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Preface

This book compiles the best submitted papers to the Fourth International Conference
on Optimization and Learning (OLA 2022), which took place in Syracuse, Italy, from
July 18 to July 20, 2022. The main objective of OLA 2022 was to attract influential
researchers from all over the world in the fields of complex problems optimization,
machine learning, and deep learning to discuss the synergies between these research
fields and their applications for real-world problems, amongst other things. The confer-
ence aims to build a nice atmosphere where relevant researchers present their innovative
works.

Three categories of papers were considered in OLA 2022, namely, ongoing research
works, high impact journal publications (both in the shape of an extended abstract), and
regular papers with novel contents and important contributions. A selection of the best
papers in this latter category is published in this book.

The conference received a total of 52 papers, of which 46 were presented at OLA
2022 edition. The presentations were arranged into nine sessions, covering topics such
as the use of optimization methods to enhance learning techniques, the use of learning
techniques to improve the performance of optimization methods, advanced optimization
methods and their applications, machine and deep learning techniques, or applications
of learning and optimization tools to transportation and routing, scheduling, or other
real-world problems.

The top 18 papers, according to review score, are included in this book, which is
30.8% of all submitted papers. All of the selected papers were reviewed in a single-blind
process, with each paper receiving at least three reviews.

July 2022 Bernabé Dorronsoro
Mario Pavone
Amir Nakib

El-Ghazali Talbi
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Evolutionary-Based Co-optimization
of DNN and Hardware Configurations

on Edge GPU

Halima Bouzidi1(B), Hamza Ouarnoughi1, El-Ghazali Talbi2,
Abdessamad Ait El Cadi1, and Smail Niar1

1 Université Polytechnique Hauts-de-France, LAMIH/CNRS, Valenciennes, France
Halima.Bouzidi@uphf.fr

2 Université de Lille, CNRS/CRIStAL INRIA Lille Nord Europe, Lille, France

Abstract. The ever-increasing complexity of both Deep Neural Net-
works (DNN) and hardware accelerators has made the co-optimization
of these domains extremely complex. Previous works typically focus on
optimizing DNNs given a fixed hardware configuration or optimizing a
specific hardware architecture given a fixed DNN model. Recently, the
importance of the joint exploration of the two spaces draw more and
more attention. Our work targets the co-optimization of DNN and hard-
ware configurations on edge GPU accelerator. We investigate the impor-
tance of the joint exploration of DNN and edge GPU configurations.
We propose an evolutionary-based co-optimization strategy for DNN by
considering three metrics: DNN accuracy, execution latency, and power
consumption. By combining the two search spaces, we have observed
that we can explore more solutions and obtain a better tradeoff between
DNN accuracy and hardware efficiency. Experimental results show that
the co-optimization outperforms the optimization of DNN for fixed hard-
ware configuration with up to 53% hardware efficiency gains for the same
accuracy and latency.

1 Introduction and Related Works

Deep Neural Networks (DNN) and hardware accelerators are both leading forces
for the observed progress in Machine Learning (ML). However, DNNs are becom-
ing more and more complex and resource-demanding. Therefore, they need care-
ful optimization to achieve the best tradeoff between accuracy and hardware
efficiency. To meet this challenge, Hardware-aware Neural Architecture Search
(HW-NAS) has been proposed [1] in which DNN hardware efficiency is consid-
ered during the exploration process. Nevertheless, hardware efficiency depends
not only on the DNN architecture but also on the hardware configuration [2–
4]. Most existing works on HW-NAS fall into the optimization of DNN with-
out considering the reconfigurability of the hardware accelerator. As discussed
in [5], this approach is sub-optimal because the HW-NAS search space is nar-
rower when considering only a fixed hardware configuration. Thus, by consid-
ering the hardware design space, it is possible to find tailor-made DNNs for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Dorronsoro et al. (Eds.): OLA 2022, CCIS 1684, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-22039-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22039-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-22039-5_1
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each hardware configuration and vice-versa. The joint exploration of both search
spaces is referred to as the co-optimization in this paper.

Recent works [2,6–13] have tackled the co-optimization problem where DNN
architectures are optimized jointly with hardware configurations. Thereby, DNN-
HW pairs are generated during the exploration process. However, as pointed out
by [14], this strategy incurs a huge search time given the complexity of the joint
search space. Therefore, another co-exploration strategy has been proposed by
[15–17], in which separate optimization algorithms optimize DNN and hardware.
The results can be then communicated between the two optimization algorithms
to adjust the exploration process at some points. However, although this strategy
solves the drawback of the first joint approach, the sub-optimality of the final
results remains its critical issue. The works mentioned above can also be classified
according to the following factors [5]: DNN search space and targeted hardware
accelerator, exploration algorithm, objective functions, and fitness evaluation
strategy. Nevertheless, only a few works have attempted to consider the co-
optimization problem for GPU-based hardware platforms. Recent edge GPUs
allow the reconfigurability of different hardware parameters such as processing
units and operating frequencies. The impact of these parameters on DNN perfor-
mance has been well discussed and analyzed in [18,19]. Moreover, recent works
shed light on the impact of these parameters when varying other parameters
of the DNN. For instance, the authors in [3] adjust both the configuration of
the GPU operating frequencies and the batch size of the DNN to maximize the
inference hardware efficiency.

Our paper is structured as follows. In Sect. 2 we present and explain the
motivation of our work. In Sect. 3 we first formulate our multi-objective co-
optimization problem. Then, we describe and explain our optimization app-
roach. Section 4, presents our experimental setup and results. Then we discuss
our obtained results and compare them to other approaches and state-of-the-art
solutions. Finally, the conclusion will be given in Sect. 5.

Fig. 1. The results of performing an
HW-NAS under fixed edge GPU’s hard-
ware configuration.

Fig. 2. The results of optimizing edge
GPU’s hardware configuration for a fixed
DNN model.
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2 Motivation

Figure 1 shows that different DNN models give different tradeoffs between accu-
racy and hardware efficiency (i.e., latency and power consumption) under a fixed
hardware configuration. This figure gives the results of a Hardware-aware Neural
Architectural Search (HW-NAS) [20] that we have performed under a fixed hard-
ware configuration. As hardware platform, we used the NVIDIA Jetson AGX
edge GPU. Each point represents a DNN model in the search space. The x-axis
and y-axis represent the measured latency and power consumption, respectively,
on the edge GPU. The color of the points indicates the TOP-1 accuracy of the
DNN. Figure 1 shows that different tradeoffs are obtained between accuracy and
hardware efficiency for each explored DNN model.

Figure 2 illustrates that the hardware efficiency of a single DNN varies when
varying the hardware configuration. This figure gives the results of an exhaustive
exploration of hardware configurations for a fixed DNN model, EfficientNet-B0
[21] in this case. To showcase the impact of the hardware configuration on the
overall hardware efficiency of the DNN, we compare the obtained results with the
predefined default hardware configurations proposed by NVIDIA. In this figure
MAXN (resp. MINN) is the NVIDIA Jetson AGX configuration with the high-
est (resp. the smallest) allowed clock frequency. MAXN (resp. MINN) in general
maximizes (resp. minimises) the processing speed at the cost of a high (resp.
low) power consumption. The other configurations (i.e., from conf 1 to conf 5)
are proposed to achieve a tradeoff between MAXN and MINN [22]. Remark-
ably, from the optimal Pareto front (marked in blue), the exhaustive exploration
identifies hardware configurations that completely dominate all NVIDIA’s prede-
fined default configurations. It’s important to mention that the Pareto front does
not contain any configuration of the NVIDIA’s predefined configurations. Fur-
thermore, the dominant solutions in the Pareto front improve upon the default
configurations of NVIDIA (i.e., MAXN and MINN) by 57% and 40% for power
consumption and latency, respectively This result shows the necessity to explore
the space of hardware configurations, to enhance the hardware efficiency of the
DNN.

From these two figures we can conclude that, the performances of a DNN
model are determined by the DNN architecture and the HW configuration.
However, understanding the impact of these factors is not straightforward. For
instance, the DNN with the highest computational complexity is not necessarily
the most accurate model in the DNN search space [23]. In addition, the correla-
tion between the performance metrics is also complex. For instance, minimizing
latency incurs a maximization of power consumption and vice versa [24].

3 Proposed Approach

3.1 Problem Formulation

Our DNN-HW co-optimization problem can be formulated as a multi-objective
problem. As exploring the whole HW space and the whole DNN space is time-
consuming and costly in terms of development efforts, we need a tool for a rapid
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DNN/HW co-design space exploration. Furthermore, while accelerating the co-
design space exploration, the tool must adequately provide good approximation
of the Pareto front. In this paper, we focus on solutions depicting the highest
DNN accuracy and hardware efficiency. The term hardware efficiency refers to
the trade-off between latency and power consumption. The mathematical for-
mulation of our problem is as follows:

MOP :

{
minF (dnn, hc) = [(Errordataset(dnn), LatencyHWACC

(dnn, hc), PowerHWACC
(dnn, hc)]T

s.t. (dnn, hc) ∈ (DNN × HWConf)

(1)
where dnn represents a DNN model defined by the DNN decision variables
detailed in Table 1. hc represents a hardware configuration defined by the hard-
ware decision variables listed in Table 1. DNN and HWConf are the decision
spaces of DNNs and hardware configurations, respectively, detailed in Table 1.
Finally, F is the objective vector to optimize by minimizing the DNN error (i.e.,
maximizing accuracy) on dataset, DNN latency and power consumption on the
hardware accelerator HWACC . We note that the Error is measured by calcu-
lating the TOP-1 error rate, which is the percentage of images from dataset for
which the correct label is not the class label predicted by the DNN. Latency is
the execution time (in milliseconds) of dnn on the hardware accelerator HWACC .
Finally, Power is the average power consumption (in milliwatt) observed when
executing dnn on the hardware accelerator HWACC .

3.2 Optimization Methodology

Fig. 3. Overview on the proposed co-optimization approach based on NSGA-II

To solve the above problem, we propose an evolutionary-based co-optimization
strategy, where we search for both the optimal DNN architecture and hard-
ware configuration. The search is done by exploring DNN and HW search
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spaces. Figure 3 details the proposed co-optimization approach. Our method-
ology includes three main components:

– Joint Search Space: We extend the search space of the HW-NAS by includ-
ing the hardware configurations. Furthermore, by definition, the joint search
space can be generalized to any DNN, task, dataset, and hardware accelera-
tor. Thus, these four factors are considered as inputs in our co-optimization
framework. In this paper, we use the joint search space detailed in Table 1.
We note that all the considered decision variables are discrete.

– Optimization Algorithm: We choose NSGA-II [25] as an evolutionary algo-
rithm to explore the joint search space. NSGA-II is a widely used algorithm
for NAS problems in general, and HW-NAS in particular [26]. Moreover, it
typically provides a fast and efficient convergence by searching a wide range
of solutions. These two abilities is due to its selection strategy based on non-
dominated sorting and crowding distance, which allow for both convergence
and diversity of solutions. In this paper, the parameters used for NSGA-II are
detailed in Table 2. We first initialize the population using the LHS method
(Latin HyperCube Sampling). Then, next populations are generated from:
1) selecting the best solutions using the non-dominated sorting algorithm of
NSGA-II and 2) applying mutation and crossover on these best solutions to
create the offspring population. We choose a high crossover probability of
80% to increase the reproducibility of good candidate solutions. However, we
decrease the probability of mutation to 30% to prevent the risk of losing traces
of good candidate solutions. Crossover and mutation are chosen uniformly.

– Evaluation Strategy: The explored pairs are evaluated regarding the DNN
accuracy and hardware efficiency. DNN accuracy is evaluated in two stages:
1) We use a fast evaluation technique to quickly determine the DNN accuracy
during the exploration, then after the exploration, 2) we perform a more com-
plete evaluation of the DNN accuracy for the elite solutions. We note that the
results of the two evaluation techniques are highly correlated. Furthermore,
DNN hardware efficiency is directly measured by executing the DNN on the
hardware accelerator under the specified configuration.

4 Evaluation

Table 1. The joint search space of DNN and hard-
ware parameters

Decision
variables

DNN search space Hardware search space

Input
resolution

Width Depth Kernel size Expand
ratio

CPU
frequency

GPU
frequency

Memory
frequency

Values [192, 288] [16, 1984] [1, 8] [3, 5] [1, 6] [0.1, 2.3] [0.1, 1.4] [0.2, 2.1]

Cardinality 4 16 8 2 4 29 14 9

Table 2. NSGA-II parame-
ters

Parameter Value

Number of generations 50

Population size 100

Population initialization LHS

Mutation, probability Uniform, 30%

Crossover, probability Uniform, 80%
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Fig. 4. DNN search space encoding: A candidate DNN architecture is real-encoded
using a single vector that comprises five sub-vectors depicting: input resolution, depth,
width, kernel size, and expansion ratio of each block

4.1 Experimental Setup

With the essential concepts described above, our co-optimization problem
instance has the following inputs:

– DNN search space: We use the same search space provided by [20,27]. The
search space contains 1011 DNN architectures, as detailed in Table 1 and
Fig. 4. The authors in [20] provide a prediction model for accuracy assessment,
as a fast evaluation tool, and a pretrained supernet, as a complete evalua-
tion tool. However, the second strategy is time-consuming as the sampled
DNN needs to be calibrated on the entire training dataset (ImageNet). Thus,
we used a fast evaluation strategy during the exploration then performed a
complete evaluation using the pretrained supernet for the elite solutions.

– Dataset: We choose to explore the joint search space for a state-of-art dataset
such as ImageNet. Thus, the DNN accuracy are calculated on the ImageNet
[28] validation dataset. All images are preprocessed using data augmentation
techniques such as whitening, upsampling, random cropping, and random
horizontal flipping, before feeding them to the DNN.

– Hardware search space: We choose the NVIDIA Jetson AGX Xavier GPU as a
hardware accelerator [29]. NVIDIA Jetson GPU accelerators allow the recon-
figurability of different hardware parameters such as the number of operating
cores. It also allows to have different operating clock frequency in the cores,
GPU, and memory units. The chosen values of these parameters depend on
the application requirements. For our case, we only vary the operating fre-
quencies as detailed in Table 1 (Fig. 9).
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Fig. 5. Co-exploration results on the
joint search space

Fig. 6. Results of the three exploration
approaches

Fig. 7. Explored hardware
configurations

Fig. 8. Explored DNN models Fig. 9. Hypervolume
results of the three
optimization approa-
ches

4.2 Experimental Results

In this section we will discuss the obtained results from two main perspectives:

– Efficiency of the co-exploration: To underline the co-exploration’s importance,
we compare the results obtained when co-exploring the joint search space and
when performing a typical HW-NAS under fixed hardware configurations.
We choose two default configurations proposed by the hardware manufac-
turer, NVIDIA in our case: MAXN and MINN. Figure 5 gives the results of
the co-exploration, where Fig. 6 depicts a comparison between the results of
the three approaches (i.e., joint, MAXN, and MINN), marked with different
points shapes. After analyzing the two figures, we can clearly see that the
region explored in the joint space is much larger than the regions explored
when fixing the hardware configuration to MAXN or MINN. Furthermore, the
explored regions when fixing the hardware configuration are included in the
co-exploration. Indeed, the joint search space allows for exploring much larger
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solutions and hence different tradeoffs between DNN accuracy and hardware
efficiency. The obtained hypervolume results presented in Table 2 confirm this
observation. The obtained hypervolume from the co-exploration is larger than
the hypervolumes of the HW-NAS under MAXN and MINN. Furthermore, we
give Figs. 7 and 8 to show the diversity of the explored solutions. The white
points correspond to all the explored solutions, whereas the solutions of the
Pareto set are marked in blue. In Fig. 8, we show the explored hardware deci-
sion space. From this figure, we can observe that the Pareto optimal solutions
are diverse and well distributed. This confirms our earlier observation that
no a priori knowledge can be used to choose the best-suited hardware con-
figuration without actual exploration and evaluation. Figure 7 gives the char-
acteristics of the explored DNN models in terms of input resolution, depth
(i.e., number of layers), and size of trainable parameters (in Mega-Bytes).
Similarly, the Pareto optimal solutions are well distributed and diverse. This
also supports the importance of the exploration as we can assume a priori
which DNN model will be Pareto optimal without actual evaluation of its
performance.

– Optimality of the obtained results: To further investigate the efficiency of the
co-exploration, we select top pairs of (DNN, hardware configuration) from
the Pareto front and compare them to SOTA DNN models under the widely
used default configuration proposed by NVIDIA, MAXN. Table 1 details the
obtained results. Our co-optimization approach was able to identify better
solutions in terms of accuracy and hardware efficiency. We can notice power
gains of up to 53% under the same latency constraints. Furthermore, we
observe an accuracy improvement of up to 0.5% on the ImageNet dataset
(Table 3).

Table 3. Performance of the baseline models proposed by AttentiveNAS [20] compared
to our top solutions of (DNN,hw-conf) obtained from the Pareto front approximation
of the co-optimization

DNN, hw conf TOP-1 acc (%) Latency (ms) Power consumption (mw)

AttentiveNAS-A2, MAXN 78.8 29.91 6575

AttentiveNAS-A3, MAXN 79.1 33.51 6575

AttentiveNAS-A4, MAXN 79.8 32.67 7033

AttentiveNAS-A5, AMXN 80.1 35.66 6881

Ours-B0, hc0 79.0 28.85 4744

Ours-B1, hc1 79.6 30.82 4591

Ours-B2, hc2 79.9 33.03 4591

Ours-B3, hc3 80.2 34.10 6118
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5 Conclusion

In this paper, we investigated the importance of the joint exploration of DNN
and hardware configurations for edge GPU accelerators. We propose a co-
optimization approach based on an evolutionary algorithm (NSGA-II) to explore
these two search spaces. We aim was to minimize three objective functions: DNN
TOP-1 error, latency, and power consumption. Experimental results on the Jet-
son AGX Xavier demonstrated the efficiency of the co-optimization compared to
typical HW-NAS under fixed hardware configurations. Moreover, the top pairs
found by our co-optimization are more energy-efficient with up to 53% gains than
solutions found by state-of-the-art models under the same accuracy and latency
constraints. As future work, we plan to enhance our co-optimization strategy by
proposing more efficient selection and recombination operators for the optimiza-
tion algorithm. We also aim to investigate more hardware configurations and
DNN benchmarks to showcase the importance of co-optimization.
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Abstract. Manual monitoring large water reservoirs is a complex
and high-cost task that requires many human resources. By using
Autonomous Surface Vehicles, informative missions for modeling and
supervising can be performed efficiently. Given a model of the uncer-
tainty of the measurements, the minimization of entropy is proven to
be a suitable criterion to find a surrogate model of the contamination
map, also with complete coverage pathplanning. This work uses Proxi-
mal Policy Optimization, a Deep Reinforcement Learning algorithm, to
find a suitable policy that solves this maximum information coverage
path planning, whereas the obstacles are avoided. The results show that
the proposed framework outperforms other methods in the literature by
32% in entropy minimization and by 63% in model accuracy.

Keywords: Deep reinforcement learning · Informative path planning ·
Autonomous surface vehicles

1 Introduction

More than 80% of human activities wastewater is discharged into rivers and seas
without prior treatment, making the task of monitoring hydrological resources
essential for the sustainability of the planet and developing populations [1]. Man-
ual monitoring of water quality in very large lakes and rivers is a costly task,
especially when the environment is polluted and can pose a risk to field opera-
tors. Additionally, manual monitoring is inefficient, as manned vessels are heavier
and tend to use fossil fuels. On the other hand, the deployment of static sen-
sor networks has certain disadvantages. The measurement points are fixed and
cannot change their trajectory depending on the information needs of biologists
and authorities.

This work proposes the use of autonomous surface vehicles (ASVs) for
dynamic monitoring of biologically at risk scenarios, such as Lake Ypacaráı,
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where spills and uncontrolled eutrophication have caused a dangerous bloom of
blue-green algae colonies. With these electric vehicles equipped with high-quality
sensor modules to measure turbidity, ammonium, dissolved oxygen, etc., multi-
objective monitoring missions can be carried out (see Fig. 1). The use of these
vehicles, however, requires the development of an intelligent routing module
capable of dealing with the environmental monitoring requirements, which are:
planning obstacle-free paths, sampling the entire objective surface with mini-
mization of the redundancy, and a surrogate model that truly represents the
sampled variables. The informativeness criterion, from the perspective of Infor-
mation Theory, can be designed using entropy as an indicator of the model
uncertainty of the lake variables. Let there be a surrogate model f̂(X), repre-
senting the value of a pollution variable in the navigable domain X ∈ R

2, the
reduction of the entropy H(X|f) by incorporating new information implies a
decrease of the information clutter, that is, the certainty about the obtained
model. The objective of an information planner will then be to maximize the
information gain ΔI from an instant t to t + 1.

Finding the set of samples that reduce the entropy of the process while avoid-
ing the nonnavigable areas makes this problem, called the Maximum Informa-
tion Coverage Path Planning Problem (MICPP), nonpolynomial hard. Due to
the unmanageable dimension of the possibilities in tracing a route within the
lake that meets the requirements, it is necessary to use Artificial Intelligence
(AI) or Metaheuristic Optimization techniques to find solutions that, in most
cases, are suboptimal. In this work, we propose the use of deep reinforcement
learning (DRL) algorithms to find solutions to the problem. With an a priori
model of the covariance of the variables (kernel) and the use of a robust opti-
mization algorithm of a deep policy (PPO), a framework is proposed that makes
it possible to find good solutions to the MICPP problem in a reasonable amount
of time. Furthermore, this framework allows one to obtain routes that meet a
second objective: detecting possible pollution peaks that are difficult to model.
As the treatment of the information is independent of any physical model and
only bases its optimality on the entropy decrease, it can be applied in a wide
range of cases: gas leakage detection, electromagnetic indoors characterization,
patrolling and surveillance, etc.

Fig. 1. ASV prototype (right) developed for monitoring the Lake Ypacaráı. The ASV is
equipped with a high performance sensor module that is able to measure pH, dissolved
oxygen, turbidity, and ammonia concentration. Every mission starts from the deploy
zone marked in the map (left).
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The main contributions of this work are:

– A Deep Reinforcement Framework to solve the Maximal Distributed Infor-
mation Coverage problem and global path planning in the Ypacaráı Lake.

– An analysis of the stability, generalization, and performance of the proposed
DRL approach and other well-known planning heuristics.

This article is organized as follows. In Sect. 2, an overview of recent advances
in patrolling and monitoring using autonomous vehicles is presented. In Sect. 3,
the problem is presented formally with its assumptions, and the DRL framework
is explained. In Sect. 4, the simulations are described with an analysis of the
results. Finally, the conclusions and future lines are described in Sect. 5.

2 State of the Art

The use of Unmanned Surface Vehicles for monitoring aquatic environments is
becoming increasingly common thanks to the development of robotics technology
and battery autonomy. In [2], the use of inexpensive surface vehicle swarms is pro-
posed for sea border patrolling and environmental monitoring. In [3], an aquatic
robot is also used to perform an autonomous bathymetry study in oceanographic
contexts. These works use sensor modules and network connectivity to perform
their tasks and avoid obstacles.

If we focus on the task of monitoring hydrological resources, we can separate
the contributions of the literature into three topics: modeling [4,5], patrolling
[6,7], and coverage [8,9]. In the first branch, the ultimate goal is to find a scalar
field that represents the environmental variables of water (turbidity, pH, etc.).
In works such as [4], the use of Bayesian optimization algorithms together with
Gaussian processes is proposed for obtaining faithful models with few samples. In
this sense, our proposal includes the use of Gaussian processes as a way to obtain
a model of the environment. Other contributions such as [5] explicitly work on
multi-objective optimization, while in our proposal the coverage tries to find a
path independent of the underlying variables. In the second application, ASVs
are typically used to solve the homogeneous [6,7] and heterogeneous patrolling
problem. In the first case, the aim is to find periodic routes that minimize the
average visit time of each area, while in the second case, this time is weighted
according to a previously specified importance map. These approaches have in
common that the map is modeled as a discrete, metric, undirected graph, the
resolution of which severely affects the dimension of the problem. In this new
framework, on the other hand, the resolution of the map does not affect the
complexity of the problem, since the state and action space are continuous. In
the third application, vehicles can be used to cover, given a path length, the
maximum possible area [8]. This work proposes to maximize the area covered by
the vehicle by using a Genetic Algorithm that penalizes passing through already
visited areas. In [9], a similar approach is used to adapt to the detection of
cyanobacterial blooms in the same Lake Ypacaráı. Both approaches to the full
coverage problem have as a counterpart that the vehicle is limited to perform
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straight trajectories from shore to shore of the lake. In addition, coverage is
considered binary (covered or uncovered). Both limitations are overcome in this
work when it is specified, in the first case, that the action space can take any
direction at each instant and, in the second case, that the coverage level is
measured with a smooth function in the circular surrounding of every sample
(radial kernel), since the underlying real scalar field can be considered smooth
as well.

Regarding the use of DRL for autonomous vehicle monitoring, there are many
examples in the literature that implement deep policy optimization. In the case
of [10], a Monte Carlo optimization is used to minimize entropy in the task of
monitoring crop fields. The main differences of our proposal with this one are i)
the action space used in this work is continuous, which increases the complexity
of the solutions, and ii) in [10] terrain constraints are not taken into account.
In this work, we consider that the agent must adapt to a real morphology with
non-navigable areas, which means not only finding informative routes, but also
avoiding obstacles.

3 Methodology

3.1 Sequential Decision Problem

The MICPP simultaneously addresses two learning problems: i) the vehicle must
find navigable routes as long as possible to maximize the sampled area, and ii)
these routes must optimally minimize the information entropy given a model of
uncertainty of environmental variables. This is a sequential decision problem,
since the vehicle must choose, at each instant, which next point pt+1 to move to
achieve both objectives. This sequential process is defined as a Markov Decision
Process (MDP) in which the scenario with state st, the agent performs an action
at according to a policy π(st) that maps s to a which generates a reward rt

according to a reward function R(st, at). Within this framework, the ASV must
learn to decide at every instant the next point of movement that maximizes the
episodic discounted reward. The optimal policy π∗(st) is:

π∗ = max
π

T∑

t=0

Rπ(st, at) (1)

In this mathematical context, the ASV takes a sample of the water variables,
updates its surrogate model and uncertainty, and decides which point to move
to until a complete path is completed. In this work, we model the uncertainty of
the process using a decreasing radial function (RBF kernel). This kernel function
maps the correlation of two samples (x, x′) depending on the Eulerian distance
d and a scaling parameter l. The further the physical points, the lower the
correlation between the samples.

K(x, x′) = exp

(
−d(x, x′)2

2l

)
(2)
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This a priori model of the correlation is selected because it fits the only
hypothesis that the underlying ground truth is smooth and the data behave like
a multivariate Gaussian distribution (MGD). In this way, it is possible to obtain
the correlation between a set of observation points Xobs by evaluating pairwise
every physical point on the map:

Σ[X] = K(x, x′) ∀x, x′ ∈ X (3)

Hence Σ[Xobs], constitutes the covariance matrix of the observation points.
When a new measurement is incorporated into the measured set X[meas], the
conditioned correlation matrix noted as Σ[Xobs|Xmeas] can be calculated as:

Σ[Xobs|Xmeas] = Σ[Xobs]−Σ[Xobs,Xmeas]×Σ[Xmeas]−1×Σ[Xmeas,Xobs] (4)

This conditioned correlation indicates the uncertainty of the map given an
equally distributed set of observation points and the new measuring points as in
Fig. 2.

Fig. 2. Process of conditioning. The green squares represent the observation point for
the entropy measurement. Sampling (red crosses) diminishes the uncertainty in those
points according to Eq. (4), as the conditioned covariance between Xobs and Xmeas

decreases. (Color figure online)

Then, with the MGD hypothesis, the conditioned entropy H[Xobs|Xmeas]
and the information gain are defined as

H|Σ[Xobs|Xmeas]| =
1
2

log(Σ[Xobs|Xmeas]) +
D

2
(1 + log(2π)) (5)

ΔI(Xt|a) = H(Xt) − H(Xt+1|a) (6)

with D as the dimension of Σ[Xobs|Xmeas] [11].
Once the path is completed and different samples are obtained at each vis-

ited point, this information can be used to obtain a model of contamination
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of the environment. Since the model is obtained at the end of the collection of
maximally distributed points, the regression method is independent of decision-
making.

With respect to the action space of the agent A, it is defined to be continuous
A ∈ [−1, 1]. An action at represents the heading angle ψ ∈ [−π, π] of the straight
trajectory between the next point and the current one, if possible, with a constant
distance between them of dmeas (see Fig. 3). The ASV is restricted to a distance
budget of 40 km due to the capacity of the battery at a constant speed of 2 m/s.
At every reached point, a measurement is taken, and the model is updated.
The path is considered complete when the maximum distance Dmax = 40 km is
reached.

Fig. 3. Movement of the drone. The action space is contained in [−1, 1].

The reward function R(s, a) should sequentially represent the objective to
be achieved. It is logical to impose that the reward function should be directly
the gain of information ΔI(s, a). To further introduce the objective that the
ASV should have collision-free trajectories, a penalty c = −1 is imposed when
the next point pt+1 chosen by the policy cannot be reached from the current
position. To avoid large changes in the reward range, the information gain is
bounded between −1 and 1. Thus, the reward function would be:

R(st, at) =

{
min(max(ΔI(st, at),−1), 1) if valid.
c otherwise

(7)

3.2 DRL Framework

To learn a policy, the Proximal Policy Optimization (PPO) algorithm is chosen,
which is an on-policy reinforcement learning algorithm. In PPO, a deep policy
π(s|θ) is updated using the stochastic gradient descent (SGD) approach over a
loss function. This loss evaluates the advantage of each action in each state as a
function of its reward and weights the gradient step depending on the difference
between the policy prior to the optimization step and the new optimized policy.
By limiting the distance between them, either by saturating the step by ε or
penalizing the Kullback-Leibler (KL) distance between them, it is possible to
robustly optimize the behavior without incurring instability so easily.

L(s, a, θk, θ) = min

[
πθ(a | s)

πθk(a | s)
Aπθk (s, a) clip

(
πθ(a | s)

πθk (a | s)
, 1 − ε, 1 + ε

)
Aπθk (s, a)

]

(8)
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In this paper, the double constraint on the policy update has been imposed
to make training more robust: both KL(πθk

, πθ) and the fraction in (7) are
penalized. In the PPO, a two-headed neural network is trained. The first head
corresponds to the value function V (s) used in the advantage value Aπθk (s, a),
trained with the accumulated discounted reward R after the n steps of every
mission. The other head directly returns the action bounded by the action limit
[−1, 1].

The state st for the PPO is defined to contain all information available in the
problem. In this way, st is as a 3-channel image of H ×W pixels. These channels
correspond to the following. I) A binary representation of the navigation map
Nmap ∈ R. II) The standard deviation σ of each physical point on the map of
the RBF kernel, evaluated in the form of Eq. 2 and represented with the image
shape. III) The discretized path that the ASV has completed so far, represented
by pixels with values in [0, 1], where 1 corresponds to the actual position and
0 for the starting position. The latter channel merges temporal dependencies to
overcome the Markovian assumption of the reward: it must only depend on the
current state and the current action.

Regarding the deep policy, the Convolutional Neural Network (CNN) is
implemented for estimating the features of the state and processing the next
action. The CNN backbone is composed of four 2D convolutional layers of [128,
64, 16, 16] filters, respectively. After the convolutional structure, a dense neural
network (DNN) transforms the features into an action π(s) and a state-value
V (s). The DNN is composed of 3 lineal layers of 256 neurons and 3 layers of
64 neurons in every separate head for the action and state-value. The activation
function is the Leaky Rectifier Linear Unit (Leaky-ReLu) to avoid the dying-
ReLu effect of low-value gradients. See Fig. 4 for the complete architecture.

Fig. 4. CNN proposed for the deep policy. It is composed by a convolutional backbone
of 4 blocks and a two-head dense block. The activation function is Leaky-ReLu.
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4 Simulations and Results

This section discusses the hyperparameterization of the PPO algorithm, the use-
fulness of the reward function in terms of stability, and finally, the comparison of
the results with other algorithms proposed in the literature for similar problems.
To compare the model accuracy, a Shekel function1 with randomly positioned
and random size peaks is implemented to represent the scalar contamination field
f to cover (see Fig. 5). The simulations were executed using an AMD Ryzen9
3900 (3.8 GHz) with a Nvidia RTX 2080 Super-8GB GPU and 16 GB of RAM.

Fig. 5. Six random ground truths representing different scalar variables that the ASV
must cover and model in the informative mission. The generator function is the Shekel
function with a random number of peaks with random sizes uniformly distributed
across the map.

4.1 Evaluation Metrics

For the analysis of the results, different metrics have been used to describe the
utility of the learned policy.

– AER: The Accumulated Episodic Reward. It represents the decrease in total
entropy over the mission time.

– Anr: Represents the effective area in (km2) covered by the ASV. A zone x is
considered covered if the uncertainty σ(x) is lower than 0.05.

– MSE: Mean square error between the surrogate model used and the variables
ground truth.

– ξ: Peak detection rate. In the presence of random peaks k, that is, local
maxima of the ground truth of contamination, the average rate of detected
peaks ξ = E[kdetected/k]. A local maximum is considered detected when the
uncertainty in its location is lower than 0.05.

4.2 Learning Results

For the simulations, the hyperparameters in Table 1 were used. The PPO algo-
rithm is less sensible to the selection of hyperparameters, and the following values
were selected by trial. Every execution is equivalent to 1 × 106 steps. The learn-
ing rate was linearly annealed from 1×10−4 to 1×10−5 to enhance the stability
1 https://deap.readthedocs.io/en/master/code/benchmarks/shekel.py.

https://deap.readthedocs.io/en/master/code/benchmarks/shekel.py
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of the learning and avoid catastrophic forgetting. In regards to the termination
condition of the episode, two different approaches have been tested: apply the
penalization and end the episode when colliding, or apply the penalization and
let the episode continue from the same previous state.

Table 1. Hyperparameters involved in the PPO algorithm.

Hyperparameter Value

Clip value (ε) 0.2

Learning rate (α) 1 × 10−4 → 1 × 10−5

max. KL permitted 5

Discount factor (γ) 0.95

Batch size (B) 64

Entropy loss regularization 0.01

Surrogate loss horizon (nsteps) 512

Collision penalty (c) −1

Kernel lengthscale (l) 10

Fig. 6. Learning curves.

In Fig. 6 is shown the learning curves of the optimization process. The opti-
mization shows a robust convergence to a high-reward solution. It is observed
that the results of the first variant of the algorithm are more robust to the typi-
cal learning instabilities of DRL. The continuous penalty in the case of failure to
terminate the episode degenerates the policy to the point of unlearning. The two
main tasks can be considered learned: the length of the episode grows monotoni-
cally on average throughout the process until the maximum path length of 40 km
is reached. This indicates that the deep agent assimilates the terrain constraints.
On the other hand, the task of entropy minimization is effectively performed,
since the trajectories have an increasingly informative character as the training
proceeds.



22 S. Y. Luis et al.

It is important to note that the policy resulting from optimization with PPO
π(s; θ) is a stochastic policy whose output is a Gaussian distribution N (μ, σ). As
training progresses, pi(s; θ) becomes more deterministic with a smaller standard
deviation. This results in the fact that, despite having learned to synthesize
collision-free trajectories, it happens that sampling an action may produce one.
To verify the best behavior learned, the performance evaluation must force the
action with the highest probability at = median [π(s, θ)].

4.3 Metric Comparison with Other Methods

To compare the results of the proposed method, five different heuristics from
the literature have been implemented: i) a lawn mower (LM) trajectory, ii) GA
optimization, iii) a collision-free random search, iv) greedy policy with respect to
σ(X), and v) greedy policy with respect to the expected improvement of a Gaus-
sian process like in [4]. Ten different scenarios not seen in DRL optimization have
served as a validation pool. In relation to MSE metrics, two regression methods
have been used with the samples taken: the first is a Gaussian process as in [4],
and the second method is a Support Vector Regressor (SVR). Both regression
models use an RBF kernel with the same parameters as the one proposed to
compute the uncertainty model.

Table 2. Statistical results of different approaches for the coverage and informative
coverage in the validation scenarios-

Metric LM GA σ-greedy EI-greedy Random DRL

μ σ μ σ μ σ μ σ μ σ μ σ

AER 83.10 0 72.75 0 70.31 9.17 57.28 9.19 53.61 10.36 98.75 7.08

Anr 62.13 0 70.09 0 57.44 8.03 39.74 6.15 46.56 9.94 94.91 8.74

ξ 0.54 0.23 0.52 0.28 0.48 0.29 0.34 0.15 0.42 0.18 0.72 0.20

MSEgp 0.08 0.10 0.11 0.13 0.05 0.04 0.18 0.13 0.20 0.22 0.04 0.09

MSEsvr 0.25 0.12 0.35 0.23 0.30 0.11 0.54 0.67 0.55 0.23 0.07 0.03

In Table 2, the comparative results are presented. It can be seen that the pro-
posed algorithm is able to realize much more spatially distributed trajectories
for entropy minimization. The entropy minimization factor reflected in the AER
and the effective coverage area is significantly higher in the proposed algorithm
(32% higher on average with the other approaches). It is logical to think that
these two metrics are closely related since decreasing entropy leads to visiting
uncovered areas and vice versa. In Fig. 7, the statistical results of the execu-
tion of the different approaches in the validation set are depicted. The proposed
approach not only obtains better results but also faster within a mission time
objective. This is related to the detection rate of singular events xi. Deep pol-
icy, as a direct consequence of generating a highly distributed path with low
redundancy, achieves 33% more detections than the best-positioned algorithm
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(LM). The LM algorithm generates a very intensive path, which achieves good
homogeneous coverage, but too intensive due to monitoring redundancy.

In the MSE using different regression methods, we obtain very good values
with the PPO algorithm, with an improvement of up to 67% using a GPR. This
metric is greatly affected by information redundancy: visiting already covered
areas does not provide extra information, so the proposed algorithm, through
entropy reduction, manages to clearly beat any other informative trajectory for
a wide range of possible ground truths. The fact that this is the case whether
using a GP or an SVR also indicates that entropy is a good criterion for point
selection in scalar-field regression.

Fig. 7. Process entropy H(Xobs) over a 40 km monitoring mission.

5 Conclusions

In this paper, a new framework based on Deep Reinforcement Learning has been
proposed for minimizing entropy in environmental scenarios using autonomous
vehicles. Training by the PPO algorithm using convolutional networks and a
graphical formulation of the state results in informative paths with high infor-
mation utility. The proposal is capable of beating other algorithms and heuristics
in maximizing information gain, which leads to improvements in other related
metrics more or less directly related to entropy: area covered, location of singular
events, and decreasing error in an arbitrary regression model. The latter is of
interest because the algorithm does not depend on a particular type of model to
work, but rather the improvement follows as a consequence of the information
criterion. Furthermore, this approach raises the possibility of training on scenar-
ios with arbitrary boundary conditions and simultaneously solving the task of
obstacle avoidance and informational patrolling. It is proposed that, in future
lines of work, a temporal factor can be included in the coverage for the entropy to
be reduced on the time axis also for nonstationary environments. Furthermore,
a next step is the application of different importance criteria, the decrease of
entropy: a non-homogeneous informative coverage that emphasizes areas of high
contamination.
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Abstract. This paper presents and analyzes ForestDisc, a discretiza-
tion method based on tree ensemble and moment matching optimization.
ForestDisc is a supervised and multivariate discretizer that transforms
continuous attributes into categorical ones following two steps. At first,
ForestDisc extracts for each continuous attribute the ensemble of split
points learned while constructing a Random Forest model. It then con-
structs a reduced set of split points based on moment matching opti-
mization. Previous works showed that ForestDisc enables an excellent
performance compared to 22 popular discretizers. This work analyzes
ForestDisc performance sensitivity to its tunning parameters and pro-
vides some guidelines for users when using the ForestDisc package.

Keywords: Discretization · Optimization · Classification

1 Introduction

Discretization is a key pre-processing step in Machine Learning (ML). It is used
to reduce the complexity of the data space and to improve the performance and
efficiency of ML tasks [20]. Furthermore, it is a required pre-processing step for
several ML algorithms which only support categorical features. The usefulness
of discretization in ML, especially prior to classification tasks, has led to the
emergence of different discretization approaches. The literature has classified
them based on different dimensions, as being supervised versus unsupervised
and multivariate versus univariate [7,19,24,28].

Supervised discretization approaches consider the target attribute in the dis-
cretization process, which is expected to make them more “knowledgeable” in
determining the best splits than their “blind” unsupervised counterparts [1,24].
They use different metrics to minimize the loss of information between the dis-
cretized attributes and the target attribute on the one hand, and the number of
split points on the other hand [6,26]. Several comparative studies reported bet-
ter performance for supervised discretization methods compared to unsupervised
ones [1,24].

Multivariate discretizers consider all data attributes simultaneously during
their processing, while univariate discretizers consider attributes one at a time.
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Multivariate discretization is sensitive to the data’s correlation structure, unlike
unsupervised one [22].

ForestDisc, a supervised and multivariate discretization proceeds in two main
steps: First, it extracts the split points generated while learning a Random For-
est (RF) model and then builds a set of cut points for each continuous attribute
to produce its partition into bins. This second step relies on moment matching
optimization to identify a set of cut points that optimally matches the statistical
properties of the ensemble of split points generated through the RF model. A
previous work [20] has demonstrated that ForestDisc reached an excellent per-
formance compared to 20 other discretizers. The comparative analysis took into
consideration different metrics. These metrics included the number of resulting
bins per variable and the execution time needed for discretizing it. They also
reported the performance of classifiers when discretization is applied before the
classification task. This study was performed using 50 benchmark datasets and
six well-known classifiers.

ForestDisc is available as an R package: ForestDisc [12,13]. The first step in
ForestDisc is processed using an RF model with 50 trees. The second step uses
the first four moments in the moment matching approach and Nelder-Mead as
an optimization algorithm.

In this work, we analyze the sensitivity of ForestDisc performance to the
number of trees, the number of moments used, and the optimization algorithm
used.

Accordingly, we present in the next section, ForestDisc related work. In
Sect. 3, we present ForestDisc sensitivity analysis to its tunning parameters.
Finally, we provide in the last section the conclusion.

2 Related Work

2.1 ForestDisc Algorithm

ForestDisc processes discretization in two stages. In the first stage (Algorithm
1), ForestDisc generates the ensemble of split points learned by an RF model. In
the second stage (Algorithm 2), ForestDisc uses this ensemble and returns the
set of cut points based on moment matching optimization.

Let Data represent a dataset. Let AttCont be the set of its continuous
attributes. Let S = {SA}A∈AttCont be the ensemble of splits values that would
be learned throught an RF model. Each set SA corresponds to an attribute A.
Let C = {CA}A∈AttCont be the ensemble of cut points that would be learned,
where CA is the set of cut points discretizing the attribute A. Let Kmax be the
maximum value allowed for CA cardinality.

2.2 ForestDisc Tunning Parameters

We analyze in this section ForestDisc performance variability depending on the
number of trees used in the RF model, the non-linear optimization algorithm



Tuning ForestDisc Hyperparameters: A Sensitivity Analysis 27

Algorithm 1. ForestDisc Algorithm - Step I

Input: Data
Output: S

Initialization: S = null

Fit Random Forest to Data
Return: RF = {T1, ..., TnRF } � ensemmble of trees of cardinality nRF

for each A ∈ AttCont do
Initialize: SA = null
for each tree T in RF do

Extract ST
A � set of split values in tree T

Update SA = SA ∪ ST
A

end for
end for
Return: S = {SA}A∈AttCont

Algorithm 2. ForestDisc Algorithm - Step II

Input: Data , AttCont , S , Kmax � Kmax set by default to 10
Output: C , DataDisc

Initialization: C = null

� We will solve, in the following, the moment matching problem (MMP) with nm

moments
for each A ∈ AttCont do

for j ∈ {0...nm} do

Compute SA moment of order j : mj
A =

∑nA
i=1 SA

j
i

nA
� nA is SA cardinality

Compute SA weight of order j : wj
A = 1

max(max(SA),−min(SA),1)2j

end for
for k ∈ {2...Kmax} do

Solve the moment matching problem:

Objective function MMP(A,k): min(Pk,Xk)
∑nm

j=0 wj
A

(
mj

Xk
− mj

A

)2

where mj
Xk

=
∑k

i=1 pixi
j , and Xk = {x1, ..., xk} and Pk = {p1, .., pk}

are the decision variables.

Constraints:
∑k

i=1 pi − 1 = 0 and min (SA) ≤ xi ≤ max (SA)
and 0 ≤ pi ≤ 1 for i=1...k

Return: X∗
k and P ∗

k the solution to MMP(A,k), and Opt∗
k the optimum value

end for
Return: XA={X∗

k}k∈{2..Kmax} and OptA={Opt∗
k}k∈{2..Kmax}

Select kopt the value k corresponding to the minimum value in the set OptA
Return: CA = X∗

kopt

end for
Return: C = {CA}A∈ContAttr
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used for solving the MMP (Algorithm 2), and the number of moments considered
in MMP. We consider in this work three tunning parameters for ForestDisc.

Number of Trees: ForestDisc is based on the decision trees grown by an RF
model to build an ensemble of split points partitioning the continuous attributes
in a supervised and multivariate way (Algorithm 1). RF is known, in the lit-
erature, as an efficient ensemble learning, robust against overfitting, and user-
friendly [21]. However, the number of trees is an important tuning parameter
that generally influences the performance of an RF model. The optimal number
of trees is problem dependant and users generally resort to comparative analysis
to assess how the number of trees impacts the RF performance. We will analyze
in the following sections how ForestDisc performance varies depending on the
number of trees used.

Optimization Algorithm: The moment matching problem introduced in Algo-
rithm 2 is a non-linear optimization (NLO) problem. NLO [2] solves optimization
problems where the objective function or some of the equality or inequality con-
straints are non-linear. We compared in previous work [14], the performance of
22 NLO Algorithm on solving the discretization based on MMP. The discretizer
used in [14] is a simplified version of ForestDisc. It is a univariate and unsuper-
vised discretization method, mapping each continuous attribute to a categorical
attribute based on MMP. The performance of the 22 NLO Algorithms was com-
pared based on multiple measures. The empirical results showed that the Nelder-
Mead Simplex Algorithm [23] (Neldermead) achieved the best tradeoff between
intrinsic and extrinsic measures [20]. The DIviding RECTangles (locally biased)
algorithm [16] (DIRECTL) realized the second-best tradeoff, and the Sequential
Least-Squares Quadratic Programming algorithm [17,18] (SLSQP) performed
the best matching (optimum value). We compare in the following sections how
ForestDisc performance changes regarding these 3 NLO algorithms.

Number of Moments. The moment matching mapping used in ForestDisc is
based on the approach proposed in [46]. Authors in this work have conducted
moment matching based on the first four moments to generate a limited num-
ber of discrete outcomes. Furthermore, the first four moments are widely known
to characterize important statistics of random variables, namely, the mean, the
variance, skewness, and kurtosis, which convey practical insights about distri-
butions of random variables. ForestDisc proposed in [20] also uses the four first
moments. This being said, it is worthwhile to investigate to what extent changing
the number of moments in MMP (Algorithm 2) would impact the performance
of the resulting discretization. The following sections investigate the sensitivity
of ForestDisc to the number of first moments used in MMP.
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3 ForestDisc Sensitivity Analysis

3.1 Experimental Set up

In this section, we evaluate the sensitivity of ForestDisc to its tunning param-
eters: the number of trees, the number of moments, and the optimization algo-
rithm used. We use the following metrics in this comparative analysis.

The first one is the optimum value, which is the solution to the moment
matching problem described in Algorithm 2. The second one is the execution time
required for discretizing an attribute. The third one is the number of resulting
bins per discretized attribute.

The fourth and fifth metrics concern the predictive performance of classi-
fiers pre-processed by discretization. The predictive performance is assessed via
accuracy and F1 measures (details about the computation of each of these met-
rics can be found in [20]). Five well known classifiers are used in this compar-
ative study: Classification And Regression Trees (CART) [4], Random Forest
(RF) [3], Tree Boosting (Boosting) [5,9], Optimal weighted K-nearest neigh-
bor classifier (KNNC) [25], and Naive Bayes Classifier (NaiveBayes) [10]. Their
respective R functions/packages are: rpart/rpart, randomForest/randomForest,
xgboost/xgboost, kknn/kknn, and naiveBayes/e1071. The default parameters
were used for each of the aforementioned functions. RF and Boosting were per-
formed using 200 trees.

We also use the Wilcoxon signed-rank test [27] to statistically compare the
different results. We adopt the approach used in [11,20] to perform pairwise
comparisons of the metrics considered in this study. The results are summarized
by counting the times each method outperforms, ties, and underperforms.

We analyze the different metrics by using benchmark datasets taken from
the UCI Machine Learning [8] and Keel data sets repository [15]. Each data set
is processed 10 times using Monte Carlo cross-validation procedure (refer to [20]
for more details).

3.2 ForestDisc Sensitivity to the Number of Trees
and the Non-linear Optimization Algorithm Used

We report in Fig. 1 the average results on accuracy and F1 score over the five
classifiers, the 50 datasets used in [20], and the 10 iterations. These results show
that the Neldermed algorithm outperforms the DIRECTL and SLSQP algo-
rithms regardless of the number of trees used. Moreover, increasing the number
of trees does not seem to induce an improvement in predictive performance
regardless of the NLO algorithm used. The Wilcoxon test results reported in
Table 1 confirm this conclusion.

Figure 2 displays the average results on the execution time per discretized
variable and the number of intervals per variable. Based on these results, the
Neldemead algorithm outperforms the other NLO algorithms in terms of execu-
tion time regardless of the number of trees used. In addition, the execution time
increases as the number of trees increases regardless of the NLO used.



30 M. Haddouchi and A. Berrado

Fig. 1. Variation of the average accuracy and F1 score on the testing sets depending
on the number of trees and the NLO algorithms used

Table 1. Wilcoxon signed-rank test scoring in global accuracy and F1 score depending
on the number of trees and the NLO algorithms used (on the testing sets)

Accuracy F1 measure

Method Wins Ties Losses Method Wins Ties Losses

Neldermead50 7 1 0 Neldermead50 7 1 0

Neldermead100 7 1 0 Neldermead100 7 1 0

Neldermead200 6 0 2 Neldermead200 5 1 2

DIRECTL50 3 2 3 DIRECTL100 3 3 2

DIRECTL100 3 2 3 DIRECTL50 3 2 3

DIRECTL200 3 2 3 DIRECTL200 3 2 3

SLSQP50 2 0 6 SLSQP50 1 1 6

SLSQP100 0 1 7 SLSQP100 0 2 6

SLSQP200 0 1 7 SLSQP200 0 1 7

The number of intervals does not seem to vary according to the number
of trees. Neldermead algorithm tends to produce the highest number of bins
(between 6.5 and 7 intervals), followed by DIRECTL (between 4 and 5), and
lastly by SLSQP (slightly less than 4). The Wilcoxon results reported in Table 2
are in accordance with these conclusions.
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Fig. 2. Variation of the average execution time and number of intervals depending on
the number of trees and the NLO algorithms used

Table 2. Wilcoxon signed-rank test scoring in Execution time and number of intervals
depending on the number of trees and the NLO algorithms used (on the testing sets)

Execution time Number of intervals

Method Wins Ties Losses Method Wins Ties Losses

Neldermead50 8 0 0 SLSQP50 6 2 0

Neldermead100 7 0 1 SLSQP100 6 2 0

DIRECT50 6 0 2 SLSQP200 6 2 0

DIRECT100 5 0 3 DIRECT50 5 0 3

Neldermead200 4 0 4 DIRECT100 4 0 4

DIRECT200 3 0 5 DIRECT200 3 0 5

SLSQP50 2 0 6 Neldermead50 1 1 6

SLSQP100 1 0 7 Neldermead100 1 1 6

SLSQP200 0 0 8 Neldermead200 0 0 8

3.3 ForestDisc Sensitivity to the Number of Moments Used

In this section, we analyze the sensitivity of ForestDisc to the number of first
moments used in the MMP. This analysis is performed by varying the number
of moments from 2 to 7, on a selection of 15 benchmark data sets used in a
previous work [13].

