learning (ML)-based scheme. A real-world case is
considered in the downtown of Los Angeles city. Simulation results demonstrate that A2T-Boost achieves
high prediction performance and it outperforms other related schemes in terms of average number of
handovers (HOs) by up to 50%. Moreover, it enhances the average achievable downlink sum-rates and
network energy efficiency achieved by vehicles by up to 33.76%. Furthermore, the average packet delay
is decreased using the proposed scheme by up to 12.87%.

INDEX TERMS 5G, Small Cells, SDN, Los Angeles, Machine Learning, HUDNs, Adaptive Selection.

I. INTRODUCTION
5G wireless cellular network is the current generation
technology that developed by the 3rd Generation Mobile
Partnership Project (3GPP) community. 5G networks have
developed to meet the increasing needs for higher data rates,
lower delays, efficient energy consumption, and reliable
connectivity [1]. 5G technology will change our life, work,
and the way of communication between with each other.
It will support emerging services and new applications such
as autonomous vehicle, smart home and factory, and remote
surgery [2].

Vehicular networks are emerging technology that provides
low-cost and reliable solution for the intelligent transport
system (ITS) [3]. Vehicle-to-everything (V2X) technology
is an evolution towards the intelligent transportation system.
It aims to enhance road safety, the reliability of communi-
cations, and traffic efficiency [4], [5]. 5G revolution and
beyond will support V2X communication to allow a vehicle
to be connected to an entity such as a pedestrian, another

vehicle, infrastructure and a network to provide a robust
transportation solution [6].

Building a sustainable communication of a vehicular
network is a critical requirement for the future Connected
and Autonomous Vehicle (CAV). A stable vehicular network
infrastructure has an important role in driving safety such as
collision warning, slippery road detection, and traffic lights
warning signs [7].

Software-defined networking is an emerging solution that
is used to handle network management [8]. The major idea
of the SDN architecture is the separation of the data and the
control planes to perform fast data forwarding and to achieve
central control [9]. Network devices have the responsibility
of data forwarding, while SDN controllers are responsible
for manage network operations [10]. Southbound interface
connects the data and the control planes [11]. In addition,
there is an application plane that composes of end user
applications which interact with the SDN controllers via
the northbound interface to perform specific tasks such as
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mobility management, routing, access control, security, file
transfer, and supervising [12]–[14].

Machine learning is a branch of artificial intelligence
(AI) that focuses on learning computers how to use data
to provide a solution of a problem [15]. It can find a
simple solution to a complex problem by analyzing a large
amount of data and predicting a solution in a short time
and with high accuracy. 5G cellular networks are becoming
complex due to new types of services and a large number of
connected devices [16]. Machine learning techniques should
be used to make 5G network operations more effective
[17]. There are three classes of learning techniques, which

are supervised, unsupervised, and reinforcement learnings.
Supervised learning uses labeled training datasets to identify
patterns or behaviors, while unlabeled training datasets are
used by unsupervised learning. In reinforcement learning,
rewards and punishments are used as signals for correct and
wrong actions, respectively [15], [18].

Heterogeneous ultra-dense network is one of the most
promising technology for 5G cellular networks. HUDNs
refers to networks that combine a very dense deployment
of small cells with traditional Long-Term Evolution (LTE)
macrocell. In other words, HUDNs are a multi-tier networks
that involves very dense low-power small cells and high-
power legacy macrocells [19]. Small cells can be installed
on utility pole and street light, and light poles [20], [21].

In 5G cellular networks, small cells are used to increase
the achievable throughput and minimize the energy con-
sumption [22]. The traditional scheme of cell selection
is based on the received signal strength indicators. In
5G HUDNs, this method is inefficient and leads to ping-
pong effect [23]. Ping-pong effect means the number of
handovers in a specific period exceeds a threshold [24]. The
cell selection in HUDNs is a challenging task and it faces
many issues as shown in Figure 1. The existence of high-
density of 5G small cells in addition to the legacy macrocells
increases the complexity of selection process. The macro
cells are still required in HUDNs for high-speed mobile
stations (MSs), while the small cells are used by low- and
medium-speed MSs [25], [26]. 5G HUDNs differ in terms
of density, distribution, and sizes of cells. In additions, city
roads differ in their types and associated features such as
speed limits, lane widths, and traffic volumes. Furthermore,
the moving stations have different velocities and directions
based on moving behavior and the followed path. Due to
these differences, there is a high probability that a non-ideal
base station will be selected. A non-ideal base station means
a base station that leads to ping-pong effect or a failing in
handover [23].

The cell selection decision can be coordinated by using
SDN solution [27], and the combination of SDN and ML
creates a new network management approach [28], [29].

A. MAIN CONTRIBUTIONS

The main contributions of this paper are as follows:

1) Proposing an adaptive cell selection scheme called
A2T-Boost for mobile stations, such as vehicles, bikes
and pedestrian. It has the ability to adapt to different
characteristics of HUDNs and mobile station move-
ments. In addition, it aims to maximize the dwell
time of a vehicle within a serving cell based on time
estimation by relying on four parameters.

2) Modeling the heterogeneous ultra-dense networks
based on a real-world dataset that was collected in
the city of Los Angeles, where a high-density area of
small base stations is selected to be studied.

3) Creating a new network management solution by
combining of SDN and ML techniques. AdaBoost
model is trained and it achieves prediction accuracy
of 99.58%.

4) Modeling vehicle movement behaviour on the LA
map based on the principle of reackoning, where the
geographical coordinated, direction, and speed of a
MS are considered.

5) Achieving superiority over the traditional and re-
cent related works in terms of average number of
handovers by up to 50%. In addition, the average
achievable downlink sum-rates and network energy
efficiency achieved by vehicles are enhanced by up
to 33.76%. Furthermore, the average packet delay
is decreased using the proposed scheme by up to
12.87%.

B. PAPER OUTLINE
The rest of this paper is organized as follows: Section II
provide a review of related works. The proposed A2T-Boost
approach is described in detail in Section III. Section IV
explains the methodology of the study in terms of simu-
lation tool, datasets, and system model. The performance
evaluation of the proposed approach is discussed in Section
V. The paper is concluded in Section VI.

II. RELATED WORKS
In this section, recent related cell selection (CS) methods
are explained. Some of these methods depend on machine
learning techniques to predict the optimal wireless cell,
while others do not use ML to solve the selection issue. At
the end of this section, the limitations of the existing works
are given and the recent trends that have been followed by
our proposed approach are discussed.

A. NON ML-BASED CELL SELECTION STRATEGIES
In [30], topology-aware skipping methods are introduced
by Arshad et al. to solve the problem of unnecessary
handovers. The Poisson point process is used to model a
single-tier networks, while the Poisson cluster process is
utilized to provide a model for two-tier networks. According
to the location of a user and/or the size of a wireless
cell, the handover decision is initiated. Simulation results
demonstrate that the proposed strategies have superiority
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FIGURE 1: Cell selection issue in HUDNs.

over the traditional cell selection scheme in terms of the
mean user throughput by up to 47%.

Tesema et al. proposed a fast cell select scheme in
[31], where the serving wirless cell is selected according

to the value of the signal-to-interference-plus-noise ratio.
The proposed scheme supports multi-connectivity in order
to enhance the reliability of the communication in 5G
networks. Simulation results show that achievable sum rate
is improved and the radio link failures issue is overcome.

