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ABSTRACT 

DEVS is one of the key formalisms to be included in a M&S framework due to its general systems basis. 

This paper presents the foundations for building an universal representation of DEVS that employs 

ontologies as modeling strategy by following the MDE principles. It reviews several conceptual models 

of DEVS developed over the years in terms of three dimensions (domain, formal specification and 

implementation) with aims to identify the main concepts to be included in an abstract conceptualization of 

the formalism. Over such concepts, it introduces the core of the DEVS M&S framework in order to 

illustrate how conceptual modeling can improve the design, development and implementation of discrete 

event simulation models by following different modeling perspectives. 

Keywords: model-driven engineering, progression of abstraction to implementation, M&S framework, 

conceptual modeling challenges, DEVS. 

1 INTRODUCTION 

In the last years, the Modeling and Simulation (M&S) field has grown becoming a discipline by itself. 

From the modeling perspective, a simulation model is similar to a software system model because both 

kinds of model are developed from a conceptual system model (Guizzardi and Wagner 2010). In software 

engineering, this approach is called Model-Driven Engineering (MDE). The MDE approach follows the 

Model-Driven Architecture (MDA) proposal that has been used in the M&S field for several years. 

MDE differences three types of models as engineering artifacts resulting from the activities performed in 

the analysis, design and implementation phases. These models are defined as domain models, platform-

independent design models and platform-specific implementation models. Then, a software system model 

consist of a set of models defined in terms of the most important viewpoints of the system in order to 

crosscutting all three modeling levels (Guizzardi and Wagner 2012). However, in the M&S field there is 

no common understanding on how applying these modeling levels when building simulation models. The 

entire field of computer simulation is suffering from a plethora of different concepts, formalisms and 

technologies and from a lack of common modeling languages and standards. Our aim is to understand the 

field in order to improve the vision of the M&S based on the Discrete-Event System Specification 

(DEVS) formalism (Zeigler, Muzy and Kofman 2018). 

DEVS is a modeling formalism based on systems theory that provides a general methodology for 

hierarchical construction of reusable models in a modular way. Over the years, DEVS has finding an 
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increasing acceptance in the model-based simulation research community becoming one of the preferred 

paradigms to conduct modeling and simulation enquiries (Wainer and Mosterman 2010). Moreover, 

several researchers have proposed extensions and new formalisms derived from DEVS with aims to solve 

different scenarios (Blas et al. 2018). In this context, the interplay of abstraction and concreteness in 

advancing the theory and practice of M&S can be improved with the MDE modeling levels. Given that 

such interplay and the associated interplay of the generic and the specific impel the development of 

knowledge (Zeigler, Muzy and Kofman 2018), the implicit and explicit knowledge defined in DEVS 

formalism can be studied employing the conceptual modeling perspective of MDE over the main M&S 

dimensions. 

From the traditional point of view, a good conceptual model lays a strong foundation for successful 

simulation modeling and analysis (Robinson et al. 2010). Over such interpretation, conceptual modeling 

serves as a bridge between problem owner and simulation modeler. However, it can also be applied for 

studying the simulation field with aims to define full M&S strategies based in conceptual models as a 

foundation for the M&S tasks. For example, a well-defined standardized conceptual modeling technique 

can decrease the effort to understand conceptual models, and solve interoperability problems between 

components that have been implemented in different environments or that are based on different 

formalisms (Cetinkaya, Verbraeck and Seck 2010). 

This paper reviews several conceptual models of DEVS developed over the years in terms of three 

dimensions: domain, formal specification and implementation. Each dimension depicts a MDE modeling 

level. Therefore, they can be used as foundation of a broad conceptualization of DEVS. Here we identify 

a set of desired concepts for each dimension in order to define the main characteristics required in the 

MDE models. The final goal of this research is building an universal representation of DEVS based on 

MDE modeling levels that provides a conceptual model useful for developing an ontology-based M&S 

framework for DEVS. 

The remainder of this paper is structured as follows. Section II describes the main M&S motivation for 

building a universal representation of DEVS using conceptual modeling as a foundation. Section III 

summarizes the set of DEVS conceptualizations studied in order to define the main concepts required in 

each dimension. It also introduces the notion of the M&S framework that will employ such representation 

as core of the semantic DEVS description. Finally, Section IV is devoted to conclusions and future work. 