Figure 3 reports the average results on the optimum values (MMP solutions),
the execution time per discretized variable, and the number of intervals per
variable. These results show that the optimum value is the greatest when 4
moments are used. Nevertheless, the use of 4 moments allows for a very good
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Fig. 3. Discretization performance variation depending on the number of moments
(optimum value, execution time, and number of bins)

Fig. 4. Classifiers accuracy variation depending on the number of moments (on the
training and testing sets). Bold dots show the mean values.

moment matching since the value of the optimum value remains very small (less
than 1E−10 in general). The execution time tends to be slightly higher when
4 or 6 moments are used. Finally, the number of intervals tends to be slightly
smaller when 4 or 6 moments are used.
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Fig. 5. Classifiers F1 score variation depending on the number of moments (on the
training and testing sets). Bold dots show the mean values.

Figures 4 and 5 display the variation of 5 classifiers’ accuracy and F1 score
depending on the number of moments used. The results are plotted on the train-
ing and testing sets. Table 3 reports the Wilcoxon signed test scores computed
using accuracy and F1 scores on the testing sets. The results show that there is
not a significant difference in predictive performance depending on the number
of moments used, except for 7 moments (the worst results for all the classi-
fiers). Using 4 moments seems to be a good alternative for all the classifiers (see
Table 3). However, we think that we should use a more extensive analysis to have
a robust conclusion about the impact of the number of moments used on the
classifiers’ predictive performance.
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Table 3. Wilcoxon signed-rank test scoring in classifiers accuracy and F1 score depend-
ing on the number of moments (on the testing sets)

Accuracy F1 measure

Classifier Moments Nbr Wins Ties Losses Classifier Moments Nbr Wins Ties Losses

Boosting 4 2 3 0 Boosting 4 2 3 0

6 2 3 0 3 1 4 0

3 1 4 0 6 1 4 0

2 1 4 0 2 1 4 0

5 1 2 2 5 1 3 1

7 0 0 5 7 0 0 5

CART 4 2 3 0 CART 4 3 2 0

6 1 4 0 2 2 3 0

5 1 4 0 5 1 4 0

2 1 4 0 3 1 3 1

3 1 3 1 6 1 2 2

7 0 0 5 7 0 0 5

KNNC 4 3 2 0 KNNC 4 1 4 0

3 3 2 0 3 1 4 0

2 1 4 0 2 1 4 0

5 1 2 2 5 1 4 0

6 1 2 2 6 1 4 0

7 0 0 5 7 0 0 5

NaiveBayes 3 2 3 0 NaiveBayes 4 1 4 0

4 1 4 0 3 1 4 0

6 1 4 0 2 1 4 0

2 1 4 0 5 1 4 0

5 1 3 1 6 1 4 0

7 0 0 5 7 0 0 5

RF 3 2 3 0 RF 3 2 3 0

4 1 4 0 4 1 4 0

6 1 4 0 6 1 4 0

2 1 4 0 2 1 4 0

5 1 3 1 5 1 3 1

7 0 0 5 7 0 0 5

4 Conclusion

In this work, we have investigated the sensitivity of the ForestDisc discretizer
to its tunning parameters. ForestDisc discretizes continuous attributes in two
steps. First, it uses the ensemble of decision trees grown by an RF model to
build an ensemble of split points partitioning the continuous attributes. It then
relies on moment matching optimization to return a reduced set of cut points for
discretizing each continuous attribute. A previous work [20] has demonstrated
that ForestDisc reached an excellent performance compared to 20 other discretiz-
ers, based on extensive analysis on 50 benchmark datasets and six well-known
classifiers.

We have analyzed, in this work, the sensitivity of ForestDisc performance
to its tunning parameters by varying the number of trees from 50 to 200 and
the number of moments from 2 to 7. We have also used two other alternatives
for the optimization algorithm used. This preliminary analysis has shown that
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using 50 trees, four moments, and the Neldermead algorithm in the ForestDisc
framework leads to the best performance. We think, however, that we should,
in future work, expand the ranges of the number of trees and the number of
moments to make a robust conclusion about the sensitivity of ForestDisc to
these two parameters.
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Abstract. The performance of any Machine Learning algorithm is
impacted by the choice of its hyperparameters. As training and eval-
uating a ML algorithm is usually expensive, the hyperparameter opti-
mization (HPO) method needs to be computationally efficient to be use-
ful in practice. Most of the existing approaches on multi-objective HPO
use evolutionary strategies and metamodel-based optimization. However,
few methods account for uncertainty in the performance measurements.
This paper presents results on multi-objective HPO with uncertainty
on the performance evaluations of the ML algorithms. We combine the
sampling strategy of Tree-structured Parzen Estimators (TPE) with the
metamodel obtained after training a Gaussian Process Regression (GPR)
with heterogeneous noise. Experimental results on three analytical test
functions and three ML problems show the improvement in the hyper-
volume obtained, when compared with HPO using stand-alone multi-
objective TPE and GPR.

Keywords: Hyperparameter optimization · Multi-objective
optimization · Bayesian optimization · Uncertainty

1 Introduction

In Machine Learning (ML), an hyperparameter is a parameter that needs to
be specified before training the algorithm: it influences the learning process,
but it is not optimized as part of the training algorithm. The time needed to
train a ML algorithm with a given hyperparameter configuration on a given
dataset may already be substantial, particularly for moderate to large datasets,
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so the HPO algorithm should be as efficient as possible in detecting the optimal
hyperparameter setting.

Many of the current algorithms in the literature focus on optimizing a single
(often error-based) objective [2,10,13]. In practical applications, however, it is
often required to consider the trade-off between two or more objectives, such
as the error-based performance of a model and its resource consumption [7], or
objectives relating to different types of error-based performance measures [5].
The goal in multi-objective HPO is to obtain the Pareto-optimal solutions, i.e.,
those hyperparameter values for which none of the performance measures can
be improved without negatively affecting any other.

In the literature, most HPO approaches take a deterministic perspective using
the mean value of the performance observed in subsets of data (cross validation
protocol). However, depending on the chosen sets, the outcome may differ: a
single HP configuration may thus yield different results for each performance
objective, implying that the objective contains uncertainty (hereafter referred
to as noise). We conjecture that a HPO approach that considers this uncer-
tainty will outperform alternative approaches that assume the relationships to
be deterministic. Stochastic algorithms (such as [3,4]) can potentially be useful
for problems with heterogeneous noise (the noise level varies from one setting to
another). To the best of our knowledge, such approaches have not yet been stud-
ied in the context of HPO optimization. The main contributions of our approach
include:

– Multi-objective optimization using a Gaussian Process Regression (GPR) sur-
rogate that explicitly accounts for the heterogeneous noise observed in the
performance of the ML algorithm.

– The selection of infill points according to the sampling strategy of multi-
objective TPE (MOTPE), and the maximization of an infill criterion. This
method allows sequential selection of hyperparameter configurations that are
likely to be non-dominated, and that yield the largest expected improvement
in the Pareto front.

The remainder of this article is organized as follows. Section 2 discusses the
basics of GPR and MOTPE. Section 3 presents the algorithm. Section 4 describes
the experimental setting designed to evaluate the proposed algorithm, and Sect. 5
shows the results. Finally, Sect. 6 summarizes the findings and highlights some
future research directions.

2 GPR and TPE: Basics

Gaussian Process Regression (GPR) (also referred to as kriging, [14]) is com-
monly used to model an unknown target function. The function value predic-
tion at an unsampled point x(∗) is obtained through the conditional probability
P (f(x(∗))|X,Y) that represents how likely the response f(x(∗)) is, given that we
observed the target function at n input locations x(i), i = 1, . . . , n (contained in
matrix X), yielding function values y(i), i = 1, . . . , n (contained in matrix Y)



Multi-objective Hyperparameter Optimization with Performance Uncertainty 39

that may or may not be affected by noise. Ankenman et al. [1] provides a GPR
model (referred to as stochastic kriging) that takes into account the heteroge-
neous noise observed in the data, and models the observed response value in the
r -th replication at design point x(i) as:

fr(x(i)) = m(x(i)) + M(x(i)) + εr(x(i)) (1)

where m(x) represents the mean of the process, M(x) is a realization of a Gaus-
sian random field with mean zero (also referred to as the extrinsic uncertainty
[1]), and εr(x(i)) is the intrinsic uncertainty observed in replication r. Popular
choices for m(x) are m(x) =

∑
h βhfh(x) (where the fh(x) are known linear or

nonlinear functions of x, and the βh are unknown coefficients to be estimated),
m(x) = β0 (an unknown constant to be estimated), or m(x) = 0. M(x) can be
seen as a function, randomly sampled from a space of functions that, by assump-
tion, exhibit spatial correlation according to a covariance function (also referred
to as kernel).

Whereas GPR models the probability distribution of f(x) given a set of
observed points (P (f(x)|X,Y)), TPE tries to model the probability of sampling
a point that is directly associated to the set of observed responses (P (x|X,Y))
[2]. TPE defines P (x|X,Y) using two densities:

P (x|X,Y) =
{

l(x) if f(x) < y∗,x ∈ X
g(x) o.w

(2)

where l(x) is the density estimated using the points x(i) for which f(x(i)) < y∗,
and g(x) is the density estimated using the remaining points. The value y∗

is a user-defined quantile γ (splitting parameter of Algorithm 1 in [11]) of the
observed f(x) values, so that P (f(x) < y∗) = γ. Here, we can see l as the density
of the hyperparameter configurations that may have the best response. A multi-
objective implementation of TPE (MOTPE) was proposed by [11]; this multi-
objective version splits the known observations according to their nondomination
rank. Contrary to GPR, neither TPE nor MOTPE provide an estimator of the
response at unobserved hyperparameter configurations.

3 Proposed Algorithm

The algorithm (Fig. 1) starts by evaluating an initial set of hyperparameter vec-
tors through a Latin hypercube sample; simulation replications are used to esti-
mate the objective values at these points. We then perform two processes in par-
allel. On the one hand, we use the augmented Tchebycheff scalarization function
[9] (with a random combination of weights) to transform the multiple objectives
into a single objective using these training data. Throughout this article, we will
assume that the individual objectives need to be minimized; hence, the resulting
scalarized objective function also needs to be minimized. We then train a (single)
stochastic GPR metamodel on these scalarized objective function outcomes; the
replication outcomes are used to compute the variance of this scalarized objec-
tive.
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Fig. 1. Proposed multi-objective HPO using GPR with heterogeneous noise and TPE
to sample the search space

At the same time, we perform the splitting process used by [11] to divide
the hyperparameter vectors into two subsets (those yielding “good” and “poor”
observations) to estimate the densities l(x) and g(x) for each separate input
dimension (Eq. 2). To that end, our approach uses a greedy selection according
to the nondomination rank of the observations, and controlled by the parame-
ter γ1. The strategy thus preferably selects the HP configurations with highest
nondomination rank to enter in the “good” subset.

Using the densities l(x), we randomly select a candidate set of nc configu-
rations for each input dimension. These individual values are sorted according
to their log-likelihood ratio log l(x)

g(x) , such that the higher this score, the larger
the probability that the input value is sampled under l(xi) (and/or the lower
the probability under g(xi)). Instead of selecting the single configuration with
highest score on each dimension (as in [2,11]), we compute the aggregated score
AS(x) =

∑d
i=1 log l(xi)

g(xi)
for each configuration, and select the one that maxi-

mizes the Modified Expected Improvement (MEI) [12] of the scalarized objective
function in the set of configurations Q with an aggregated score greater than
zero (see Eq. 3).

argmax
q∈Q

(Ẑmin − Ẑq)Φ(
Ẑmin − Ẑq

ŝq
) + ŝqφ(

Ẑmin − Ẑq

ŝq
) , Q = {x |AS(x) > 0}

(3)
where Ẑmin is the stochastic kriging prediction at xmin (i.e. the hyperparameter
configuration with the lowest sample mean among the already known configu-
rations), φ(·) and Φ(·) are the standard normal density and standard normal
distribution function respectively, the Ẑq is the stochastic kriging prediction at
configuration q, and ŝq is the ordinary kriging standard deviation for that con-
figuration [15]. The search using MEI focuses on new points located in promising
1 Notice that both in [11] and in our algorithm, the parameter γ represents a percent-

age of the known observations that may be considered as “good”.
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regions (i.e., with low predicted responses; recall that we assume that the scalar-
ized objective need to be minimized), or in regions with high metamodel uncer-
tainty (i.e., where little is known yet about the objective function). Consequently,
the sampling behavior automatically trades off exploration and exploitation of
the configuration search space.

Once a new hyperparameter configuration has been selected as infill point, the
ML algorithm is trained on this configuration, yielding (again) noisy estimates of
the performance measures. Following this infill strategy, we choose that config-
uration for which we expect the biggest improvement in the scalarized objective
function, among the configurations that are likely to be non-dominated.

4 Numerical Simulations

In this section, we evaluate the performance of the proposed algorithm for solving
multi-objective optimization problems (GP_MOTPE), comparing the results
with those that would be obtained by using GP modelling and MOTPE indi-
vidually. In a first experiment, we analyze the performance on three well-known
bi-objective problems (ZDT1, WFG4 and DTLZ7 with input dimension d = 5;
see [6]), to which we add artificial heterogeneous noise (as in [4]). More specifi-
cally, we obtain noisy observations f̃ j

p (Xi) = fj(Xi)+εp(Xi), p = {1, . . . , r}, j =
{1, . . . , m}, with εp(Xi) ∼ N (0, τj(Xi)). The standard deviation of the noise
(τj(X)) varies for each objective between 0.01 × Ωj and 0.5 × Ωj , where Ωj is
the range of objective j. In between these limits, τj(X) decreases linearly with
the objective value: τj(X) = aj(fj(X) + bj),∀j ∈ {1, . . . , m}, where a and b are
the linear coefficients obtained from the noise range [8].

Table 1. Details of the ML datasets

Dataset ID Inst. (Feat.)

Balance-scale 997 625 (4)
Optdigits 980 5620 (64)
Stock 841 950 (9)
Pollen 871 6848 (5)
Sylvine 41146 5124 (20)
Wind 847 6574 (14)

Dataset ID Inst. (Feat.)

Delta_ailerons 803 7129 (5)
Heart-statlog 53 270 (13)
Chscase_vine2 814 468 (2)
Ilpd 41945 583 (10)
Bodyfat 778 252 (14)
Strikes 770 625 (6)

In a second experiment, we test the algorithm on a number of OpenML
datasets, shown in Table 1. We optimize five hyperparameters for a simple (one
hidden layer) Multi-Layer Perceptron (MLP), two for a support vector machine
(SVM), and five for a Decision Tree (DT) (see Appendix A). In each experiment,
the goal is to find the HPO configurations that minimize classification error while
simultaneously maximizing recall. In all experiments, we used 20% of the initial
dataset as test set, and the remainder for HPO. We apply stratified k-fold cross-
validation (k = 10) to evaluate each hyperparameter configuration.
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We used a fixed, small number of iterations (100) as a stopping criterion in all
algorithms; this keeps optimization time low, and resembles real-world optimiza-
tion settings where limited resources (e.g., time) may exist. Table 2 summarizes
the rest of the parameters used in the experiments.

Table 2. Summary of the parameters for the experiments

Setting Problem GP MOTPE GP_MOTPE

Initial design Analytical fcts LHS: 11d − 1

HPO Random sampling: 11d − 1

Replications Analytical fcts 50
HPO 10

Acquisition function MEI EITPE MEI

Acquisition function optimization PSO∗ Maximization on a candidate set
Number of candidates to sample – nc = 1000, γ = 0.3

Kernel Gaussian – Gaussian
∗PSO algorithm (Pyswarm library): swarm size = 300, max iterations = 1800, cog-
nitive parameter = 0.5, social parameter = 0.3, and inertia = 0.9

5 Results

Figure 3 shows the evolution of the hypervolume indicator during the optimiza-
tion of the analytical test functions. The combined algorithm GP_MOTPE
yields a big improvement over both GP and MOTPE algorithms for the ZDT1
and DTLZ7 functions, reaching a superior hypervolume already after a small
number of iterations. Results also show that for ZDT1 and DTLZ7, the stan-
dard deviation on the final hypervolume obtained by GP and GP_MOTPE is
small, which indicates that a Pareto front of similar quality is obtained regard-
less of the initial design. MOTPE, by contrast, shows higher uncertainty in the
hypervolume results at the end of the optimization. For the concave Pareto front
of WFG4, MOTPE provides the best results, while GP_MOTPE still outper-
forms GP (Fig. 2).

Table 3 shows the average rank of the optimization algorithms according to
the hypervolume indicator. The experiments did not highlight significant differ-
ences between GP_MOTPE, GP and MOTPE (p_value = 0.565 > 0.05 for
the non-parametric Friedman test where H0 states that the mean hypervolume
of the solutions is equal). However, GP_MOTPE has the lowest average rank
in the validation set, indicating that on average, the Pareto front obtained with
our algorithm tends to outperform those found by GP and MOTPE individually,
yielding a larger hypervolume.

Once the Pareto-optimal set of HP configurations has been obtained on the
validation set, the ML algorithm (trained with those configurations) is evaluated
on the test set. The difference between the hypervolume values obtained from
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Fig. 2. Observed Pareto front (PF) obtained at the end of a single macroreplication,
for the analytical test functions. The uncertainty of each solution is shown by a shaded
ellipse, and reflects the mean ± std of the simulation replications.

Fig. 3. Hypervolume evolution during the optimization of the analytical test functions.
Shaded area represents mean ± std of 13 macro-replications. Captions contain the
reference point used to compute the hypervolume indicator

the validation and test set can be used as a measure of reliability: in general,
one would prefer HP configurations that generate a similar hypervolume in the
test set. Figure 4 shows that the difference between both hypervolume values
is almost zero when GP_MOTPE is used, for all ML algorithms. In general,
MOTPE and GP_MOTPE have the smallest (almost identical) mean absolute
hypervolume difference (0.0444 and 0.0445 respectively), compared with that of
GP (0.051). However, GP_MOTPE has the smallest standard deviation (0.054),
followed by MOTPE (0.066) and GP (0.067).

Table 3. Average rank (given by the hypervolume indicator) of each algorithm

Validation set Test set
GP MOTPE GP_MOTPE GP MOTPE GP_MOTPE

Avg. rank 2.125 1.9861 1.8889 2.1528 1.875 1.9722
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Fig. 4. Hypervolume generated by the HP configurations found using the validations
set (V) and then evaluated with the test set (T)

It is somehow surprising that the combined GP_MOTPE algorithm does not
always obtain an improvement over the individual MOTPE and GP algorithms.
By combining both approaches, we ensure that we select configurations that (1)
have high probability to be nondominated (according to the candidate selection
strategy), and (2) has the highest MEI value for the scalarized objective. In
the individual GP algorithm, (1) is neglected, which increases the probability of
sampling a non-Pareto optimal point, especially at the start of the algorithm. In
the original MOTPE algorithm, (2) is neglected, which may cause the algorithm
to focus too much on exploitation, which increases the probability of ending up in
a local optimum. We suspect that the MOTPE approach for selecting candidate
points may actually be too restrictive: it will favor candidate points close to
already sampled locations, inherently limiting the exploration opportunities the
algorithm still has when optimizing MEI.

6 Concluding Remarks

In this paper, we proposed a new algorithm (GP_MOTPE) for multi-objective
HPO of ML algorithms. This algorithm combines the predictor information (both
predictor and predictor variance) obtained from a GPR model with heterogenous
noise, and the sampling strategy performed by Multi-objective Tree-structured
Parzen Estimators (MOTPE). In this way, the algorithm should select new points
that are likely to be non-dominated, and that are expected to cause the maximum
improvement in the scalarized objective function.

The experiments conducted report that our approach performed relatively
well for the analytical test functions of study. It appears to outperform the
pure GP algorithm in all analytical instances; yet, it does not always outper-
form the original MOTPE algorithm. Further research will focus on why this is
the case, which may yield further improvements in the algorithm. In the HPO
experiments, GP_MOTPE shows the best average rank w.r.t. the hypervolume
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computed on the validation set. In addition, it showed promising reliability prop-
erties (small changes in hypervolume when the ML algorithm is evaluated on the
test set). Based upon these first results, we believe that the combination of GP
and TPE is promising enough to warrant further research. The observation that
it outperforms the pure GP algorithm (which used PSO to maximize the infill
criterion) is useful in its own right, as the optimization of infill criteria is known
to be challenging. Using MOTPE, a candidate set can be generated that can
be evaluated efficiently, and which (from these first results) appears to yield
superior results.

Acknowledgements. This research was supported by the Flanders Artificial Intelli-
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Appendix A. Setup of Hyperparameters in the HPO
Experiments

HP Description Type Range
Multilayer Perceptron (MLP)
max_iter Iterations to optimize weights Int. [1, 1000]
neurons Number of neurons in the hidden layer Int. [5, 1000]
lr_init Initial learning rate Int. [1, 6]
b1 First exponential decay rate Real [10−7, 1]
b2 Second exponential decay rate Real [10−7, 1]

Support Vector Machine (SVM)
C Regularization parameter Real [0.1, 2]
kernel Kernel type to be used in the algorithm Cat. [linear, poly, rbf,

sigmoid]
Decision Tree (DT)
max_depth Maximum depth of the tree. If 0, then

None is used
Int. [0, 20]

mss Minimum number of samples required to
split an internal node

Real [0, 0.99]

msl Minimum number of samples required to
be at a leaf node

Int. [1, 10]

max_f Features in the best split Cat. [auto, sqrt, log2]
criterion Measure the quality of a split Cat. [gini, entropy]
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Abstract. This paper presents a new approach for bi-objective opti-
mization based on the exploitation of available gradient information.

The proposed algorithm integrates the MGDA method in a retroactive
process which start with one of the anchor points and alternate descent
and climb moves producing a zigzag movement around the FP.

The proposed approach can be considered as a path-relinking strat-
egy, by generating a path-relinking in the objective space, between each
pair of Pareto solutions.

The Retro-MGDA approach largely outperforms state-of-the-art and
popular evolutionary algorithms both in terms of the quality of the
obtained Pareto fronts (convergence, diversity and spread) and the search
time.

Keywords: Pareto front · Bi-objective optimization · Gradient
methods · MGDA algorithm · Anchor points

1 Introduction

Multi-objective optimization is a fundamental area of multi-criteria decision sup-
port, which many scientific and industrial community have to face. The res-
olution of a multi-objective optimization problem consists in determining the
solution that best corresponds to the preferences of the decision maker among
the good compromise solutions. In most real-world problems, it is not about
optimizing just one criterion but rather optimizing multiple criteria and which
are usually conflicting. In design problems, for example, more often than not a
compromise has to be found between technological needs and cost goals. Multi-
objective optimization therefore consists of optimizing several functions. The
notion of single optimal solution in uni-objective optimization disappears for
multi-objective optimization problems in favor of the notion of set of optimal
Pareto solutions.

Most real optimization problems are described using several objectives or
often contradictory criteria that must be optimized simultaneously. While, for
problems including only one objective, the optimum sought is clearly defined,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Dorronsoro et al. (Eds.): OLA 2022, CCIS 1684, pp. 49–61, 2022.
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this remains to be formalized for multi-objective optimization problems. Indeed,
for a problem with two contradictory objectives, the optimal solution sought
is a set of points corresponding to the best possible compromises to solve our
problem.

Gradient based methods are suitable for solving single-objective optimiza-
tion problems, with or without constraints. However, for multi-objective opti-
mization, this is less well established. In order to solve MOPs using gradient
based methods, a popular strategy is the weighted sum formulation (WSF),
which consists in combining all the objectives into a single objective using a
linear aggregation method. Multiple solutions can be obtained by varying the
weight coefficients among the objective functions to hopefully obtain different
Pareto solutions. Many other scalarization functions have been used in the lit-
erature, such as the normal boundary intersection (NBI) [1], normal constraint
method (NC) [2], physical programming method (PP) [3], goal programming
(GP) [4], ε-constraint method [5], and the directed search domain (DSD) [6,7].
Another gradient based strategies are used in memetic algorithms in which we
hybridize multi-objective evolutionary algorithms (MOEAs) with local search
strategies where gradient information is used to built a Pareto descent direc-
tion. For instance, Harada et al. [8] proposed a new gradient based local search
method called the Pareto Descent Method, based on random selection of search
directions among Pareto descents. Kim et al. [9] presented a directional operator
to further enhance convergence of any MOEAs by introducing a local gradient
search method to multi-objective global search algorithms. Recently, Lara et al.
[10] compared hybrid methods with a new local search strategy without explicit
gradient information and showed that using the gradient information was benefi-
cial. Many other works propose pure gradient based methods for MOPs. In [11–
13], a common descent direction is computed along all objectives. For instance,
the multiple gradient descent algorithm was developed as an extension of the
steepest descent method to MOPs [11]. Bosman have presented an analytical
description of the entire set of descent directions, that he integrated in a new
gradient based method for MOPs named CORL [14].

Without loss of generality, we assume that all objectives are to be minimized,
then we consider a MOP of the form:

min
X∈S

F(X) = (f1(X), · · · , fm(X))T (1)

where:
fk : IRn −→ IR, for k ∈ {1, · · · ,m}, denotes the objective functions, S is the

design space: S =
n∏

i=1

[li, ui], X is the decision vector with n decision variables:

X = (x1, · · · , xn) ∈ IRn.
For the convenience of later discussion, we introduce some basic concepts:

Definition 1. Pareto dominance: let X = (x1, x2, ..., xn) and Y =
(y1, y2, ..., yn) be decision vectors (solutions). Solution X is said to dominate
solution Y , denoted as X � Y , if and only if :

∀i ∈ [1,m] : fi(X) ≤ fi(Y )) ∧ (∃j ∈ [1,m] : fj(X) < fj(Y ) (2)
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Definition 2. Pareto optimal solution: a solution X is Pareto optimal if it is
not dominated by any other solution which means there is no other solution
Y ∈ S such that Y � X.

Definition 3. Pareto Set & Pareto front: the set of all Pareto optimal solutions
is called Pareto set (PS). The corresponding set of Pareto optimal objective
vectors is called Pareto front (PF).

In this paper, we propose a new gradient based approach for bi-objective opti-
mization problems using two complementary dynamics: The MGDA approach
combined to a backtracking approach. Starting with one of the anchor points
the proposed algorithm alternates the two approaches in a way that generates a
zigzag move along the PF. In Fact, after each MGDA descent we apply locally
a reverse move to get a new point from which we operates again a new MGDA
descent (toward the PF) and so on until meeting the second anchor point.

The remainder of this paper is organized as follows. Section 2 is a brief
introduction to MGDA algorithm. Section 3 describes our proposed approach.
Section 4 reports the computational results and finally, Sect. 5 presents the con-
clusions and future research perspectives.

2 The MGDA Algorithm

The Multi-Gradient Descent Algorithm (MGDA) was developed by Desideri [15]
is an extension of the classical Gradient Descent Algorithm to multiple objec-
tives. The basic idea of MGDA is to identify a direction common to all criteria
along which the value of every objective improves: thus, for a multi-objective
minimization problem we seek a descent direction common to all criteria. This
algorithm is proved to converge to the Pareto Stationary solution.

The author defines the common descent vector as the unique element mini-
mizing the norm in the convex hull U of the gradients of each objective, where
U is defined for a given x ∈ IRn as:

U = {ω ∈ IRn, ω =
n∑

i=1

αi∇fi(x),
n∑

i=1

αi = 1} (3)

Indeed, since U is a closed, bounded and convex set associated in the affine
space IRn, then U admits a unique element of minimum norm, say δ. Two cases
are possible:

– δ = 0, and we say that x is a point of Pareto-stationarity, a necessary condition
for Pareto-optimality.

– δ 
= 0, and the directional derivatives of the objective functions satisfy the
inequalities:

(∇fi, δ) ≥ ‖ω‖2 (4)

Hence, −δ is a descent direction common to all the objective functions.
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The MGDA procedure is given in the following algorithm

Algorithm 1: MGDA procedure

1: Initialize the design point X = X0

2: Evaluate n objective fi(X) ; ∀i = 1 · · · n; Compute the normalised gradient vectors
δi = ∇fi(X)/Si; ∀i = 1 · · · n;

3: Determine the minimal-norm element δ in the convex hull U ;
4: If δ = 0 ( or under a given tolerance ) , stop ;
5: Else perform line search to determine the optimal step size ρ
6: Update design point X to X − ρδ

3 The Proposed Retro-MGDA Algorithm

3.1 Principle and Motivation

The Multiple Gradient Descent Method (MGDA) allows, starting from a giving
point, to converge to a stationary Pareto point following a direction of common
descent constructed by linear combination of the gradients of the objectives
involved: The major drawback of this method (such as methods using the same
principle) is that it can easily be trapped on a local Pareto front because of Pareto
stationarity which exhausts the common direction of descent as we approach
a pareto (local) front. Therefore this method is ineffective on Multi-objective
problems presenting a multi-modality as illustrated in Fig. 1 (as for the gradient
descent in the presence of multi-modality in the single-objectif context).

Fig. 1. Illustration of MGDA failure of MGDA to reach the PF of the multi-modal
problem ZDT4

On the other hand, if the starting point is close to the Pareto Front then
the MGDA succeeds in reaching the FP. Now if we move back locally from this
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point using a direction other than the direction of descent used by MGDA, we
obtain a new starting point different from the first which allows, by applying the
MGDA to reach a new point on the Front FP on from which we can start the
process again as shon in Fig. 2.

Fig. 2. Alternation of MGDA/backtracking dynamic

Thereby, it is possible to design a mechanism using the MGDA able to capture
the Pareto Front with just a single starting point on the PF as illustrated in Fig.
It remains to define the starting point, a natural choice is to consider one of the
Anchor points is to use the predetermined directions (horizontal/vertical) built
with available gradient information as illustrated in Fig. 3.

Fig. 3. Illustration of Retro-MGDA mechanism

3.2 Controlling Moves on the Objective Space by Using
the Gradient Information

Consider a Point X such as (∇f1(X),∇f2(X)) 
= (0, 0).
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Let ηi = ‖∇fi(X)‖, and consider the normalized gradients: δi = ∇fi(X)/ηi.
Let α = <δ1, δ2> and t ∈ IR. Consider the combined gradient direction δt built
on the two gradients and defined as:

δt = tδ1 + (1 − t)δ2. (5)

Due to the linear approximation, for a small enough step λ:

F (X + λδt) − F (X)  λδt∇F (X). (6)

But:

δt∇F (X) = δ1(η1δ1, η2δ2)T = (η1δtδ1, η2δtδ2)T . (7)

Thus:

F (X + λδt) − F (X)  λ(η1δtδ1, η2δtδ2)T . (8)

In the objective space, we say that the displacement is vertical if:

f1(X + λδt) − f1(X) = 0. (9)

Likewise, we say that the displacement is horizontal if:

f2(X + λδt) − f2(X) = 0. (10)

Hence, to get locally a vertical displacement, one should move along δtv such
that η1δtδ1 = 0 or δtδ1 = 0. But:

δtδ1 = (tδ1 + (1 − t)δ2)δ1 = tδ21 + (1 − t)δ1δ2 = t + (1 − t)α. (11)

Thus δtv corresponds to

tv + (1 − tv)α = 0, (12)

which means:

tv =
α

α − 1
=

<δ1, δ2>

<δ1, δ2> − 1
. (13)

Likewise, to get locally a horizontal displacement, one should move along δth
such that η1δtδ1 = 0 or δtδ1 = 0. But:

δtδ2 = (tδ1 + (1 − t)δ2)δ2 = tδ1δ2 + (1 − t)δ21 = tα + 1 − t = t(α − 1) + 1. (14)

Thus δth corresponds to

1 + (1 − α)th = 0, (15)

which means:
th =

1
α − 1

=
1

<δ1, δ2> − 1
. (16)
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Besides the two directions δh and δv, we can also consider the transverse
direction δ⊥ = 1

2 (δ2 − δ1) which has the particularity of being orthogonal to the
direction of descent δ = 1

2 (δ1 + δ2). Indeed:

δ · δ⊥ =
1
2
(δ2 − δ1) · 1

2
(δ1 + δ2) =

1
4
(‖δ2‖2 − ‖δ1‖2) = 0. (17)

3.3 Reto-MGDA Structure

Algorithm 2: RGDA pseudo code

1: Input: F, λ, (MGDA stepsize), α (backtracking stepsize)

2: Output: RND : Approximation of the PF

3: determine the anchor points X∗
1 , X∗

2 , which represent the solutions of single-

objective problems X∗
i = Argmin

X∈S, li≤xi≤ui

fi(X) (see Fig. 3).

4: Set X = X∗
2 (or X = X∗

1 with horizontal backtracking scenario)

5: Set Xp = X; Y = F (X); Y s = F (X∗
1 )

6: Set α = 0.005 × ‖F (X∗
2 ) − F (X∗

1 )‖;

7: while Y1 > Y s1 do

8: Compute the normalized gradients of the two objectives: δi = ∇fi(X)/ηi

9: Compute the vertical direction using equations (5, 13): δt = tvδ1 + (1 − tv)δ2.

10: Normalize the vertical direction δt = δt/‖δt‖
11: Compute the transverse displacement according to : Xd = X + αδ⊥

� We can also consider a variant with a vertical displacement involving δv

12: Update the current solution X by applying the MGDA algorithm to Xd :

Xd = MGDA(X, λ)

13: Update the current objective: Y = F (X)

14: end while

4 Parameters Setting

The Retro-MGDA approach (or simply RGDA) can use any single objective algo-
rithm to approximate the anchors points. In our experiments, we use a genetic
algorithm (GA)1 to handle this issue. The parameter setting in GA was as fol-
lows: the population size is 40, the crossover rate is c = 0.9, the mutation factor
is m = 0.1, and the number of generation is 1000 for the first anchor point and
250 for the second anchor point. The step size of the MGDA move λ = 0.01.
This parameter configuration was adopted for all the experiments. The algorithm
have been run on each test problem for 10 times.

1 Available in the yarpiz library https://www.yarpiz.com.

https://www.yarpiz.com
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5 Experiments and Results

In order to evaluate the performance of the proposed RGDA algorithm, seven
test problems are selected from the literature: Zdt1, Zdt2, Zdt3, Zdt4, Zdt6,
Pol and Kur. These problems are covering different type of difficulties and are
selected to illustrate the capacity of the algorithm to handle diverse type of
Pareto fronts. In fact, all these test problems have different levels of complexity
in terms of convexity and continuity. For instance, the test problems Kur and
Zdt3 have disconnected Pareto fronts; Zdt4 has too many local optimal Pareto
solutions, whereas Zdt6 has non convex Pareto optimal front with low density
of solutions near Pareto front.

5.1 Performance Measures

Three performance measures were adopted in this study: the generational dis-
tance (GD) to evaluate the convergence, the Spacing (S) and the Spread (Δ) to
evaluate the diversity and cardinality.

– The convergence metric (GD) measure the extent of convergence to the true
Pareto front. It is defined as:

GD =
1
N

N∑

i=1

di, (18)

where N is the number of solutions found and di is the Euclidean distance
between each solution and its nearest point in the true Pareto front.

– The Spread Δ, beside measuring the regularity of the obtained solutions, also
quantifies the extent of spread in relation to the true Pareto front. The Spread
is defined as:

Δ =
df + dl +

N∑

i=1

|di − d|
df + dl + di + (N − 1)d

. (19)

where di is the Euclidean distance between two consecutive solutions in the
obtained set, df and dl denotes the distance between the boundary solutions
of the true Pareto front and the extreme solutions in the set of obtained
solutions, d denotes the average of all distances di, i = 1, 2, · · · , N − 1 under
assumption of N obtained non-dominated solutions.

– The Spacing metric S indicates how the solutions of an obtained Pareto front
are spaced with respect to each other. It is defined as:

S =

√
√
√
√ 1

N

N∑

i=1

(di − d)2 (20)
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5.2 Numerical Results

The proposed algorithm RGDA is compared with three popular evolutionary
algorithms: MOEA/D [16], NSGA-II [17] and PESA-II [18]2

The obtained computational results are summarized in Table 1 in term of the
mean and the standard deviation (Std) of the used metrics (GD,S,Δ) for 10
independent experiments, the average number of Pareto solutions found (NS),
the average number of function evaluations (FEs), the average execution time
in seconds (Time).

Table 1. Comparison of MOEA/D, NSGA-II, PESA-II and RGDA for some considered
test problems.

Fct Method GD S Δ NS CPU(s)

Mean Std Mean Std Mean Std

Zdt1 MOEA/D 2,81e−02 2,92e−02 2,42e−02 6,83e−03 9,95e−01 7,98e−02 100 86,67

NSGA-II 9,17e−02 1,03e−02 2,17e−02 1,56e−03 7,95e−01 2,86e−02 100 105,08

PESA-II 5,38e−02 5,31e−03 3,73e−01 2,68e−02 8,82e−01 6,01e−02 100 40,97

RGDA 8,36e–04 2,56e–07 9,16e–03 1,03e–06 7,52e–01 9,71e–07 116 9,58

Zdt2 MOEA/D 1,32e−01 4,55e−02 2,66e−02 3,87e−03 1,13e+00 8,99e−03 100 61,61

NSGA-II 1,49e−01 1,74e−02 1,65e−02 2,31e−03 9,10e−01 1,69e−02 100 113,18

PESA-II 9,04e−02 3,42e−03 5,40e−01 4,61e−02 8,32e−01 2,73e−02 100 32,82

RGDA 2,65e–04 2,14e–05 3,34e–03 9,50e–05 7,34e–01 6,54e–06 115 10,61

Zdt3 MOEA/D 2,08e−02 8,00e−03 6,01e−02 1,52e−02 1,19e+00 3,43e−02 100 82,50

NSGA-II 6,27e−02 4,74e−03 3,75e−02 1,23e−02 8,25e−01 2,12e−02 100 112,91

PESA-II 4,45e−02 3,42e−03 3,54e−01 3,22e−02 8,48e−01 1,04e−01 100 33,93

RGDA 4,70e–03 3,34e–04 5,38e–02 6,26e–04 9,62e–01 1,65e–03 33 8,48

Zdt4 MOEA/D 8,28e−01 5,75e−01 1,70e−01 1,45e−01 1,09e+00 5,77e−02 100 62,65

NSGA-II 4,46e−01 1,33e−01 3,03e−01 1,79e−01 8,85e−01 9,56e−02 100 129,75

PESA-II 1,12e+01 5,16e−01 2,72e+01 4,86e+00 1,11e+00 5,16e−02 100 18,00

RGDA 1,03e–03 4,93e–04 1,11e–02 3,00e–03 7,52e–01 3,05e–04 60 8,54

Pol MOEA/D 5,40e−01 1,08e−01 1,35e+00 1,01e+00 1,25e+00 1,54e−01 100 91,11

NSGA-II 2,48e+00 5,84e−02 1,75e+00 2,09e−03 9,72e−01 3,55e−03 100 123,86

PESA-II 1,52e+01 6,02e+00 1,01e+01 1,16e+00 9,77e−01 9,85e−02 100 45,64

RGDA 1,48e–03 9,34e–06 6,03e–01 2,13e–02 9,59e–01 3,70e–08 22 5,24

Zdt6 MOEA/D 4,22e−01 1,18e−01 4,63e−02 2,02e−02 1,09e+00 5,98e−02 100 57,86

NSGA-II 3,08e−01 2,38e−02 1,57e−01 4,15e−02 8,73e−01 2,93e−02 100 121,89

PESA-II 4,42e−01 4,69e−03 2,00e+00 6,31e−01 1,03e+00 4,97e−02 100 29,17

RGDA 7,83e–03 6,31e–03 1,04e–01 4,14e–03 7,20e–01 2,05e–02 35 5,65

Kur MOEA/D 5,51e−03 5,51e−03 6,76e−01 4,35e−01 1,42e+00 1,80e−01 100 80,83

NSGA-II 5,31e−04 2,64e−05 1,22e−01 4,15e−03 4,10e−01 3,10e−02 100 117,86

PESA-II 1,78e−01 1,28e−02 4,15e+00 4,86e−01 9,04e−01 5,75e−02 100 33,76

RGDA 3,71e–03 3,05e–04 1,50e–01 8,56e–03 9,03e–01 9,92e–06 24 12,02

By analyzing the GD metric statistics, we can see that the proposed RGDA
is well converging to the true Pareto front for all tested problems.

Furthermore, the Spacing and Spread measures indicate that the proposed
RGDA has the ability of generating uniform and diverse solutions. Except for
2 MATLAB implementation obtained for the yarpiz library available at https://www.

yarpiz.com.

https://www.yarpiz.com
https://www.yarpiz.com
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the Zdt6 problem whose PF presents folds (Pareto many-to-one problems) [19]
which leads to the presence of several points with a zero gradient according to
one of the two objectives. In this case RGDA, can only get a partial capture of
the FP. To prevent this problem we have been led to slightly shift the points
where this occurs, which has partially overcome this problem. Indeed, despite
this precaution, it happens that the RGDA does not capture the whole of the
FP for this problem (see Fig. 4(f)).

Note that all the simulations for the considered problems at worst did not
exceed 70,000 FEs of which 50,000 FEs were reserved for the resolution of the

Fig. 4.
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Fig. 4. (continued)

anchors points. However, the number of solutions obtained strongly depends on
the step of the retreat which was previously set at 0.5% of the difference Da

between the two anchor solutions. Thus, if we decide to reduce this step for
example to 0.1% of Da, we can easily multiply the number of solutions obtained
while respecting the limit of the FEs imposed for the comparison.

6 Conclusion

In this paper, we have proposed a new approach for bi-objective problems,
termed as RGDA, which adopts the MGDA approach combined to a backtrack-
ing approach in order. The proposed algorithm can be considered as an exten-
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sion of the algorithm MGDA. Indeed, by itself MGDA is not able to capture the
pareto front. However, by integrating it in an alternative way with backtracking
mechanism, we have built an efficient algorithm for the capture of the pareto
front.

To consider the optimization performance of the proposed algorithm, seven
two-objective test functions were used. The results were compared with the
results of three state of the art: MOEA/d, NSGAII and PESAII. The results
indicate that the RGDA algorithm outperforms the algorithms in comparisons
especially in term of Time execution.

Our proposed approach can be integrated in any multi-objective optimization
algorithm as intensification mechanism. Indeed, RGDA can be applied to any
pair of solutions in order generate evenly solutions between them.

In our future work, we will investigate an extension of our RGDA approach
to multi-objective optimization problem. Also, we are working on a mechanism
to handle constrained problems using projected gradient descent.
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Abstract. Real-world optimization of complex products (e.g., planes,
jet engines) is a hard problem because of huge multi-objective and multi-
constrained search-spaces, in which many variables are to be adjusted
while each adjustment essentially impacts the whole system. Since the
components of such systems are manufactured and output values are
obtained with sensors, these systems are subject to imperfections and
noise. Perfect digital twins are therefore impossible. Furthermore sim-
ulating with sufficient details is costly in resources, and the relevance
of Population-based optimization approaches, where each individual is
a whole solution to be evaluated, is severely put in question. We pro-
pose to tackle the problem with a Multi-Agent System (MAS) modeling
and optimization approach that has two major strengths: 1) a natural
representation where each agent is a variable of the problem and is per-
ceiving and interacting through the real-world topology of the problem,
2) a cooperative solving process where the agents continuously adapt
to feedback, that can be interacted with, can be observed, where the
problem can be modified on-the-fly, that is able to directly control these
variables on a real-world product while taking into account the specifics
of the components. We illustrate and validate this approach in the Pho-
tonics domain, where a light beam has to follow a path through several
optical components so as to be transformed, modulated, amplified, etc.,
at the end of which sensors give feedback on several metrics that are to
be optimized. Robotic arms have to adjust the 6-axis positioning of the
components and are controlled by the Adaptive MAS we developed.

Keywords: Continuous optimization · Multi-objective optimization ·
Adaptive multi-agent systems · Robotics control · Photonics

1 Problem Statement and Positioning

This study mainly concerns optimization problems from real-world applications,
especially robotics control command based on sensor feedback. These applica-
tions go from system configuration based on test bench feedback to real-time
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feedback control of an automated system. In the first case we want to optimize
the response to an input. In the second case we mainly want to minimize the dis-
tance between sensor feedback and objectives by positioning, orienting, aligning
one or more components. We define a robot, an actuator or any automated sys-
tem as a composition of one or more axes, which are associated with the degrees
of freedom of the system. Such problems have a wide variety of external con-
straints like limited resolution time or limited number of moves, predetermined
components positions to respect, etc. We intend to develop an optimization sys-
tem able to adapt to multiple robotics applications. The application domain we
focus on is the photonics domain as illustrated in Fig. 1.

Fig. 1. Example of a real photonics application we are working on (Credits ISP System)

1.1 Search Space Topology

Optimization problems are divided into domains depending on their search space
topology. Search space dimensions are defined by decision variables, and poten-
tially limited by hard constraints. For example the number of robots and the
number of axes per robot increase the dimensions. On the other hand, limits
on a component assembly reduce the possibilities on one or more axes, so one
or more dimensions get constrained in the corresponding search space. These
constraints, alongside one or more expert-given objectives, most of the time
antinomic, make appear a Pareto front in the search space. As constraints can
generally be transposed into objectives dealing with the distance to a threshold
(the further away from the threshold, the better, or defining a cost regarding an
acceptable violation), these problems can be defined as Multi-Objective Opti-
mization (MOO) problems, also called Pareto optimization problems.

Another factor of dimensioning of the search space is the decision variable
domain. Depending on whether the domain is discrete or continuous, optimiza-
tion problems are combinatorial or continuous. Since the precision of robotic
systems is continuously increasing, robots positioning problems can be consid-
ered as continuous optimization problems.
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Indeed, the axis resolution, meaning the minimal step with accuracy guar-
antee, is often very small compared to the range of values it can achieve. Fur-
thermore, axes resolutions, ranges and other robots features can change from an
application to another, changing therefore the decision variable domains.

A continuous problem has a potentially infinite number of solutions when
a combinatorial problem has only all possible combinations of its discrete vari-
ables. This gap can have a significant influence in terms of calculation cost.
However, those properties do not mean that combinatorial problems are trivial
and continuous problems are not. It means that search space topology is quite
different from a category to another so the employed method might not have the
same results.

In this study, we focus on Continuous Multi-Objective Optimization problems
and we consider that reliable problems with only one objective are a particular
subdivision of these problems and can be processed in the same way.

1.2 Multi-objective Optimization Approaches

This section introduces the main approaches used in the optimization domain
before focusing on the most suited for our concern.

Analytical approaches are the most accurate but they are time-consuming
and may not also be suitable for large-scale optimization problems. Arithmetic
programming approaches on the contrary have fast computation performances
since they are based on simplifications and sequential linearizations. However,
they are very weak in handling multi-objective nonlinear problems and may
converge to local optima, non-necessarily satisfying enough [16].

Meta-heuristic optimization algorithms are extensively used in solving Multi-
Objective Optimization problems since they can find multiple optimal solutions
in a single run, and improve the ratio between accuracy and computational cost.
They are problem-independent optimization techniques which provide, if not
optimal, at least satisfying solutions by stochastically exploring and exploiting
search spaces iteratively [17]. The following sections focus on these algorithms.

Population-Based Heuristics are a large part of the state of the art in Meta-
heuristic Optimization Algorithms. The main principle is to simultaneously han-
dle a population of solutions spread randomly or not in the search space. The
population can evolve and select the best solutions iteratively, or converge to an
optimum following a set of influence rules. These algorithms can also be used in
hybrid solutions alongside more classical algorithms like simulated annealing [1]
to balance their weaknesses.

It is difficult to be exhaustive about all works in this domain. For instance,
Genetic Algorithms [9] and Particle Swarm Optimization Algorithms [12] have
together more than 3000 publications per year [18].

A major limitation of Population-Based approaches is their potential com-
putational cost. Such algorithms need to evaluate a relatively large number of



Adaptive Continuous Multi-objective Optimization 65

candidates in order to create a good population of solutions. Computing all the
candidate solutions can be prohibitive for computationally expensive problems.

The type of applications we are studying here requires an adaptation each
time we get a sensor feedback. As a result, an evolution process would require
a huge amount of resources. As each new candidate in the population needs to
be evaluated, the robot needs to reconfigure the whole experimental setting for
each proposed configuration. An adaptive algorithm modifying and proposing
for testing a unique configuration at each feedback is a more suitable strategy
(i.e. a resolution process forming a single trajectory in the search space).

Moreover, when scaling up the number of objectives, the Pareto-dominance
relation essentially loses the ability to distinguish desirable solutions, since nearly
all population members are non-dominated at an early stage of the search. In
fact, a large majority of the usual Population-Based methods (evolutionary algo-
rithms, swarm intelligence) have been shown to degrade when the number of
objectives grows beyond three, and moreover beyond eight [10]. This particu-
larity explains why a part of the literature about these approaches focuses on
Many-Objective Optimization, that is Multi-Objective Optimization problems
with more than three objectives [13]. The need for this category of problems
to have more relevant indicators than Pareto-dominance makes the Population-
Based Heuristics to specify additional calculation for solution comparison.

The types of problems we are interested in require an optimization system
able to converge without maintaining and computing a large number of solutions,
especially when solution comparison becomes non-trivial. Furthermore, we need
a decentralized real-time control of robots arms to actually optimize the real
world system being processed, taking into account errors and noise.

Multi-Agent Systems (MAS) are a decentralized approach, based on self-
organisation mechanisms [22], where the calculation task is distributed over
agents which are virtual or physical autonomous entities [19].

Each agent has only a local point of view of the problem it is solving, corre-
sponding to a local objective function. The global objective function of a problem
is then the sum of all these local functions. This particularity enables to easily
distribute calculation tasks in the resolution process and consequently reduces
computational costs. That is why multi-agent approaches are preferred where
centralized approaches have limited flexibility and scalability.

Multi-Agent Systems are used in a wide variety of theoretical [15] and real-
world application domains of distributed optimization [21]: classification opti-
mization algorithms [3], power systems [7], complex networks and IoT [5], smart
manufacturing [2] or multi-robot systems [20].

Distributed Constraint Optimization Problems (DCOPs) are a well-
known class of combinatorial optimization problems prevalent in Multi-Agent
Systems [4]. DCOP is a model originally developed under the assumption that
each agent controls exactly one variable.
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This model was designed for a specific type of problems where the difficulty
resides in the combination of multiple constraints. These problems are supposed
to be easily decomposable into several cost functions, where the cost values asso-
ciated with the variables states are supposed to be known. This major assump-
tion does not stand for complex continuous optimization problems, where the
complexity of the models and their interdependencies cause this information to
be unavailable in most cases. It is important to remark that some works tried to
extend DCOP model to continuous optimization problems but the state of art
about those works remains scattered for now [8].

2 AMAS Theory for Optimization

As seen before, a MAS is a problem-independent solution making it possible to
have a natural representation where each agent is a variable of an MOO problem.
These agents, which perceive their environment and interact, are also a means
to continuously adapt to real-world feedback and provide a “solution” anytime
especially when the problem can be modified on-the-fly.

We propose to adopt the Adaptive Multi-Agent Systems (AMAS) theory
where cooperation [6] is the engine that drives the adaptation of an agent and
the emergence of a global functionality. This cooperation relies on three mech-
anisms: an agent may adjust its internal state to modify its behavior (tuning),
may modify the way it interacts with its neighborhood (reorganization) or may
create other agents or self-suppress when there is no other agent to produce a
functionality or when a functionality is useless (evolution).

2.1 Natural Domain Modeling

As we previously stated, when solving complex continuous problems existing
techniques usually require a transformation of the initial formulation, in order
to satisfy some requirements for the technique to be applied. Beside the fact
that correctly applying these changes can be a demanding task for the design-
ers, imposing such modifications changes the problem beyond its original, natural
meaning. What we propose here is an agent-based modeling where the original
structure/meaning of the problem, is preserved. Indeed it represents the formu-
lation which is the most natural and easiest for the expert to manipulate. We
call this modeling Natural Domain Modeling for Optimization (NDMO) [11].

