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The modelling and simulation community extends over a range of diverse disci-
plines and this landscape continues to expand at an impressive rate. Modelling and
simulation is fundamentally a computational tool which has an established record
of significantly enhancing the understanding of dynamic system behaviour on one
hand, and the system design process on the other. Its relevance is unconstrained by
discipline boundaries. Furthermore, the ever-increasing availability of computational
power makes feasible applications that were previously beyond consideration.

Simulation Foundations, Methods and Applications hosts high-quality contribu-
tions that address the various facets of themodelling and simulation enterprise. These
range from fundamental concepts that are strengthening the foundation of the disci-
pline to the exploration of advances and emerging developments in the expanding
landscape of application areas. The underlying intent is to facilitate and promote the
sharing of creative ideas across discipline boundaries. The readership will include
senior undergraduate and graduate students, modelling and simulation professionals
and research workers.

Inasmuch as amodel development phase is a prerequisite for any simulation study,
there is an expectation that modelling issues will be appropriately addressed in each
presentation. Incorporation of case studies and simulation results will be strongly
encouraged.

Titles can span a variety of product types, including but not exclusively, textbooks,
expository monographs, contributed volumes, research monographs, professional
texts, guidebooks and other references.

These bookswill appeal, varyingly, to senior undergraduate and graduate students,
and researchers in any of a host of disciplines where modelling and simuation has
become (or is becoming) a basic problem-solving tool. Some titles will also directly
appeal to modelling and simulation professionals and practitioners.
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Preface

In this book, you will find topics in modeling and simulation, both conventional,
as well as suggestions about new tools and somewhat wider insight on modeling.
Most of the chapters of the book may be used in didactic work, as a textbook or
supplementary material. In the text, the student will find explanations of diverse kind
of modeling tasks, and examples of models of various types. Ten out of 12 chapters
contain also sections of questions and answers that focus on themost essential aspects
of the presented modeling methodology.

Models are used by thinking beings, consciously or sub-consciously, to manage
their behavior and respond to the events in the environment. The most perfect and
huge collection of models is contained in our brains. During years of learning, the
humans, as well as most of the animals, created models of their own bodies and
objects from the environment, to be able to take decisions and control their behavior.
The human brain is increasingly complicated and capable of creating and storing
models not only inside it, but also in other media. We create models in the form of
written descriptions, drawings, mathematical expressions, or logical structures, and
store them for further use.

The appearance of computers provided a new, powerful tool for model storage and
processing. In this book, we discuss models that can be used in computer simulation.
This kind of modeling is closely connected with simulation on analog and digital
machines. The results of creating and using models help us to take decisions, predict,
and/or understand the world where we live. Most of the things we observe are still
too complex to be understood. The knowledge accumulated in models helps us in
taking correct actions, grow, understand, and survive.

In general, models help us to understand how complex systems work. Models of
complex systems need not be complex or huge. I remember that in the early 1960s,
when we worked on 100kHz CPU, 32kB memory machines, a friend of mine asked
me to solve an ordinary differential equation on a computer. The equationwaswritten
in one line, with rather simple, but non-trivial formula. The solution was not easy,
but finally the program worked. I asked him: This is the model of what? The answer
was simple: This is the model of the Universe.

v
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On the other hand, there are hugemodels that provide little help in complex system
understanding. In Chap. 1, there is a remark on the model of the economy of the
whole Soviet imperium of 1970s, developed by the Central Economic Mathematical
Institute of the URSS. As the authors agreed, the model resulted to be too large and
complicated to be simulated and interpret.

Here, you also will find here several topics closely related to model building, like
stability of linear and non-linear models, model validity, credibility, new approach
to sensitivity, and some more generalized insight, based on the theory of categories.
New tools for model creation are proposed, namely, the differential inclusions and
reachable sets calculation. For the discrete event models, some problems of simul-
taeneous events are discussed. A new methodology of the semi-discrete events with
finite-time duration is suggested to eliminate the ambiguity that arises in strictly
discrete models with simultaneous events.

This book does not pretend to describe and discuss all this huge research and
experience gathered during many decades. We try to give an overview of the most
important modeling issues. The tenet of the book is to show also some non-typical
and unconventional kind of models and their applications, like models based on
differential inclusions and semi-discrete event models.

Looking at the annals of modeling and simulation activity, it can be seen that
most of the simulationists and model-makers follow the same modeling paradigms
for more than six decades. There exists a strange conviction that everything that is
continuous can be modeled by differential equations, and the only tool to simulate
events is the discrete event simulation. Here, we show some alternative ways to
construct and treat models, like differential inclusions, reachable set calculation,
and semi-discrete event simulation. Note that the concepts as functional sensitivity
(Chap. 4) is new and original. Note also that the images of reachable sets of dynamic
systems shown here (Chaps. 3–5) have never been provided before in other sources.
We also discuss a somewhat non-conventional way of model description that uses
the language of the theory of categories.

It should be emphasized that this book treats about dynamicmodels. We do not
discuss static models that can be treated by algebraic methods or static modeling and
optimization. This is because the real world is dynamic. Everything is changing,
fluctuating, or oscillating. The time variable appears in all models we present.

We do not discuss here models being developed in some specific fields of research
like models of neural networks, weather forecasting, human brain, missile dynamics,
human immune system, games, electromagnetic wave propagation, human DNA,
urban development, and many others. If we do this, the book would have several
thousands of pages. We also omit the recall of probability distributions used in
computer simulation because such overview comes in any of hundreds of the books
on computer simulation. When talking about modeling and simulation, the question
arises:Does themodel creator or the simulationistmust be amathematician?Mypoint
is that he/she doesn’t. However, some basic knowledge of mathematics is required
(at least for the readers of this book). This may prevent the researcher from making
serious errors like using the Poisson distribution for between-arrival time intervals
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of the Poisson arrival process, treating the affine function as lineal, or calculating
statistics over a data set of five points.

We also omit issues and examples of models already published by the author
in Springer Nature series. These are: interactions between hierarchical structures,
dynamics of terror and anti-terror organizations, organization growth and decay
models, humanmigration, extended prey–predator model, and others, discussed in S.
Raczynski, “Interacting complexities of herds and social organizations.” The models
of catastrophes, unexpected behavior patterns in artificial societies, catastrophes in
stock market, epidemics, growth of organisms, work, salary, and motivation are
described in “Catastrophes and unexpected behavior patterns in complex artificial
societies,” by the same author.

In Chap. 1, there is an overview about the general concepts of modeling. The
continuous and discrete event models are shortly discussed. The main concepts of
model validity and mathematical and graphical representation of models are consid-
ered. Chapter 2 is dedicated to continuous models. The conventional approach to
continuous modeling and simulation is described.

In Chap. 3, the reader can find the discussion about the concepts and applications
of models based on the differential inclusions. This tool is useful in the analysis
of model uncertainty and sensitivity. The new method named functional sensitivity
is proposed. More detailed examples of application of the concept of functional
sensitivity can be found in Chap. 4.

Chapter 5 describes a model of airplane flight control and reachable sets.
An application to Pontryagin’s Maximum Principle to market optimization can

be found in Chap. 6. This chapter shows the connection between modeling and
optimization. An example of optimization technique based on the theory of optimal
control is given. In this example, the reader can see the optimization of the dynamic
marketing strategies.

An overview of discrete event models and simulation is provided in Chap. 7,
including the Discrete Event Specification Formalism and distributed simulation.

In Chapter 8 contains an example of a model of self-organization in a population
of living beings, and interactions between organizations and the environment.

Chapter 9 contains certain non-conventional approach to the general theory of
models. A metrics in the space of models is defined. In this chapter, there is a
proposal of the new concept of semi-discrete event simulation.

In Chap. 10, some examples of application of the language of the theory of
categories in model specifications are discussed.

The last two chapters do not include question and answer sections. These chapters
present examples of somewhat unconventional approach, andmore abstractmodeling
tasks. The main purpose of these chapters is to show models that perhaps have little
practical applications, but offer a new and cognitive topics.

Chapter 11 deals with the concept of time variable and the time instant. The
proposed model of the “time arrow” includes the concept of a fuzzy time instant.
Instead of considering the events that occur in given, sharp moments of time we treat
the time instant as an interval with non-zero length, where events “occur” gradually.
Some issues related to the causality principle are discussed.
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In Chap. 12, the reader can find a new approach to models related to the real
time, the model reversibility and uncertainty of the future. An abstract, but perhaps
interesting model of the universe encapsulated in a ball of finite size is given. The
idea of the universe encapsulated in a multi-dimensional ball may appear to be very
abstract. However, this idea may provoke the reader to ask “And what is outside the
ball?” and “Is it possible to out of it?” In the last question, we supposes the possibility
to travel “behind the infinity.” Moreover, we can add the fourth dimension to the ball
(the time), and then add the fifth and more dimensions. This is a non-science-fiction
remark on possible five- and multi-dimensional universe.

Mexico City, Mexico Stanislaw Raczynski
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Chapter 1
Concept of Model

1.1 Introduction: General Remarks

In this chapter, we provide a discussion about model types and related topics. Amore
detailed discussion about these concepts can be found in the consecutive chapters.

The use of models is a frequent and, perhaps, indispensable element of the sci-
entific research. Recently, the growth of the amount of information available on the
Internet provides a fast access to the published works on models in interdisciplinary
applications. The Google search for the phrase “model of,” excluding “modeling,”
shows more than 300 million references. The phrase “mathematical model” results
in nearly 20 million positions. The number of books and articles on modeling is also
very big and growing exponentially. This makes it somewhat difficult to elaborate a
comprehensive survey of scientific modeling or to find the most relevant and original
applications. Consequently, as stated in the Preface, we do not discuss here models
being developed in some specific fields of research like models of neural networks,
weather forecasting, human brain, missile dynamics, human immune system, games,
electromagnetic wave propagation, human DNA, urban development, and many oth-
ers. We focus on some selected and illustrative examples, and provide proposals for
new tools like differential inclusions or semi-discrete models. Some original models
and simulation examples are shown.

This book treats about dynamicmodels.Wedonot discuss staticmodels that can
be treated by algebraic methods or static modeling and optimization. This is because
the real world is dynamic. Everything is changing, fluctuating, or oscillating. The
time variable appears in all models we present.

One of the most important sources of modeling and simulation theory is the
book of Zeigler [52] that provides basic concepts in modeling, like cellular simu-
lation, model building, and validation. The methods of continuous system model-
ing are described in the book of Cellier and Greifeneder [8]. The book of Kheir
[26] describes the fundamentals of modeling and simulation of continuous-time,
discrete-time, discrete-event, and large-scale systems. A good collection of articles
on modeling and simulation can be found in the book of Pidd [38]. These articles
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2 1 Concept of Model

are written by authors from academic environment who share experiences vital to
readers that are seeking to expand their level of understanding inmodel development.
Useful hints about model building and validity are proposed in the paper of Law [28].

Some useful sources on mathematical modeling and computer simulation can be
found in the Springer SEMA SEAMI series. For example, Barrera et al. [4] deal with
models that depend on the highly non-linear behavior of a system of partial differ-
ential equations, and adaptive reconstruction of industrial models. The interpolation
methods are addressed and the quasi-interpolation concept is discussed. The relation
between economic models and poverty problems is pointed out. In the same series, a
valuable contribution is presented by Rebollo et al. [41]. In that book, we can find a
collection of 30 papers from the 9th International Congress on Industrial andApplied
Mathematics (Valencia, July 15–19, 2019). The papers address important topics in
mathematical modeling, industrial and environmental mathematics, mathematical
biology and medicine, reduced-order modeling, and cryptography.

Most of the contributions of the above book series refer to applied mathemat-
ics, in particular to distributed parameter systems and partial differential equations.
Somewhat more interdisciplinary mathematical problems are discussed in “Applied
Mathematics for Environmental Problems” byAscensio et al. [2]. In the book, several
models are presented, such as the wildfire spread model and wind shear forecasts.

A wide and valuable insight on construction and use of models can be found in the
book of Page [36]. The author promotes the “many model thinking” approach. This
consists in using ensembles of many models to understand complex phenomena. In
the first chapter of the book, we read “The logic behind the many model approach
build on the age-old idea that we achieve wisdom through the multiplicity of lenses.
The idea traces back to Aristotle, who wrote of the value of combining the excel-
lencies of many.” Page explains the fundamental properties of models; a model can
simplify, stripping away unnecessary details, and formalize, using mathematics. The
models “create tractable spaces within which we can work through logic, generate
hypotheses, design solutions and fit data.” In the book (chapter three), Page recalls
that we can apply the same model to many different cases, changing assumptions
and reassigning identifiers. Indeed, if we look at the creation and the spread of the
System Dynamics (SD) model of Forrester [17], we can see that the known models
of electric circuits can be applied to industrial dynamics, urban growth, and a lot of
other cases. This caused the growing application of the SD approach in the 1960s up
to, perhaps, the recent time. However, let us observe that such approval of (any other)
methodology bears some possible pitfalls. The common conviction that everything
can be modeled the same way as electric circuits, and that everything that changes
continuously can be described by differential equations, is not exactly true. More
remarks on this issue are made further on in the present chapter.

Note that the multi-model paradigm has already been well defined in the book of
Zeigler (1970) [52], where, for each basic model of a real system, there is defined
a series of simplified models with their corresponding experimental frames, see the
Sect. 1.5 of the present chapter.
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1.2 The System

Modeling and simulation concepts almost always refer to the notion of system. By
a system, we mean a set of components that are interrelated and interact with each
other. These interrelations and interactions differentiate the system from its envi-
ronment. The system is supposed to be organized in order to perform one or more
functions or achieve one or more specific goals. Carter McNamara in his book [31]
defines a system as follows: “... a system is an organized collection of parts (or
subsystems) that are highly integrated to accomplish an overall goal. The system
has various inputs, which go through certain processes to produce certain outputs,
which together, accomplish the overall desired goal for the system.”

The commonly mentioned properties of systems include:
* Aggregation—that means that systems can be grouped into categories that can

be nested into larger aggregates.
* Non-linearity—System needs not to be linear, i.e., it does not necessarily satisfy

the principle of superposition.
* The behavior of a system is not the sum of the behaviors of its components.
Consult Holland [20, 21].

1.3 Mathematical Models

Mathematical modeling is one of the most important tools used in scientific research.
It permits to find the mappings between the real world and the world of mathematics.
In this book, we treat mathematical modeling as just one of the ways to construct
models of real (or fictitious) systems. This section is about mathematical modeling.
We treat amodel as non-mathematical if it uses nomathematics, except, perhaps, ele-
mental arithmetic, and logical relations. These are, for example, some discrete-event,
object- and agent-oriented models of populations, road traffic, or battlefield, where
model component actions need no high mathematics. Such models are discussed in
other chapters. Note that any classification of things is, in some situations, a risky
and limiting task. Inserting all we can do to a series of boxes or drawers may limit
our general insight into the real world.

Models used in research, engineering design, forecasting, and decision-making
may be of many kinds. Physical models are still used by engineers, for example, in
aerodynamical problems or fluid flow simulations. Other types of models include
logical, discrete-event, and object- or agent-based models used in waiting lines sim-
ulation and manufacturing of social (soft systems) problems. However, the mostly
used (but not the unique) type is mathematical modeling.

According to the Encyclopædia Britannica, “Mathematical model, either a phys-
ical representation of mathematical concepts or a mathematical representation of
reality. Physical mathematical models include reproductions of plane and solid geo-
metric figures made of cardboard, wood, plastic, or other substances; models of
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conic sections, curves in space, or three-dimensional surfaces of various kinds made
of wire, plaster, or thread strung from frames; and models of surfaces of higher order
that make it possible to visualize abstract mathematical concepts.”

We can agree or not with this definition that may appear somewhat complicated.
Perhaps a more concise explanation can be found in The Free Dictionary: “ Amathe-
maticalmodel is a descriptionof a systemusingmathematical concepts and language.
The process of developing a mathematical model is termed mathematical modeling.
Mathematical models are used in the natural sciences (such as physics, biology, earth
science, chemistry) and engineering disciplines (such as computer science, electrical
engineering), as well as in non-physical systems such as the social sciences (such
as economics, psychology, sociology, political science). Mathematical models are
also used in music, linguistics and philosophy (for example, intensively in analytic
philosophy).”

Amodel may help to explain a system, study the effects of different components,
and make predictions about behavior. In the book of Eykhoff [16], we find the def-
inition of the mathematical model as “a representation of the essential aspects of
an existing system (or a system to be constructed) which presents knowledge of that
system in usable form.” However, dealing with models, we should remember that
mathematical modeling is not the unique way to model building.

One of the classic sources of mathematical modeling is the handbook of G. Korn
and T.M.Korn [27]. This is a big collection of useful mathematical facts related to
model building. In the book, we can find definitions, theorems and formulas, and
reference materials, collected with a rigorous mathematical approach. It includes
the definitions and discussion of many advanced mathematical methods that may be
used in modeling.

Mathematical modeling is used to solve complex problems and to understand
what happens in the real world. In few words, this is a process in which real-life
problems are translated into mathematical language. In this book, by mathematical
model, we understand models that use higher mathematics, like ordinary or partial
differential equations (PDE), differential inclusions, higher algebra, and advanced
statistics. Models that use logical relations, arithmetics, or simple statistics used in
computer simulations, will be treated rather as computational models. These are,
for example, object-oriented queuing models or agent-based models (excluding the
queuing theory).