In [32], Kapoor et al. proposed four cell selection
strategies for urban wireless networks. The first strategy
is called minimum distance in the vehicle direction (MD-
VD), while the second one is known as minimum load in
the vehicle direction (ML-VD). The third and the fourth
strategies are next neighbor on the same street (NN-S) and
on the opposite street (NN-O). To perform the selection
task based on Kapoor’s methods, K-nearest base stations
are selected, which are known as shortlisted stations. Then,
BSs that are existed in the vehicle direction and belong to
shortlisted stations are chosen. After that, based on the aim
of the proposed strategy, the serving BS is selected. A base
station that has the minimum distance and the minimum
load in the vehicle direction will be chosen by MD-VD and
ML-VD approaches, respectively. Based on NN-S approach,
the BS that is located in the range of 0 to π/2 and has the
minimum angle is selected. The base station that is existed
in the range of π/2 to π and has the minimum angle will be
chosen according to the NN-O approach. Simulation results
prove that the MD-VD approach is the worst one in term

of the average number of handovers.
Cacciapuoti introduced a cell selection strategy for 5G

networks in [33] where a polynomial-time association al-
gorithm is proposed. It considers user mobility and cell loads
and thus the proposed strategy mitigates the congestion at
base stations. In addition, it avoids the issues of millimeter-
wave communications such as directionality, blockage and
the effects of non-line-of-sight propagation. The spatial
distribution is considered when the 5G small base stations
were distributed. The numerical result displays that the
proposed strategy has superiority over the conventional cell
selection scheme and the handovers rate is reduced.

In [34], a parallel dynamic cell selection method was
proposed by Naderializadeh et al. It based on the received
signal-to-interference-plus-noise ratio (SINR) and priority of
users. A set of transmission points and users are randomly
distributed in an area of 200 by 200 meters2. The proposed
method passes through four steps to achieve the cell selec-
tion task. The fist step is the association between a user and
a transmission point based on the SINR value. The second
step is users ordering according to their priorities, while
the third step is users scheduling which performed when a
transmission point works on multiple-users mode. The last
step is link scheduling to mitigate the interference effect by
deactivating a set of transmission points. The simulation re-
sults proved the superiority of the proposed dynamic method
in terms of throughput and network coverage compared to
some benchmark methods.

A cell selection approach was proposed by Kishida et
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al. in [35] for 5G multi-layered Radio Access Networks
(RANs). It considers the direction and velocity of UE
movement to reduce the number of frequent handovers. The
final decision is based on the value of SINR, whereby the
BS that has the maximum SINR value will be selected.
The RAN network is modeled based on actual locations of
base stations in Shinjuku, Tokyo. Simulation results proved
that the proposed approach achieved an approximate 30%
improvement in the number of handovers while maintaining
the average flow time.

Elkourdi et al. developed a Bayesian-based user associ-
ation scheme in [36] for 5G heterogeneous networks. The
first player is user equipment (UE) that is classified into
delay sensitive and tolerant users. The second player of the
Bayesian game is access nodes. A two-tier heterogeneous
network is considered with random distribution of low-
power node (LPN) in an service area of 400 × 400 meters2

with density of 20 LPNs/km2. The UEs are distributed
based on a homogeneous PPP. Simulation results demon-
strates that the proposed scheme has superiority over the
conventional and cell-range-expansion (CRE) approaches in
terms of end-to-end latency and the appropriate association
probability.

A cell selection scheme is developed by Liu et al. in [37]
that achieves the selection task based on multiple attributes
decision-making (MADM) and fuzzy logic algorithms. The
selection of the serving cell is taken based on many factors
which are SINR, reference signal receiving power (RSRP),
and jitter. The process of generating the proper fuzzy
membership function is performed based on subtractive
clustering algorithm. The simulation results show that the
proposed scheme outperforms the RSSI-based approaches in
terms of handover rates by 90% and it minimizes the ratio
of ping-pong effects by 10%, while the quality of service
level is maintained.

In [38], Sun et al. introduced two cell selection ap-
proaches for HUDNs that based on the concept of coor-
dinated multipoint (CoMP). The first approach is known
as movement-aware CoMP handover (MACH), while the
second one is called improved MACH (iMACH). According
to the MACH strategy, a set of base stations are chosen that
have the highest signal power and residence time greater
than a certain threshold. Then, the handover is initiated
when the farthest base station in the set becomes the closest.
The iMACH strategy is an improvement of MACH strategy
where the nearest base station is added to the selected set
of BSs, instead of the station that has the lowest signal
power in the set. After that, the handover is triggered when
the closet base station becomes the farthest one. Simulation
results show that the average achievable sum rate, number of
handovers, and coverage probability are improved by both
MACH and iMACH approaches.

In [39], a cell selection method, known as called Han-
dover based on Resident Time Prediction (HO RTP), was
proposed by Qin et al. It was designed for 5G ultra-dense
networks and the main idea of the HO RTP method is the

estimation of the residence time within the serving cell.
Then, the cell that has the strongest receiving power with
a residence time longer than a certain threshold will be
selected. Simulation results show that the HO RTP method
outperforms the conventional RSSI-based method in terms
of average achievable user sum-rates.

Alablani and Arafah developed an adaptive cell selection
(ADA-CS) strategy in [26], for 5G heterogeneous ultra-
dense networks. The selection of the serving BS is based
on user’s movement and network characteristics. To perform
the cell selection task, six phases should be achieved which
are (1) configuration, (2) decision-making, (3) filtering, (4)
narrowing, (5) selecting, and (6) handover triggering. Simu-
lation results proved that the ADA-CS method outperforms
the traditional and recent related strategies in terms of
the mean achievable downlink data rates. In addition, the
spectral efficiency and handover rate are enhanced.

Table 1 represents a comparison among recent non ML-
based cell selection schemes in terms of cell selection
factors and system model.

B. ML-BASED CELL SELECTION STRATEGIES
Dilranjan et al. introduced a cell selection method for 5G
cellular networks in [41]. A Recurrent Neural Network
(RNN) is used to predict the optimal BS that a mobile
user will be associated with. To train the proposed RNN
model, received signal strength (RSS) values are used.
The proposed RNN architecture has three layers, which
are input, hidden, and output. The RNN model has 640
neurons and the used activation functions are sigmoid and
tanh. To evaluate the performance of the proposed approach,
Google’s Python- based Tensorflow library was utilized. The
learning rate is set to 0.0003 and the model training took 35
minutes. An area of 36 km2 is considered that has eight base
stations that are distributed randomly. A mobile node, which
can be a pedestrian or a vehicle, can connect with three
nearest base stations. Simulation results demonstrate that
the proposed RNN-based method yielded 98% prediction
accuracy of the serving cell.

Perez et al. developed in [42] an ML-based strategy
for 5G heterogeneous networks that aims to perform the
user association task. The proposed strategy uses the Q-
learning algorithm and it based on BS load, the index of
the base station, and SINR value to predict the serving
BS. Simulation results proved that the proposed strategy has
superiority over other existed methods.

In [43], Zhang et al. proposed an ML-assisted cell
selection approach in wireless cellular networks for drones.
The prediction method of the serving cell is based on a
conditional random field model that uses SINR values. Sim-
ulation results proved that the proposed ML-based approach
achieved prediction accuracy of 90% and it has superiority
over two heuristic-based approaches.

Zappone et al. developed a user association strategy
for massive multiple-input and multiple-output (mMIMO)
networks in [44] to enhance the user throughput. It based on
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TABLE 1: A comparison among recent non ML-based cell selection schemes.

Ref Year Authors Cell selection factors System model

[30] 2016 Arshad et al. User position, cell size PPP and PCP distributions

[31] 2016 Tesema et al. RSRP, noise power Hexagonal grid

[32] 2017 Kapoor et al. Distance, vehicle direction, cell load, azimuth Deterministic distribution

[33] 2017 Cacciapuoti Cell load, distance Spatial distribution

[34] 2018 Naderializadeh et al. SINR, UE priority Uniform random distribution

[35] 2018 Kishida et al. SINR, direction and velocity of UE Metropolitan case study in Shinjuku, Tokyo

[36] 2018 Elkourdi et al. SINR, UE priority Random distribution

[37] 2019 Liu et al. RSRP, SINR, Jitter Deterministic distribution

[40] 2020 Zhang et al. Channel gain, cell load, UEs fairness Random distribution

[38] 2021 Sun et al. Dwell time, distance PPP distribution

[39] 2021 Qin et al. RSSI, residence time Tyson polygon distribution

[26] 2021 Alablani and Arafah RSSI, speed, azimuth, load, and cone angle Hexagonal grid

deep learning where a feed-forward artificial neural network
is used to predict the optimal serving cell. The neural
network consists of four layers and the input to the neural
network is geographical locations of users. Rectified Linear
Unit (ReLU) and sigmoid activation functions are used. The
adaptive moment (ADAM) is utilized as an optimizer. The
numbers of training and testing sets are 140,000 and 15,000
samples, respectively. Numerical results demonstrate that
the proposed strategy the computational complexity of the
user association process is reduced in comparison to the
conventional RSSI-based approach.

