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A digital supply chain twin for managing the disruption risks and resilience in
the era of Industry 4.0
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ABSTRACT
We theorize a notion of a digital supply chain (SC) twin – a computerized model that represents net-
work states for any given moment in real time. We explore the conditions surrounding the design and
implementation of the digital twins when managing disruption risks in SCs. The combination of
model-based and data-driven approaches allows uncovering the interrelations of risk data, disruption
modeling, and performance assessment. The SC shocks and adaptations amid the COVID-19 pandemic
along with post-pandemic recoveries provide indisputable evidences for the urgent needs of digital
twins for mapping supply networks and ensuring visibility. The results of this study contribute to the
research and practice of SC risk management by enhancing predictive and reactive decisions to utilize
the advantages of SC visualization, historical disruption data analysis, and real-time disruption data
and ensure end-to-end visibility and business continuity in global companies.
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1. Introduction

Industry 4.0 constitutes a technological framework for adop-
tion of cyber-physical integration principles in manufacturing,
logistics, and supply chains (SC). Among various perspectives
(Liao et al. 2017; Strozzi et al. 2017; Tang and Veelenturf
2019; Fragapane et al. 2020; Ghadge et al. 2020), a particular
concern has been focused on how digitalisation and data
analytics capabilities can be manifested in predicting future
and identifying real-time events (Wamba et al. 2015, 2017;
Wang et al. 2016; Papadopoulos et al. 2017; Altay et al.
2018). Some researchers point out a trend towards digital
twins, i.e. computerised models that represent a physical
object in real time (Negri, Fumagalli, and Macchi 2017; Alla
et al. 2019; Frank, Dalenogare, and Ayala 2019; Singh et al.
2019). One of the substantive areas of data analytics and
digital twin applications is SC disruption risks (Choi, Chan,
and Yue 2017; Ivanov, Dolgui, and Sokolov 2019).

SC risk managers are interested in decision-making sup-
port to identify disruption scenarios, to understand the
proneness to disruptions of certain parts of the network and
fortify them, to monitor and recognise the disruptions in real
time, and to determine the actions for the time of disruption
and recovery (Oehmen et al. 2009; Wang, Tiwari, and Chen
2017; Dubey, Gunasekaran, Childe, Wamba, et al. 2019;
Hosseini, Ivanov, and Dolgui 2019). The existing optimisation
and simulation models provide a decision-making support
for stress-testing of the existing SC designs and for the
deployment of contingency and recovery plans (Ho et al.
2015; L€ucker, Seifert, and Biçer 2019). These models need
data on disruptions which happened in the past to construct

disruption scenarios, and real-time data on disruptions to
timely identify bottle-necks and to deploy the recovery poli-
cies (Ivanov et al. 2017). Recent research pointed to the new
opportunities for managing SC disruption risks by data-
driven approaches (Subramanian and Abdulrahman 2017;
Cavalcante et al. 2019; Dubey, Gunasekaran, Childe, Wamba,
et al. 2019; Ivanov, Dolgui, and Sokolov 2019).

Examples of SC disruptions range from the fire at the
Philips microchip plant in Albuquerque, New Mexico in 2000,
Hurricane Katrina in 2006, or the tsunami in Japan in 2011 to
newer examples of disruptions, such as the explosion at the
BASF plant in Germany in 2016, and a fire at the Meridian
Magnesium Products of America factory in Eaton Rapids,
Michigan in May 2018. These disasters caused a remarkable
number of SC disruptions, which resulted in long delivery
delays, decreases in revenues and sales, and production sus-
pensions that affected workforce utilisation. It was observed
that disruption directly and indirectly impacted SC perform-
ance, lowering both stock returns and firms’ competitive
positioning in the markets (Hendricks and Singhal 2005; Wu
and Olson 2008; Hendricks, Singhal, and Zhang 2009;
Colicchia et al. 2010; Marsh et al. 2011; Gunasekaran,
Nachiappan, and Shams 2015; Elluru et al. 2019; Ivanov et al.
2018; Akkermans and van Wassenhove 2018). Moreover, the
SC collapses and adaptations amid the COVID-19 pandemic
along with the analyses of post-pandemic recoveries provide
indisputable evidences for the urgent needs of digital twins
for mapping supply networks and ensuring visibility (Choi,
Rogers, and Vakil 2020; Ivanov 2020a; Ivanov and
Dolgui 2020).
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Although prominent scholars have acknowledged the diffi-
culty in predicting and detecting the disruptions that vary in
type and nature, and are too intermittent and irregular to be
identified, estimated or forecasted well (Pettit, Fiksel, and
Croxton 2010; Bhattacharya et al. 2013; Ambulkar, Blackhurst,
and Grawe 2015), relatively little consideration has been
given to theory and applications of data analytics to manage
the SC disruption risks. As a result, new research in data-
driven decision-making on proactive, resilient SC design,
including response planning activities and reactive real-time
control with the deployment of recovery plans is increasingly
becoming a dominant issue in managing risks in global SCs
(Speier et al. 2011; Mishra et al. 2016; Dubey, Gunasekaran,
Childe, Papadopoulos, et al. 2019; Bier, Lange, and Glock
2020). Moreover, operations in SCs are not only directly
affected by disruption events, but indirectly affected as well.
These events may propagate through a SC, causing the so-
called ripple effect. This propagation can increase the severity
of an event’s impact (Blackhurst et al. 2005; Mizgier, Wagner,
and Holyst 2012; Ivanov, Sokolov, and Dolgui 2014; Yildiz
et al. 2016; Scheibe and Blackhurst 2018; Dolgui, Ivanov, and
Sokolov 2018; Zhang, Chen, and Fang 2018). This is especially
true for large scale systems, such as global SCs with multi-tier
organisational networks (Dolgui et al. 2020a; Ivanov 2019a).