2 THE NEED FOR UNIVERSAL REPRESENTATION OF DEVS 

DEVS is a popular modular and hierarchical formalism for modeling complex dynamic system using 

discrete-event abstraction. Because of the ease of model definition, model composition, reuse, and 

hierarchical coupling, DEVS has always been successfully applied in a variety of applications (Risco-

Martín et al. 2017). Recently, it has been proved than DEVS is equivalent to the Iterative System 

Specification (ISS). In this way, the ISS has been used as an intermediate specification between DEVS at 

the lower (computational) level and general system behavior at the higher level (Muzy, Zeigler and 

Grammont 2017). Then, DEVS can be used to specify general system structure and compute its behavior 

as a computational implementation of the ISS. 

In M&S, abstractions lead to new model representations (i.e. new computational environments). Figure 1 

shows the instance of the progression of abstraction to implementation for the evolution of DEVS. In 

such progression, an abstraction focuses on an aspect of reality (phenomenon) and greatly reduces the 

complexity of the reality being considered. Then, formalization makes it easier to work out implications 

of the abstraction and implement in reality. Finally, implementation can be considered as providing a 

concrete realization of the abstraction. In this sense, Figure 1 shows how the abstraction of discrete 

events, states, and components can be formalized in DEVS and, then, it can be implemented in some 

simulation environment based on DEVS. Hence, DEVS formalizes the discrete event system abstraction 

and became the foundation for a family of simulation system. 
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Figure 1: Progression of abstraction to implementation for the evolution of DEVS (adapted from (Zeigler, 

Muzy and Kofman 2018)). 

The main concepts of this progression (abstraction, formalization, and implementation) help to 

understand the progress of knowledge in M&S. Therefore, a full study of DEVS formalism must consider 

such dimensions in order to get a complete understanding of the discrete event simulation domain. 

According to (Guizzardi and Wagner 2012), Discrete Event Simulation (DES) is concerned with the 

simulation of real-world systems that are conceived as discrete event systems (or ‘discrete dynamic 

systems’). The behavior models of this type of systems can be described at different levels of abstraction 

and, therefore, by means of different formalisms. The particular formalism and level of abstraction 

depends on the background and goals of the modeler as much as on the system modelled (Vangheluwe 

2008). In this context, a formalization based on DEVS is always applicable. 

DEVS is formalized using set theory and systems theory. The formalism includes two types of DES 

models: atomic models (behavior description) and coupled models (structural description). In both cases, 

the models are described using equations, functions, sets, etc. Therefore, DEVS is an abstract formalism 

for the specification of simulation models that is independent of any particular implementation. However, 

when engineers want to simulate these models they need to program them in the input language of a 

concrete simulator, which means writing code in Java or C++ or another general-purpose programming 

language (Cristiá, Hollmann and Frydman 2019). Such implementation is often called “reduction to 

concrete form” (Zeigler, Muzy and Kofman 2018).  

Nowadays, there are multiple software tools and simulators for DEVS models (Van Tendeloo and 

Vangheluwe 2017).Though, modelers must represent DEVS model as programming code using 

predefined libraries offered by each simulator (Nikolaidou et al. 2008). Each simulator has its own input 

language. Generally, these input languages are different, hindering the interoperability between 

simulation tools (Hollmann, Cristiá and Frydman 2015). Then, DEVS models can be mathematically 

described but its simulation is performed by concrete DEVS simulation systems (DEVS simulators). 

When concrete DEVS models are developed using programming languages, it is difficult to ensure they 

conform to their formal model (Sarjoughian, Alshareef and Lei 2015). Moreover, the mathematical 

properties and constraints defined in DEVS models must be guaranteed in any implementation of it. 

Hence, it would be desirable to be able to describe the formal model and then automatically translate it to 

one or more DEVS simulation system by selecting an input language or an specific software tool. 

In this case, an universal representation of DEVS can help to study the relationships among DEVS 

formalization, DEVS most commonly used implementations and the discrete event system domain. 