In [45], two hidden Markov-model (HMM) based ML
techniques suggested by Balapuwaduge et al. were in-
troduced to address a cell selection issue. The key ob-
jectives of the suggested HMM-based ML methods were
the accessibility and reliability of network resources. The
proposed strategies outperformed a random cell selection
method in simulations in terms of channel availability and
dependability.

An ML-based cell selection method for automobiles in
mmWave networks was introduced by Khan et al. in [46].
The vehicle association problem is solved using distributed
deep reinforcement learning (DDRL). The Markov decision
process is used to formulate the reinforcement learning
problem. This framework, known as Asynchronous Advan-
tage Actor Critic (A3C), combines actors and critics. Road-
side units (RSUs) transmit their actions to a centralized body
that determines the RSUs’ compensation. When compared
to existing complex methods, the suggested technique has
lower control overhead and computational complexity. The

suggested DDRL-based approach outperforms existing cell
selection schemes in terms of possible sum rate by up to
15%, according to numerical results.

Zhang et al. created an intelligent machine-learning-based
user association for 5G heterogeneous networks in [40]. A
cross-entropy technique was used to label the ideal base
station to be associated with the challenge as a super-
vised learning assignment. To address the user association
problem while adhering to the cell load constraint, a U-
Net convolutional neural network (CNN) was trained. The
outputs of the ML model were the user association matrices
whereas the inputs of CNN were channel gain matrices that
were translated onto pictures. Simulation findings showed
that the suggested strategies improved computing speed and
network robustness.

In [47], Anand et al. proposed an ML-based cell selection
approach for a single-tier LTE environment called Machine
Learning-Network Selector (ML-NetSel). It aims to improve
the quality-of-service for video applications. Two machine
learning predictors are trained to perform the network se-
lection task which are Support Vector Machine (SVM) and
Random Forest (RF). The input features of the ML models
are QoS parameters which include throughput, packet loss
ratio (PLR), and delay. Two LTE base stations and up to
50 users are considered in the study. The SVM predic-
tor achieves an accuracy of 92.4, while the RF predictor
achieves an accuracy of 97.1%. Simulation results demon-
strate that the ML-NetSel enhances the network performance
in terms of throughput, delay and packet loss ratio.
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C. LIMITATIONS OF RECENT CELL SELECTION WORKS
The limitations of recent cell selection works that are
presented in this section are:

• The majority of modern works choose the serving base
stations in a static, non-adaptive manner. Given that
HUDNs have many tiers, adaptive selection, which
may be carried out by establishing certain thresholds
to transition between the network tiers, is favored.
Macro-BSs are preferred for vehicles that have very
high speed to preserve performance of the network.
The serving BSs for low- and medium-speed vehicles,
however, will be small BSs.

• Recent studies prioritize BSs with the highest receiving
power to increase the throughput that can be achieved.
The nearest BS with the best reception strength will be
far away in mobility situations while the user is going
forward. Because of the numerous handovers caused by
relying on this theory, network performance suffers.

• Some works rely on the estimation of the mobile
station’s cell dwell duration, which is a crucial element
in choosing the serving cell. However, these studies
estimate the dwell time by assuming the mobile station
is near the cell’s edge for simplicity’s sake, which is
incorrect.

• While there are less ML-based works than non-ML-
based works, forecasting serving BSs must be based on
ML techniques to minimize computational complexity
and thus shorten the cell selection delay. A machine
learning model’s input characteristics should also be
properly chosen in order for the trained model to
effectively handle the cell selection issue. To develop
an effective ML model, training and testing datasets
should also be created or acquired using trusted meth-
ods.

• It is better to use a cell selection approach in a real-
world setting to examine the efficacy of the suggested
technique. Applying these works to real-world sce-
narios will result in suboptimal network performance
because they were designed for specific typologies.

Given the aforementioned restrictions, it is necessary to
use cell selection techniques that can be modified to choose
the serving cell to be linked with in order to preserve
network performance. Additionally, depending on machine
learning techniques is a modern trend that we ought to
use in order to decrease the computational complexity and
prediction time. Additionally, it is preferable to apply a
suggested cell selection algorithm in a real-world setting to
assess the efficiency and viability of the suggested approach.

III. THE PROPOSED A2T-BOOST APPROACH
In this section, the proposed adaptive cell selection scheme
is explained in terms of problem formulation, the proposed
SDN/ML-Based model building process, and the framework
of the cell selection approach. At the end of this section, a
case study is given to show how the cell selection process

is performed based on this proposed method in comparison
to other recent related methods.

A. OPTIMIZATION PROBLEM AND FORMULATION
The macro- and small base stations (referred to as BSsmacro

and BSssmall), respectively, are included in the set of base
stations given by the notation BSs = {B1, B2, . . . , BI}.
Total network vehicles are spread throughout a HUDN and
are denoted as V1, V2, ..., VJ . A single BS can only have
one vehicle linked at once. The association matrix between
base stations and vehicles is represented by the notation A
= {A11, A12, ..., AIJ}, where Aij represents the association
variable between base station Bi and vehicle Vj and has
two possible values: 0 and 1.

Aij =

{
1 1 if Vj associates with Bi

0 otherwise
(1)

The constrained optimization problem is posed for the
vehicle association in a HUDN, whose objective function is
to maximize the dwell time of a vehicle within a serving
cell within the association duration (i.e., t ∈ {t0, t2.., tn}).
Therefore, the optimization problem is shown in equation
2.

max

I∑
i=1

tn∑
t=t0

Aij(t) Tdij(t), ∀ Vj ∈ V Bi ∈ BS. (2)

B. VEHICLE ASSOCIATION CONSTRAINTS
The vehicle association process is restricted by a set of
constraints which are

1) Number of simultaneous association constraint: A
vehicle can connect with only one base station at a
time.

C1 :
∑
I

Aij = 1,∀ Vj ∈ V. (3)

2) Maximum BS Load constraint: The maximum load of
a BS Bi, which is referred to as Lmax, should not be
exceeded.

C2 :
∑
J

Aij = Li,∀Bi ∈ BS; 0 ≤ Li ≤ Lmax (4)

3) Transmission power constraint: The maximum trans-
mission power (ptxmax

) of vehicle Vj should be con-
sidered. Therefore, we have

C3 :
∑
J

Aijptxij ≤ ptxmax ,∀Bi ∈ BS. (5)

4) Quality of Service constraint: The minimum achiev-
able sum rate (Rmin) for a vehicle Vj , must be
maintained.

C4 :
∑
I

Aijrij ≥ Rmin,∀Vj ∈ V. (6)

6 VOLUME 15, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3237851

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



C. THE PROPOSED SDN/ML-BASED MODEL BUILDING
PROCESS

To build the proposed SDN/ML-based model, five main
stages have been passed through, as shown in Figure 2 which
are:

• Stage 1: Data Preparation: The objective of this stage
is to gather, create, and prepare data from vehicles as
well as from large and small base stations. The data
needed to train and test the suggested machine learning
model will be ready at the conclusion of this phase.

1) Dataset Collecting: The proper dataset for the
macro and small base stations should be gathered
in this step. The BSs dataset, which includes
data on both macro and minor BSs, may be
downloaded from the Internet as a single file.
The information on macro and mini BSs may
be discovered in other hands as two independent
databases. The BS dataset must contain the ge-
ographic location data for BSs in the form of
latitude and longitude coordinates. In addition,
vehicle dataset is collected based on the selected
study area. Some applications can be used to
accomplish this task such as Google Maps, Me-
diaQ and Ultra GPS Logger. We may find vehicle
datasets available for download on the Internet
that have been collected by other researcher. The
most important things that must be available in
the vehicle dataset is the geographical locations,
directions and speeds of vehicle samples.