Recently, model creation is almost always done bearing in mind computer simu-
lation. According to the Springer Encyclopedia of Sciences of Learning, “Computer
simulation model is a computer program or algorithm which simulates changes of a
modeled system in response to input signals”. In the following, we will refer to com-
puter simulation just as simulation. The difference betweenmodeling and simulation
tasks is that the modeling consists in establishing relations between a system of real
world and a model, while simulation is the relation between models and computers.
We will not discuss here the classification and tools of computer simulation because
this book is focused on models, rather than simulation. Only recall that simulating
something on a (digital or analog) computer is to make a computer program behave
like an aeroplane, a bacteria, a factory, a moving particle, or other objects of the real
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(or imaginary) world. Simulation is a highly interdisciplinary research tool, where
the simulationist must learn not only how to develop and use a simulation program
but also how a colony of bacteria grows, how a car suspension works, how a missile
moves, how shoes are fabricated, and many other things. Anyway, model building
and computer simulation are closely related. In this book, we only discuss dynamic
models, that describe the changes in the model state in time.

1.3.1 Kinds of Mathematical Models

The main, rough classification of mathematical models include
* Linear—this kind of model must satisfy the definition of linearity, from the

mathematical point of view, namely, the additivity and homogenity assumption.
Recall that a function f (x) is additive if f (x + y) = f (x) + f (y), and homoge-
nous if f (kx) = k f (x) for any k. Otherwise, the function is non-linear. In systems
theory, big complex models are supposed to be non-linear, and the behavior of the
model as a whole is not a sum of the behavior patterns of its components. The
non-linearity is often associated with phenomena such as chaos and irreversibility.

* Explicitmodel—using such model, you can calculate all output variables, pro-
vided all inputs are defined. The implicit model requires more, frequently iterative
algorithms to be used.

* Probabilistic or stochastic—models are those that include some randomness,
represented by random variables. Otherwise, the model is deterministic.

*Blackbox—models are constructed looking for correct relations betweenmodel
input and output, while the internal model structure is not the most important issue.

* Complex models—are supposed to be related with complex systems, where
the model (or system) behavior can hardly be understood, and the models help us to
predict the future system outcome.

* Empirical models—are constructed using the data obtained by observations
and processed in some way, for example, by the regression analysis. The opposite
kind ismechanistic or theoretical, wherewe use the relationships taken fromknown
theories, like equations of particle movement or queuing theory.

Models can be also classified due to the particular mathematical tool:
* Models described by ordinary differential equations (ODEs). This includes

the System Dynamics (SD) models developed in 1960s by Jay Forrester [17] where
the models are described by ODEs or difference equations. Here should also be
included models given in the form of block signal diagrams, signal flow graphs, and
bond graphs that automatically generate ODE versions.

* Distributed parameter models described by partial differential equations or
finite element method.

* Differential inclusionmodels that provide reachable sets and functional sensi-
tivity analysis (see Chap. 3).
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* Models based on regression analysis and advanced methods of probability
theory

* Transfer functions and state transitions.
In the automatic control theory, modeling of linear dynamic systems, electronics,

instrumentation, and similar fields, the dynamics ofmodel components are frequently
described by transfer functions, in terms of the Laplace transform. This kind ofmodel
is discussed in more detail in Chap. 2, “Continuous models.”

* Other models that combine the abovemathematical methods or use high math-
ematics.

Another classification, similar to that of computer simulation, consists of the divi-
sion between continuous- and discrete-event models. The point of this book is that
this is somewhat artificial division that arose from the development of simulation
software, rather than from the properties of the real systems being modeled. The
validity of discrete-event models might be questioned, mainly because of the prob-
lems with simultaneous event handling. On the other hand, there exists a strange
conviction among many researchers, that everything that is continuous in the real
world, can be modeled by differential equations. The SD methodology is so user-
friendly, that almost everybody can simulate everything using an SD package like
Stella or PowerSim. Few users of these tools care about the model validity and the
existence of solutions. This leads to invalid models that can provide wrong hints in
decision-making processes.

In each field of scientific research, an intense work on modeling and simulation
is going on. Each branch of research has its own approach to modeling and model
classification. As an example, we give a very short overview of modeling in economy
and public health.

1.3.2 Models of Economic Growth

The research on economic growth models dated from the eighteenth century. The
early publication “An Inquiry into the Nature and Causes of the Wealth of Nations”
of Adam Smith appeared in 1776, now available in other editions (Smith [45]). Smith
deals with the production and distribution in a capitalistic system, being the main
theoretic contribution to the pre-Marxist economy. Smith studied the formation of
the capital, the productivity, and the output from workers. The factor of technical
progress and its importance has been addressed later by Ricardo [43].

More mathematical models of economy dynamics appeared in the early twentieth
century. Sir RoyHarrod in 1939 and Evsey Domar in 1946 developed amore detailed
model of economic growth (see Sato [44]). In that model, the economic growth is
dependent on the level of saving and the capital–output ratio (productivity of capital
investment). The model explains how growth has occurred and how it may occur
again in the future.

An interesting model that shows a constancy in the capital/output ratio, including
“capital saving” and “labor saving” factors, can be found in Nicolas Kaldor [23].
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The Keynesian [24] approach, developed in 1930s is used. The model also takes
into account the limited available resources. Model variables are income, capital,
profits, wages, investment, and savings. As the result, the model provides long-run
tendencies for economic growth.

Rostow [22] proposes a five-stage development model. The process of economic
growth is divided into the stages of (1) traditional society, (2) preconditions for
takeoff, (3) economic takeoff, (4) drive to maturity, and (5) mass consumption. This
is a long-term approach. The traditional society stage is assumed to include the
eighteenth-century societies. The takeoff is considered to appear in the nineteenth
century. Drive to maturity takes place in the nineteenth and twentieth centuries. Mass
consumption period in US and Canada is located in 1920 and in other countries after
World War II.

It is out of scope of this chapter to give amore detailed survey, consult, for example,
Basu [5]. Many economic growth models use the SolowSwan model related to the
Cobb–Douglas production function, proposed by Solow [46] and Swan [47], and the
Bhattacharya [6] three-sector models (see also Diamand and Spencer [15]).

Walde [50] addresses the problem of optimal household behavior, including a
risk factor, savings, and returns. However, the paper is focused on equilibrium rather
than the extrememodel behavior. Barlevy [3] discusses the design ofmacroeconomic
policieswith uncertainty. The aim is tominimize theworst-case. The uncertainty gen-
erated by the environment is taken into account. It is pointed out that the worst-case
is not the most important issue, compared to the optimization of the macroeconomic
policies.

The Central Economic Mathematical Institute of URSS was founded in 1963
to enforce the works on economic models. The main project of the institute was the
“mathematical description of soviet economy.” There are a few publications on these
works, related to the multi-branch economy and Leontief’s theory [42]. The result
of the work of several years was a mathematical model that intended to describe the
dynamics of the economy of the whole Soviet Imperium. However, when the model
was terminated, the authors agreed that it was too big to be simulated on computers
in the 1960s (machines with 32kBytes of operational memory, 100kHz CPUs). So,
the work remains rather a theoretical achievement and did not help in slowing the
problem of decay of the economy. The impact of computer simulation on the soviet
economy was mentioned by several authors, see for example, the works of Naylor
[32].

An example of new insight into uncertainty treatment in the economic growth
models can be found in Raczynski [39].

1.3.3 Models in Public Health and Epidemics

One of the first classic models of the phenomenon appears in the late 1920s, in the
works of Kermack and Kendrick [25]. In fact, the models that have been developed
later on, are of similar type: they try to reflect the dynamics of the epidemics using
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Fig. 1.1 The SIRS model

the system dynamics approach and the ordinary differential equations (ODE). The
ODE models are normally given in the form of a set of non-linear ODEs and their
properties. Such models have been widely discussed and improved in many available
works. However, the ODE or System Dynamics (SD) models (Forrester [17]) can
hardly reflect the geospatial issues. As stated in the Preface, the popularity of the
SD models arose among the modelers mainly due to the strange conviction that any
continuously changing variable of the real world can be modeled using the ODEs.
In fact, this is not true. This, and other deficiencies of the ODE and SD modeling,
have inspired the development of other modeling and simulation tools, such as the
object- and agent-based simulation, see Obaidat and Papdimitrou [35], and Perez and
Dragicevic [37]. Dargatz and Dragicevic [11] consider an application of an extended
Susceptible–Infectious–Removed model of the “space-temporal spread of influenza
in Germany. The inhomogeneous mixing of the population is taken into account by
the introduction of a network of sub-regions.” The multivariate diffusion process is
used to describe the model.

The basic and most popular is the Susceptible–Infectious–Removed (SIR) model.
Figure 1.1 shows the SD scheme of the model. Block S represents the number of
susceptibles, i.e., the individuals that can be infected. Block I denotes the number
of actually infected and R is the number of people who recovered from the disease
with immunity, or dead. A modification of the SIR model named SIRS includes also
a feedback from block R to S, as shown in Fig. 1.1.

There are many modifications to the above models. For epidemics with a larger
duration, the birth-and-death process is added. A passive immunity is taken into
account in the MSIR model, where it is supposed that some individuals are born
with immunity. MSEIR model has the scheme MSEIR, where M is the number of
passively immune individuals. Supposing that the immunity in group R is temporary,
we obtain the MSEIRS model.

In the article of Ng et al. [34], we can find a description of a model of double
epidemic. The two superimposed epidemics are considered using a modification of
the SIR model. The problem is focused on the Hong Kong SARS (Sever Acute Res-
piratory Syndrome) epidemic in 2003, caused by two different viruses. The resulting
model is given by a system of six differential equations of the first order.

Somemore complicatedmodels of epidemicdynamics canbe found inGebreyesus
and Chang [18]. They propose a multi-compartment model that takes the interactions
of human and animal or different species of animals into account. It is a multivariable
state-space model that reflects the phenomena of some diseases transmitted from
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animal to human, such as Ebola, MERS-Coronavirus bird flu, and tuberculosis. The
basic model used in that article is a modification of SIR. The main concept is to
define a number of clusters in the populations, where the epidemics are governed by
SIR equations, interacting with each other. The model supports the spatial issues,
introducing the regions like urban and rural. For the models of recurrent epidemics,
see David [13].

The above models are deterministic. In order to manage the uncertain elements,
the stochastic elements in disease spread models have been introduced many years
ago. Various types of stochastic models are discussed by Allen [1], who considers
some modifications of the basic SIR model. The mathematical tools include the
Markov chains and stochastic differential equations. From these models, we can
obtain the probability distributions for final size of the S, I, and R groups, for the
disease extinction, disease duration, and other parameters. In theAllenmodel the S, I,
and R are treated as discrete random variables. A detailed mathematical background
is given, where the obtained equations describe the probabilities rather than the
instant values of the variables. The MATLAB code examples are given. See also
Matis and Kiffe [30]. The overview of various modeling techniques, deterministic
and stochastic, can be found in Daley and Gani [14]. See also Raczynski [40] for
some remarks on uncertainty treatment in epidemics models.

1.3.4 Graphical Representations of Continuous Models

The use of ODEs or PDEs is not the only way to simulate continuous dynamic
systems. A continuous model may be constructed in the form of a graphical image,
with defined parameters and initial conditions. The most used representations are
block diagrams, signal flow diagrams, and bond graphs.

Block diagrams are commonly used to describe automatic control system and
instrumentation problems.

Signal flow diagrams define the signal flow in the model, using arrows and
transfer function. Static linear and non-linear arrows are also used. See Tavangarian
and Waldschmidt [48].

Bond graphs are used to simulate the dynamics of physical systems. In this
method, we use links in form of directed bonds like harpoons. The bond is associated
with a corresponding flow (for example, velocity or electric current) and effort (for
example, the force or electric voltage). Frequently, a bond represents the flow of
energy in the real system. See Cellier [7].

The advantage of the above methods is that there are software tools that auto-
matically generate the model ODEs, and then, the corresponding computer code.
See Chap. 2 for a more detailed description of these types of models. Models of
systems with distributed parameters described by partial differential equations or the
finite-element method are also discussed in Chap. 2.
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We should not restrict our modelingmethodology to the known tools, as discussed
above. One of the alternative and not commonly modeling tools is the differential
inclusion. Models of such kind are discussed in Chap. 3.

1.3.5 Computational Tractability

While creating a model, we should clearly define the purpose of our task. A model
can be created to be used in computer simulation or for other possible use, for
example, stability analysis, a mathematical representation of a real system, or just as
an abstract model that may explain some general ideas. For models that will be used
in consecutive simulation tasks, the problem of computational tractability arises.

It is well known in computer simulation and operations research that some prob-
lems that have a nice mathematical description cannot be treated using the hardware
we actually have. This is very important for models prepared to be run on a computer
as a simulation task. Somemodels are computationally intractable, which means that
they are too time-consuming or expensive to be analyzed on the computer.

A modeling and simulation task is intractable if its computational complexity
increases exponentially with the number of its descriptive variables. The computa-
tional complexity can roughly be defined as the minimal cost of guaranteeing that
the computed answer to our question (simulation task) is within a required error
threshold.

Amostly cited example of an intractable problem is the salesman problem, namely
the simulation of all possible routes of a salesman that must visit various cities. The
aim is to find the route with the shortest total distance. Other examples of continuous
system simulation can be found in fluids dynamics applied to problems like the
reentry of the space shuttle to the atmosphere of the earth (modeling the airflow
around the craft).

For more discussion on intractability, consult Traub and Wozniakowski [49] or
Werschulz [51].

1.4 Discrete-Event Models

Other models, different from the mathematical models discussed above, are the
discrete-event models. In models of such kind, the model time (time to be mod-
eled, not the time of our clocks) jumps from onemodel event to another and does not
advance continuously or in small time-steps. Thismakes the corresponding computer
simulation fast, compared to the ODEmodel simulation. A more detailed discussion
of discrete-event model can be found in Chap. 7.

The discrete-event models are given in the form of the specification of possible
events that may occur in the modeled system, and in managing the event execution.
The order of execution is not predefined, and is defined at the runtime, by the corre-
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sponding software package, and not by the user. So, each simulation tool, like GPSS
or Arena package, is, in fact, a certain version of discrete-event model, ready to use
for a class of similar modeling tasks, like queuing models.

Discrete models are closely related to discrete-event simulation. Creating a dis-
crete model, we almost always do it using a particular discrete-event simulation soft-
ware. As stated before, modeling and simulation are closely related to each other. For
mathematical models, we have perhaps more freedom in simulation while selecting
a simulation software, like a numerical method or continuous simulation package.
For discrete models, we almost always select the software tool before constructing
the model. Of course, a discrete-event execution can be coded in an algorithmic or
object-oriented language like C++. However, using, for example, the antique pack-
age GPSS, we need 20 (or more) times less code lines than in the code created (from
the very beginning) in C++.

As mentioned before, the creation of models and computer simulation are some-
times inseparable tasks. From this point of view, each one of the simulation packages
like GPSS [19], Arena, or ProModel represents its own modeling methodology. In
discrete-event simulation, the very elemental concept is that of object-oriented mod-
eling (OOM) and related programming methods. The idea of OOM and model event
execution dates from the 1960s and was also defined in the GPSS (General Purpose
Simulation System) package. The GPSS objects, named transactions, are created
at the runtime. They pass through the model events (GPSS resources), interact with
each other, and disappear. This concept repeats in nearly all discrete-event simulation
tools. See Chap. 7 for more detail.

1.4.1 Petri Nets

Petri nets (PNs) is a graphical modeling tool for discrete-event simulation. A good
review of the method can be found in David and Alla [13]. PNs were originally
developed by Carl Petri in 1962 to model and analyze communication systems. In
PNs, there are four elements: places (represented by circles), transitions (represented
by bars), directed acrs, and tokens (represented by dots). More details on Petri nets
are provided in Chap. 7.

1.4.2 Discrete-Event Specification Formalism (DEVS)

The theoretical base of discrete-event simulation is defined in the Discrete-event
Specification Formalism (DEVS), see Chow [9].

In the discrete-event simulation, it is supposed that the model events are discrete,
i.e., they are accomplished within a model time interval of length zero. This model
simplification makes the simulations very fast. In the object-oriented programming,
we declare several generic code segments called classes. According to these decla-
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rations, objects are created at the runtime. Each object is equipped with a data set
and several methods that perform operations on the data.

The Discrete-event Specification (DEVS) formalism is used to describe models
in discrete-event simulation. In the DEVS formalism, an atomic model is defined,
(Zeigler [52]) and then, the coupled model that integrates several atomic and other
coupled models. This results in a hierarchical model building that uses portability
and model “encapsulation,” useful while dealing with big, complex systems.

In DEVS, as well as in any other discrete-event models, the problem of possible
simultaneous events arises. To solve it, an additional model element select is added.
The select component defines the order of execution for simultaneous events thatmay
occur in the coupled model. This component must be added to the model to avoid
ambiguities in the simulation algorithm and to make the model implementation-
independent. There is a big research done on the select algorithms because treating
the simultaneous events is rather a difficult task.

The use of the DEVS formalism is relevant for big models, where the time of
execution, hierarchical model building, and portability are important factors. To
treat complex models with variable structure, the Dynamic Structure Discrete-event
System Specification (DSDEVS) is used.

See Chap. 7 for other remarks on discrete models.

1.5 Experimental Frames and Model Validity

First of all, we must define the components as elemental parts of the model, like
clients in a bank, ships entering a harbor, cars on a street, etc. Each component is
described by the descriptive variables that include input, component state, and output
variables. The set of all descriptive variables in a model forms the experimental
frame. The same real system may have several different experimental frames. Each
experimental frame results in the corresponding simplified model, as shown on the
Fig. 1.2 (following Zeigler [52]).