In order to represents the elements of a generic continuous optimization
model, we identified five classes of interacting entities: models, design variables,
outputs, constraints and objectives. Briefly: given the values of the design vari-
ables, certain models will calculated output values, which will enable other mod-
els to calculate other outputs and so on, until constraints and objectives can be
calculated, in a sort of calculus network. In general, three elements need to be
agentified : the design variables (because they need to be optimised and that
constitutes the solving process), the constraints and objectives. The last two
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are there to model the requirements or statements of the problem, i.e. what the
solving process has to achieve.

To this end, we use a mechanism based on a specific measure called criticality.
This measure represents the state of dissatisfaction of the agent regarding its
local goal. Each agent is in charge of estimating its own criticality and providing
it to the other agents. The role of this measure is to aggregate into a single
comparable value all the relevant indicators regarding the state of the agent.
Having a single indicator of the state of the agent is interesting as it simplifies
the reasoning of the agents. However the system designer has the difficult task
to provide the agents which adequate means to calculate their criticality.

2.2 Agent Internal State and Behavior

Our system is a work-in-progress implementation based on the AMAK Frame-
work [14]. A main system representing the AMAS handles an environment rep-
resentation and a collection of agents interacting with the environment. Each
agent controls a parameter of the system, consequently a decision variable of the
problem. The environment and the set of agents execute an iteration to update
their state one at a time. The agents iteration order is randomly updated at the
beginning of each cycle. All the agents have the same three-phase algorithm:

– Perception phase: the agent gets an observation of the environment, that is a
set of criticalities calculated from the distance to the objective.

– Decision phase: the agent processes its new data and follows a decision tree
to adjust its internal state.

– Action phase: the agent acts following its decision by changing its parameter.

The agent decision phase aims at increasing or decreasing the value of the
decision variable it is responsible for (a predefined variation step depending on
its characteristics), and is thus at the core of the process. Except in one case
that we will explain below, a decision is always repeated a stochastically chosen
number of iterations, from one to ten. This momentum mechanism allows to
desynchronize the agents decisions to prevent them from being trapped in what
we call non cooperative synchronisations (basically when two agents try to “help”
at the same time, thus hindering each other).

When starting the resolution, each agent has only a set of criticalities given
by the last environment update. Since it does not have any idea of which action
is the best, its first decision is to act randomly. If the agent observes the criti-
calities decreased beyond a configurable threshold, it will repeat its decision. It
is generally useful to converge fast when the current region of the search space
is relatively regular. On the contrary, if the criticalities increased beyond the
same threshold, the agent will make only one step in the opposite way. These
two rules make a first decision process we can qualify as reactive. When it is
not possible to reactively spot an adequate decision, the agent will process data
it registered in the last perception phases. This more cognitive process consists
in interpolating the variation of the criticalities according to its own value. The
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goal is to identify a region (plus or minus) where the integrative is the lower. It
appears that the momentum mechanism is also useful to this decision process
since it made the agent do what we might call a stochastic scanning of its local
area. In the rare case the second decision process fails to give a decision, the
agent acts randomly.

3 Photonics Problem Modeling and Implementation

The environment of the AMAS has to update the system state, apply the changes
from the AMAS and calculate the input variables used by the agents to take their
decisions. The simulator we developed is shown in Fig. 2.

Fig. 2. Screenshot of the simulator at runtime

The system is a 2D-world composed of a light source, several lenses (Li with
i in [1, N ]) and a screen. The light source emits a number of rays (Rj with j in
[1,M ]) in a conic shape. If a ray intersects with a lens it is refracted using Snell’s
law of refraction i.e. n1.sin(θ1) = n2.sin(θ2) (with each θ as the angle measured
from the normal of the boundary, and n as the refractive index of the respective
medium). So assuming a ray goes through all lenses in the system (which is the
desired state) we have a mathematical suite of operations applied to its position
and orientation Rj(posj,i, θj,i) = Li(Rj(posj,i−1, θj,i−1)) with i in [1, n] and j in
[1,m].

Test cases for the AMAS are generated so that all rays pass through all
lenses as follows: a set of lenses with various characteristics (thin or cylindrical,
refraction index, focal length) are randomly placed on the axis between the
source and the screen (X). A set of rays is generated parallel to the X axis
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so that each ray goes through all lenses and reaches the screen. Repeatedly, the
lenses are shifted and rotated randomly as well as the direction of the rays, while
keeping all rays going through all lenses. After a number of cycles, the state of
the system is set as the reference to reach for the AMAS. Then the lenses are
randomly placed and rotated. This new state is used as a starting point for the
AMAS to work with.

A lens Li is represented by its type (thin or cylindrical), its position Pi(x, y)
and rotation angle Ti, its refraction index ni and focal length Fi. For cylindri-
cal lenses the radius of each face are also necessary R1i and R2i. From these
parameters only Pi and Ti can change during the run and are controlled by the
AMAS.

A ray is a more complex structure since it is represented by a path. A path
is an ordered list of positions and directions describing the intersection points
with the various lenses it goes through {pj,k(x, y)} with k the index of the
intersection, and the direction of the ray at these points represented as an angle
with X {angj,k}.

Rays are not directly known by the AMAS. Only the last position and direc-
tion of each ray (when it reaches the screen) is used to derive information to
send to the AMAS as a feedback to its actions.

The derived information can be the results of various computations. The
most straightforward is to form a set of M differences between current rays
and reference rays: {|pj,last(y)− prefj,last(y)|, |angj,last − angrefj,last|}. This gives the
AMAS quite a lot of precise information which is not often readily available in
real life systems.

The second type of derived information are root mean square deviations
(rmsd) of the positions and angles: Rpos =

√
(
∑

((pj,last(y)− prefj,last(y))2)/M)

and Rang =
√

(
∑

((angj,last − angrefj,last)2)/M).
These two values are more representative of what can be perceived on a real

system like the global intensity on the screen.
For each of the experiments presented hereafter a set of parameters are given

which represents the setup of the run: first, the sequence of lenses, from source to
screen, present in the system with C for a cylindrical lens and T for a thin lens.
Then the number of rays, the percentage of maximum step for lenses moves and
the type of information sent to the AMAS (full or rmsd). So for an experiment
with 3 lenses, 10 rays, 50% of maximum step and using the rmsd, this set would
be {CTC, 10, 50%, rmsd}.

4 Experiments

First we checked the ability to manage different types of lenses, as for instance,
a cylindrical lens has more complex interactions with rays than a thin lens.

We generated two experiments {T, 100, 10%, rmsd} and {C, 100, 10%, rmsd}
(Fig. 3 and Fig. 4) in which all the other parameters were equal. As visible on
the graphs, the evolution of criticality is more chaotic with a cylindrical lens.
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Fig. 3. Resolution with one thin lens {T, 100, 10%, rmsd}

Fig. 4. Resolution with one cylindrical lens {C, 100, 10%, rmsd}

We remark in the one lens experiments that curves make some peaks repeti-
tively. These are the consequence of the momentum mechanism seen in Sect. 2.2
and do not impact the convergence that remains globally continuous.

The other experiments (Figs. 5 and 6) show that the system seems to be
scalable in terms of number of decision variables. In these cases, the peaks men-
tioned earlier disappeared. The results of the moves of each axis agent are more
softened as the number of interactions between rays and optical surfaces grows.

This proof of concept shows promising results: the resolution process succeeds
and no divergence from a satisfying area of the search space has been observed.
However, some adjustments that have to be explored yet could greatly improve
the resolution process. The difficulties encountered are mainly due to the prob-
lem itself: almost all positioning values impact all criticalities, and in a non-linear
way. The parameters consequently are strongly interconnected: the current posi-
tion of one axis agent moves the target position of one or more others. Therefore,
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Fig. 5. Resolution with two lenses {CT, 100, 1%, rmsd}

Fig. 6. Resolution with three lenses {TTT, 100, 1%, rmsd}

the system is chaotic and the agents can collectively hinder themselves. At this
point the optimization problem becomes a cooperation problem.

It has to be noted that the examples presented here are voluntary more
difficult for the AMAS than a real case, where the starting positions are nearer
from the optimum. Starting further away lets us test how the system behaves
while crossing the vast search space of the problem. In this way we can observe
that it does not suffer divergence from any achievement it has already made.
Further work will be done to optimise the number of cycles needed to bring the
criticalities down near zero.

5 Conclusion and Perspectives

State of the art in multi-objective optimization is dominated by Population-
Based and DCOP approaches. However, it can be difficult for those methods
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to be used for real-world applications, especially when the context brings new
constraints like narrowed computation time or resources. This is even worse in
real world robotics control where only one “current solution” can be manipulated
by the robots, and no digital twin is possible.

Moreover, we identified a limitation of current continuous optimization meth-
ods regarding the handling of complex problems with a multi-dimensional contin-
uous search space. Problems of this category are usually too complex to be solved
by classical optimization methods due to multiple factors: the inter-dependencies
of their objectives, their heavy computational cost, their non-linearities, etc.

This limitation has been the motivation to propose a new decentralized app-
roach. We designed a solver fitted for a large panel of real-world applications
with miscellaneous search space topologies. This approach also permits to easily
scale up problem complexity, in terms of number of parameters as well as number
of objectives. Its aim is to naturally model a real-world optimization problem as
a cooperative resolution problem and to satisfy as much as possible expert given
objectives at a reasonable computation cost. The first results obtained with a
proof of concept are promising. Enhancing the optimization process will now
rely on enriching the cooperation capabilities of the agents.
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Abstract. This article studies the linear ordering problem, with appli-
cations in social choice theory and databases for biological datasets.
Integer Linear Programming (ILP) formulations are available for linear
ordering and some extensions. ILP reformulations are proposed, showing
relations with the Asymmetric Travel Salesman Problem. If a strictly
tighter ILP formulation is found, numerical results justify the quality of
the reference formulation for the problem in the Branch&Bound conver-
gence. The quality of the continuous relaxation allows to design rounding
heuristics, it offers perspectives to design matheuristics.
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1 Introduction

A bridge between optimization and Machine Learning (ML) exists to optimize
training parameters of ML models, using continuous optimization and meta-
heuristics [18,19]. Discrete and exact optimization, especially Integer Linear
Programming (ILP), is also useful to model and solve specific variants of clus-
tering or selection problems for ML [5,6]. In this paper, another application of
ILP to learning is studied: the Linear Ordering Problem (LOP). LOP is used
in social choice theory to define a common consensus ranking based on pair-
wise preferences. If many applications deal with a small number of items to
rank, bio-informatics applications solve specific LOP instances of large size as
medians of permutations [2,3]. An ILP formulation is available for LOP with
constraints defining facets [10,11]. An extension of LOP considering ties relies
on this ILP formulation [2]. Current and recent works focus on consensus ranking
for biological datasets, and use specific data characteristics of these median of
permutation problems for an efficient resolution [1,14]. This paper analyzes the
limits of state-of-the art ILP solvers to solve LOP instances. Several alternative
ILP formulations are designed using recent results on the Asymmetric Traveling
Salesman Problem (ATSP) from [15]. Comparison of Linear Programming (LP)
relaxations illustrates and validates polyhedral analyses, as in [15]. The practical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Dorronsoro et al. (Eds.): OLA 2022, CCIS 1684, pp. 74–86, 2022.
https://doi.org/10.1007/978-3-031-22039-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22039-5_7&domain=pdf
http://orcid.org/0000-0003-3775-5629
https://doi.org/10.1007/978-3-031-22039-5_7


Integer Linear Programming Reformulations 75

implication of polyhedral work is analyzed on the resolution using modern ILP
solvers, as in [4]. Lastly, the quality of LP relaxation is used to design variable
fixing matheuristics, as in [7]. Variants of variable definitions and ILP Formula-
tions are recalled in Tables 1 and 2.

Table 1. Definitions of variables in the ILP formulations

Variables Definitions

xi,j ∈ {0, 1} xi,j = 1 iff item i �= j is ranked before j

yi,j ∈ {0, 1} yi,j = 1 iff item i �= j is ranked immediately before j

fi ∈ {0, 1} fi = 1 iff item i is the first item of the ranking

li ∈ {0, 1} fi = 1 iff item i is the last item of the ranking

ni ∈ [0, N − 1] ni − 1 gives the position of item i in the ranking

zi,j,k ∈ {0, 1} zi,j,k = 1 for i �= k and j �= k iff i is ranked before j

and item j is ranked immediately before k

z′
i,j,k ∈ {0, 1} z′

i,j,k = 1 for i �= j �= k iff i is ranked before j and j is before k

2 Problem Statement and Reference ILP Formulation

LOP consists in defining a permutation of N items indexed in [[1;N ]], while
maximizing the likelihood with given pairwise preferences. wi,j � 0 denotes the
preference between items i and j: i is preferred to j if wi,j is higher than wj,i.
A ranking is evaluated with the sum of wi,j in the N(N−1)

2 pairwise preferences
it implies. Each permutation of [[1;N ]] encodes a solution of LOP, there are N !
feasible solutions. The reference ILP formulation, given and analyzed in [10,11],
uses binary variables xi,j ∈ {0, 1} such that xi,j = 1 if and only if item i is
ranked before item j in the consensus permutation. With such encoding, one
computes the rank of each item i with 1 +

∑
j �=i xj,i. ILP formulation from [11]

uses O(N2) variables and O(N3) constraints:

max
x�0

∑

i�=j

wi,jxi,j (1)

xi,j + xj,i = 1 ∀i < j, (2)
xi,j + xj,k + xk,i � 2 ∀i �= j �= k, (3)

Constraints (2) model that either i is preferred to j, or j is preferred to i.
Constraints (3) ensure that xi,j variables encode a permutation: if i is before j
and j before k, i.e. xi,j = 1 and xj,k = 1, then i must be before k, i.e. xi,k = 1
which is equivalent to xk,i = 0 using (2). Constraints (2) and (3) are proven to
be facet defining under some conditions [11].

Note that some alternative equivalent ILP were formulated. Firstly, the prob-
lem is here defined as a maximization, whereas it is considered as a minimization
of disagreement in [2]. Considering w′

i,j = wj,i or w′
i,j = M −wi,j , where M is an
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upper bound of weights wi,j , it allows to transform minimization into maximiza-
tion. Secondly, equations (3) are equivalently written as xi,k − xi,j − xj,k � −1
in [2]. Formulation (3) is symmetrical, and was also used for the ATSP [17]. To
see the equivalence, we use that −xi,k = xk,i − 1:

xi,k − xi,j − xj,k � −1 ⇐⇒ −xi,k + xi,j + xj,k � 1
xi,k − xi,j − xj,k � −1 ⇐⇒ xk,i − 1 + xi,j + xj,k � 1
xi,k − xi,j − xj,k � −1 ⇐⇒ xk,i + xi,j + xj,k � 2

3 From ATSP to Consensus Ranking, Tighter
Formulations

LOP and ATSP feasible solutions may be encoded as permutations of [[1;N ]],
order matters for cost computations. If any LOP solution is a permutation, ATSP
solutions are Hamiltonian oriented cycles. LOP solutions can be projected in a
cycle structure, adding a fictive node 0 such that w0,i = wi,0 = 0 opening and
closing the cycle: x0,i = 1 (resp xi,0 = 1) expresses that i is the first (resp
last) item of the linear ordering. This section uses polyhedral work from ATSP
to tighten the reference formulation for LOP [15]. For ATSP, binary variables
yi,j ∈ {0, 1} are defined such that yi,j = 1 if and only if j is next item immediately
after item i, for i �= j ∈ [[1;N ]]. Equivalently to consider a fictive node 0, we define
binary variables fi, li ∈ {0, 1} such that fi = x0,i = 1 (resp li = xi,0 = 1) denotes
that item i is the first (resp last) in the linear ordering. Having these variables
x, y, l, f induces another ILP formulation for LOP, denoted SSB for ATSP [17]:

max
x,y,f,l

∑

i�=j

wi,jxi,j (4)

xi,j + xj,k + xk,i � 2 ∀i �= j �= k, (5)
yi,j � xi,j ∀i �= j, (6)

xi,j + xj,i = 1 ∀i < j, (7)
∑

i fi = 1 (8)
∑

i li = 1 (9)
li +

∑
j �=i yi,j = 1 ∀i, (10)

fi +
∑

j �=i yj,i = 1 ∀i, (11)

Objective function differs from ATSP: a weighted sum of y, f, l variables is
minimized for ATSP [17]. For ATSP, x variables were used only to cut sub-
tours, whereas it is necessary for LOP to write a linear objective function. The
constraints are identical for ATSP and LOP once variables x, y, f, l are used.
Constraints (5) and (7) reuse (2) and (3). Constraints (10) and (11) are ATSP
elementary flow constraints: for each item there is a unique predecessor and
a unique successor, 0 as node successor or predecessor implies variables fi, li
are used. Unicity constraints (8) and (9) are ATSP elementary flow constraints
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arriving to and leaving from the fictive node 0. SSB can be tightened in the SSB2
formulation, replacing constraints (5) by tighter constraints (12) from [17]:

∀i �= j �= k, xi,j + yi,j + xj,k + xk,i � 2 (12)

Sub-tours between two cities (or items) may have a crucial impact in the res-
olution, as in [5]. Having variables x and constraints (5) and the tighter variants
implies the other sub-tours between two items. Indeed, yi,j+yj,i � xi,j+xj,i = 1.
Constraints (13) are sub-tour cuts between node 0 and each item i > 0, these
are known to tighten strictly SSB2 formulation [17]:

∀i, fi + li � 1 (13)

Another formulation was proposed for ATSP without constraints (5), but
with linking constraints yi,j − xk,j + xk,i � 1, to induce the same set of feasible
solution [9]. These constraints can be tightened in two different ways:

∀i �= j �= k, yi,j + yj,i − xk,j + xk,i � 1 (14)

∀i �= j �= k, yi,j + yk,j + yi,k − xk,j + xk,i � 1 (15)

Tightening only with (14) and (15) induce respectively GP2 and GP3 formu-
lations for ATSP [9]. A strictly tighter formulation, denoted GP4, is obtained
with both sets of constraints [15]. A strictly tighter formulation is also obtained
adding (12) to (14) and (15) for ATSP. Numerical issues are to determine whether
the quality of LP relaxation is significantly improved after tightening for LOP.

4 Other ILP Reformulations

In this section, alternative ILP reformulations for LOP are provided, adapting
other formulations from ATSP. Firstly, a formulation with O(N2) variables and
constraints is given, before three-index formulations with O(N3) variables.

4.1 ILP Formulation with O(N2) Variables and Constraints

Similarly with MTZ formulation [13], O(N) additional variables ni ∈ [[0, N − 1]]
directly indicate the position of the item in the ranking :

max
x,n�0

∑

i�=j

wi,jxi,j (16)

xi,j + xj,i = 1 ∀i < j, (17)
nj + N × (1 − xi,j) � ni + 1 ∀i �= j, (18)

ni +
∑

j �=i

xi,j = N − 1 ∀i, (19)

ni ∈ [0, N − 1] ∀i (20)
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Note that as for MTZ formulation, variables ni can be declared as continuous,
feasibility of (18) and bounds (20) implies ni ∈ [[0, N − 1]]. Objective function
(16) and constraints (17) are unchanged. Constraints (18) are similar with MTZ
constraints: if i is ranked before j, i.e. xi,j = 1, then it implies nj � ni + 1, N
is a “big M” in this linear constraint. If (17) and (18) are sufficient to induce
feasible solutions for the ILP, constraints (19) complete (18) without using any
“big M”. Indeed, ci =

∑
j �=i xi,j counts the number of items after i, so that for

each i, ci+ni = N −1. As big M constraints are reputed to be weak and inducing
poor LP relaxations, a numerical issue is to determine the difference with the
continuous relaxation when relaxing also constraints (18) and (19).

Note that this relaxation has trivial optimal solutions, considering xi,j = 1
and xj,i = 0 for i �= j such that wi,j � wj,i. Hence, following upper bound is
valid, and also larger than any LP relaxation for LOP:

UB =
∑

i<j

max(wi,j , wj,i) (21)

4.2 Three-Index Flow Formulation

Another three index formulation, tighter than GP2, GP3 and GP4, was proposed
for ATSP [9]. Adapting this formulation to LOP, one uses binary variables zi,j,k ∈
{0, 1} for i �= k and j �= k defined with zi,j,k = 1 if and only if i is ranked
before j (not necessarily immediately before) and j is ranked immediately before
k. First and last items are still marked with binaries fi, li ∈ {0, 1}. Binaries
xi,j , yi,j ∈ {0, 1} are then defined by xi,j =

∑
k zi,j,k + lj and yi,j = zi,i,j .

max
z,l,f�0

∑

i�=j

wi,j

(

li +
∑

k

zi,j,k

)

(22)

li +
∑

k zi,j,k + lj +
∑

k zj,i,k = 1 ∀i < j, (23)
∑

i fi = 1 (24)
∑

i li = 1 (25)
li +

∑
j �=i zi,i,j = 1 ∀i, (26)

fi +
∑

j �=i zj,j,i = 1 ∀i, (27)
zi,j,k � zj,j,k ∀i, j, k, (28)

Constraints (23) and (24)–(27) are respectively constraints (7) and (8)–(11)
replacing x, y occurrences by the linear expressions using z, l variables. A similar
operation allows to write the objective function (22) using z, l variables. Con-
straints (28) model that zi,j,k = 1 implies that j is ranked just before k and
thus zj,j,k = 1. This formulation has O(N3) variables and O(N3) constraints
only because of constraints (28). It is possible to preserve the validity of the
ILP while having only O(N2) constraints replacing flow constraints (28) by the
aggregated version:

∀j, k,
∑

i

zi,j,k � Nzj,j,k (29)
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4.3 Another Three-Index Flow Formulation

In another three-index formulation, binary variables z′
i,j,k ∈ {0, 1} are defined

such that for i �= j �= k, z′
i,j,k = 1 if and only if items i, j, k are ranked in this

order. In this ILP formulation, we keep variables xi,j , it induces the valid ILP
formulation for LOP:

max
x,z�0

∑

i�=j

wi,jxi,j (30)

3z′
i,j,k � xi,j + xj,k + xi,k ∀i �= j �= k (31)

z′
i,j,k + z′

i,k,j + z′
j,i,k + z′

j,k,i + z′
k,j,i + z′

k,i,j = 1 ∀i �= j �= k, (32)

Constraints (31) are linking constraints among variables x, z: z′
i,j,k = 1

implies xi,j = xj,k = xi,k = 1. Constraints (32) express that each triplet
i �= j �= k is assigned in exactly one order in a permutation, replacing con-
straints of type xk,i + xi,j + xj,k � 2. Constraints (32) induce that this ILP
formulation has also O(N3) variables and O(N3) constraints. Note that a sim-
ilar constraint can be defined as cut for the previous ILP formulation, with an
inequality:

zi,j,k + zi,k,j + zj,i,k + zj,k,i + zk,j,i + zk,i,j � 1 (33)

Table 2. Summary of implemented formulations, their denomination, the sets and
asymptotic number of variables and constraints

Formulation Variables Constraints nbVariables nbConstraints

LOP ref x (2), (3) O(N2) O(N3)

LOP SSB2 x, f, l, y (6)–(11), (12, (13) O(N2) O(N3)

LOP GP3 x, f, l, y (6)–(11), (15) O(N2) O(N3)

LOP MTZ x, n (17), (19) O(N2) O(N2)

LOP flowGP z, f, l (23)–(27), (28) O(N3) O(N3)

LOP flowGP aggr z, f, l (23)–(27), (29) O(N3) O(N2)

LOP flow2 x, z′ (31), (32) O(N3) O(N3)

5 Computational Experiments and Results

Numerical experiments were proceeded using a workstation with a dual processor
Intel Xeon E5-2650 v2@2.60GHz, using at most 16 cores and 32 threads in total.
Cplex version 20.1 was used to solve LPs and ILPs. Cplex was called using
OPL modeling and OPL script languages. LocalSolver in its version 10.5 was
used as a heuristic solver benchmark to compare primal solutions when optimal
solutions are not proven. The maximal time limit for Cplex and LocalSolver
was set to one hour, Cplex was used with its default parameters. For reuse and
reproducibility, OPL and LocalSolver codes and generated instances are available
online at https://github.com/ndupin/linearOrdering.

https://github.com/ndupin/linearOrdering
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5.1 Data Generation and Characteristics

It was necessary to generate specific instances for this study. As mentioned by
[1,14], instance characteristics are crucial in the resolution difficulty. In many
social choice applications and datasets, N is small, exact resolution with formu-
lation LOP ref is almost instantaneous. For the biological application, N is very
large but median of permutations among similar permutations is easier than gen-
eral instances. In the extreme case where wi,j coefficients encode a permutation
(median of 1-permutation, trivial problem), trivial bounds UB give the optimal
value, and LP relaxations of every ILP formulation give the integer optimal solu-
tion. For this numerical study, as in [15], quality of polyhedral descriptions are
analyzed on the implications on the quality of LP relaxation using diversified
directions of the objective function. Three generators were used for this study:

• aleaUniform (denoted aUnif): wi,j for i �= j are randomly generated with a
uniform law in [[0, 100]].

• aleaSum100 (denoted aSum): uniform generation in [[0, 100]] such that wi,j +
wj,i = 100: for i < j wi,j is randomly generated in [[0, 100]] and wj,i is then
set to wj,i = 100 − wi,j .

• aleaShuffle (denoted aShuf): max(N/2, 20) random permutations are gen-
erated (with Python function shuffle), wi,j are then computed using Kendall-τ
distance and Kemeny ranking, as in [1–3].

A fourth generator was coded, as in aleaShuffle, but generating small pertur-
bations around a random permutation. Actually, the results were very similar for
ILP formulations to the 1-median trivial instances. Real-life structured instances
for median of permutations are much easier than random instances. The gener-
ators allow to analyze the impact of structured instances.

Number of items N was generated with values N ∈ {20, 30, 40, 50, 100}. For
N ∈ {20, 30, 40}, the Best Known Solution (BKS) are optimal solutions proven
by Cplex. For N ∈ {50, 100}, LocalSolver always provides the BKS. There is also
no counter-example where LocalSolver does not find a proven optimal solution
in one hour, we note that LocalSolver is also efficient in short time limits. For
each generator and value of N , 30 instances are generated and results are given
in average for each group of 30 similar instances, with the denomination XX−N
where XX ∈ {aUnif,aSum,aShuf}. Lower and upper bounds v(i) on instance i
are compared with gaps to BKS, denoted BKS(i):

gap =
| v(i) − BKS(i) |

BKS(i)
(34)

5.2 Comparing LP Relaxations

To analyze the quality of polyhedral descriptions recalled in Table 2, Table 3
presents gaps of LP relaxations of ILP formulations for LOP and the naive
upper bound (21). Table 4 presents the computation time for LP relaxations,
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Table 3. Comparison of the average gaps to the BKS for the LP relaxations of formu-
lations recalled in Table 2 and the naive upper bound (21)

Instances (21) ref/SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 12,86% 0,02% 10,49% 10,84% 5,22% 11,53% 12,86%

aUnif-30 14,86% 0,17% 13,20% 13,39% 7,34% 13,98% 14,86%

aUnif-40 16,98% 0,60% 15,68% 15,78% 9,22% 16,16% 16,98%

aUnif-50 17,84% 1,12% 16,80% 16,86% 10,22% 17,17% 17,84%

aUnif-100 21,65% 3,17% 21,10% 21,11% – 21,25% 21,65%

aSum-20 19,00% 0,05% 15,56% 16,13% 7,26% 17,23% 19,00%

aSum-30 21,96% 0,31% 19,53% 19,84% 10,25% 20,45% 21,96%

aSum-40 24,40% 1,18% 22,52% 22,70% 12,53% 23,21% 24,40%

aSum-50 26,24% 2,25% 24,71% 24,83% 14,16% 25,23% 26,24%

aSum-100 31,44% 4,97% 30,64% 30,65% – 30,84% 31,44%

aShuf-30 1,93% 0,00% 1,39% 1,42% 0,29% 1,89% 1,93%

aShuf-40 1,44% 0,00% 1,18% 1,18% 0,42% 1,42% 1,44%

aShuf-50 1,41% 0,00% 1,18% 1,18% 0,44% 1,40% 1,41%

aShuf-100 1,80% 0,02% 1,65% 1,55% – 1,80% 1,80%

to highlight the impact of the number of variables and constraints recalled in
Table 2. These tables illustrate the difficulty of instances, aShuf are easy instances
with good naive upper bounds and LP relaxations. Datasets aSum and aUnif
induce more difficulties with worse continuous bounds, and aSum is even more
difficult than aUnif.

Contrary to ATSP where GP2, GP3, SSB2 are not redundant [15], (3) induces
much better LP relaxations for LOP than (14) and (15). Adding (14) and (15) in
ILP formulations with (3) or (12) does not induce any difference in the quality
of LP relaxation. It explains why in Table 2, we remove constraints of type (3)
to compare quality of LP relaxations. An explanation is the different nature of
LOP and ATSP problems because of different objective functions: if polyhedrons
defined by constraints are identical, objective functions with weighted sums in
x or y change the projection on the space of interest.

Flow formulation flow-GP improves significantly the quality of LP relaxation
of GP3, as for the ATSP, but it is still significantly worse than SSB formulations.
Computation time of LP relaxation is much higher with flow-GP, computations
were stopped in one hour without termination for N = 100. With aggregation
(29) instead of (28), LP relaxation is computed quickly, but the quality of LP
relaxation is dramatically decreased, the continuous bounds are close to the
naive upper bounds (21). MTZ adaptation has the quickest LP relaxation, but
the continuous bounds are close to the ones of GP3. Last flow formulation always
provides exactly the naive upper bounds (21), constraints (33) do not tighten
flow-GP formulation, this result differ from [16].
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Table 4. Comparison of the average time (in seconds) to compute LP relaxations for
ILP formulations recalled in Table 2

Instances ref SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 0,04 0,14 0,32 0,00 1,21 0,06 0,07

aUnif-30 0,28 0,75 1,08 0,01 7,62 0,18 0,25

aUnif-40 0,49 2,27 3,58 0,03 38,60 0,53 0,83

aUnif-50 0,95 5,59 10,55 0,12 173,49 1,36 2,32

aUnif-100 26,63 278 839 1,04 – 18,24 54,61

aSum-20 0,04 0,17 0,33 0,00 1,20 0,06 0,07

aSum-30 0,29 0,77 1,08 0,01 7,48 0,19 0,25

aSum-40 0,50 2,12 3,43 0,03 37,10 0,55 0,83

aSum-50 0,95 5,65 10,74 0,12 168,24 1,40 2,27

aSum-100 27 282,46 819 1,75 – 17,40 55,63

aShuf-30 0,06 0,24 1,04 0,01 6,18 0,18 0,27

aShuf-40 0,16 0,84 3,73 0,04 26,86 0,49 0,74

aShuf-50 0,33 2,17 11,63 0,13 98,88 1,32 2,13

aShuf-100 17,7 353,5 1360 1,76 – 16,45 51,34

LP relaxation of LOP ref is of an excellent quality, which illustrates polyhe-
dral results and proven facets from [11]. In Table 2, LOP ref and SSB2 formu-
lations have the same values: except on three instances, LP relaxation are the
same (with a tolerance to numerical errors on the last digit). On instance num-
ber 27 in aUnif-20 and instances number 17 and 29 in aSum-20, SSB2 improves
the reference formulation around 0.01%, making a difference of one unit in the
integer ceil rounding of the continuous relaxation. With additional experiments,
the difference is only due to (3) instead of (12), no difference was observe adding
only (13). These results proves that LOP SSB2 is in theory strictly tighter than
LOP ref, but with small and rare improvements.

5.3 Comparing Branch and Bound Convergences

Now, we compare the impact of modeling LOP with LOP ref and LOP SSB2,
in the Branch&Bound (B&B) convergence. Table 5 analyzes the impact of Cplex
cuts and heuristics at the root node, before branching in the B&B tree. If
LOP SSB2 improves slightly LP relaxation quality, the open question is to deter-
mine if additional variables and constraints help modern ILP solvers detecting
other structures for cut generation, as in [4]. For LOP, computations at the root
node of B&B tree are much slower with SSB2, coherently with the higher number
of variables, but the efficiency of cuts and primal heuristics is significantly worse
with the heavier SSB2 formulation. Having a larger ILP model, slower matrix
operations for generation of cutting planes are needed by Cplex, and this stops
earlier cuts that would have been generated using LOP ref formulation, the size
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Table 5. Comparison of Lower Bounds (LB) and Upper Bounds (UB) of formulations
LOP ref and LOP SSB2 after Cplex cuts and heuristics at the root node (i.e. before
branching). Common UB with the LP relaxation are also provided for comparison.

LP UB LB time UB LB time

ref,SSB2 ref SSB2

aUnif-20 0,02% 0,00% 0,00% 0,1 0,00% 0,00% 0,4

aUnif-30 0,17% 0,00% 0,00% 1,5 0,09% 0,50% 14

aUnif-40 0,60% 0,44% 0,22% 30,5 0,52% 4,58% 159

aUnif-50 1,12% 0,96% 0,82% 212,9 0,98% 5,27% 1336

aUnif-100 3,17% 3,07% 5,49% 3600 3,15% 7,37% 3600

aSum-20 0,05% 0,00% 0,00% 0,12 0,00% 0,00% 0,55

aSum-30 0,31% 0,02% 0,02% 2,0 0,16% 0,79% 20

aSum-40 1,18% 0,75% 0,32% 64 0,95% 5,08% 296

aSum-50 2,25% 1,82% 0,95% 297 1,95% 6,72% 989

aSum-100 4,97% 4,82% 6,87% 3600 4,95% 9,62% 3600

aShuf-30 0,00% 0,00% 0,00% 0,14 0,00% 0,00% 0,86

aShuf-40 0,00% 0,00% 0,00% 0,37 0,00% 0,00% 2,9

aShuf-50 0,00% 0,00% 0,00% 0,90 0,00% 0,00% 8

aShuf-100 0,02% 0,02% 0,02% 477 0,02% 6,02% 3395

of ILP matrix is crucial here, contrary to [4]. Table 5 shows that few improve-
ment of LP relaxation is provided at the root node of B&B tree, cuts are not
very efficient to improve the LP relaxation, which was of a good quality. This
explains the difference in the B&B convergence in one hour allowing branching,
LOP ref formulation is largely superior. For some instances with N = 40 or
N = 50, LOP ref can converge in ten minutes whereas a significant gap between
lower and upper bounds remains after one hour for LOP SSB2. This definitively
validates the LOP ref formulation as baseline ILP model for [2].

5.4 Variable Fixing Heuristics

The excellent quality of the LP relaxation with LOP ref formulation allows to
use continuous solutions of LP relaxation to design primal heuristics as in [7].
Variable Fixing (VF) denotes here a heuristic reduction of the search space based
on the LP relaxation, to set integer values to variables in the ILP resolution. One
may use a VF preprocessing for variables with an integer value in the continuous
relaxation, expecting that these integer decisions are good. Generally, it makes a
difference to apply VF preprocessing on zeros and ones in the LP relaxation, as
in [7]. There are in general many possibilities of VF preprocessing, considering
also specific rules to select a subset of variable to fix [7].

For LOP, imposing xi,j = 1 (resp 0) implies xj,i = 0 (resp 1) with constraints
(2), so that fixing only ones or only zeros are equivalent to fix all the integer vari-
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ables, contrary to [7]. Note that constraints (3) may induce continuous solutions
xi,j = xj,k = xk,i = 2/3, so that rounding such variables induces infeasibility on
(3) constraints. This property does not hold when rounding to ones only vari-
ables that are superior to 0.7 Hence, two VF strategies were implemented, on one
hand fixing the integer value, and on the other hand considering the threshold for
rounding to 0.8. Actually, there were slight differences for these two strategies.
Experiments also used the quick MTZ relaxation, this significantly degraded the
performance of the VF heuristic.

Table 6 compares the gap to BKS and computation time using the VF pre-
processing to LOP ref formulation. For small and easy instances where LOP ref
gives optimal solutions, the degradation of the objective function is small with
the VF heuristic, speeding up significantly the computation time. For the largest
instances with N = 100, VF matheuristic is significantly better than the exact
resolution, illustrating the difficulty of the ILP solver to find good primal solu-
tions with its primal heuristics. The primal solutions of matheuristic are in this
case also significantly worse than the ones of LocalSolver, the VF speed up is
not sufficient to reach an advanced phase of the B&B convergence.

Table 6. Comparison of gaps to BKS and computation time of Cplex in ILP solving
using the reference formulation, without and with Variable Fixing (VF) preprocessing
on integer values in the LP relaxation of the reference formulation. BKS are optimums
for N � 40, for N � 50 BKS were given by LocalSolver

Instances LB time (sec) LB time (sec)

ref ref + VF

aUnif-20 0,00% 0,1 0,01% 0,04

aUnif-30 0,00% 1,5 0,04% 0,62

aUnif-40 0,00% 30,5 0,17% 13

aUnif-100 5,49% 3600 2,36% 3600

aSum-20 0,00% 0,13 0,05% 0,06

aSum-30 0,00% 2,1 0,09% 0,77

aSum-40 0,00% 63,5 0,43% 12,7

aSum-100 6,87% 3600 3,14% 3600

aShuf-30 0,00% 0,13 0,00% 0,03

aShuf-40 0,00% 0,37 0,00% 0,08

aShuf-50 0,00% 0,92 0,00% 0,12

aShuf-100 0,00% 1820 0,00% 35,7

6 Conclusions and Perspectives

If the reference ILP formulation seemed to be improvable using ATSP results,
only a slightly tighter ILP formulation is obtained after this reformulation work.
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Analyzing the ILP convergence with a modern ILP solver shows that the LP
relaxation is of an excellent quality with the reference formulation, but is fewly
improved after with cuts and branching. Note that these reformulation issues
were an open question raised by [12]. Also, primal heuristics are not efficient on
the problem, a basic VF matheuristic significantly improves the primal solutions
for difficult instances. Furthermore, this paper illustrates the graduated difficulty
of instances, structured instances from the biological application as median of
permutations are easier that random instances of LOP.

These results offer perspectives for the biological application also with the
extension with ties [1]. Matheuristics can be used in this context, combined to
specific reduction space operators related to the easier median of permutation
instances [1,14]. Perspectives are also to combine matheuristics and local search
approaches which are efficient for the problem, as shown by LocalSolver bench-
mark on this study, and also by [8,12], to solve larger instances (N � 100).
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10. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear
ordering problem. Oper. Res. 32(6), 1195–1220 (1984)
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1 Introduction

Most of the software of modern computer systems come with many configurable
parameters that control the system’s behavior and its interaction with the under-
lying hardware. These parameters are challenging to tune by solely relying on
field insight and user expertise, due to huge spaces and complex, non-linear
system behavior. Besides, the optimal configuration often depends on the cur-
rent workload, and parameters must be changed at each environment variations.
Consequently, users often have to rely on the default parameters given by the
provider, and do not take advantage of the possible performance with a more
appropriate parametrization of their tuned system. The more complex these sys-
tems are, the more important the tuning becomes, as the components interact
with each other in ways that are hard to grasp by the human mind. As architec-
ture becomes more and more service oriented, the number of components per sys-
tem increases exponentially, along with the number of tunable parameters. This
problem is particularly observed within HPC systems with hundreds of devices
assembled to build very complex and highly configurable supercomputers. As
performance is the major concern in this field, each component must be finely
tuned, which is almost impossible to achieve solely through field expertise. An
additional constraint is the often noisy setting, because making resources exclu-
sive is expensive and goes against the current highly shared programming envi-
ronments. Automatic tuning methods thus must need to take into account this
possible interference on the tuned application, which degrades the performance
of classical auto-tuning heuristics. Faced with the inability of relying solely on
users to take adequate decisions for the parametrization of complex computer
systems, new tuning methods have emerged from various computer science com-
munities to automate parameter selection depending on the current workload.
Because they do not require any human intervention, these approaches are com-
monly called auto-tuning methods, a term which encompasses a broad range of
methods related to the optimization and machine learning field. Throughout the
years, they have been successfully applied to a wide range of systems, such as
storage systems, database management systems and compilers.
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In this paper, we introduce a new Open Source software, called SHAMan
(Smart HPC Application Manager), which provides an out-of-the-box Web
application to perform black-box auto-tuning of custom computer components
running on a distributed system, for an application submitted by the user. The
framework integrates three state-of-the-art black-box optimization heuristics, as
well as resampling-based noise reduction strategies to deal with the interfer-
ence of shared resources, and pruning strategies to limit the time spent by the
optimization process. It is to our knowledge the only generalistic optimization
framework specifically tailored to find the optimum parameters of configurable
HPC systems, by taking into account their specific constraints.

This paper is organized as follows. We introduce in Sect. 2 the works related to
ours, and discuss the improvements provided by SHAMan compared to the state-
of-the-art. Section 3 introduces the theoretical context of black-box optimization
for noisy and expensive systems. In Sect. 4 we present the different features of
SHAMan and its software architecture. In Sect. 5, we present the advantages of
using SHAMan on three use-cases by tuning two different I/O accelerators and
OpenMPI collectives. Finally, Sect. 6 concludes the paper and gives insights into
planned further works.

2 Related Works and Software

Within the HPC community, auto-tuning has gained a lot of attention for tun-
ing particular HPC application and improve their portability across architec-
tures [14]. Seymour et al. [35] and Knijnenburg et al. [23] provide a compar-
ison of several random-based heuristic searches (Simulated annealing, genetic
algorithms . . . ) that have provided some good results when used for code auto-
tuning. Menon et al. [26] use Bayesian Optimization and suggest the framework
HiPerBOT to tune application parameters as well as compiler runtime settings.
HPC systems energy consumption can also benefit from Bayesian Optimization,
as Miyazaki et al. have shown in [28] that an auto-tuner based on a combination
of Gaussian Process regression and the Expected Improvement acquisition func-
tion has raised their cluster to the Green500 list. The MPI community has also
shown the superiority of a hill-climbing black-box algorithm over an exhaustive
sampling of the parametric space in [20] and [41].

In terms of auto-tuning frameworks, several have been proposed recently in
different domain where optimization is required. The Machine Learning com-
munity has proposed several frameworks to find the parameters that return the
best prediction scores for a given model and dataset. Among the most popular
frameworks, we can cite Optuna [12], which relies on Tree Parzen Estimators to
perform the optimization. Autotune [24] is an other framework which supports
several black-box optimization techniques. Scikit-Optimize [9] which supports
a wide range of surrogate modeling techniques. The SHERPA [21] library pro-
vides different optimization algorithms with the possibility to add new ones. It
also comes with a back-end database and a small Web Interface for experiment
visualization. GPyOpt [13] is another library for users who wish to use Bayesian
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Optimization. Finally, the framework TPOT [25] relies on genetic algorithms
for the optimization of Machine Learning pipelines. Within the MPI commu-
nity, the two most famous commercial implementations come with their own
tuning tool: OPTO [15] is the standard tool used by the Open MPI community
for tuning MCA parameters, and similarly mpitune [6] from Intel MPI. These
methods only include exhaustive grid search, making these tools slow to use for
tuning expensive HPC applications. The main drawbacks identified with these
already existing frameworks concern the difficulty of integrating these libraries
for purpose other than the ones they were designed for by using them for HPC
tuning. It is also difficult to enhance them with other optimization techniques,
such as noise reduction strategies. In addition, none of them offer a satisfying
Web Interface allowing an easy manipulation of the software.

Faced with the highlighted deficiencies of the existing solutions, we have
developed our own framework, and provide these main contributions and fea-
tures:

(a) Versatility: it can handle a wide range of use-cases, and new components
can be registered through a generalist configuration file.

(b) Accessibility: the optimization engine is accessible through a Web Inter-
face.

(c) Optimization diversity: as different heuristics work differently for differ-
ent systems, our framework provides several state-of-the-art heuristics.

(d) Easy extention: the optimization engine uses a plug-in architecture and
the development of the heuristic is thus the only development cost.

(e) Integration within the hpc ecosystem: the framework relies on the
Slurm workload manager [22] to run hpc applications. The microservice
architecture enables it to have no concurrent interactions with the clus-
ter and the application itself. It is not intrusive allowing users to launch
applications on their own. Also, no privileged rights are required to use the
software.

(f) Customizable target measure: the optimized target function can be
defined on a case-per-case basis to allow the optimization of various metrics.

(g) Integration of noise reduction strategies: because of the highly
dynamic nature and the complexity of applications and software stacks,
running in parallel on shared resources are subject to many interference,
which results in a different performance measure for each run even with the
same system’s parametrization. Noise reduction strategies are included in
the framework to perform well even in the case of strong interference.

(h) Integration of pruning strategies: runs with unsuited parametrization
are aborted, to speed-up the convergence process.

3 Theoretical Background

SHAMan relies on black-box optimization, which consists in treating the tuned
system as a black-box, deriving insight only from the relationship between the
input and the output parameters, as described by the optimization loop in Fig. 1.
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Fig. 1. Schematic representation of the
optimization loop, without

Fig. 2. Schematic representation of the
optimization loop, with noise reduction
through resampling

3.1 An Overview of the Optimization Loop

Black-box optimization refers to the optimization of a function f with unknown
properties in a minimum of evaluations, without making any assumption on the
function. The only available information is the history of the black-box function,
which consists in the previously evaluated parameters and their corresponding
objective value. Given a budget of n iterations, the problem can be transcribed
as:

Find{pi}1≤i≤n ∈ P s.t. | min(f(pi)1≤i≤n) − min(f) ≤ ε | (1)

– f the function to optimize
– P the parameter space
– ε a convergence criterion between the found and the estimated minimum

Every black-box optimization process starts with the selection of the initial
parameters for the algorithm. An acceptable initialization starting plan should
respect two properties [19,40]: the space’s constraints and the non-collapsible
property. The space constraints are shaped by the possible values that can
be taken by the parameters. The non-collapsible property specifies that no
parametrization can have the same value on any dimension. A design plan
respecting this constraint is called a Latin Hypercube Design (LHD) [19]. The
next step consists in a feedback loop, which iteratively selects a parametrization,
evaluates the black-box function at this point and selects accordingly the next
data point to evaluate. The higher procedure for searching an optimal solution in
a parametric space is called an optimization heuristic. There are many black-box
heuristics, and we have implemented the following set in our optimization engine
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because of their simplicity of implementation and their proven efficiency for HPC
systems’ tuning. A detailed motivation and description of our implementation
can be found in [31] and [32].

– Surrogate models: Surrogate modeling consists in using a regression or
interpolation technique over the currently known surface to build a computa-
tionally cheap approximation of the black-box function and to then select the
most promising data point in terms of performance on this surrogate function
by using an acquisition function.

– Simulated annealing: the simulated annealing heuristic is a hill-climbing
algorithm which can probabilistically accept a solution worse than the current
one.

– Genetic algorithms: Genetic algorithms consist in selecting a subset of
parameters, among the already tested parametrizations, considering the
objective value of each parametrization, and then combining them to cre-
ate a new parametrization.

3.2 Stop Criteria

When running the optimization algorithm, the easiest stop criterion is based
either on a budget of possible steps (exhaustion based) or on a time-out based
on the maximum elapsed time for the algorithm. Once the iteration budget has
been spent, the algorithm stops and returns the best found parametrization.
However, while very simple to implement, this criterion can be inefficient, as
it has no adaptive quality on the tuned system. Using other stop criterion to
speed-up the convergence process, while still providing a good solution is thus
essential for tuning expensive systems, and SHAMan integrates two different
stop criteria:

Exhaustion Based Criteria. Exhaustion based criteria are criteria based on the
number of allowed iterations performed by the heuristic. Once all of the pos-
sible iterations have been tried by the algorithm, the algorithm stops and the
parametrization which returned the best corresponding performance measure is
kept. They are the most popular in the black-box optimization literature [43]
because of their simplicity of implementation and the control they give over the
optimization process. However, they can be a waste of resource because they can
either:

– Stop the algorithm while the maximum optimization potential has not been
reached, thus not finding the optimal parametrization. The algorithm either
has to be started from scratch or can resume, depending on the practical
auto-tuning implementation.

– Keep the algorithm running even though the maximum potential of optimiza-
tion has already been reached. This is a waste of time and resources, as the
algorithm runs aimlessly without providing any improvement.
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Exhaustion-based criteria thus do not provide much flexibility in the opti-
mization process and do not have any adaptive qualities to the behavior of the
system. Because of this, SHAMan integrates two other criteria based either on
the value of the performance function or the value of the tested parameters:

Improvement Based Criteria. They consist in stopping the optimization process
if it does not bring any improvement over a given number of iterations. Depend-
ing on the target behavior, the improvement can either be measured globally as
the average of the evaluated values or locally as the change in optimum values.

– Best improvement: Improvement of the best objective function value is
below a threshold t for a number of iterations g.

– Average improvement: Improvement of the average objective function
value is below a threshold t for a number of iterations g.

– Median improvement: Improvement of the median objective function value
is below a threshold t for a number of iterations g.

Movement Based Criteria. Movement based criteria consider the movement of
the parametric grid as a criteria to stop the optimization. Two variations of the
criteria are available in our framework:

– Count based: The optimization algorithm is stopped once there is less than
t different parametrization evaluated over a number of iterations g.

– Distance based: The optimization algorithm is stopped once the distance
between each parametrization goes below a certain threshold t for a number
of iterations g.

3.3 Resampling for Noisy Systems

Resampling consists in adding a “resampling filter” by using a set logical rule to
select which parametrization to reevaluate. A detailed schematic representation
of the integration of resampling within the black-box optimization tuning loop
is available in Fig. 2. The general goal of resampling is to reduce the standard
deviation of the mean of an objective value in order to augment the knowledge
of the impact of the parameter on the performance.

Algorithmically, we define a resampling filter as a function RF which takes
as input an optimization’s trajectory already evaluated fitness and correspond-
ing parameters (θi ∈ Θ,F (θi) ∈ R)k, for the optimization trajectory at step
k, and outputs a boolean on whether or not the last parametrization should
be re-evaluated. This filter can be integrated for both initialization draws and
exploitation draws, or only for exploitation ones. We make the latter choice, as
we want to keep the initialization draw to test as many parametrization as pos-
sible, and if needed, let the algorithm come back to these parametrization for
further investigation. Resampling is a trade-off between having a better knowl-
edge of the space and waste some computing times on re-evaluation. We present
here two of the most popular resampling algorithms in order to efficiently reeval-
uate a parametrization and a more exhaustive description is proposed in [36].
Three noise strategies are available in the framework:
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– Static resampling: re-evaluates each parametrization for a fixed number of
iterations.

– Standard Error Dynamic Resampling [18]: re-evaluates the current
parametrization until the standard error of the mean falls below a set thresh-
old.

– An improved noise reduction algorithm: a complex decision algorithm
for re-evaluating the current parametrization [32].

3.4 Pruning of Expensive Systems

Pruning strategies consist in stopping some runs early because their parametriza-
tion is unpromising, compared to already tested parameters. Two pruning strate-
gies are available in the framework:

– Default based: It consists in stopping every run that takes longer than the
execution time corresponding to the default parametrization.

– Estimator based: It consists in stopping every run that takes longer than
the value of an estimator computed on previous runs. For example, if the
selected estimator is the median, the current run is stopped if its elapsed time
takes longer than 50% of the already tested parametrization. This pruning
only applies to runs performed after the initialization ones.

4 Software Architecture and Features

SHAMan (Smart HPC Applications Manager) performs the auto-tuning loop by
parametrizing the component, submitting the job through the Slurm workload
manager, and getting the corresponding execution time Using the combination
of the history (parametrization and execution time) to select the next most
appropriate parametrization until the stop criterion is reached.

4.1 Terminology

Throughout this section, we will use the following terms:

– Component: the configurable component which optimum parameters must
be found.

– Target value: the measurement that needs to be optimized.
– Parametric grid: the possible parametrization defined as (minimum, max-

imum, step value).
– Application: a program that can be run on the clusters’ nodes through

Slurm to be tuned.
– Budget: the maximum number of evaluations to find the optimum value.
– Experiment: A combination of a component, a target value, an application

and a parametrized black-box optimization algorithm that will output the
best parametrization for the application and the component.
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4.2 Optimization and Vizualization Procedure

The main features of SHAMan are the possibility to:

Declare a New Configurable Component and Register it for Later Optimization.
Running the command shaman-install with a YAML file describing a com-
ponent registers it to the application and makes it possible to be optimized.
This file must describe how the component is launched and declares its different
parameters and how they must be used to parametrize it. After the installation
process, the components are available for optimization in the launch menu.