2) Data Cleaning: The data that is not utilized by
the suggested cell selection technique to forecast
the serving BS is eliminated in the cleaning step.

3) Data Labeling: The adaptive two-tier (A2T)
method is used to accomplish the labelling pro-
cess. Algorithm 1 shows the pseudocode of A2T
labeling algorithm which is used to assign a label
of a serving base station ID for each sample in
the vehicle dataset to train the machine learning
model. As shown in Algorithm 1, the proposed
cell selection scheme targets the small BS located
in the service range that has longest dwell time
and with load lower than the load threshold,
if a vehicle speed is lower than the predeter-
mined speed threshold. Otherwise, the proposed
A2T scheme aims to prevent frequent handovers
by selecting a serving BS from the macro BS
tier. The small and macro- BSs are represented
by BSssmall and BSsmacro. The vehicle speed
threshold, the received signal strength indicator
threshold, and the BS’s load threshold are ex-
pressed by Ŝ, ˆRSSI , and L̂, respectively. The
cell radius is denoted by R and the dwell time
of a vehicle within a cell is represented by Tdij

.
The distance and azimuth between a base station
Bi and vehicle Vj are represented by dij and

Algorithm 1: A2T labeling algorithm pseudocode.

input : BSssmall, BSsmacro, V.
output: BS
Set L̂, Ŝ, ˆRSSI, and R.
for each Vj ∈ V do

if Vj .kspeed < Ŝ then
=== Determine a serving small BS ===
BSs′small= Thresholding (BSssmall,

ˆRSSI);
Z = {Bi|Bi ∈ BSs′small and load < L̂};
Tdij =
dij cos(θij)+

√
R2−d2

ij sin2(θij)

si
;∀ Bi ∈ Z

BS = {Bi|Bi ∈ Z & has max(Tdij )};
end if
if Length (BS==0) then

=== Determine a serving macro BS ===
BSs′macro= Thresholding (BSsmacro,

ˆRSSI);
Z = {Bi|Bi ∈ BSs′macro}
BS = {Bi|Bi ∈ Z & has max(RSSIij);

end if
end for

θij , respectively. Threshold function is applied to
speed-up the searches for the serving base station
where the BSs that pass the RSSI threshold con-
dition will be checked [48]. Our proposed A2T-
Boost considers the traffic load of base stations
to avoid blocking probability, which refers to the
probability that a connection request is blocked
due to lack of resources. The adaptability of the
proposed protocol is clear by its ability to switch
to the macro BS tier if the speed of vehicle is
greater than the predefined speed threshold, where
the macro BS that has the largest RSSI value is
selected to be the serving BS. This adaptability
feature of the proposed protocol helps to maintain
a good performance in terms of average of dwell
time, number of HOs, sum rate, and packet delay.
The dwell time of a vehicle within a serving
base station is estimated based on Equation 7.
The time estimation depends on four parameters
which are (1) the radius of a cell, (2) the distance
between the current location of a vehicle and the
BS, (3) the angle between the vehicle direction
and BS, and (4) the vehicle’s speed. Considering
all factors influencing the staying time will help to
choose the serving cell with the longest residence
duration.

Td = (d cos(θ) +
√

R2 − d2 sin2(θ))/s (7)

Where s is vehicle speed. The raduis of the
serving cell is expressed by R.
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FIGURE 2: Stages of construction for the proposed SDN/ML-based model.

4) Data Splitting: The samples of data are split
into two datasets: a training set for building ML
models and a testing set for evaluating models.
An 80/20 (training/testing set) ratio was applied
in this study. Items from the entire dataset were
randomly chosen for the training sample, while
the remaining items were used for the testing
sample. It is worth mentioning that all classes
should be existed in training and testing sets.

• Stage 2: ML Model Training: The machine learning
model was trained using the training samples at this
stage. In this work, K-Nearest Neighbors (KNN),
SVM, Naive Bayes (NB), Artificial Neural Network
(ANN), XGBoost, RF, Decision Tree (DT), Adaptive
Boost (AdaBoost) classifiers were trained to perform
classification task based on supervised learning.

• Stage 3: ML Model Testing: The testing samples were
used to evaluate the trained ML classifiers. In Section
V-A, the effectiveness of the trained ML models is
described in detail.

• Stage 4: ML Model Deployment: AdaBoost classifier,
a trained machine learning model with the highest
prediction accuracy, is deployed on the SDN controller.
An SDN-based vehicular network’s central part, the
SDN controller, is physically coupled to other network
components, such as wireless base stations [49], [50].
It is in charge of carrying out the adaptive cell se-
lection task using the set up ML model. Algorithm
2 gives the pseudocode for the proposed A2T-Boost
scheme. The inputs for the trained adaptive boost
model (AdaBoostMdl) are the latitude (V.lat) and the
longitude (V.lon) coordinates of the moving vehicle,
the azimuth between the direction of the vehicle and the
north (V.Azimuth) and the vehicle speed (V.kspeed).
According to the given vehicle information, AdaBoost-
Mdl can predict the serving BS to be connected with.

The idea of turning off some BSs to reduce the power
consumption can be applied using our proposed A2T-Boost
protocol if a list of sleeping BSs is given to be excluded
when performing the prediction task using the trained ma-
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Algorithm 2: Pseudocode for A2T-Boost algorithm.

input : V.lat, V.lon, V.azimuth, V.kspeed.
output: Output:BS.
while V ehicle V moves do

if RSSI < Th || Length(BS) == 0 then
Input =
[V.lat, V.lon, V.azimuth, V.kspeed, ];
BS = AdaBoostMdl (Input);
Trigger handover to BS# BS;

end if
end while

chine learning model.

D. THE ARCHITECTURE OF THE PROPOSED
SDN/ML-BASED CELL SELECTION STRATEGY
As seen in Figure 3, the architecture is built by involving
SDN and ML solutions. SDN is used to carry out effective
cell selection and traffic management duties based on the
installed trained machine learning model. The geographic
coordinates of the vehicle (i.e., latitude (LAT ) and lon-
gitude (LON )), the azimuth between the direction of the
vehicle and the north (AZIMUTH), and the vehicle speed
in kilometres per hour are the inputs for the ML-model
(KSPEED). The ML model can forecast the ideal BS to
be associated with, whether it is a macro- or small BS, based
on the provided vehicle information.

IV. THE METHODOLOGY
In this section, the methodology for performing the cell
selection task in 5G HUDNs is presented in detail in terms
of simulation tool, datasets, and system model.

A. SIMULATION TOOL
Due to its robust capabilities, the MATLAB 2021b simulator
was utilized to model and analyze the effectiveness of the
suggested cell selection technique. Additionally, the cell se-
lection process can be carried out in a realistic setting using
one of the various tool boxes available in the MATLAB
simulator. The simulation was carried out using a powerful
gaming machine that has AMD Rayzan 7 processor, 64GB
DDR RAM, and NVIDIA EVGA GeForce RTX 2070 Super
GPU.

B. DATASETS
In this work, three datasets were used for to built and
evaluate the proposed cell selection scheme in the city of
Los Angeles. The first two are for macro and small BSs and
the third one is for vehicles.

• Macro BSs Dataset: This dataset stores information
of 5,248 microwave towers in the country of LA
[51]. It was published by LA GeoHub governmental

website on September 16, 2016 and it was updated
on November 10, 2020. It includes many columns, the

TABLE 2: Numbers of macro and small BSs and vehicle
samples

Number of macro BSs 38
Number of small BSs 198

Number of vehicle samples 74,170 Training (80%): 59,336
Testing (20%): 14,834

most important of which are the BS object identifier
(OBJECTID) and the latitude and longitude coordi-
nates of the macro BSs. Figure 4 shows a snapshot of
the used LA macro BSs dataset.