Here, the basic model reflects exactly the behavior of the real system. Such model
normally does not exist.

Note that the aim of the modeling task, as well as the technical limitations (the
computer on which we want to run the resulting simulation program), reduce the
number of possible simplified models. This helps us selecting the appropriate sim-
plification. If there is more than one simplification that satisfies our requirements,
we must apply other selection rules (e.g., modeling cost). If no model exists satisfy-
ing our aim and technical limitation, then no simulation is possible. Remember that
looking for something that does not exist is simply a waste of time. Also, note that
the same real (or imaginary) system can have several different experimental frames
and several simplified models. For example, while modeling an electric circuit, the
common experimental frame is the set of the voltages and currents on the corre-
sponding circuit components. However, for the same circuit, someone can define the
experimental frame as the set of all voltages and currents, power dissipated on each
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Fig. 1.2 Basic model and experimental frames

element, the temperature of each integrated circuit and of the printed circuit plate,
as well as the intensity of the electromagnetic field produced by the circuit. The first
frame suggests the use of an appropriate package for circuit simulation, while the
second one implicates the use of a circuit simulation package, as well as sophisticated
heat transfer and electromagnetic wave software.

Model validity is one of the central problems in modeling and simulation. Before
discussing the concept, recall what the input and output variables are. Roughly speak-
ing, by the inputwemean all external signals like electric excitations, control signals,
or orders that come from the environment. Output variables are those values that we
want to observe, measure, store, print, or plot as the result of a simulation run. The
concept of input and output comes from the problems of signal processing, auto-
matic control, and similar fields. However, not all systems must be causal, and the
input and output concept may not work. Consider an electric resistor, treated as an
isolated, stand-alone system. One can define the input signal as the voltage applied
to the resistor and the output as the resulting current. But the same resistor in other
circuits (context) can have a forced current (connected to a current source) as the
input signal, the resulting output variable being the voltage. A new approach to mod-
eling of physical systems questions the input–output concept, which means that from
this point of view, physical systems are not causal (see Cellier [8]). Other aspects
of model descriptive variables and formal model definition will be discussed in the
section devoted to the DEVS (Discrete-event Specification) formalism.

Now, let us comeback to causal systemswith input and output signalswell defined.
Consider a real dynamic system and a correspondingmodel. Let S be the operation of
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Fig. 1.3 Basic model and
experimental frames

Fig. 1.4 Input/output
validation

modeling (passing from real system to its model). By x(t) we will denote the system
state in the time instant t, by y(t) the system output, by f the state transition function
that maps the state x(t) and input over [t, t+h] into the new state x(t+h). The same
letters with suffix s denote the corresponding items for the model. Due to Zeigler
[52], the model is said to be valid if and only if the diagram of Fig. 1.3 commutes.
In other words, starting with x(t), we must obtain the same model output ys(t + h)
independently of the way we choose. This must be satisfied for any possible initial
state and input. This definition of model validity is somewhat difficult for practical
applications. A more practical concept is the input–output or external validity that
can be illustrated by the scheme shown on Fig. 1.4.

The model is supposed to be I/O valid if the outputs from the model and from
the real system are “sufficiently” near. What “sufficiently” means is the individual
judgement of the modeler. Obviously, the above property must be satisfied for a long
time interval, and perhaps for future model inputs. As we do not know what inputs
signals will affect our model, the only way to check the I/O validity is to compare
the model behavior and the real system output using some historic data.

The validation methods are discussed in a huge number of publications. Let us
cite only one of them that provides a quite recent and comprehensive survey, see
Ling and Mahadevan [29].
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Fig. 1.5 Two capacitances

1.5.1 Two Capacitors Circuit

Consider an electric circuit of Fig. 1.5 and two experimental frames:
Frame 1. Variables: voltages on the two capacitances.
Frame 2. Variables: voltages on the two capacitances and the total energy in the

circuit.
In this model C1 = C2, the wires have a resistance equal to zero, and the circuit

has no inductance.
Suppose that at the beginning, the voltage of C1 is equal to V, and the C2 has

voltage zero (Fig. 1.5). At a certain time instant, we close the switch. Logically, after
the switch is closed, the electric charge distributes between the two capacitances so
that each of them has the voltage equal to V/2. Obviously, the model is valid for
experimental frame 1.

Now, calculate the total energy before and after closing the switch. The result of
this simple calculation is that half of the energy disappears. The question is, where
the half of the energy went? This means that the model is invalid for experimental
frame number 2.

To build a validmodel, wemust consider a (may be arbitrary small) wire resistance
R, or a finite circuit inductance. If R is greater than zero, then half of the energy
dissipates on R. It is easy to see that this amount of energy does not depend on R.
Now, suppose that R tends to zero. One could expect that, in the limit (R =0), the
dissipated energy is the same, but this is not the case because for R = 0 no energy
dissipates. In other words, the sequence of models with R approaching zero tends to
a singularity at R =0. This, and similar issues, are discussed in Chap. 9.

Unfortunately, for more complex models, we can never be sure that our model is
100% valid. The exact validity criterion of Zegler is difficult to implement. The I/O
validity only shows that the model is good for the past data. We can “extrapolate”
this assessment with some probability to the future model behavior. However, in the
future, the data may change abruptly or the real system may change its structure and
interaction rules so that simulation results will be wrong.

As an example, consider a model of a new epidemy, like COVID-19. I appreciate
efforts on COVID-19 pandemics simulations that perhaps can result in some useful
tools in the future. However, note that the most serious mistake in any scientific work
is to look for something that does not exist. The problemof the existence of solutions is
well known in mathematics but somewhat vague in other fields of scientific research.
For new epidemics with new forms of bacteria or viruses, the existence of the model
is rather doubtful. The worst error is to take a plot of certain past epidemics and
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then look for a forecast by using the data of the initial period and use some best-fit
method to estimate parameters and generate forecasts. Such curves and forecastsmay
be (and, in fact, they were) used by health organizations and governments to take
decisions on future actions. This may result in erroneous disease handling and in
thousands of infections and deaths. Anyway, this is a question of ethics in modeling
and simulation.

Note that the same mathematical model may describe two or more real systems.
For example, the equation of an electrical capacitance can describe, as well, the
dynamics of a cylindrical water deposit. The analogy between electrical circuits and
the real manufacturing, business, social, or economical systems was used by Jay
Forrester [17] in the development of the System Dynamics methodology.

On the other hand, a real system may be described by two or more models of
a completely different kind. Let’s see the following models of the birth-and-death
(B-D) process.

1.5.2 Birth-and-death Process

The birth-and-death (B-D) equation may describe the behavior of growing popu-
lation, queuing systems, communication systems, and similar models in a proba-
bilistic way. The solution to the B-D equation is given by a set of functions of time
Pn(t), n = 1, 2, 3, ...N , where Pn(t) is the probability that the system takes the n-th
state at the time instant t . The total number N of possible states is, in most prac-
tical cases finite, but in theory it can be infinite. Note the difference between the
experimental frame of the B-D equation model and that of a model based on discrete
events. While modeling, for example, a growth of a population we can create a dis-
crete model (A), where each event of birth and death of an entity is simulated at a
discrete (deterministic or random) time instant, or describe it by a corresponding B-D
equation (B-D model). The result of the model (A) is a sequence of random events,
different in each simulation run. In turn, the result of the B-D equation model is a
sequence of continuous functions Pn(t) that describe model state probabilities rather
than particular states. Note that the two corresponding experimental frames are com-
plete different from each other and even do not intersect, one being stochastic and
discrete, and the other is deterministic, represented by a set of ordinary differential
equations and a sequence of continuous functions of time.

To obtain the B-D equation of given system, we must define the probability of
“birth” (birth of a man, appearance of call request in a communication system,
appearance of a new client in a bank, etc.), and the probability of the “death” or
disappearance of a model entity. Then, an assumption is made that the probability
that two events occur within a time interval H tends to zero more quickly than the
probability that only one event will occur within H, when H approaches zero. This
leads to the equation 1.1 (the case of population growth):
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dPn
dt

= −(λn + μn)Pn(t) + λn−1Pn−1(t) + μn+1Pn+1(t) f or n > 0

dP0
dt

= −λ0 + μ1P1(t),

(1.1)

where λn is the birth rate and μn is the death rate if the model state is n (in this case
the total population). Pn(t) is the probability that the size of the population is equal
to n at time instant t .

Both the birth-and-death rates can depend on the state n and on the time. For
example, in the population model, the birth rate may be proportional to the number
of population members, and in a communication system model the birth rate is
constant or depends on external factors (the number of requests does not depend on
how many clients are being attended by the system at the moment).

The B-D equation is a useful tool in modeling and simulation. However, in many
practical situations it is too primitive to describe the system behavior. Normally, to
derive the B-D equation one must first find how the birth-and-death rates depend
on the system state. This step is frequently the source of errors. For example, while
modeling a biological or ecological system the modeler frequently forgets that such
systems have a huge and complicated memory. Making simple assumptions on the
birth-and-death rates discards this memory and leads to serious errors.

1.6 Model Credibility

The end-user of a model need not be the same person or team that created the
model. If so, the problem of model credibility should be addressed. If the end-user
or client (a plant engineer, a manager, a decision-maker) who received the model
and/or final simulation program, must believe that it is valid and works satisfactory.
If not, themodelwill never be used. After developing the simulationmodel, wemust
exhaustively test it using different data sets. Even if we do this, we have no guarantee
that the model will work. It is highly probable that the first thing the end-user will
do, is to run the program with input data that makes the program crash or provides
unacceptable results.

One of the things we can do to increase model credibility, is to include end-user
person(s) in the team that elaborates the model.

1.7 Uncertainty and Randomness

In the environment of systems we want to model and simulate, as well in the system
itself, there is a lot of factors that influence model behavior, but are not exactly
defined. It is a common practice to treat such factors as random variables. This
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results in stochastic models that include random variables. Recall that any random
variable should obey some rules of the theory of probability. A random value must
be equipped with corresponding probabilistic properties, like the expected value,
variance, probability distribution, and others. Stochastic models include such random
variables. This means that the resulting model trajectories are also charged with
certain randomness. The numerical treatment of such type of models is more difficult
that the integration of deterministic models, see Nelson [33].

However, stochastic modeling is not the only way to treat system with non-
deterministic components. In Chap. 3, we can find the problem statement of uncer-
tainty caused by variables that are not random or stochastic. Such variables are
just uncertain and have no probabilistic properties. Uncertain variables need not be
random. It may be, for example, an external disturbance that changes abruptly in
certain unknown time instant, or a value inserted intentionally into the model (false
information) by external agents.

In Chap. 3, we propose an application of differential inclusions in uncertainty
treatment.

1.8 Conclusion

Modeling and simulation is a highly interdisciplinary field of research. Most of the
models we create are then used in computer simulation. The diversity of models is
the consequence of the diversity of the real world. Moreover, as mentioned in this
chapter, the same real system may correspond several, quite different models. This
depends on the aim of the modeling and on the experimental frame we use.

Creating a model we must first define the purpose of the whole task. This will
determine one or more experimental frames. In general, model creation helps us in
understanding how complex systems work. Not all models we create result in prac-
tical applications like computer simulation, optimization, predictions, or decision-
making. There are models that cannot be implemented because of the computational
tractability, or are created for other purposes. Such models, however, are not com-
pletely useless. They may have cognitive properties, stimulate our imagination, or
simply let us analyze and understand the real world.

1.9 Questions and Answers

Question 1.1 What does it mean that a function y(x) is linear?

Question 1.2 Is the function y = ax + b, b �= 0 linear?

Question 1.3 Which of the following differential equations may represent a linear
model of a dynamic system? (u(t) is the external excitation)
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1.
d2x

dt2
+ 4

dx

dt
(1 + x(t)) = u(t)

2.
d2x

dt2
+ 2

dx

dt
+ x(t) = u(t)2

3.
d2x

dt2
+ 5

(
dx

dt

)3

+ x(t) = u(t)

4.
d2x

dt2
+ 4

d3x

dt3
+ t2 + x(t) = u(t)

Question 1.4 What do we understand by a system?

Question 1.5 What does it mean that a system is complex?

Question 1.6 What is DEVS?

Question 1.7 What is the select model element in DEVS?

Question 1.8 What is experimental frame?

Question 1.9 Can a valid model be not configurable?

Question 1.10 What is validity I/O?

Question 1.11 Consider two model simplifications, where simplification B is more
detailed and advanced than simplification A. Must the experimental frame of A be
included in the frame of B?

Question 1.12 What is the main field of applications of the signal flow graphs?

Question 1.13 What is the main field of applications of the bond graphs?

Question 1.14 What is a “computationally intractable” task?

Question 1.15 What is the model time?

Question 1.16 What is the discrete-event simulation?

Question 1.17 What are Petri Nets?

Question 1.18 What is the uncertainty in modeling a simulation?

Answers

Answer 1.1 To be linear, the function f (x)must be additive and homogenous. This
occurs if f (x + y) = f (x) + f (y), and f (kx) = k f (x) for any k.
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Answer 1.2 No, this is an affine function that does not satisfy the conditions of
additivity andhomogeneity.However, a simple change of the origin of the coordinates
system that makes b = 0, converts it into a linear function.

Answer 1.3 Options “2” and “4” because in these equations the independent vari-
able and its derivatives appear in linear expressions.

Answer 1.4 By a system, we mean a set of components that are interrelated and
interact with each other. These interrelations and interactions differentiate the system
from its environment. The system is supposed to be organized in order to perform
one or more functions or achieve one or more specific goals.

Answer 1.5 A system is considered complex if its behavior can hardly be under-
stood. Models of complex systems help us to predict the future system outcome and
better understand its behavior.

Answer 1.6 TheDiscrete-event Specification (DEVS) formalism is used to describe
models in discrete-event simulation. In the DEVS formalism, an atomic model is
defined, and then, the coupled model integrates several atomic and other coupled
models. This results in hierarchical model building, that uses portability and model
“encapsulation” useful while dealing with big, complex systems.

Answer 1.7 The select element is necessary to avoid ambiguity that may occur
while modeling simultaneous events.

Answer 1.8 The experimental frame is the set of all descriptive variables of the
model. Roughly speaking, the experimental frame defines what we want to see,
measure, and take into account in a particular model. The same real system may
have several different experimental frames. Each experimental frame results in the
corresponding simplified model.

Answer 1.9 Yes.
The validity is a property of the model, while confiability refers to the relation

between the model and the end-user. These are two quite different concepts.

Answer 1.10 The model is supposed I/O valid if the outputs from the model and
from the real system, taken from the past data, are “sufficiently” near.

Answer 1.11 No. Two experimental frames of the same real system may be com-
pletely different. For example, the birth-and-death process can be simulated as a
sequence of events (discrete-event simulation), or as a continuous, differential equa-
tionmodel that describes the changes in the probability of reaching a specific number
of members of the population.

Answer 1.12 Models of automatic control circuits, instrumentation.

Answer 1.13 Models of physical systems with flows, efforts, and energy exchange.
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Answer 1.14 A modeling and simulation task is intractable if its computational
complexity increases exponentially with the number of descriptive variables. A
mostly cited example of an intractable problem is the salesman problem, namely,
the simulation of all possible routes of a salesman that must visit various cities.

Answer 1.15 It is the time to be modeled, not the time of our or computer clock In
most simulation packages, the model time is represented by a variable, which value
increases during the simulation.

Answer 1.16 In models of such kind, the model time (time to be modeled, not the
time of our clocks) jumps from one model event to another and does not advance
continuously or in small time-steps.

Answer 1.17 Petri Nets is a graphical modeling tool for discrete-event simulation.
In Petri Nets, there are four elements: places (represented by circles), transitions
(represented by bars), directed acrs, and tokens (represented by dots). The discrete
events occur when the corresponding transition is activated.

Answer 1.18 Models may include parameters that have uncertain values. The com-
mon approach to uncertainty is to treat these parameters as random variables. How-
ever, the uncertain parameter is not the same as a random parameter. Uncertain values
may have no average, variance, or other probabilistic characteristics. Such parameters
or descriptive variables are known as tychastic variables.
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Chapter 2
Continuous System Models

2.1 Introduction

In this chapter, some general concepts on continuous models are discussed. This
chapter refers both to models and to computer simulation. Classification of dynamic
systems is reviewed and summarized. The main numerical methods for the con-
centrated parameter systems, governed by the ordinary differential equations are
described. An example of a simulation task of a simple mechanical system is given.
The methods of signal flow graphs and bond graphs are discussed. A new, alternate
approach is proposed, using the differential inclusions instead of ordinary differen-
tial equations. Next, there are some remarks on the distributed parameter systems,
partial differential equationmodels, and the finite element method.We do not discuss
here software tools for continuous models. Any software described in publications
of such type may result to be obsolete within a few years, while the more general
concepts do not change so quickly.

Continuous models include those of concentrated parameters and distributed
parameters systems. The former group of models represents models for which the
power of the set of all possible states (or, more precisely, the number of classes of
equivalence of inputs, see Chap. 1) is equal to the power of the set of real numbers,
and the latter refers to systems for which this set is greater than the set of reals. These
systemswill be described inmore detail in Sect. 2.2. Themost commonmathematical
tools for continuous modeling and simulation are the ordinary differential equations
(ODEs) and the partial differential equations (PDEs).