Sarjoughian, Alshareef and Lei (2015) state that “it is useful to have a framework that can not only 

capture the formal specification of DEVS atomic models but also enforce its syntax and semantics for 

domain specific metamodels”. Now, if such universal representation of DEVS is ontology-based, then 

will be possible to build a M&S framework that provides computational reasoning, concepts alignment 

and automatic translation among the components included in each dimension. Moreover, since DEVS 

can serve as a simulation “assemble language” to which models in other formalism can be mapped 

(Vangheluwe 2000), an ontological representation can be used as support language to support such 

assemble through a computational process. Hence, the DEVS formalism can be used as standardization 

specification from two different points of view: i) as a common language for other discrete-event 

formalisms, or ii) as a specification platform for unifying multiple models developed with different 

abstraction levels. 
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Figure 2 illustrates how the general dimensions of DEVS (detailed in Figure 1) can be interpreted in terms 

of an ontology-based conceptualization.  
 

 

Figure 2: Core of DEVS universal representation. 

The Abstraction is the base for Formalization and Implementation (starting from a Phenomenon 

description). For each general dimension, the Figure 2 proposes the following ontologies: 

 Discrete Dynamic Systems ontology for supporting the Abstraction dimension; 

 DEVS Formal Specification ontology for supporting the Formalization dimension; 

 DEVS Implementation ontology for supporting the Implementation dimension.  

Each ontology acts as intermediary between two specific models. For example, in order to get a 

Formalization Model from an Abstraction Model, the Formalization dimension uses the DEVS Formal 

Specification ontology. Then, the Formalization of an Abstraction (derived from a Phenomenon) can be 

seen as an instance of the DEVS Formal Specification ontology. The same assertion is true for the other 

dimensions. 

In this context, the main benefit obtained from establishing the ontological foundations of the core 

concepts of a conceptual modeling language is a clarification of its real world semantics (Guizzardi and 

Wagner 2010). Even when a single formalism, thought free from semantics alignment issue by 

construction, is alone rarely appropriate for all levels of abstraction (Zhang, Zeigler and LaiLi 2019); the 

goal of the DEVS universal representation is to explicitly define a common semantic description of 

DEVS that can be used as description of the discrete-event specification for enabling a broad modeling 

and simulation approach. Therefore, the use of ontologies to support the progression of DEVS simulation 

models provides a solid common language for describing and handling the transformation among the 

main M&S dimensions. 

3 FINDING ONTOLOGY CONCEPTS: STUDY OF EXISTING CONCEPTUAL MODELS OF 

DEVS FOR THE M&S DIMENSIONS 

An ontology is an explicit specification of a conceptualization, that is, an abstract, simplified view of the 

world that includes the objects, concepts, and the relationships between them in a domain of interest 

(Gruber 1993). Ontologies definition allows an unambiguous specification of the structure of knowledge 

in a domain, enables knowledge sharing and reuse and, consequently, makes automated reasoning about 

ontologies possible (Orgun and Meyer 2008). However, in order to define an ontology, it is necessary to 

identify the set of entities to be included as concepts. Such identification should be obtained from the 

existing knowledge of the domain under representation. 
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Over the years, several researchers have developed conceptual models related to DEVS formalism. But 

not all models are founded in the M&S dimensions. Most conceptual models are based on domain-

solution strategies for building DEVS simulation models. Therefore, a literature review was performed in 

order to identify an initial set of conceptualizations based on the Abstraction, Formalization and 

Implementation dimensions. The following subsections resumes the DEVS conceptual models obtained as 

result of this review process (including the set of main concepts identified for building the M&S 

ontologies). 

3.1 Abstraction Dimension: Domain of ‘Discrete Dynamic Systems’ 

Guizzardi and Wagner (2010) present DESO, a foundational ontology for discrete event system modeling 

derived from the foundational ontology UFO. The main purpose of such ontology is to provide a basis for 

evaluating discrete event simulation languages. 

The authors claim that “a discrete event system model may be expressed at different levels of 

abstraction”. In this context, they preset two ontologies derived from UFO: i) the Design-Time Ontology 

DESO-U that describe a discrete event system by defining the entity types (i.e. the instances which are 

part of the system), and ii) the Run-Time Ontology DESO-I that deals with individuals of different types 

from the simulator perspective. 