The quality of model-based decision-making support in
resilient SC design and recovery deployment crucially depends
on the availability of data and when that critical data can be
acquired. Examples include, but are not limited to, data about
suppliers and probabilities of route disruption, i.e. data used
to build disruption scenarios for analysing resilient SC design
(Purvis et al. 2016; Yildiz et al. 2016; Gao et al. 2019),
advanced supply signal recognition (Gao et al. 2017), or real-
time disruption detection data for timely deployment of
recovery policies (Sheffi 2015; Bode and Macdonald 2017).
Given the online nature of most of this data, the use of offline
decision-making tools is somewhat restricted in its ability to
uncover real needs in decision-making support in SC disrup-
tion risk management.

In light of the continuous growth of firms’ capabilities in
analytics, the value of data in predicting future disruptions
and recovering SC operations when they is disrupted is more
important than ever (Paul and Rahman 2018). Organisations
are looking for ways to utilise their databases to enhance
their SCs and are exploring the ways they can utilise large
volumes of data to both predict risks and assess vulnerability
(Choi and Lambert 2017; Baryannis et al. 2019) and improve
the resilience of SC operations (Choi, Chan, and Yue 2017).
Dubey, Gunasekaran, Childe, Wamba, et al. (2019) and Dubey
et al. (2018) underline that digital technologies may signifi-
cantly influence agility, adaptability, and alignment and their
impact on performance in SCs.

The application of data analytics methods are new in the
field and allow, e.g. the geospatial spread of diseases to be
predicted, emerging trends in consumer behaviour during
natural disasters such as hurricanes to be understood, social
networks and the role of social media on public behaviour
to be analysed, blockchain-based transportation control, traf-
fic flow during catastrophic events to be managed, and the

locations of relief facilities to be optimised for maximum
coverage and safety (Apte et al. 2016; Araz et al. 2013; Y€ucel
et al. 2018; Oded et al. 2007; Choi, Wallace, and Wang 2018).

With an enhancement of the existing decision-support
tools by data analytics a digital SC twin– a computerised
digital SC model that represents the network state for any
given moment in real time, allowing for complete end-
to-end SC visibility to improve resilience and test contin-
gency plans – can be created. A digital twin represents the
physical SC based on actual transportation, inventory,
demand, and capacity data and can therefore be used for
planning and real-time control decisions. SC risk managers
would benefit from tools that incorporate data analytics by
leveraging emerging real time data and surveillance systems,
predicting future impact and reactions, optimising strategic
and logistical locational decisions for efficient contingency
plan execution, and building firms’ control towers (Battarra,
Balcik, and Xu 2018; Salman and Y€ucel 2015).

The research reviewed shows a diversity of knowledge
and findings about decision-support in SC disruption risk
management (Schl€uter, Hetterscheid, and Henke 2017). Yet,
this diversity is still fragmented. Advancements gained in
quantitative analysis and data-driven analytics remain only
vaguely connected with each other. Despite some partial
efforts to uncover the impact of data analytics on SC risk
mitigation and control and the understanding of the individ-
ual contributions, left ignored, however was the interplay of
data-driven technologies and SC risk management.

The objective of this conceptual study is a further develop-
ment of the theoretical foundations to the theories of the SC
uncertainty, structural dynamics and risk analytics (Blackhurst
et al. 2005; Ivanov, Sokolov, and Kaeschel 2010; Flynn,
Koufteros, and Lu 2016; Ivanov et al. 2018; Choi, Wallace, and
Wang 2018; Dubey, Gunasekaran, Childe, Wamba, et al. 2019;
Ivanov, Dolgui, and Sokolov 2019; Panetto et al. 2019). Our
study derives methodological principles of digital SC risk ana-
lytics and combines them into a management decision-making
framework utilising the Industry 4.0 principles. This framework
can be used to design a digital supply chain (SC) twin for dis-
ruption risk management. This study closes this research gap
by combining the results gained from two areas, i.e. data-
driven analytics and model-based decision-support in SC dis-
ruption risk management. In order to narrow the research gap,
we set as our research aim the development of a management
decision-making framework, i.e. an integrated decision-support
system (DSS) for data analytics-driven, proactive resilient SC
design and reactive real-time disruption risk management.

Our study makes substantive contributions. As an outcome
of this research, we propose a conceptual-technological
framework of a generalised DSS for SC disruption manage-
ment comprising data-driven disruption modelling in the SC
and uncovering the interrelations of risk data, disruption
modelling, and performance assessment. The framework
developed, for the first time, conceptualises a unique digital
SC twin framework for managing disruption risks that in turn,
advances our understanding about when and how to inte-
grate data analytics to manage SC disruption risks. Relying on
offline decision-making only and ignoring accurate data on
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supplier and route disruptions, advanced supply signal
recognition, and real-time disruption detection can result in
misleading disruption scenarios for SC risk analysis and late
or inefficient deployment of recovery policies.

For research methodology and logic, this study is rooted in
conceptual research. To be specific, based on the literature ana-
lysis and an analysis of existing information technology applied
to SC disruption risk management, we first derive generic
methodological principles and a design structure of a digital
twin for SC disruption risk management using information con-
trol and communication theory. This analysis allows conceptu-
alising a SC disruption risk modelling framework that is used to
develop a digital SC twin based on a combination of model-
parametric and data taxonomies. Finally, the methodological
principles derived and the digital twin developed are merged
into a generalised DSS structure that, for the first time, consti-
tutes a framework integrating risk data and data-driven analyt-
ical models for SC disruption risk management building a
theoretical foundation of a digital SC twin. The theoretical con-
tribution of this study compounds the formulation of methodo-
logical principles and a conceptualisation of a generalised
design for digital SC twins. A decision-support system based on
the digital twin principles can potentially enhance research on
proactive and reactive disruption risk management strategies
and contingency plans by using the advantages of SC visibility,
historical disruption data analysis, and real-time disruption data
to ensure business continuity in global companies.