As for the implementation of continuous models in computer simulation, we
must remember that in the digital computer nothing is continuous, so the continuous
simulation using this hardware is an illusion. Historically, the first (and only) devices
that could simulate continuous models were the analog computers. These machines
are able to simulate truly continuous and parallel processes. The development of
digital machines made it necessary to look for new numerical methods and their
implementations. This aim has been achieved to some extent, so we have quite good
software tools for continuous model simulation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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26 2 Continuous System Models

To illustrate the very elemental reason why the continuous model simulation on
a digital computer is only an approximation of the real system dynamics, consider
a simple model of an integrator. This is a continuous device that receives an input
signal and provides the output as the integral of the input. The differential equation
that describes the device is

dx

dt
= u(t), (2.1)

where u is the input signal and x is the output. The obvious and the most simple
algorithm that can be applied on a digital computer is to discretize the time variable
and advance the time from zero to the desired final time in small intervals h. The
iterative formula can be

x(t + h) = x(t) + hu(t) (2.2)

given the initial condition x(0)=0.
This is a simple rectangle rule that approximates the area below the curve u(t)

using a series of rectangles. The result is always charged with a certain error. From
the mathematical point of view, this algorithm is quite good for input signals regular
enough. Theoretically, if u(t) ≡ 1, the error tends to zero when h approaches zero,
so we can obtain any required accuracy. For other input functions, the errors may
accumulate. However, even for the unit step function u, this does not work.

Suppose that our task is to simulate the integrator over the time interval [0, 1]
with u = const = 1. We want to implement the above algorithm on a computer on
which the real numbers are stored with the resolution of eight significant digits.
To achieve high accuracy of the simulation, we execute the corresponding program
of formula (2.2) several times, with h approaching zero. One can expect that the
error will also approach zero. Unfortunately, this is not the case. Observe that, if
h < 0.000000001 the result of the sum operation at the right-hand side of (2.2)
is equal to x(t) instead of x(t) + hu(t) because of the arithmetic resolution of the
computer. So, the error does not tend to zero when h becomes small, and the final
result maybe zero instead of one (integral of 1 over [0, 1]). Of course, we have a
huge number of numerical methods that guarantee sufficiently small errors and are
used with good results. Anyway, we must be careful with any numerical algorithm
and be aware of the requirements regarding the simulated signals to avoid serious
methodological errors. A simple fact that we always must take into account is that, in
a digital computer, real numbers do not exist, and they are always represented
as their rough approximations.

2.2 Dynamic Systems

A system is a collection of elements or components that are organized for a common
purpose.
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Carter McNamara in his book [25] gives somewhat larger definition: “... a system
is an organized collection of parts (or subsystems) that are highly integrated to
accomplish an overall goal. The system has various inputs, which go through certain
processes to produce certain outputs, which together, accomplish the overall desired
goal for the system.”

The aim of modeling and simulation is to observe the changes in the model state
over a given time interval. The fundamental concepts of the models of dynamic
systems are the model state and causality. Roughly speaking, the system state is the
minimal set of data that permits to calculate the future system trajectory, given the
actual state and all system inputs (external excitations) over the time interval under
consideration. A dynamic systemmay be considered causal if its actual state depends
on previous states and the previous and actual external excitations only. Another
notion of causality is the input–output causality relation used in signal processing,
instrumentation, and automatic control. Note that these two causality concepts are
quite different. An electronic amplifier has its input and output signals well defined
and, obviously, the input is the cause, the output is the result, and not vice versa.
However, in physical systems, this concept does not work. For an electric resistor
mentioned before, the relevant variables are the current and the applied voltage.
However, we cannot say which of these variables is the cause and which one is the
result. If you do not define to what device the resistor is connected (e.g., voltage
source or current source), you cannot say if the cause is the current or the voltage.

Consider a dynamic system with input and output signals for this system asU and
Y, respectively. We define by X(t) the state of the system at the moment t if and only
if a function or functional F exists such that

X (t) = F(t,U {s, t}, s, X (s)), s < t.

In other words, it is necessary that the system state at a moment t can be calculated
using some past state in time instant s and the input function over the interval between
the two moments of time. For example, the state of a system that has one spring, one
mass, and one damper linked together is given by the mass position and velocity. All
the other descriptive variables of this system are parameters, inputs (e.g., external
forces), or some output functions defined by the modeler.

In the case of an electric red composed of any number of resistors and one capac-
itor, the state is the value of the capacitor voltage. In this case, all the currents in the
resistors can be calculated provided we know the initial capacitor voltage and the
external excitations (input signals). System state may be a scalar, a vector, or an ele-
ment of a certain more abstract space. For example, the state of the model describing
the changes in the temperature distribution inside a piece of metal belongs to the
space of all differentiable functions of three variables defined in the region occupied
by the modeled body.

Now, let us define what we mean by the phrase “equivalent to,” applied to func-
tions. Obviously, two functions equal to each other in all points of a given interval,
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are equivalent to each other. In general, we treat two input signals as equivalent, if
they produce the same output. For example, if the system is an integrator, two input
signals that are equal to each other on [to, t1] except a set of points of total measure
zero, are equivalent. Another example is a sampled data system (e.g., a digital con-
troller with an A/D converter at the input) with sampling period T. Two different
input signals that coincide only at t = 0, T, 2T, 3T. . . are equivalent to each other
because the system cannot observe the values in time instants other than the sampling
moments.

2.2.1 General Classification

Let a dynamic system has the state variable X. Suppose that we can define input
and output signals for this system as U and Y, respectively. The system is said to be
causal if and only if for every t1 > t0

U1(t) equivalent to U2(t) over an interval [to, t1], implies that Y1(t1) = Y2(t1),

where Y1(t1) and Y2(t1) are two outputs at the time instant t = t1, obtained with
inputs U1 and U2, respectively, to is a fixed initial time instant, and X (to) is fixed.
The output signal is supposed to be an algebraic function of the system state. We
suppose that the system state in to is fixed.

If U1(t) is equivalent to U2(t), then we say that these functions belong to the
same class of equivalence. Denote by S the set of all classes of equivalence for the
dynamic system under consideration.

In the theory of dynamical systems, we can find the following classification.

Finite automata is a system for which the number of classes of equivalence of
inputsN is finite. For example, an electric switch is a finite automata. A digital com-
puter also belongs to this class, though it may have trillions of possible states at each
time instant.

Infinite automata is a system for whichN is infinite, but the set of possible states
is enumerable. In other words, for this class of systems, the power of the set S is
equal to the power of the set of integers. For example, a discrete-event model of one
waiting line (without limitation) and one server, belongs to this class.

Concentrated parameter systems are those for which N is infinite, and the ele-
ments of the set S are not enumerable. For this class of systems, the power of the set
S (its cardinal number) is equal to the power of the set of all real numbers. This is
a wide class of systems that includes, among others, mechanical systems or electric
circuits. However, the parameters of the systems of this class must be concentrated



2.3 Linearity 29

in specific discrete elements, like ideal springs, dampers, capacitances, etc. The most
common modeling and simulation tool for concentrated parameter systems are the
ordinary differential equations (ODEs).

Distributed parameter systems. When the power of the set S is greater than the
power of the set of reals, the system is classified as a distributed parameter system.
In other words, for such systems, the number of possible states is greater than the
number of all reals. A classic example is a guitar string. Its state is a continuous
three-dimensional function over the string’s initial length. It is known that no one-to-
one mapping between real numbers and continuous functions cannot be established,
because the power of the set of such functions is greater than the power of reals. The
parameters of systems of such kind cannot be concentrated in discrete components
like ideal capacitors or dampers. Other examples are heat transfer problems, waves
on the surface of water, and fluid dynamics. The main mathematical tool for this
class of systems are the partial differential equations.

2.3 Linearity

A function f (x) is said to be linear if it satisfies the following conditions.

⎧
⎪⎨

⎪⎩

f (0) = 0

f (Kx) = K f (x) (homogenity)

f (x + y) = f (x) + f (y) (additivity).

(2.3)

Here, x and y may be real variables or points in a linear vector space, K is a real
constant. For example, f = 2x is a linear function, while f = 2x2 is not. Be careful
with classifying a function as linear. For example, a function that describes a straight
line on the x, y plane, y = f (x) = ax + b is an affine function, but it is not linear
for b �= 0. This is a common error to treat the affine function as linear like in [26],
Chap. 7. Of course, a model described by an affine function can be easily linearized,
by changing the origin of the coordinate system.

Linear systems and the above notion of linearity should not be confused with
the concept of linear space. Recall that the space (a set with a certain structure)
is lineal if there exist operators of addition and multiplication. Moreover, if A and
B are elements of the space, both A+B and k×A (k is a number), must belong to
the space. Obviously, the Euclidean space is lineal. The space of all continuous and
bounded functions over [0, 1] with conventional adding and multiplication operators
is lineal, though its elements may be non-lineal functions. However, the set of all
points enclosed in a unit circle or sphere with the conventional vector summation
and multiplication is not a linear space. To get more abstract linear spaces, consider,
for example, a space of all hamburgers. Let’s define: haburgerA+HaburgerB = a
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hamburger which weigh the sum of weights (norms) of both hamburgers. Let the
weight of hamburgerA is equal to W kg. The result of multiplication hamburgerA
by a real number k is a hamburger that weights kW kg. The origin of the space is a
hamburger with weight zero. So, our space of hamburgers is a linear space because
we define it just as a set of hamburgers, without imposing any limitation (note that
we admit the existence of an abstract hamburger with negative weight). This space
of hamburgers is not Euclidean and not metric, but it is a normed space.

An ordinary differential equation is said to be linear if both sides of the equation
are linear functions with respect to the dependent variable and all its derivatives used
in the expressions. For example,

d2x

dt2
= 4x + 2

dx

dt
+ 3t2 (2.4)

is a linear equation, while

d2x

dt2
= 4x + 2

(
dx

dt

)3

+ 3t (2.5)

is not.

2.4 Ordinary Differential Equations and Models of
Systems with Concentrated Parameters

An ordinary differential equation, in its general form, can be expressed as follows:

F(x, x (1), x (2), x (3), . . . , x (n), t) = 0, (2.6)

where t is the independent variable (here, representing the model time), x is the
dependent variable, and x (1) = dx/dt, x (2) = d2x/dt2, etc. The order of the equa-
tion is equal to the order of the highest order derivative of the dependent variable.
The solution to (2.6) with given initial condition for x is a continuously n-times
differentiable function of t.

The above conditions seem to be obvious, but in practice, few simulationists
check them. There is a strange belief that all that is continuous, can be simulated
withODEs, and that the solutions provided by the corresponding simulation software
represent or approximate the real system behavior. Unfortunately, this is not the case.
In my opinion, ODEs are too primitive to be applied to global models of systems
like industrial dynamics, ecology or microbiology. In Chap. 3, there is a description
of other possible mathematical tools, namely differential inclusions.
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If we can resolve the Eq. (2.6) with respect to the highest derivative of the depen-
dent variable, then we can find the equivalent set of the first-order equations. Indeed,
from (2.6), we have

x (n) = f (x, x (1), x (2), x (3), . . . , x (n−1), t). (2.7)

Now, let denote x = x1, x (1) = x2, x (2) = x3, etc. So,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= x2

dx2
dt

= x3

...........

...........
dxn
dt

= f (x1, x2, . . . , xn, t)

(2.8)

Equation (2.8) can be written in the vectorial form as follows:

dx
dt

= f (x, t), (2.9)

where the boldface letters denote vectors.
For example, the following equation of an oscillator

ax + b
dx

dt
+ c

d2x

dt2
= 0 (2.10)

is equivalent to the following set of two equations of the first order:

⎧
⎪⎪⎨

⎪⎪⎩

dx1
dt

= x2

dx2
dt

= −(ax1 + bx2)/c.

(2.11)

Most of the numerical methods and their implementations use this mathematical
model in the above, canonical form. Normally, the user is only asked to give the
right-hand sides of the Eq. (2.8) and to define the initial conditions and other model
parameters. The software should do the rest of the simulation task automatically.

There is a huge literature onnumericalmethods for ordinary andpartial differential
equations. Let us mention the fundamental (though antique) book of Collatz [12].
Consult also [13, 14].

Ordinary differential equations (ODEs) are used to describe dynamic systems,
mainly the concentrated parameter systems. This caused the common believe that
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ODEmodeling is the only tool to simulate such systems. In fact, this is not true. First
of all, we must be sure that the following conditions are satisfied.

1. There exist a differential equation that represents a valid model of our system.
2. If so, we must know if there exists a (unique) solution to this ODE with given

initial conditions.
3. If conditions 1 and 2 are satisfied, we must check if the ODE model we use can

provide solutions that satisfy the aim of the simulation task.
The use of ODEs or PDEs (Partial Differential Equations) is not the only way

to describe continuous dynamic systems. A continuous model may be constructed
in the form of a graphical image, with defined parameters and initial conditions.
The mostly used representations are block diagrams, signal flow diagrams, and bond
graphs.

Block diagrams are commonly used to describe automatic control system and
instrumetantion problems.

Signal flow diagrams define the signal flow in the model, using arrows with
well-defined direction and transfer function. Static linear and non-linear arrows are
also used. See Tavangarian and Waldschmidt [30].

Bond graphs are used to simulate the dynamics of physical systems. In this
method, we use links in the form of directed bonds like harpoons. The bond is
associated with a corresponding flow (for example, velocity or electric current) and
effort (for example, the force or electric voltage). Frequently, a bond represents the
flow of energy in the real system, see Cellier [7]. The bonds are connected to nodes.
Each node represents a balance of flows or efforts of the connected bonds.

Signal flow graphs and bond graphs are described in more detail in Sect. 2.12. The
advantage of the above methods is that there are software tools that automatically
generate the model ODEs, and then, the corresponding computer code, ready to
execute.

2.5 Transfer Function

In the automatic control theory, modeling of linear dynamic systems, electronics,
instrumentation, and similar fields, the dynamics ofmodel components are frequently
described by transfer functions, in terms of the Laplace transform (L-transform).

Let f (t)be an integrable function.Recall that theLaplace transform (L-transform)
of f (t) is defined as follows:

L{ f }(s) =
∫ ∞

0
f (t)e−st dt, (2.12)

where s is a complex variable, and f (t) is defined on [0,∞]. L-transform is a linear
operator. The L-transform is a function of s. We will denote L( f )(∗) as L( f ). The
theory of the Laplace transformmay appear to be somewhat complicated for students
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and engineers. However, the transform is used to simplify and not to complicate
system modeling.

Expression (2.13) defines the inverse L-transform.

f (t) = L−1 f (t) = 1

2πi
lim
T→∞

∫ c+iT

c−iT
est f (s)ds. (2.13)

The real number c is chosen so that the contour path of integration is in the region
of convergence of f (s).

Fortunately, the users of L-transform hardly ever have to calculate the inverse
transform (2.13). Any handbook or manual on automatic control and applications
of L-transform provides tables with hundreds of commonly used functions and their
L-transforms already calculated. Moreover, the purpose of the models that use this
tool is often the stability analysis and other properties, rather than the calculation of
particular output functions.

Some of the most used properties of the L-transform are as follows.

The transform of the Dirac’s pulse is L{δ(t)}(s) ≡ 1.
The transform of the unit step function f (t) = 1(t) ≡ 1 for t ≥ 0 isL{1(t)}(s) =

1/s.
The transform of d f

dt is L{ d fdt }(s) = sL{ f }(s).
The L-transform of the integral

∫ t
0 f (τ )dτ is equal to L{ f }(s)/s

The L-transform of the time-delayed function f (t − r) is e−rsL{ f }(s)

L{sin(ωt)}(s) = ω

s2 + ω2
, L{cos(ωt)}(s) = s

s2 + ω2

To simplify the notations, we will denote the L-transform of f (t) as f (s).
In this section, we limit our consideration to the linear dynamic systems (see

Sect. 2.3) that are described by linear ordinary differential equations.
Let a linear dynamic system receives an input signal u(t) and produces the cor-

responding response as x(t). The L-transforms of these signals are u(s) and x(s),
respectively. Then, the model transfer function is defined as follows:

G(s) = x(s)

u(s)
. (2.14)

According to (2.14), the output of a model with transfer function G is equal to
x(s) = G(s)u(s).

In the definition (2.14) of the transfer function, appear transforms of the signals
x(t) and u(t) Note, however, that the transfer function does not depend on the input
and output. It is a property of the system model, and not of the signals involved.

Consider the following differential equation with initial condition zero for x and
its derivatives.

a
d3x

dt3
+ b

d2x

dt2
+ c

dx

dt
+ d x(t) = u(t). (2.15)
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It may be the equation of a device with input signal u and output x .
Applying L-transform to both sides of (2.15), we have

as3x(s) + bs2x(s) + csx(s) + d x(s) = u(s). (2.16)

From (2.16), we obtain the transfer function of the device:

G(s) = x(s)

u(s)
= 1

as3 + bs2 + cs + d
. (2.17)

This holds for signals x(t) and u(t) that have a corresponding L-transform. Note
that G(s) does not depend on x or u. This is a property of the model, and not of the
applied signals.

From the transfer function, we can go back to the corresponding differential
equation.

2.5.1 Stability of Linear Models

Now, consider the transfer function in the general form G(s) = M(s)

N (s)
, where N and

M are polynomials. The characteristic equation that corresponds to G(s) is

N (s) = 0. (2.18)

Let the roots of this equation are s1, s2, s3, . . . , sn , where n is the order of the
polynomial N . These roots may have real or complex values. The model described
by the transfer functionG(s) is stable if the real parts of all roots of the corresponding
characteristic equation are negative. This way, the problem of model stability is
reduced to an algebraic problem. There are criteria that permit check this condition,
even without calculating the roots (the Hurwitz criterion).

The consequence of the linearity of the L-transform is that the total transfer func-
tion of components connected in series is the product of the corresponding transfer
functions.