Design and Launch an Experiment Through a Web Interface or Through a Com-
mand Line Interface. The main way is to launch the experiment through the
Web interface via the menu. The user has to configure the black-box by:

1. Writing an application according to Slurm sbatch format.
2. Selecting the component and the parametric grid through the radio buttons.
3. Configuring the optimization heuristic, chosen freely among available ones.

Resampling parametrization, stop criterion and pruning strategies can also
be activated.

4. Selecting a maximum number of iterations and the name of the experiment.

The optimization process will begin to run and its information will be available
in the exploring section of the Web application.

Another way to use SHAMan is to use it directly through a command line
interface. It allows more flexibility of the different features and requires the same
information as the Web interface.

Visualize Data and Results of Finished or Running Experiments. After the sub-
mission, the evolution of the running experiments can be visualized in real-time.
The optimization trajectory is available through a display of the different tested
parameters and the corresponding execution time, as well as the improvement
brought by the best parametrization. The other metadata of the experiment are
also available through side menus. Figure 3 and 4 show the tunes performance
without any aggregation, then with it if the noise reduction is enabled.

Fig. 3. Visualization of an optimization
trajectory

Fig. 4. Visualization of an optimiza-
tion trajectory when noise reduction is
enabled
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4.3 Software Architecture

The architecture of SHAMan relies on microservices, as can be seen in Fig. 5 and
detailed in [33]. It is composed of several services, which can each be deployed
independently:

– An optimization engine which performs the optimization tasks.
– A front-end Web application
– A back-end storage database
– A rest api enabling communications of all the services

Fig. 5. General architecture of the tuning framework

4.4 Implementation Choices

SHAMan uses Nuxt.js as a frontend framework. The optimization engine is writ-
ten in Python. The database relies on the NoSQL database management sys-
tem MongoDB. The message broker system uses Redis [17] as a queuing sys-
tem, manipulated with the ARQ Python library [1]. The API is developed in
Python, using the FastAPI framework. The framework is fully tested, can be
fully deployed as a stack of Docker containers [27]. The code is available on
Github [10] and thoroughly documented [3].

5 Use-Cases and Results

In some of our previous works, we have shown the efficiency of SHAMan on two
different use-cases belonging to I/O accelerators: a smart prefetching strategy
and a burst buffer [33,34]. To further prove the versatility of SHAMan, we tackle
another difficult to tune HPC component: MPI collectives. We begin this section
by summarizing the main results of our previous experiments, and then introduce
the new results provided by our experiment on MPI collectives.
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5.1 I/O Accelerators

I/O accelerators are software or hardware components which aim is to reduce the
increasing performance gap between compute nodes and storage nodes, which
can slow down I/O intensive applications. Indeed, on large supercomputers, the
many compute nodes performing reads or writes can stress the storage bay and
make the application wait while it performs its I/O, generating I/O bottlenecks.
This is especially true for HPC applications that periodically save their cur-
rent state (by performing checkpoints) which causes many writes during a short
timeframe. The link between the compute and the storage node can become sat-
urated, which slows down the application. To mitigate these problems, several
I/O accelerators have been developed over the years, and we focused specifically
with SHAMan on tuning two commercial implementations of I/O accelerators:
a pure software one called smart read optimizer [11] and a mix of software and
hardware one called smart burst buffer [2]. Because these I/O accelerators come
with many parameters, they are difficult to tune, and operate very differently
which make them good use-cases to demonstrate the versatility of SHAMan and
black-box optimization.

Fig. 6. Best values for DistOptim, AvgDist and the sum of both for every heuristic

For both I/O accelerators, we performed a comparative study of the impact of
each black-box optimization heuristic with SHAMan and showed that surrogate
models offer the best trade-off between optimization quality and stability of the
trajectory, and outperforms by far a random sampler.

As displayed in Fig. 6, we show that with a distance to the true minimum
inferior to 4% for every application, our auto-tuner exhibits good convergence
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properties. As we have found convergence rate inferior to 40 steps for reaching
5% of the optimal value, we have also demonstrated that the auto-tuner can
operate in a sparse production environment for expensive systems.

5.2 Tuning MPI Collectives

MPI is a standardized and portable message-passing standard designed to func-
tion on parallel computing architectures through many implementations as Open
MPI [7] and MPICH [5]. Its collective operations provide a standardized interface
for performing data movements within groups of processes and come with several
tunable parameters. The optimal configuration greatly depends on the size of
the transmitted message [30], as well as the architecture and the topology of the
target platform [42], and the default parametrization is not adapted for a wide
range of cases. In particular, the Open MPI [7] implementation features a modu-
lar architecture and the selection of modules along with their parametrization is
achieved through MCA parameters, which can be provided using either configu-
ration files, command-line arguments or environment variables. This implemen-
tation is the one we will be focusing on, by considering the subset of parameters
related to the coll tuned component that allow to dynamically set: (1) the
algorithm; (2) fan-in/fan-out; (3) the segment size. The main reason for
choosing these parameters is that they have been confirmed as having the most
impact in several previous studies [38].

The Importance of Tuning MPI Collectives. The importance of this tun-
ing challenge is well known across the MPI community and several studies
confirm and further develop the results of our own study: the optimal collec-
tive parametrization depends on many factors, such as the physical topology
of the system, the number of processes involved, the sizes of the message, as
well as the location of the root node [30,39]. An especially thorough analysis
of the performance gap between the default parametrization and the optimum
parametrization found by exhaustive search for the MPICH implementation is
available in [41], and the importance of choosing the right algorithm to perform
the collective operations is emphasized in [29]. Using parametrization adapted
to the message size and the collective is thus necessary to maximize system’s
performance. The easiest solution for tuning is to rely on brute force, i.e. test-
ing every single possible parametrization and running the benchmark with this
parametrization, but this can cause the tuning process to go up to several days
in time. Brute force is thus impractical on a production system, as it requires
too many computing resources and user time.

All these reasons show the relevance of using black-box optimization through
SHAMan: finding the optimal configuration of MPI collective is crucial for the
performance of the system as the default parametrization is unsuitable for many
communication problems, but exhaustive search is a very impractical way of
finding it.
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Experiment Plan. For the purpose of demonstrating the efficiency of SHAMan
in the case of MPI tuning, we have selected a subset of 4 blocking collectives to
tune amongst the most used ones in HPC applications [16,38], and to cover all
communication patterns (one-to-all, all-to-one, all-to-all): (1) Broadcast, (2)
Gather, (3) Reduce and (4) Allreduce.

The tuning is performed using the OSU MPI microbenchmark suite [8], which
provides tests for every collective operation. For each of the tuned collective and
each tested size, we use the corresponding benchmark in the suite. To ensure
stability and reduce the noise when collecting execution times, the OSU bench-
mark was parameterized to perform 200 warmup runs before performing the
actual test. The tuned message size range from 4 KB to 1 MB, with a multiplica-
tive step of 2. Two hardware configurations are selected using the 12 nodes of a
cluster, to emulate two of the most common types of process placements encoun-
tered in HPC applications: (1) One MPI process per node, for a total of 12
MPI processes, as is typical of hybrid applications relying on MPI for inter-node
communications and on OpenMP for their implicit, intra-node communications;
(2) One MPI process per core, for a total of 576 MPI processes, 48 MPI pro-
cesses per node, which is typical of pure, MPI-only applications which rely on
the MPI library for all their communications (inter-node and intra-node alike).
This results in a total of 160 SHAMan optimization experiments (4 collectives,
20 sizes and 2 different topologies). The performance metric for tuning is the
time elapsed by the benchmark for the selected size of operation, as output by
the OSU benchmark.

To provide a thorough analysis of the advantage of black-box optimization
compared to exhaustive search, the reference execution time is first computed
using the default parametrization which is run 100 times to account for possible
noise in the collected execution time. An exhaustive sampling of the parametric
space is then performed to select the parametrization with the minimal execution
time as the optimal one, which acts as the ground truth. This ground truth is
also run 100 times for noise mitigation.

SHAMan Parametrization. The tuning is then performed with SHAMan,
using Bayesian Optimization specifically configured for MPI. The initialization
plan is composed of 10 parametrization. The selected maximum number of itera-
tions is set to 150 and the stop criterion is improvement based: we choose to stop
the optimization process if the best execution time over the last 15 iterations is
less than 1% better than the currently found minimum. The best parametrization
found by the optimization process is considered to be the best parametrization
found by SHAMan and is also run one hundred times to account for noise.

Main Performance Gains

Improvement Compared to Default. The first important result is the gain brought
by using the auto-tuner rather than the default parametrization, which is rep-
resented in Fig. 7. Over all experiments, we find an average improvement of
48.4% (52.8% in median), using the best parametrization found with Bayesian
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Optimization. We find an average improvement of 38.42% (29% in median) for
experiments with one mpi process per node and of 58.9% (65.3% in median) when
using one mpi process per core, highlighting the efficiency of tuning the Open
MPI parametrization instead of simply relying on the default parametrization.

Fig. 7. Performance gain with Bayesian Optimization compared to the default
parametrization

The time gain brought by SHAMan varies depending on the tuned collective,
as the default parametrization is more adapted than others for some collectives.
It is the case for the allreduce collective when running one MPI process per
node, where the optimum parametrization provides a median improvement of
0.9% (1.8% on average). Other collectives have a default parametrization that
is not adapted at all. It is for example the case of the gather collective with one
MPI process per core, where we see an improvement of 91% in median and on
average. The improvement compared to the default parametrization is strongly
dependent on each evaluated parameter: message size, number of processes per
node or collectives and is difficult to predict. This highlights the importance
of tuning each configuration to get the best performance, and the need for an
auto-tuning method that can be used on every architecture.

Tuning Quality Compared to Exhaustive Sampling. The median difference in
elapsed time, along with the noise measurement, between the best parametriza-
tion found by SHAMan and the optimal parametrization found by exhaustive
search is represented in Table 1. Over all optimization experiments, the average
distance between the optimum and the result returned by Bayesian Optimization
is of 5.71 µs (0.04 in median) for an average noise of respectively 2.03 µs in mean
and 0.05 µs in median. This means that in median, the difference between using
the best parametrization of our tuner compared to the true best parametrization
is imperceptible from the noise. When looking at the relative difference between
the optimum and the results from Bayesian Optimization, we find an average
distance of 6% (0.7% in median) between the two.
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Table 1. Median difference in elapsed time and noise between best parametrization
found by Bayesian Optimization and optimal parametrization

Collective # of MPI processes Relative difference (%) ΔT (µs) Noise (µs)

Allreduce 12 0.51 0.43 0.04

576 15.28 1.05 3.81

Broadcast 12 4.79 0.32 0.26

576 2.35 0.32 0.18

Gather 12 0.74 0.04 0.01

576 0.00 0.02 0.00

Reduce 12 0.00 0.06 0.00

576 0.00 0.03 0.00

When looking at the different collectives and topologies, we find the difference
between the two optimal parametrizations to be inferior to the measured noise
for all collectives except for allreduce with 576 MPI processes. When looking at
each optimization problem separately, we find that for 105 optimization problems
out of 160, the distance of the performance returned by Bayesian Optimization
to the optimum is below the measured noise of the system. For the problems
where the difference between the results returned by the tuner and the optimum
cannot be explained by noise, we find a quite low average difference of 1.90 µs
(0.18 in median).

The noise difference between collectives is explained by multiple factors.
Gather and reduce show low noise due to their simple communication pattern
(all-to-one). On the opposite, the allreduce collective involves much more inter-
twined messages, which explains its higher noise and noise sensitivity. Broad-
cast’s higher noise is explained by the best performing algorithm found (k-nomial
tree) which, according to Subramoni et al. in [37], introduces some noise due the
imbalanced communication pattern.

Tuning Speed Compared to Exhaustive Sampling. The elapsed time required to
reach the optimum for the two tuning solutions and for each of the collectives
and configurations is reported in Table 2.

Table 2. Time to solution for each heuristic and each collective

Collective # of MPI processes Exhaustive search (minutes) SHAMan (minutes) Gain (%)

Allreduce 12 52.07 4.48 91.40

576 452.55 46.77 89.66

Bcast 12 744.10 23.65 96.82

576 5097.53 133.25 97.39

Gather 12 23.45 3.42 85.42

576 1040.07 77.41 92.56

Reduce 12 87.50 5.24 94.01

576 550.80 61.58 88.82



SHAMan: A Versatile Auto-tuning Framework 101

With a time gain of more than 85% for each collective, we see the benefit
of using guided search heuristics with SHAMan to explore the parametric space
instead of testing every parametrization with exhaustive sampling. The time
required to run all the 160 optimization experiments ranges from a total of
8048 min (approximately 134 h) using brute force to 355 min (approximately 6 h)
using Bayesian Optimization, resulting in a total speed-up of 95%. The speed-up
is relatively uniform across each collective and each topology.

Overall experiments, we demonstrate that using Bayesian Optimization, we
reach 94% of the average potential improvement, for a speed-up in tuning time of
95% on the overall tuning phase. Compared to default Open MPI parametriza-
tion, this leads to an average improvement of 48.4% in collective operation perfor-
mance. This confirms the accuracy of our solution for optimization and makes it
a satisfactory alternative to exhaustive search, especially when considering the
strong improvement it brings when compared to the default parametrization.
This study thus confirms the versatility of SHAMan and black-box optimization
for the tuning of a wide range of parametrizable components, and shows that
the scope of our work can be extended to many of tunable components within
the HPC ecosystem.

6 Conclusion

In this paper, we suggest an OpenSource auto-tuning framework, called SHAMan
(Smart HPC Application Manager) for tuning noisy and expensive systems,
which addresses some of the gaps in the tuning frameworks already present in
the literature. While some of our previous works already showed the strong
performance of SHAMan on I/O accelerators, we added another use-case to
further prove its universality, by tuning MPI collectives. When performing the
optimization of four MPI collective communication operations, on two different
hardware topologies and for 20 different message sizes, we demonstrate that using
Bayesian Optimization, we reach 94% of the average potential improvement,
for a speed-up in tuning time of 95% on the overall tuning phase. Compared
to default Open MPI parametrization, this leads to an average improvement
of 48.4% in collective operation performance. In the near future, we intend to
consider additional parameters than the topology and the message size to refine
our optimization. Also, we identified additional systems to tune beyond these
three cases, such as the MSR parameters of the SAP HANA database which will
further extend SHAMan’s scope. Regarding the improvement of the optimization
methods, we plan on investigating the behavior of the tuner when using pruning
strategies. Indeed, these pruning strategies cut off some runs and prevent us
from measuring the true performance corresponding to this parametrization.
We intend to apply survival analysis to deal with this “censored” data in order
to speed up even more SHAMan’s convergence speed.
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Abstract. A new cooperation-based metaheuristic is proposed for
searching gobal optima of functions. It is based on the assumption that
the dynamics of the objective function does not change significantly
between iterations. It relies on a local search process coupled with a
cooperative semi-local search process. Its performances are compared
against four other metaheuristics on unconstrained mono-objective opti-
mization problems. Results show that the proposed metaheuristic is able
to find the global minimum of the tested functions faster than the com-
pared methods while reducing the number of iterations and the number
of calls of the objective function.

Keywords: Local cooperation · Collective decision · Metaheuristic
optimization · Local search

1 Introduction

The simulation of systems is a powerful tool to understand their behaviors and
underline their advantages and limits. Several studies aim at reconstructing vir-
tual systems called digital twins to simulate and verify the behavior of specific
systems. Such systems can be used in mobility or natural disaster studies to
reproduce specific simulation conditions and understand the reasons of such phe-
nomena [4]. Building a digital twin that reproduces the exact behavior of a real
system is not an easy task. As real systems are generaly complex systems with
non-linear interdependencies among their parameters, finding the best modeling
functions and adapting in real-time their parameters to keep a simulation close
to the real behavior of the system is not trivial. Many studies have formalised
the calibration problem as an optimization problem where the parameters of the
modeling functions are tuned by optimizing an objective function: simulation
parameters become decision variables and relevent model outputs are integrated
into objective functions [2,8]. This implies the need for a fast optimization sys-
tem that is able to rapidly adapt to changes that may occur in the real system.
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Multiple optimization methods exist that could be used to solve this problem
but they present important drawbacks such as a tendency to converge towards
local optima or are too slow [6,11,14].

In this paper we propose a new metaheuristic local optimization method
named CoBOpti, which stands for Cooperation-Based Optimization. It is
based on an hypothesis of local continuity of the objective function, i.e. the
value of the objective function does not vary dramatically when the value of
decisions variables varies little. Compared to standard state of the art methods,
CoBOpti reaches optimal solutions while reducing the number of iterations and
objective function evaluation.

The main contributions of this paper are as follows:

– We introduce a new local optimization metaheuristic based on an
hypothesis of local continuity and cooperation. This hypothesis allows
to model the problem of searching for a global optimum as a cooperation
problem where a point determines the next point to explore by exploiting
the information of its neighbours.

– We experiment and compare our approach on unconstrained mono-objective
optimization problems with a single decision variable to demonstrate that the
proposed approach allows to reach a global optimum while mini-
mizing the number of evaluation of the objective function.

The paper is organised as follow: Sect. 2 discusses the limitations of existing
metaheuristics. Section 3 presents our approach and how it gives an answer to
these limitations. In Sect. 4, we introduce the results of our experimentation,
which is then discussed in Sect. 5 before concluding with limitations and suggest
further research.

2 Literature Review

Optimization problems are defined by [3] as finding a vector x̄∗
n = (x∗

1, ..., x
∗
n)

that optimizes an objective function

f̄k(x̄n) = (o1(x̄n), ..., ok(x̄n)) (1)

where x̄n = (x1, ..., xn) is a vector of n decision variables.
Many methods exist to solve optimization problems, each making some

assumptions on the nature of the problem. One category of such optimization
methods is called metaheuristics. [6] defines metaheuristics as methods that per-
form local and higher level search procedures that are capable of escaping local
optima. This definition notably includes methods that employ the notion of
neighborhood. The neighborhood of a solution s is the set of all solutions that
can be reached from s.

Metaheuristics are interesting for solving optimization problems as they are
designed to efficiently explore complex search spaces [6]. Sörensen et al. [12]
further state that the large majority of real-life optimization problems are more
easily solved by metaheuristics, hence our focus on these methods in this paper.
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Metaheuristics rely on two important notions: intensification and diversi-
fication. Intensification is a process through which portions of the search space
that seem “promising” are explored more thoroughly, i.e. in the neighborhood
of the best solutions found yet. Diversification, on the other hand, is a process
aimed at exploring unexplored parts of the search space in hopes to find better
solutions. It usually relies on a some form of memory of visited solutions [5].

There are numerous metaheuristics, each with their own hypotheses. As the
goal of our proposition is to be used to perform on-line calibration, it needs to
rely on fast algorithms and to be able to handle the set of visited solutions. The
presented methods are thus focused around local search and population-based
meta-heuristics.

Local search algorithms explore the search space by exploring the immedi-
ate neighborhood of the current solution s and selecting the neighbor solution
that has a lower objective value than s. In order to escape from local optima,
they feature some sort of hill-climbing process that allows degrading the objec-
tive value. Such methods include Simulated Annealing (SA), Generalized Sim-
ulated Annealing (GSA), Iterated Local Search, Guided Local Search, etc. [6].
The main advantage of these methods is their rapidity, but an important limi-
tation is their tendency to get stuck in local optima [11]. Somes types of local
search metaheuristics rely on some kind of memory of visited solutions to try
circumvent this limitation such as Tabu Search [6].

Another category of metaheuristics is the population-based algorithms.
These methods rely on a set of solutions, called the population. The search
space is explored by evaluating each solution and modifying them using a set of
simple rules. There are two sub-groups in this category: evolutionary and other
nature-inspired methods.

Evolutionary algorithms (EA) are iterative methods centered around the
notion of fitness. The fitness of a solution represents the quality of this solution
based on the objective function. During each iteration, called a generation, the
fitness of each solution is evaluated. Solutions that feature a high enough fitness
value are kept for the next generation, all other are discarded. New solutions are
generated by stochasticaly crossing over and modifying (mutating) the solutions
that were kept after the selection process. This category includes methods such
as Genetic Algorithms, Differential Evolution (DE) and Genetic Programming
[6,9]. Contrary to local search methods, EAs explore the search space more
thoroughly with bigger population sizes and thus are a lot less susceptible to get
stuck in local optima. However, they require more computing power and show
slower resolution times.

Other population-based methods behave differently from EAs. They still rely
on a set of solutions but draw inspiration from complex biological systems such as
bird flocking or ant colonies. They feature the same advantage as EAs, i.e. a more
thorough exploration of the search space than local search, but still suffer from
the same drawbacks of longer computation times and high computing power
requirements [6]. Some methods such as Particle Swarm Optimization (PSO)
also suffer from a tendency to converge towards local optima because of a poor
distribution of information in the population [14].
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In our method we propose to combine the speed of local search approaches
and the distribution of information of population-based methods. To achieve
this goal we borrow the notions of neighborhood and collective reasoning from
these methods. Based on the assumption that the dynamics of the objective
function do not change significantly between two very close points,
we propose a system that searches for a global optimum through the
collective reasoning of already visited solutions.

Local search and population-based metaheuristics were presented with some
of their limitations in the context of optimization for on-line calibration. The
next section describes our method, CoBOpti, which is evaluated in Sect. 4.

3 CoBOpti: Cooperation-Based Optimization

In this section, we introduce CoBOpti, a Cooperation-Based Optimization meta-
heurtistic. The method we propose combines the advantages of both local search
and population-based algorithms: the speed of the former and the information
distribution of the latter.

Section 3.1 describes the general principle of the approach by giving an
overview of the different search phases; Sect. 3.2 details the local search pro-
cess; Sect. 3.3 details the semi-local search process and how it enables getting
out of local minima; finally, Sect. 3.4 describes how points cooperate to solve
specific situations.

3.1 General Principle

The goal of CoBOpti is to iteratively explore the surface of an objective function
in order to reach a global optimum. During each iteration, the system has to
determine the next point to explore. A point pi is defined as a pair pi = (xi, oi)
where xi is the value of the single decision variable and oi is the value of the
objective function at xi. The succession of visited points is called a chain. The
algorithm is composed of 4 phases (Fig. 1).

The algorithm combines two different heursitics: a local one (phases 1, 2
and 3), which objective is to discover a local minimum, and semi-local one
(phase 4), which uses the set of local minimum already discovered to look for
a global minimum.

The goal of local search (phase 1) is to find a local minimum. Each itera-
tion t starts with a chain containing some already visited points p(t), p(t−1), etc.
Among all the points in the chain, the system choose two points to determine in
which direction it needs to go (phases 2 and 3). This process continues until
a local minimum has been found, i.e. the distance along the x axis between the
two points with the lowest objective value of the chain is less than εdist.

The objective of semi-local search is to explore the function towards a
global minimum. This process has to decide which point p(t + 1) to explore
based on already visited local minima (phase 4). Every time the semi-local
search has decided on which point to explore next, a new chain is created and
the local search continues from this new point.
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The search stops when a visited local minimum has an objective value less
than a predefined threshold εobj .

The notion of chains is important as it isolates clusters of points (black and
red dots in Fig. 1). It is not desirable that distant points interact during the
local search process because of potential higher discrepencies between the actual
function value and its estimation. Using chains implies that distant points cannot
be used together to compute linear approximations during local search and thus
mitigates potential errors. Several chains are created during the optimization
process.

Fig. 1. The search phases of CoBOpti: point selection, local search, higher level search

The following sections detail how points are selected and how p(t+1) is com-
puted. Section 3.2 describes how the local search process selects points to reach
a local minima; Sect. 3.3 describes how the system gets out of local minima and
searches for a global optimum; finally, Sect. 3.4 describes how points cooperate
to solve some difficult situations.

3.2 Local Search

The objective of local search is to follow the curve of the objective function to
find a local minimum. At each iteration t, the next point p(t + 1) to explore is
determined by computing linear approximations of the objective function using
two points of the current chain.

Therefore, at each iteration t, two points need to be selected among those in
the current chain. The first selected point is the one with the lowest objective



110 D. Vergnet et al.

value of the chain at time t, noted pmin. The second selected point is one of the
neighbors of pmin. Two points p1 and p2 of a chain are said to be neighbors if
they are immediately next to each other, i.e. there is no third point p3 between
them along the x axis. A point can have a maximum of two neighbors. For
example, in Fig. 1, points p1 and p2 are neighbors but points p2 and p4 are not.

As pmin is the point with the lowest objective value of its chain, it has either
one or two neighbors at any given time.

Phases 2 and 3 of Fig. 1 illustrate the first situation, where p(t) = pmin

(green point) has a single neighbor p(t− 1). The x component of the next point
p(t+1) is computed by a linear approximation of the objective function between
pmin = (xmin, omin) and its only neighbor p(t − 1) = pn = (xn, on):

x(t + 1) = xn +
−on(xmin − xn)

omin − on
(2)

This equation returns the x component of the point that would have an objective
value of 0 according to the linear approximation of the objective function.

To ensure that the initial assumption on the function’s dynamics stays true,
the next point cannot be farther than kdist times the distance between pmin and
pn. If it is the case, x(t+1) is set to xmin+kdist(xmin−xn). In our experiments,
kdist = 5 was used.

In the second situation, where pmin has two neighbors pl and ph, as pmin is
the point with the lowest known objective value, both neighbors have a higher
objective value. This implies that a local minimum is somewhere between pl and
ph. x(t + 1) is thus determined by:

x(t + 1) =
xmin + xn

2
(3)

where xn is the x component of either pl or ph alternatively. Figure 1 shows an
example of this situation (black points). The point p6 was computed this way,
using points p4 as pmin and p5 as its lowest neighbor.

It should be noted that the objective function value does not need to be
re-evaluated at the location of the selected neighbor as it is assumed that it has
not changed since it was first evaluated.

This whole process repeats until a local minimum is found. The point pmin

is considered to be a local minimum when the distance to one of its neighbors
is less than εdist.

3.3 Semi-local Search

The goal of the semi-local search is to find a global minimum. The way points are
selected is similar to what was described in the local search process but differs
in some key aspects.

In order to compute x component of the next point p(t + 1) using linear
approximations of the objective function, two points are selected: the latest
local minimum pmin1 = (xmin1, omin1) found by the local search process and



Cooperation-Based Search of Global Optima 111

one of its neighbors. The neighbors of a local minimum are the other adjacent
local minima. As with regular points described in Sect. 3.2, local minima have a
maximum of two neighbors.

The selected local minimum can have one or two neighbors. Table 1 describes
which neighbor is selected depending on the precise situation, where pl = (xl, ol)
(resp. ph = (xh, oh)) are neighbors of pmin1 with a lower (resp. higher) x value.

Table 1. Selected neighbor of pmin1 depending on the situation

Situation Selected neighbor

1 One neighbor pn pn

2 Two neighbors, ol < omin1 < oh pl

3 Two neighbors, ol > omin1 > oh ph

4 Two neighbors, ol < omin1 and omin1 > oh pl if ol < oh, otherwise ph

5 Two neighbors, ol > omin1 and omin1 < oh pl if ol < oh, otherwise ph

For situations 1, 2, 3 and 4, the next point x(t + 1) is computed using Eq. 2,
swapping pmin for pmin1 and p(t− 1) for the selected neighbor. Phase 4 of Fig. 1
illustrates this process for situation 1. In this diagram, there are two known local
minima, pmin1 and pmin2, the latter being the newly found one. The next point
p(t + 1) is estimated using a linear approximation between both local minima.
As with the local search, p(t + 1) cannot be farther than k|xmin1 − xn|, if it is
the case, the same operations are applied as described in Sect. 3.2.

In situation 5, as both neighbors pl and ph of pmin1 have a higher objective
value, a global minimum is probably between pl and ph. Equation 3 is used again
to determine the next point.

Once x(t+1) has been computed, the local search process resumes from this
new point with a new chain.

3.4 Cooperation Mechanisms

Sections 3.2 and 3.3 described the nominal behavior of CoBOpti. The system
may encounter a number of special situations during both local and semi-local
searches. This section presents cooperation rules to detect and solve them.

Case 1. During local search, when a new chain is created, either because it is the
first iteration or the semi-local search created a new one, there is a single point
inside the chain. This point thus has no neighbors to compute the next point
with. Hence, no linear approximation can be estimated and x(t + 1) is directly
chosen randomly among {xmin − δ, xmin + δ} where δ = 1

kprop
|xlow − xhigh| and

xlow (resp. xhigh) the lower (resp. higher) bounds of the definition domain of x.
In our experiment, kprop = 100 was used.

Case 2. During semi-local search, a similar situation may occur where there
is only one known local minimum. As there are no neighbors to make linear
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approximations with, a hill-climbing process is initiated to escape the local
minimum. This process relies on the two points of the latest chain that have the
lowest and highest x value, called extrema. The goal is to climb up the slopes
around the local minimum to find another slope of opposite direction.

The search focuses on the slope where the extremum with the lowest objective
value is. The next point is computed using Eq. 4 where ple = (xl

e, o
l
e) is the

extremum with the lowest objective value and phe = (xh
e , ohe ) is the other. pn =

(xn, on) is the neighbor of ple. This equation computes the x value of the next
point which would have an objective value equal to that of the highest extremum,
according to the linear approximation of the objective function between the
lowest extremum and its neighbor.

x(t + 1) = xl
e +

(ohe − ole)(xn − xl
e)

on − ole
(4)

At the next iteration, if the actual objective value is higher than ohe , the
process switches sides; if this is not the case, it continues as is. This process
is repeated until the actual objective value is lower than ole. The local search
process then resumes with a new chain.

During this hill-climbing phase, the distance |x(t+1)−xl
e| cannot be smaller

than a threshold δmin in order to prevent the process from slowing down too
much.

Case 3. It may happen that the local search process finds a local minimum
that was already discovered in previous iterations. In order to escape a potential
search loop, two decisions may occur. If a hill-climbing phase was previously
initiated at this local minimum, the next point x(t + 1) is computed again and
multiplied by a factor of 2, to explore twice as far and explore a new area. On
the contrary, if no hill-climbing phase was ever initiated at this local minimum,
one is started, in hopes to find a new adjacent valley.

Two local minima are considered to be identical if their distance along the x
axis is less than a threshold εsame.

In this section we presented our approach. It relies on the notion of chains of
points. We first presented a local search process on a chain that allows finding
local optima. When a local optimum is found, a semi-local search process allows
finding new regions of the search-space to explore. Cooperation mechanisms were
introduced to account for special situations, diversify the solutions and create
new chains.

In the next section we evaluate the performances of our method. We com-
pare it to four other local-search and population-based metaheuristics on uncon-
strained mono-objective optimization problems.

4 Experiments and Results

This section compares the performances of CoBOpti with four other methods
cited in Sect. 2: Simulated Annealing (SA), Generalized Simulated Annealing
(GSA), Differential Evolution (DE) and Particle Swarm Optimization (PSO).
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Section 4.1 presents the different test functions used to test the performances;
Sect. 4.2 describes the protocole for comparing the performances of CoBOpti
with other selected methods; Sect. 4.3 presents the results of the experiments;
finally, results are discussed in Sect. 5.

4.1 Test Functions

For the performance comparison experiments, four functions have been selected:
Gramacy and Lee (domain: [0.5, 2.5]), Ackley (parameters: d = 1, a = 20,
b = 0.2, c = 2π; domain: [−32, 32]), Rastrigin (parameter: d = 1; domain:
[−5.12, 5.12]) and Levy function (parameter: d = 1; domain: [−10, 10]). These
functions have been chosen because they feature many local minima, a single
global minimum, and a single parameter [1,7,10,13].

4.2 Methods Comparison

The performances of each approach (SA, GSA, DE and PSO) are compared
against CoBOpti’s. They were all implemented in Python 3.8. GSA and DE were
implemented using the scipy.optimize.dual annealing and scipy.optimize
.differential evolution functions, PSO was implemented with pyswarm.pso
package, and SA was a custom implementation. For GSA, DE and PSO, all
optional parameters excepts those related to bounds, initial state and maximum
number of iterations were let to their default value.

Control variables of CoBOpti are set as follows: εdist = 10−4 (local minimum
detection threshold), εsame = 0.01 (minimum distance between local minima),
δmin = 10−4 (minimum step size during hill climbing phase), and εobj = 5 · 10−3

(precision threshold for global minimum objective value).
For every method, except PSO, the initial value vinit for each decision variable

in a single run is selected by a Sobol Sequence. As values generated by this
sequence are all in the [0, 1] interval, they are adjusted to the variable’s domain
using the formula vinit = s · (dmax − dmin) + dmin where s is a value generated
by the sequence. We did not specify vinit values for PSO as the implementation
we used did not allow it.

Three metrics are defined: success rate, i.e. the ratio of executions that
found the global minimum, number of iterations, number of evaluations
of the objective function.

4.3 Results

Table 2 shows the success rate, mean number of iterations and function evalu-
ations over 200 executions for each method and function, with a maximum of
1000 iterations.

CoBOpti was able to find the global minimum for all four functions. It took
on average between 35 and 100 iterations to find the global minimum with a
similar number of objective function evaluations.
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The constant 1000 iterations for SA and GSA are explained by their stopping
criterion. These methods rely on the number of elapsed iterations to compute
probability distributions: the more iterations have passed, the less likely the algo-
rithm is to select a non-improving move. Once the allowed number of iterations
has passed, no more non-improving moves can be selected and the algorithm
stops. The visited point with the lowest objective value is then returned.

SA did not yield good results, except for Gramacy and Lee’s function with
nearly 100 % of success rate. It yielded very poor results for Ackley function
with only 2 %. These results are coherent with what was described in the review
(Sect. 2).

GSA yielded very good results with 100 % on all functions. The number of
objective function evaluations was two times higher than SA, around 2000.

DE’s success rate is a bit lower than other methods except for SA. However,
the mean number of iteration is quite low, staying between 8 and 50.

PSO was able to find the global minimum in all four cases with a low mean
number of iterations, between 20 and 50. However, the mean number of function
evaluations is higher than other methods, ranging from 2000 to more than 4500.

Table 2. Success rates, average number of iterations and objective function evaluations
of tested methods

Method Function Success rate # of iterations # of evaluations

CoBOpti G. & L. 100% 49.31 50.31

Ackley 100% 95.94 96.94

Rastrigin 100% 80.69 81.69

Levy 100% 35.3 36.3

SA G. & L. 99.5% 1000 1000

Ackley 2% 1000 1000

Rastrigin 10.5% 1000 1000

Levy 30% 1000 1000

GSA G. & L. 100% 1000 2035.58

Ackley 100% 1000 2124.43

Rastrigin 100% 1000 2039.97

Levy 100% 1000 2019.60

DE G. & L. 97.5% 8.71 154.54

Ackley 100% 49.62 801.63

Rastrigin 94% 30.91 481.06

Levy 100% 50.45 773.75

PSO G. & L. 100% 20.61 2008.70

Ackley 100% 46.92 4638.51

Rastrigin 100% 25.57 2505.57

Levy 100% 20.02 1951.32
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5 Analysis and Discussion

The initial assumption of continuity in function dynamics has been validated by
the experiments on several standard functions. CoBOpti showed better success
rates than SA and DE, and nearly as good as GSA and PSO. Although the
number of iterations of CoBOpti is comparable to that of DE and PSO, its
number of function evaluations is several orders of magnitude lower.

This low number of objective function evaluations can be attributed to the
fact that the objective function is evaluated only once per visited point. This
behavior stems from the initial assumption that states that the dynamics of the
objective function does not change significantly between two close points.

Execution times were not shown as differences between methods were not
significant. This is most likely due to the relatively low complexity of the selected
functions.

A sensitivity analysis should be done to test the influence of kdist and kprop
on CoBOpti’s performances.

CoBOpti was only tested on mono-objective optimization problems with a
single decision variable. Further research is needed to generalize this approach
to multi-objective global optimization problems with multiple decision variables.
The core principle should stay similar to what was presented in this paper. New
cooperation mechanisms should be added to select which objective to minimize
and which decision variables to tune at each cycle.

Other experiments could be conducted with other complex functions. As real-
world applications are subject to noisy data, resilience to such noise has to be
tested.

6 Conclusion

In this paper, CoBOpti, a new metaheuristic for global optimization, was pre-
sented. It is based on a hypothesis of local continuity of the dynamics of the
objective function. CoBOpti explores the search space by relying on the cooper-
ation of visited solutions based on this hypothesis.

This paper focuses on mono-objective global optimization problems with a
single decision variable. Experiments showed that CoBOpti needs less objective
function evaluations than other common metaheurstic methods while maintain-
ing similar or better success rates on 1D-functions.

CoBOpti is a promising proposition for use in on-line calibration. Indeed,
its low number of objective function evaluations would be useful in the context
of on-line calibration of complex simulation models with computationally inten-
sive objective functions. This property could help reduce the time required to
calibrate these kinds of models.
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Abstract. Simulation-optimization is instrumental to solve stochas-
tic problems with complexity. Over the past half-century, simulation-
optimization methods have progressed theoretically and methodologi-
cally across different disciplines. The majority of commercial simulation
packages - to some degree - offer an optimizer that allows decision-
makers to conveniently determine an optimal or near-optimal system
design. With the latest advancements in simulation techniques, such
as data-driven modeling and Digital Twins, optimizer platforms need a
redesign to include new capabilities. This paper proposes a Data-driven
Simulation-Optimization (DSO) platform to narrow this gap. By con-
sidering data-tables as a decision variable (control), DSO can systemati-
cally generate new tables, run experiments, and determine the best table
entries to optimize the model. To implement DSO, three software pack-
ages (MATLAB, Simio, and MS Excel) are integrated via a customized
coded interface, called Simio-API. The applicability of this Simulation-
optimization tool is tested in two experimental settings to evaluate its
effectiveness and provide some insights for future extensions. The DSO
initial results are promising and should stimulate further research in
academia and industry.

Keywords: Data-generated modeling · Digital twins · Simheuristics ·
Intelligent simulation · Simio · Data driven models · Industrial 4.0

1 Introduction

One of the major goals of using simulation modeling is to obtain the ideal config-
uration of a system. This is achievable by integrating the simulation model with
an optimization module. In this approach, the optimizer explores the solution
space in order to find the best input values to optimize the model design and its
performance measures. A general algebraic form of the simulation optimization
(SO) problem can be defined as,
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min
x,y,v

Ev[f(x, y, v)] (1)

subject to: Ev[g(x, y, v)] � 0 (2)
h (x, y) � 0 (3)
xl < x < xu (4)
yl < y < yu (5)

x ∈ R
n, y ∈ D

m (6)

where Eq. (1) refers to a real-valued objective function f evaluation or the model
output, which without loss of generality, is minimized. The performance mea-
sure of the model is calculated based on the expected output value with respect
to input variables. Discrete and continuous input parameters of the simulation
model are defined by x and y, respectively. Vector v is the realization of the
associated random variables in the model. Equation (2) refers to stochastic con-
straints where g is a real vector-valued function of stochastic constraints of the
model to account for uncertainty. Equation (3) represents a real vector-valued
for deterministic constraints h that are not affected by the uncertain parameters.
Equations (4) and (5) lower and upper boundaries for discrete and continuous
input parameters. Equations (6) defines real and integer decision variables.

The above-mentioned formulation is general enough to represent all kinds of
SO problems. Choosing the appropriate simulation and optimization design is
crucial for practical applications and highly depends on the problem characteris-
tics [1]. Commercial simulation software packages often use provably convergent
algorithms proposed by the research community with metaheuristics to help
their users deploy SO for their models [2]. In order to use these optimization
algorithms embodied in simulation packages, a user needs to create the prelimi-
nary design of the optimization problem. This design includes simulation inputs
(controls), the objective functions (responses), and constraints. The optimizer
explores a series of simulation configurations by changing the model controls and
tries to obtain the optimum or close-to-optimum set of input parameters.

1.1 Research Motivation

Nowadays, using data-table inputs is very essential in developing Discrete-event
Simulation (DES) models with large amounts of data. Using data-tables makes
simulation model development, execution, and experimentation efficient and easy
to implement. Instead of defining an abundant number of parameters and vari-
ables, all required data for the simulation modeling can be stored in a data-table
format. The data-table values can be manually entered by the user or bound to
a data structure framework such as MS Excel, databases, or Enterprise Resource
Planning (ERP) systems. This feature provides a highly flexible approach to han-
dling large data inputs for modeling needs. Data-tables could efficiently include
any type of model’s information with a large number of entries. This could
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include entities’ information (e.g. entity types, arrival times, processing time(s),
sequence and priorities, etc.), resources’ data (e.g. schedules, maintenance plans,
locations on the layout, etc.), or even transportation networks. Based on the new
advancement in DES commercial packages, these data can be accessed sequen-
tially, randomly, directly, and even automatically [3]. This emphasizes the impor-
tance of using data-tables with the simulation model creation and experimental
analysis.

1.2 Novelty and Main Contributions of the Paper

Although enhancing a simulation model with data-table inputs simplifies the
model development, there is not a trivial way to optimize the simulation models
based on data-table inputs. Existing commercial SO tools are designed to include
a limited number of numerical controls (binary, integer, or real) for optimization
purposes and are incapable of including data-table inputs to the optimization
process. This becomes more challenging when data-tables are non-numerical, e.g.
categorical, Date/Time, etc. Therefore, this paper aims to remedy this lack and
introduce Data-Table Simulation-Optimization (DSO) platform.

This platform that allows simulation users to optimize the model’s perfor-
mance by deploying simulation experiments with respect to data-table inputs
with no data format restrictions. For instance, a user can optimize “Patient’s
Arrival Table” (Data/Time format) in a healthcare system, “Product Mix
Table” (categorical format) in a manufacturing setting, or “Destinations/Nodes
Sequence Table” (integer format) for a set of transporters/vehicles in a supply
chain network. This platform benefits simulation model extensibility, scenario
creation, and experiment repeatability. So, the original form of the SO problem
can be modified as follows:

min
x,y,t,v

Ev[f(x, y, t, v)] (7)

subject to: Ev[g(x, y, t, v)] � 0 (8)
h (x, y, t) � 0 (9)
xl < x < xu (10)
yl < y < yu (11)

x ∈ R
n, y ∈ D

m (12)
t ∈ T (13)

where Eqs. 7–11 are equivalent of Eqs. 1–5. The only difference is adding a new
term t to represent data-table inputs used towards simulation optimization. The
values stored in the table could have any format and structure, where all of these
formats are represented by T (Eq. 13). The proposed DSO platform introduces
the following capabilities:

– Data-driven: the ability to include data-table inputs as a decision variable
(control) in the optimization process. The optimizer automatically generates
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different values across the entire table, and gradually evolves its values to
optimality.

– Generalized: the ability to handle multiple data types for optimization pur-
poses. This includes but not limited to dates (e.g. order dates, dues dates, lead
times), strings (e.g. dispatching rules name), numeric (e.g. resource capaci-
ties, order quantities, entity priority), objects list (e.g. list of nodes, list of
tasks, list of transporters).

– Scalable: optimize a large set of parameters simultaneously. For instance,
to optimize priority values of 100 jobs with 2 servers, the existing solu-
tion approaches require an exhaustive list of parameters (in this cases
(100)(2) = 200) which is which is neither practical nor scalable. By consid-
ering the table as one-single input, DSO reduces the need of defining a large
number of individual parameters. This makes the optimization process scal-
able, hassle free, and easy to implement.

– Real-time: leveraging data-tables enables the simulation model to be con-
nected with a stream of data extracted from ERP systems. This allows DSO
to be more aware of the changes in the real system and provide dynamic and
reliable results.

1.3 Organization and Structure of the Paper

The rest of this paper is organized as follows. Section 2 provides a brief intro-
duction of SO and highlights the motivation of this work. In Sect. 3, the DSO
platform is explained in detail and its implementation aspects are discussed. To
demonstrate the applicability of the proposed framework, two experiments are
designed and analyzed in Sect. 4. This work is wrapped up in Sect. 5, and future
work directions are presented in the end.

2 Literature Review and Background

The desirability of seeking better solutions is the main driver for developing SO
techniques. As a definition, SO is a systematic search process to find the best
configuration of a stochastic system in order to optimize objective function(s).
This search needs to be efficient to minimize the resources spent while max-
imizing the information obtained in a simulation experiment [4]. With a long
and illustrious history, SO is arguably the ultimate aim of most simulationists
[5]. With a huge advancement in both research and practice, SO is considered
as one of the main streams of simulation studies and has received considerable
attention from both simulation researchers and practitioners [6]. Many studies
applied SO to address problems in healthcare [7–9], manufacturing [10–12], and
supply chain [13–16].

Nowadays, SO is a vibrant field and various sub-disciplines are evolved
from different communities such as systems and control, statistics and design-
of-experiments, math programming, and even computer science [5]. With the
advancements in the SO literature, many of the simulation vendors provide some
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sort of automatic experimental generators or optimization tools. Based on a sur-
vey conducted by [17], 40 out of 55 software packages are featured with SO tools.
Most of these SO tools such as OptQuest [18] and SimRunner [19] are designed
based on the Simheuristics structure. In Simheuristics, a Metaheuristic algo-
rithm is coupled with the simulation environment [20] to perform an iterative
search through parameter values to obtain improved responses. These tools do
not offer guarantees of optimality, but the provided solutions are near-to-optimal
and realistic.

Almost in all the existing SO tools, the decision variables are restricted
to numerical parameters without considering other important elements of the
model. For instance, in a healthcare system, one can easily evaluate a hospital
model based on different numbers of resources (i.e. physicians, nurses, beds, etc.)
and determine the best numeric combination of these values. However, within the
same model, it is not trivial to systematically change the layout of the hospital,
the schedule of physicians/nurses, or even individual patients’ arrival times. To
evaluate each of the above-mentioned scenarios, a tremendous amount of effort
is required to manually make changes and customize the simulation model. The
same concept relates to a manufacturing setting. For example, finding the best
number of workers, transporters, servers, etc. is easily attainable using the exist-
ing commercial or non-commercial SO tools, while optimizing workers’ schedules,
transporters’ network, and servers’ location (layouts) is not a straightforward
task.

The proposed DSO in this article is a perfect alternative in which numerical
and data-table inputs can be optimized simultaneously. This platform is general
enough to include any type of table entries with multiple data formats. Therefore,
DSO is a promising SO framework and can introduce a significant opportunity
for the simulation community to solve problems efficiently on a larger scale.

3 The Proposed DSO Platform

To obtain a practical and ideal DSO model, an integrated framework is devel-
oped using three modules, namely (i) optimization, (ii) simulation, and (iii) data
exchange. As illustrated in Fig. 1, both simulation and optimization modules are
bound to an external data source. In this iterative scheme, the optimization mod-
ule provides a new solution and updates the data-table input(s) in each iteration,
and then, the simulation module runs the model based on the newly provided
data settings. Using this new framework, users can easily build a simulation
model with data-tables and optimize it in an efficient manner.

The main goal is to make this framework general enough to be used in
any simulation setting with different applications. To implement the proposed
DSO framework, three software packages are linked together. The Optimization
Module is deployed in MATLAB, and the Simulation Module is designed in
Simio. These two modules are linked together via MS Excel for data-table input
exchange.

MATLAB is a powerful tool and is adequate for addressing heavy comput-
ing needs such as optimization problems. MATLAB can be easily linked with
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Fig. 1. The proposed DSO platform structure.

external software for advanced calculations and its programmable environment
allows users to design and customize their algorithms. It has enhanced optimiza-
tion capabilities and allows its user to choose between the existing optimization
libraries or their developed algorithms. As a result, the applied optimization
algorithm in this work is coded in MATLAB.

Simulation models often require large amounts of data to define different
elements of the model such as entities, objects, networks, schedules, etc. Simio
can represent data in simple tables and allows users to match the data schema
for the manufacturing data (e.g. an ERP system) [21]. This simulation software
is flexible enough to model complex systems with different operational needs.
Another major benefit of Simio is its API capability which helps developers to
extend Simio’s access to external software packages. By taking advantage of this
feature, a customized API is coded in C# to assist with the TDSO idea. This
API connects MATLAB with Simio and provides a scheme to exchange data
between the two. This enables users to connect Simio with other programming
languages such as Python, R, or Julia.

The third component of this framework is MS Excel which is compatible
with both MATLAB and Simio. This Data Exchange Module is the central
piece of the framework and facilitates the data transfer between simulation and
optimization packages. In Simio, data-tables can be bound to MS Excel and be
accessed sequentially, randomly, directly, and even automatically. This important
feature makes the development of DSO a feasible and effective intervention. A
schematic illustration of DSO is shown in Figure 2 and its pseudocode is provided
in Algorithm 1.
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Fig. 2. Implementation components of the DTSO framework using MATLAB, Simio,
and Excel.

Algorithm 1: Data-driven Simulation Optimization (DSO)
Data: Define the simulation model parameters: x ∈ R

n, y ∈ D
m

Data: Define the simulation model data-table inputs t ∈ T

initialization;
while not the end of optimization algorithm do

Generate a new data-table solution
Update data with the new data-table solution
Trigger the simulation model and run experiments
for r ← 1 to MaxReplications do

Replicate the simulation model
Calculate the expected value of simulation responses
Ev[f(x, y, t, v)]
Update objective function values

Result: Optimal/near-to-optimal data-table input

4 Experimental Analysis: DSO for Job Scheduling
and Sequencing

Using data-tables can significantly facilitate simulation modeling development,
execution, and improvement. Data can be imported, exported, and even bound
to external resources. While reading and writing disk files interactively during
a run can reduce the execution speed, tables hold their data in memory and so
execute very quickly [22]. Applying DSO can harness the advantages of data-
tables and place more emphasis on their use. To reveal some insights into the
present and future works, this section demonstrates the applicability of DSO in
two experimental settings.

To maintain the focus of the paper on the DSO advantages, the following
experiments in this section introduce typical manufacturing settings with nom-
inal operations. However, without loss of generality, DSO can be utilized in
any simulation models in Simio with different levels of complexities. Also, the
applied optimization algorithm is Particle Swarm Optimization (PSO) which is
manually coded in MATLAB to optimize data-table entries. Again, this does
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not limit the applicability of DSO, and different users can leverage a variety of
optimization tools and algorithms to solve their problems. These experiments
are discussed as follows. To maintain the paper’s flow and readability, details of
PSO, its operations, and pseudocode are provided in Appendix A.

4.1 Experiment 1: Job Scheduling with DSO

This study considers a flow shop model where 50 jobs (entities) are processed
sequentially by two (2) servers. This model includes three (3) types of jobs that
randomly arrive in the system in batches of five (5). The model assumptions are:

– All machines are ready to be scheduled in time zero.
– Preemption of operations of each job is not allowed.
– Different job types have different distributions for processing time and due

dates.
– Setup time is job dependent (setup time varies from one job type to another

on each server.)
– Each machine can process only one operation at a time.

Figure 3-a depicts the simulation environment where the flow shop model
is developed based on the assumptions provided above. This model has two
objective functions: i) minimizing the average Time In the System (TIS), and
ii) minimizing the Total Tardiness Cost (TTC) of all jobs. The goal is to find
the best prioritization of jobs in both servers in such a way that all objective
functions are optimized. This model is simulated in Simio and a data-table is
created to implement its operational logic.

Fig. 3. Job Scheduling simulation model and the data-table input structure.

Figure 3-b depicts a snapshot of the data-table entry which stores entities’
information such as arrival time, entity type, and priority numbers in Servers 1
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and 2. The highlighted columns (Sr1Priority and Sr2Priority) indicate the prior-
ity of jobs on each server. This Optimization Module (i.e. PSO algorithm) in DSO
treats this table as a decision variable (control) and improves its entries sequen-
tially until the desired solution is obtained. In every iteration, the optimization
module in DSO changes job priorities (values in Sr1Priority and Sr2Priority
columns). Then, the simulation is triggered to simulate the model based on
new data-table entries and runs replications to calculate the expected value of
objective functions. These results are transferred to the Optimization Module
to generate new solutions. This cycle repeats until the stopping criteria (which
are usually set by the user) are met.

To analyze the performance of DSO, its results are compared with two heuris-
tic methods available in the literature for solving flow shop scheduling.