• Small BSs Dataset: The city of Los Angeles’s 1,796
5G small base stations mounted on streetlight poles
are included in this collection. The primary website
for LA, data.LAcity.org, is the one that publishes it
[52]. On November 10, 2020, metadata was created,

and on October 8, 2021, it was updated [53]. It
has two columns: small BS IDs (SLID) and the
geometry of SBSs (the_geom). The small BSs’ latitude
and longitude coordinates are listed in the the_geom
column.
The distributions of the macro and small BSs in Los
Angeles based on the mentioned BSs datasets are
shown in Figure 5.

• Vehicles Dataset: A dataset of vehicles in a high-
density area of small cells in Los Angeles is used in this
work, which was proposed in [54]. It called Vehicle
Dataset in the city of LA (VehDS-LA). It was generated
using Google Maps and the MATLAB simulator. The
VehDS-LA has 74,170 samples that are existed on
fifteen LA streets and each vehicle sample has four
features. The vehicle dataset has five columns which
are street name, latitude, longitude, azimuth and speed.

C. SYSTEM MODEL
1) Network Model

In this paper, a two-tier mmWave-based heterogeneous ultra-
dense network is considered. The first tier, which consists
of traditional LTE macro-cells, runs at a carrier frequency
of 2 GHz with a bandwidth of 10 MHz. The second tier,
which includes 5G small cells, works at a carrier frequency
of 28 GHz with a bandwidth of 500 MHz. The system
model represents the distribution of base stations in selected
areas in Los Angeles that have a high-density of small cells.
Figure 6 shows the system model in the selected area in
LA, showing the positions of macro and small cells and the
distribution of vehicle samples on the surrounding streets.
Table 2 gives the numbers of macro and small BSs and
vehicle samples in the selected area in LA. The vehicles
samples were divided into 80% for training and 20% for
testing purposes.

The architecture of the proposed SDN-based heteroge-
neous network is represented in Figure 7. The network
is split into many areas and a distributed set of SDN
controllers are working in a flat formation. Each SDN
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FIGURE 3: The architecture of the Proposed SDN/ML-Based solution

FIGURE 4: A snapshot of the LA macro BSs dataset.

controller manages a specific area and performs the cell
selection task based on the installed trained ML model.
Organizing the SDN controllers in flat fashion reduces the
control delay and improves the resiliency of the system.
SDN switch is responsible for directing the flow of data
in the determined area. Eastbound/westbound interfaces are

used to connect all SDN controllers to exchange network
information.

D. PROPAGATION AND TRAFFIC MODELS

In this study, path-loss (PL), fading, and shadowing are
considered, which are the three essential parts of the prop-
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FIGURE 5: Distribution of BSs in Los Angeles.

agation channel model. The principal losses that impact
the strength of wireless transmissions are those mentioned
above. To determine the received signal power at a specific
separation from the serving base station, the 3GPP path loss
models are employed. According to 3GPP Technical Report
(TR) 38.901 version 16.1.0 [55], the urban macro-cell-non-
line-of-sight (UMa-NLOS) PL model is used by the macro-
BSs tier, whereas the urban microcell-line-of-sight (UMi-
LOS) (street canyon) model is used by the small BSs tier.
Rayleigh fading is taken into account in this study because
it provides a close approximation of true wireless channel
conditions. It has a unit mean and follows an independent
exponential distribution [56]. Additionally, because it is
frequently employed to describe the link between RSSI and
range, log-normal shadowing is taken into account [57]. It
has a standard deviation of 4 dB and 6 dB for small BS tier
and macro-BS tier, respectively based on the used 3GPP
specifications. The formula of RSSI is given in Equation 8.

RSSIij = ptxi − ζij(d) ∀ Vj ∈ V and ∀ Bi ∈ BSs. (8)

For the traffic model, file transfer requests are considered
which follow a Poisson point process that has arrival rate
λ.

1) Movement Behaviour Model
Vehicle movement behaviour is modeled based on a process
called reckoning. The new geographical position of a

vehicle is reckoned based on the current vehicle location
(latitude and longitude coordinates), the movement distance,
and the azimuth between vehicle direction and the north
(Figure 8). In MATLAB simulator, reckon function belongs
to Mapping Toolbox, which is a toolbox that includes many
algorithms and functions for transforming and visualizing
the geographic information. Figure 9 shows vehicle move-
ment process on S San Perdo and the 6th streets based on
the reckoning process.

V. PERFORMANCE EVALUATION

In this section, the performance metrics, which are the
key performance indicators (KPIs) that are used to evaluate
the trained machine learning models and the proposed cell
selection scheme, are discussed.

A. EVALUATION OF THE TRAINED ML MODELS

Common metrics for measuring prediction mistakes include
root mean square error (RMSE) and mean absolute error
(MAE) [58], [59]. The root mean square error calculates
the deviation between the predicted and actual values. The
average of the absolute difference between the predicted and
the target values is calculated using the mean absolute error.
Equations (9) and (10) show the definitions of RMSE and
MAE, respectively.
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FIGURE 6: System model in Los Angeles.

FIGURE 7: The architecture of the proposed SDN-based HUDN.
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×

FIGURE 8: Modeling vehicle movement behaviour based
on reckoning process.

RMSE =

√
1

N
ΣN

i=1(ŷi − yi)2 (9)

MAE =
1

N
ΣN

i=1|yi − ŷi|, (10)

where the expected and the target small BSs are represented
by ŷ and y, respectively, and the number of testing samples
is given by N .

A confusion matrix, also known as a contingency table,
is built to assess the performance of a trained ML-based
model [60]. An efficient tool for reporting the percentages
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) is the confusion matrix [61].
The TP refers to the number of samples that are predicted as
positive and they are actually positive, while the TN refers to
the number of samples that are predicted as negative and the
target class is also negative. When the ML model classifies
a sample as positive but the target class is negative, FP
classification occurs. If a sample is classified as negative and
it is actually positive, the classification is considered as FN
[62]. Accuracy refers to ratio of the number of samples that
are classified correctly to the total number of testing samples
[63], as given in Equation (11). Sensitivity is defined as the
ratio of true positives to the summation of true positives and
false negatives (Equation (12)). Specificity means the ratio
of true negatives to the summation of false positives and
true negatives (Equation (13)) [64]. Precision is the ratio of
true positives to all positives (Equation (14)) [65]. F-score
is a combination of precision and sensitivity, as shown in
Equation (15) [66]. Geometric mean (G-mean) refers to the

square root of the product of sensitivity and specificity [67],
as given in Equation (16).

Accuracy =
Number of correctly classified samples

Total number of testing samples
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

FP + TN
(13)

Precision =
TP

TP + FP
(14)

F -score =
2TP

2TP + FP + FN
(15)

G-mean =
√
(Sensitivity × Specificity). (16)

In this paper, KNN, NB, SVM, ANN, DT, RF, AdaBoost,
and XGBoost are trained to perform the prediction of the
best serving base station based on the proposed scheme, as
shown in Figure 10. Based on the selected area in LA, the
number of BS classes is 178 of which 142 are for small
BSs and the rest are for macro BSs. A grid search (GS),
which is the process of finding the optimal combination
of the hyperparameters of the targeted ML model [68], is
performed. In addition, cross-validation (CV) is used, which
is the standard method for testing the validity of the trained
ML model by splitting the data into K folds (10 in this
work) and then the model is trained K times using all data
folds except one [69]. The parameters of the trained ML
models are given in Table 3.

The evaluation values of the trained ML models in the
selected area in LA is provided in Table 4. Figure 11 repre-
sents the prediction accuracy of the trained ML classifiers.
As illustrated in the results, the AdaBoost model achieves a
high prediction performance with low percentages of error
compared with the other trained models. Therefore, it is
selected as the classifier model in this work.