2.5.2 Routh–Hurwitz Stability Criterion

At the end of the nineteenth century, Edward JohnRouth andAdolfHurwitz proposed
the criterion that determines if all roots equation N (s) = 0 have negative real parts,
where N (s) is a polynomial of order n.

Consider a polynomial N (s) = ansn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0.
According to the criterion, we construct the following array:
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n an an−2 an−−4 an−6 .....

n − 1 an−1 an−3 an−5 an−76 .....

n − 2 b1 b2 b3 b4 .....

n − 3 c1 c2 c3 c4 .....

n − 4 d1 d2 ..... ..... .....

........

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

For a polynomial of order n, wemust calculate n+1 rows of the array. The elements
b and c are calculated as follows:

bi = an−1an−2i − anan−(2i+1)

an−1
, (2.19)

ci = b1an−2i+1 − an−1bi+1)

bi+1
. (2.20)

Then, all the procedure repeats using the rows n−k+1 and n−k+2 while calcu-
lating row n−k. So, we have

d1 = c1b2 − b1c2
c1

, d2 = c1b3 − b1c3
c1

etc. (2.21)

If there is a change of sign in the first column of the array an, an − 1, b1, . . ., then
there exist roots of the polynomial N (s) with a positive real part. Thus, a system
described by the transfer function G(s) = M(s)

N (s) is unstable.
It may occur that before completing the array an element with value zero appears

in the first column. If so, we replace this element with ε > 0 and follow with cal-
culations. After completing the array, we suppose ε → 0 and examine the eventual
changes of signs in the first column.

Example
Let N (s) = 4s4 + 2s3 + s2 + 5s + 1.
The Routh-Hurwitz array is as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

4 4 1 1
3 2 5 −
2 −9 1 −
1 (5 ∗ (−9) − 2)/(−9) = 47/9 − −
0 47/9 − −

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

There are two changes of sign in the first column. So, G(s) = M(s)
N (s) is unstable.

Consult also the question and answer 2.10.
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2.5.3 Frequency Response

Now, let see how a linear dynamic system with transfer function G(s) responds to
input signal u(t) = sin(ωt).

In this case, the output is done as below:

x(s) = G(s)
ω

s2 + ω2
, that is x(s)(s2 + ω2) = G(s)ω. (2.22)

Our model is lineal. This means that the response x(t) to a sinusoidal input signal
must also be sinusoidal, perhaps with other amplitude and a phase shift. If so, we are
looking for x(t) = gsin(t) + hcos(t). In terms of L-transform, it is

x(s) = g
ω

s2 + ω2
+ h

s

s2 + ω2
. (2.23)

From (2.22) and (2.23), we have

gω + hs = G(s)ω. (2.24)

The above equations hold for any s, so we can substitute s = jω, where j is the
imaginary unity. We get

gω + hjω = G( jω)ω, which gives g + jh = G( jω). (2.25)

In other words, Eq. 2.24 tells us that the expression G( jω) fully determines the
output x(t). G( jω) is also called frequency response function. For example, observe
that the gain of our device for the sinusoidal input with angular frequency ω is given
by the absolute value of G( jω), equal to ‖ G( jω) ‖.

Example
Consider the model described by the following equation:

a
d2x

dt2
+ b

dx

dt
+ x(t) = u(t). (2.26)

The transfer function of this model is

G(s) = 1

as2 + bs + 1
. (2.27)

Figure 2.1 shows the response of model (2.27) to the unit step input. The parame-
ters are a = 1, b = 0.1. In Fig. 2.2, we can see the gain in the function of the angular
frequency. The model represents a second-order low-pass filter. It can also be used
as a bandpass filter with band frequency ω = 1.311, f = 0.209Hz. The resulting
Bode plot for (2.26) is shown on Figs. 2.2 and 2.3.
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Fig. 2.1 Response to step function

Fig. 2.2 Spectral plot of the model (2.26)

Fig. 2.3 A closed loop
circuit
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2.6 Nyquist Plot and Stability Criterion

Let’s see the basic concept of theNyquist stability criterion. Amore detailed overview
of the background and theoretical issues of the criterion can be found in publications
on automatic control systems and theory [31].

Consider a closed loop system shown in Fig. 2.3
The transfer function u → x of this system is

D(s) = G(s)

1 + G(s)H(s)
.

Let denote F(s) = G(s)H(s).
To apply the criterion, first, we have to calculate the Nyquist plot or contour

of F(s) that is a parametric frequency plot over the complex plane. The complete
Nyquist plot includes the frequencies from −∞ to ∞.

Figure 2.4 shows the complete Nyquist plot for the transfer function

F(s) = 1

0.01s3 + 0.06s2 + 0.4s + 1
. (2.28)

Fig. 2.4 Nyquist plot of a stable feedback model
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Let’s consider systems that are stable in open loop, that is there are no poles of
F(s) in the right-hand side of the complex plane.

If the Nyquist contour is closed as in Fig. 2.4, then the Nyquist stability criterion
states that the necessary and sufficient condition for the feedback system D(s) to
be stable is that the complete Nyquist diagram of function F(s) does not touch nor
encircle the critical point (−1, j0).

The value 1/M (Fig. 2.4) is the gain margin. This means that the system becomes
unstable if we multiply the feedback gain by 1/M . Similarly, the angle ϕ is the phase
margin. If we decrease the phase angle of F(s) by ϕ, then the system loses stability
(phase angle decreases clockwise).

Consult Willems [31] for more detailes of the Nyquist criterion..

2.7 Analog Computer Models

A typical example of analog (physical) simulation is a wind-tunnel test on a scaled-
down physical model of an airplane. Another way to do analog simulation is to look
for an analogy between one physical model and another, for example, a mechani-
cal system and an electric circuit. A simple electronic circuit with one operational
amplifier, one resistance, and one capacitor can realize the operation of mathemati-
cal integration. As a consequence, it is possible to solve differential equations using
combinations of such circuits. The advanced devices with many such circuits and
variable interconnections between them are called analog computers.

In the early 40s and 50s, analog computers were commonly used to simulate con-
tinuous dynamic systems, mainly automatic control systems, mechanical systems,
and similar. During the last decades, analog computers have been losing importance.
However, we should remember that analog computers are truly continuous parallel
differential equation solvers. As stated in the Introduction, continuous simulation
of digital computers is a much more “artificial” approximation of real continuous
problems.

Figure 2.5 shows an analog circuit that satisfies the following equation:

Fig. 2.5 Analog model of an
oscillator
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Fig. 2.6 Analog integrator

d2x/dt2 = −u − x − adx/dt,

where u(t) is an external input and x(t) is the model response. Operational amplifiers
marked with i are integrators, the amplifier marked with s is a summator and the
amplifier marked with a is an inverting amplifier. All amplifiers are supposed to have
negative gain. The rectangles represent resistances. The analog integrator is realized
by the circuit shown in Fig. 2.6.

Analog computers are no longer used to solve differential equations. However,
the analog models that simulate given dynamic elements of transfer functions are
still used in automatic control, instrumentations, and analog signal filtering. The old,
vacuum bulbs analog computer with about 20 operational amplifiers was a big device
weighing tens of kg. A contemporary IC operational amplifier weight is nomore than
several milligrams.

2.8 Z-transform

This kind of model is mentioned in the preset chapter, because themodels considered
below are still continuous with respect to the model state. The discretization refers
only to the time variable.

In automatic control and instrumentation, the data taken from control objects
or from the environment, need not be gathered continuously. For example, thermal
objects like heaters may have time constants up to hours or days. Such objects can
be observed with sufficient accuracy by taking the measurements one per 10 seconds
or one per 10 minutes. In automatic control, such circuits are called sampled data
systems. Recently, when the data processing can be done with extremely high speed,
we can take the data, for example, with a frequency of more than 40 kHz, like in
speech and acoustic signal processing. In devices of such kind, the value of the data
sample is (approximately) continuous, but the time is discrete. This means that we
can treat the observed signal as a sequence of pulses instead of a continuous function
of time.

Applying the Fourier transform to a signal x(t), we can get the signal spec-
trum. This gives us the information about the frequencies contained in the signal.
The spectrum can be limited if, for example, x(t) = sin(5t) + sin(8t), or unlimited
(contained in [0,∞]) if, for example, x(t) = 0.5 + 0.5sign(sin(ωt)).

The sampling frequency defines the possibility of retrieving the original, contin-
uous signal from the sampled data. This frequency is limited from below, according
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to the Nyquist–Shannon sampling theorem [22]: “If a function x(t) contains no fre-
quencies higher than B hertz, it is completely determined by giving its ordinates at
a series of points spaced 1/(2B) seconds apart.”

This is why the sampling frequency for digital processing of acoustic signals is
normally set greater than 40 kHz, and in the processing of heart acoustic signals, the
sampling frequency should not be below 250Hz. If the frequencies contained in the
original signal are greater than the Nyqyuist frequency B, then some undesired phe-
nomena may occur, like aliasing. This may produce false signals. To avoid aliasing
in digital signal filters, additional simple analog low-pass filters may be added to the
device input.

The sampled data systems should be analyzed using the Z-transform. Considering
the signal xn as a sequence of pulses, we can define Z-transform as follows:

Z{(xn} =
∞∑

n=−∞
xnz

−n, (2.29)

where x[n] is a sequence x1, x2, . . . , xn . . . and z is a complex variable. It is supposed
that the samples are taken at time instant T, 2T, 3T, . . ., where T is the step of time-
discretization. The above transform is called two-sided. In the one-sided transform,
the sum in (2.29) runs for non-negative values of n.

In (2.29), z is a complex variable, z = Ae jφ, where j is the imaginary unit, φ is
a parameter called angle, and A is a real number. Like the L-transform, Z-transform
has also its inverse. We will not discuss this inverse here, because the users, such as
control systems or signal processing engineers, hardly ever need to calculate it. We
also have z = esT , where s is the Laplace transform variable.

Z-transform is a linear operation. We will not give here an overview of the theory
of the transform, discussing only very elemental properties that may be easily used
in sample data system analysis. Perhaps the most important property is as follows:
Given a sequence {yn} such that yn = xn−k , we have

Z{(yn} = z−kZ{(xn)}. (2.30)

In other words, the operation of delaying the sample by kT corresponds to mul-
tiplying the Z-transform by z−k (T is the sample period)

We should remember that the sampled data system is a thing quite different from
a continuous-time system. We do not pass with the sample step to zero, so T is
always finite and fixed. However, the behavior of sample data model may be similar
to a continuous system. There are several methods that permit to find a continuous
model that corresponds to a given Z-transform model and vice versa. However, such
mappings are hardly ever unique.

Let’s see one, perhaps the simplest method to get a Z-transform version of amodel
given in the form of a (L-transform) transfer function G(s). Let our model has the
transfer function as follows:



42 2 Continuous System Models

G(s) = 1

ansn + an−1sn−1 + . . . + a0
. (2.31)

If the device input is u(s) and output x(s), x(s)
u(s) = G(s). So, we get the following

corresponding differential equation model:

an
dnx

dtn
+ an−1

d(n−1)x

dt (n−1)
+ a(n−2)

d(n−2)x

dtn−2
+ . . . + a0x(t) = u(t). (2.32)

Now, replace the differential Eq. (2.32) with a difference equation with time-step
T , where xk = x(kT ). The derivative of x is approximated with xk−xk−1

T . The higher
derivatives can be converted using the following formula (backward difference):

∇n
h x(t)

T n
=

∑n
i=0(−1)i

(
n
i

)

x(t − iT )

T n

For example, the first-order inertial object G(s) = 1/(1 + θs) will convert into
x(t) + θdx/dt = u(t) that gives the time-discrete version: xk + θ xk−xk−1

T = uk (θ is
the time constant of the object). Now, recall that the one-step delay corresponds to
z−1. So, we have

x(z) + θ

T
x(z)(1 − z−1) = u(z), (2.33)

where x(z) and u(z) are Z-transforms of x and u, respectively.
From (2.33), we can calculate

G(z) = x(z)

u(z)
= 1

1 + θ
T (1 − z−1)

. (2.34)

This way, we obtain the transfer function in terms of Z-transform that corresponds
to G(s).

For example, the transfer function of a continuous integrator 1/s with T=1 will
be

G(z) = 1

(1 − z−1)
.

Using this form of the integrator, a simple Z-transform version of a PI controller
will be as follows:

G(z) = K

(

1 + 1

Ti (1 − z−1)

)

. (2.35)

Figure 2.7 shows the response of a sampled data PI controller (2.35) to a rectan-
gular input. Sampling period equal to one, K = 1, Ti = 5. The input is equal to one
for 5 < t ≤ 30, zero otherwise. It can be seen that this is a quite good approximation
of a corresponding continuous controller.



2.8 Z-transform 43

Fig. 2.7 Response of a sampled-data PI controller

As mentioned earlier, the conversion from G(s) to G(z) is not unique. Using
the forward difference scheme, we will obtain a different expression. There are also
other methods of conversion fromLaplace to Z-transform, for example, the pole-zero
mapping (consult Ifeachor and Jervis [19]), and Sect. 2.8.1.

For higher order objects, the transform function can have the form:

G(z) = bmz−m + bm−1z−m+1 + · · · + b0
anz−n + an−1z−n+1 + · · · + a0

. (2.36)

If we multiply the numerator and denominator of (2.36) by zn , the denominator
converts into a polynomial of order n with respect to z. The object described by G(z)
is stable if all the roots of this polynomial are contained in the unit circle on the
(complex) z-plane. In the expressions of numerator and denominator, each real pole
or zero at a converts into (z − a). Recall that each pair of complex poles/zeros at
Ae± jφ converts in the term z2 − 2Az cos(φ) + A2.

From the above simple introduction, we can see how useful is the Z-transform
in sampled-data control systems and digital signal processing. Complex devices can
be constructed using simple delay components z−1 (one-step delay). This permits
the same hardware to be used for time-delay acoustic signal devices, active filers,
and other complicated signal processing systems, changing only the implemented
software.

The implementation of the one-step delay element z−1 on digital or hybrid devices
is simple, compared to the analogic integrator device. A small IC may contain thou-
sands of such elements. This permits to construct low-cost circuits that can realize
complicated Z-transform functions. For example, consider the following transfer
function:

G(z) = x(z)

u(z)
= b3z−3 + b2z−2 + b1z−1 + b0

a4z−4 + a3z−3 + a2z−2 + a1z−1 + a0
. (2.37)
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Fig. 2.8 Circuit with transfer function (2.37)

The circuit that provides this transfer function may be constructed with four one-step
delay elements as in Fig. 2.8. It can also be coded to be executed on a computer.

The signal links have gains, as indicated in the scheme. Signal y, according to the
first summator, is as follows:

y = 1

a0
u − y

a4
a0

z−4 − y
a3
a0

z−3 − y
a1
a0

z−1 − y
a1
a0

z−1.

Thus, we get

y = u

a4z−4 + a3z−3 + a2z−2 + a1z−1 + a0
.

From the scheme, we have also

x = b0y + b1yz
−1 + b2yz

−2 + b3yz
−3.

From the last two equations, we can calculate x(x)/u(z). This gives us the desired
transfer function (2.37).

2.8.1 Matched Pole-zero

The matched pole-zero is another method for obtaining transfer function G(z) from
the continuous version of the modeled object [19]. Let G(s) has the form G(s) =
M(s)/N (s), where M and N are polynomials. Suppose that the order of N is greater
than the order of M and that we know the values of the roots of M (zeros of G) and
of N (poles). The procedure is as follows:

1. Each finite pole or zero of G, s = −a, is replaced with a pole in z = e−aT .
2. Each infinite zero of G, is replaced with zero at z = −1.
3. Overall gain of the object G(z) must be adjusted, to match the gain of the

continuous version, for a selected frequency. Normally, we require that the gains
match for the steady state, that is, for the frequency equal to zero.
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Here, T is the sampling time interval.
Consider, for example, the following object:

G(s) = s + 4

(s + 2)(s + 5)
. (2.38)

Poles of this object are s1,N = −2, s2,N = −5. Finite zero of G(s) is s1,M = −4.
G(s) has also a zero in infinity. According to the matched pole-zero method, the
corresponding sample-data transfer function is as follows:

G(z) = K
(z + 1)(z − e−4T )

(z − e−2T )(z − e−5T )
, (2.39)

where K is a constant.
Now, wemust adjust K . Let assume that the gain ofG(s) andG(z) is the same for

input frequency ω equal to zero. So, we substitute s = jω = 0 and, consequently,
z = e jωT = 1. From (2.38) and (2.39), we have

4

10
= K

2(1 − e−4T )

(1 − e−2T )(1 − e−5T )
. (2.40)

Finally,

K = 0.2
(1 − e−2T )(1 − e−5T )

(1 − e−4T )
. (2.41)

Observe that G(s) and G(z) cannot be strictly equivalent. G(s) is a function of
s, and G(z) is a function of z and of the sampling time T . Moreover, there may be
various forms of G(z) derived from the same G(s), depending on the method used.

Note also that, by sampling a signal x(t), we lose the information about the signal
that is provided by the values of x at a time not equal to nT (n integer). For example,
the signal x(t) = cos(2πt/T ) sampled at t = 0, t = T, t = 2T, . . ., gives the same
output from the sampled data object, as the signal x(t) ≡ 1.

The above considerations represent only a short introduction tomodeling sampled
data systems with Z-transform. For further reading consult, for example [19].