DESO does not contain all the foundational concepts of UFO. Rather, it just contains the leaf nodes of 

UFO that are relevant for describing discrete event systems. Therefore, if the concepts of UFO are 

removed from DESO, the remaining concepts are the ones that mainly define the domain of discrete event 

systems. These concepts include descriptions of Event, Entity, Entity Type, Attribute, Property, Object, 

Object Type, Situation and State. 

On the basis of DESO, the Discrete Dynamic Systems ontology will be defined. The ontology will 

provide a feasible representation of our conceptualization of discrete event systems from the Abstraction 

dimension without dealing with the simulator perspective. Then, the conceptualizations included in Run-

Time Ontology DESO-I will not be used as part of the Abstraction perspective (because they deal with 

entities related to the Implementation dimension). Given that we are not really interested in considering 

all the things that constitute a real-world system, the ontology will be only focused on the aspects of 

reality that help to define abstractions of discrete events, states, and components. Therefore, the Discrete 

Dynamic Systems ontology will contain a smaller number of concepts than DESO. 

3.2 Formalization Dimension: Domain of ‘DEVS Formal Specification’ 

A DEVS conceptualization based on the Formalization dimension needs to be focused on the entities that 

describe DEVS simulation models. In this context, Hu et al. (2013) propose an ontology-based model 

representation named DEVSMO (DEVS math ontology) to support model reuse. DEVSMO is composed 

of three ontologies: i) the DEVS model ontology that describes the classification of DEVS models 

according to DEVS formalism, ii) the model structure ontology that consists of atomic model structure 

and coupled model structure, and iii) the model behavior ontology that defines the behavior of a DEVS 

model. In DEVSMO, the concepts related to the Formalization dimension are mainly defined in i) and ii). 

A similar approach is proposed in (Touraille 2012) where the author proposes a metamodel of DEVS 

formalism that provides a pivot format for building DEVS simulation models compatible with the 

available software tools. This metamodel conceptualizes DEVS models using two parts: i) a structural 

part that deals with state variables, ports, components, connections, etc., and ii) a behavioral part that 

describes the temporal evolution of models in terms of transition functions, time advance function, etc. A 

DEVS behavioral metamodeling is also proposed in (Sarjoughian, Alshareef and Lei 2015). However, in 

this case, the authors use metamodeling with aims to generate concrete models from domain-specific 

metamodels. Therefore, the metamodel behavior specification identifies abstractions for state transitions 

in the external, internal, and confluent transition functions. Similarly appropriate abstractions are 

proposed for the output and time advance functions. 
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Hollmann, Cristiá and Frydman (2015) employs a different point of view for modeling DEVS 

formalization. Authors propose a formal modeling language called CML-DEVS (Conceptual Modeling 

Language for DEVS) that allows abstract description of DEVS models in terms of logical and 

mathematical expressions without involving programming concepts. CML-DEVS can be seen as an 

improved version of the specification language for DEVS models named DEVSpecL, developed by Hong 

and Kim (2006). 

Table 1 summarizes the main concepts obtained from literature that will be used for building the DEVS 

Formal Specification ontology. 

Table 1: Concepts to be used for modeling the Formalization dimension. 

Concept Description References 

Atomic Model 
Entity composed of all the elements 

that specify a DEVS atomic model. 

(Hu et al. 2013; Touraille 2012; 

Hollmann, Cristiá and Frydman 2015) 

Coupled Model 
Entity composed of all the elements 

that specify a DEVS coupled model. 
(Hu et al. 2013; Touraille 2012) 

State 

Entity defined as the state set of 

elements that describes the state 

definition of DEVS models. 

(Hu et al. 2013; 

Sarjoughian, Alshareef and Lei 2015) 

State Variable 

Entity that describes a variable that 

composes the state definition in terms 

of its data properties. 

(Hu et al. 2013; Touraille 2012) 

Internal Transition 

Function 

External Transition 

Function 

Output Function 

Time Advance 

Function 

Entities that model functions defined 

as part of DEVS atomic models. 

(Hu et al. 2013; 

Sarjoughian, Alshareef and Lei 2015; 

Hollmann, Cristiá and Frydman 2015) 

Port 

Entity that models a port that belongs 

to a component which refers to a 

DEVS model. 