The rest of this study is organised as follows. Section 2 ana-
lyzes state-of-the-art insights gained in optimisation-simulation
methods, data analytics techniques, and information technol-
ogy for SC disruption risk management. Section 3 uncovers
methodological principles of constructing the digital SC twins.
Conceptualisation of a digital twin design framework and its
illustration through an original research are shown in Section
4. Section 5 is devoted to managerial insights and generalisa-
tion of the approach developed. The results are summarised,
discussed, and considered in light of future research in
Section 6.

2. State of the art

2.1. Model-based disruption risk management

SC disruption risk management has gained the attention of
the research community over the last two decades. As shown
in recent surveys of quantitative method applications to SC
disruption risks and resilience, the number of model-based
studies has been increasing exponentially over the last dec-
ade (Ho et al. 2015; Ivanov et al. 2017; Dolgui, Ivanov, and
Sokolov 2018; Dolgui et al. 2020a; Ivanov and Dolgui 2019;
Hosseini, Ivanov, and Dolgui 2019).

Analysing literature enables the identification of several
problem classes and datasets which we describe in this ses-
sions on the basis of study by Ivanov et al. (2018). Analytical
methods are applied at the SC design level and help analy-
sing the disruption impact on SC performance either by
deactivating some structural elements, or by changing some
operational parameters (e.g. capacity) and observing the
resulting changes on costs or sales (Torabi, Baghersad, and

Mansouri 2015; Yildiz et al. 2016; Ivanov et al. 2016;
Rezapour, Farahani, and Pourakbar 2017; Sawik 2019). This
analysis is helpful at the strategic decision-making level. At
the same time, these models are restrictive when considering
the dynamics of inventory, sourcing, or shipment control.

Dynamic simulation models allow SC behaviour to be ana-
lysed over time, a disruption’s performance impact to be
computed, and a resilient SC design to be recommended
based on detailed and real time data and control policies
subject to a variety of financial, customer, and operational
performance indicators. In addition to the more detailed
data of optimisation models, simulation models consider
additional logical and randomness constraints, such as ran-
domness in disruptions, inventory, production, sourcing, and
shipment control policies, and gradual capacity degradation
and recovery. Simulation has been predominantly applied to
problems in this class (Wu and Olson 2008; Schmitt and
Singh 2012; Ivanov 2017; Schmitt et al. 2017; Ivanov and
Rozhkov 2017; Chen et al. 2017; Macdonald et al. 2018;
Ivanov 2019b). Since simulation studies deal with time-
dependent parameters, duration of recovery measures, and
capacity degradation and recovery, they have earned an
important place in academic research. Simulation has the
advantage that it can extend the handling of the complex
problem settings of optimisation through situational behav-
iour changes in the system over time.

Hybrid models extend isolated analytical and simulation
models through recovery policy considerations. Independent
of proactive or reactive policy domination, optimisation and
simulation techniques can mutually enhance each other. For
problems in this domain, a combination of network optimisa-
tion and simulation is recommended (Vahdani, Zandieh, and
Roshanaei 2011; Ivanov, Sokolov, and Dolgui 2014; Paul,
Sarker, and Essam 2014; Pavlov et al. 2018). The research on
the recovery stage is still new and requires further study
(Bode and Macdonald 2017; Ivanov et al. 2017).

Analysis of the models in the literature reviewed enables
the identification of data used in at the pre-disruption, disrup-
tion, and recovery stages. In particular, SC modelling at the
pre-disruption stage requires data on suppliers’ risk exposure,
the risk exposure of transportation links, and alternative SC
designs (Yildiz et al. 2016; Gao et al. 2019). Modelling at the
disruption stage requires data about which SC elements are
affected by disruption, how much capacity and inventory is
still available in the SC, and a forecast for recovery (Xia et al.
2004; Govindan et al. 2016; Ivanov et al. 2017). Finally, recovery
and post-disruption modelling requires monitoring data about
capacities and inventory, as well as real-time data about
material flows in the SC (Choi, Chan, and Yue 2017; Schmitt
et al. 2017; Ivanov et al. 2018). As such, it is crucial to consider
how this data can be obtained using existing analytics and
real-time control technology.

2.2. Data-driven approaches

Applications of data analytics are visible in procurement,
manufacturing shop floors, promotional actions in omnichan-
nel models, routeing optimisation, real-time traffic operation
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monitoring, and proactive safety management (Choi, Wallace,
and Wang 2018; Araz et al. 2020). Zhong et al. (2015) pro-
pose a big data approach to forecasting logistics trajectories
using RFID-enabled production data. Sommerfeld, Teucke,
and Freitag (2018) study the effects of sensor-based quality
data in an automotive SC using simulation. Nguyen et al.
(2018) identify areas where data analytics can be applied in
SCs in the near future. These include quality control in man-
ufacturing, dynamic vehicle routeing and in-transit inventory
management in logistics/transportation, and order picking
and inventory control systems in warehousing. Queiroz and
Wamba (2019), Dolgui, Ivanov, and Rozhkov (2020b), and
Manupati et al. (2020) extend the discussion towards
Blockchain adoption challenges in SCs.