– Heuristic 1- SPT: Shortest Processing Time or SPT has shown superior per-
formance for job scheduling in many research investigations [23]. By ranking
jobs based on the ascending order of their processing times, SPT minimizes
the total completion time.

– Heuristic 2- EDD: The second heuristic is EDD (Earliest Due Date) which
arranges job orders to minimize the total tardiness cost of jobs [24].

The applied PSO algorithm in DSO uses a weighted average of both objective
functions to solve the problem (Eq. 14).

min
x,y,t,v

w1 × Ev [TIS (x, y, t, v)] + w2 × Ev [TTC (x, y, t, v)] (14)

The performance of the calculated optimal solution provided by DSO is com-
pared with heuristic results provided by SPT and EDD. Each of these solutions is
replicated 200 times and the ultimate results are plotted in Fig. 4. These results
suggest the superiority of DSO over SPT and EDD in terms of both objective
functions (time in the system and tardiness cost). With a smooth and straight-
forward implementation, DSO could efficiently improve the prioritization of jobs
and provide competitive results.

Insight 1: The applicability of DSO can be easily extended to a flow shop
model with more servers. To include a new server in the simulation model, a
new column needs to be added to the data-table to represent jobs’ priority on
that server (i.e. Sr3Priorirty). In the optimization algorithm, the size of decision
variables (nV ar) directly depends on the number of jobs (n) and the number
of servers m in the model (nV ar = n × m). So, adding a new server or more
jobs just needs a slight change in the optimization algorithm and updating nV ar
parameter.

4.2 Experiment 2: Job Sequencing with DSO

The second experiments demonstrate the applicability of DSO in solving a job
sequencing problem in a multi-stage flow shop system (known as assembly flow
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Fig. 4. Experimental results of the flow shop scheduling study.

shop). In this case, 90 jobs are released to the floor with 3 stages and 5 servers
in each. The model assumptions are:

– Each machine can process only one operation at a time.
– Assembly or post-processing stages begin readily after all previous stage oper-

ations are completed.
– All machines are ready to be scheduled in time zero.
– Preemption of operations of each job is not allowed.
– The setup time is zero.

Figure 5 depicts the simulation environment where this assembly shop is
developed. Objective functions are to minimize both i) average Time In the
System (TIS), and ii) Total Tardiness Cost (TTC) of all jobs. In all stages, the
processing time of jobs is set to normal(20, 2) min, and due dates are uniformly
distributed using uniform(50, 250) min. There are five (5) homogenous servers

Fig. 5. Multi-stage flow shop system developed in Simio.
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in each stage and each job has to follow a sequence of tasks to complete the
assembly.

The goal is to find the best sequence for each job in each stage. In other
words, the ideal solution should determine which server is selected in each stage
to process a given job. To deploy this, a data-table is utilized in the simulation
model to set up the sequencing logic. Figure 6 shows a screenshot of this table
where each row represents a given job arrival time and its sequence in different
stages. Three highlighted columns (Stage1Sr, Stage2Sr, and Stage3Sr) indicate
the server IDs (1 to 5) that each job has to go through sequentially from stage
1 to 3 before leaving the system.

Fig. 6. Data-table input structure for the job sequencing problem.

To optimize this problem, the DSO platform explores different combinations
of sequences for all jobs and provides a solution that minimizes objective func-
tions. Two heuristics rules are considered to evaluate the quality of DSO results.
These heuristics are:

– Heuristic 1- Cyclic: In each stage, this rule selects servers cyclically to
carry out new jobs.

– Heuristic 2- LLS: This routing rule, selects a server with the lowest service
load (LLS) upon a new job arrival to the stage.

The obtained solutions of these three approaches are simulated with 200 repli-
cations to estimate the expected value of objective functions, TIS, and TTC. The
jitter-boxplots of these results are presented in Fig. 7, where DSO performance
is adequately better than heuristics. The optimization algorithm in DSO could
find a solution with higher quality and less variability. The significance of this
difference is tested using one-way ANOVA for TIS and TTC objectives (Table 1
and Table 2). The p-value of both tests is low (p < 0.001), which appears that
DSO’s superiority is statistically significant.



128 M. Dehghanimohammadabadi

Fig. 7. Data-table input structure for the job sequencing problem.

Table 1. One-way ANOVA results for the average time in the system results.

Source of variation SS df MS F P-value F critical

Between groups 76580.58 2 38290.29 474.10 5.2E−124 3.010815

Within groups 48215.91 597 80.76

Total 124796.5 599

Table 2. One-way ANOVA results for the total tardiness cost.

Source of variation SS df MS F P-value F critical

Between groups 2.63E+08 2 1.32E+08 309.3843 6.31E−93 3.010815

Within groups 2.54E+08 597 425708.2

Total 5.18E+08 599

Insight 2: In this experiment, DSO solved the problem of sequencing for 90 jobs
in 3 stages (nV ar = 270). To solve this problem, OptQuest requires at least 180
controls (properties) to find the solution; whereas, DSO takes the data-table as
a decision variable and evolves its values until the desired solution is achieved.

5 Conclusion and Future Works

For more than fifty years, simulation has been extensively applied by researchers
and developers. Traditionally, it is appealing to equip simulation with optimiza-
tion to tackle stochasticity and the complexity of problems. Despite tremen-
dous advancements in SO techniques, designing well-established models is still
demanding by today’s standards [1]. In addition, simulation software packages
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fail to incorporate human decision-making analysis or highly computational sup-
port tools [25].

This article introduced an innovative interaction between simulation and
optimization to carry out the decision-making process based on table-table
inputs. Unlike the existing commercial software packages, the proposed DSO
framework can efficiently solve problems with a large set of parameters and
data-tables. By developing an application programming interface, called Simio-
API, this framework connects three modules, simulation, optimization, and data
exchange. This integration can run simulation experiments with multiple data-
table settings, evolve their values, and achieve satisfactory results.

The usefulness of the proposed framework is demonstrated in two experimen-
tal scenarios, 1) job scheduling in a flow shop system, and 2) Job sequencing in a
multi-stage flow shop system. These experiments demonstrated DSO’s applica-
bility and efficiency. More importantly, some insights are provided to show how
the new model can be implemented and extended to new works.

Introducing DSO offers new opportunities to the community and paves a new
avenue of research for theory and practice. Nowadays, many simulation software
developers value data-driven models. With the emergence of new simulation
techniques such as data-generated modeling and Digital Twins, the usefulness of
DSO can become more obvious. The concept of data-generated modeling is based
on creating a simulation model automatically using data-tables. This populates
a complete simulation model from scratch by adding objects to the environment
and mapping them to the tables. These tables can include all of the modeling
needs such as resources’ information, entities, networks, transports, schedules,
tasks, etc. Lately, Simio announced a newly added feature to its software to
build data-generated models [26]. By leveraging DSO, one can optimize different
components of the model systematically without the need for manual changes.
For instance, optimizing system layouts (i.e. hospitals, manufacturing systems,
etc.) are traditionally limited to a few scenarios suggested by layout designers.
By taking advantage of data-generated modeling in Simio and DSO, one can
easily change the layout, make simulation models instantly, and experiment with
an abundance of layouts. As shown in Fig. 8-a, this requires defining object
coordinates as decision variables (XLocation and ZLocation columns) for DSO
and let it solve the problem. Another example could be optimizing manufacturing
orders where orders’ release date and priority need to be optimized (Fig. 8-b).

Another future research direction is to explore other optimization techniques
in the model. To keep the focus of the paper on the platform, just one algo-
rithm (PSO) is used in experiments. However, there are plenty of SO techniques
that can be borrowed and tested within DSO design. Multiple metaheuristic
algorithms can be utilized to develop data-table Simheuristics and solve the
problems. By increasing the size of data-tables (and decision variables), neural
networks can be added to the optimizer and make the model computationally
efficient by approximating objective functions.



130 M. Dehghanimohammadabadi

Fig. 8. Examples of data-generated modeling in Simio.

A Appendix A

Particle Swarm Optimization or PSO is a population-based Metaheuristic algo-
rithm developed by Kennedy and Eberhart in 1995 [27] PSO is a swarm-based
algorithm and by moving particles in a specific exploration field [28]. Due to its
effective balancing of exploration and exploitation [29], PSO has been widely
used in the development of Simheuristic models and in solving SO problems.
Recent examples include using PSO to deal with stochastic models in supply
chain management [30], healthcare systems [31], and manufacturing [32]. The
general pseudocode of PSO is shown in Algorithm 2.

Algorithm 2: Pseudo-code of Particle Swarm Optimization (PSO)
1: // Initialization � Generate particles

for i = 1 : Ns do
2:

Initialize si(t = 0)
3: Initialize vi(t = 0)
4: P best

i ← si

5: // PSO loop
6: Gbest = 0 for t = 1 : Maxit do

for i = 1 : Ns do
7:

vi(t + 1) = wvi(t) + c1r1[P best
i − si(t)] + c2r2[Gbest − si(t)]

8: si(t + 1) ← si(t) + vi(t + 1)
9: Evaluate fitnesssi(t + 1)

if fitness(P best
i ) < fitness(si(t + 1)) then

10:
P best
i ← si(t + 1) � Update Personal best if fitness(Gbest) < fitness(P best

i )
then

11:
Gbest ← P best

i � Update Global best
12: t ← t + 1
Notations:
Ns : Swarm size, i = 1, 2, ..., Ns : Particles index
si : Solution (particle), vi : Velocity, w : Inertia weight
P best
i : Personal best solution, c1 : Personal learning factor

Gbest Global best, c2 : Global learning factor
r1, r2 : Random numbers ∼ u(0, 1)

MAXit : Max number of iterations, t : 0, 1, 2, ..., MAXit : Iteration index
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Abstract. Attended home delivery services like online grocery shopping ser-
vices require the attendance of the customers during the delivery. Therefore, the
Vehicle Routing Problem with Time Windows occurs, which aims to find an opti-
mal schedule for a fleet of vehicles to deliver goods to customers. In this work,
we propose three sweep algorithms, which account for the family of cluster-first,
route-second methods, to solve the Vehicle Routing Problem with Time Win-
dows. In the first step, the customers are split into subsets such that each set con-
tains as many as possible customers that can be served within one tour, e.g., sup-
plied with one vehicle. The second step computes optimal tours for all assigned
clusters. In our application, the time windows follow no special structure, and
hence, may overlap or include each other. Further, time windows of different
lengths occur. This gives additional freedom to the company during the planning
process, and hence, allows to offer discounted delivery rates to customers who
tolerate longer delivery time windows. Our sweep algorithms differ in the clus-
tering step. We suggest a variant based on the standard sweep algorithm and two
variants focusing on time window length and capacity of vehicles. In the routing
step, a Mixed-Integer Linear Program is utilized to obtain the optimal solution
for each cluster. The paper is concluded by a computational study that compares
the performance of the three variants. It shows that our approach can handle 1000
customers within a reasonable amount of time.

Keywords: Vehicle routing · Time windows · Sweep algorithm · Attended
home delivery · Transportation · Logistics

1 Introduction

The popularity of Attended Home Delivery (AHD) services, e.g., online grocery shop-
ping services, increased within the last years. Especially, due to the current Covid-19
pandemic, this trend is continuing. For example in Western Europe, see [11], the share
of online buyers is predicted to increase from 67% in 2020 to 75% in 2025. There-
fore, the online share of groceries changed from 3.4% in 2019 to 5.3% in 2020 and is
expected to reach 12.6% by 2025.

All AHD services have in common that the customer must attend the delivery of the
goods or the provision of the booked service. To manage this in an effective manner,
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customers can typically choose among several time windows during which he or she is
available to receive the ordered goods or to supervise the service provision. We consider
an application where different time window lengths occur. This allows an operator of
a delivery service to offer discounted delivery rates to customers who tolerate longer
delivery time windows as such offers are easier to include within a tour. Typically,
the company aims to minimize the overall delivery costs and therefore, a variant of
the Vehicle Routing Problem (VRP), the so-called Vehicle Routing Problem with Time
Windows (VRPTW), occurs. A comprehensive introduction to the VRP can be found
in [13]. The authors give an overview of different VRP types with the help of applica-
tions, case studies, heuristics, and integer programming approaches. Another overview
and classification of recent literature considering varieties of the Vehicle Routing Prob-
lem can be found in [2]. For an overview of exact methods for the VRPTW we refer
to [1]. Heuristic methods are reviewed in [3] and [4], and a compact review of exact and
heuristic solving approaches for the VRPTW can be found in [6].

Due to the fact that in AHD services mostly a large number of customers are deliv-
ered, solving this problem to optimality within reasonable time is rarely possible. In
practice, heuristics are applied to produce delivery schedules of high quality within a
short amount of time. A common approach is the cluster-first, route-second method. In
the first step, the customers are split into subsets, so-called clusters, such that each set
contains as many as possible customers that can be served within one tour, e.g., sup-
plied with one vehicle. In the second step, an optimal tour for each cluster is computed.
[7] originally introduced the Sweep Algorithm for the VRP. Using the analogy of clock
hands, the depot is placed at the center of the plane. A clock hand then sweeps across
the plane. The angle of the hand increases while a customer is inserted in the current
cluster, if a feasible insertion is possible, or otherwise within a new cluster. A recent
study, see [5], applies the Sweep Algorithm for a VRP occurring in an install and main-
tenance service for smart meter devices. In [12], the sweep algorithm only considers
time windows when computing the routes for each vehicle but not during the clustering
step. [8] consider time windows already in the clustering step. However, they make use
of a special time window structure, where the time windows are non-overlapping.

In this work, we propose the following three variants of performing the clustering
step of a sweep algorithm for a VRPTW:

– a variant based on the standard sweep algorithm [7],
– a variant that takes the length of the delivery time windows into account, and
– a variant considering both the lengths of the delivery time windows and the vehicles’

capacities.

We consider time windows with no special structure, and hence, they can overlap
or contain each other. A Mixed-Integer Linear Program (MILP), which is stated in [9],
is applied for deciding the feasibility of a cluster of customers, and for obtaining the
optimal tour for each cluster. Considering non-overlapping time-windows, like in [8],
would lead to a more efficient MILP formulation (see [9] for a comparison of both MILP
approaches). However, most modern routing applications use time windows, which can
overlap each other.

For the computational study, we use a large variety of benchmark instances that have
been carefully constructed such that they resemble real-world data. We consider differ-
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ent capacities of the vehicles and therefore, the tour lengths can differ. This study shows
that our approach is capable of finding good initial solutions for instances containing
up to 1000 customers within a short amount of time.

2 Mathematical Formulation

Now let us introduce the notation required to define the VRPTW. An instance of the
VRPTW is defined by:

– A set of time windows W = {w1, . . . ,wq}, where each u ∈ W is defined through its
start time su and its end time eu with su < eu.

– A set of customers C , |C | = n, with corresponding order weight function c : C →
]0,C], whereC ∈R>0 denotes the given vehicle capacity, and a service time function
s : C → R>0.

– A function w : C → W that assigns a time window to each customer during which
the delivery vehicle must arrive.

– A depot d from which all vehicles depart from and return to, C := C ∪{d}.
– A travel time function t : C ×C → R≥0.

In the following, we state some basic definitions and we define the following nota-
tion [u] := [1, . . . ,u], where u ∈ N.

A tour of n customers consists of a set A = {a1,a2, . . . ,an} and the indices of the
costumers refer to the order of the customers. Each customer in the tour has a corre-
sponding arrival time αai , i ∈ [n], during which the vehicles are scheduled to arrive.
Furthermore, each tour has assigned start and end times that we denote as startA and
endA , respectively. Hence, the vehicle executing tour A can leave from the depot d no
earlier than startA and must return to the depot no later than endA .

We denote a tour A as capacity-feasible, if ∑n
i=1 c(ai) ≤CA . The special case that

the capacity of a single customer exceeds the capacity limit of the vehicles cannot occur.
If for each customer of a tour holds that the delivery of the goods occurs within the

time window u= w(ai), i.e., sw(ai) ≤ αai ≤ ew(ai), and there is enough time for fulfilling
the order and traveling to the next customer, i.e., αai+1 −αai ≥ s(ai)+ t(ai,ai+1), for all
i ∈ [n], then we call it time-feasible.

A feasible tour is capacity- and time-feasible and a schedule S = {A ,B, . . .} con-
sists of feasible tours where each customer occurs exactly once.

Each element in C has geographical coordinates in the two-dimensional plane and
we assume that the travel times are correlated to the geographical distances. In general,
the travel times are somehow related to, but not completely determined by the geo-
graphical distances. In our application, we typically deal with asymmetric travel time
functions, for which the triangle inequalities, i.e., t(a,c) ≤ t(a,b)+ t(b,c), a,b,c ∈ C ,
do not hold. In general, t(a,b) = t(b,a), where a,b ∈ C , is not guaranteed for an asym-
metric travel time function.

The length of a time window u∈W is defined as eu−su. Each customer can choose
among time windows of length 10, 20, 30, 60, 120, or 240 min.

Two time windows u and v are overlapping, if u∩ v �= /0, and non-overlapping, if
u∩ v = /0. Time window u contains time window v, if su ≤ sv, and ev ≤ eu. If time
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window u contains time window v, then these time windows overlap each other. It must
not hold that a time window s which overlaps t, also contains t.

In this work we consider three objectives, namely λ1,λ2,λ3:

– The first one is the number of vehicles used, i.e., λ1(S ) := |S |.
– Secondly, the sum of all tour durations is denoted by the schedule duration λ2(S ),

i.e., ∑A ∈S λ2(A ), where λ2(A ) := t(d,a1)+αan −αa1 + s(an)+ t(an,d).
– Thirdly, the sum of all tour travel times is denoted by the schedule travel time

λ3(S ), i.e., ∑A ∈S λ3(A ), where λ3(A ) := t(d,a1)+∑n−1
i=1 t(ai,ai+1)+ t(an,d).

Similar to [12] and [8], we aim to minimize these three objectives with respect
to the lexicographical order (λ1,λ2,λ3), since providing a vehicle is usually the most
expensive cost component, followed by the drivers’ salaries, and the costs for fuel.

3 Sweep Strategy

A sweep algorithm is based on the polar coordinate angles of the customers C , where
the depot d lies in the center of the grid and θ(a) ∈ [0,2π[ denotes the angle compo-
nent of a customer a ∈ C . We choose the zero angle, i.e., the starting angle, according
to [8] such that it splits the two neighboring customers with the largest angle gap, i.e.,
maxa,b∈C θ(a)−θ(b).

We propose the following general strategy to obtain solutions for a given VRPTW
instance consisting of the following steps: 1. Apply one of the methods that obtain a
feasible clustering of C . 2. Compute the optimal route for each cluster.

In both steps, the Traveling Salesperson Problem with Time Windows (TSPTW)
occurs as a subproblem to check time-feasibility or to obtain the optimal solution of a
single tour. Next, we give further information about the two steps.

Clustering: We apply the following variants of clustering algorithms in Step 1.

– Traditional Sweep
– Sweep Algorithm depending on Time Window Length
– Sweep Algorithm depending on Time Window Length and Overall Capacity

Each of the three algorithms is described in more detail below. Moreover, we illus-
trate each variant with a toy example. The depot is located in the center of the coor-
dinate system and the capacity of each vehicle is 10. In the visualizations we choose
the direction of the zero angle θ0 = 90◦ as three o’clock and increase the angle in each
step counterclockwise. Depending on the selected sweep algorithm we check in each
iteration the capacity-feasibility or time- and capacity-feasibility. Note that the MILP
is only used if the tour is capacity-feasible and the current tour candidate is not time-
feasible, i.e., cannot feasible inserted without changing the order of the already placed
customers. Then, the exact approach tries to find any time-feasible tour including the
current costumers.

After obtaining an initial clustering using one of the heuristics, we determine effi-
cient tours for each vehicle.



Sweep Algorithms for the VRPTW 139

Routing: In Step 2, a tour for each cluster is obtained by solving the TSPTW-MILP
with lexicographical objective (λ2,λ3) to optimality. We apply an MILP formulation
that has been proposed in [9] for solving the TSPTW. Following the lexicographical
order, the MILP first minimizes the tour duration λ2(A ), and then the tour travel time
λ3(A ) while keeping λ2(A ) fixed.

In the following subsections, we describe the different clustering steps in more
detail.

3.1 Traditional Sweep

The first variant reflects the traditional algorithm by [7] except checking for both, time-
and capacity-feasibility. It works as follows:

1. Compute the zero angle θ0 and sort the customers according to their polar coordinate
angles starting with θ0.

2. Start with an empty cluster.
3. We check, if the next customer from the sorted set can be feasibly inserted within

the current cluster.
– If capacity- and time-feasibility holds, we add the new customer to the current

cluster.
– Otherwise, we initiate a new cluster with the current customer.

4. We repeat step 3 until all given customers are assigned within a cluster.

Therefore, the result of the traditional sweep algorithm is a set of capacity- and
time-feasible clusters.

A simple example of the traditional sweep algorithm with five customers is depicted
in Fig. 1. The weights of the customers are given in their boxes, the capacity of each
vehicle is 10, a depot in the center and we start with the zero angle at three o’clock
(90◦). In each step, we increase the angle counterclockwise, such that a new customer
is added to the current cluster. Then we check the capacity- and time-feasibility of it
and if necessary, we increase the number of clusters.

3.2 Sweep Algorithm Depending on Time Window Length

In this subsection, we describe a sweep algorithm that takes the lengths of the delivery
time windows into account. First, we sort all customers in ascending order of their time
window lengths. Due to the high number of customers there are many customers with
the same time window length and therefore, we start with the following procedure:

– The customer with the lowest time window length is added to the first cluster. If there
is more than one customer with the same length, the sweep algorithm increases the
angle beginning from the zero angle and selects the first customer of the set.

– In each sweep iteration: We increase the angle and consider the next customer within
the current time window length and try to add this customer to the current cluster:

• If the tour is time- and capacity-feasible, add the customer to the current cluster.
• Else, increase the number of clusters and add the customer to the next cluster.
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Fig. 1. Example of the traditional sweep method with one depot in the center. The capacity of
each vehicle is 10 units, the weight of each customer is given in their boxes, and the number on
the right side of the boxes denotes the number of the scheduled cluster.

– If no customer remains, increase the current time window length and start with the
sweep iteration again, until all customers are scheduled within a cluster.

For further clarifying this algorithm, we consider a toy example with the customers
given in Table 1.

Table 1. Toy example of customers sorted by their time window length for sweep algorithm
depending on time window length.

Time window properties

Required capacity Start time End time Length

Customer 1 5 09:00 10:00 60

Customer 2 4 14:00 15:00 60

Customer 3 4 09:30 11:30 120

Customer 4 5 12:00 14:00 120

In our example, the capacity of each vehicle is 10. We start with the lowest time win-
dow length. There are two customers (customer 1 and customer 2) with the same time
window length. Due to the given angles, customer 1 is added to the first cluster. In the
following step, we consider customer 2, which we try to add to the current cluster, and
therefore we check, if the tour remains time- and capacity-feasible after an insertion. In
this case, the current tour satisfies both conditions, and hence, we add customer 2 to the
first cluster. Next, we consider customer 3, which cannot be added to the current cluster,
due to the capacity limit of the vehicle. Therefore, we increase the number of clusters
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and add customer 3 to the second cluster. Then we try to add the last customer in the toy
example, and hence, the time- and capacity-feasibility of the second tour with the next
customer is checked. The insertion is possible, and hence, customer 4 is added to the
current cluster. Our algorithm terminates with two clusters consisting of two customers
each.

3.3 Sweep Algorithm Depending on Time Window Length and Overall Capacity

Again we sort the customers by their time window lengths, and afterward by their polar
coordinate angles. In contrast to Subsect. 3.2, we now reserve half of the vehicle capac-
ity for customers with longer time window lengths. The remaining procedure stays the
same. As a result, this algorithm returns clusters, which are up to a half filled with cus-
tomers having a time window length of 10, 20, or 30 min and the remaining capacity
is filled with customers having a time window length of 60, 120, or 240 min. The idea
behind this allocation is to ensure that the created tours have a proper mixture of short
and long time windows. This property shall increase the robustness of the tours against
delays occurring during the delivery process. The guaranteed portion of long delivery
time windows introduces some slack such that late deliveries become less likely.

Now, we continue with a toy example and all information about the customers are
given in Table 2.

Table 2. Toy example of customers sorted by their time window length for sweep algorithm
depending on time window length and overall capacity constraints.

Time window properties

Required capacity Start time End time Length

Customer 1 5 09:00 09:10 10

Customer 2 4 14:00 14:30 30

Customer 3 5 15:00 15:30 30

Customer 4 4 09:30 10:30 60

Customer 5 4 11:30 13:30 120

Customer 6 5 12:00 14:00 120

First, we add the first customer (with the shortest time window length) to the first
cluster. As we reserve half of the capacity for customers with time windows longer
than 30 min, customer 3 (selected due to the polar coordinate angles of customer 2 and
customer 3) is added to a new cluster, and the same procedure applies to customer 2.
According to the polar coordinate angles, we try to add customer 5 to the first tour, and
therefore, we check, if the cluster is time- and capacity-feasible. Both constraints are
satisfied, and customer 5 is added to the first cluster. Next, we further increase the angle
of the hand, and we consider customer 6 to be next. We notice that there is not sufficient
capacity left in the first cluster. Hence, we assign customer 6 to the second cluster after
checking the constraints. Finally, customer 4 can be feasibly inserted into the third
cluster. Therefore, the algorithm returns three clusters containing two customers each.
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4 Computational Results

In this work, we introduce a benchmark set that imitates urban settlement structures.
Customers can choose from time windows of different lengths, i.e., 10, 20, 30, 60, 120,
or 240 min. The operation time of the vehicles is ten hours a day and the time windows
are sampled randomly between the operation times. The customers are distributed on
a 20 km × 20 km square grid that is roughly of the same size as the city of Vienna,
Austria. Furthermore, 80% of the customers are arranged within randomly selected
clusters and only 20% are uniformly distributed on the grid. The Euclidean distance
is used to calculate the distance between two customers. We assume an average travel
speed of 20 km/h (as proposed by [10]) to calculate the travel times.

The service time at each customer is set to five minutes and the order weights
are sampled from a truncated normal distribution centered around five units. In the
computational study, we consider different numbers of customers, namely |C | =
{250,500,750,1000}, and the capacity of the vehicles is set to CA = 200, A ∈ S .
The instances are available at http://dx.doi.org/10.13140/RG.2.2.20934.60480. We use
an Ubuntu Mint 20 machine equipped with an Intel Xeon E5 − 2630V3@2.4 GHz 8
core processor and 132 GB RAM and Gurobi 8.1.1 in single-thread mode to solve the
Mixed-Integer Linear Programs. For each instance, we apply our three methods and the
average results over 10 instances for the different numbers of customers are given in
Tables 3, 4, 5 and 6. We observe similar behavior for all instance sizes considered. The
Traditional Sweep is much faster compared to the two other methods for both steps in
the sweep algorithm. As the first method obtains up to four times the number of clusters,
the number of customers within a tour is very low, and therefore, the routing step is very
efficient using an MILP approach. However, the number of vehicles is crucial, and thus,
the methods two and three perform in a costefficient manner. There is no big difference
in the results between the two methods with and without considering the overall capac-
ity. However, it is expected that the third sweep variant produces more robust tours as
described in Subsect. 3.3. Thus, we are able to improve robustness without any loss of
quality with respect to all three objectives. Further, the traditional sweep badly performs
with respect to λ2 but slightly improves λ1 compared to the other two variants. We are
able to find clusters for all algorithms within eight minutes for up to 1000 customers.
The runtime for the routing step is up to one and a half hours for variants two and three.

Table 3. Average results with 250 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Runtime/Objectives Clustering Routing

t λ1 t λ2 λ3

Units [m:ss] [mm:ss] [hhh] [hh]

Traditional Sweep 0:11 32.7 00:01 222 50

Time window length 1:29 11.7 14:56 46 67

Length & overall capacity 1:36 11.9 14:29 46 68

http://dx.doi.org/10.13140/RG.2.2.20934.60480
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Table 4. Average results with 500 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Runtime/Objectives Clustering Routing

t λ1 t λ2 λ3

Units [m:ss] [mm:ss] [h] [h]

Traditional Sweep 0:46 65.9 00:01 460 101

Time window length 3:22 19.8 33:57 76 116

Length & overall capacity 3:48 20.0 40:27 77 116

Table 5. Average results with 750 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Runtime/Objectives Clustering Routing

t λ1 t λ2 λ3

Units [m:ss] [h:mm:ss] [h] [h]

Traditional Sweep 1:51 101,3 0:00:02 714 144

Time window length 6:27 29,4 0:57:51 111 165

Length & overall capacity 6:31 29,8 1:00:40 114 155

Table 6. Average results with 1000 customers over 10 instances each. We denote the runtime by
t. λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Runtime/Objectives Clustering Routing

t λ1 t λ2 λ3

Units [m:ss] [h:mm:ss] [h] [h]

Traditional Sweep 1:53 149.6 0:00:03 1040 196

Time window length 7:26 37.1 1:16:02 151 203

Length & overall capacity 7:49 36.9 1:23:27 152 200

5 Conclusion

In this paper, we considered several sweep algorithms, which belong to cluster-first,
route-second methods, for the Vehicle Routing Problem with Time Windows. The first
step of the algorithm clusters the customers according to their polar coordinate angles
originating from the depot as the center point of the grid. Secondly, the tour for each
cluster is determined. Considering the clustering step, we introduced a variant based
on the standard sweep algorithm and two variants focusing on time window length and
capacity of vehicles. Further, a benchmark set with different customer sizes is provided.
Each customer chooses the length of the time window within a given set, namely 10, 20,
30, 60, 120, and 240 min. Our computational study showed that the heuristic is able to
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cluster 1000 customers within eight minutes. In the routing step, the optimal tours are
calculated by a Mixed-Integer Linear Program, which results in runtimes of up to one
and a half hours. It remains for future work to apply a heuristic approach that gathers
good quality solutions in a fraction of time.
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Abstract. The continuous approximationmodel ofVRP analyzes cost at the plan-
ning and strategic analysis stage in the delivery and logistic field. Most previous
studies used the tour distance between customers and the linehaul distance between
the depot and the customers. This study focused on the linehaul distance, and we
applied the formula for the average length in a right triangle and presented the
average distance between depot and service area. Our proposed model is tested
in instances with different locations of the depot and the service area, trucks, and
customers. Regression results indicate that the approximation model improves
accuracy if the depot locates outside the service area. Our results can be applied
when planning deliveries, for cases where the depot is located at the edge of the
city and outside the delivery area, and planning area segmentation.

Keywords: Vehicle routing problem · Distance estimation · Continuous
approximation approach

1 Introduction

The travel salesman problem (TSP) and vehicle routing problem (VRP) are methods
for minimizing the cost of transportation using single or multiple vehicles from one
location to a customer. This problem is extremely important not only in the logistics
sector but also in the public transportation sector, where new services such as ride-
sharing and car-pooling are being developed. With the improvement in computers and
algorithms, the number of possible optimal solutions has increased; however, there are
many cases where an approximate solution is required. For example, if the number of
demand points is too high for an optimal solution, the number of vehicles will be too
high, or the specific location of the demand points will be unknown. Some mathematical
models (commonly called continuous approximationmodels) canbeused to approximate
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the optimal solution. Currently, numerous studies have been conducted on continuous
approximation models for the TSP and VRP. Some of these models include the average
distance between the depot and the delivery area, considering the case where the depot,
which is a base for vehicles, is not at the center of the delivery area. Many previous
studies have used the linehaul distance for such cases. However, they used simplifying
assumptions and did not strictly reflect the shape and location of a region. This study
aims to improve the approximation accuracy of the continuous approximation model
using an analytically derived value of the average distance between a depot and the
delivery service area.

The rest of this paper is organized as follows. Section 2 provides a literature review
of the VRP and TSP length calculations obtained using the continuous approximation
approach. Section 3 presents the approximation result of the average distance between
points and a rectangular area and its application to the continuous approximation model
of the VRP. Section 4 describes the experimental design and estimation results. Finally,
Sect. 5 concludes the paper.

2 Literature Review

Most of the continuous approximation models for the TSP and VRP have been based on
the study conducted by Beardwood et al. [1], who proved the result generally known as
the BHH formula. For a set of n random points in a i-dimensional space Ri, the length
of an optimal tour through n points D∗ satisfies:

lim
n→∞

D∗

n(i−1)/i
= kii

1
2 [v(�)]

1
i , (1)

where the measure of the Lebesgue-measurable set � is denoted by v(�), and ki is a
constant that depends on i. This formula is quite complicated, and Eilon et al. [6] showed
a simple explanation of the planar case (i = 2), where S is planar area of and k is used
instead of k2:

D∗
√
n

→ k
√
S if n → ∞, (2)

and if n ∈ N, Eq. (2) can be rewritten as:

D∗ ≈ k
√
nS. (3)

The value of k is an unknown constant; nevertheless, it has been estimated in several
previous studies. In the case of the Manhattan distance metric, Jaillet [11] estimated
k = 0.97, and Stein [18] estimated k = 0.765 using the Euclidean distance metric.
Cook et al. [3] showed that k is correlated to n and estimated it to be 0.625 ≤ k ≤ 0.920
for n values between 100 and 2000.

In addition, the BHH formula can be extended to a VRP that has capacitated vehicles
based on the depot visit customers in the area. Daganzo [4] proposed a simple formula
for the optimal length of VRP D∗

m with m routes:

D∗
m = k

√
nS + 2Rm, (4)
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where the value of m is obtained from the number of customers n and the maximum
capacity of vehicle C (m = n/C); parameter k = 0.57, and R is the distance from the
depot to a random point in the area. In this formula, the first term refers to the tour length
estimated by the BHH formula, and the second term is generally called the linehaul
distance, which is the distance from the depot to the customer. The linehaul distance
contributes to the estimation when the depot is not located at the center of the service
area. Some studies have developed regression tests to estimate the TSP optimal length
D∗ and VRP optimal length D∗

m. Chien [2] suggested this approximation for a depot
located at the corner of the area. Let B be the size of the boundary box enclosing all
points; in this case, the total distance in the case of one truck D∗

1 (TSP route length) can
be expressed as:

D∗
1 = 0.67

√
nB + 2.1R. (5)

Figliozzi [7] presented the following as a model of the VRP containing the linehaul
distance:

D∗
m = k

(
n − m

n

)√
nS + 2Rm (6)

where the parameter k is estimated to be 0.62 ≤ k ≤ 0.90, and average k = 0.77 by
linear regression, with a high accuracy for approximating D∗

m.
Most previous studies have focused on the tour length, indicated by the first term, to

improve the accuracy. Therefore, the assumption of the linehaul distance R is simplified.
In Eq. (4) proposed by Daganzo [4], R is determined to check whether the depot o is
located in service area D as follows:

R =
{(√

S/6
)(√

2 + log tan(3π/8)
) ∼= 0.382

√
S,

d
∧

(o ∈ D)

(o /∈ D).
(7)

where d
∧

is the distance from the depot o to the center of gravity of the service area
D. Also, Franceschetti et al. [8] used the closest point in the service area. Huang et al.
[9] used the expected distance to reach the first point by taking the square root of the
sum of the square of the expected longitudinal distance and the square of the expected
transverse distance.

However, the tour start point exists randomly in the service area, and we expect that
calculating the average distance by considering the area and shape of the service area
can help improve the estimation accuracy of D∗

m. For this purpose, we tested using two
different linehaul distances for variable R in Daganzo’s model (4) and Figlilozzi’s model
(6). One is the distance from the center of gravity of the area used in previous studies,
and the other is the average distance between the point and the service area calculated
using a probabilistic approach.
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3 Approximation of the Average Distance Between a Point
and an Area

In this section, we first describe the problem setting. Next, we present the methods for
determining the distance between points and an area.

3.1 Problem Setting

In the continuous approximation approach for TSP andVRP reported in previous studies,
the service area was simplified to a rectangular shape [4, 8, 9], circular/elliptical shape
[16], and a ring-radial network [10, 15]. However, the shape of the area does not signifi-
cantly affect the quality of the approximation [5, 13]. Thus, we model the service area as
a rectangular shape for ease of numerical experiments and assume that the depot position
is fixed and that the service area can be flexibly changed to account for the differences
in the linehaul distance. We assume a rectangular service area D with horizontal length
A and vertical length B. The n number of customers inD are distributed in the form of a
continuous uniform distribution and are picked up by m trucks based at depot o (Fig. 1).
We calculate the average distance of a right triangle area using the model proposed by
Koshizuka and Kurita [12], Kurita [14] and apply it to the rectangular regions.

3.2 Model

Let the right triangle δ, shown in Fig. 2, be a depot o as an acute vertex. α is the edge
from o to the right angle a, and β is the other edge from o to b. The probability density
function ϕ(x) of the distance from o to a point x in δ can be expressed as:

ϕ(x) = L(x)

S
(8)

S = α

2

√
β2 − α2 (9)

Here, S is the size of δ, and L(x) is the perimeter of the fan shapes with x radius and is
obtained from cases shown in Figs. 2(i) and (ii):

L(x) =

⎧⎪⎪⎨
⎪⎪⎩

(i) x arccos
α

β
(0 ≤ x ≤ α)

(ii) x

(
arccos

α

β
− arccos

α

x

)
(α < x ≤ β)

(10)

where arccosα/β is the angle θ between α and β. Thus, the average distance d∗
δ can be

expressed as:

d∗
oab =

∫ β

0
xϕ(x)dx (11)
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Fig. 1. Service area and depot.

Fig. 2. Location of service area depot.

Equation (11) can be reorganized as follows:

d∗
oab = 1

3

(
β + α2√

β2 − α2,
ln

β + √
β2 − α2

α2

)
(12)

Subsequently, we can calculate the average distance to the rectangular area by com-
bining the right triangles. There are four cases (I to IV in Fig. 3) depending on whether
the location of o is within the horizontal or vertical extent of the area. Figure 4 shows
the calculation method for the average distance between Cases I and IV.

For a rectangular areaDabcd , the averagedistanced∗ fromo toDabcd canbe expressed
as:

d∗ = LDabcd

Sabcd
(13)

where Sabcd is the size ofDabcd , and the total distance LDabcd is calculated by combining
the LD of the rectangles with o as its vertex. The intersection points of each edge and
perpendicular line from depot o are e, f , g, and h. The total distance LDaego from o to
the rectangular areaDaego (upper left in Case I) with o as its vertex can be expressed as:

LDaego = Saeod
∗
aeo + Sagod

∗
ago (14)

where the size of the right triangle is denoted by Saeo. In Case I, where o is in Dabcd ,
LDabcd is obtained by summing the LD of the rectangles around o. In Cases II, III, and IV,
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e, f , g, and h are the intersections of the line extending each edge and perpendicular line,
and we removed the unnecessary part (the gray area in Fig. 4 (IV)) from the rectangle
with o as its vertex that is greater than Dabcd . Thus, let the coordinates of a be (a1, a2),
and LDabcd can be expressed as in Eq. (15).

LDabcd =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(I) LDaego + LDebof + LDgoch + LDofdh,

(II) LDofgd + LDebof − (
LDohgc + LDeaoh

)
(III) LDaeho + LDebof − (

LDcgho + LDgdof
)

(IV) LDebof − (
LDeaoh + LDgdof − LDgcof

)
(15)

We used d∗ as the linehaul distance R for models (4) and (6):

D∗
m = k

√
nS + 2d∗m (16)

D∗
m = k

(
n − m

n

)√
nS + 2d∗m, (17)

In the next section, we compare the estimation accuracies of models (4) and (16),
and (6) and (17) by numerical experiments.

4 Experimental Setting and Results

In this section, we first explain the numerical experimental setup. Next, we evaluate the
accuracy of the estimates obtained using the continuous approximation model.

Fig. 3. Calculation condition for d∗.
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Fig. 4. Calculation method for d∗ (Cases I and IV)

4.1 Experimental Setting

Numerical experiments were conducted to verify the accuracy of the continuous approx-
imation model defined in Sect. 3. There are many instances of TSP and VRP, such as
instance data from Solomon, TSPLib, and CVRPLib [17, 19–21]. For these examples,
problems and solutions are available, including the spatial distribution of customers,
vehicle capabilities, customer requirements, and customer time settings. However, in
many instances, the depot location is included in the range of the demand distribution,
and we cannot evaluate the difference in the linehaul distance, which is the subject of
discussion in this study. Therefore, route optimizations with different area sizes and
locations, demand patterns, and number of vehicles were obtained using mixed-integer
linear programming (MILP).

Table 1. Experimental conditions.

Items Values

Area settings Area length (A, B) (10000, 10000), (20000, 10000), (30000,10000)

Depot location (25000, 25000), (50000, 25000), (75000, 25000)

Layout patterns 9

Trucks 2, 3, 4, 5

Demands 10, 20, 30, 40, 50 points per trucks

Table 1 shows the details of the experimental conditions. Figure 5 shows the layout
pattern of the depot o and service areaD. The area length is the length of the edges with
D (Fig. 4, (A, B)); three types with different aspect ratios are assumed, and the position
of o is changed on the basis of the aspect ratio of D. The area layout has nine patterns
(Fig. 5, Nos. 1 to 9) for the layout of o and D. In the case of No. 9, o is located at the
centroid of D, which is the pattern with the shortest linehaul distance; conversely, in
case No. 1, it is the pattern with the farthest distance from o. The number of trucks is
assumed to range from 1 to 5, and the number of demands is assumed to range from 10
to 50 per truck, which is the same as the truck capacity.

We solved 540 instances (three area settings, nine layouts, four trucks, and five
demands) 10 times by randomly changing the demand points within the area.
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Fig. 5. Layout pattern of the depot and service area.

WeusedLocalSolver 9.5 to solve theVRP, and theCVRPalgorithms for the problems
that have been tested for performance by LocalSolver [22]. The computational tests were
performed on two Windows 10 machines (3.5 GHz Intel Core i9 processor, with 64 GB
RAM; 2.5 Xeon GHz processor with 64 GB RAM). The maximum running time was set
to 300 s. However, for the pattern with the largest number of combinations (five trucks,
demand 50 per truck), the optimality gap with the upper bound was less than 5%.

4.2 Results

To evaluate the prediction accuracy, the R-square value, root-mean-squared error
(RMSE), andmean absolute percentage error (MAPE)were used. TheRMSEandMAPE
were calculated as follows:

RMSE =
√
1

n

∑
i
(yi − fi)

2
(18)

MAPE = 100

n

∑
i

∣∣∣∣ (yi − fi)

yi

∣∣∣∣ (19)

where the actual distance, which is calculated by MILP for instance i, is denoted yi, and
the estimated distance is denoted by fi. The RMSE indicates the absolute error value for a
specific distance. However, the longer the total distance, the greater the error. Therefore,
the MAPE is used to determine the relative error.

Table 2 presents the fitting results for the linehaul distance and average distance. In
the estimation, for model (4), we used k = 0.57, the value given in the original paper,
and for model (6), we used the same value. In Figliozzi [7], k was fitted with real data
[21], and the conditions of the numerical experiments were different from those in this
study. For models (16) and (17), which are the focus of this study, parameter k was fitted
using the maximum likelihood estimation method. In Table 2, all the models have good
R2 values. However, models (16) and (17), which use a continuous approximation term
for the linehaul distance, have a better RMSE and MAPE performance than models (4)
and (6).
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Table 2. Model fit comparison.

Model k R2 RMSE MAPE

(4) 0.570 0.995 10087.0 3.4%

(16) 0.529 0.998 6830.2 2.5%

(6) 0.570 0.995 9944.8 3.5%

(17) 0.549 0.998 6883.5 2.5%

Table 3. Model fit comparison by number of trucks.

Model RMSE MAPE

Trucks Trucks

2 3 4 5 2 3 4 5

(4) 7794.2 9350.5 10723.6 11992.3 3.9% 3.5% 3.1% 2.9%

(16) 6870.8 6627.1 6694.2 7118.0 3.6% 2.6% 2.0% 1.8%

(6) 8347.9 9500.4 10356.9 11330.7 4.4% 3.7% 3.1% 2.9%

(17) 6775.1 6688.2 6838.3 7220.4 3.7% 2.7% 2.1% 1.8%

Next, we compare the performance of each model based on the number of trucks
and the layout of the area and depot to analyze the factors that can help improve the
accuracy. Table 3 shows the comparison results of the number of trucks. The number
of trucks is proportional to the linehaul distance, as shown in the second term of each
model. Therefore, the greater the number of trucks, the better the RMSE and MAPE
performance. However, the difference is highest when the number of vehicles is four,
and above that, the performance tends to saturate.

Figure 6 shows a comparison of the RMSE and MAPE values of models (4) and
(16) for different area layouts, as shown in Fig. 5. The performance of No. 1 to 8, which
are the area layouts away from the depot, is improved. In particular, No. 6 exhibits the
best performance. Figure 7 shows the reason for this. This figure shows the difference
in the distance from the depot to the center of gravity d

∧

or rectangular areas d∗ when
the depot is located at (75000, 25000), and the area edges A = 30000 and B = 10000
(thus, the aspect ratio is 3.0) are moved. When the area does not include the depot (in
the red frame), a large difference value is located at No. 6. In other words, the lower the
d
∧

value and the longer the edge that intersects the line, the greater the error.
In other areas, the RMSE was in the range of 1300–3600, and the MAPE values

were reduced by 0.3%–1.0%. However, in the region containing the depot (No. 9), the
performance is worse because the adjustment of the tour length is sufficient and the
linehaul distance is over-adjusted. These results indicate that our proposed method of
calculating the linehaul distance is useful for regions where the depot is far from the
service area, contributing to the improvement in the estimation accuracy.
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Fig. 6. Model fit comparison by layout pattern of depot and service area (Models (4) and (16))

Fig. 7. Mapping of difference values between d
∧

and d∗.

5 Conclusions

In this study, we analyzed approximations of the linehaul distance between the depot
and rectangular service area to improve the accuracy of estimating the total VRP dis-
tance. The VRP approximation formula is useful for the strategic and planning analyses
of transportation and logistics problems, where the number and location of customers
change daily. We defined a continuous approximation formula to find the average dis-
tance of a right triangle with the depot as an acute angle and the average distance between
a point and a rectangular region at any given location. This approximation formula was
used as the linear distance in the VRPmodel. In addition, we computed the optimal route
for many instances with different demands, number of trucks, and locations that can be
considered in the VRP approximation model. The numerical solutions were estimated
using the approximation model. The results showed an improvement in the accuracy
of the approximation equation for service areas far from the depot. Our results can be
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applied when planning deliveries, for cases where the depot is located at the edge of the
city and outside the delivery area and to the planning of area segmentation represented
by the strip strategy (e.g., Daganzo, Franceschetti et al. [4, 8]). The linehaul distance
approximation is also useful for estimating the distance traveled by cabs and kickboards
without tours. In the future, we plan to apply the developed model to analyze the above
problems, while considering the time constraints of the VRP and the effects of area
segmentation on the delivery efficiency.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers JP21K14314
and Obayashi Foundation. We appreciate their support.
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Abstract. In this study, we constructed an optimization model for the maximum
likelihood estimation of delivery areas from a capacitated vehicle routing problem.
The aim is to develop a method that combines the advantages of two methods of
delivery planning: the efficiency of the routing software-based method and the
flexibility of the area-in-charge method. We first conduct computer experiments
to derive the optimal cycling plan for each stochastic demand pattern. We then
solve the optimal delivery area assignment that is globally consistent with the
data from these experiments. We focused on whether the optimal route for each
demand pattern was contained in the same area and found the assigning area that
maximized the probability. This model is designed for daily use because it is an
easy-to-interpret area map, while the optimization of the circulation problem is
solved using computers in advance. In experiments using the data, we confirmed
that the model can provide correct area creation.

Keywords: Delivery plan · Area assignment · Maximum likelihood estimation

1 Introduction

Planning an effective delivery route is one of themost important topics discussed in logis-
tics, such as postal delivery services and meter readings. In recent years, its importance
has increased. Figure 1 shows the distribution of customers for gas cylinder delivery.
About 5,000 customers exist. Distributors deliver 30 to 70 cylinders every day. That
is, daily demand points are stochastic. For distributors, there are mainly two effective
strategies for stochastic delivery route planning: one is to find the best route through
routing software, and the other is to assign the driver’s area to each driver.

The routing software-basedmethod of determining the optimal route ismore efficient
than the method of assigning a driver’s area. The method of searching for the optimal
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Fig. 1. Demand points

route has been studied as theVehicle Routing Problem (VRP). On the other hand, solving
the VRP is computationally demanding, so it is not practical to find the optimal route. In
actual delivery, distributors face sudden customer changes, such as a customer’s request
due to running out of gas or bad weather. In these cases, a manager change driver’s
scheduling by hang as applying the software takes much time.

Alternatively, in daily delivery, plans are often made based on the area assignment
for each driver. For many distributors, these areas are determined by discussions among
drivers or by the experience ofmanagerswithout any actual quantitative analysis.Assign-
ment areas for each driver are often inefficient. On the other hand, such a delivery plan
has the advantage of being able to respond flexibly to sudden changes in the deliv-
ery destination or the absence thereof. Such irregular events are common in everyday
delivery.

As shown above, the two methods have trade-offs in terms of computational time,
traveling time, and flexibility in actual daily delivery when we make a delivery route
plan.

Previous attempts in logistics have been made to assign areas appropriately. In the
planning and strategic phases, a successive approximation approachwith simple assump-
tions (uniform random demand distribution, simple shapes) estimated the impact of
zoning. Newell and Daganzo [1] analyzed the effect on distance when a rectangular
area was divided into equal parts and found the optimal number of divisions. Applying
these approaches, Ouyang [2] proposed an algorithm in which geometric features deter-
mine the vehicle routing zone for any demand distribution. In a more practical approach,
Galvão et al. [3] focused on the density distribution of demand and tried to determine the
area using the Voronoi diagram approach. They relaxed the predetermined boundaries of
the partition and iteratively modified them until they converged to minimize the distance
traveled by vehicles. Ayala et al. [4] developed a demand point allocation scheme that
minimizes the distance from the depot to the network connecting the demand point to
the depot or the demand points to each other. Zhong et al. [5] divided the field into
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areas by preparing cells, which are sets of demand points, and considered the optimal
clustering of cells by adding a cost to each. In recent research, Sung et al. [6] used a
meta-heuristics approach to zoning aerial vehicles by bearing from depots to demand
points. However, there is no study that solves the VRP for the entire field and naturally
divides the distributor’s area into driver’s areas.

The purpose of this research is to propose a new optimization model to find the area
assignment for the capacitated vehicle routing problem, which maintains both efficiency
(by calculating the optimal route) and flexibility (by defining the area assignment). To
achieve this purpose, we first conducted computer experiments to derive the optimal
cycling plan for each stochastic demand pattern. We then identified the optimal delivery
area assignment that was globally consistent with the data from these experiments. We
introduce a clustering method in the work of Honma et al. [7], which is a maximum
likelihood estimation of areas from transition information.

One of the features of this research is that we aimed to produce output in the form of
amap for use in actual delivery scenarios. It is frequently difficult to handle and calculate
complex mathematical models in the field. Even in such cases, the output in the form of
a map provides an easy and intuitive way to use the results of this research. In addition,
because of the map format, the delivery personnel do not have to significantly alter what
they have been doing. Thus, it can be said that the output of this research can achieve
efficiency with less effort.

In addition, by using area assignment, the system can handle demands that occur
randomly every day. In actual delivery, demand occurs randomly among a number of
potential demand points, and it is necessary to create a delivery plan that corresponds to
the demand. This is much easier to operate than finding a solution through software.

This paper is organized as follows. In Sect. 2, we formulate the problem.We propose
a mathematical model for achieving efficient area assignment, which is the objective of
this study and is estimated by taking the maximum likelihood from the optimal route
and constructing a mathematical model for assigning an area. In Sect. 3, we introduce
the data for the computer experiments used to test the certainty of the model, and in
Sect. 4, we verify the model use actual data. Section 5 discusses the model based on the
results of Sect. 4, and finally, Sect. 6 provides conclusions and future perspectives for
further study.