2.9 Non-linear Models and Stability

Non-linear models do not satisfy the linearity criterion defined in Sect. 2.3. Let us
focus on models described by non-linear ordinary differential equations. First of
all, note that non-linear model does not have a transfer input–output function.
While integrating non-linear equations, we can find some computational difficulties.
However, perhaps the most difficult problems are those of the stability of non-linear
systems. Recall that a linear system can be stable or not. This is the property of the set
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of model equations or of the transfer functions. A non-linear system is characterized
by several kinds of “stabilities,” depending on which stability definition we use.

The non-linear stability is widely treated in works on control theory and automatic
system engineering [4, 11, 17, 18, 23], and it is not the main topic of this book. Here,
we recall only the general concepts.

To focus on some general forms of model, we will consider a dynamic system
described by the following equation:

ẋ = f(x,u, t), (2.42)

where t ≥ 0, x ∈ Rn,u ∈ Rm , and u is a bounded, integrable external control func-
tion.

2.9.1 BIBO Stability

This is Bounded Input, Bounded Output stability. In few words, we require that if
we apply a bounded external excitation to the system, the corresponding response be
bounded also. The term “bounded” means that we measure the signal using a certain
norm of the function. In the simplest case, it may be the maximum of the absolute
value of the (scalar or vectorial) signal over the time. This type of stability may not
be very practical in certain applications. For example, if the norm of the input signal
is small, and the norm of the corresponding response is very big, then the system is
still considered BIBO-stable, though it may overcome permissible limits.

2.9.2 Lyapunov Stability

Let u be a fixed control, t = t0, x(t0) = x1, and x1 be an equilibrium point. If for any
ε > 0 there exists a δ(ε, t0) > 0, such that

‖ x1 − x(t0) ‖< δ ⇒‖ x1 − x(t) ‖< ε ∀ t > t9, (2.43)

then we say that the system is stable in the sense of Lyapunov at x1.

2.9.3 Asymptotic Stability

Let the conditions of Sect. 2.9.2 hold. If a constant δ(t0) > 0 exists, such that

‖ x1 − x(t0) ‖< δ ⇒‖ x1 − x(t) ‖→ 0 when t → 0 (2.44)

then the system is it asymptotically stable at the point x1.
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2.9.4 Orbital Stability

Many dynamic systems never reach any final steady state and enter into oscillations.
Such oscillations, shown on the phase plot, for example, on the xk, x j plane, look
like closed contour on which the state coordinates move. If we apply an external
disturbance to the system, the trajectory may go out from the cycle, or return to it
after some time interval. In the last case, we say that the system is orbitally stable
with respect to the cycle. We will not enter here in the strict mathematical definition
but illustrate a possible stable cycle (orbit) on the phase plane.

Consider a fourth-order system, described by the following equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1/dt = ax1 + bx1x2 + cx1x4
dx2/dt = dx2 + ex1x2 + f x2x4
dx3/dt = gx3 + hx2x3 + i x2x4 + j x3x4
dx4/dt = kx4 + lx1x4 + mx2x4 + nx3x4

(2.45)

This is a Lotka–Volterra equation for a prey–predator system with four interacting
species. Figure 2.9 shows the system trajectory projected into the plane (x1, x2). It
can be seen that after the initial “warm-up” period, the system reaches a (perhaps)
stable oscillation cycle. Model parameters are as follows:

a = 0.1, b = −0.002, c = −0.0001, d = −0.3, e = 0.001, f = −0.000015,
g = 0.003, h = 0.00001, i = 0.000012, j = −0.000012, k = −0.01, l = 0.00002,
m = 0.00004, andn = 0.000015.The initial conditions are x1 = 500, x2 = 50, x3 =
100, andx4 = 20, simulation final time equal to 2000.

The Jacobian of system (2.42) is defined by

Fig. 2.9 Orbital stability
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J (x) = ∂f
∂x

. (2.46)

There are two stability criteria known as Lyapunov theorems. Let function f be
continuously differentiable. The first Lyapunov Method is given by the following
theorem.

Lyapunov Theorem 1. Let x∗ be an equilibrium point of (2.42). If all the eigen-
values of J have a negative real part, then the system (2.42) is asymptotically stable
around x∗.

We will say that a function g is of class K, if g(t0) = 0, g(t) > 0, and g(t) is
continuous and nondecreasing for all t > t0.

Now, consider the following scalar function, named Lyapunov function:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a) V (0, t0) = 0

(b) V (x, t) > 0 ∀ x �= 0, t ≥ t0
(c) α(‖ x ‖) ≤ V (x, t) ≤ β(‖ x ‖) ∀ t ≥ t0,

(d) V̇ (x, t) ≤ −γ(‖ x ‖), 0 ∀ t ≥ t0,

(2.47)

where α,β and γ are functions of class K. Suppose that system (2.42) has an equi-
librium at the point x0 = (0, 0, . . . , 0).

Lyapunov Theorem 2, of the the Second Method of Lyapunov states that the
system (2.42) is globally, uniformly (with respect to t0), and asymptotically stable if
the function V (x, t) exists.

The condition (d) of (2.43) is satified if d(V )/dt < 0.
Example. Consider the following system (undamped pendulum):

{
ẋ = −sin(y)

ẏ = x
(2.48)

where y ∈ D = (−π,π) Define the Lyapunov function as follows:

V = 0.5(1 − cos(y)) + 0.5x2, (2.49)

we have
dV

dt
= ∂V

∂x
ẋ + ∂V

∂y
ẏ = −xsin(y) + 0.5xsin(y)

So, V̇ is negative over the region D and the system is stable according to the Second
Lyapunov Theorem.

The above remarks show how complicated is the problem of stability of non-linear
systems, compared to the stability of linear systems. We will not follow with other,
more sophisticated issues of non-linear systems because such consideration belongs
rather to advanced mathematics and not modeling and simulation.
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Fig. 2.10 A control circuit
with non-linear element

There are several practical methods of stability analysis, developed for non-linear
control feedback systems. Let us comment on one of them, perhaps the most repre-
sentative and easily applicable. The method of Describing Function has been devel-
oped in the USSR in the late 1930s, by Nikolay Mitrofanovich Krylov and Nikolay
Bogoliubov [20].

Figure 2.10 shows a feedback control system with non-linear element. Signal p
is the set point, e = x − p is the control error and x is the controlled process output.
G1(s) is the transfer function of the controller, and G2 is the transfer function of the
controlled process. N (a) represents the non-linear part of the circuit. This may be a
saturation, a friction non-linearity, hysteresis, or another non-linear element.

The describing function “describes” the non-linear element, with respect to the
response to a sinusoidal input. Suppose that a(t) = Asin(ωt). The output of the non-
linear element needs not be sinusoidal. Let’s express it as the corresponding Fourier
series.

b(t) = B0 + A1cos(ωt) + B1sin(ωt) + A2cos(2ωt) + B2sin(ωt) + A3cos(3ωt)

+ B3sin(3ωt) + · · · · · · . (2.50)

We can suppose B0 = 0 because the non-linearities are in most cases symmetrical.
The main assumption of the describing function is that the elements G1 and G2 (or
at least one of them) are low-pass filters. It is also required that the Fourier series of
b(t) converges.

So, we can use the approximation of b(t) = A1cos(ωt) + B1sin(ωt) instead of
the original signal. This can also be expressed as b(t) = C1sin(ωt + φ1), where φ1

is the phase shift of the first harmonic of b(t). Using the complex representation of
phase-shifted signal, we have

B∠φ1 = B1 + j A1 =
√

B2
1 + A2

1∠tan−1(
A1

B1
). (2.51)

The describing function is defined as follows:

N = B

A
∠φ1. (2.52)

Note that N is a complex-valued function that depends on the amplitude A of
the input signal. The absolute value of function N (A) is the gain of the non-lineal
element for the first harmonic of the output signal, and its angle is the phase-shift of
the first harmonic. Remember that we neglect higher harmonics of signal b(t). So,
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Fig. 2.11 Non-linear
element: saturation

N (A) provides an information similar to the frequency response function G( jω).
This property is used to analyze the stability of the system, using the Nyquist stability
criterion [15]. If the Nyquist plot (in the function of the frequency) and the plot of
the describing function (in the function of amplitude) are both plotted at the same
complex plane, then the intersection point of these two plots (if any) gives us the
information about a possible oscillation, namely the frequency and the amplitude.

It may appear that the describing functionmay be difficult in practical applications
because of the need to calculate the first terms of the Fourier transform. However, this
is not true. Most of the non-linearities that can appear in practical applications have
the corresponding describing functions already calculated and available in control
engineering handbooks. See, for example, the characteristic of the saturation element
as in Fig. 2.11.

The describing function for this element is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N = B

A
∠0o

= 2K

π

⎡

⎣sin−1

(
S

A

)

+ S

A

√

1 −
(
S

A

)2
⎤

⎦∠0o.

(2.53)

Using the Nyquist criterion, we simply suppose that the total gain (frequency
response) of the feedback loop is M(A, jω) = G1( jω)N (A)G2( jω). If the Nyquist
plot for function G1G2 intersects with the plot of −1/N (A) (as function of A), then
the intersection point gives us the information about ω (from G1G2) and A (from
N (A)). For more rigorous statement, consult [15]. Note that the shape of the plot
depends on the amplitude A. So, for different A we can obtain different stability
properties (Fig. 2.12).
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Fig. 2.12 An example of
Nyquist plot and describing
function on the complex
plane (G = G1G2)

2.10 Stiff Equations

Stiffness occurs in a problem where there are two or more very different time scales,
for example, in systems that have very fast and very slow parts interacting with each
other. Consider the following set of equations:

⎧
⎪⎨

⎪⎩

dx1/dt = 998x1 + 1998x2
dx2/dt = −999x1 − 1999x2
x1(0) = 0, x2(0) = 0

(2.54)

The solution to these equations is

x1(t) = 2e−t − e−1000t , x2(t) = −e−t + e−1000t .

To integrate this systemof equations, wemust define the step size of any numerical
method, as h<< 0.001 if we want the method to be stable. However, the term e−1000t

disappears very quickly when t grows. One could suppose that for t between, say
0.1 and 1 we could apply a greater integration step because the fast term does not
influence the solution.Unfortunately, it is not the case, because the integration process
becomes unstable even if this term is negligible. This problem is called stiffness and
provokes serious difficulties in system simulation.

The most popular methods for stiff equations are:
* Generalizations of the Runge–Kutta method, of which the most useful are the

Rosenbrock methods, and their implementations.
* Generalization of the Burlisch–Stoer method, due to Bader and Deufhard [2].
* Predictor–corrector methods.
For more detail, consult Bader [2].
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2.11 Example: ODE Model of a Car Suspension

Let simulate the behavior of a suspension of a car. First of all, the simulationist should
ask the fundamental question: For what? Remember that to simulate something
without defining the aim of the task is a waste of time. In our case, the problem is to
see how the system response depends on the parameter of the damper. This can help
the designer choose the damper that provides an acceptable response for the vehicle
to the obstacles on the road.

This is a simplified model, where only one wheel is considered and only the
vertical movement is simulated. In the more advanced models of vehicle dynamics,
wemust simulate all the forces the vehicle receives and look for the three-dimensional
model of the system and the dumper non-linearity. To start with a simple academic
example, the following model can be quite illustrative.

Suppose that the car moves forward with a constant horizontal velocity V . We
will take the car position as the reference and consider all variables as differences
between their actual values and the initial equilibrium state. Figure 2.13 shows the
mechanical scheme of the model. The variables are as follows.

y—vertical movement of the wheel;
x—vertical movement of the vehicle;
F1—the force determined by the compliance of the tire;
F2—the force of the suspension spring;
Fa—the force produced by the damper;
u—an external excitation, due to the shape of the road.
All the above variables are functions of time and all represent vertical movements

and forces. M1 and M2 represent the mass of the wheel (together with the moving
part of the suspension) and the mass of the car, respectively (M2 being 1/4 of the
car’s total mass).

To derive the model equations, we must use the force balance for the two masses,
including the dynamic forces. This provides the following equations:

Fig. 2.13 A car suspension
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{
F1 − F2 − Fa − M1d2y/dt2 = 0

F2 + F1 − M2d2x/dt2 = 0.
(2.55)

The forces of the two springs and of the damper depend on the corresponding
changes in the spring and damper length, so

F1 = K1(y − u), F2 = K2(x − y), Fa = Ka(dx/dt − dy/dt).

Note that the damper force depends on the velocities and not on positions. The above
forces are supposed to be linear with respect to the positions and velocities. The next
version of the model might include non-linear functions for the forces. This would
not complicate significantly our simulation task; the only necessary change would
be to replace the above expressions with non-linear functions.

As the most convenient form of an ODE model is a set of equations of the first
order, let us redefine the equations using the following notation:

x1 = x, x2 = dx/dt, x3 = y, x4 = dy/dt.

After substituting the new variables into (2.55) and reordering the equations, we
obtain the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1/dt = x2
dx2/dt = [K2(x2 − x1) + Ka(x4 − x2)] /M2

dx3/dt = x4
dx4/dt = [K1(u(t) − x3) − K2(x3 − x1) − Ka(x4 − x2)] /M1

(2.56)

The last set of equations can be used to simulate our system.Weobtain four equations,
and the state vector of the model is x = (x1, x2, x3, x4). This is correct because the
movement equation for each mass is of the second order.

Now, we must decide what to do with our mathematical model. A beginner could
choose the following procedure. First, find a numerical algorithm to solve the equa-
tions, for example, Runge–Kutta–Fehlberg. The algorithm can be found in any book
on numerical methods. Then, prepare the corresponding code, in Basic, Pascal, For-
tran, C, or other programming languages. Insert the code of our model (Eq. (2.56)) in
the program, compile, and run it. This may result in a correct simulation program and
provide good results, but in most cases, it is simply a waste of time. The same task
can be completed 20 times faster while using an appropriate simulation language.
In any directory of simulation software, like the Directory of Simulation Software
of the Society for Computer Simulation you can find hundreds of simulation lan-
guages and packages, at least half of them for continuous ODEmodels. A good ODE
simulation package should only ask you to type the right-hand sides of the model
equations and to define model parameters and initial conditions. The rest should be
done automatically, providing all needed reports, trajectory plots, etc.
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Fig. 2.14 Car suspension plots

In the following figures see an example of simulation results. The plots were
generated by the ODE module of the BLUESSS (see Sect. 8.3) simulation system.
The integration algorithm was Runge–Kutta–Fehlberg of order 5, with about 2000
time-steps. The system parameters are as follows:

M1 = 50Kg, M2 = 200Kg, K1 = 1000N/cm, K2 = 100N/cm.

The external excitation u(t) was a step function with amplitude 10cm, starting at
t = 1s. Note that if you use the SI unit system, the mass must be given in Kg and the
force in Newton.

The aim of our task is to see how the damper parameter Fa affects the system
performance. The value used for the simulation of Fig. 2.14 is too small and results in
a highly oscillatory response. Figure 2.15 shows the result of a simulation experiment
where Fa changes automatically from 5 to 80 in 25 steps.

The trajectory is automatically simulated for each value of Fa . The 3D plot of
Fig. 2.15 shows the changes in the trajectory shape. The vertical coordinate is the
car vertical position, the axis from left to right is the model time and the other one
(marked P) is the value of Fa . Running the program several times the designer can
choose a satisfactory value for Fa .

Most of the dynamic systems are subject to stochastic disturbances. The same
package permits other kinds of experiments, where one or more inputs are random
signals. Figure 2.16 shows the trajectory of our model (car vertical position), where
the excitationu is as before, plus a uniformly distributed randomvaluewithmean zero
and amplitude 20, changing at each integration step of 0.01 s. The plot of Fig. 2.16
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Fig. 2.15 A set of system trajectories with different values of the damper parameter (screenshot)

Fig. 2.16 System trajectory and confidence intervals in the case of a stochastic disturbance. Damper
parameter Fa = 30.
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Fig. 2.17 The probability density function for car elevation

shows the confidence intervals for the simulated variable as the function of time. The
confidence level is 0.9, which means that with a probability of 0.9, we are within the
limits marked with vertical sections.

In Figure 2.17, we can see the probability density function for the same exper-
iment. “Output Y[1]” is the car position and the vertical value is the probability
density function for the corresponding time position point.

The above example shows how you should prepare an ODE model and what
results should provide the simulation tool you use. This can serve as a criterion to
select the software. Of course, BLUESSS (Sect. 8.3) is not the only package that can
do the job. Looking for the software on the Internet you can find many similar tools.
Use the search keywords simulation, ODE, continuous, modeling, dynamic system,
or similar.

2.12 Graphical Representations of Continuous Models

2.12.1 Block Diagrams and Signal Flow Graphs

Signal Flow Graphs (SFGs) can be used to represent the dynamics of a modeled sys-
tem, instead of differential equations. The very traditional way to simulate dynamic
systems has been to obtain the system equations, prepare the corresponding code
in a programming language and run the simulation. However, observe that a sim-
ulationist needs not be a mathematician or a programmer. The simulation software
and new modeling methods make it possible to eliminate both mathematics and cod-
ing from the modeling and simulation tasks. What the simulationist must do is to
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Fig. 2.18 Signal flow graph
and block diagram

Fig. 2.19 A mechanical
model

understand the structure and the dynamics of the modeled system and to be able
to describe it precisely enough to be interpreted by a computer. Both signal flow
graphs, block diagrams, and bond graphs (see the next section) are graphical repre-
sentations of dynamic system models. If the model is described in such a graphical
way, the simulation software should automatically generate model equations and the
corresponding code and run the simulation. A similar model representation can be
created using block diagrams that are commonly used in modeling automatic control
circuits.