According to Waller and Fawcett (2013) applications of SC
analytics can be classified into four areas: descriptive and
diagnostic analysis, predictive simulation and prescriptive opti-
misation, real time control, and adaptive learning. With
regards to SC risk management, data-driven approaches have
been recently introduced to the research agenda.
Papadopoulos et al. (2017) point out that data analytics can
improve SC risk management and disaster-resistance. Choi
and Lambert (2017) and Choi, Chan, and Yue (2017) provide
evidence on how data analytics can be used to improve the
resilience of SC operations by utilising firms’ databases and
large volumes of data to predict risks, assess vulnerability, and
enhance their SCs. Ivanov et al. (2018) show that data ana-
lytics can be applied at the planning stage to identify supplier
risk exposure and can help at the reactive stage to monitor
and identify disruptions. They propose a framework of inte-
grated cyber-physical SC simulation and optimisation and
relate this framework to system-cybernetics principles. Their
results echo those in the study by Choi (2018) which pre-
sented a new practical perspective on how big data related
technologies can be used for global SCs with a SoS (systems
of systems) mindset.

2.3. Data-driven decision support systems and
information technology

Since data analytics influences SCs, and SCs are influenced
by disruption risks, it is logical to expect interrelations
between data-driven technology and SC disruption risk man-
agement. As a result of the harmonisation and interoperabil-
ity between data and computational services, along with the
facilitation of their easy discovery, the sharing and usage of
data sources for risk assessment have been developed in
technical systems over the last several years. For example,
OpenRiskNet (ORN 2018) is an open e-infrastructure which
supports data sharing, knowledge integration, and in silico
analysis and modelling in toxicology risk assessment. Similar
systems are still rare in SC risk management.

Simchi-Levi et al. (2015) present a SC risk management
system in the automotive sector that aims to estimate sup-
plier risk exposure, evaluate pre-disruption risk mitigation
actions, and develop optimal post-disruption contingency
plans, including for circumstances in which the duration of
the disruption is unknown. Their risk-analysis framework

integrates databases, a quantitative risk-exposure model, and
an output visualisation tool. The DSS developed integrates
various databases, time-to-recover and time-to-survive mod-
els, and data-visualisation software. The data sources include
the material requirements planning system, the purchasing
database, and sales-volume planning information based on a
SC mapping methodology (Gusikhin and Klampfl 2012).
Decision-makers in procurement and risk specialists can use
this DSS to track risk exposure in real time as inventory levels
fluctuate and the SC structure evolves. Park, Bellamy, and
Basole (2016) propose a visual analytic system to augment
and enhance decision-making processes of SC managers.
They conclude that a modern SC DSS should be able to visu-
alise different SC structural aspects, to deliver required infor-
mation on-demand and to update the visual representation
via user-initiated interactions, and to support both descrip-
tive and predictive analytic functions for managers.

When analysing literature, information technology for SC
disruption risk management can be classified into visualisa-
tion, early warning systems, and real-time event-detection
systems. Acquiring and sharing real-time information is of
vital importance for SC recovery planning and the coordi-
nated deployment of recovery policies (Sheffi 2015). Tracking
and tracing (T&T) systems aim to identify deviations or dan-
ger of deviations in SCs, analyse those deviations and deliver
actual or potential disruption alerts, and elaborate control
actions in order to recover SC operability. In combination
with RFID (radio-frequency identification) and mobile devices,
these systems are used to provide current information about
process execution (Bearzotti, Salomone, and Chiotti 2012). In
addition, blockchain applications to SCs, the creation of infor-
mation pipeline systems, and SC finance systems are becom-
ing more and more important for enhancing the scale and
scope of T&T systems (Basole and Nowak 2018; Hofmann,
Strewe, and Bosia 2018; Dolgui, Ivanov, and Rozhkov 2020b).
The central idea behind these applications is to increase visi-
bility and efficiency based on record-keeping in the SC. For
example, IBM and Wal-Mart are currently researching how
they can increase food SC safety controls using blockchain
technology (IBM 2017).

The cloud-based analytics platform SupplyOn Industry 4.0
Sensor Clouds makes it possible to control a SC in real-time,
plan and adjust processes using up-to-date information
(SupplyOn 2018). The data analysis capabilities allow quick
identification of all orders where lead time was exceeded,
further enabling quick identification of questionable trans-
ports. Resilience360 at DHL enables comprehensive disrup-
tion risk management by mapping the SC end-to-end,
building risk profiles, and identifying critical hotspots in
order to initiate mitigation activities and deliver alerts, in
near-real time, about incidents that could disrupt the SC
(DHL. 2018). RiskMethods software aims to support proactive
SC risk management. It contains the modules ‘Risk Radar’,
‘Impact Analyzer’, and ‘Action Planner’, which allow for risk
monitoring, performance impact assessment, and the plan-
ning of mitigation actions (RM 2018). GEOCOM (2018) devel-
oped a risk management and business continuity tool that
combines modules of property assets, procurement,
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transportation, and dynamic SC risk management. The results
of SC redesign can be reported to ERP systems and quanti-
fied through KPIs (key performance indicators), such as reve-
nues, sales, on-time-delivery, etc. The EventWatch tool from
SC risk management software Resilinc classifies and analyzes
risk data, such as extreme weather, factory fire, force
majeure, earthquake, power outage, mergers and acquisi-
tions, and business sales. In the first half of 2018, they identi-
fied 1069 disruption events (Resilinc 2018).