2 Formulation

2.1 Our Concept

In this study, we deal with the capacitated Vehicle Routing Problem (CVRP). To assign
the optimal area for each driver, we iteratively calculate the optimal traveling routes on
software under stochastic demands and then estimate the assignment areas based on the
solutions to be as consistent as possible with the computer experiments. This means that
we assign a label of area information for each demand point. Thereby, this problem can
be rephrased as the problem of labeling area information at the demand points on the
same circular route in computer experiments in as few areas as possible.
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First, we present the conditions for achieving this objective mathematically. In this
study, we consider an area assignment that satisfies the following conditions that an area
is as consistent as possible.

i. Demand points that belong to the same area should be delivered by the same vehicle
as much as possible.

ii. Demand points that belong to different areas should be delivered by different vehicles
as much as possible.

These show the properties that an optimal area assignment should satisfy. For these
properties, we conduct a large number of computer experiments because we assume
that daily demand points are random. Therefore, we apply probabilities i and ii. An
area assignment that satisfies these properties is achieved by combining the following
procedures, each corresponding to the above conditions:

i′. Maximize the probability of delivering any given demand points in the same area
with the same vehicle

ii′. Minimize the probability of delivering any given demand points in different areas
with the same vehicle

By achieving these conditions at the same time, the solution should be obtained such
that the same drivers deliver as much as possible within the same area, conversely, the
same drivers do not deliver as much as possible in different areas. When solving our
area assignment problem, a constraint is employed in that each vehicle has the same
capacity. This is to keep the quantity transported by each delivery vehicle constant. The
optimization problem is formulated as a maximum likelihood estimation by partitioning
a field as described above.

2.2 Formulation Based on Demand Points

Our area assignment problem is solved as a quadratic assignment problem in terms of
the label of area information [8].

Let I be the set of demand points and A be the set of areas for all drivers. The
presence or absence of delivery to demand points i(∈ I) and j(∈ I) is determined by
repeated computer experiments. We now introduce a 0–1 variable as follows:

zia =
{
1 (If demand point i belongs to area a(∈ A))
0 (otherwise)

(1)

where the number of areas is determined by the number of vehicles used for daily
delivery. The purpose of this study is to divide the entire target field into areas without
overlapping by multiple areas and to assign a demand point to one area. Then, the
following relationship is established:

∑
a∈Azia = 1 ∀i ∈ I (2)
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LetK be the set of trials for computer experiments and Ik be the set of demand points
at which demand points occur in a certain trial k(∈ K). We denote by C(Ik) the set of
functions of Ik that extracts from Ik every combination that takes two demand points.
Then, zikzjk indicates the presence or absence of a path connecting any demand points
i and j belonging to an area a(∈ A) in a certain trial k(∈ K). The total number of paths
between demand points belonging to the same area in all trials is expressed as follows:

∑
a∈A

∑
(i,j)∈C(Ik )

∑
k∈Kziazja (3)

The path across the different areas, except for the upper one, can be expressed as
follows: ∑

a∈A
∑

(i,j)∈C(Ik )
∑

k∈K (1 − ziazja) (4)

In addition, we also introduce the following 0–1 variables:

skij =
⎧⎨
⎩
1
(If demand points i and j are delivered
by the same vehicle in trial k(∈ K))

0 (otherwise)
(5)

Using these variables, the total number of routes delivered to the same vehicle in
each area can be shown as follows:∑

a∈A
∑

(i,j)∈C(Ik )
∑

k∈Ks
k
ij × ziazja (6)

Similarly, the total number of deliveries between any demand points in different
areas by the same vehicle can be shown as follows:

∑
a∈A

∑
(i,j)∈C(Ik )

∑
k∈Ks

k
ij ×

(
1 − ziazja

)
(7)

The probability fin of delivering to any demand point in the same area with the same
vehicle and the probability fout of delivering to any demand point in a different area with
the same vehicle, which are the conditions that appeared in Sect. 2.1, can be expressed
using the above variables as follows:

fin =
∑

a∈A
∑

(i,j)∈C(Ik )
∑

k∈Kskij × ziazja∑
a∈A

∑
(i,j)∈C(Ik )

∑
k∈Kziazja

(8)

fout =
∑

a∈A
∑

(i,j)∈C(Ik )
∑

k∈Kskij ×
(
1 − ziazja

)
∑

a∈A
∑

(i,j)∈C(Ik )
∑

k∈K (1 − ziazja)
(9)

Furthermore, in this mathematical optimization, we set the constraint for capacity,
i.e., the number of demand points belonging to each area, using the number of vehicles
N as follows. The purpose of this is to adjust the delivery volume of each vehicle for
practical applications:

⌊ |I |
N

⌋
≤

∑
i∈I zia ≤

⌈ |I |
N

⌉
∀a ∈ A (10)
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Since satisfying conditions i and ii in Sect. 2.1 simultaneously means minimizing
fin − fout , the following mathematical optimization problem is established:

max fin − fout (11)

s.t.
∑

a∈Azia = 1 ∀i ∈ I (12)

⌊ |I |
N

⌋
≤

∑
i∈I

zia ≤
⌈ |I |
N

⌉
∀a ∈ A (13)

zia, s
k
ij ∈ {0, 1} ∀i, j ∈ I ,∀a ∈ A,∀k ∈ K (14)

2.3 Formulation Based on Zones

In Sect. 2.2, we formulated the equation based on the demand points. However, there
are two issues. First, quadratic assignment problems with over 5,000 points cannot be
solved in a short time. Second, considering practical applications, it is more convenient
for the same vehicles to visit the same town.

For these reasons, we introduce “zone” aggregated demand points. The concept of
the zone is illustrated in Fig. 2. The zones are sets of demand points. The number of
demand points for each zone is nearly equivalent. For example, zones are created by
zip code. In addition, zones can be obtained by solving the p-median problem [9]. In
this study, 100 zones are created, and each demand point is assigned to one zone. In the
previous Sect. 2.2, we formulated the equation in such a way that demand points are
allocated to areas, and in this Sect. 2.3, we formulate it in such a way that zones are
allocated to areas.

Fig. 2. Concept of zone
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Let P be the set of zones. To propose a formulation that includes zones, we first
introduce p(∈ P), and then we introduce a 0–1 variable that indicates whether zone p
belongs to area a(∈ A):

xpa =
{
1 (If demand zone p belongs to area a(∈ A))
0 (otherwise)

(15)

As shown in Sect. 2.2, we denote byC(P) the set of functions of P that extracts from
P every combination that takes two demand points. At this time, let nkpq be the number of
combinations such that one demand point is in zone p and another is in zone q among all
combinations C(Ik) of demand points Ik visited in trial k. The total number of deliveries
in zones p and q of the same area a patrolled in a certain trial k can be expressed as
nkpq × xpaxqa, and the total number of deliveries within that same area is:

∑
a∈A

∑
(p,q)∈C(P)

∑
k∈Kn

k
pq × xpaxqa (16)

As in Sect. 2.2, the total number of routes that cross different areas is as follows:

∑
a∈A

∑
(p,q)∈C(P)

∑
k∈K nkpq × (1 − x paxqa

)
(17)

Furthermore, let tkpq be the number of combinations of all combinations C(Ik) of
demand points Ik visited in trial k, where one demand point is in zone p and the other
in zone q, and where they are serviced by the same vehicle. Among those whose routes
are in the same area, the total number delivered by the same vehicle is expressed:

∑
a∈A

∑
(p,q)∈C(P)

∑
k∈K t

k
pq × xpaxqa (18)

In the same way as in Sect. 2.2, those items whose route is not in the same area, and
which are delivered by the same vehicle, are shown as follows:

∑
a∈A

∑
(p,q)∈C(P)

∑
k∈K t

k
pq × (

1 − xpaxqa
)

(19)

Using the above, the fin of delivering to any zone in the same area with a same vehicle
and the probability and fout of delivering to any zone in a different area with the same
vehicle, which replace demand points to zones as they appeared in Sect. 2.2, can be
shown as follows:

fin =
∑

a∈A
∑

(p,q)∈C(P)
∑

k∈K tkpq × xpaxqa∑
a∈A

∑
(p,q)∈C(P)

∑
k∈Knkpq × xpaxqa

(20)

fout =
∑

a∈A
∑

(p,q)∈C(P)
∑

k∈K tkpq × (
1 − xpaxqa

)
∑

a∈A
∑

(p,q)∈C(P)
∑

k∈K nkpq × (1 − x paxqa
) (21)
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When the number of zones is constant, the number of demand points will also be
constant, thus guaranteeing that the capacity of each zone is constant. Using this fact,
and adding that the number of each zone should be as equal as possible, so that fin − fout
is maximized, the mathematical optimization problem can be shown as follows:

max fin − fout (22)

s.t.
∑

a∈Axpa = 1 ∀p ∈ P (23)

⌊ |I |
N

⌋
≤

∑
p∈P xpa ≤

⌈ |P|
N

⌉
∀a ∈ A (24)

xpa ∈ {0, 1} ∀p ∈ P,∀a ∈ A (25)

3 Data Preparation

The optimization problem formulated in Sect. 2.3 was solved using the following exper-
imental data. We considered the distribution of demand points as shown in Fig. 1. There
are 5,000 candidate demand points. There is only one depot in the upper left, and all
delivery vehicles originate from here.

First, we randomly select demand points in accordance with the number of vehicles
and the number of demand points delivered by one vehicle in one day. This means
the distribution of demand for a hypothetical day. Next, for these demand points, we
solve the CVRP using the LocalSolver package [10]. This is equivalent to calculating
the optimal route minimizing the total distance for one day’s demand distribution. We
repeat these procedures for 300 trials, which means one year of delivery operations. In
this way, computational experiments were conducted to find the optimal route for a year
of demand. Thus, we obtained 300 patterns of hypothetical optimal delivery plans as
computer experiments for solving the optimal problem.

By overlaying these computer experiment data, we can intuitively grasp the area
distribution as shown in Fig. 3. This figure shows a case with six delivery vehicles, and
routes delivered by the same vehicle are shown in the same color. Such areas are created
by the maximum likelihood estimated in (22)–(25).
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Fig. 3. Assembly of routes

4 Results

The following are the results of obtaining the solution using LocalSolver 10.5 [11] with
the equation in Sect. 2.3 and the data prepared in Sect. 3. The area assignment of demand
points for the cases of 6 and 14 vehicles is shown in Fig. 4 and Fig. 5 so that the same
area has the same color. In addition, the white dot in the figures is the depot (starting
point) of the delivery.

Fig. 4. Area solve (6 cars = 6 areas)
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Fig. 5. Area solve (14 cars = 14 areas)

5 Discussion

From the results in the previous section, we can see that the formulation of this study
allows us to make a clear assignment of areas, thus confirming that the area assignment
was reasonable. These results can be obtained regardless of the number of vehicles.
Therefore, we can say that the formulation and constraints used in the process are appro-
priate. On the other hand, since we imposed a very strict condition on the capacity, it is
necessary to examine how it changes when this condition is relaxed.

In this area assignment, the area spreads radially. This is an obvious solution since
all the computer experiments start from the depot, but it also works positively in terms
of efficiency in the actual delivery scenarios. In this sense, we can say that we have
succeeded in creating a map that is suitable for the actual delivery scenarios.

6 Conclusion

In this study, we developed a model for the maximum likelihood estimation of area
assignment from optimal routes. From the results, it can be inferred that the model is
appropriate. In the next step, it will be necessary to verify whether the area assignment
obtained in this study is superior in terms of efficiency to the currently used delivery
areas.
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Abstract. Modern machine learning, including deep learning models
and reinforcement learning techniques, have proven effective for solving
difficult combinatorial optimization problems without relying on hand-
crafted heuristics. In this work, we present NOFSS, a Neural Order-
First Split-Second deep reinforcement learning approach for the Capac-
ity Constrained Vehicle Routing Problem (CVRP). NOFSS consists of a
hybridization between a deep neural network model and a dynamic pro-
gramming shortest path algorithm (Split). Our results, based on intensive
experiments with several neural network model architectures, show that
such a two-step hybridization enables learning of implicit algorithms (i.e.
policies) producing competitive solutions for the CVRP.

Keywords: Neural combinatorial optimization · Capacitated vehicle
routing problem · Order-first split-second · Deep reinforcement learning

1 Introduction

Modern machine learning, including deep learning models and reinforcement
learning techniques, have proven effective for solving difficult combinatorial opti-
mization problems without relying on handcrafted heuristics [1]. The framework
known as Neural Combinatorial Optimization (NCO), which proposes to solve
combinatorial optimization problems using recent neural networks architectures,
is in this context widely studied for routing problems such as the traveling sales-
man problem (TSP) [2–5] and the capacitated vehicle routing problem (CVRP)
[5,6].

Current NCO approaches implement a construction-based strategy. For the
CVRP, such approaches build (i.e. construct) candidate solutions step by step,
by selecting at each time step either to visit a client or to go back to the depot
to refill, until each client is served. The action to perform at each construction
step is chosen based on a probability distribution that will be estimated by a
deep neural network, either using supervised or reinforcement learning. This

S. Harispe—This work used HPC resources of IDRIS (allocation 2022-AD011011309R2)
made by GENCI.
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discrete probability distribution defines the probability that an extension of the
partial solution under construction, considering each available choices (unsat-
isfied clients and depot), will lead to the optimal solution. Considering such
construction-based NCO approaches, solving the CVRP is therefore reframed as
a learning goal aiming to obtain a good estimate of the probability distribution,
such as step decisions based on this estimate minimize solution costs.

Using such an approach, the models handle both clients routing and returns
to depot. In this context, choices of when to return to the depot are critical.
Indeed, more returns to the depot can de facto lead to candidate solutions with
a number of tours1 greater than the optimal one. This will result in models fail-
ing to efficiently learn interesting resolution strategies, i.e. routing policies, due
to poor quality candidate solutions, and/or large computational costs inducing
prohibitive learning process (millions of learning steps). Handcrafted heuristics
and metaheuristics may nevertheless be used to handle return to depot by using
an exact tour splitting algorithm - solving a shortest path problem in an auxil-
iary graph that represents the clients’ visit order [7,8]. Inspired by this problem
decomposition, this paper presents NOFSS, Neural Order-First Split-Second, a
novel two-step learning-based approach proposing to:

1. Learn how to order clients into a giant tour, using a deep neural network.
2. Optimally split the giant tour into a feasible solution using an exact split

algorithm.

NOFSS is a generic approach that will be introduced and tested in the context
of CVRP, even if it may be used for a larger class of routing problems. NOFSS
relies on a deep neural network that learns a giant tour policy and a dynamic
programming algorithm, called Split [8]. Split modifies the giant tour into a
feasible solution with respect to vehicle capacity and clients demands. It acts
as an oracle that provides feedback on the quality (the total travelled distance)
of the giant tour generated from our neural network. This makes it possible to
train the NOFSS model through REINFORCE algorithm.

Alongside NOFSS introduction, we present an extensive comparison of var-
ious NOFSS and NCO models with state-of-the-art CVRP (meta)heuristics.
Results show that, by exploring the search space of giant tours, NOFSS allows
to implicitly learn competitive routing policies.2

The paper is organized as follows: Sect. 2 formally introduces the CVRP
and notations; Sect. 3 introduces related work focusing on approaches based
on machine learning; Sect. 4 presents NOFSS; Sect. 5 presents the experimental
protocol as well as results. Discussions and perspectives conclude the paper.

1 A tour is the ordering of clients the vehicle will visit before returning back to the
depot. The optimal number of tours will therefore depend on client’s demands and
vehicle capacity.

2 Our implementation and results will be available on the following repository https://
github.com/AYaddaden/NOFSS.

https://github.com/AYaddaden/NOFSS
https://github.com/AYaddaden/NOFSS
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2 Problem Statement

The Capacitated Vehicle Routing Problem (CVRP) is one of the basic types
of routing problems where information associated with the clients, the depot
and the vehicles are deterministic and known in advance. We consider a set of
n clients dispatched on the Euclidean plan and a single depot. In the depot,
there is a fleet of homogeneous vehicles with identical transport capacity C. We
associate to the clients their coordinates (xi, yi) and their demands of goods to
deliver 0 ≤ di ≤ C (i ∈ {1, ..., n}). We associate to the depot its coordinates
(x0, y0). The demands cannot be split, meaning that a vehicle must satisfy the
demand at once. The objective is to minimize the total travelled distance when
serving all the clients.

The problem can also be formulated using graph theory [9]. We consider a
complete graph G(V,E), where V = {0, ..., n} is the vertex set (the vertex 0
represents the depot) and E = {(u, v) ∈ V × V, u �= v} is the edge set. We
associate with each edge a cost defined as the distance between two vertices.
We can represent it as a cost matrix D where Duv =

√
(xu − xv)2 + (yu − yv)2,

(u, v) ∈ E. The goal is in this case to find simple circuits called tours such that
all clients are served without transgressing the vehicles’ capacity and the total
travelled distance is as minimum as possible.

3 Related Work

3.1 Neural Combinatorial Optimization (NCO) for the CVRP

We refer to the use of end-to-end deep neural network approaches for solving
difficult combinatorial optimization as the Neural Combinatorial Optimization
(NCO) framework [3]. In this section, we review the use of this framework to
learn construction-based policies for routing problems.

Although the use of neural networks for solving combinatorial optimization
problems dates back longer than the appearance of modern deep learning archi-
tectures [10], their use has faded away in favor of more efficient metaheuristics.
The success of deep learning and reinforcement learning has revived the interest
in studying deep neural networks for solving this class of problems. More pre-
cisely, with the appearance of the sequence-to-sequence type approaches and the
attention mechanism. The general framework (Fig. 1) considers two neural net-
works called respectively encoder and decoder, which can be of different types.
The encoder generates the embeddings of each element of a problem instance
(clients and depot). Embeddings can be viewed as an alternative representation
of the element in a higher dimension vector space (Rd with generally d = 64
or d = 128). This representation is intended to encompass meaningful features
that will be used during the decoding phase. The decoder uses the history of the
already visited elements (clients or depot) to compute a query vector that sum-
marizes the solution under construction through a single vector. The query along
with the embeddings are used to compute a probability distribution of select-
ing the next element via an attention module. To do so, the attention module
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confronts the query q ∈ R
d to the elements embeddings ei ∈ R

d in order to
give attention scores si either via a scaled dot-product (i.e. si = q·eT

i√
d

) or via an
additive attention defined as si = vT · tanh(Wq ·q+We ·ei) with Wq,We ∈ R

d×d,
v ∈ R

d being learnable parameters. The scores si will be converted into a prob-
ability distribution by a softmax function3.

Pointer Networks [2] was the seminal work that considered training LSTM-
based encoder and decoder along with an additive attention module via super-
vised learning on a dataset of TSP instances. The approach successfully solved
instances of sizes between 10 and 50 cities. It was next improved by using
a policy-based reinforcement learning algorithm for training, namely REIN-
FORCE with critic baseline, thus avoiding the need of a supervision, i.e. to
have ground truth optimal solutions for the TSP dataset’s instances [3]. Rein-
forcement learning proved to be more effective for training models on instances
of size between 20 and 100 cities, thus achieving better results than Pointer
Networks.

Nazari et al. [6] applied the NCO approach to CVRP. Their model considered
1D convolutions instead of an LSTM encoder in order not to bias the model on
the inputs’ order – LSTM are indeed better suited for modeling sequences where
input’s order matters. Comparison with classic CVRP algorithms (Clarke and
Wright savings heuristic and the Sweep algorithm) shows that the deep neural
network model performs better on training and test instances’ sizes ranging from
10 to 100 clients. It appears also, that the choices of the encoder and decoder
are of extreme importance in order to improve the learned policy. The Attention
Model (AM) improves the results on the TSP and the CVRP by introducing
a model entirely based on the attention mechanism [5]. It uses a Transformer
encoder and computes the query vector using a Multi-head attention [11]. The
Transformer encoder allows taking into account the graph structure of the TSP
and the CVRP in the same way Graph Neural Networks do, thus giving a bet-
ter representation of the instances. Also, they introduce a new baseline for the
REINFORCE algorithm; a greedy rollout baseline that is a copy of AM that
gets updated less often.

3.2 Two-Step Algorithms for the Vehicle Routing Problem

Classical two-step construction approaches for solving the CVRP involve (i) par-
titioning the clients into feasible clusters with regard to vehicle capacity and (ii)
ordering them into routes of minimum length. Based on how the two operations
are orchestrated, we can distinguish two types of two-step algorithms: Cluster-
first Route-second and Order-first Split-Second.

In Cluster-first Route-second algorithms, the clients are first grouped
together following the vehicle capacity constraint, then a traveling salesman
problem is solved for each cluster using an exact solver or heuristics. The Sweep
algorithm is the most common algorithm of this type [12]. Feasible clusters are

3 softmax(si) = exp(si)∑K
j=1 exp(sj)

.
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Fig. 1. The general encoder-decoder framework used to solve routing problems. The
encoder takes as input a problem instance X and outputs an alternative representation
H in an embedding space. The decoder iteratively constructs the candidate solution Y
by adding a client or a depot yt at each step t until all clients are visited.

constructed by considering the polar angle between the clients and the depot,
then for each cluster a TSP is solved. An extension of this algorithm called the
petal algorithm considers generating several routes and selects the final routes of
the solution by solving a set partitioning problem [13]. Another work considers
obtaining the clusters by solving a generalized assignment problem [14]. One
major drawback of this approach is that it is not computationally efficient due
to the clustering algorithms [15].

On the other hand, Order-first Split-second algorithms consider first ordering
the customers into a sequence called a giant tour, to then, decompose it into a
set of feasible tours considering the vehicle capacity. Traveling salesman prob-
lem heuristics are used to get giant tours, and the CVRP tours can be obtained
optimally from the giant tours by solving a shortest path problem, as we will
detail later. The first documented approach of this type generates the giant tour
by random permutation of clients’ visit order, followed by a 2-opt improvement,
and then builds the routes using Floyd’s algorithm [7]. Prins proposed the first
genetic algorithm for the CVRP that relies on the Order-first Split-second app-
roach, which was competitive with the best metaheuristic at that time (Tabu
Search) [8]. In their approach, the authors proposed a representation of the chro-
mosomes as giant tours and introduced the Split procedure based on an auxiliary
acyclic graph generated on top of a giant tour. Bellman’s algorithm is used in
order to extract the feasible routes. HGS, today’s state of the art metaheuristic
for the CVRP, also uses a giant tour representation and the Split algorithm [16].

The Order-first Split-second approach is appealing. A recent review of this
approach surveys more than 70 research papers that build heuristics and meta-
heuristics to successfully solve vehicle routing problems [17]. Computationally, it
is less expensive to build a giant tour and then to split it than building clusters of
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clients. Also, the search space is reduced to the space of giant tours instead of the
direct solution representations with depot placement. As highlighted in the sur-
vey, this search space reduction does not make the optimal solution unattainable,
since there is an optimal giant tour which corresponds to the optimal solution.
In addition, for a given giant tour, only its optimal split is retained. This ensures
to prevent too many poor quality solutions from appearing often.

3.3 Graph Neural Networks

Since CVRP instances can be modelled as a graph, it is interesting to use
neural networks that takes advantage of this structure. This makes Graph
Neural Networks (GNNs) an ideal choice to compute a representation of an
instance that captures useful information for the resolution process. We define
a GNN by stacking K GNN blocks. Each block k relies on message passing in
order to compute the node embeddings hk

u, ∀u ∈ V . This mechanism can be
viewed as a differentiable function that computes node embeddings as follows:
hk

u = F (hk−1
u , {hk−1

v }v∈N (u), {e(u, v)}v∈N (u)), with N (u) being the set of the
neighbor nodes of a node u ∈ V and {e(u, v)}v∈N (u) the set of edges that link
the node u to its neighbors v ∈ N (u). We use the instance features as an initial
input of the first GNN block. The function F itself relies on two mechanisms:
neighborhood message aggregation and node embedding update, defined as:

m(k)
u = Aggregate

({h(k−1)
v }v∈N (u), {e(u, v)}v∈N (u)

)

h(k)
u = Update(h(k−1)

u ,m(k)
u )

Aggregation can either be the mean, the maximum or the sum of neighbors’
node embeddings. It can also be a weighted sum with weights computed using
an attention mechanism [18]. It can take into consideration the edge weights
of the neighboring nodes e(u, v). The update function is a deep neural network
that computes a new node embedding by using the message from the aggregation
and the node embedding from the preceding block. Graph neural network models
differ depending on the choice of the Aggregate and the Update functions.

We can distinguish two families of GNNs: spectral and spatial GNNs. Spectral
GNNs rely on spectral graph representations based on graph signal processing
theory, such as GCN [19]. Spatial GNNs, such as GAT [18], exploit the graph
topology. Refer to Zhou et al. for a GNN review [20].

In the next section, we describe how we use the Split algorithm along with
the NCO framework to train GNN models for solving the CVRP.

4 The Neural Order-First Split-Second Algorithm

As mentioned in the previous section, actual NCO construction-based policies
for the CVRP produce a sequence by routing the clients and choosing when to
return to the depot iteratively until all clients are served. These policies may lead
to more returns to depot than necessary and produce poor quality solutions. For



174 A. Yaddaden et al.

example, a policy can decide to refill in the depot after serving each client even
if the vehicle capacity allows for serving more than one client at once. Learning
from poor quality solutions can slow down and hamper the learning process and
produce suboptimal policies. Instead of this, we propose to let the deep neural
network build an indirect solution representation via the construction of the giant
tour and to delay the routes construction to the Split algorithm. Thus, our neural
network implicitly learns to solve vehicle routing problem instances by exploring
the space of giant tours. Alternatively, we can view the neural network’s output
as a permutation of the clients’ visit order, which is close to what is done in
works for the TSP [3,4]. This also simplifies the masking procedure used to
avoid the appearance of a client twice in the solution. Another advantage of this
approach is that the neural network can learn different policies depending on
the variant of the vehicle routing problem (e.g. Capacitated VRP, VRP with
Time Windows) without additional adaptation. The Split algorithm will handle
the additional constraints, and the neural network learns the policy accordingly.
Unlink other learning-based construction approaches that build a solution in a
variable number of steps due to the return to the depot to refill, our neural
network builds the giant tour in a fixed number of steps equal to the number of
clients in the instance. Algorithm 1 presents the general approach that will be
detailed afterwards.

For a given instance X of the CVRP, our neural network defines a stochastic
policy that outputs the probability of generating a giant tour as a sequence
Y . Using the probability chain rule, and with θ the parameters of the neural
network, this policy is defined as follows:

Pθ(Y |X) =
n−1∏

t=0

pθ(yt|y0, ..., yt−1,X)

After sampling a sequence Y from Pθ, Y is then transformed into feasible
routes using the Split algorithm with regard to the vehicle’s capacity constraint.
The Split algorithm can be viewed as an oracle that evaluates the goodness of
a giant tour by returning the associated solution’s total travelled distance. This
evaluation makes it possible to train our deep neural network via reinforcement
learning. We define the loss as the expected tour lengths of the Y sequences
evaluated by the Split algorithm, i.e. L(θ) = EX∼D,Y ∼Pθ(.|X)

[
Split(Y,X)

]
. The

objective is to find the best parameters θ that will output good quality sequences
Y that would result on short tour lengths. For this, we rely on AdamW as a
gradient descent optimizer during training. In order to compute the gradient of
the loss, we use REINFORCE with Rollout baseline [5]:

∇θL(θ) = EX∼D,Y ∼Pθ(.|X)

[(
Split(Y,X) − b(X)

)
∇θ log Pθ(Y |X)

]

The gradient ∇θL(θ) is approximated using Monte Carlo sampling over a batch
of B i.i.d CVRP instances as follows:

∇θL(θ) ≈ 1
B

B∑

i=1

[(
Split(Yi,Xi) − b(Xi)

)
∇θ log Pθ(Yi|Xi)

]
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Algorithm 1: NOFSS REINFORCE with Rollout Baseline

1 Inputs: θ, Number of epochs E, batch size B, number of instances K, number
of clients n, vehicle capacity C, t-test threshold α

2 T ← K

B
3 θBL ← θ
4 for e ← 1 to E do // train for E epochs

5 for t ← 1 to T do // loop over the T instance batches

// Get a batch of B CVRP instances with n clients

6 Xi ← getInstance(n, C), ∀i ∈ {1, ..., B}
7

// Sample a giant tour according to the learning policy Pθ

8 Yi ← SampleGiantTour(Xi, Pθ), ∀i ∈ {1, ..., B}
9

// Generate a giant tour greedily according to the policy

PθBL

10 Y BL
i ← GreedyGiantTour(Xi, PθBL), ∀i ∈ {1, ..., B}

11

// Evaluate giant tours total travel cost

12 Li ← Split(Xi, Yi, C) ∀i ∈ {1, ..., B}
13 LBL

i ← Split(Xi, Y BL
i , C) ∀i ∈ {1, ..., B}

14

// Compute the loss and update the neural network parameters

15 ∇θL ← 1

B

∑B
i=1(Li − LBL

i )∇θ log Pθ(Yi|Xi)

16 θ ← AdamW (θ, ∇θL)

17 end
18 if t-test(Pθ, PθBL) < α then
19 θBL ← θ
20 end

21 end

The baseline b(X) is used to reduce the gradient variance, leading to an
acceleration of the learning process. We use the greedy rollout baseline b(X) =
Split(Y BL,X) which is an evaluation of the optimal Split of the giant tour
Y BL resulting from a copy of the learning neural network with parameters θBL

that acts greedily, i.e. it chooses the next client with the highest probability of
appearance at each time step. This baseline proved to be more efficient than
actor-critic or REINFORCE with an exponential moving average baseline [5].
During validation, if the performance of θ is significantly better than that of
θBL according to a t-test (α = 5%), the baseline is updated with the parameters
of Pθ, i.e. θBL is set to θ.
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4.1 Instance Features

For each instance X, we define the nodes and edges features as follows:

Node Features. Each node u ∈ V is represented as a quadruplet (xu, yu, d̂u, au)
where (xu, yu) are the node coordinates sampled from a uniform distribu-
tion U([0, 1] × [0, 1]), d̂u = du/C ∈ [0, 1] is the normalized demand and
au = atan((yu − y0)/(xu − x0)) ∈] − π/2, π/2[ is the polar angle between the
node u and the depot node 0.

Edge Features. For each edge (u, v) ∈ E, we define the edge features as the
Euclidean distance between the nodes u and v (i.e. d(u, v) := ‖u − v‖,∀(u, v) ∈
E). The distance between two nodes in the instance is an interesting feature in
the case of vehicle routing problems, since it is information that characterizes
the problem well, and it appears in the objective function.

4.2 NOFSS Encoding-Decoding Architectures

The NOFSS approach is agnostic to the choice of the encoding and decoding
model architectures. Thus, we propose to train various encoder-decoder models
that rely on different graph neural networks (GNNs) and a GRU recurrent cell
for decoding. The decoded sequence is passed to the Split algorithm in order to
retrieve a candidate solution for the instance (Fig. 2).

Fig. 2. Our proposed NOFSS model for solving CVRP instances.

Encoding. We experiment three GNN Encoders for our approach: GCN (a
spectral GNN), GAT (a spatial GNN) and TransformerConv (a spatial GNN)
[21]. Each encoder have K similar blocks. The GNN outputs an embedding for
each node (clients and depot) h

(K)
u ∈ R

d, ∀u ∈ V and a graph representation
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computed using an average pooling h̄ = 1/|V |
∑

u∈V

h(K)
u . Finally, to distinguish

the clients embeddings from the depot embedding h
(K)
0 , we pass them into a

feedforward layer hu = Wc · h
(K)
u + bc,∀u ∈ V − {0}, with Wc ∈ R

d×d, bc ∈ R
d

being respectively the weights and the bias of the layer.

Neighborhood Definition. As highlighted in Sect. 2, we can define a CVRP
instance as a complete graph. We define the neighborhood N (u) of a client
node u ∈ V − {0} as the κ nearest nodes in terms of Euclidean distance and
the depot 0, since it is important for the client’s representation to be aware of
the depot’s existence (i.e. N (u) = {v1, v2, ..., vκ ∈ V ; ‖v1 − u‖ ≤ ‖v2 − u‖ ≤
... ≤ ‖vκ − u‖} ∪ {0}). For the depot, we consider that it is connected to every
client. An example of an instance neighborhood definition is depicted in Fig. 3.
The central node (red square) represents the depot, while the other nodes (blue
circles) represent the clients. An edge exists between nodes u and v if v ∈ N (u).
The number of nearest neighbors κ is determined per instance. We set it to be
the average number of clients per route as if they were uniformly distributed
on the routes, i.e. κ =

n

m
with n being the number of clients and m being

the lower bound of the number of routes. m is determined as the sum of all
clients’ demands divided by the vehicle’s capacity rounded to the next integer

(m =
⌈∑n

i=1 di

C

⌉
). The advantage of such a definition of κ is that it takes into

account the characteristics of the instance in terms of the number of clients,
their demands, and the capacity of the vehicles instead of selecting an arbitrary
number of neighbors.

Fig. 3. CVRP instance with relationships between neighboring nodes (central square
node is the depot).

Decoding. Since we are decoding a sequence of clients’ order, we use a GRU
recurrent cell [22]. GRU is relevant as it enables capturing the sequence repre-
sentation while taking into account the order of its elements. It takes as input
the previously selected client representation at step t − 1 concatenated with the
depot representation h

(K)
0 and incorporates it in the global representation of the
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partial giant tour. At t = 0, we only use the depot representation h
(K)
0 as input

to the GRU.

h
(s)
t =

{
GRU(h(K)

0 ), t = 0
GRU([hyt−1 ;h

(K)
0 ]), t > 0

The graph embedding ĥ, the depot embedding h
(K)
0 and the sequence embed-

ding h
(s)
t are then concatenated together to form a context vector hc ∈ R

3d. The
context vector is then passed to a feedforward layer made of two linear layers
with ReLU activation function in between to output a query vector qt ∈ R

d i.e.
q = W2 · ReLU(W1 · hc + b1) + b2 with W2 ∈ R

d×3d, W2 ∈ R
d×d, b1, b2 ∈ R

d

being the parameters of the feedforward layer.
To compute the probability of selecting the next client pθ(yt|y0, ..., yt−1,X),

we compute attention scores su (∀u ∈ V − {0}) using a scaled dot-product with
a masking mechanism in order to avoid selecting the same client twice. These
scores are then clipped within [−10, 10] using tanh [5].

su =

⎧
⎨

⎩
c · tanh

(
qth

�
u√
d

)
, u �= yt′ t′ < t, c = 10

−∞ otherwise

The attention scores are converted into a probability distribution using the
softmax function pi = pθ(yt = i|y0, ..., yt−1,X) = softmax(si) By setting the
value of the attention score to −∞, we can perform the masking of already visited
clients. Thus, when passed to the softmax function, its associated probability will
be 0.

The Split Procedure. The algorithm works on the basis of the giant tour
output by the neural network augmented with the depot, i.e. Y = (y0, y1, ..., yn)
with y0 = 0 being the depot. Using the giant tour, we define an auxiliary graph
H(V H , EH) with |V H | = n + 1. The nodes in V H indicate the depot (either
for return or departure). The edge set indicates all possible sub-sequences that
starts from yi to yj (yi, yi+1, ..., yj) that do not transgress the vehicle’s capac-
ity constraint. We formulate it as follows: EH = {(i, j) ∈ V H × V H ; i <

j,
∑j

k=i+1 dyk
≤ C}. The edges are weighted as follows: for an edge (i, j) ∈ EH

we associate the total travelled distance starting from the depot to the client
yi+1, visiting the tour (yi+1, ..., yj) and going back to the depot from yj :

DH = {dij = dist(0, yi+1) +
j−1∑

k=i+1
j−i>1

dist(yk, yk+1) + dist(yj , 0), ∀(i, j) ∈ EH}

This gives us a direct acyclic graph where we solve a shortest path problem
using Bellman’s algorithm. The associated shortest path cost represents the best
solution length (total travelled distance) for the CVRP instance with regard to
the given giant tour.
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5 Experiments

Data Generation. We follow the data generation protocol of Nazari et al. [6]
to consider 3 types of CVRP instances with number of clients n = 20, 50 and
100. For each problem size, we have generated 100k instances for training, and
two sets of 10k instances for validation and test. Clients and depot locations are
generated from a uniform distribution U({[0, 1] × [0, 1]}). The clients’ demands
are also uniformly drawn from the interval [1, 9]. Vehicles’ capacities are set to
30, 40 and 50 respectively for n = 20, 50, 100.

Hyperparameters. We use an embedding dimension d = 128 and a uniform
parameter initialization for our deep neural networks U(−1/

√
d, 1/

√
d) and set

the learning rate to η = 10−3. The models are trained with a time limit of 100
hours and batch size B = 128 on a single Nvidia V100 GPU with 16 GB of
VRAM. For each encoder type, we use K = 3 GNN blocks. Implementations
use PyTorch and PyTorch Geometric for graph neural networks [23] (Python),
while the Split algorithm is implemented in C.

Baselines. We use HGS4 [16] as baseline as it is one of the state of the art meta-
heuristics for the CVRP. We also use classical CVRP heuristics5: (i) RFCS [7] as
a two-step order-first split-second heuristic, (ii) Sweep [12] as a two-step cluster-
first route-second approach, and (iii) Nearest Neighbor heuristic as a single-step
construction approach [24]. We also trained the model with TransformerConv
encoder in an end-to-end manner for depot and clients choice (Full-learning).
We first note that NOFSS models are faster to train, completing E = 1000 of
learning epochs in the 100 h time budget, while the Full-learning models perform
1000, 500 and 200 training epochs for instance sizes of 20, 50 and 100 respec-
tively. For the exploitation of the learned policies, we use a greedy decoding
which considers the highest probability at each decoding step and a sampling
strategy which samples 1280 candidate solutions for each test instance from the
probability distributions given by the models. Table 1 reports the results of each
approach on the test specifying: average solution lengths (obj.), the average gap
(in percentage) to the best average solution lengths and the running time (in
seconds) to output a candidate solution for a single instance.

5.1 Comparison with a Full-Learning Setting

Figure 4 presents the evolution of the average solution length per epoch during
training and validation on CVRP instances with 20 clients (left) and 50 clients
(right). During training, candidate solutions are sampled from the model and
their total lengths are averaged over the training set. Let us note that the models’
parameters are updated each time a batch is processed via gradient descent,

4 https://github.com/vidalt/HGS-CVRP.
5 https://github.com/yorak/VeRyPy.

https://github.com/vidalt/HGS-CVRP
https://github.com/yorak/VeRyPy
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Table 1. NOFSS vs. other algorithms. FL for Full-Learning; exploitation, greedy (G),
sampling (S).

Method n = 20 n = 50 n = 100

obj gap (%) time (s) obj gap (%) time (s) obj gap (%) time (s)

HGS 6.13 0.00 0.003 10.34 0.00 0.09 15.57 0.00 0.69

RFCS 6.30 2.76 0.02 10.90 5.39 0.57 16.62 6.73 7.53

Sweep 7.55 23.16 0.01 15.60 50.93 0.06 28.56 83.37 0.23

Nearest neighbor 7.39 20.57 0.0004 12.63 22.19 0.001 18.95 21.68 0.01

NOFSS-GCN (G) 6.83 11.41 0.0008 12.31 19.05 0.003 19.41 24.66 0.007

NOFSS-GAT (G) 6.59 7.50 0.006 11.74 13.53 0.02 18.34 17.80 0.05

NOFSS-Transformer (G) 6.50 6.03 0.006 11.57 11.89 0.02 18.13 16.44 0.06

FL-Transformer (G) 6.49 5.87 0.006 11.34 9.67 0.02 17.69 13.61 0.06

NOFSS-Transformer (S) 6.24 1.79 1.37 11.03 6.67 1.56 17.45 12.07 2.43

FL-Transformer (S) 6.18 0.81 2.09 10.79 4.35 2.35 17.32 11.23 8.29

thus the performance of the models changes every batch during training, while
validation is performed using the model resulting from the processing of the last
batch in the training set, which is theoretically the best model achieved at the end
of the epoch. Also, in validation, we use a greedy decoding instead of sampling.
The evolution of the average solution lengths shows that the NOFSS model is
able to learn an implicit policy for solving the CVRP by learning to output
an indirect representation of the solution. On instances with 20 clients, we can
observe that during training, the NOFSS model achieves better average solution
lengths than the Full-learning model. On validation, we observe the same trend
as in training, but starting from the 600th epoch, the Full-learning model slightly
outperforms the NOFSS model. The equivalent performance of the two models is
confirmed on the test set with average solution lengths of 6.50 and 6.49 on greedy
decoding for NOFSS and Full-learning respectively with similar execution times.
On sampling decoding, similar performances are observed, with 0.9% difference
in performance between the two models, but with an advantage in execution
time in favor of NOFSS. On CVRP with 50 clients, we observe that NOFSS
has a better jump start performance on training and a better final performance
for the Full-learning model. We observe 2% difference in performance for greedy
and sampling decoding on the test set. We also note similar sampling times for
the two types of models in greedy decoding, while NOFSS being 52%, 50% and
241% faster in sampling respectively for n = 20, 50 and 100.

5.2 Comparison to Handcrafted Heuristics

When compared to handcrafted heuristics, we can observe from Table 1 that
either with greedy or sampling exploitation, NOFSS models outperform the
Sweep and Nearest neighbor algorithms. NOFSS model seems to output bet-
ter solution lengths, on average, than RFCS on CVRP with 20 clients when
using the sampling strategy but seems to fail scaling to CVRP with 50 and 100
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Fig. 4. Learning curves in training and validation for Full-learning (blue) and NOFSS
models (orange) on CVRP instances with 20 (CVRP20) and 50 clients (CVRP50);
lower is better. (Color figure online)

clients. Let us note that while RFCS and NOFSS belong to the same type of two-
step strategy, there is a difference in the two approaches in that RFCS explicitly
solves a Traveling Salesman Problem, while NOFSS directly evaluates the giant
tour using the Split algorithm. The difference in average solution lengths may
suggest that NOFSS learned policy is different from a policy that learns to solve
a Traveling Salesman Problem.

5.3 Influence of the Type of Encoder

We investigate the influence of the choice of GNN encoder on models’ perfor-
mance. Figure 5 shows the evolution of the average solutions lengths per epoch
in training and validation phases for the 3 types of GNN encoders: GCN, GAT
and TransformerConv on CVRP with 20 and 50 clients. We observe the same
trends for both training and validation phases, with TransformerConv having
the best convergence, followed by GAT encoder and finally by GCN encoder.
The instances’ representation plays an important role in the resolution process,
because a good representation leads to the exploitation of meaningful features
and, thus, gives a better solution. The choice of the encoder seems to be a crit-
ical part of the model’s architecture. It appears from these results that spatial
GNNs better perform than spectral GNNs in our evaluation setting. Exploiting
the graph topology in the spatial domain seems to benefit more in the context
of vehicle routing problems than exploiting the graph structure in the spectral
domain. While TransformerConv and GAT are both spatial GNNs, it seems that
the way they exploit the node and edges information has an impact on the overall
performance of the models.
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Fig. 5. Comparison of Graph Neural Network encoders on models’ performance (train-
ing and validation).

5.4 On Models Generalization

We propose to study the generalization of the models trained on a set of instances
with a specific size to instances of different size. For this, we evaluate the different
test sets on instances of different sizes. For example, we evaluate the NOFSS
Transformer model trained on CVRP with 20 clients instances (Transformer-
20) on instances with 20, 50 and 100 clients. Table 2 sums up our results. We
report the average solution lengths for both greedy and sampling exploitation
strategies. For greedy decoding, we report the results for the models trained on
the different instance sizes while for sampling, we focus on the model trained on
instances sizes which seems more promising based on our findings on the greedy
decoding. We observe that for the Transformer-20, the NOFSS model has a
better generalization property than the Full-learning model, with performance
similar for n = 20 and n = 100 and better for n = 50. Since training models
on instances with 20 clients is faster, it is relevant to identify that the NOFSS
model is a better choice.

For Transformer-50 and Transformer-100, it appears that, for n = 20 NOFSS
models have better performances than their Full-learning counterparts while
staying competitive for n = 50 and n = 100. An interesting result observed on
Transformer-50 is its good generalization to CVRP instances with 100 clients,
as it appears that it achieves better performance than the models trained on
instances with 100 clients. This may suggest that relevant invariants that are
beyond the instance size are learned while training on instances with 50 clients.
We push further our investigations on Transformer-50 by analyzing its perfor-
mance with a sampling exploitation strategy. While for the instances with 20
clients, the models stay competitive with the ones trained on that size, they
achieve the best performances on the sets with instances with 50 and 100 clients.
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Transformer-50 appears to be a good trade-off between learning speed (it is faster
to train than Transformer-100) and performance.

Table 2. Comparison of average solution lengths achieved by the NOFSS and Full-
learning models on different instance sizes of the test set.

Trained model NOFSS (G) Full-learning (G)

20 50 100 20 50 100

Transformer-20 6.50 11.62 18.34 6.49 12.01 18.33

Transformer-50 6.64 11.57 17.97 6.76 11.34 17.52

Transformer-100 6.94 11.79 18.13 6.98 11.65 17.69

NOFSS (S) Full-learning (S)

20 50 100 20 50 100

Transformer-50 6.31 11.03 17.40 6.25 10.79 17.22

6 Conclusion

In this work, we proposed NOFSS, a two-step algorithm hybridizing a deep neu-
ral network model and an exact tour splitting procedure for the Capacitated
Vehicle Routing Problem. To the best of our knowledge, this is the first model
that proposes a hybridization between a deep neural network and a dynamic
programming algorithm to successfully learn an implicit policy based on giant
tour generation to solve the CVRP. We conducted extensive experiments on the
proposed models with various Graph Neural Network encoders and compared
them against classic CVRP heuristics and an end-to-end Full-learning model.
Our results show that NOFSS is very competitive, even if it currently does
not surpass end-to-end full-learning approaches. NOFSS is however faster than
end-to-end approaches in both training and evaluation. It also shows good gen-
eralization properties when trained on instances with a specific size and applied
to solve instances of different sizes. The NOFSS model is easier to implement
than an end-to-end learning-based policy and does not rely on sophisticated
handcrafted search strategies to find good quality solutions.

Future work should investigate more on the generalization of the method
to instances of bigger sizes. Also, while we tested only greedy and sampling
strategies for exploiting the trained models, other relevant strategies may be
interesting such as beam search, or using bigger sample sizes than the one we
used since NOFSS has a faster execution time. The solution given by NOFSS can
also be a good warm start for further improvement by local search algorithms.
Finally, since our approach is generic, it would be interesting to evaluate it on
other problems, such as the Vehicle Routing Problem with Time Windows.
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Abstract. One of the most important and recurring issues that the
development of a software product faces is the requirements selection
problem. Addressing this issue is especially crucial if agile methodologies
are used. The requirements selection problem, also called Next Release
Problem (NRP), seeks to choose a subset of requirements which will be
implemented in the next increment of the product. They must maxi-
mize clients satisfaction and minimize the cost or effort of implementa-
tion. This is a combinatorial optimization problem studied in the area of
Search-Based Software Engineering. In this work, the performance of a
basic genetic algorithm and a widely used multi-objective genetic algo-
rithm (NSGA-II) have been compared against a multi-objective version
of a randomized greedy algorithm (GRASP). The results obtained show
that, while NSGA-II is frequently used to solve this problem, faster algo-
rithms, such as GRASP, can return solutions of similar or even better
quality using the proper configurations and search techniques. The repos-
itory with the code and analysis used in this study is made available to
those interested via GitHub.

Keywords: GRASP · Multi-objective optimization · Next release
problem · Requirements selection · Search-based software engineering

1 Introduction

Software systems are increasing in functionality and complexity over time. This
implies that new software projects are potentially more complicated to man-
age and complete successfully. One of the problematics that can heavily affect
the outcome of a project is the planning of a release. In a software project,
the product to be delivered is defined by a set of software requirements. These
requirements are offered to a group of clients, who will give feedback on which
requirements are more important to them. Then, a set of requirements is planned
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190 V. Pérez-Piqueras et al.

for the release. Selecting the requirements that better fit client interests starts
getting complicated when development capacity has to be taken into account.
Furthermore, requirements can have dependencies between them. This problem,
named requirements selection problem, is very complex and does not have a
unique and optimal solution. Two objectives coexist: maximizing the satisfac-
tion of the clients and minimizing the effort of the software developers. Therefore,
solutions can range from sets of few requirements with minimal effort and satis-
faction, to sets of plenty of requirements, which will imply high client satisfaction
but at the cost of a high effort.

Thus, this planning step is critical, especially when applying incremental
software development methodologies due to the need to solve the requirements
selection problem multiple times, at each iteration. Thus, this problem is candi-
date to be automated by means of optimization methods. Previous works have
studied the applicability of different search techniques, giving preference to evo-
lutionary algorithms, mainly. In our study, we present an algorithm based on the
Greedy Randomized Adaptive Search Procedure (GRASP, [7]). We have explored
new procedures that allow to improve GRASP performance in the requirements
selection problem beyond that of previous studies. The experimentation that we
carried out shows that the GRASP metaheuristic can obtain similar results as
those of the evolutionary approaches, but reducing drastically its computational
cost.

The rest of the paper is structured as follows. In Sect. 2, a summary of previ-
ous works and procedures they applied is made. Section 3 describes our algorithm
proposal and defines the solution encoding along with the most important meth-
ods and techniques. Then, in Sect. 4, the evaluation setup is described, along with
the algorithms, datasets and methodology used. Section 5 presents and discusses
the results of the experimentation. Finally, Sect. 6 summarizes the conclusions
of this study and introduces potential new lines of work for the future.

2 Requirements Selection

2.1 Related Work

The requirements selection problem is studied in the Search-Based Software
Engineering (SBSE) research field, where Software Engineering related prob-
lems are tackled by means of search-based optimization algorithms. The first
definition of the requirements selection problem was formulated by Bagnall et
al. [1]. In their definition of the Next Release Problem (NRP), a subset of require-
ments has to be selected, having as goal meeting the clients1 needs, minimizing
development effort and maximizing clients satisfaction. In their work, differ-
ent metaheuristics algorithms, such as simulated annealing, hill climbing and
GRASP algorithms were proposed, but all of them combined the objectives of
the problem using an aggregate function. The same procedure of single-objective

1 Although “stakeholder” is a more appropriate term, “client” will be used to keep
coherence with previous works present in the literature.
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proposals was followed by Greer and Ruhe [9]. They studied the generation of
feasible assignments of requirements to increments, taking into account different
resources constraints and stakeholders perspectives. Genetic algorithms (GAs)
were the optimization technique selected to solve the NRP. Later, Baker et al.
[2] demonstrated that metaheuristics techniques could be applied to real-world
NRP outperforming expert judgement, using in their study simmulated anneal-
ing and greedy algorithms. The works of del Sagrado et al. [5] applied ACO
(Ant Colony Optimization). All of these approaches followed a single-objective
formulation of the problem, in which the aggregation of the objectives resulted
in a biased search.

It was not until the proposal of Zhang et al. [13] that the NRP was formu-
lated as a multi-objective optimization (MOO) problem. This new formulation,
Multi-Objective Next Release Problem (MONRP), formally defined in Sect. 2.2,
was based on Pareto dominance. Their proposal tackled each objective sepa-
rately, exploring the non-dominated solutions. Finkelstein et al. [8] also applied
multi-objective optimization considering different measures of fairness. All these
studies applied evolutionary algorithms, such as ParetoGA and NSGA-II [4] to
solve the MONRP.

Other works that kept exploring evolutionary algorithms to solve the
MONRP are those of Durillo et al. [6]. They proposed two GAs, NSGA-II and
MOCell (MultiObjective Cellular genetic algorithm), and an evolutionary pro-
cedure, PAES (Pareto Archived Evolution Strategy).

2.2 Multi-objective Formulation

As mentioned in the introduction, the NRP requires a combinatorial optimiza-
tion of two objectives. While some studies alleviate this problem by adding an
aggregate (single-objective optimization), others tackle the two objectives by
using a Pareto front of non-dominated solutions (MOO). Defining the NRP as a
multi-objective optimization problem gives the advantage that a single solution
to the problem is not sought, but rather a set of non-dominated solutions. In
this way, one solution or another from this set can be chosen according to the
conditions, situation and restrictions of the software product development. This
new formulation of the problem is known as MONRP.