By the SFG we mean a network composed of nodes and directed links. Nodes
represent signals and links represent transfer functions. The direction of a link shows
which signal is the input to the link (the cause) and which is the output (the result).
Figure 2.18 shows a graph that describes an integrator. Signal y depends on the signal
x and not vice versa. The transfer function (in terms of Laplace transform) for the
link between A and B is G(s)=1/s. This means that y is the integral of x . Part B of
the figure shows the equivalent block diagram. If more than one link enters (points
to) the node, then the effect of them is the sum of the corresponding signals (at the
node). A node with no entering links is called a source node.

Consider a simplemechanical system composed of a spring, amass, and a damper,
shown in Fig. 2.19

The movement of the mass is the result of an external force F and of the two
forces produced by the spring and by the damper (no gravity force supposed). The
force of the spring is supposed to be equal to kx, where k is a constant, and the force
of the damper is Bdx/dt, B being a constant. Here, x is the displacement from the
initial equilibrium value. The following figure shows a graph, which describes the
system (a is the acceleration) (Fig. 2.20).
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Fig. 2.20 The signal flow
graph for model 2.19

Fig. 2.21 Signal flow graph
of a control system

The corresponding differential equation is

(F(t) − kx(t) − Bdx/dt)/M = a.

Note that F(t) is a source node of the graph, i.e., it does not depend on any internal
signal of the system.

The graph if Fig. 2.21 represents the dynamics of a feedback control system. The
signal u is the set point, e is the control error, x is the controlled physical variable, and
h is its measured value. The link PID is the controller with proportional–integral–
derivative action, G(s) is the transfer function of the controlled process, and H(s) is
the dynamics of the measurement instrument. Using SFGs, the user paints the graph
on the screen and then specifies the transfer functions for the links. The simulation
software does the rest.

2.12.2 Mason’s Gain Formula

One of the advantages of signal flow graphs is that the total transfer function of
complicated SFGs can be calculated from the following formula of Mason [24]. The
version described below works for the SFGs that do not contain non-linear links.
Using the formula of Mason, we don’t have to manage the differential equations of
the model. We must select two nodes as input and output for the transfer function we
want to calculate. One of them must be a source node, and the other a non-source
node.

Let’s define the following terms.
A trajectory, or path between two nodes (starting and final) is a succession of

consecutive links, without contradicting the direction of arrows and without passing
by any node two or more times. This means that the path cannot be a closed loop of
links.

A loop of order one, or simple loop is defined in a similarway as the path.However,
for the simple loop, the starting and final nodes are identical.
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Fig. 2.22 A signal flow graph, example 1

A loop of order k>1 is a collection of k simple loops that do not have any common
nodes.

The gain of a path, as well as of the simple loop is the product of the gains of the
consecutive links that form the path or the loop.

The determinant of the graph is defined as follows:

� = 1 −
N1∑

k=1

M (1)
k +

N2∑

k=1

M (2)
k −

N3∑

k=1

M (3)
k +

N4∑

k=1

M (4)
k , (2.57)

where M (i)
k is the gain of the k-th loop of order i , and Ni is the number of loops of

order k. The determinant of an empty graph is supposed to be equal to one.
The cofactor �n of the path Tn is the determinant of the graph obtained by sup-

pressing all nodes that belong to the path, and all links that enter or go out of them.
Below, Tk denotes the k-th path that begins in our source node and terminates in the
final node.

Finally, the rule of Mason is as follows:

G(s) =
∑N

k=1 Tk�k

�
, (2.58)

Example 1 Consider the graph of Fig. 2.22

Capital letters are link names and also the corresponding transfer functions. Let
calculate the transfer function between nodes x (source) and y. There are two paths
from x to y:

T1 with links A, B,C, D, E , and T2 with links A and F .
The corresponding cofactors are: �1 = 1, and �2 = 1 − CDH .
The last cofactor was calculated as the determinant of the graph that remains after

suppressing the links A and F .
The determinant of the whole graph is as follows:

� = 1 − BI − CDH − DEG + BI DEG. (2.59)

So, the gain from x to y is
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Fig. 2.23 A signal flow graph, example 2

Gx→y = ABCDE + AF(1 − CDH)

�
. (2.60)

Example 2 Let calculate the transfer function between nodes u and x of the graph
2.23.

We have only one path T1 from u to x , with gain A. The cofactor of this path is

�1 = 1 − DE − EF

.
The determinant of the whole graph is

� = 1 − BC − DE − EF + BCEF. (2.61)

So, the transfer function from u to x is

Gu→x = A(1 − DE − EF)

1 − BC − DE − EF + BCEF
. (2.62)

Show that the transfer function between u and y is as follows:

Gu→y = ACEF

1 − BC − DE − EF + BCEF
. (2.63)

Example 3 First of all, we should look at the graph and, if possible, simplify it. For
example, if we want to calculate the transfer function between nodes a and b of the
graph of Fig. 2.24, then we can ignore the nodes e f and g with the corresponding
links because what happens in this part of the graph, has no influence on the resulting
signal at b. However, if the output node is g or f, then we must analyze the entire
graph (Fig. 2.25).

A question may arise about the gain between nodes a and b. The determinant of
the whole graph depends on all loops; so, why the gain Ga→b does not depend on
the links between nodes e f and g? Let us calculate the gain, according to Mason’s
rule. Indeed, the overall determinant is as follows:
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Fig. 2.24 A signal flow
graph

Fig. 2.25 A bond

� = 1 − Z − ST P − XVW − Y + ZY + Z XVW + ST PXVW + ST PY.

We have one path from a to b with gain T1 = R. The corresponding cofactor is
�1 = 1 − Z − XVW − Y + ZY + Z XVW . Thus, the gain from a to b is

Ga→b = R(1 − Z − XVW − −Y + ZY + Z XVW )

1 − Z − ST P − XVW − Y + ZY + Z XVW + ST PXVW + ST PY
(2.64)

But,
�1 = (1 − Z)(1 − XVW − Y )

and
� = (1 − Z − ST P)(1 − XVW − Y ).

So, the term (1 − XVW − Y ) disappears from the formula of Ga→b, and finally, we
have

Ga→b = R(1 − Z)

1 − Z − ST P
. (2.65)

2.12.3 Bond Graphs

Bond graph is a widespread tool in the modeling of physical systems. The fact that
a bond connects two variables: the effort and the flow, makes this tool the most
appropriate for modeling systems with energy flow because the power produced at
the bond is the product of these two variables (e.g., voltage and current, force and
velocity, liquid pressure and flow, etc.). Again, this method permits to eliminate both
mathematics and coding from the simulation task. For a good review on bond graphs
consult Cellier [7, 8] and Borutzky and Gawthrop [5, 6] and Gmiterko [16].

A bond graph model is composed by the nodes or junctions and the links named
bonds. A bond is a directed link with a harpoon. The harpoon is placed on the left
of the link (related to its direction). The two variables are indicated as follows. The
effort is placed on the side of the harpoon and the flow is indicated on the other side.
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Fig. 2.26 Nodes of type 0
and 1

There are several types of nodes in bond graph models. At the node of type 0, the
sum of flows is equal to zero, while the efforts of all connected bonds are equal to
each other. At the node of type 1, the sum of efforts must be zero and the flows of
all corresponding bonds are equal to each other. Thus, we can represent graphically
a system that obeys a number of balance equations.

For example, the node equations for the graph of Fig. 2.26 are as follows:

f − g − h = 0 for node of type 0

e − v − w = 0 for node of type 1

The sign of a term in the node equation depends on the direction of the corre-
sponding bond, the outgoing bond having the negative sign of the corresponding
variable. Other possible nodes are as follows:

SE node—effort source, e.g., an external force, ideal voltage source, etc.
SF node—flow source, e.g., mandated velocity in a translational system and ideal

current source.
R node—dissipative element, e.g., damper or electrical resistance.
C node—capacitance, e.g., a spring or electrical capacitance.
L/I node—Inertia/inductance, e.g., amoving or rotatingmass and electrical induc-

tance.
The causality in bond graph diagrams is denoted by a stroke at one of the ends

of the bond. This means that the flow variable is evaluated at the end with the stroke
and the effort variable at the other side.

For the node of type “0,” only one connected bond can have the causality stoke
at the side of the node. For the node of type “1,” there must be only one connected
bond without causality stroke at the side of the node.

Figure 2.27 shows the possible combinations of bonds and nodes of type SE, SF,
R, L/I, and C, and the implied causalities. All free ends of the bonds can be connected
to nodes of type 0 or 1.

The node–bond combinations are
(a) (SE node) Effort source. The effort e is defined at the node.
(b) (SF node) Flow source. The flow f is defined.
(c),(d) (R node) Dissipative bonds. The equations are
f = e/R and e = f R, respectively.
(e) (C node) Capacitance. It has the desired causality as shown. The equation is
de/dt = f/C,C being the capacitance.
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Fig. 2.27 Bond types

(f) (I/L node) Inertia or Inductance. The equation is
d f/dt = e/L , L is a constant (mass, inductance, etc.).
(g) (TF bond) Ideal transformer. The equations are
e1 = me2, f2 = m f1,m is a constant.
(h) (TF bond) Ideal transformer. The equations are
e2 = e1/m, f1 = f2/m,m is a constant.
(i) (GY bond) Ideal “gyrator.” The equation is
e1 = r f2, e2 = r f1, r is a constant.
(j) (GY bond) Ideal “gyrator.” The equation is
f2 = e1/r, f1 = e2/r, r is a constant.
Note that the R node–bond combination and the TF and GY bonds have two

possible causalities, while the other bonds must have the causalities indicated in the
previous figure. The R, TF, and GY causalities are given by the user.

2.12.4 Example of Bond Graph

Consider a simple mechanical system shown in Fig. 2.28.
p = v − w;
f is the force at point a;
h is the force of the damper;
h = rp;
dg/dt = p/k;
r is the constant of the damper;
k is the constant of the spring.
In mechanical systems, the efforts are forces and flows are velocities (Fig. 2.29).
The user model needs no causalities to be defined. Good bond graph software

must determine causalities automatically, then generate the model equations and
corresponding code, and run the simulation. The only situation, when the user must
check the causalities is when the software detects a causality conflict. It may result
from a physically invalid model. For example, the causality conflict will occur when
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Fig. 2.28 Moving mass

Fig. 2.29 Bond graph for
the model of Fig. 2.28

you put a voltage source in parallel with a capacitor or a current source in series
with an inductance. Such models imply a possibility of infinite pulses of current or
voltage. This makes it difficult or impossible to calculate the system trajectory, and
the simulation fails.

2.12.5 The Causality and DYMOLA

The common approach to the modeling of physical systems is almost always related
to the principle of causality. Note, however, that there are physical objects that do
not necessarily obey the causality rule, or have the cause–effect relation vague or
undefined. For example, the state of an electrical resistor may be described by the
current and the voltage over the resistor, but none of these two variables can be
defined as the cause or an effect. The electric capacitance has this relation better
defined. If we treat the voltage as the cause, then we can calculate the corresponding
current. However, if the voltage (cause) change is a discontinued function of time,
then we must admit an infinite pulse of current at the time instant of discontinuity. If



2.13 Models with Distributed Parameters, Partial Differential Equations 65

we treat the current as the cause and the voltage as the result, no such difficulty takes
place. Observe that what is essential in bond-graph modeling of physical systems is
not the causality, but the modeling of the energy flow.

In the conventional signal-flow or bond graphs, the causality is always well
defined. This paradigm repeats in many modeling tasks, but it may be questioned.
Celler [9] opinion is that “Physics, however, is essentially acausal. It is one of the
most deep-rooted myths of engineering that algebraic loops in models result from
neglected fast dynamics. This myth is based upon the engineers’ infatuation with
state-space models. Since state-space models are what the engineers know, they
believe that this is also how the universe operates. Whenever they encounter an
algebraic loop in a model, they introduce a “small capacitor” (a storage element) to
break it, and claim that they actually represent the physical realities more faithfully
in this way.”

This approach to causalitywas implemented in the languageDYMOLA[9]. This is
a general-purpose hierarchical modular modeling software for continuous systems.
The main property of DYMOLA is that the software can solve the equation of a
device being modeled, whatever the causality for the device could be. This, and the
hierarchical model building capacity of DYMOLA, make the language a useful and
consistent tool for modelers. For more details on DYMOLA, consult [9].

2.13 Models with Distributed Parameters, Partial
Differential Equations

We will not discuss the numerical methods for partial differential equations (PDEs).
Let us give only some remarks about the difficulties in integrating the equations and
the stability of numerical solutions.

2.13.1 PDE Solution Algorithms

Partial differential equations (PDE) describe the dynamics of some media, like gas,
liquid, or temperature distribution in time and space. To see howcomplex the problem
may be, consider, for example, the following equations of fluid dynamics (Navier–
Stokes equations). Here, vector v =(u,v,w) is the velocity of the medium in a point
of three-dimensional space with coordinates (x,y,z), and t represents the time (case
of liquid flow)
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⎧
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(2.66)

Here, ρ is the liquid density, μ is the viscosity, p is the pressure, and f represented
the eventual external force.

The above set of the Navier–Stokes equations is difficult to solve, mainly because
of its non-linearity and the number of equations. We have three velocity variables
and the pressure. Here, the density is supposed constant and we do not deal with
the temperature distribution. This means that, after space discretization, we must
solve a set of 4N non-linear equations, where N is the number of the grid points,
normally between 50,000 and 1,000,000, which gives up to 4,000,000 equations.
These difficulties are related to the lack of compressibility of the liquid.

In the gas case, we have (in vectorial form):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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ρ
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ρ
∂e

∂t
+ ρ(v · ∇)e = −p∇ · v + ∇ · (k∇T )

where∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

(2.67)

Here, e is the gas internal energy, ρ is the gas density,
T is the temperature, dT = de/C , C—specific heat.
There is a huge literature that describes a great number of numerical methods for

the PDEs. In the book of Ames [1] we can find a good overview of these methods.
While solving PDEs, the main difficulties are the computer time and the stability
of the numerical method. Most methods use a certain discretization scheme, both
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Fig. 2.30 Differentiation
schemes

in time and space. The problems arise when we decrease the discretization steps to
achieve desired time-space resolution. Observe that the PDEsmanage time and space
differentiation, given by differential operators. The problem is that these operators
are usually unbounded on the unit sphere in the space of functions. This is the main
cause of numerical instability.

For example, the equations (2.67) can be rearranged in such a way that we have
the time derivative at the left hand and a differential operator on the right. Consider
another very simple example. Let y be the dependent variable which changes in time
depend on its derivative with respect to space variable x (see Fig. 2.30). To calculate
the increment of y over a consecutive time-step, we must execute the differentiation
operation over the space-step of variable x (see Fig. 2.30). So, we can use a finite-
step differencing scheme. The simplest are forward- and backward-differencing, that
provide the value of the derivative, as follows.

d1 = (yn+1 − yn)/h and d2 = (yn − yn−1)/h, where yn = y(xn).

The problem is, which one of the values d1 and d2 should be used? A logical
solution seems to be the use of the average (d1 + d2)/2. This average provides the
value

dn = (yn+1 − yn−1)/(2h) (2.68)

This is called Forward Time-Centered Space (FCTS) scheme. Here, dn is the estimate
of the derivative at xn . Consequently, we have ynt + δt = yn(t) + hdn .

Now, observe that the increment of yn depends on yn+1 and yn−1 and does not
depend on yn . Thus, the solution for y in the even space-steps depends on the values at
odd steps and vice versa. This may result in solutions where y at even and odd space
points are quite different. This fact shows how useless is the FTCS differencing
scheme. Moreover, it is known that integration with this differencing scheme is
always unstable.

The common remedy to the FTCS instability is the LAX method (see Lax [21]).
In this method, we replace Eq. (2.68) with the following.
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Fig. 2.31 Air movement
around the wing (velocity
elements)

d = (yn+1 − yn−1)/(2h) − v�t

2h
(dn+1 − dn−1). (2.69)

The last term of (2.69) stabilizes the scheme. Here, v is a constant, sometimes
called wave propagation speed, and �t is the time-step.

The LAX method, however, is not any “magic” remedy for the PDE solution. In
general, the use of (2.69) is equivalent to adding some artificial viscosity or dissipa-
tion, to the solution. This results in stable solutions but by adding a dissipation to the
model we, in fact, solve an altered problem.

There are a lot of other methods that make the differencing schemes stable. Unfor-
tunately, thesemethods almost always alternate the original model. Another inconve-
nience is that the increase of the time–space resolution results in a rapid increment of
the computing time. Better results are obtained by the finite element method, shortly
described in the following section (Figs. 2.31 and 2.32).

2.13.2 Finite Element Model

Themain difference between finite step differencing algorithms and the finite element
method is that the space discretization is not uniform. Amesh of small finite elements
is defined. The elements need not be cubes. They are rather volume elements with
different sizes and shapes that fill the volume under consideration. Depending on
the physical properties of the medium (gas, liquid, heat, electromagnetic field, etc.),
the algebraic equation for the finite element is defined. This leads to the problem of
solution to a number of algebraic equations, solved by the methods of the calculus
of variations and optimization.

Themain software tool for finite elementmethod is theANSYSpackage, equipped
with a sophisticated numerical algorithm, graphical user interface, and 3D results
display. We will not discuss here the details of the finite element method because



2.13 Models with Distributed Parameters, Partial Differential Equations 69

Fig. 2.32 The low-frequency oscillations during 8 seconds of flight

the topic of this book is not numerical analysis but rather general concepts of model
building. For more detail, consult [3, 10, 27].