3. Derivation of methodological principles of data-
driven DSS for SC disruption risk management

The analysis of literature and the practical examples enable
us to formulate several methodological principles of data-
driven DSS and information technology for SC disruption risk
management. We relate the derivation of these principles to
information control theory, i.e. to system and cybernetics
principles following the approach of considering SCs as
Systems of Systems (SoS) as developed by Choi (2018) and
along the SC system-cybernetics frameworks developed by
Ivanov and Sokolov (2013) and Ivanov et al. (2018).

The studies on SC disruption risks frequently refer to ‘loss of
control’ (Christopher and Peck 2004) and ‘communication’
(Sheffi 2015). Cybernetics is the science of information control
and communication (Wiener 1948; Ashby 1956). As such, cyber-
netics principles cannot be disregarded when considering SC
disruption risk modelling. Moreover, cybernetics poses open sys-
tem context analysis. An open system (Mesarovic and Takahara
1975; Casti 1979) is a system that has interactions with the envi-
ronments and evolves based on these interactions. The major
characteristics of open systems are control, self-adaptation, and
self-organisation (von Bertallanfy 1969; Gao, Barzel, and Barab�asi
2016). Previous studies on cybernetics principles in the SC
domain (Wang 2008; Tejeida, Badillo, and Morales 2009; Ivanov
and Sokolov 2010, 2013; Ivanov, Sokolov, and Dolgui 2014; Choi
2018) identify three major principles applicable to the informa-
tion control and risk management.

The first principle is requisite variety. Ashby (1956) uses
variety as a measure of the number of possible system states
that can be differentiated from each other. Ashby’s law of
requisite variety states that: ‘A controller has requisite variety
when he has the capacity to maintain the outcomes of a
process within targets, if and only if he has the capacity to
produce responses to all those disturbances that influence
the process’. According to this principle, situational variety
should be balanced by the response variety of the controller
following Ashby’s (1956) statement: ‘Only variety absorbs var-
iety’. The second principle is Beer’s Viable System Model
(VSM) (Beer 1966, 1981). Generally, viability is the ability to
keep system identity in a changing environment (Ivanov
2020b). A cybernetic viable system is predominantly con-
cerned with striking a balance between management, opera-
tions, and the environment. VSM includes requirements for
variety, dynamics, and communication. In this setting, the
principles of homeostasis play a crucial role, whereby homeo-
static behaviour is dependent on requisite variety. The third
principle is related to second-order cybernetics (Maruyama

1963; von Foerster 1974), which is concerned with proactive
planning and control. Second-order cybernetics aims to sim-
ultaneously model the environment and control an object in
this environment. This principle is closely related to adaptive
and feedback control with online data updates.

With these systemic foundations in mind, we now
formulate methodological principles of data-driven DSS for
SC disruption risk management.

Principle 1: decision-making support is considered a
viable system model comprised of pre-disruption,
disruption, and post-disruption stages

According to literature, decisions in SC risk management are
frequently brought into correspondence with disruption pro-
files, which contain the stages of pre-disruption (prepared-
ness), disruption (response), and post-disruption (recovery
and stabilisation). Optimisation and simulation models
enable robust SC design, resilience analysis, stress-testing of
different alternative SC designs, and simulation of contingent
recovery policies. These are only a few examples of the
numerous possible areas of application. As such, we suggest
using this three stage classification as the major structure
within which decision-making support is provided by digital
SC twin.

Principle 2: integration of physical and cyber data
sources with online SC modelling

Decision-making support models can be enriched with data
from physical sources (e.g. ERP, RFID, sensors) and cyber
sources (e.g. blockchain, supplier collaboration portals, and
risk data). For example, historical risk data about previous
disruptions or geographical data about regional risks may
help in the construction of realistic scenarios for SC resilience
assessment. Real-time data from RFID and sensors can help
to provide capacity and parametric inventory inputs to simu-
lation and optimisation models for SC recovery simulations,
considering available resources in the non-disrupted SC. As
such, the integration of physical and cyber data sources with
SC modelling is considered the second principle of constitut-
ing a digital SC twin.

Principle 3: supply chain models as an integration of
physical and cyber networks

In data-driven DSS, SC models become broader and repre-
sent both the physical SC and its cyber system. Therefore,
the third principle of the digital twin design is consideration
of SC models as an integration of physical and cyber net-
works in terms of second-order cybernetics.

Principle 4: data-driven supply chain risk analytics
systems support the use of data for learning and
disruption pattern recognition

The learning component is one new quality data analytics
can add to digital SC twins. Learning from real disruptions
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and the respective SC behaviours provides a basis for identi-
fication of disruption and reaction patterns which can be
used to improve both quantitative models and the design of
experiments in which they are used.

Summarising the four principles stated above, data-driven
SC risk analytics systems in the form of digital twins could sup-
port decision-making in historical data-based analysis of SC
resilience, predictive optimisation, and simulation of alternative
SC designs and contingent operational policies, real-time
recovery control, and use of data for learning and disruption
pattern recognition.

4. Digital supply chain twin: a framework of a
decision-support system for disruption
risk management

This section presents a digital SC framework as a DSS for SC
disruption risk management based on the literature analysis
in Sections 2.1–2.2, the examples of information technology
used for SC disruption risk management in Section 2.3, and
the methodological principles described in Section 3.

4.1. Data-driven disruption modelling framework

Data-driven disruption modelling provides a basis for
proactive, resilient SC design in anticipation of disruptions
and structural-parametrical adaptation in the event of disrup-
tions. The modelling combines simulation, optimisation, and
data analytics to create a digital SC twin and thereby manage
disruption risks.