The MONRP can be defined by a set R = {r1, r2, . . . , rn} of n candidate
software requirements, which are suggested by a set C = {c1, c2, . . . , cm} of m
clients. In addition, a vector of costs or efforts is defined for the requirements in
R, denoted E = {e1, e2, . . . , en}, in which each ei is associated with a requirement
ri . Each client has an associated weight, which measures its importance. Let
W = {w1, w2, . . . , wm} be the set of client weights. Moreover, each client gives
an importance value to each requirement, depending on the needs and goals
that this has with respect to the software product being developed. Thus, the
importance that a requirement rj has for a client ci is given by a value vij , in
which a zero value represents that the client ci does not have any interest in
the implementation of the requirement rj . A m × n matrix is used to hold all
the importance values in vij . The overall satisfaction provided by a requirement
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rj is denoted as S = {s1, s2, . . . , sn} and is measured as a weighted sum of
all importance values for all clients. The MONRP consists of finding a decision
vector X, that includes the requirements to be implemented for the next software
release. X is a subset of R, which contains the requirements that maximize clients
satisfaction and minimize development efforts.

3 Proposal

Evolutionary algorithms have been widely applied to solve the MONRP
[3,11,13]. Most of the previous studies are based on algorithms such as NSGA-II,
ParetoGA or ACO, usually comparing their performance with other algorithms
less suited to the problem, e.g. generic versions of genetic or greedy algorithms.
However, evolutionary approaches involve a high computational cost, as the algo-
rithms have to generate a population of solutions and evolve each one of the solu-
tions applying many operators and fitness evaluations. For this reason, in this
work we have pursued to design an algorithm that can return a set of solutions
of similar quality to those obtained by the evolutionary proposals, but reducing
the cost of its computation. In this section, it is presented the multi-objective
version of a greedy algorithm, along with the solution encoding used. Then, the
most relevant procedures of the algorithm and enhancements are presented.

3.1 GPPR: A GRASP Algorithm with Pareto Front and Path
Relinking

GRASP is a multi-start method designed to solve hard combinatorial optimiza-
tion problems, such as the MONRP. It has been used in its simplest version
[3,11] to solve the requirements selection problem.

The basic actions of a canonical GRASP procedure consist of generating
solutions iteratively in two phases: a greedy randomized construction and an
improvement by local search (see Sects. 3.3 and 3.4). These two phases have to
be implemented specifically depending on the problem at hand.

We have designed a variant of the GRASP procedure with the goal of solv-
ing the MONRP in a hybrid manner, that is, applying both single-objective and
multi-objective search methods. The algorithm, named GRASP algorithm with
Pareto front and Path Relinking (GPPR), executes a fixed number of iterations,
generating at each iteration a set of solutions, instead of only one solution per
iteration (which is a different approach from the canonical GRASP that gener-
ates one solution per iteration, but in the end works identically). Additionally, we
have extended the procedure, updating the Pareto front with the new solutions
found after each iteration, and adding a post-improvement procedure known as
Path Relinking (see Sect. 3.5), that will enhance the quality of the Pareto front
found by exploring trajectories that lead to new non-dominated solutions. The
pseudocode of GPPR is shown in Algorithm 1.

Each one of the operators included in the pseudocode is described in detail
in Sects. 3.3, 3.4 and 3.5, respectively. As explained previously, GPPR is an
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Algorithm 1. GPPR pseudocode
procedure GPPR(maxIterations)

nds ← ∅ � empty set of non-dominated solutions
for i = 0 to maxIterations do

solutions ← constructSolutions()
solutions ← localSearch(solutions)
solutions ← pathRelinking(solutions, nds)
nds ← updateNDS(solutions)

end for
return nds

end procedure

algorithm that applies a hybrid approach. It maintains and updates at each
iteration a set of non-dominated solutions, returned in the form of a Pareto
front at the end of the search. However, it uses an aggregate of the two problem
objectives in some phases of the execution (depending on the methods chosen
for each phase).

3.2 Solution Encoding

Each candidate solution in GPPR is represented by a vector of booleans of length
n. Each value of the vector indicates the inclusion or not of a requirement of
the set R (see Sect. 2.2). The satisfaction and effort of each requirement are
scaled using a min-max normalization. Each solution is evaluated by means of
a singleScore value that mixes the scaled satisfaction and effort of the set X of
selected requirements in the solution . In this version of the GPPR, we did not
model cost restrictions nor interactions between requirements .

3.3 Construction

In this phase a number of solutions are constructed. Their generation can be
either randomized or stochastic. We have designed two methods for the con-
struction phase:

– Uniform. First, the number x of selected requirements is randomly chosen.
Then, x requirements are selected randomly, having each requirement r of the
set R of length n a probability 1

n of being selected. This construction method
works as a random selection of requirements.

– Stochastic. The probability of each requirement being selected is propor-
tional to its singleScore.

3.4 Local Search

This phase is executed after the construction of an initial set of solutions, and
it aims to find solutions in the neighbourhood that enhance the former ones.
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Since GPPR aims to generate solutions fast, it performs a ranking-based forward
search, in which it tries to find and return a neighbour that is better than the
initial one. This search method tends to fall into local optima, but it can be
corrected increasing the number of executions or applying extra operators after
this phase (see Subsect. 3.5).

3.5 Path Relinking

One of the adverse characteristics of GRASP is its lack of memory structures.
Iterations in GRASP are independent and do not use previous observations. Path
Relinking (PR) is a possible solution to address this issue. PR was originally pro-
posed as a way to explore trajectories between elite solutions. In the problem
being tackled, elite solutions are the non-dominated solutions. Using one or more
elite solutions, trajectories that lead to other elite solutions in the search space
are explored, in order to find better solutions. PR applied to GRASP was intro-
duced by Laguna and Mart́ı [10]. It has been used as an intensification scheme,
in which the generated solutions of an iteration are relinked to one or more elite
solutions, creating a post-optimization phase.

The PR method can be applied either after each iteration, involving a higher
computational cost; or at the end of the execution, relinking only the final elite
solutions, reducing the effectiveness of this method but speeding up the execu-
tion.

In this proposal we have decided to apply PR at each iteration as a third
phase, after the local search. The pseudocode is described in Algorithm 2. For
each one of the solutions found after the local search, this procedure will try
to find a path from each solution to a random elite solution from the set of
non-dominated solutions (NDS). This path will help the procedure to find inter-
mediate solutions that can possibly be better than the former ones. For this
purpose, each solution in the current set of solutions obtained after the local
search is assigned an elite solution from the current NDS. Then, it calculates the
Hamming distance of these two solutions. Having the distance value, the proce-
dure finds the bits that are different, that is, the requirements included in one
solution that are not in the other. Then, it updates the current solution (flips the
bit that returns the highest singleScore value) and saves the new path solution
in a solution path list, decrementing the distance from the current solution to
the elite one. When the distance is zero, the best solution found in the path
is appended to a set of best solutions (bestSols in Algorithm 2) found by the
PR procedure. After finding best path solutions for all the initial solutions, the
procedure returns the set of former solutions plus the new solutions found.

4 Evaluation Setup

In this section, we present the experimental evaluation. We describe competing
approaches used to be compared against our proposal, along with the datasets
used to evaluate the algorithms. Our algorithms have been implemented in
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Algorithm 2. Path Relinking pseudocode
procedure PathRelinking(solutions, nds)

bestSols ← ∅
for sol in solutions do

currSol ← sol � Create a copy to be modified
eliteSol ← getRandomSol(nds)
distance ← countDistance(currSol, eliteSol)
pathSols ← ∅
while distance > 0 do

diffBits ← findDiffBits(currSol, eliteSol)
currSol ← flipBestBitSingleScore(diffBits)
pathSols ← savePath(currSol)
distance ← distance − 1

end while
bestSols ← bestSols ∪ findBestSol(pathSols)

end for
return solutions ∪ bestSols

end procedure

Python 3.8.8. The source code, experimentation setup and datasets are avail-
able at the following repository: https://github.com/UCLM-SIMD/MONRP/
tree/ola22.

4.1 Algorithms

To properly compare the effectivity and performance of our proposal, besides
GPPR we have included in our experiments the following algorithms: Random
search, Single-Objective GA and NSGA-II. The ranges of parameters used in the
experimentation for each algorithm are described in Sect. 4.3, along with their
descriptions.

4.2 Datasets

We have tested the performance of the algorithms using a variety of datasets
from different sources. Datasets P1 [9] and P2 [11] include 5 clients and 20
requirements, and 5 clients and 100 requirements, respectively.

Due to the privacy policies followed by software development companies,
there is a lack of datasets to experiment with. For this reason, we have created
synthetically a larger dataset (S3) that includes 100 clients and 140 requirements,
in order to evaluate the shift in performance of the algorithms.

4.3 Methodology

We tested a set of configurations for each algorithm and dataset. Each con-
figuration was executed 10 times. For the Single-Objective GA and NSGA-II,

https://github.com/UCLM-SIMD/MONRP/tree/ola22
https://github.com/UCLM-SIMD/MONRP/tree/ola22
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populations were given values among {20, 30, 40, 100, 200} and number of gener-
ations took values {100, 200, 300, 500, 1000, 2000}. Crossover probabilities range
from {0.6, 0.8, 0.85, 0.9}. Two mutation schemes were used, flip1bit and flipeach-
bit, and mutation probabilites from {0, 0.05, 0.1, 0.2, 0.5, 0.7, 1}. Both algorithms
used a binary tournament selection and a one-point crossover scheme. For the
replacement scheme, both Single-Objective GA and NSGA-II applied elitism.
The total amount of different hyperparameter configurations executed for each
GA and each dataset was 1680. Our GPPR algorithm was tested using a num-
ber of iterations from {20, 40, 60, 80, 100, 200, 500} and a number of solutions
per iteration from {20, 50, 100, 200, 300, 500}. We tested all combinations of con-
struction methods, local search and PR (including configurations with no local
search and no PR methods), which resulted in 1008 different hyperparameter
configurations executed for each dataset.

The stop criterion used in other works [3,11,13] is the number of function
evaluations, commonly set to 10000. To adapt our experiments to this stop cri-
terion, we restricted the execution of our GAs to: Pop. size × #Gens. ≤ 10000;
and for the GPPR: Iterations × Sols. per Iteration ≤ 10000.

The GPPR normalizes the satisfaction and effort values, scaling them
between 0 and 1. To properly compare its Pareto front solutions against those
returned by the GAs, these evolutionary approaches have also used the nor-
malized version of the dataset values. To evaluate the results, we compared the
obtained Pareto fronts and a set of quality indicators of the results generated by
the algorithms and their efficiency:

– Hypervolume (HV). Denotes the space covered by the set of non-
dominated solutions [14]. Pareto fronts with higher HV are preferred.

– Δ-Spread. It measures the extent of spread achieved among the obtained
solutions [6]. Pareto fronts with lower Δ-Spread are preferred.

– Spacing. It measures the uniformity of the distribution of non-dominated
solutions [12]. Pareto fronts with greater spacing are preferred.

– Execution time. The total time taken by the algorithm to finish its execu-
tion. Algorithms with lower execution time are preferred.

Mean values of these metrics have been calculated and compared in a pair-
wised manner between algorithms using the Wilcoxon rank-sum non-parametric
test, which allows to assess whether one of two samples of independent observa-
tions tends to have larger values than the other.

5 Results and Analysis

5.1 Best Configurations

The Single-Objective GA’s best hyperparameter configuration includes a popu-
lation size of 100 individuals, a number of generations of 100 (maximum number
to stay under the 10,000 limit) and a Pc = 0.8. The mutation operator that
showed a better performance was the flip1bit. This operator gives a chance of
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Fig. 1. Pareto front for dataset P1 Fig. 2. Pareto front for dataset P2

Fig. 3. Pareto front for dataset S3

flipping only one bit of the booleans vector. The best-performing probability is
Pm = 1, which means that we always mutates one random bit of each individual .
That probability is equivalent to using Pm = 1

n at gene level, n being the number
of genes (scheme used in [6,11]). The best hyperparameter configuration for the
NSGA-II used a population size of 100 individuals and 100 generations. The best
crossover probability (Pc) was the lowest, 0.6, and the best mutation operator
was the flip1bit, using a Pm = 1. For the GPPR , the ratio between iterations and
number of solutions per iteration is less important, as this algorithm does not
have memory. Thus, a similar hyperparameter configuration to those of the GAs
was used. The construction method that showed a better performance was the
stochastic one, giving preference to requirements with higher singleScore. In all
scenarios, hyperparameter configurations with uniform construction performed
worse.

5.2 Pareto Results

Pareto results are shown in Figs. 1, 2 and 3. For the sake of space, we omit results
of worst-performing hyperparameter configurations.

The Single-Objective GA shows bad performance, being similar to that of
the random procedure. This occurs due to the low number of generations set
to keep the maximum number of function evaluations. Configuring a number of
generations of one or two magnitude orders higher increases the quality of its
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Pareto front. Regarding the Pareto front distribution, this GA’s aggregation of
objectives biases the search, leaving unexplored areas.

The NSGA-II algorithm generates Pareto fronts of better quality: better
solutions and more distributed along the search space. As expected, the crowding
operator of the algorithm helps exploring the search space. However, as the
dataset size increases, its performance decreases significantly. The reason is the
limited number of generations, as this algorithm is expected to perform better
in larger datasets when compared against other search methods.

Multi-Objective (MO) local search methods do not worsen the solutions, but
do not improve them either, as a GPPR without local search is returning similar
Pareto fronts. This implies that local search methods that can only explore the
neighbourhood of a solution are not able to improve the solutions. Nevertheless,
the PR procedure is capable of finding better solutions. In all cases, algorithms
applying this methods returned Pareto fronts of higher quality. Regarding the
Pareto distribution, as this procedure starts each iteration randomly, it explores
the majority of the search space. The most interesting feature of the GPPR is
that, while the dataset size grows, its performance is not demeaned. Therefore,
unless the search space is much larger, our GPPR proposal can return a Pareto
front of acceptable quality very efficiently, while GAs require higher number of
iterations, impplying a less affordable computational cost.

5.3 Metrics Results

The mean values of the metrics obtained for each algorithm and dataset after
10 independent runs have been statistically compared, as explained in Sect. 4.3.
Each metric mean value has been compared pair-wise between algorithms, denot-
ing the best value in bold and indicating the values that are statistically worse
(P < 0.05) with a ↓ symbol (see Table 1).

Regarding the HV metric, our GPPR algorithm has obtained significantly
better results than the two GAs in datasets P2 and S3, and worse results for
dataset P1, whose search space is very small. These results only denote that the
extreme solutions of the Pareto front returned by GPPR cover a larger area than
those obtained by the GAs.

The Δ-Spread values show that the Single-Objective GA obtains the lowest
values, that is, the best Δ-Spread values. Nevertheless, our GPPR proposal
obtains values lower than those of the NSGA-II, outperforming it once again.

The spacing values show that, again, the GPPR outperforms the two GAs in
the two larger datasets. Comparing the spacing values of the smallest dataset, P1,
it is observed that GPPR spacing values decrease, being close to those obtained
by the NSGA-II algorithm. However, in datasets P2 and S3, the GPPR spacing
values are significantly greater.

Finally, for the execution time, it is important to consider that comparison
between our experiments and those made by other studies is only possible if the
same software and hardware requirements are met. Otherwise, only the differ-
ence in execution time between algorithms of the same study can be analyzed.
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The fastest algorithm is the Single-Objective GA, due to the lightweight meth-
ods and few generations that it had executed. The NSGA-II obtained the worst
values, because of the additional steps executed at each iteration, and despite
implementing a fast-sorting method. When compared against our GPPR pro-
posal, the difference is significant, being the NSGA-II almost ten times slower for
the smallest dataset (P1), and fairly slower for larger datasets. It is interesting
to highlight that, as dataset size grows, the difference between the NSGA-II and
our GPPR proposal decreases. However, MONRP instances are not expected to
have a scale large enough that the NSGA-II could outperform our GPPR. There-
fore, these values demonstrate that our proposal can be applied satisfactorily to
MONRP reducing drastically computational cost.

Table 1. Average metrics of the best configurations for each dataset

Dataset Algorithm HV Δ-Spread Spacing Exec. time (s)

P1 Single-objective GA 0.594↓ 0.615 0.323↓ 17.967

NSGA-II 1.0 0.963↓ 0.382 180.991↓
GPPR 0.909↓ 0.644 0.371↓ 18.102

P2 Single-objective GA 0.157↓ 0.637 0.128↓ 82.713

NSGA-II 0.407↓ 0.969↓ 0.245↓ 616.415↓
GPPR 0.973 0.688↓ 0.300 250.841↓

S3 Single-objective GA 0.102↓ 0.720 0.105↓ 125.702

NSGA-II 0.286↓ 0.970↓ 0.206↓ 859.928↓
GPPR 0.977 0.711 0.293 488.045↓

6 Conclusions and Future Work

In this paper, we have studied the applicability of a greedy procedure (GPPR)
into a multi-objective problem of the Software Engineering field. The MONRP
has been tackled previously using, mainly, evolutionary approaches. Few pro-
posals have used GRASP-based methods, usually applying basic instances of
it. Our proposal aimed to design a method capable of generating solutions of
similar quality than those of the evolutive approaches, but reducing drastically
the computational cost. We have explored different combinations of construc-
tion and local search methods, and applied post-construction techniques, such
as PR, to improve the solutions found. To evaluate our proposal and compare
it against classic methods, we have designed an experimentation framework, in
which we have used two real-world datasets and created a new one synthetically,
setting a rigorous experiment. The comparison have been carried out using a
set of quality metrics and comparing the Pareto fronts, obtaining quite good
results and showing that our GPPR proposal can outperform more classical and
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popular methods, in both performance and Pareto front results. Moreover, the
code of the algorithms and experiments has been published to be shared by the
scientific community.

In future lines of work, we will explore other approaches to the MONRP. It
would also be interesting to try combining our GPPR with a post-optimization
phase using an evolutive algorithm capable of enhance former solutions. Addi-
tionally, it could be interesting to implement interactions between requirements,
which is of interest when projects use long-term planning.
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Abstract. The simulation-based and computationally expensive prob-
lem tackled in this paper addresses COVID-19 vaccines allocation in
Malaysia. The multi-objective formulation considers simultaneously the
total number of deaths, peak hospital occupancy and relaxation of mobil-
ity restrictions. Evolutionary algorithms have proven their capability to
handle multi-to-many objectives but require a high number of compu-
tationally expensive simulations. The available techniques to raise the
challenge rely on the joint use of surrogate-assisted optimization and par-
allel computing to deal with computational expensiveness. On the one
hand, the simulation software is imitated by a cheap-to-evaluate surro-
gate model. On the other hand, multiple candidates are simultaneously
assessed via multiple processing cores. In this study, we compare the per-
formance of recently proposed surrogate-free and surrogate-based paral-
lel multi-objective algorithms through the application to the COVID-19
vaccine distribution problem.

1 Introduction

In this paper, we address a multi-objective (MO) COVID-19 vaccines alloca-
tion problem. We aim to identify vaccines allocation strategies that minimize
the total number of deaths and peak hospital occupancy, while maximizing the
extent to which mobility restrictions can be relaxed. The onset of the COVID-19
outbreak has been rapidly followed by the development of dedicated simulation
software to predict the trajectory of the disease [1,2]. The availability of such
tools enables one to inform authorities by formulating and solving optimization
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problems. In [3], a SEIR-model (Susceptible, Exposed, Infectious, Recovered)
is deployed to simulate COVID-19 impacts. A single-objective (SO) problem is
subsequently derived and handled by grid-search to regulate the alleviation of
social restrictions. Multiple SO optimizations are carried out independently by
a simplex or a line search algorithm in [4–6] to efficiently allocate doses of vac-
cines to the age-categories of a population. The number of infections, deaths and
hospital admissions are considered as the possible objective. The prioritization
rules approved by the government of the studied cohort are integrated as con-
straints in the linear programming model presented in [7] to minimize mortality.
In [8], multiple indicators are combined into a scalar-valued objective function.
The MO formulation exhibited in [9] consists in maximizing the geographical
diversity and social fairness of the distribution plan. Nevertheless, the MO prob-
lem is scalarized into a SO one that is then solved by a simplex algorithm. The
approach used by Bubar and colleagues [10] is significantly different to ours,
as the authors predefined a set of vaccination strategies and selected the most
promising approach among them. In contrast, our continuous optimisation app-
roach automatically designs strategies in a fully flexible way. The optimisation
problem solved by McBryde and colleagues [11] is closer to that presented in
our work since a similar level of flexibility was allowed to design optimal vac-
cines allocation plans. However, the authors used a simpler COVID-19 model
resulting in significantly shorter simulation times, such that optimisation could
be performed using more classical techniques. To the best of our knowledge, it
has not been suggested yet to simultaneously minimize the number of deaths,
peak hospital occupancy and the degree of mobility restriction through a MO-
formulated problem. The fact that we consider the level of restrictions as one of
the objectives to minimise represents a novelty compared to the previous works.

Despite the relative computational expensiveness of infectious disease trans-
mission simulators, surrogate-based optimization has been rarely applied to the
field. In [12], we harnessed surrogate models to determine the allocation of preven-
tive treatments that minimize the number of deaths caused by tuberculosis in the
Philippines. The identification of the regime for tuberculosis antibiotic treatments
with lowest time and doses is formulated as a SO problem in [13] and solved by a
method relying on a Radial Basis Functions surrogate model. The work presented
in [14] deviates from this present study in that it aims to conceive a model prescrib-
ing the actions to perform according to a given situation. It is actually more related
to artificial neural network hyper-parameters and architecture search. What is
called “surrogate” in [14] is actually denominated “simulator” in simulation-based
optimization. In this work, we combine machine learning and parallel computing
to solve the MO vaccine distribution problem.

This study demonstrates the suitability of parallel surrogate-based multi-
objective optimization algorithms on the real-world problem of COVID-19 vac-
cines allocation. The COVID-19-related problem is detailed in Sect. 2 and the
MO algorithms are exposed in Sect. 3. Both surrogate-based and surrogate-free
parallel MO approaches are applied to the real-world challenge in Sect. 4 and
empirical comparisons are realized. Finally, conclusions are drawn in Sect. 5 and
suggestions for future investigations are outlined.
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2 COVID-19 Vaccine Distribution Problem

The vast vaccination programs implemented over the last year or so all around
the world achieved dramatic reductions of COVID-19 hospitalizations and deaths
[15]. However, access to vaccination remains challenging, especially for low- to
middle-income countries that are not able to offer vaccination to all their citizens
[16]. The problem we are concerned with consists in optimizing the age-specific
vaccines allocation plan to limit the impact of the disease in Malaysia under
a capped number of doses. The population is divided into 8 age-categories of
10-years band from 0–9 years old to 70+ years old and the impact is expressed
in terms of total number of deaths and peak hospital occupancy.

The simulation is realized in three phases by the AuTuMN software publicly
available in https://github.com/monash-emu/AuTuMN/. The simulator is cali-
brated during the first phase with data accumulated from the beginning of the
epidemic to the 1st of April 2021. The second phase starts at this latter date
and lasts three months during which a daily limited number of doses is shared
out among the population. Relaxation of mobility restrictions marks the kick-
off of the third phase in the course of which a new distribution plan is applied
involving the same number of daily available doses as in phase 2.

Decision variables xi ∈ [0, 1] for 1 � i � 8 and for 9 � i � 16 represent the
proportions of the available doses allocated to the 8 age-categories for phase 2 and
phase 3 respectively. Variable x17 ∈ [0, 1] expresses the degree of relaxation of
mobility restrictions where x17 = 0 leaves the restrictions unchanged and x17 =
1 means a return back to the pre-covid era. The following convex constraints
convey the limitation of the number of doses during phases 2 and 3:

8∑

i=1

xi � 1 and
16∑

i=9

xi � 1 (1)

The three-objective optimization problem consists in finding x∗ such that

x∗ = arg min
x∈[0,1]17 s.t. (1)

(g1(x), g2(x), 1 − x17) (2)

where g1(x) is the simulated total number of deaths and g2(x) the simulated
maximum number of occupied hospital beds during the period.

3 Parallel Multi-objective Evolutionary Algorithms

3.1 Variation Operators of Evolutionary Algorithms

Evolutionary Algorithms (EAs) are harnessed to deal with the COVID-19-
related problem exhibited previously. In EAs, a population of solutions is
evolved through cycles of parents selection, reproduction, children evaluation
and replacement. EAs are chosen because they have proven their effectiveness on

https://github.com/monash-emu/AuTuMN/
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numerous multi-objective real-world problems [17] where the objective functions
are black-box as it is the case in our scenario. The constraint being convex and
analytically verifiable, it is thus possible to design specific reproduction oper-
ators that directly generate feasible candidates. Assuming that every feasible
solution can be reached, this technique has shown to be a reliable one [18].

The specific cross-over operator, called distrib-X, considers the two phases
and the degree of relaxation independently. For two parents x and y, the last
decision variable for the two children z and t is set such that z17 = x17 and
t17 = y17. Regarding the second phase, let I and J be a random partition of
{1, . . . , 8}. For the age categories in I, z receives the proportion of vaccines from
x (zi = xi for i ∈ I). The remaining proportion of available doses at this step
is r = 1 − ∑

i∈I xi. For the age categories in J , the remaining proportion of
doses is shared out according to the proportion allocated to the corresponding
age categories in y. In other terms, for j ∈ J , zj = r.yj∑

j∈J yj
. A similar treatment

is applied to the variables associated to the third phase. The second child t
is generated with an analogous procedure, where the roles of the parents are
reversed.

The specific mutation operator, denoted distrib-M, disturbs a decision vari-
able randomly chosen with uniform probability for {1, . . . , 8}, {9, . . . , 16} and
{17}. The last decision variable is mutated by polynomial mutation [17]. For the
remaining ones, two age categories of the same phase are randomly selected and
a random amount of doses are transferred from the first category to the second
one. Both distrib-X and distrib-M are inspired by [12].

The intermediate and the 2-points cross-over operators [17] are also consid-
ered for the sake of comparison. The intermediate strategy combines parents by
random weighting average, while the 2-points operator distributes portions of
parents to the children. The portions are defined by two points with the first
one separating phase 2 and phase 3 and the second one located between phase
3 and the relaxation decision variable x17.

3.2 Parallel Multi-objective Evolutionary Algorithms

The major challenge in multi-objective optimization is to balance convergence
and diversity in the objective space. Convergence is related to the closeness
to the Pareto Front (PF) [17]. The PF is the set of the overall best solutions
represented in the objective space and the Non-Dominated Fronts (NDFs) are
approximations of the PF. Diversity is indicated by an extended coverage of the
objective space by the NDFs. Hereafter, we present four algorithms to set this
trade-off.

The first algorithm considered in the comparison is the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [19]. Firstly, to promote convergence, solu-
tions pertaining to better NDFs are better ranked. Secondly, to favor diversity,
solutions composing the same NDF are distinguished by setting the promise as
high as the crowding distance is high. The proposed sorting is employed at the
selection and the replacement steps of the EA.



Parallel Surrogate-Based Multi-objective Optimization 205

The second algorithm reproduced for the experiments is the Reference Vec-
tor guided Evolutionary Algorithm (RVEA) proposed in [20] to handle many-
objective problems. A set of reference vectors is introduced in order to decom-
pose the objective space and to enhance diversity. New candidates are attached
to their closest reference vector, thus forming sub-populations among which only
one candidate is kept at the replacement step. The new angle penalized distance
chooses adaptively the candidate to be conserved by favoring convergence at the
beginning of the search and diversity at latter stages. It is worth noting that the
population size may change during the search in RVEA due to the possibility
of empty sub-populations. In cases of degenerated or disconnected PF a high
number of sub-populations become empty and the NDF obtained at the end of
the search may not be dense enough. In the RVEA* variant, an additional ref-
erence vectors set is used to replace the reference vectors that would correspond
to empty sub-populations.

In surrogate-based optimization, the additional trade-off between exploita-
tion and exploration is to be specified. Minimizing the predicted objective vec-
tors (POVs) produced by the surrogate boosts exploitation of known promising
regions of the search space. Conversely, maximizing the predictive uncertainty
enhances exploration of unknown regions.

The third algorithm is the surrogate-based Adaptive Bayesian Multi-
Objective Evolutionary Algorithm (AB-MOEA) [21]. The first step of a cycle
in AB-MOEA consists in generating new candidates by minimizing the POVs
thanks to RVEA. During the second step, the new candidates are re-evaluated
by an adaptive function that favors convergence at the beginning and reinforces
exploitation as the execution progresses by minimizing the predictive uncertainty
delivered by the surrogate. At the third step, q candidates are retained based on
an adaptive sampling criterion similar to the reference vector guided replacement
of RVEA to promote diversity.

The fourth algorithm is the Surrogate-Assisted Evolutionary Algorithm for
Medium Scale Expensive problems (SAEA-ME) [22]. In SAEA-ME, NSGA-II
is used to optimize a six-objective acquisition function where the three first
objectives are the POVs and the last three objectives are the POVs minus the
predictive variances. From the set of proposed candidates, the q ones showing
the best hyper-volume improvement considering both the POVs alone and the
POVs minus two variances are retained for parallel simulations. SAEA-ME per-
forms well on problems with more than 10 decision variables. The dimensionality
reduction feature proposed in [22] is not considered here as it consumes compu-
tational budget and can be applied to any method.

A Multi-Task Gaussian Process (MTGP) surrogate model [23] is implemented
via the GPyTorch library [24] and incorporated into both AB-MOEA and SAEA-
ME. Using a MTGP to model multiple objectives has been realized in [25] to
control quality in sheet metal forming. In a traditional regression GP [26], a
kernel function is specified to model the covariance between the inputs, thus
allowing the model to learn the input-output mapping and to return predictions



206 G. Briffoteaux et al.

and predictive uncertainties. In the MTGP, inter-task dependencies are also
taken into account in the hope of improving over the case where the tasks are
decoupled.

In the present investigation, the tasks are the three objectives and five kernel
functions are considered for comparison. The widely used Radial Basis Func-
tions kernel, denoted rbf and described in [26], provides very smooth predictors.
According to [27], the Matern kernel with hyper-parameter ν = 1.5 or 2.5, called
matern1.5 and 2.5 respectively, is to be preferred to model many physical phe-
nomena. The higher predictive capacity Spectral Mixture kernel proposed in [28]
is also raised with 2 and 4 components, denominated sm2 and sm4 respectively.

4 Experiments

The computational budget is set to two hours on 18 computing cores, thus
allowing 18 simulations to be realized in parallel. The simulation duration varies
from one solution to another from 13 to 142 s on one computing core. The four
competing algorithms are implemented using our pySBO Python tool publicly
available at: https://github.com/GuillaumeBriffoteaux/pySBO. Ten repetitions
of the searches are carried out to ensure statistical robustness of the comparisons.
The reference point for hyper-volume calculation is set to an upper bound for
each objective (32.106; 32.106; 1.5).

The surrogate-free approaches NSGA-II, RVEA and RVEA* are equipped
with either the distrib-X, the 2-points or the intermediate cross-over operator.
For NSGA-II, the population size ps is set to 108 or 162, thus avoiding the idling
of the computing cores. For RVEA and RVEA*, we choose ps = 105 or 171
to comply with the constraint imposed by the reference vectors initialization
and to keep values close to those imposed for NSGA-II. Ten initial populations
composed of 171 simulated solutions are generated to start the algorithms. Each
initial population is made at 85% of solutions randomly sampled within the
feasible search space and at 15% of candidates picked out on the boundary.
When ps < 171, only the best ps candidates according to the non-dominated
sorting defined in [19] are retained. For RVEA and RVEA*, a scaled version of
the problem, where the first two objectives are divided by 1000, is also considered
to demonstrate the effect of the objectives scales on the behavior of the methods.

The surrogate-based approaches AB-MOEA and SAEA-ME only integrate
the distrib-X operator and use all the 171 initial samples as initial database. For
RVEA in AB-MOEA, ps = 105 and the number of generations is fixed to 20 as
recommended in [21], while ps = 76 for NSGA-II in SAEA-ME according to the
guidance provided in [22] and the population evolved for 100 generations.

Table 1 shows the ranking of the algorithms according to the final hyper-
volumes averaged over the ten repetitions. It can be observed in Table 1 that
all the surrogate-based strategies outperform all those without surrogate. In
particular, SAEA-ME with the matern1.5 kernel is the best approach. The
MTGP equipped with the matern1.5 covariance function is preferred in both

https://github.com/GuillaumeBriffoteaux/pySBO
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the SAEA-ME and AB-MOEA frameworks. Regarding the surrogate-free meth-
ods, NSGA-II with the distrib-X cross-over mechanism and ps = 108 yields the
best averaged hyper-volume. It is worth noticing that the distrib-X operator,
specifically designed for the problem at hand, is to put forward as it surpasses
both the intermediate and the 2-points strategies in all contexts. Among the
RVEAs, the best variant is RVEA* with ps = 105 and the distrib-X cross-over
thus indicating a possibly degenerated or disconnected PF. Indeed, the PF is
certainly degenerated as indicates Fig. 1 where are plotted the objective vec-
tors from the ten final NDFs obtained by SAEA-ME with the matern1.5 kernel.
When analyzing the influence of objectives scales over the efficiency of RVEA and
RVEA*, the conclusions drawn in [20] are confirmed as both algorithms are more
appropriate when objectives have similar scales. Indeed, the three objectives lie
in [1655; 13, 762], [843; 10, 962] and [0; 1], respectively. The previous ranges are
approximated a posteriori based on 250,664 simulations performed in RVEA and
RVEA* on the original problem. The necessity to adequately scale the objec-
tives brings a disadvantage to RVEAs as the scaling weights are tedious to define
especially in the context of black-box expensive simulations. Another drawback
is the constraints on the population size preventing to totally impede the idling
of computing cores in all scenarios.

Fig. 1. Best NDFs from the 10 repetitions for SAEA-ME with matern1.5 kernel.

Figure 2 monitors the averaged hyper-volume as the search proceeds for the
best strategy per category according to Table 1. The hyper-volume improves
sharply at the very beginning of the search for the surrogate-based methods and
reaches convergence rapidly (around 300 to 500 simulations). NSGA-II converges
much slower but seems not to have converged at the end of the execution. By
the right extremities of the curves, it could be expected that the hyper-volume
returned by NSGA-II exceeds the one from AB-MOEA for larger numbers of sim-
ulations. However, reiterating the experiments for a time budget of four hours has
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Table 1. Ranking of the surrogate-based and surrogate-free approaches according to
the averaged final hyper-volumes over the 10 repetitions.

Algorithm Cross-over Population GP kernel Objectives Averaged final

operator size scaling Hyper-volume

(×1010 + 1.535 × 1015)

SAEA-ME distribX 76 matern1.5 – 80.1800

SAEA-ME distribX 76 matern2.5 – 80.1610

SAEA-ME distribX 76 rbf – 79.9541

SAEA-ME distribX 76 sm2 – 79.6701

AB-MOEA distribX 105 matern1.5 – 79.6200

AB-MOEA distribX 105 matern2.5 – 79.5879

SAEA-ME distribX 76 sm4 – 79.5789

AB-MOEA distribX 105 sm4 – 79.4861

AB-MOEA distribX 105 sm2 – 79.4841

AB-MOEA distribX 105 rbf – 79.4304

NSGA-II distribX 108 – – 79.3337

NSGA-II distribX 162 – – 79.1876

RVEA* distribX 105 – yes 77.2805

RVEA* distribX 171 – yes 77.2514

RVEA distribX 171 – yes 77.1287

RVEA distribX 105 – yes 77.0117

NSGA-II intermediate 108 – – 76.9946

NSGA-II intermediate 162 – – 76.8320

NSGA-II 2-points 162 – – 75.6959

NSGA-II 2-points 108 – – 75.5889

RVEA distribX 105 – – 75.5184

RVEA* intermediate 171 – yes 75.3816

RVEA* intermediate 105 – yes 75.2841

RVEA intermediate 171 – yes 75.2006

RVEA intermediate 105 – yes 75.1562

RVEA* distribX 105 – – 75.1555

RVEA* distribX 171 – – 75.1372

RVEA distribX 171 – – 75.0563

RVEA* 2-points 171 – yes 74.9803

RVEA 2-points 171 – yes 74.9195

RVEA 2-points 105 – yes 74.7692

RVEA* 2-points 105 – yes 74.7535

RVEA* intermediate 105 – – 74.5607

RVEA intermediate 105 – – 74.5585

RVEA intermediate 171 – – 74.4959

RVEA* intermediate 171 – – 74.4266

RVEA 2-points 171 – – 74.3694

RVEA 2-points 105 – – 74.3518

RVEA* 2-points 171 – – 74.3264

RVEA* 2-points 105 – – 74.2507
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not allowed to verify this expectation. Figure 2 specifies that the impact of objec-
tives scaling on RVEAs appears from around 300 simulations. In the setting of a
capped computational budget, it is important to strongly favor convergence and
exploitation at the onset of the search. SAEA-ME and AB-MOEA realizes this
by minimizing the POVs at the top beginning of the execution. The difference
between the two approaches lies in the incorporation of the predictive uncer-
tainty. In SAEA-ME, a degree of exploration is maintained by maximization of
the predictive variance. Conversely, minimization of the predictive uncertainty
is involved at latter stages in AB-MOEA. In spite of the convergence-oriented
strategy adopted by RVEAs at the early stages of the search, the embedded
mechanism set up to handle many objectives is quite heavy and reveals to be
unsuitable when the computational budget is restricted. Indeed, in [20] the algo-
rithms are run from 500 to 1,000 generations while 10 to 20 generations are
allowed by our computational budget.

Reducing the solving time of moderately expensive optimization problems
where the simulation lasts less than five minutes may enable to manage opti-
mization under uncertainty. As the calibration of the simulation tool is uncertain,
multiple configurations of its parameters can be considered, resulting in multiple
optimization exercises to be executed and thus enabling to gain insight about
the variability of the results.

Fig. 2. Averaged hyper-volume according to the number of simulations.

The optimal allocation plan implies providing 70% of the doses to the 10–19
years old age-group and 30% to the 20–29 age-group during phase 2 according to
Fig. 3. In phase 3, 70% of the doses are assigned to 20–29 years old individuals
and 15% to both the 40–49 and 10–19 age-categories. This plan prioritizes the
vaccination of younger adults as they are the most transmitting cohort because of
their high contact rate in the population [29]. Nevertheless, the present results
have to be considered with caution. Since our experiments date back to the



210 G. Briffoteaux et al.

beginning of 2021, few feedback about vaccination efficiency was available. It is
assumed here that the vaccine reduces transmission although it might not be
the case for the Omicron variant of concern that started to break through the
world at the end of 2021. Our results are similar to those presented in [30,31]
for influenza. From Fig. 4 where the total number of deaths and the maximum
number of occupied hospital beds are displayed with respect to the relaxation
variable x17, the alleviation of the physical distancing reveals to trigger an aug-
mentation of the hospital occupancy and deaths.

Fig. 3. Vaccines distribution according to age-categories. Averaged solutions from the
best final NDFs returned by the 10 repetitions for SAEA-ME with matern1.5 kernel.

Fig. 4. Total number of deaths and maximum number of occupied hospital beds accord-
ing to relaxation of the physical distancing x17. Best NDFs from the 10 repetitions for
SAEA-ME with matern1.5 kernel.
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5 Conclusion

This paper demonstrates the suitability of parallel surrogate-based multi-
objective optimization algorithms to handle the moderately computationally
expensive COVID-19 vaccines allocation problem for Malaysia. In particular,
SAEA-ME provides reliable results in a fast way. As future works, we suggest
to benefit from the computational cost reduction of black-box simulation-based
problem solving to take the uncertainty around the calibration of the simulator
into account.
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Abstract. Despite the studies on human resource allocation, a problem
of dissatisfied employees arises in developing and under-developed coun-
tries while decentralizing human resources nationwide since rural areas
have fewer facilities than urban areas. Randomly allocating employees
contributes to employees’ dissatisfaction if they are displeased with where
they are assigned, leading to an unstable work environment. However,
allocating employees solely based on their satisfaction may lead to a
centralized solution around the urban cities. Therefore, employee satis-
faction and dispersion are the two most essential but opposing factors
for employee decentralization in developing countries.

In this study, we have addressed the problem of employee decen-
tralization by proposing a Multi-Objective Optimization approach that
maximizes the two conflicting objectives: employee satisfaction (ES) and
employee dispersion (ED). A neural network is applied that predicts the
ES of an employee allocated in an area/city. Moreover, we have for-
mulated a dispersion function that provides a score based on how well
dispersed a specific allocation is. Using a Multi-Objective evolutionary
algorithm, we have developed an allocation framework that maximizes
these conflicting objectives and finds optimal allocations.

Keywords: Employee dispersion · Employee satisfaction · Human
resource allocation in developing countries · Multi-objective
evolutionary algorithm

1 Introduction

Non-optimal worker allocation in developing countries is a crucial problem to be
solved. There are studies on identifying the problems regarding resource alloca-
tion and on finding the optimal solutions [1,2]. However, these studies do not
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address the problem of declining employee satisfaction and productivity [3] when
the workforce is decentralized throughout developing and underdeveloped coun-
tries. In developing countries, such as Bangladesh [4], rural areas are primarily
under-developed as compared to urban areas, motivating the majority of peo-
ple to move to cities for their livelihood [5]. Consequently, the workforce tends
to be centralized around cities [6]. These problems are more observed explic-
itly among essential workers such as doctors [7], who are often forced to work
in rural areas [8]. Most people designated to such areas show acute urgency
to move away posthaste [9] owing to extreme dissatisfaction, causing a higher
turnover rate and an unstable work environment [10]. On the other hand, the
critical problem with allocation solely based on employee satisfaction is that the
majority of the professionals would be more interested in working in the more
facilitated areas [5]. Thus, the density of worker allocation would be skewed in
favor of regions with more amenities, which will result in a vacuum of profes-
sionals in underdeveloped regions. Therefore, we need to implement a method
to ensure the proper balance between worker dispersion and satisfaction.

To tackle the problem, we first predict employee satisfaction allocated to a
particular area/city using Multi-Layer Perceptron (MLP) with nine influencing
factors. In addition to this, we formulated a dispersion function that calculates
the decentralization score of an allocation1. These two objectives are contra-
dictory, especially for developing countries such as Bangladesh; hence, we use
Multi-Objective Optimization to simultaneously maximize these objectives.

2 State of the Art

There have been multiple studies on resource allocation, and human resource
allocation [1,2]. The author of [1] has proposed a multi-objective optimization
solution aiming at minimizing total cost resulting from resource overallocation,
project deadline exceedance, and day-by-day resource fluctuations. In the study
[2], the author has shown how the Multi-Objective Particle Swarm Optimization
Algorithm can be used for multi-criteria human resource allocation. Another
study [11] focuses on minimizing total cost and the total time of logistic relief
operation in emergencies.

Several studies can be found that focus on worker and resource distribution
in countries such as Nigeria [12] and China [13]. The author of [12] focused on the
factors that hinder recruitment and retention of the healthcare workforce, such
as insufficient infrastructure, inadequately trained staff, sub-optimal distribu-
tion of healthcare workers, mainly in the rural areas, and suggested approaches
to improve this situation in Nigeria. The authors of [13] pointed out the eth-
ical flaws in various Government policies leading to the inequality in resource
distribution and have proposed countermeasures that optimize resource alloca-
tion, such as formulating better policies, strengthening the responsibilities of
both governmental and public financial investments, improving the utilization
of resources.
1 An allocation refers the assignments of m number of employees to n number of cities.
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Two works are found that focused on the satisfaction of customers [14] and
employees [15]. The author of [14] proposed a Satisfaction Function (SF) which is
based on the customers’ attitude regarding the products the company is offering.
The authors of [15] proposed to make the work environment suitable enough such
that the employees can have more decision-making power which will increase sus-
tainable practices and improve employee satisfaction. Another study [16] focused
on finding the relationship between employee engagement and job satisfaction.
They have also extracted seven job satisfaction factors, such as work culture and
fairness at work. In [17], employee satisfaction has been predicted by a machine
learning model by analyzing employees’ reviews.

To best our knowledge, although there have been several works on human
resource allocation, the problem of maximizing human resource dispersion (i.e.,
decentralization) while also maximizing employee satisfaction in their newly des-
ignated area has not been addressed yet. There have been studies regarding iden-
tifying job-satisfaction influencing factors inside organizations [17], but none of
these studies focuses on identifying the influencing factors of employee satisfac-
tion when they are allocated to new geographical areas.

3 Methodology

To maximize the two conflicting objectives of the problem: employee satisfac-
tion and dispersion, we formulate the problem as a multi-objective optimization
problem. We develop a learning model for our satisfaction predictor and for-
mulate the dispersion function. Finally, optimized solutions are found by using
a multi-objective evolutionary algorithm. The details of our methodology are
presented in this chapter.

3.1 Problem Formulation

Please consider that we want to allocate m number of people to n number of
areas. We have to find optimal solutions that maximize the total satisfaction of
m people while fulfilling all n cities’ demands of employees as much as possi-
ble. In order to solve this, we use the following two inputs in our optimization
framework:

– Cities or areas where we want to allocate our employees: The number
of vacancy each of these cities have for a given profession.

– The people we want to allocate to different cities: Individual descrip-
tion of each of these people as required by the SF (more description in 3.4).

In order to represent the first input, we considered an array where the indexes
represent the cities and the values in the indexes represent the maximum capacity
or requirement/demand of the corresponding city has for a specific profession.
We call this our “Capacity Array”. We demonstrate a figure representing our
Capacity Array in Fig. 1, where a0 − a5 denotes the considered six areas. For
example, area number 0, or a0 has six vacancies, a1 has seven vacancies, and so
on. Similarly, our second input is represented by an array that we call “Employee
Array”, where each value represents the information of an individual employee.
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Fig. 1. Capacity array

3.2 Problem Representation

We represent the problem as an array of size m, where the value of the specific
element of the array can be 1 to n. For example, a value of 5 at the index 1 of
the array means employee number 5 is assigned to city number 1. An illustration
is shown below in Fig. 2.

Fig. 2. Output of optimization framework

3.3 Overview of the Objectives

In this section, we have briefly described both of our objectives: employee satis-
faction and dispersion.

– Satisfaction: The first objective is the maximization of employee satisfac-
tion. Satisfaction of one employee refers to a number denoting how satisfied
the employee is, on a scale of 1 to 5, when he/she is assigned to a certain
area. If we consider that there are m employees, and if we denote individual
satisfaction as sm then for an allocation, the total satisfaction, S is

S =
m∑

i=1

sm (1)

– Dispersion: Our second objective is to increase the dispersion of a solution,
which refers to allocating as well-spread as possible. A trend in developing
countries [18] employees are satisfied only when they are designated to devel-
oped regions. Therefore, maximizing satisfaction reduces dispersion.

3.4 Modelling Satisfaction Function

In this section, we will discuss how features for our machine learning model
is selected for the satisfaction prediction of an employee. A social experiment
is conducted for feature selection and the data collection process. Afterward,
machine learning algorithms are used for modeling employee satisfaction.
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Feature Selection. In order to design the SF, we first needed to explore the
factors/features that influence satisfaction. To ensure an unbiased process, we
performed a social experiment by randomly choosing 20 unrelated people. We
asked them one question: which factors would affect their living satisfaction in an
area outside the capital. We completed the experiment without the respondents
knowing which parts of their answers we would use in our research to avoid any
bias. We present the results below.

– No one would move to any city with high crime rates.
– Seventeen of them would be happier if closer to their families.
– Three of the five married people did not want to move without their spouses.
– Four out of the five married people additionally mentioned that having good

schools in their area would be vital to them.

Upon introducing the topic of average house rent of the city, as some cities
have higher house rent, all of them agreed to this being a significant issue to con-
sider. Their answers were varied based on gender, age, and occupation. Therefore,
nine factors/features are chosen from this social experiment to use in our data
collection process: gender, age, occupation, security, house rent, travel time from
hometown, schooling, marital status, and spouses’ willingness to relocate with
their partners.

Creating Questionnaires. There being no curated dataset to train our satis-
faction predictor, we created our own dataset by circulating questionnaires. We
have categorized gender, age, occupation, marital status, and spouses’ willing-
ness to relocate with their partners as demographic factors. The rest four factors
are scenario-based.

These remaining four scenario-based factors have three levels: low, medium,
and high. The respondents have been presented with a scenario by combining
the different levels of the four features and asked to provide a satisfaction score.

There are a total of 34 or eighty-one possible scenarios. It was impracti-
cal to ask to score each respondent all 81 virtual scenarios. Therefore, we had
to carefully partition the larger set of eighty-one scenarios into smaller groups,
each consisting of three unique scenarios. Thus, (81/3) = 27 sets of question-
naires were formed, with each one consisting of identical demographic questions
and three unique scenario-based questions. The three scenarios in each set were
noticeably different enough, so the respondents could easily differentiate them.
A sample set of three virtual scenarios representing three areas is as follows:

– low security, medium schooling facilities, low house rent, medium travel time
from hometown

– medium security, low schooling facilities, medium house rent, low travel time
from hometown

– high security, high schooling facilities, low house rent, high travel time from
hometown

We asked the participants to rate their satisfaction on a scale of 1 to 5 for each
scenario.
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It was vital to evenly distribute these 27 sets among the respondents as we
want to collect respondents’ satisfaction for all data points. Therefore, we created
a website where we uniformly sampled the scenarios presented to users to ensure
balanced distribution. We have collected 855 data points in total.

Necessity of Learning Models/Algorithms. It is necessary to predict
employee satisfaction for our allocation framework. SF modeling problem can
be considered as a regression problem. However, satisfaction cannot be repre-
sented as a linear combination of its features because it is a complicated and
non-linear psychological issue that can vastly vary even within the same demo-
graphic. These correlations can be identified by advanced machine learning mod-
els. Therefore, We have experimented with various machine learning regression
algorithms (presented in Sect. 4.1) to see which one performs best for our case.

3.5 Modelling Dispersion Function

The task of the dispersion function (DF) is to measure the distribution of workers
in different areas/cities in a numeric value. If there are four cities and workers
are assigned in two cities while there is no allocation in the other two cities, the
dispersion value will be lower than the scenario where workers are assigned in
all four cities. We also formulated the function so that it has a relation with the
number of required personnel in each area. We have denoted the dispersion of
an occupation p by D(p), and the function can be represented as follows:

D(p) = |R(p)| +
n∑

i=1

dpi (2)

Here,
R(p) = { i | 0 ≤ i& alpi ≥ minreqpi } (3)

minreqpi =

⎢⎢⎢⎣
tp ∗ cpi∑n

j=1 cpj
∗ 100

100

⎥⎥⎥⎦ (4)

=

⌊
tp ∗ cpi∑n

j=1 c
p
j

⌋
(5)

dpi =

⎧
⎨

⎩

alpi
cpi

, if alpi ≤ cpi

1 − (alpi −cpi )

cpi
, otherwise

(6)

where,
n = Carnality of the set of areas brought into consideration
R(p) = Set of regions/areas where minimum requirement of allocation of profes-
sion p have been met
dpi = dispersion of an area i of profession p
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minreqpi = Minimum number of employees of profession p that needs to be allo-
cated in area i
alpi = number of person allocated of profession p in area i
cpi = Capacity or requirements of number of profession p in area i
tp = total number of available employees of profession p

The dispersion of an area di is the ratio between the number of allocated
persons and the requirements. If the number of allocations met requirements,
we would achieve area-wise maximum distribution, which is 1. However, the
algorithm may allocate more people than the areas’ requirements. Then, we
subtract a penalty from the maximum dispersion.

Moreover, in most developing countries, there is a shortage of skilled employ-
ees. Therefore, the total number of required people (

∑n
j=1 c

p
j ) is higher than the

available number of people (tp). Therefore, we added a secondary mechanism
(i.e., minreq) to calculate the minimum possible people the algorithm can allo-
cate in an area given that there are tp number of professionals.

Finally, when calculating total dispersion score, the following two factors are
added:

– The number of cities/areas where the minimum number of required employees
for that city/area has been allocated

– Summation of all the area-wise dispersion

The theoretical maximum dispersion value can be achieved if for each city, its
exact number of minreq professionals are assigned to it.

Sample Example. In Table 1, we have presented seven cities indexed from
zero to six. We have mentioned their required number of employees, and have
calculated their minimum requirements, dpi and if their demands have been met.