Inference time, which is the time taken to predict a
serving base station ID of a vehicle test sample, has been
calculated using the MATLAB commands. We found that
our proposed AdaBoost model takes 0.23612 milliseconds
to predict the BS ID based on the specifications of the
gaming computer that are mentioned in IV-A. Based on
our findings, the prediction duration is very short and the
maximum round-trip end-to-end delay is less than 10 ms.
Therefore, our proposed A2T-Boost cell selection scheme
is suitable for 5G networks because it meets the latency
requirement.
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(a) A moving vehicle on S San Perdo Street.

(b) A moving vehicle on the 6th Street.

FIGURE 9: Displaying vehicle movement on some LA streets based on reckoning process.

B. EVALUATION OF THE PROPOSED A2T-BOOST

1) Evaluation Metrics

To evaluate the performance of our proposed A2T-Boost
approach, nine performance metrics were utilized. These
metrics are the average of (a) dwell time, (b) number of
HOs, (c) number of HO failures and unnecessary HOs, (d)
downlink sum rate, (e) achievable spectral efficiency, (f)
network energy efficiency, (g) packet delay, (h) radio link
failure rate, and (i) handover interruption time.

• Average Dwell Time The average dwell time of a vehi-
cle within a serving base station (E(Td)) is calculated
based on Equation (17).

E(Td) =

∑
J(
∑

I Td/NHO)

J
(17)

where J stands for the number of vehicles and Td is
the amount of time a vehicle Vj ∈ J spends within
a serving base station Bi ∈ I . The symbol NHO

represents the number of a vehicle handovers.
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TABLE 3: The parameters of the trained ML models

ML models Parameters

AdaBoost
max_depth=20
num_estimators=100
learning rate = 0.1

RF
max_depth=20
num_estimators=300
learning rate = 0.1

DT max_depth=20

XGBoost
max_depth=20
n_estimators=300
learning rate = 0.1

KNN
k=1
metric=’minkowski’
p=2

SVM
C=1000
gamma =1
kernel = ’rbf’

ANN

batch size = 16
epochs = 200
optimization algo= ’adam’
learning rate = 0.01
num_neurons=10
activation func=’ReLU’

TABLE 4: The trained ML models evaluation values in Los Angeles.

Performance
Metrics

AdaBoost Random
Forest

Decision
Tree

XGBoost KNN NB SVM ANN
(1 Layer)

ANN
(2 Layers)

RMSE 5.18 5.24 5.95 7.18 7.43 60.81 35.25 32.35 36.12

MAE 0.28 0.29 0.36 0.50 0.57 17.43 12.14 10.88 13.42

Accuracy
(%)

99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92

Sensitivity
(%)

99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92

Specificity
(%)

99.998 99.997 99.996 99.995 99.99 99.92 99.88 99.88 99.86

Precision
(%)

99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92

F-score (%) 99.58 99.56 99.39 99.19 98.87 85.86 79.78 79.15 75.92

G-mean (%) 99.79 99.78 99.69 99.59 99.43 92.62 89.27 88.91 87.07

• Average Number of Handovers Handover occurs
when the wireless connection from a current serving
BS is switched to another BS. The average number of
HOs (E(NHO)) is calculated based on Equation (18).

E(NHO) =

∑
J NHO

J
(18)

• Average Number of Handover Failures HO failure
happens when a vehicle’s dwell time inside a cell is
smaller than the HO delay(τi) [70]. The probability
of HO failure (Pf ) can be calculated based on the

following lemma.
Let HO latency to move into a cell be denoted by
τi and the time threshold of HOF
be denoted by T1; then,

Pf =

{
2
π [sin

−1( sτi2R )− sin−1( sT1

2R )] 0 ⩽ T1 ⩽ τi
0 τi < T1

(19)

T1 =
2R

s
sin(sin−1(

sτi
2R

)− 2

π
Pf ) ; 0 ⩽ Pf ⩽ 1 (20)

where s is the speed of a vehicle and T1 is the time
threshold of HO failures. The acceptable value of Pf
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FIGURE 10: The prediction process of the serving BS.

in this study is 0.02.
The calculation of the average number of HO failures,
E(Nf ), is presented in Equation (21).

E(Nf ) = Pf × E(NHO) (21)

• Average Number of Unnecessary Handovers Un-
necessary HO, often referred to as false HO, is a-
inessential procedure that occurs when the total amount
of time taken to move into (τi) and out (τo) of a small
cell exceeds the time spent there [71]. The follow-
ing lemma gives the calculation of the probability of
unnecessary HO (Pu).
Let HO latencies to move into a cell and to move out of the cell be
τi and τo and the time threshold of UHO be denoted by T2; then,

Pu =

{
2
π [sin

−1( s(τi+τo)
2R )− sin−1( sT2

2R )] 0 ⩽ T2 ⩽ (τi + τo)
0 (τi + τo) < T2

(22)

T2 =
2R

s
sin(sin−1(

s(τi + τo)

2R
)− 2

π
Pu) ; 0 ⩽ Pu ⩽ 1

(23)
Based on Equation (24), the mean of unnecessary of
HO, E(Nu), is estimated. The allowable value of Pu

in this study is 0.04

E(Nu) = Pu × E(NHO) (24)

• Average Downlink Sum Rate The sum-rate of a
moving vehicle Vj is obtained by summing the data

rate values achieved by the vehicle over the network
[38], as given in Equation (25).

SumRatej =
∑
i

Rij , ∀ Vj ∈ V & ∀ Bi ∈ BSs.

(25)
where Rij is the achievable DL data rates of the
vehicle Vj serving by small base stations Bi. It can
be calculated based on Shannon’s formula, as given in
Equation (26).

Rij = BW log2(1 + γij) (26)

The signal-to-interference-plus-noise ratio is calculated
by dividing the strength of the signal received from
the serving BS by the sum of interference power from
other BSs and the power of the noise [72]. The SINR
at vehicle Vj associated with the base station Bi,
which is expressed as γij , can be calculated as given
in Equation (27). The thermal noise is considered as
an additive white Gaussian noise (AWGN) with noise
power spectral density (N0), and channel bandwidth
(BW ).

γij =
ptxiζij(d)hij∑

k ̸=i(ptxk
ζkj(d)hkj) +N0BW

(27)

∀ Vj ∈ V and ∀ Bi ∈ BSs.

The transmitted power of BSs is expressed as ptx. The
path loss, ζ(d), is based on the 3GPP PL model. The
channel gain, which is denoted by h, composes of the
effects of log-normal shadowing and Rayleigh fading.
A graph-coloring algorithm is used in this work to
manage frequency resources and to control interference
issue between cells [73]. It is an efficient way to
manage interference problems in a random topology
network, such as ultra-dense networks [73], [74]. The
available frequency resources are modelled as colors.
The graph is represented by the equation G = (n, l),
where n denotes BS node nodes and l denotes links
between BSs. Each node must have a color, with the
requirements that two neighbouring nodes use distinct
frequency resources and that there be a minimum
number of colors. As a result, interference can be
prevented by allocating various colors (resources) to
nearby BSs.

• Average Downlink Spectral Efficiency Spectral effi-
ciency (SE) refers to the achievable data rate in bits
per second (bps) per channel bandwidth in hertz [75].
The SE of vehicle Vj provided by BS Bi, is shown in
Equation (28).

SEij(bps/Hz) =
Rij

BW
(28)

• Average Network Energy Efficiency An important
consideration while creating cell selection methods is
energy efficiency (EE). It is the entire data rates that
can be achieved divided by the total power used [76].
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FIGURE 11: Accuracy of the trained ML classifiers.

Equation (29) provides the energy efficiency formula,
which is expressed in bits/joules.

EE(bits/joule) =
Achievable sum rate(bps)

Total consumed power(watts)
(29)

• Average Packet Delay One of the QoS requirements
for 5G networks is to reduce the amount of delays
[77], [78]. A packet’s downlink delay is a result of

delays in transmission, propagation, processing, and
queuing [79], [80]. It can be written as Equation
(30) shows, where Dijk stands for the vehicle Vj ’s
download delay when downloading packet k through
BS Bi.