In the digital SC twin, model-based decision-making sup-
port enables simulation of the SC’s dynamic behaviour in the
event of disruption. In addition, before a disruption occurs,
potential impacts on SC performance can be evaluated, and
then recovery policies can be optimised. Data analytics is
used at the proactive stage for building realistic disruption
scenarios based on risk data about historical disruptions and
other data (e.g. supplier reliability data from ERP systems)
during the SC design phase. At the reactive stage, data
analytics is used for disruption identification in real-time
using process feedback data, e.g. from sensors, T&T, and
RFID. The goal of using data analytics this way is to embed
real-time disruption data into a reactive simulation model for
recovery policy simulation and optimisation. Data analytics
can also be used to create a data-driven learning system at
the proactive stage, helping to generate adequate disruption
scenarios for resilient SC design and planning. In addition,
the data analytics component of the digital SC twin enables
observation and monitoring functions to be integrated
into SC disruption management, closing the loop
‘plan-monitor-adjust-control’.

According to the principles described above, the following
modelling framework for resilient SC design and recovery
planning, which contains the conceptually integrated data,
can be proposed (Figure 1).

Figure 1 brings different data sources, the respective
information systems, and the parameters of models for resili-
ent SC design and recovery planning into correspondence.

Data used to design resilient SCs and resilience recovery was
shown in the analysis of the models in the studies described
in Section 2. Data-driven support can be classified as external
and internal information control loops. External support is
mainly concerned with disruption data, both anticipated and
actual, aggregated through a firm’s own historical data and
partner risk data, early warning systems, and T&T systems.
Internal support encompasses the use of sensors and RFID to
update SC data, such as capacity and inventory.

4.2. Digital supply chain twin: example

We illustrate the digital SC twin principles from Section 3
and data-driven disruption modelling framework from Figure
1 on example of a digital SC twin developed with the use of
anyLogistix software which is a tool for model-based deci-
sion-making support in SCs (Figure 2).

The combination of anyLogistix and data analytics is
based on a mapping of the risk data with geographical loca-
tions in the SC structure as previously discussed in Ivanov,
Dolgui, and Sokolov (2019). This mapping is considered at
the resilient SC design and resilience recovery stages. At the
resilient SC design stage, the DSS developed uses disruption
risk data to assess supplier and transportation disruption
risks, predicting possible SC interruptions. This data is used
for computing of alternative supply network topologies and
back-up routes with assessment of estimated times of arrival
in anyLogistix. In the dynamic mode, simulation is applied
using real-time data to analyse the disruption impact on SC
performance and alternative SC designs that contain non-dis-
rupted network nodes and arcs depending on real-time
inventory, demand, and capacity data. Furthermore, the
interaction of data analytics and simulation-optimisation
tools is not limited to updating model data. Considering the
output of simulation modelling, simulation results can be
transferred to an ERP system or a business intelligence (BI)
tool in order to analyse the performance impact of disrup-
tions. Additionally, the simulation models can activate some
BI algorithms. For example, if service level decreases to a cer-
tain level in the SC’s simulation model, the digital twin might
activate a BI algorithm to search for the cause of that prob-
lem and the necessary data updated to resolve the problem.

Figure 3 demonstrates three major areas of SC disruption
risk management covered in the digital twin proposed, i.e.
disruption identification, disruption modelling, and disruption
impact assessment.

Figure 3 shows the mapping of risk data identification,
the locational SC model in anyLogistix, and performance
impact analysis in external tools, such as BI or ERP. Multiple
experiments with different risk data, SC structures, and dis-
ruption scenarios have been performed, which allowed syn-
thesis in the following multi-step analysis procedure.

Step 1. At the proactive risk analysis stage, historical risk
data from external databases (e.g. natural disaster events in the
past and geographical regional risk assessments) and internal
sources (e.g. ERP data about supplier reliability performance)
are collected. Using this data, the disruption scenarios for SC
resilience analysis are setup in the simulation-optimisation
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model. Technically, the function of data pre-processing is used
in anyLogistix to transfer the incoming disruption data into the
risk events in the simulation model. In addition, the parameters
of network optimisation and simulation models (e.g. capacities
available) are set up subject to possible supply unavailability,
capacity degradation, and natural disaster events. The resulting
multiple disruption scenarios are investigated using optimisa-
tion and simulation models to stress-test the existing and alter-
native SC designs.

Step 2. Next, a disruption example close to a real natural
disaster is considered, e.g. the Typhoon Mangkhut in Hong
Kong in September 2018 that closed down harbour and

airport operations for many days. The risk analytics system is
used to search for relevant disruption data (e.g. at a global
logistics hub) that might affect SC resilience given the facility
locations in the SC simulation model. Then the system gath-
ers data about the forecasted disruption duration. The simu-
lation is subsequently run with the existing SC design to
observe the impact of such a disruption duration on SC
performance.

Step 3. The recovery policies, such as alternative SC
designs, that could be used in the period of disruption are
simulated. Data collected from different sources in real-time
are used to update model parameters, such as capacity,

Figure 1. Data structure in supply chain disruption risk modelling framework.

Figure 2. Digital supply chain twin for managing disruption risks.
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inventory, and lead times in terms of production and ship-
ment capacities and inventory availability in the SC. This
data is used to run the simulation of the recovery policies.

Step 4. The output of the experiments with the recovery
policies is transferred to an ERP system or a BI tool to ana-
lyse the performance impact of the disruptions and the KPIs
affected. Technically, the function of data post-processing is
used in anyLogistix to transfer the simulation modelling out-
comes into an external performance evaluation tool.