(Hu et al. 2013; Touraille 2012) 

Port Coupling 

Entity that define a coupling as a 

composition of source port and target 

port. 

(Hu et al. 2013; Touraille 2012) 

EIC 

EOC 

IC 

Entities that define specific types of 

port couplings. 
(Hu et al. 2013; Touraille 2012) 

 

Other concepts to be included in the ontology are State Set, Input Set, Output Set, Input Port, Output Port, 

State Transition, Model Structure and Model Behavior. Moreover, the Function concept may be also 

included as a super concept of Internal Transition Function, External Transition Function, Time Advance 

Function and Output Function. Some of these concepts already exist in the conceptual models studied but 

their application depends on the modeling approach used by authors. 
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3.3 Implementation Dimension: Domain of ‘DEVS Implementation’ 

Since there is no common DEVS format used by all tools, modelers are tied to their tool (Van Tendeloo 

and Vangheluwe 2017). Then, each conceptualization used for building DEVS models in specific 

software tools is unique. Hence, the DEVS Implementation ontology proposed as description of the 

Implementation dimension needs to be focus on the common-concepts included in most software tools. In 

this way, the ontology will be developed keeping in mind that many DEVS tools are already available 

and, also, it will help to provide as much integration as possible among them. 

Several metamodels of DEVS have been developed for specific purposes. For example, Nikolaidou et al. 

(2008) propose a SysML (Systems Modeling Language) profile supporting the description of DEVS 

simulation models. Authors build DEVS SysML profile employing as basis the entities defined in a 

DEVS metamodel. The aim of this research was to offer a graphical, standardized environment for the 

definition of DEVS models using a SysML profile. A similar approach is presented in (Gonzalez et al. 

2014) where authors propose an Ecore metamodel for DEVS that is used with aims to map UML states 

machines over DEVS atomic models.  

Applying the same point of view that the one proposed for the DEVS Implementation ontology, Garredu 

et al. (2012a) propose a platform independent meta-model for DEVS formalism that is enriched with 

Object Constraint Language (OCL) constraints in (Garredu et al. 2012b). Authors state that such meta-

model is “accurate enough to specify several DEVS models”. A similar research related to SysML is 

presented in (Kapos et al. 2014). In such research authors discuss on the adoption of Model Driven 

Architecture concepts in order to seamlessly transform SysML models to executable DEVS models. 

Therefore, they build a MOF metamodel for DEVS in order to provide a standard representation for the 

simulation-specific domain. In (Cetinkaya, Verbraeck and Seck 2010) authors introduce a metamodel for 

component based hierarchical simulation based on Zeigler’s Hierarchical DEVS. This metamodel initiates 

the definition of formal component based conceptual modeling technique to overcome the problems in 

hierarchical simulation. 

Table 2 resumes the concepts obtained from literature that will be used to abstract most commonly-used 

DEVS implementations with aims to build the DEVS Implementation ontology. 

Table 2: Concepts to be used for modeling the Implementation dimension. 

Concept Description References 

DEVS Model 

Entity that abstracts the 

definition of both types of 

DEVS models. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Nikolaidou et al. 2008; Kapos et al. 2014) 

Atomic DEVS 

Entity that defines the 

implementation of the DEVS 

atomic model. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Gonzalez et al. 2014; Kapos et al. 2014; 

Cetinkaya, Verbraeck and Seck 2010; 

Nikolaidou et al. 2008) 

Coupled DEVS 

Entity that defines the 

implementation of the DEVS 

coupled model. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Cetinkaya, Verbraeck and Seck 2010; 

Nikolaidou et al. 2008; Kapos et al. 2014) 

State 

Entity that defines the state of 

DEVS atomic models as an 

implementation based on 

variables, data types and 

parameters. 

(Gonzalez et al. 2014; 

Nikolaidou et al. 2008; 

Kapos et al. 2014) 
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Coupling 

Entity that defines the 

implementation of DEVS 

couplings in terms of its source 

and destination ports. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Cetinkaya, Verbraeck and Seck 2010; 

Nikolaidou et al. 2008) 

EIC 

EOC 

IC 

Entities that describe specific 

implementations of DEVS 

coupling types. 