Dijk = Dtrans
ijk +Dprop

ijk +Dproc
ijk +Dqueu

ijk (30)

Equation (31) illustrates that the transmission delay,
Dtrans

ijk , is equal to the packet length (Lk) divided
by the available transmission rate (Rij) [81]. The
file transfer protocol (FTP) paradigm is taken into
consideration in this study with packet sizes up to 1500
Bytes.

Dtrans
ijk =

Lk

Rij
(31)

The amount of time needed for a packet to travel
between a base station and a vehicle is referred to as
the propagation delay, or Dprop

ijk . It can be calculated by

dividing the speed of light (c) by the distance between
a small BS Bi and a vehicle Vj (dij), as shown in
Equation (32).

Dprog
ijk =

dij
c

(32)

The processing delay, Dproc
ijk , is the time taken to

process a packet and it is measured in microseconds
[82]. A packet must wait in line at a small base station

for a certain amount of time before being sent, or
Dqueu. We take into account an M/M/1 queuing system
with an average service rate µ and an average traffic
arrival rate λ. Equation (33) illustrates how Little’s
theorem, a well-known law in queuing theory, is used
to compute queuing delay [83].

Dqueu
ijk =

1

µn − λn
(33)

Equation (34) can be used to calculate the system’s
average downlink latency.

E(D) =

∑
J(
∑

Dijk)

J
∀ Vj ∈ V and ∀ Bi ∈ BSs.

(34)
• Average Radio Link Failure Rate SINR is a term

used to describe the radio link’s quality. When the
SINR of a vehicle Vj from the serving base station
Bj drops below the out-of-synchronization threshold
(SY Nout) for an RLF detection time, which is also
referred to as TRLF , radio link failure (RLF) occurs.
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The vehicle faces an RLF issue when the TRLF timer,
which is also known as T310, has run out and the
value of SINR does not enhanced to be above the in-
synchronization threshold (SY Nin). The conditions of
a radio link failure and recovery, are shown in equations
(35) and (36) [84], [85].

CRLF : γij < SY Nout; for tout > TRLF (35)

CRecovery : γij > SY Nin; for tin > TRLF (36)

• Handover Interruption Time A crucial parameter for
evaluating the effectiveness of cell selection strategies
is handover interruption time (HIT), which is also
known as HO delay. The time when the vehicle’s
connectivity is lost while the handover operation is
being carried out is referred to as the HIT [86]. The
formula for HIT is provided in equation (37) and is the
product of the break time (TBreak), processing time
(TProc), interruption time (TInterrupt), radio access
channel time (TRACH ), and handover completion time
(THC). The 3GPP has accepted 50 millisecond to be
the typical HO interruption time [87], [88].

THIT = TBreak+TProc+TInterrupt+TRACH+THC

(37)

2) Results and Discussion
The simulation results are given and discussed in this
section. In comparison to the conventional max-RSSI, Qin
et al. HO RTP [39], and Zappone et al. ANN-based
[44] techniques, the performance of the new A2T-Boost

is evaluated. In addition, Kapoor et al. cell selection ap-
proaches [32], which are MD-VD, ML-VD, NN-S and NN-
O, are compared to our proposed scheme. The simulation
parameters that were utilized in the evaluation of the cell
selection strategies are shown in Table 5 . Figure 12 depicts
the correlation between the average number of handovers
and vehicle speeds, whereas Figure 13 illustrates the average
dwell duration of vehicles at various driving speeds. The
findings indicate that when a vehicle’s speed increases,
the dwell duration lowers, leading to an increase in the
frequency of HOs. In terms of average dwell duration and
average number of HOs, the suggested A2T-Boost algorithm
outperforms the conventional scheme, which is based on the
maximum RSSI values, Qin et al. HO RTP, Zappone et al.
ANN-based, and Kaproor et al. approaches. The suggested
A2T-Boost chooses the small BS with the longest dwell time
when it is implemented for this reason. When the speed
threshold is exceeded, the nearest macro BS is chosen to
prevent needless HOs. The NN-O scheme selects a BS in the
vehicle direction that has the smallest azimuth in the range
between /2 and, making it the second-best technique in terms
of average stay time and number of HOs. In other words, the

TABLE 5: Simulation parameters.

Simulation Parameters Values
Macro BS Small BS

Number of BSs in LA 38 198
Carrier frequency (GHz) 2 28
System bandwidth (MHz) 10 500
Transmit power (dBm) 46 30
Path loss model (dB) 3GPP UMa

Model
3GPP UMi
Model

Standard deviation of shadow factor
(dB)

6 4

Base station height (meters) 25 10
Cell radius (meters) 1400 600
SY Nout (dB) -8 -12
Number of training samples 59,336
Number of testing samples 14,834
Vehicle speeds (km/h) [10-40]
Vehicle height (meters) 1.8
RSSI threshold (dBm) -90
Speed threshold (km/h) 30
Load threshold (%) 90
Thermal noise density (dBm/Hz) -174
Shadowing Log-normal
Fast fading Rayleigh fading
Handover delay (ms) 50 [89]
TRLF (sec) 1
Simulation time (sec) 500

little BS that is chosen is the one that is closest to the vertical
line from the car’s location and is in the left quadrant of the
vehicle. As a result, the car is linked to the serving BS for a
longer time, which lowers the average HO rateHowever, the
average dwell time and the quantity of HOs are superior than
the NN-O scheme by 44.47% and 28.57%, respectively, for
the suggested A2T-Boost. The BS with the smallest azimuth
within the NN-O scheme’s allowed range does not always
result in the longest dwell time. Due to the fact that the
ML-VD scheme depends on selecting the cell with the least
amount of load facing the direction of the vehicle, the cell
selection will not be fixed regardless of the vehicle density
on the streets. In terms of average dwell duration and the
number of HOs, our suggested strategy outperforms the ML-
VD scheme by 45.78% and 34.78%, respectively. However,
depending solely on traffic load does not ensure the longest
life of the vehicle within the serving cell. Due to their
reliance on a similar method for selecting the serving small
cell, the HO RTP and MD-VD schemes perform equally
in terms of average dwell time and number of horizontal
HOs. Both plans give the closest cell to the vehicle top
priority, however relying on this idea will shorten dwell
times and increase the number of HOs. In terms of the
average number of HOs, our A2T-Boost technique exceeds
others by 45.91%. The serving cell is chosen using the NN-S
method based on which cell has the smallest angle between
0 and pi. Thus, the cell in the right quadrant for the vehicle
that is closest to the lowest horizontal line will be chosen.
When the car is travelling forward, picking the cell that is
on the lowest horizontal line will result in more HOs. In
terms of average dwell duration and the quantity of HOs,
our suggested approach performs better than it by 46.27%
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FIGURE 12: Average dwell time vs vehicle speed.
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FIGURE 13: Average number of handovers vs vehicle
speed.

and 46.43%, respectively. In terms of average dwell time and
quantity of HOs, the conventional max-RSSI and Zappone et
al. ANN-based systems perform the poorest. Without taking
into account the direction and speed of a vehicle, the max-
RSSI approach chooses a base station that has the highest
RSSI values. Based on the idea of boosting the achievable
sum-rate by relying on the shortest distance between a
base station and a vehicle, regardless of the direction and
speed of the vehicle, the Zappone et al. method uses a
trained FF-ANN model to predict the next base station.
As a result, when the speed threshold is not surpassed,
our A2T-Boost performs better than the conventional and
Zappone et al. techniques in terms of average dwell time and
number of HOs by 53.49% and 50%, respectively. Due to
the adaptive feature of the proposed algorithm, the suggested
AT2-Boost also achieves additional improvements in terms
of the average staying duration and quantity of handovers
with vehicles that exceed the speed threshold.

Average Number of HO Failures Under Different Speeds
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FIGURE 14: Average HO failures vs vehicle speed.