5. Implications to building a theory of supply chain
risk analytics

In this section, we summarise and generalise the lessons
learned from the conceptual and experimental integration of
risk data and the model-based decision-making support tool
in order to develop implications to building a theory of SC
risk analytics. The first theoretical implication of this research
is that the data-driven analytics and model-based methods
represent a vision of a future DSS in SC disruption risk man-
agement. Based on the literature analysis in Section 2, the
derived principles of data-driven DSS for SC risk manage-
ment in Section 3, and the example of the digital twin pre-
sented in Section 4, we now conceptualise a generalised
framework of a digital twin to manage SC disruptions
(Figure 4).

Going from the bottom up, we start the analysis of Figure 4
with the cyber-physical SC model. The firms in the physical SC
and their IT generate data on sourcing, manufacturing, and
logistics in cyber space that can be used for risk estimation
and inclusion. SC model serves to integrate the physical and
cyber components and is considered to be a central element
in the SC risk analytics system aims to integrate the physical
and cyber systems (cf. SoS) with the simulation-optimisation
engine. The computerised SC model is used by artificial intelli-
gence algorithms in the cyber SC and managers in the physical
SC. As such, the generalised framework of DSS for SC disrup-
tion risk management can be viewed as a cyber-physical sys-
tem that integrates real physical processes and virtual
computational services. In other words, a digital twin of the

physical SC exists in the data space in the form of a cyber ser-
vice chain.

The second theoretical implication of this research is that
a combination of simulation and optimisation with data ana-
lytics constitutes a new level of technologies to create a
digital SC twin – a model that always represents the current
state of the network. A digital twin gives analysts the possi-
bility of experimenting with the SC’s computer prototype to
test what-if scenarios and quantify the effects of changes.
Digital twins make use of data from physical SC in real-time
– including information from online risk databases, IoT sen-
sors, track and trace systems (T&T), and RFID. These monitor-
ing technologies allow identification of critical hotspots and
delivery of alerts in near-real time about incidents that could
disrupt the SC. Then, this real-time disruption data can be
embedded into a simulation model, along with third-party
real-time data about natural, financial, or political risks.
Machine learning algorithms are used to reduce noise levels
and identify relevant disruption information (Cavalcante
et al. 2019).

In this setting, the cyber part of the model will represent
the current state of the SC, with real-time transportation,
inventory, demand, and capacity data. For example, if there
is a strike at an international logistics hub, this disruption
can be identified by an online risk data monitoring tool and
transmitted to a simulation tool as a disruptive event. With
this, simulation in a digital twin will support the identifica-
tion and forecasting of disruption propagation and the quan-
tification of its impact. On the other hand, simulation will
provide for efficient recovery policy testing to adapt contin-
gency plans according to each situation – for example,
reconsidering alternative network topologies and back-up
routes on-the-fly.

The third theoretical implication of this research is that
the application of cyber-physical solutions can help to com-
bine simulation and analytics to create a digital twin and
thereby increase SC resilience through faster and more reli-
able recognition of potential external and internal disrup-
tions and disturbances, and through the minimisation or
avoidance of their negative consequences. Real-time data
analytics can help to trace the causes of disruptions, observe

Figure 3. Interrelations between risk data, modelling, and performance analysis (images used are from anyLogistixTM software).
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disruption propagation, select short-term stabilisation actions
based on a clear understanding of what capacities and
inventories are available (emergency planning), develop a
mid-term recovery policy, and analyse the long-term per-
formance impact. Interacting with other SC tools, a digital
twin provides a control tower for end-to-end SC visibility. As
such, the digital SC can enable dynamic sensing capability
and further helps to enhance robustness.

Finally, data analytics can be used as data-driven learning
system at the proactive stage, helping to generate adequate
disruption scenarios for resilient SC design and planning.
Decision-makers in property, procurement, logistics, and SC
risk management can use the framework developed for asset
risk assessments, supplier risk analysis, locational and trans-
portation decisions, and real-time risk control.

In summary, with the results of this study, we contribute
to the theory and practice of SC disruption risk management
by enhancing the researchers’ and decision-makers’ under-
standing of the value and use of data for predictive and
reactive decisions. The developed principles and a general-
ised framework of a digital SC twin contribute to the theory
building of the digital SC and SC risk analytics. More specific-
ally, the development of adaptive SC management theory
(Ivanov and Sokolov 2010), SC resilience (Blackhurst, Dunn,
and Craighead 2011; Ivanov et al. 2018; Pettit, Croxton, and

Fiksel 2019), organisational theory (Altay et al. 2018; Dubey,
Gunasekaran, Childe, Papadopoulos, et al. 2019; Dubey,
Gunasekaran, Childe, Wamba, et al. 2019b) as well as SC
uncertainty theory (Flynn, Koufteros, and Lu 2016) can be
furthered with the results of this study. Adaptation in supply
chains is as vital for firms as adaptation mechanisms are for
living organisms. Adaptation mechanisms continuously moni-
tor, anticipate and adjust to dynamic environments.
Similarly, organisations are also exposed to, and affected by
changes in environmental and operational factors. The digital
twin constitutes a technological framework for adoption of
cyber-physical integration principles in manufacturing, logis-
tics, and SCs. In addition, such systems evolve through adap-
tation and reconfiguration of their structures, i.e. through
structural dynamics (Ivanov et al. 2018). The theoretical impli-
cations of our study to the research areas of digital SCs and
risk analytics can be considered in light of two dimensions.
The first dimension is the change in traditional manufactur-
ing and SC designs, and the resulting change in their man-
agement. Our approach supports the service-oriented SCs
which are based on cyber-physical principles. The second
dimension is the visibility. Big data applications and
Blockchain allows to address central objectives of data ana-
lytics to increase visibility, response time, and efficiency in
the SC. Similarly advances in sensor technology and IoT have

Figure 4. Generalised framework of a digital twin for SC disruption management.
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enabled heightened awareness and visibility in the supply
chain. Organisations are exploring ways to utilise large vol-
umes of data to both predict risks and assess vulnerability.
Our approach can be of value when developing theoretical
foundations in this areas. To the practical end, the system
developed can be utilised for asset risk assessments, supplier
risk analysis, locational and transportation decisions, and
real-time risk control. These decision-makers can use the sys-
tem proposed to define proactive and reactive resilience
strategies and contingency plans by applying the advantages
of SC visualisation, historical disruption data analysis, and
real-time disruption data to ensure business continuity in
global companies.