(Garredu et al. 2012a; 

Garredu et al. 2012b; 

Kapos et al. 2014) 

Port 
Entity that defines a DEVS port 

using a name. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Cetinkaya, Verbraeck and Seck 2010; 

Nikolaidou et al. 2008) 

Input Port 

Output Port 

Entities that describe specific 

types of DEVS ports in order to 

receive/send events. 

(Garredu et al. 2012a; Garredu et al. 2012b; 

Cetinkaya, Verbraeck and Seck 2010) 

Event 

Entity that specifies the 

implementation of the basic unit 

to be exchanged among models. 

(Gonzalez et al. 2014; 

Kapos et al. 2014) 

 

As in the Formalization dimension, there is a set of concepts that each conceptualization uses with aims 

to achieve its implementation modeling goal. We believe that such concepts should be (at least) 

considered as potential entities of the DEVS Implementation ontology. For example, a full description of 

the State concept implementation is defined in (Kapos et al. 2014). This conceptualization includes State 

Variable and State Set as components, but also details Time Advance Function, Internal Transition 

Function and External Transition Function as states handlers. In (Garredu et al. 2012b) authors include 

Rule, Expression, Type, Variable, Action and Condition as metamodel concepts. Similarly, the model 

proposed by Cetinkaya, Verbraeck and Seck (2010) include Parameter, Rule, Entity and Component. 

Moreover, Gonzalez et al. (2014) incorporate Transition, Internal Transition, External Transition, Input 

Event and Output Event; while Nikolaidou et al. (2008) employ the notion of Message. 

Table 2 shows that there is a broad set of concepts to be considered in the Implementation dimension. 

This issue is given by the complexity of modeling an universal representation of DEVS models 

implementation that includes all possible deployments. 

3.4 M&S Ontology-based Framework for DEVS 

Yang et al. (2019) have studied the current state of art of ontology-based system engineering. They have 

identified the following contributions of ontology-based systems: 1) enabling interoperability and 

communication among multiple disciplines or across different stakeholders; 2) integrating, mapping, 

exchanging and reusing knowledge; 3) describing concepts and their relationships explicitly and 

accurately to avoid incompleteness and ambiguity; 4) developing a domain knowledge representation; 5) 

unifying a controlled vocabulary or semantics for capturing declarative knowledge; 6) providing core and 

basic concepts as a reference to describe other concepts; 7) defining a homogeneous terminology to 

eliminate inconsistency; 8) sharing a common understanding of a domain; 9) capturing knowledge in a 

formal language; 10) allowing, expressing and reasoning about machine-readable programmable complex 

logical axioms; and 11) visualizing and navigating knowledge repository. 

In this context, the ontologies proposed as core of the DEVS universal representation can be used to build 

a software M&S framework for DEVS. These ontologies can be seen as conceptual models that define 

abstraction levels of DEVS formalism from different (but related) perspectives. Moreover, the MDE 
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principles can be applied to such software framework in order to improve its development. The M&S 

field has applied the MDE approach for years. MDE is based on a number of principles that involve the 

concepts of model, metamodel, meta-metamodel and model transformations in order to provide a process 

that enables the automated development of a system (Cetinkaya, Verbraeck and Seck 2011). From the 

MDE perspective, MDE produces well-structured and maintainable systems and increases the level of 

abstraction. 

Figure 3 shows how the MDE modeling levels can be mapped into the ontologies proposed for the M&S 

dimensions with aims to build a software M&S framework. A full representation of a DEVS model is 

given by the set {Abstraction Model, Formalization Model, Implementation Model}. Each kind of model 

is defined as an instance of the ontology that represents its dimension. In the Figure, each ontology is 

sketch using a set of related concepts. As interoperability example, all the ontologies include the State 

concept. However, even when all the State concepts refer to the same DEVS model, each 

conceptualization depicts the state of the model from a different perspective (M&S dimension). Then, a 

set of traceability relationships can be defined among all the conceptualizations of the same concept (in 

Figure 3 such relationships are depicted only for the State conceptualizations). This traceability allows to 

align concepts from different ontologies (that is, the M&S dimensions) with aims to get more information 

about the model definition. Such information can be interpreted as new knowledge referred to the 

structure of DEVS dimensions. Moreover, it provides a solid basis for defining mapping relationships 

among concepts defined in different dimensions. Therefore, inference rules can be designed over the 

ontology network in order to get new knowledge. In both cases, for each pair of M&S dimensions, a 

software framework based on the proposed ontologies could implement several model-to-model 

transformations following the MDE approach. Then, it is useful to consider the M&S dimensions in the 

same way than the MDE approach. 
 