Table 1. Calculating minimum requirement, dpi and Rp

City no Capacity Allocation minreq dpi Rp

0 6 4 4 0.66 0

1 10 7 7 0.7 1

2 8 6 6 0.75 2

3 10 7 7 0.7 3

4 3 3 2 1 4

5 4 3 3 0.75 5

6 8 6 3 0.75 6

Therefore, R(p) = {0, 1, 2, 3, 4, 5, 6} and |R(p)| = 7. Thus, dispersion, D(p) =
|R(p)| +

∑n
i=1 d

p
i = 7 + 5.316 = 12.316
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4 Experiments and Results

For implementing the SF, we used scikit-learn [19], a python-based machine
learning framework. Implementation2 of multi-objective optimization for find-
ing optimum allocation using SF and DF has been done using jMetalPy [20],
a python-based multi-objective meta-heuristic framework. The results of the
prediction of SF of different learning algorithms are presented. Different hyper-
parameter settings are explored to find the best possible settings. Finally, the
results of two optimization algorithms are shown.

4.1 Results of Satisfaction Modelling

This section shows the results of different learning models. We also present some
of the hyperparameter settings we have experimented with to find the best set-
ting for the model. In Table 2 we have presented the different methods and their
R2 scores [21] on training and cross validation (CV) dataset.

Table 2. R2 score of training and cross validation (CV) for different methods

Name Train CV

Linear regression [22] 40.01% 42.1%

Linear regression in log-space [23] 42.6% 45.3%

Random forest [24] 74.8% 34.0%

2-degree polynomial regression [25] 47.5% 48.1%

3-degree polynomial regression [26] 57.8% 0.43%

Multi layer perceptron regression [27] 51.3% 49.7%

We can see that MLP performs the best R2 score in both training and cross-
validation datasets combined. So, MLP Regression is the best-suited method for
this problem as it has the highest R2 score. Getting an R2 score higher than 0.5
is hard when the model includes human psychology because each human thinks
differently, so it is typically hard to generalize it [28].

Afterward, we do hyperparameter tuning by performing several experiments
with different parameter settings for the MLP model. The dataset was stan-
dardized and normalized before performing the experiments and running the
iterations until convergence. We present the results in Table 3.

2 https://github.com/aniquaTabassum/Undergrad-Thesis.

https://github.com/aniquaTabassum/Undergrad-Thesis
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Table 3. R2 score of training and cross validation

Batch size Optimizer Activation Layers Neurons per layer LR Train CV

8 LBFGS ReLU 3 (100, 8, 8) 0.0013 51.30% 49.74%

8 LBFGS tanh 3 (100, 8, 8) 0.0013 45.06% 46.83%

8 Adam ReLU 3 (100, 8, 8) 0.0013 −80.0% −35.0%

8 LBFGS ReLU 3 (100, 8, 8) 0.0003 50.95% 48.89%

16 LBFGS ReLU 5 (100, 16, 16, 8, 8) 0.0013 49.53% 49.53%

4 LBFGS ReLU 4 (8, 8, 8, 25) 0.0013 49.9% 45.0%

As per Table 3, we chose a 3-layer MLP regressor with ReLU activation func-
tion in the hidden layer, LBFGS optimizer, and a learning rate of 0.0013 as our
model, as this performs the best on both training and cross-validation datasets.

4.2 Results of Optimization

This section presents a scenario of a doctor allocation problem in Bangladesh.
We chose the medical profession for our optimization experiments since they
are categorized as one of the foremost essential workers [7] and are needed in
every region of a country. However, our framework works appropriately for other
professions as well. Afterward, optimization results of the problem are presented.

Scenario: A Doctor Allocation Problem. Thirty-six doctors filled out our
survey, and we have applied our framework to allocate all of them in the seven
major cities of Bangladesh. Even with just 36 employees being allocated to 7
cities, there are 736 possible allocation combinations, which is impossible to
simulate using an exhaustive search. We collect the necessary information (i.e.,
security, house rent, travel time from hometown, schooling) for the seven cities,
and the features of the cities are labeled by different markers (i.e., low, medium,
and high) based on the collected information. For measuring schooling facilities,
the results of the Secondary School Certificate (SSC) exam [29] of the schools
in each of the cities for the year 2019 [30] are considered. We took the median
house rent [31] for each of these cities. Security is estimated by the total crime
rate for each of these cities in 2019 calculated from the data [32]. The maximum
time (data taken from Google Map [33]) required to reach one city to another
is taken as the travel time between two cities. We prefer travel time over road
distance (in KM) because the road distance does not reflect the real situation in
Bangladesh as road traffic condition is very poor3.

Finally, the features of the cities are ranked in low, medium, and high. A
feature value fall within bottom 33.33% is “low”, a value in between 33.33% and
66.66% is “medium”, and a value over 66.66% is considered as “high”.

3 Road distance will perform similarly if the road traffic condition is similar to all over
the region.
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Results. We compare the performance of the two most used multi-objective
optimization algorithms (NSGA-II [34], and SPEA2 [35]) on our problem. Two
algorithms separately ran fifty times to make a statistically significant compari-
son. The parameter settings for the experiment are given below in Table 4.

Table 4. Parameter setting for optimal algorithm

Parameter NSGA-II SPEA-II

Population size 100 100

Crossover type Single-point Single-point

Crossover probability 0.9 0.9

Mutation type Random mutation Random mutation

Mutation probability 0.027a 0.027

Max evaluations 30000 30000
a mutationprobability = 1

number of decision variables
= 1

36
= 0.027

Figure 3 shows the approximated true Pareto-front of the problem. Since the
true Pareto-front is unknown, we ran the algorithm 50 times, merged the results,
and created an approximation of the true Pareto front.

Fig. 3. Approximation of true Pareto-front

In Fig. 3, point p1 is an extreme solution with the highest satisfaction value,
166 out of 185, but has the lowest dispersion value, 4.25 out of the theoretical
maximum value of 12.31. This solution can be chosen when ES is far more
important than ED. Point p3 has the lowest satisfaction value, 130 out of 166, and
the highest possible dispersion score, 12.31. Such a solution is ideal if achieving
maximum dispersion is the goal. Point p2 is a random solution in the Pareto-
front. Here, the satisfaction score is 143, and the dispersion score is 10.61.

Boxplots of hypervolume [36,37], IGD [36,38] and spread [36,39] are pre-
sented in Fig. 4 where we can see that the two algorithms are producing similar
results. It can be concluded that either algorithm could be chosen.
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Fig. 4. Comparison between NSGA-II and SPEA-II

5 Conclusion

In this study, we have proposed a more practical approach for human resource
allocation for developing and under-developed countries, maximizing employee
satisfaction and dispersion, essential for stabilizing the workforce problem in
rural areas. First, we have identified the satisfaction influencing factors for
employees and have gathered a dataset accordingly to create our satisfaction
predictor. Then we mathematically formulated employee dispersion to ensure
fair distribution of employees. Our proposed dispersion function also considers
the shortage of human resources. A multi-objective evolutionary algorithm app-
roach is applied to find the optimal set of solutions, among which any solution
can be chosen based on the situation at hand. On our dataset, the highest sat-
isfaction score achieved by our framework is 166 out of 185 (i.e., 36 doctors
can have maximum satisfaction of 5), and the average satisfaction score of 36
employees is 4.61 out of 5.0, which is very high. Even in a solution where the
dispersion score is 10.61 out of 12.31 (i.e., maximum dispersion can be calculated
theoretically, please see dispersion modeling Sect. 3.5), the average satisfaction
of 36 employees is as high as 3.9. We plan to improve our satisfaction model by
feeding it more data in the future. The proposed allocation framework is general-
ized and can be applied for building an organized and content set of workforce,
since decentralizing employees is becoming a necessity for companies as they
keep expanding, be that among the cities of a country or worldwide.
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Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK)

36. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indi-
cators in multiobjective optimization. Eur. J. Oper. Res. 292(2), 397–422 (2021)

37. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theoret. Comput.
Sci. 425, 75–103 (2012)

38. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-
objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187
(2019)

39. Li, M., Zheng, J.: Spread assessment for evolutionary multi-objective optimization.
In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO
2009. LNCS, vol. 5467, pp. 216–230. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01020-0 20

https://doi.org/10.1007/978-3-642-01020-0_20
https://doi.org/10.1007/978-3-642-01020-0_20


Categorical-Continuous Bayesian
Optimization Applied to Chemical

Reactions

Theo Rabut1(B), Hamamache Kheddouci1, and Thomas Galeandro-Diamant2,3
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Abstract. Chemical reaction optimization is a challenging task for the
industry. Its purpose is to experimentally find reaction parameters (e.g.
temperature, concentration, pressure) that maximize or minimize a set
of objectives (e.g. yield or selectivity of the chemical reaction). These
experiments are often expensive and long (up to several days), making
the use of modern optimization methods more and more attractive for
chemistry scientists.

Recently, Bayesian optimization has been shown to outperform human
decision-making for the optimization of chemical reactions [16]. It is well-
suited for chemical reaction optimization problems, for which the evalu-
ation is expensive and noisy.

In this paper we address the problem of chemical reaction optimiza-
tion with continuous and categorical variables.

We propose a Bayesian optimization method that uses a covariance
function specifically designed for categorical and continuous variables
and initially proposed by Ru et al. in the COCABO method [14].

We also experimentally compare different methods to optimize the
acquisition function. We measure their performances in the optimization
of multiple chemical reaction (or formulation) simulators.

We find that a brute-force approach for the optimization of the acqui-
sition function offers the best results but is too slow when there are many
categorical variables or categories. However we show that an ant colony
optimization technique for the optimization of the acquisition function is
a well-suited alternative when the brute-force approach cannot be (rea-
sonably) used.

We show that the proposed Bayesian optimization algorithm finds
optimal reaction parameters in fewer experiments than state of the art
algorithms on our simulators.

Keywords: Mixed Bayesian optimization · Chemical reaction
optimization · Categorical variables
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1 Introduction

Every chemical reaction is optimized before being industrialized. The goal is
to find, by carrying out experiments, input parameters (e.g. temperature, pres-
sure, residence time, etc.) that offer optimal values for a set of objectives (e.g.
maximize the yield, minimize the production of an impurity, etc.).

The pursuit of high-performance optimization methods is driven by the high
cost of chemical experiments. The performances of optimization methods applied
to chemical reactions are measured against the quality of the solution (i.e. how
close the solution is to the optimization objectives) and how many experiments
are needed to find this solution.

One-Variable-At-a-Time (OVAT) and Design of Experiments (DoE) [1,18]
methods are the most used approaches to optimize chemical reactions. The
OVAT method iterates by performing experiments and modifying only one
parameter at a time. DoE methods consist in planning a series of experiments
following a design matrix, running these experiments and building a statistical
model (usually linear or polynomial) with the resulting dataset. An optimum
is then computed from the model. OVAT and DoE methods tend to need a
large number of experiments to be effective. In addition, OVAT can be very
slow (because only one variable is changed at a time) and can get stuck in local
optima. Simplex-based methods are also sometimes used to optimize chemical
reactions [11,21]. They consists of building a simplex in the search space, then
evaluating the objective function at each of the vertices of the simplex and
iteratively displacing one vertex at a time following heuristics. Simplex-based
methods tend to be easily stuck in local optima [20].

Zhou et al. [23] proposed a deep reinforcement learning (DRL) based method
to optimize chemical reactions. The authors combined DRL and pre-training
to be able to start working with very small amounts of data. This leads to
satisfactory results on problems containing only continuous variables but hasn’t
been tested with categorical variables (without descriptors).

Bayesian optimization (BO) is a powerful approach to optimize problems
for which the evaluations are expensive and noisy. It has shown a variety of
successful applications [15]. BO concepts are described in Fig. 1. First, an ini-
tialisation is done with a small number of experiments. Then, a surrogate model
(e.g. Gaussian process) is trained using these experiments. An acquisition func-
tion, that balances the predicted improvement (exploitation strategy) and the
uncertainty of the predictions (exploration strategy), is applied to the model.
An optimization algorithm is applied to find the maximum of this acquisition
function. The set of parameters that gives this maximal value for the acquisi-
tion function determines the next experiment (chemical reaction) to run. This
experiment is run, its result is added to the dataset, and the algorithm starts
a new iteration. The algorithm stops when the objectives are attained or when
the experiments budget is spent.

Categorical variables are often present in the optimization of chemical reac-
tions [13]. We can cite as an example the choice of a catalyst or additives,
the choice of the solvent or the order of addition of the reactants. Categorical
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Fig. 1. Simplified Bayesian optimization algorithm applied to chemical reactions.

variables have two important particularities. The first one is the non-continuity
constraint, since categorical variables are not defined on a continuous space. The
second one is the non-ordinality constraint: they can only be compared with the
equality operator. For example, with a categorical variable representing a choice
between the solvents water, ethanol, toluene, asserting that water > toluene is
meaningless.

Mixed-variable optimization can be handled with one-hot encoding: a cat-
egorical variable with n categories is encoded as a vector of n corresponding
bits, with all bits being equal to 0 except the bit corresponding to the selected
category, that is equal to 1. However, in the BO algorithm, treating one-hot
dimensions as continuous without any supplementary treatment misleads the
acquisition function optimizer and often results in a sub-optimal solution. Indeed,
the experiment proposed by the acquisition function optimizer is a real-valued
vector and has to be decoded to the closest category. Hence, most of the time,
there will be a gap between the experiment suggested by the acquisition func-
tion optimizer and the experiment that will actually be performed, leading to a
mediocre optimization performance.

The work presented by Garrido-Merchán et al. [4] brings an improvement to
the basic one-hot encoding approach. During the optimization of the acquisition
function, real-valued encoded vectors are transformed to the nearest one-hot
vectors before being used as inputs of the model. It follows that the acquisition
function optimizer considers real-valued vectors as having the same acquisition
values as the associated transformed vectors. Thus, the acquisition optimizer
suggests an experiment that can be performed as is, which ensures the conver-
gence to optimal solutions.

Häse et al. [5] have developed an augmented Bayesian optimization algo-
rithm called Gryffin that uses a Bayesian neural network as surrogate model.
It estimates kernel densities, based on previously evaluated experiments, that
are used to approximate the objective function. Gryffin is able to use expert
knowledge (descriptors) to guide the optimization, which drastically improves
the performances of their method. Its “naive” version doesn’t use descriptors,
which enabled us to use it in our benchmarks.
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COCABO [14] is a Bayesian optimization method designed for mixed-variable
optimization. At each iteration, COCABO first selects categories with a multi-
armed bandit algorithm and then separately optimizes the numerical variables
(after modelling them using a mixed covariance function).

Random forests can be used as surrogate model in Bayesian optimization
instead of Gaussian processes [6]. A ready-to-use implementation of this app-
roach is provided in a package called SMAC [8] which handles categorical vari-
ables.

In this study, we aim at improving the performances (i.e. reducing the num-
ber of experiments necessary to reach an optimum) of the Bayesian optimization
method for the optimization of chemical reactions with continuous and categor-
ical variables. Our approach is based on Gaussian processes as surrogate models
with the COCABO covariance function [14]. We propose different techniques
for the optimization of the acquisition function. Next, we compare the different
acquisition function optimizer on the optimization of simulated chemical reac-
tions. And finally, we compare our optimization algorithm (using the COCABO
covariance function and the highest-performing acquisition function optimizer)
with other state-of-the-art algorithms.

2 Problem Definition

Our work is applied to problems with a form given by:

Minimize f(z) with the smallest possible number of evaluations (1)

where:

– z = (x,h)
– x = x0, .., xn and xi ∈ [Ai, Bi] with Ai, Bi ∈ R

– h = h0, ..., hn and hi ∈ Ci with Ci denotes the categorical space of the ith
categorical variable.

This work is restricted to single objective optimization. Moreover, only contin-
uous and categorical variables are used.

The “No-Free Lunch Theorem” [19] stipulates that the performances of every
optimization methods are equal when averaged on all possible problems. It
implies that in order to increase the performances on a specific optimization
problem (e.g. chemical reaction optimization), we must evaluate the optimiza-
tion method on similar problems without any regards on the performances of
unrelated ones. The underlying functions of chemical reactions have some par-
ticularities: they are smooth and have few local optima [10,17]. So, in order
to be specific to the chemical reaction optimization problem, we measure the
performances of our approach using chemical reaction (or formulation) simu-
lators. We have built these simulations by training machine learning models
with publicly available chemical data (see Table 1). Each data set has been har-
vested from patents or academic articles and are produced by the optimiza-
tion of chemical reactions (or chemical formulations). The individuals of these
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data sets corresponds to experiments where input parameters (e.g. temperature,
choice of catalyst) have been tested and scores have been calculated following
the observations made at the end of these experiments. In the case of the first
Suzuki-Miyaura reaction simulation (second row of the Table 1), there are two
objectives (turnover number and yield). We choose to optimize the mean of the
two scores.

This benchmarking strategy was initially introduced by Felton et al. [3] for
measuring performances on chemical reactions with continuous and categori-
cal variables. It allows us to establish optimization performances on chemical
reactions without having to run experiments in a chemistry lab.

Table 1. Details of the data used to train the simulators

Reaction type Number of experiments Source

Pd-catalysed direct arylation 1728 [16]

Suzuki-Miyaura cross-coupling 4 cases of 96 [3,13]

Stereoselective Suzuki-Miyaura cross-coupling 192 [2]

Polycarbonate resin formulation 100 [9]

3 Propositions

In a first part, we describe the surrogate model including the COCABO kernel
and its hyperparameters. In a second part, we present different approaches for
the optimization of the acquisition function.

3.1 Gaussian Process Kernel

We use Gaussian processes (GP) to approximate the underlying functions of
chemical reactions. It is the most commonly used model since it can inher-
ently predict both a value and an associated uncertainty. Gaussian processes are
mainly defined by their covariance function. Since the underlying functions of
chemical reactions are smooth, we use a smooth covariance function, Matérn5/2

[12], for the continuous dimensions.
The smoothness of the GP on continuous variables is kept with the use of the

one-hot encoding. However, the Euclidean distance used for the calculation of
the Matérn5/2 kernel is based on all dimensions (continuous and encoded). We
believe that, in order to capture complex relationships between categorical and
continuous variables, the covariance function should use the Euclidean distance
only on continuous variables and incorporate categorical knowledge later in its
calculation. The COCABO method [14] uses such a covariance function (see
Eq. 2). It combines two sub-functions: one for continuous variables, Kcont, and
one for categorical variables, Kcat.
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K(z, z′) = (1 − λ) × (Kcont(x,x′) × Kcat(h,h′))
+ λ × (Kcont(x,x′) + Kcat(h,h′)) (2)

where:

– z = (x,h)
– x is the set of continuous variables
– h is the set of categorical variables

Kcont is the Matérn5/2 function. It is a standard covariance function for
smooth Gaussian processes regressions with continuous inputs. Kcat, the kernel
for categorical inputs (see Eq. 3), measures similarity between categorical vectors
with the equality operator (which is the only permitted operation for categorical
variables).

Kcat(h,h′) = σ × 1
D

D∑

1

α(hd, h
′
d) (3)

where:

– α(a, b) equals 1 if a = b and 0 if a �= b
– D is the number of categorical variables
– σ is the variance hyperparameter.

The proposition made by Ru et al. in COCABO [14] revolves around the
hyperparameter λ, which is a trade-off between the two terms of the Eq. 2: the
sum and the product of Kcont and Kcat. Both of these terms capture different
relationships between continuous and categorical variables. The sum of the two
sub-kernels produces a learning of a single trend on the continuous variables and
shift this trend depending on the categories whereas the product is able to pro-
duce a learning of complex relationships with highly different trends depending
on the categories. The sum is especially necessary when the amount of training
data is low (beginning of the optimization) because the product is able to cap-
ture knowledge only if the evaluations have categories in common. For example,
if two evaluations have the same continuous features but different categorical
ones, the product will be equal to 0 which prevent the model to learn even on
continuous variables. Nonetheless, the product is essential because, as the opti-
mization goes on, more evaluations are added to the training dataset and a single
trend with a simple shift will not be sufficient to model the complexity offered
by the data. In other words the sum alone will not be able to capture all the
knowledge available to guide the optimization. With the hyperparameter λ, the
authors ensure that the relationships that can be captured either by the sum or
by the product are taken into account into the covariance K(z, z′), because λ is
tuned during the fitting of the Gaussian process.

In order to avoid underfitting/overfitting the data while training the Gaus-
sian process (tuning its hyperparameters to minimize its negative log marginal
likelihood [12]), we confined hyperparameter values within a range. σK , σKcont
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and σKcat
were bounded in [10−2, 20] while the lengthscale parameter of Kcont

and λ were respectively bounded in [10−2, 20] and [0.1, 0.9]. We used the L-BFGS
optimizer to tune the GP hyperparameters.

3.2 Acquisition Function Optimization

We chose to use the Expected Improvement (EI) acquisition function because
it has shown good results on diverse applications and has a strong theoretical
support [22]. The equation of Expected Improvement is given by:

EI(x) = E[max(f(x) − f(x+), 0)] (4)

with f(x+) the value of the evaluation that have yielded the best result so far.
The analytical form of EI is the following:

EI(x) =
{

σ(x)ZΦ(Z) + σ(x)φ(Z) if σ(x) �= 0
0 if σ(x) = 0 (5)

where

Z =
μ(x) − f(x+) − ξ

σ(x)
(6)

Φ(Z) and φ(Z) denotes respectively the cumulative distribution function (CDF)
and the probability density function (PDF) of the variable Z. Z denotes the
predicted improvement divided by the standard deviation (uncertainty) and the
parameter ξ determines the weight of the exploration strategy in the equation.
This analytical form of EI is cheap to evaluate and can be optimized without
sparing on the number of evaluations. Therefore, we propose several approaches
for the optimization of the acquisition function with mixed variables.

The first approach (denoted as L-BFGS-OHE) involves the one-hot encod-
ing of the categorical variables and a multi-started gradient descent for the
optimization of the acquisition function. However, since the COCABO model
does not accept one-hot vectors, one-hot dimensions are systematically decoded
before any predictions. In other words, predictions are asked for by the acquisi-
tion function optimizer with encoded inputs but they are decoded before they
pass through the model. The multi-started gradient descent is performed as fol-
lows: 1000 configurations are randomly drawn and the 5 configurations with the
highest acquisition function value are kept and a gradient descent (L-BFGS) is
performed on each of these 5 configurations.

We also propose an approach based on a “brute-force” optimization of the
categorical space and a multi-started gradient descent on the continuous space
(see Algorithm 1). First, all the combinations of the categorical parameters are
constructed. Then, for each combination, a multi-started gradient descent (pre-
viously described) is performed on the continuous parameters. Finally, after
determining the maximal acquisition values for each categorical combination, the
configuration with the highest acquisition value is suggested as the next experi-
ment. This algorithm reduces the difficulty of the optimization of the acquisition
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function because instead of dealing with different types of variables (or with sup-
plementary dimensions from the encoding), the acquisition optimizer only works
on the continuous dimensions. Still, it can be heavy in terms of computational
cost if the number of categories and categorical variables is large.

Algorithm 1. Categorical brute-force and multi-started gradient descent
1: Construct all categorical combinations
2: Multi-started gradient descent optimization of continuous parameters for each com-

bination
3: Choose as suggestion the configuration (continuous and categorical) with the high-

est acquisition

While the brute-force approach evaluates thoroughly the search space, with
five optimizations of the continuous space for each categorical combination, this
method becomes prohibitively long to run when the number of categorical com-
binations is higher than a few hundreds.

Lastly, we implemented an evolutionary algorithm based the behaviour of
ant colonies (ACO) that scales better with the number of categorical variables
than brute-force [7]. In our experiments, we used the colony hyperparameters
proposed by the authors without any restart allowed. This algorithm is a multi-
agent method inspired by the behaviour of ants. An ant represent an evaluation
at a given set of parameters. At each generation, each ant randomly moves
towards previously evaluated points with good results (exploitation strategy).
The presence of multiple ants in the colony and the randomness of their move-
ments enable the mandatory exploration of the search space. It allows the ants
to not only moves around promising areas but also randomly explore areas that
may have not been explored so far.

4 Results

This section presents the optimization of four simulators. We did 25 runs with
50 suggestions for each optimization algorithm. At the beginning of each run,
we randomly drew 5 initial evaluations and, for a fairness purpose, these 5 eval-
uations were used to initialize all the optimizers. As shown in the Table 2, the
number of input variables (16) of the polycarbonate resin formulation is higher
than the other simulations (less than 6), so we allowed 100 suggestions for each
optimizer on this simulation.
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Table 2. Number of variables for each simulations

Reaction type Cont. var. Cat. var.

Pd-catalysed direct arylation 2 3

Suzuki-Miyaura cross-coupling 3 1

Stereoselective Suzuki-Miyaura cross-coupling 5 1

Polycarbonate resin formulation 11 5

4.1 Acquisition Function Optimizer

The four plots presented in Fig. 2 are used to compare the performances of
different acquisition optimizers, using the COCABO kernel and the Expected
Improvement acquisition function. The average (and standard deviation) of the
best score obtained at the end of each optimization are summarized in Table 3.
On each benchmark we provide, as a baseline, the results of a random strategy
that suggests input parameters randomly.

On the first three simulators (Figs. 2a, 2b and 2c), brute-force outperforms
the other methods. On the last simulator (see Fig. 2d), the brute-force approach
cannot be used due to the high number of categorical variables and categories.
Indeed, there are 1728 combinations of categorical variables, so the brute-force
approach consists of 8640 optimization routines upon continuous variables, which
is too long to run.

The approach based on categorical relaxation (L-BFGS-OHE) with the one-
hot encoding and a rounding to the closest categorical variable before passing
through the model, is the second best performing method on every simulators.
Even if the optimizer (L-BFGS) evolves in a continuous space with a large num-
ber of encoded dimensions and a large number of flat regions (depending on
the number of categorical variables and categories), the optimizer manages to
optimize the acquisition function.

The behaviour of the ant colony optimization method (ACO) highly depends
on its parameters, notably the exploration hyperparameter q which is set to 0.05
and the restart parameter. The ACO performs poorly, compared to the other
optimization methods, on the simulators with a small number of dimensions but
performs slightly better on the polycarbonate resin formulation simulator which
have more dimensions.

As consequence of the results presented above and for the rest of our study,
we choose the brute-force approach to be the acquisition function optimizer when
the number of categorical variables is lower than 4. ACO is used otherwise.

4.2 Comparison with Other Methods

The next results (Fig. 3) present a comparison between our method (composed
of the COCABO kernel, Expected Improvement and the brute-force optimizer
or the ant colony optimizer when the brute-force method can’t be used), Gryffin
[5], COCABO [14], SMAC [6], and the work of Garrido-Merchán et al. [4].
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Fig. 2. Best score evolution on simulatiors with the use of different acquisition function
optimizers (Brute-force, L-BFGS-OHE, ACO, Random).

Table 3. Average scores for different acquisition optimizers at 5 random initial eval-
uations and 50 suggestions (100 for the polycarbonate resin formulation). Best scores
on each simulators are marked in bold.

Method Suzuki-Miyaura Stereoselective
Cross coupling

Direct arylation Polycarbonate resin
formulation

Brute-force −1.460 ± 0.00 −0.733 ± 0.06 −0.965 ± 0.05 –

L-BFGS-OHE −1.460 ± 0.00 −0.730 ± 0.05 −0.959 ± 0.07 −0.820 ± 0.01

ACO −1.441 ± 0.01 −0.726 ± 0.04 −0.929 ± 0.08 −0.821 ± 0.02

Random −1.141 ± 0.15 −0.504 ± 0.08 −0.875 ± 0.08 −0.723 ± 0.03

We used the “naive” version of Gryffin in its authors’ implementation, which
does not use any chemical descriptor to guide the optimization. The computation
time of Gryffin is long when the number of dimensions is high, so we used the
“boosted” version of Gryffin for the optimization of the polycarbonate resin
formulation simulation.

We used COCABO in its authors’ implementation with its default settings
and a starting λ = 0.5.
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SMAC denotes an optimization algorithm based on Random Forest [6] and
the Expected Improvement acquisition function. We used an implementation
proposed by Lindauer et al. [8].

“Garrido-Merchán - 2020” is a Bayesian optimization method which involves
a Matérn5/2 kernel and the one-hot encoding of the categorical variables.

Fig. 3. Best score evolution on simulators with the use of different optimization meth-
ods: mixed kernel and brute-force (or ACO), Garrdi-Merchán - 2020, SMAC, Gryffin,
COCABO, Random.

Table 4. Average scores for different optimization methods at 5 random initial eval-
uations and 50 suggestions (100 for the polycarbonate resin formulation). Best scores
on each simulators are marked in bold.

Method Suzuki-Miyaura Stereoselective

Cross coupling

Direct arylation Polycarbonate

resin formulation

Mixed kernel and brute-force −1.460 ± 0.01 −0.733 ± 0.06 −0.965 ± 0.05 –

Mixed kernel and ACO −1.441 ± 0.01 −0.726 ± 0.04 −0.929 ± 0.08 −0.821 ± 0.02

Garrido-Merchán - 2020 −1.459 ± 0.01 −0.738 ± 0.05 −0.957 ± 0.06 −0.797 ± 0.02

SMAC −1.443 ± 0.04 −0.674 ± 0.09 −0.924 ± 0.06 −0.799 ± 0.03

Gryffin −1.149 ± 0.13 −0.517 ± 0.08 −0.912 ± 0.07 −0.751 ± 0.03

COCABO −1.046 ± 0.18 0.534 ± 0.08 −0.865 ± 0.11 −0.781 ± 0.03

Random −1.160 ± 0.13 0.504 ± 0.08 −0.847 ± 0.05 −0.723 ± 0.03
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The results on the simulator denoted as “Suzuki-Miyaura” (which corre-
sponds to a simulation built upon the first data set proposed by Reizman et al.
[13]), shows that the Mixed kernel combined with a categorical brute-force app-
roach for the optimization of the acquisition function is the method that offers
the best performances.

The method denoted as “Garrido-Merchán - 2020” is the method that pro-
vides the best performances on the second simulator (“stereoselective cross-
coupling”).

On the Pd-catalysed direct arylation simulator, the COCABO kernel com-
bined with the brute-force approach gives the best results. Gryffin and COCABO
do not provide satisfactory scores on the two first simulators (“Suzuki-Miyaura”,
“stereoselective cross-coupling”). However these optimization methods provide
better results on the other two simulators.

The method composed of the COCABO kernel and the ant colony optimiza-
tion technique gives the best averaged final score on the polycarbonate resin
formulation simulator (−0.821).

SMAC performs poorly on the first three simulators compared to Bayesian
optimization with Gaussian process as surrogate model. However on the last sim-
ulator, the random forest based Bayesian optimization performances are similar
to the Bayesian optimization with one-hot encoding and the Matérn5/2 kernel.

We show that our method composed of the COCABO kernel and either the
categorical brute-force or the ant colony optimizer as the acquisition function
optimization technique, generally converges faster to the optimum than the other
methods.

4.3 Kernel Influence on Performances

The Table 5 summarises the averaged final scores of two Bayesian optimization
methods that only differ from each other by their covariance functions and the
use of the one-hot encoding. “Garrido-Merchán-2020” is using the one-hot encod-
ing and a standard continuous kernel (Matérn5/2) whereas the method denoted
as “L-BFGS-OHE” is using a kernel specially designed for continuous and cate-
gorical variables without encoding (the COCABO kernel). Their results are simi-
lar on the first simulator but on the second one (“stereoselective cross coupling”),
the method denoted as “Garrido-Merchán-2020” achieves better performances
(−0.738) than “L-BFGS-OHE” method (−0.730). On the polycarbonate resin
formulation simulator, the COCABO kernel based method (“L-BFGS-OHE”)
performs better (−0.820) than “Garrido-Merchán-2020” (−0.797). This compar-
ison exposes that the COCABO kernel should be used instead of a Matérn5/2

kernel and the one-hot encoding when the chemical reaction (or formulation)
optimization problem involves multiple continuous and categorical variables.
Indeed, this covariance function allows a more efficient Bayesian optimization on
our simulators. The authors of COCABO (Ru et al.) attribute this phenomenon
to a stronger modeling power of the COCABO kernel.
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Table 5. Average final scores of “Garrido-Merchán-2020” and “L-BFGS-OHE”
extracted from Table 3 and Table 4.

Method Suzuki-Miyaura Stereoselective

Cross coupling

Direct arylation Polycarbonate resin

formulation

L-BFGS-OHE −1.460 ± 0.00 −0.730 ± 0.05 −0.959 ± 0.07 −0.820 ± 0.01

Garrido-Merchán - 2020 −1.459 ± 0.01 −0.738 ± 0.05 −0.957 ± 0.06 −0.797 ± 0.02

5 Conclusion

This paper presents a study of different optimization techniques for the opti-
mization of chemical reaction (or formulation) simulators with mixed variables
(continuous and categorical).

We expose a Bayesian optimization algorithm based on a Gaussian process
with a covariance function specifically designed for continuous and categorical
variables [14]. Also, we evaluate different methods for the optimization of the
acquisition function. We show that when facing a small number of categorical
variables, a categorical brute-force approach associated with a multi-started gra-
dient descent performs best for the optimization of the acquisition function. The
ant colony optimization method is the method the most suited (in our study)
for the optimization of the acquisition function when the number of categorical
combinations is too high to use the brute-force based approach. A more in-depth
study of these evolutionary methods will be the subject of further works. Our
method globally performs better than other state-of-the-art methods [4,5,8,14]
on our simulators.

Since the use of a kernel specifically designed for continuous and categorical
inputs shows the best performances, we are working on further increasing the
quality of the model by modifying the COCABO covariance function. We believe
that more relationships between variables and evaluations can be captured with
a new set of parameters in the covariance function.

Nevertheless, in order to fully establish the performance of the presented
method, we are currently working on an experimental validation in chemistry
labs.
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Abstract. Grammar-Guided Genetic Programming is widely recog-
nised as one of the most successful approaches for program synthesis, i.e.,
the task of automatically discovering an executable piece of code given
user intent. Grammar-Guided Genetic Programming has been shown
capable of successfully evolving programs in arbitrary languages that
solve several program synthesis problems based only on a set of input-
output examples. Despite its success, the restriction on the evolutionary
system to only leverage input/output error rate during its assessment of
the programs it derives limits its scalability to larger and more complex
program synthesis problems. With the growing number and size of open
software repositories and generative artificial intelligence approaches,
there is a sizeable and growing number of approaches for retrieving/-
generating source code based on textual problem descriptions. There-
fore, it is now, more than ever, time to introduce G3P to other means of
user intent (particularly textual problem descriptions). In this paper, we
would like to assess the potential for G3P to evolve programs based on
their similarity to particular target codes of interest (obtained using some
code retrieval/generative approach). We particularly assess 4 similarity
measures from various fields: text processing (i.e., FuzzyWuzzy), natural
language processing (i.e., Cosine Similarity based on term frequency),
software clone detection (i.e., CCFinder), plagiarism detector(i.e., SIM).
Through our experimental evaluation on a well-known program synthe-
sis benchmark, we have shown that G3P successfully manages to evolve
some of the desired programs with three of the used similarity measures.
However, in its default configuration, G3P is not as successful with sim-
ilarity measures as with the classical input/output error rate at evolving
solving program synthesis problems.
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1 Introduction

Genetic Programming (GP [16]) is an efficient approach to evolve code using
high-level specifications, hence it is the most popular approach to tackle program
synthesis problems (i.e., the task of automatically discovering an executable
piece of code given user intent) for software engineering [24,25] and testing [26].
Various GP systems with different representations have been designed over time
to tackle the diverse program synthesis problems.

PushGP [22] is one of the most efficient GP systems. PushGP evolves pro-
grams in the specially purpose-designed Push language. (i.e., a stack-based lan-
guage designed specifically for program synthesis task). In Push, every variable
type (e.g. strings, integers, etc.) has its own stack, which facilitates the genetic
programming process. Despite its efficiency, PushGP’s dependence to Push (a
language that is not commonly used in practice and that is hard to interpret)
hinders its exploitability and lowers our ability to improve upon it.

Grammar-Guided Genetic Programming (G3P [7]) system is another efficient
GP system that evolves programs based on a specified grammar syntax. Besides
its efficiency at solving program synthesis problems, the use of a syntax grammar
enables G3P to produce programs that are syntactically correct with respect to
any arbitrary programming languages definable through a grammar. The use of
a grammar makes G3P particularly easy to move from one system to another
and to adapt from one language to another [7]. This flexibility elevates G3P to
be widely recognised as one of the most successful program synthesis approaches.

A recent comparative study [6] has evaluated the ability of both G3P and
PushGP to solve several program synthesis problems from a well-studied pro-
gram synthesis benchmark [10,11] based only on a set of input-output exam-
ples. The study found that G3P achieves the highest success rate at finding
correct solutions when it does find any. The study also found that PushGP is
able to find correct solutions for more problems than G3P, but PushGP’s suc-
cess rate for most of the problems was very low. However, despite G3P’s and
PushGP’s successes, the restriction on the evolutionary systems to only leverage
the input/output error rate during their assessment of the programs they derive
limits their scalability to larger and more complex program synthesis problems.

Following on the big data trend [4] and the growing number and size of
open software repositories (i.e., databases for sharing and commenting source
code) and generative artificial intelligence approaches (generative deep learning)
there is a sizeable and growing number of approaches for retrieving/generating
source code based on textual problem descriptions. Therefore, it is now, more
than ever, time to introduce G3P to other means of user intent (particularly
textual problem descriptions). Code retrieval and code generation techniques
might output several incomplete snippets or not fully fit for purpose codes–which
often makes them impossible to exploit in their form. Therefore, in this work,
we propose an approach whereby such code guides the search process towards
programs that are similar.

In this paper, we would like to assess the potential for G3P to evolve programs
based on their similarity to particular target codes of interest which would have
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been retrieved or generated using some particular text to code transformation.
We particularly assess 4 similarity measures from various fields: text processing
(i.e., FuzzyWuzzy), natural language processing (i.e., Cosine Similarity), soft-
ware clone detection (i.e., CCFinder), plagiarism detector(i.e., SIM). The ulti-
mate goal is the ability to identify the most suitable program similarity measure
to guide the program synthesis search/evolutionary process when introducing
code retrieval/generation from textual problem descriptions.

Through our experimental evaluation on a well-known program synthesis
benchmark, we show that G3P successfully manages to evolve some of the desired
programs with three of the used similarity measures. However, in its default
configuration, G3P is not as successful with similarity measures as with the
classical input/output error rate at evolving solving program synthesis problems.
Therefore, in order to take advantage of textual problem descriptions and their
subsequent text to code approaches in G3P, we need to either design better-
fitted similarity measures, adapt our evolutionary operators to take advantage
of program similarities, and/or combine similarity measures with the traditional
input/output error rate.

The rest of the paper is structured as follows: Sect. 2 summarises the back-
ground and work related to our study. Section 3 describes our approach and
details the similarity metrics used as code similarity in our evaluation. Section 4
details our experimental setup. Section 5 reports and discusses the results of our
experiments. Finally, Sect. 6 concludes this work and discusses our future study.

2 Background and Related Work

In this section we present the material which forms our research background.

2.1 Genetic Programming

Genetic programming (GP) is an evolutionary approach that enables us to devise
programs. GP starts with a population of random programs (often not very fit for
purpose), and iteratively evolves it using operators analogous to natural genetic
processes (e.g., crossover, mutation, and selection). Over the years, a variety of
GP systems have been proposed–each with its specificity (e.g., GP [16], Linear
GP [2], Cartesian GP [19]).

2.2 Grammar-Guided Genetic Programming

While there is a variety of GP systems, G3P is among the most successfully
GP systems. What is unique to G3P is its use of a grammar as a guideline for
syntactically correct programs throughout the evolution. Grammars are widely
used due to their flexibility as they can be defined outside of the GP system
to represent the search space of a wide range of problems including program
synthesis [20], evolving music [17], managing traffic systems [31] evolving aircraft
models [3] and scheduling wireless communications [18,27–30]. Grammar-Guided
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Genetic Programming is a variant of GP that use grammar as the representation
with most famous variants are Context-Free Grammar Genetic Programming
(CFG-GP) by Whigham [33] and grammatical evolution [21].

The G3P system proposed in [7] puts forward a composite and self-adaptive
grammar to address different synthesis problems, which solved the limitation of
grammar that has to be tailored/adapted for each problem. In [7], several small
grammars are defined–each for a data type that defines the function/program to
be evolved. Therefore, G3P is able to reuse these grammars for different problems
while keeping the search space small by not including unnecessary data types.

2.3 Problem Text Description To/From Source Code

The ability to automatically obtain source code from textual problem descrip-
tions or explain concisely what a block of code is doing have challenged the
software engineering community for decades.

The former (i.e., source code from textual description) was aimed at automat-
ing the software engineering process with a field mostly divided into two parts:
(i) Program Sketching which attempts to lay/generate the general code struc-
ture and let either engineers or automated program generative approaches fill the
gaps (e.g., [14]), and (ii) Code Retrieval which seeks to find code snippets that
highly match the textual description of the problem in large code repositories.

The latter (i.e., textual description from source code) was mostly to increase
the readability of source code and assist software engineering with their debug-
ging, refactoring, and porting tasks. Several works have attempted to either
provide meaningful comments for specific lines/blocks (e.g., [13]) or to generate
brief summaries for the source code (e.g., [1]).

3 Similarity-Based G3P

In this section, we report on how similarity-based G3P perform on selected
three problems from [10]. The G3P system in [7] uses error rate fitness function
based on given input and output data for evolving the next generation, while
similarity-based G3P presented in this section uses code similarity value to the
given correct program.

3.1 Proposed Approach

Our ultimate goal is to exploit textual descriptions of user intent in the program
synthesis process in combination with current advances in code retrieval/gener-
ation (even if such techniques potentially generate multiple incomplete or not
fully fit for purpose programs) to guide the search process of G3P. To this end, in
this work, we devise a similarity-based G3P system, which uses code similarity
to evaluate the fitness of evolved programs against a target source code instead
of input/output error rate. The focus of this particular work is not on generating
target source code but on (i) assessing the capability of G3P to evolve programs
using similarity measures and (ii) identifying the most suitable measure.
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3.2 Program Similarity Assessment Approaches

Measuring similarity between source code is a fundamental activity in soft-
ware engineering. It has multiple applications including duplicate/clone code
location, plagiarism detection, code search, security bugs scanning, vulnerabili-
ty/bugs identification [9] and code recommendation [12]. There have been pro-
posed dozens of similarity detection algorithms since the last few decades, which
can be classified into metrics, text, token, tree, and graph-based approaches
based on the representation [23]. We selected four top-ranked similarity mea-
sures to evaluate their code synthesis proneness when used within G3P.

Cosine Similarity. In addition to the standard code similarity detector, we
also used cosine similarity to measure the similarity between two source codes.
The following steps illustrate how we measured similarity using cosine similarity:

1. Prepossessing: The source program is tokenized by removing indentation
information, including white spaces, brackets, newline characters, and other
formatting symbols. Arithmetic operators and assignment symbols were kept
as they can provide meaningful structural information.

2. Frequency Computation: For each token sequence of the source program, we
compute the frequency of each token.

3. Cosine Similarity Computation: We calculate the similarity score with the
cosine formula based on the token frequencies of each source code.

FuzzyWuzzy. [5] is a string matching open-source python library based on
difflib python library. It uses Levenshtein Distance to calculate the differences
between sequences. The library contains different similarity functions including
TokenSortRatio and TokenSetRatio. Ragkhitwetsagul et al. [23] surprisingly
found that the string matching algorithm also works pretty well for measuring
code similarity. TokenSortRatio function first tokenizes the string by remov-
ing punctuation, changing capitals to lowercase. After tokenization, it sorts the
tokens alphabetically and then joins them together to calculate the matching
score. While TokenSetRatio takes out the common tokens instead of sorting
them.

CCFinder. [15] is a token-based clone detection technique designed for large-
scale source code. The technique detects the code clone with four steps:

1. Lexical Analysis: Generates token sequences from the input source code files
by applying a lexical rule of a particular programming language. All source
files are tokenized into a single sequence to detect the code clone with multiple
files. White spaces and new line characters are removed to detect clone codes
with different indentation rules but with the same meaning.
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2. Transformation: The system applies transformation rules on token sequence
to format the program into a regular structure, allowing it to identify code
clones even in codes written with different expressions. Furthermore, all iden-
tifiers (e.g., variables, constants, and types) are replaced with special symbols
to detect clones with different variable names and expressions.

3. Clone Matching: The suffix-tree matching algorithm is used to compute the
matching of the code clones.

4. Formatting: Each clone pair is reported with line information in the source
file. This step also contains reformatting from the token sequence.

CCFinder was designed for large-scale programs. Since the codes involved
in our evaluation are elementary, the following modifications and simplifications
are made to the original tool:

– Given that we are only interested in obtaining a similarity score between
two pieces of code, we divide the length of the code clone by the maximum
between the lengths of the source files:

Sim(x, y) =
Len(Clone(x, y))

Max(Len(x), Len(y))
(1)

where Clone(x, y) denotes the longest code clone between x and y.
– The matching of code clones using the suffix-tree matching algorithm is sim-

plified by getting the length of the longest common token sequence using a
2D matrix (each dimension representing the token sequence).

– The mapping information between the token sequence and the source code is
removed since reporting the line number is no longer needed in our study.

SIM. [8] is a software tool for measuring the structural similarity between
two C programs to detect plagiarism in the assignment for lower-level computer
science courses. It is also a token-based plagiarism detection tool that uses a
string alignment technique to measure code similarity.

The approach comprises two main functions, generating tokens with format-
ting and calculating the similarity score using alignment. Each source file is
first passed through a lexical analyzer to generate a token sequence. Like the
common plagiarism detection system, the source code is formatted to standard
tokens with white space removal representing arithmetic or logical operators,
different symbols, constant or identifiers. After tokenization, the token sequence
of the second program is divided into multiple sections, each representing a piece
of the original program. These sections are then aligned with the token sequence
of the first source code separately, which allows the tool to detect the similarity
even the program is plagiarised by modifying the order of the functions.

4 Experiment Setup

4.1 General Program Synthesis Benchmark Suite

Helmuth and Spector [10,11] introduced a set of program synthesis problems.
These problems were based on coding problems that might be found in introduc-
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tory computer science courses. Helmuth and Spector provide a textual descrip-
tion as well as two sets of input/output pairs for both training and testing during
the program synthesis process. Table 1 describes the characteristics of each of the
program synthesis problems considered in our evaluation.

Table 1. Description and characteristics of the selected program synthesis problems

Problem Textual Description # Input/Output Pair

Training Testing

Number IO Given an integer and a float, print their sum 25 1000

Median Given 3 integers, print their median 100 1000

Smallest Given 4 integers, print the smallest of them 100 1000

4.2 Target Programs

To evolve our programs through G3P, we consider an oracle that computes the
similarity measure of each evolved program to a target program code obtained
using some text to code transformation. In this work, we wish to focus our analy-
sis on the similarity measures and reduce the varying elements in our experiments
(particularly in terms of ability to obtain a target program of good quality).
Therefore, we consider the theoretical case where the oracle is aware of a code
that solves the problem, but it is only reporting the similarity of the evolved code
to it. While this assumption is not applicable in real life (i.e., if we know the cor-
rect code, then the problem is already solved without requiring any evolution),
we hope to get enough insight from it on the capability of G3P to reproduce a
program only based on a similarity measure.

Listings 1.1, 1.2, and 1.3 depict the target programs for the oracle assessment
of program similarity for Number IO, Smallest, and Median respectively.
1 def numberIO(int1 , float1):
2 result = float(int1 + float1)
3 return result

Listing 1.1. Target program for Number IO

1 def smallest(int1 , int2 , int2 , int3):
2 result = min(int1 ,min(int2 ,min(int3 ,int4)))
3 return result

Listing 1.2. Target program for Smallest

1 def median(int1 , int2 , int3):
2 if int1 > int2:
3 if int1 < int3:
4 median = int1
5 elif int2 > int3:
6 median = int2
7 else:
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8 median = int3
9 else:

10 if int1 > int3:
11 median = int1
12 elif int2 < int3:
13 median = int2
14 else:
15 median = int3
16 return median

Listing 1.3. Target program for Median

4.3 G3P Parameter Settings

In our evaluation, we use the same parameter settings as those defined for
G3P [7]. We only introduce a unique varying element (i.e., the fitness function
based on a particular similarity measure). We repeat our evaluations 30 times
for each problem and each G3P version (each version with its specific similarity
measure). The general settings for the G3P system are shown in Table 2.

Table 2. Experiment parameter settings

Parameter Setting Parameter Setting

Runs 30 Mutation probability 0.05

Generation 200 Node limit 250

Population size 1000 Variable per type 3

Tournament size 7 Max execution time 1 s

Crossover probability 0.9

5 Results

In this section, we report and discuss the results of our evaluations. First, we
start by comparing the performance of G3P using each of the similarity measures,
then we compare them against the traditional error-rate based G3P.

5.1 Comparison of Similarity Measures

The result of the similarity-based G3P is reported in this subsection. The goal of
this experiment is to assess G3P’s ability to evolve a program solving a program
synthesis problem (only known to an oracle) based on the similarity measure.

Figure 1 shows the number of runs (out of 30) where G3P manages to evolve
the correct program for each of the program synthesis problems while using one
of the four considered similarity measures as the fitness function.
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We see from Fig. 1 that G3P was able to able to evolve the correct programs
for Number IO and Smallest at least once with Cosine, CCFinder and SIM.
However, G3P did not manage to evolve any correct program for Median. G3P
manages to find the correct program for Number IO in most runs (i.e., 27 out of
30) while using Cosine Similarity. However, the same program fails to find any
correct program for Smallest. Similarly, G3P manages to find the correct program
with Smallest in 17 runs out of 30 while using SIM, but the same program fails
to find any correct program for Number IO. Alternatively G3P with CCFinder
finds correct programs for both Number IO and Smallest, but in fewer runs.
Overall, we could say that G3P has the potential to evolve programs for synthesis
problems using similarity measures. However, there is no similarity measure that
seems to work better than the rest and we need to consider combining similarity
measures to increase the effectiveness of the approach.

5.2 Comparison Against Error Rate-Based G3P

While we have seen that G3P has the capability to evolve correct programs for
some program synthesis, we would like to assess how efficient is this process at
evolving correct programs in comparison with the use of input/output error rate.

Figure 2 shows the performance of G3P with the input/output error rate to
evolve correct programs for each of the considered programs over 30 distinct
runs. We see that G3P with input/output error rate is capable to evolve correct
problems to all the considered program synthesis problems. Furthermore, it is
also capable of finding a correct program in more runs than the different G3P
approaches using any similarity measure. Therefore, while we have seen that
similarity measures seem promising to guide the G3P search for correct programs
to program synthesis problems, they are not reaching the performance level of
the traditional input/output error rate. This difference could be explained by the
long amount of research that has been carried out to refine and optimise the G3P
process with input/output error rate (particularly in terms of designing fit for
purpose crossover and mutation operators). Therefore, one potential approach
could be to use both the similarity objectives and the error-rate to guide the
evolutionary process in a multi-objective approach [32].
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Fig. 1. Number of iterations (out of 30) where G3P manages or fails to evolve the
target program with each of the similarity measures.
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Fig. 2. Number of iterations (out of 30) where G3P with input/output error rate
manages/fails to evolve the target program.

6 Conclusion and Future Work

In this paper, we have assessed the potential for G3P to evolve programs based
on their similarity to particular target codes of interest. The ultimate goal of this
work is the ability to exploit textual descriptions of program synthesis problems
as a guide to the evolutionary process in place of the traditional input/output
error rate. We particularly assessed the capability of G3P to evolve correct pro-
grams using 4 similarity measures from various fields (i.e., Cosine, FuzzyWuzzy,
CCFinder, and SIM). Our experimental evaluation on a well-known benchmark
dataset has shown that G3P is able to evolve correct programs for some of the
considered program synthesis problems. However, we have found that the perfor-
mance of G3P using similarity measures is lower than G3P with the traditional
input/output error rate. Out future work will focus on trying to improve the
performance of G3P to take full advantage of such similarity measures alongside
the traditional input/output error rate.
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