6. Conclusion

A combination of model-driven and data-driven decision-making
support became a visible research trend in the last years. The
quality of model-based decision-making support strongly
depends on data, its completeness, fullness, validity, consistency,
and timely availability. These data requirements are of special
importance in SC risk management for predicting disruptions
and reacting to them. Industry 4.0 in general and digital tech-
nology in particular give rise to data analytics applications to
achieve a new quality of decision-making support when manag-
ing severe disruptions. The combination of simulation, optimisa-
tion, and data analytics constitutes a digital twin: a novel data-
driven framework of managing disruption risks in the SC.

A digital SC twin is a model that represents the network
state for any given moment in time and allows for complete
end-to-end SC visibility to improve resilience and test contin-
gency plans. The need and value of SC digital twins have
become indisputably evident amid the COVID-19 pandemic
when many firms needed to adapt their supply-demand alloca-
tions very quickly. Moreover, the experts expect the growing
role of SC monitoring and visibility in post-pandemic recoveries.

This study focussed on creating a generic structure of a
digital SC twin for managing disruption risks, i.e. a DSS for
data-driven modelling of proactive resilient SC designs and
reactive real-time disruption risk management. With the results
of this study, we contribute to both theory and practice of
decision-making support in SC disruption risk management by
enhancing decision-makers’ understanding of the value and
use of harnessing a firm’s own risk data and that of their part-
ners for predictive and reactive decision-making.

First, the methodological principles of data-driven DSS and
information technology for SC disruption risk management
were derived using system-cybernetic analysis. Future DSS in
SC disruption risk management will extensively utilise data-
driven technologies and be united by three basic principles of
system-cybernetic research to form SC risk analytics decision-
support and learning frameworks. A combination of these
principles builds a framework of future digital SC twins for
managing disruptions, i.e. DSS for SC disruption risk manage-
ment which utilises integrated disruption risk modelling with
simulation, optimisation, and analytics components to support
situational forecasting, predictive simulation, prescriptive

optimisation, and adaptive learning based on a transition
from offline to online simulation and optimisation.

To prove the implementation feasibility of these principles
in different contextual settings, a DSS for disruption risk man-
agement and business continuity in the SC was developed and
tested. In addition, the framework of a generalised DSS was
proposed. At the SC design stage and in the pre-disruption
mode, the system should allow visualisation of SC risks, assess-
ment of supplier disruption risks, prediction of possible supply
interruptions, and computation of alternative supply network
topologies and back-up routes with assessment of estimated
times of arrival. In the dynamic mode, the system should be
applied using real-time data to simulate disruption impacts on
the SC and alternative SC designs that contain non-disrupted
network nodes and arcs depending on real-time inventory,
demand, and capacity data. The SC redesign results can be
reported to ERP systems and quantified by means of KPIs, such
as revenues, sales, on-time-delivery, etc.

The methodological principles and a generalised design of
the digital SC twin proposed in this study can potentially
enhance research on proactive and reactive resilient strategies
and contingency plans by using the advantages of SC visualisa-
tion, historical disruption data analysis, and real-time disruption
data to ensure business continuity in global companies. The
findings presented can also guide a firm in properly maintain-
ing data for model-based decision-making support. Ignoring
accurate data on supplier and route disruption probabilities,
advanced supply signal recognition, and real-time disruption
detection can result in misleading disruption scenarios for SC
design resilience and late deployment of recovery policies.

When generalising the insights gained in this study, the
following directions can be observed. Ivanov et al. (2018) pro-
posed that in the future competition will occur not between
SCs, but rather between the information services and analytics
algorithms behind the SCs. This is also true for SC disruption
risk management. Examples of SC and operations risk analytics
applications include logistics and SC control with real-time
data, inventory control, and management using sensing data,
dynamic resource allocation, improving recovery forecasting
models using big data, SC visibility and risk control, optimising
systems based on predictive information, and combining opti-
misation and machine learning algorithms. Success in SC dis-
ruption risk management will become more and more
dependent on data analytics in combination with optimisation
and simulation modelling.

Our study has a few limitations. First, a discussion of tech-
nical requirements on data processing capacities remained out-
side of the scope of this paper. Second, the detailed technical
analysis of disruption data filtering, e.g. using machine learning
techniques would make this study more comprehensive, how-
ever, going beyond of the scope of the paper.

A number of future research directions for extending these
applications with the help of data driven techniques can be
identified with regards to applications to SC disruption risk
management. Detailed, technical analysis of the proposed
technologies and how they can be integrated with each other
could extend the content of this study. The speed and scope
of SC digitalisation comprise a trend whereby the success of
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SC risk management will be more and more dependent on
SC risk analytics. As such, a promising future research avenue
is the development and testing of different manufacturing
and logistics cloud platforms from the positions of both effi-
ciency and resilience. Finally, the understanding of organisa-
tional changes in the new decision-making settings with an
increased role of artificial intelligence algorithms belong to
the crucial research areas helping to underpin the theoretical
foundations of the new emerging field of a digital SC.
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