Figures 14 and 15 show the typical amount of HO failures
and unnecessary HOs at various speeds in the chosen
areas of Los Angeles. It is obvious that increasing speed
causes an increase in the average number of unnecessary
and unsuccessful HOs. However, we discovered that when
compared to the conventional max-RSSI, Qin et al. HO RTP,
Zappone et al. ANN-based, and Kapoor et al. techniques, the
suggested A2T-Boost algorithm obtains the lowest average
numbers of HO failures and unnecessary HOs. This is
because the A2T-Boost technique depends on precisely
calculating dwell time and has the adaptability to switch
between multiple BSs tiers based on a particular speed
threshold. As a result, when the vehicle speed is below the
speed threshold, the suggested strategy is 28.05% better than
the NN-O scheme. The A2T-Boost performs 49.57% better
than the classic max-RSSI and Zappone et al. ANN-based
approaches, and it performs 39.18% better than the HO RTP
and MD-VD methods. Additionally, the proposed strategy
outperforms the ML-VD approach by 34.44%. When the
vehicle speed exceeded the threshold as a result of the
association upgrading to the macro-BS tier, the A2T-Boost
method achieved further improvements. Figure 16 shows
the cumulative distribution function (CDF) of a vehicle’s
possible downlink data rate during the simulation period
at a particular speed (15 km/h in this case). The proposed
A2T-Boost protocol, as shown in the figure, reaches data
rate peaks that are not reached by any other techniques.
When a vehicle moves forward while using the A2T-Boost
protocol, it approaches close to the middle of a serving
wireless cell where the BS is situated, allowing the A2T-
Boost to achieve the highest possible value of the data rate.
However, relying on signal strength values and giving them
a high priority does not ensure that the highest data rates
will be reached when a vehicle. Additionally, because of
the HO latencies required to complete the handover process,
handover across cells results in lower attainable datarates.
According to the previously discussed average number of
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FIGURE 15: Average unnecessary HOs vs vehicle speed.

FIGURE 16: CDF of achievable downlink data rates by a
vehicle during simulation time.

HOs, our A2T-Boost method is the best one. In terms of
the average achievable sum rate, the A2T-Boost scheme
outperforms the max-RSSI and Zappone et al. ANN-based
methods by 5.19% and the HO RTP and MD-VD approaches
by 6.84%. is moving. In addition, it is superior to NN-
O, NN-S and ML-VD schemes by 3.08%, 33.76%, and
20.96%, respectively. Figures 17 and 18 illustrate the CDF
of spectral efficiency and network energy efficiency during
the simulation time. As the spectral efficiency is the achiev-
able sum-rate divided by channel bandwidth and the energy
efficiency is the achievable sum data rate divided by total
consumed power, the A2T-Boost algorithm is superior to the
other cell selection schemes. The reason behind this is that
it outperforms them in terms of the total achieved downlink
data rate, as illustrated in Figure 16. The percentage of
improvement in terms of average spectral efficiency and
network energy efficiency achieved by vehicles is 5.19%
compared with the conventional max-RSSI and Zappone et

FIGURE 17: CDF of achievable downlink spectral effi-
ciency by a vehicle during simulation time.

FIGURE 18: CDF of network energy efficiency achieved by
a vehicle during simulation time.

al. ANN-based methods, while A2T-Boost outperforms the
HO RTP by 6.84%. Furthermore, it is superior to Kapoor’s
et al. schemes by up to 33.76%. Figure 19 displays the
average packet delay by utilizing three packet sizes: 500,
1000, and 1500 Bytes. We found that the average delay and
packet size are directly related. Due to the delay in packet
transmission, the downlink latency grows as the packet size
does as well. Because it reduces the average propagation
time, the suggested A2T-Boost system outperforms the other
approaches in terms of mean packet delay. The propagation
delay is a function of the separation between the attached
vehicle and the serving BS. When the vehicle is close to
the cell centre, as is the case with the A2T-Boost system,
the propagation delay is at its lowest value, although it
may not be the case with other approaches. Additionally,
since a packet’s transmission delay is based on the data
rate, which is reaching its maximum values, that delay is
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FIGURE 19: Average DL packet delay vs packet size.

also lowered. The packet delay will also be improved by
lowering the number of HOs. As a result, the suggested
method outperforms both conventional and Zappone et al.
ANN-based systems by 6.05%. Additionally, it exceeds ML-
VD, NN-S, and NN-O by 11.55%, 12.87%, and 2.81%,
respectively, superior to HO RTP, MD-VD, and both by a
margin of 11.40%.

Figure 20 displays the CDF of SINR values that a vehicle
received during the simulation period. As a result, our A2T-
Boost system enhances downlink SINR since it produces
high SINR values that are not possible with the other cell
selection techniques. Using our A2T-Boost system and the
other cell selection scheme, we discovered that RLFs happen
when SINR values fall below SY Nout for TRLF , which
does not exceed 5.43%. This is because all simulation exper-
iments rely on the establishment of an RSSI threshold, and
the cell selection procedure is only applied if the received
RSSI value is below this threshold. In fact, by improving
the SINR values through the use of interference mitigation
measures, radio connection failures can be prevented. The
RLF rate can also be decreased by relying on soft handover,
which entails connecting to the new BS before breaking
the old one. Figure 21 depicts the relationship between
average cumulative handover interruption time and vehicle
speed. The graphic illustrates how our suggested A2T-Boost
system performs better than previous approaches since it
tries to increase the dwell time of cars inside serving cells
and thereby reduce the cumulative HIT. To prevent frequent
HOs, the suggested approach also applies switching between
the small BS tier and macro BS tier if the vehicle speed is
higher than the predetermined speed threshold. The Max-
RSSI and Zappone et al. ANN-based schemes, according
to our research, are the worst cell selection techniques in
terms of cumulative HIT. They choose the next BS based
on the strongest received RSSI value, which leads to a
rise in HOs and a worsening of the cumulative HIT. In
terms of cumulative HIT, our procedure performs better

FIGURE 20: CDF of received SINR values by a vehicle
during simulation time.

than their by 50%. The HO RTP and MD-VD approaches
outperform the max-RSSI and Zappone et al. ANN-based
systems in terms of cumulative HIT because they provide
the cell with the strongest signal strength the highest priority
while also taking the vehicle direction into account. As a
result, the A2T-Boost is 40% better than the HO RTP and
MD-VD techniques. The NN-O scheme is the second-best
method in terms of the cumulative HIT because it achieves
a long stay time based on selecting a BS that is located in
the left quadrant for the vehicle with the nearest vertical
line with respect to the vehicle’s location. Our proposed
scheme outperforms NN-O by 28.57%. The ML-VD does
not guarantee decreasing the HO rate of vehicles, but is
governed by the distribution of loads between cell. The NN-
S method is based on selecting cells located on the lowest
horizontal line with respect to the vehicle and this way of
selection does not guarantee a reduction in the number of
HOs. Therefore, our proposed A2T-Boost outperforms ML-
VD and NN-S in terms of cumulative HIT by 34.78% and
46.43%, respectively.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an adaptive cell selection
scheme known as A2T-Boost, which has the ability to adapt
to the different features of base stations and of mobile
stations. The proposed A2T-Boost protocol can adapt to the
changes in (1) cells’ size, load, and geographic location, and
(2) vehicles’ geographic location, speed, and direction. It is
an SDN/ML-based strategy that can solve the cell selection
issue using a trained AdaBoost model. The downtown of
Los Angeles city is taken as a study case in this paper.
Simulation results prove that our A2T-Boost can predict the
next base station with high prediction performance compar-
ing with other related strategies in terms of average number
of handovers by up to 50%. In addition, it improves the
average achievable downlink sum-rates and network energy
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FIGURE 21: Average cumulative HIT vs vehicle speed.

efficiency achieved by vehicles by up to 33.76%. Moreover,
the proposed strategy decreases the average packet latency
by up to 12.87%. For future work, further performance
metrics can be evaluated and additional study cases will be
studied to show the applicability of our proposed A2T-Boost
scheme.

APPENDIX A: LIST OF ABBREVIATIONS
The following table gives a list of abbreviations. Table6
gives a list of all abbreviations.
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