 

Figure 3: Employing the DEVS universal representation as basis of the DEVS M&S framework. 

A corollary of the ontology-based universal representation of DEVS is the possibility of designing 

specific alignments with the DEVS conceptual models developed over the years. The value of such 

alignments depends on the M&S dimension under consideration. For the Abstraction dimension, different 

types of dynamic systems conceptualizations can be aligned to the Discrete Dynamic Systems ontology if 

and only if the dynamic system type can be reduced to a discrete system representation. This alignment 

will provide the possibility to obtain an Abstraction Model based on DEVS for the dynamic system types 
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involved in the mapping. For the Formalization dimension, conceptual models of other kinds of discrete-

event formalisms can be aligned to the DEVS Formal Specification ontology if and only if the formalism 

can be reduced to a set of DEVS formal models. This alignment will provide the possibility to design 

multi-formalism models that can be described (ultimately) as a Formalization Model based on DEVS. 

Finally, for the Implementation dimension, software tools metamodels can be aligned to the DEVS 

Implementation ontology if and only if the concepts included in the software tool can be mapped to the 

common-abstractions of DEVS simulators. This alignment will provide the possibility to translate an 

Implementation Model based on DEVS to multiple software tools for its simulation. 

Therefore, the MDE principles can be used as foundation for designing and implementing not only the 

ontologies for the M&S dimensions but also for defining new mappings with existing models. Over all 

these assumptions, the M&S framework will be capable of translating several representations of the same 

model with aims to get a full consistent DEVS model. Hence, the implementation of the DEVS M&S 

framework from the DEVS universal representation proposed in this paper should help mainly to: 

 validate the consistency among discrete dynamic system descriptions and their DEVS formal 

models; 

 verify the consistency among DEVS formal models and their simulation implementations 

developed using specific software tools (concrete simulators); 

 provide a basis for building multi-formalism models based on DEVS; 

 give a background for developing models composition based on DEVS; 

 exploit the models reuse capabilities at semantic level in order to make compatible 

implementations; 

 contribute to the deployment of holistic DEVS simulation models implemented with different 

software tools (concrete simulators); 

 take measures related to the abstraction, formalization and implementation of DEVS simulation 

models. 

4 CONCLUSIONS AND FUTURE WORK 

This paper is a work in progress aimed to define an universal representation of DEVS using ontologies. 

This representation extends the context of the M&S field trying to capture the associations among the 

Abstraction, Formalization and Implementation dimensions used in DEVS models. With the help of the 

MDE approach, we will use these ontologies as foundation for building a M&S framework for DEVS. 

The future work includes the design and implementation of the semantic models required for each M&S 

dimension employing the set of concepts identified from the literature review. However, even when 

ontologies can improve the representation of the Abstraction, Formalization and Implementation 

dimensions, their integration as underlying mechanism of a M&S framework for DEVS will probably 

need to consider other aspects related to systems theory in order to get the complete picture. As there 

were presented in Figure 3, the ontologies proposed for the Abstraction, Formalization and 

Implementation dimensions are depicted as partial views of the complete DEVS description. Even with 

concepts traced among dimensions, the systems concept underlying DEVS could be included with aims to 

define a conceptual description at the general system level. The underlying abstraction of DEVS is the 

I/O system which is specifiable at multiple levels of structure and behavior with their associated 

morphisms. Moreover, DEVS itself is a system specification, indeed, an iterative system specification 

(formalization). And, finally, the implementation is the abstract DEVS simulator (Zeigler, Muzy and 

Kofman 2018). Therefore, each one of these components can give rise to its own set of concepts and 

relationships (i.e. its ontology class) which is distinct from the others but are all consistent from the I/O 

systems perspective. Therefore, prior unifying the M&S ontologies, we will study these domains with 

aims to include their conceptual information as part of the framework. 
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