2.13.3 Example: Jet Takeoff Vibrations

In many occasions, passengers complain about the strong vibrations of the fuselage
during the plane lift-off. This makes the takeoff unpleasant. One of the causes of
vibrations may be the air turbulence below the wing. This can be simulated by
solving the Navier–Stokes equations. Such simulations have been described in [28].
Let’s show here only the most relevant result. Figure 2.31 shows the velocity field
around the wing just after takeoff. This is a two-dimensional projection of the three-
dimensional simulation.

On the animated simulation screen, it can be seen that around the wing big vibra-
tions and turbulences appear that generate the vibrations in air pressure. This results
in strong vibrations of the whole fuselage and may even be dangerous for the stru-
ture of the fuselage. The model and simulation experiments have been done using
the Fluids6 simulation program, consult [28] for more detail.

The simulations of this, and similar models show that the fluid flow hardly reaches
a steady state. Such a state may satisfy the fluid equations, but in reality, never takes
place. So, many of the results provided by the fluid dynamics software may be
correct from the mathematical point of view, but useless and confusing in design
tasks because the velocity field is always in movement. The above modeling and
simulations are important for safety issues. Figure 2.32 shows the low-frequency
pressure oscillations below the wing.
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2.14 Conclusion

Continuous system simulation is perhaps the greatest field of modeling and simula-
tion. Though in the digital computer nothing is continuous, a huge amount of work
has been done to enable us to simulate continuous systems on such machines. The
most used models of continuous systems are based on ordinary or partial differential
equations. However, as mentioned in this chapter, not everything that is continuous
must obey differential equations.

There are methods and software that facilitate continuous simulation. The simu-
lationist needs not be a mathematician or computer programmer. Tools like signal
flow diagrams, or bond graphs permit the user to create the model in a graphical
form and define the necessary parameters. The rest is done by the software that auto-
matically generates the model equations and runs the simulation. However, this does
not mean that everybody can simulate. To create a model of any form, the person
must have some knowledge on dynamic systems and on the purpose and limitations
of the modeling and simulation task. We must remember that creating a differential
equation model we must also be aware of the existence, uniqueness, and stability of
the solutions.

2.15 Questions and Answers

Question 2.1 Give an example of concentrated parameter system and distributed
parameter system.

Question 2.2 How the analog computer works?

Question 2.3 Explain the concept of the state of a dynamic system.

Question 2.4 Give examples of the following systems.
1. Finite automata
2. Infinite automata
3. Concentrated parameter system
4. Distributed parameter system

Question 2.5 Convert the following equation:

dx

dt
+ d3x

dt3
(1 + x(t)) − 2 = 0

into a system of equations of the first order (canonical form)

Question 2.6 Given the model of a dynamic system, as follows:

d2x

dt2
+ 3

dx

dt
+ x(t) = u(t)
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find the transfer function, supposing that u(t) is the input signal, and x(t) is the
model output.

Question 2.7 The transfer function depends on:(select)
1. The model time
2. The input signal u(t) or u(s)
3. The output signal x(t) or x(s)
4. Both signals
5. None of the above

Question 2.8 What is the transfer function of time delay element x(t) = u(t − τ )?
Provide a proof.

Question 2.9 Calculate the transfer function y/p of the automatic control circuit
shown in Fig. 2.33. The controller is supposed to be of PI (proportional-integral)
type.

The transfer function of the PI controller is

C(s) = K

(

1 + 1

Ti s

)

Question 2.10 Consider a control circuit of Fig. 2.33, with proportional controller,
gain K > 0.. Using the Routh–Hurwitz criterion, find a range of the gain K, for
which the circuit is stable.

Question 2.11 Given a transfer function G(s), how can we obtain the frequency
response of the corresponding dynamic system?

Question 2.12 What is a sampled data system?

Question 2.13 What is the relation between the variable “z” in Z-transform to the
variable “s” of Laplace?

Question 2.14 Let yk be a signal delayedby r periodsT with respect to xk : yk = xk−r

What is the relation between the corresponding Z-transforms?

Fig. 2.33 A feedback control circuit
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Question 2.15 A continuous dynamic system has the following transfer function:

G(s) = 1

s2 + 5s + 6
. (2.70)

Calculate the sampled data Z-transform version of the transfer function G(z).

Question 2.16 The spectrum of an analog signal contains frequencies of 0–25Hz.
What is the minimum frequency of sampling that permits to completely restore the
original signal from the sampled data?

Question 2.17 What is BIBO stability?

Question 2.18 Give an example of orbitally stable feedback control system.

Question 2.19 What is the stability condition for the linear sampled data system, in
terms of Z-transfer function?

Question 2.20 What assumptions about the feedback circuit must be satisfied, to
apply the method of describing function?

Question 2.21 In signal flow graphs, what represent nodes and links?

Question 2.22 What is the main field of application of signal flow graphs?

Question 2.23 Calculate the transfer function for the flow diagram of Fig. 2.34, for
nodes u→x, and u→z.

Question 2.24 Construct the bond graph for the electric circuit of Fig. 2.35. Put the
causality strokes.

Question 2.25 What is wrong in this bond graph? (Fig. 2.36)

Question 2.26 What is the main concept of causality treatment and closed algebraic
loops in DYMOLA?

Question 2.27 What kind of model represents the Navier-Stokes equation? How to
classify this kind of dynamic system?

Fig. 2.34 A signal flow
graph
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Fig. 2.35 An electric circuit

Fig. 2.36 A bond graph

Question 2.28 What is the Forward Time-Centered Space (FTCS) algorithm?What
are the disadvantage of FTCS?

Question 2.29 What is the it Finite Element Method?

Answers

Answer 2.1 Concentrated parameter systems:
1. A rigid body moved by a spring and damper. The spring and the dumper are

supposed “ideal”; they have no mass.
2. RLC electric circuit with ideal elements R, L, and C.

Distributed parameter system: the temperature control in a piece of metal, with
dynamics described by the equation of temperature propagation in 3D body.

Answer 2.2 Ananalog computer consists of several (maybe100ormore)operational
amplifiers. The operational amplifier (OPAM) supports signals of the great frequency
spectrum, including frequency zero (DC component), and its gain is big, theoretically
infinite. Combining OPAMS with capacitors and resistances, we get integrators and
finite gain amplifiers. Some non-linear elements are also available. Then connect-
ing adequately these devices, we obtain a circuit that satisfies a given differential
equation. Running the ciruit, we get the solution to the equation.

Answer 2.3 The system state is a subset of model descriptive variables. We require
that given the system state at a moment s and the model inputs over the interval [s,t]
we can calculate the state at t (and overall interval [s,t])

Answer 2.4
1. Electric switch
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2. Model of a waiting line without limitation of the line lenght
3. Electric circuit with ideal capacitors, resistors, and inductances
4. 3D fluid flow in a duct with obstacles.

Answer 2.5 The original equation is as follows

dx

dt
+ d3x

dt3
(1 + x(t)) − 2 = 0.

Here, we suppose that x(t) �= −1 for the whole trajectory x(t) over the interval
where we want to solve the equation.

First, we solve the equation with respect to the higher derivative of x .

d3x

dt3
= 2 − dx/dt

1 − x(t)
. (2.71)

Now, introduce the following notation:

x1 = x, x2 = dx

dt
, x3 = d2x

dt2
.

So, we have

dx1
dt

= x2,

dx2
dt

= x3,

dx3
dt

= 2 − dx1/dt

1 − x1(t)
,

where the derivative of x3 is given by Eq. 2.71.
The above three equations of order one are equivalent to the original equation of

order three (canonical form).

Answer 2.6 The original equation is as follows:

d2x

dt2
+ 3

dx

dt
+ x(t) = u(t).

Applying the Laplace transform to both sides of this equation, we get

x(s)s2 + 3x(s)s + x(s) = u(s).

So, the transfer function is
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G(s) = x(s)

u(s)
= 1

s2 + 3s + 1

Answer 2.7 Option 5.
The transfer function is a function the complex variable s. The function is the

property of the model, and does not depend on particular signals x(t), u(t), x(s), or
u(s).

Answer 2.8 In terms of the L-transform, we have x(s) = e−τsu(s), so, the transfer
function is

G(s) = e−τs .

Answer 2.9 From the block diagram 2.33, we have
⎧
⎪⎨

⎪⎩

e = p − v = p − Hx

x = CGe

x = CG(p − Hx)

(2.72)

Finally, we have

x + CGHx = CGp

and the transfer function p → x is as follows:

Gp→x (s) = C(s)G(s)

1 + C(s)G(s)H(s)
,

where C(s) = K (1 + 1/(Ti s)).

Answer 2.10 Using the transfer function derived in answer 2.9, we have

Gp→x (s) = KG(s)

1 + KG(s)H(s)
=

K 1
s2+0.5s+1

1 + K 1
s2+0.5s+1

1
0.7s+1

.

Now, multiply the nominator and denominator of the above equation by (s2 +
0.5s + 1)(0.7s + 1):

Gp→x (s) = K (0.7s + 1)

(s2 + 0.5s + 1)(0.7s + 1) + K
=

K (0.7s + 1)

0.7s3 + 1.35s2 + 1.2s + 1 + K
.
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Now,we construct the Routh–Hurwitz array for N (s) = 0.7s3 + 1.35s2 + 1.2s +
1 + K ∣

∣
∣
∣
∣
∣
∣
∣

3 0.7 1.2
2 1.35 (1 + K )

1 0.92 − 0.7K −
0 1 + K −

∣
∣
∣
∣
∣
∣
∣
∣

So, the stability condition follows from the requirement that the first element for
row number 1 be non-negative:

0.92 − 0.7K ≥ 0. This means that K ≤ 1.31429, approximately. If this element
is equal to zero, then the circuit is at the stability limit.

Answer 2.11 Replace the complex variable s with jω: G(s) → G( jω).

Answer 2.12 In a sampled data system there is one or more elements (sam-
plers) that react to the input signal only at discrete time instants, with period
T : t = 0, T, 2T, 3T, 4T . . .

Answer 2.13 z = esT

Answer 2.14 Z{(yk} = z−rZ{(xk}
Answer 2.15 1. Using the difference equations:

According to Eq. (2.70), the differential equation of the model is

d2x

dt2
+ 5

dx

dt
+ 6 = u(t), (2.73)

where u(t) is the input signal. For discrete timewith period Twe obtain the following
approximation in the form of a difference equation:

�2xk
T 2

+ 5
�xk
T

+ 6xk = uk, (2.74)

where �xk = xk − xk−1, �2xk = xk − 2xk−1 + xk−2.
So, in terms of Z-transform, we have

(x(z) − 2x(z)z−1 + x(z)z−2)

T 2
+ 5

(x(z) − x(z)z−1)

T
+ 6x(z) = u(z), (2.75)

G(z) = x(z)

u(z)
= 1

(1 − 2z−1 + z−2)/T 2 + 5(1 − z−1)/T + 6
. (2.76)

Answer 2.16 50Hz.

Answer 2.17 BIBO means Bounded Input, Bounded Output. It is required that if
we apply a bounded external excitation to the system, the corresponding response
be bounded also.
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Answer 2.18 Acircuit for temperature controlwith a two-point (on/off) temperature
controller.

Answer 2.19 If the transfer function has the form

G(z) = M(z)

N (z)
,

where M and M are polynomials, then all the roots of the characteristic equation
N (z) = 0 must be included in the unit circle around the origin, on the complex
plane.

Answer 2.20 To use the describing functionmethod, the following conditions must
be satisfied.

1. The output signal from the non-linear elementmust have the converging Fourier
series representation.

2. The linear part of the feedback circuit must be a low-pass filter.

Answer 2.21 The nodes are signals (model variables) and the links are transfer
functions or other operators.

Answer 2.22 Signal flow graphs can be used to represent the dynamics of control
systems, instrumentation, and other general dynamic systems.

Answer 2.23 The determinant of the whole graph is � = 1−BC−CDE.
1. Transfer function u → x :
There is one trajectory T1 = A. Cofactor of this trajectory is equal to 1.

Transfer function u → x = A

1 − BC − CDE
.

2. Transfer function u → z:

There are two trajectories: T1 = ACD and T2 = AE . Cofactors of both trajecto-
ries are equal to 1.

Transfer function u → z = ACD + AE

1 − BC − BDE
.

Answer 2.24 The bond graph is as follows (Fig. 2.37)

Answer 2.25 Try to put the correct causality strokes at the graph. You will see that
there is a causality conflict in this graph.

This conflict is the result of an invalid model. For example, it may be an electric
circuit like that of Fig. 2.35, where instead of the current source there is a voltage
source. You cannot connect in parallel a voltage source with a capacitor.
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Fig. 2.37 A bond graph for circuit 2.35

Answer 2.26 In DYMOLA, the software can solve the equations of the model,
whatever the causalities for the model component could be. the software also solves
the closed algebraic loops, if any.

Answer 2.27 The Navier–Stokes equation describes the fluid dynamics, gas or liq-
uid. It is a non-linear system of partial differential equations. The model can be
classifies as the distributed parameter system.

Answer 2.28 FTCS scheme is one of the numerical methods for partial differential
equations. The main disadvantage of FTCS is that it is always unstable.

Answer 2.29 In the finite element model, the space discretization is not uniform.
The method uses a mesh of small finite spatial elements with different sizes, for
spatial discretization.
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Chapter 3
Differential Inclusions, Uncertainty, and
Functional Sensitivity

3.1 Introduction, Some Definitions

In any field of scientific research, we should look for improved or new methods. As
stated in the previous chapters, the division of modeling and simulation into discrete
and continuous simulation may be useful, but from the methodological point of
view, it is somewhat artificial. As for the continuous models, the ordinary and partial
differential equations are not the only possible modeling tools. Also, the problem of
uncertainty in models may have a new insight, using an alternative model type, like
differential inclusions.

The central issue in practical applications of differential inclusions is the problem
of the determination of reachable sets. In this chapter, we will discuss the algorithm
of the differential inclusion solver and its application to the general task of modeling
and in the problem of uncertainty treatment. Also, the concept of the functional
sensitivity is discussed.

For a comprehensive overview of the topic, consult Aubin and Cellina [2, 4].
Here, let us recall the main concepts.

For the early publications on DIs date from the 1930s, see papers of Marchaud
[21], Zaremba [48], Wazewski [43–46], Plis [28], and Turowicz [39, 40]. We delimit
the definitions to the real Euclidean n-dimensional space Rn . Some generalizations of
differential inclusions and properties of the reachable sets in more abstract, Banach
spaces can be found in the Journal of Mathematical Analysis and Applications, see
Raczynski [33, 34].

We assume that the reader is familiar with the terms almost everywhere, Lipshitz
condition, absolutely continuous function, and set-to-point distance.

Let X and Y be two non-empty subsets of a metric space. The Hausdorff distance
between X and Y is defined as follows:

dH (X,Y ) = max

{
sup
x∈X

inf
y∈Y d(x, y), sup

y∈Y
inf
x∈X d(x, y)

}
, (3.1)
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where sup represents the least upper bound and d(*,*) is the distance between two
points. The Hausdorff distance permits to use the concept of continuity of set-valued
functions. We say that a mapping from the real line to the space of closed subsets of
Rn is continuous in Hausdorff sense if it is continuous in the sense of the Hausdorff
distance (in the topology induced by the Hausdorff distance).

Suppose that f is a real-valued function f : Rn → R, x0 ∈ Rn , and f has a finite
value at xo. The function f is lower semi-continuous at x0 if for every ε > 0 there
exists a neighborhood U of x0 such that

f (x) ≤ f (x0) − ε, ∀x ∈ U. (3.2)

Function f is upper semi-continuous at x0 if for every ε > 0 there exists a neighbor-
hood U of x0 such that

f (x) ≥ f (x0) + ε, ∀x ∈ U. (3.3)

A function is upper or lower semi-continuous over an interval if the above condi-
tion holds for all x0 in the interval under consideration. Figure 3.1 shows an example
of a lower semi-continuous function. Note that the function value at xo is defined
as shown by the black dot. Roughly speaking, the function cannot have “jumps” to
lower values at any point where it is defined.

The continuity can be defined also for set-valued functions, using the metric
induced by the Hausdorff set-to-set distance. As for the lower semi-continuity, the
following definition is used.

Let F be a mapping from Rn to subsets of Rn . We say that F is lower semi-
continuous (l.s.c.) at x0 ∈ Rn if and only if for any open set V ⊂ Rn , such that
F(x0) ∩ V 	= ∅, there exists a neighborhood U ⊂ Rn of x0 such that

∀x ∈ U : F(x) ∩ V 	= ∅. (3.4)

The mapping F is said to be l.s.c. on Rn if F is l.s.c. for every x ∈ Rn .
The lower semi-continuity is an important property of certain set-valued functions

associated with the function that is used as the right-hand side of the differential
inclusion, described further on.

Fig. 3.1 A lower
semi-continuous function
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3.2 Differential Inclusions

Consider a mapping F : Rn × I → P(Rn), where P(X) denotes the power set, i.e.,
set of all subsets of the space X, I is an interval, I ⊂ R. A selection (or selector) of
F over I is a function z(t), such that z(t) ∈ F(x, t)∀t ∈ I . The existence of selectors
is a consequence of the known Axiom of Choice, see Halmos [18].

Some facts related to selections are quite interesting and may contradict our intu-
ition. For example, this is not true that a continuous field should have a continuous
selector. Aubin and Cellina [4] show an example of such field. On the other hand,
a discontinuous field may have continuous selections. For example, let the value of
F : [0, 2] → R2 be a filled rectangle with vertices

(−1, 1), (1, 1), (1,−1), and (−1,−1) for t ≤ 1
and a filled rectangle
(−0.5, 0.5), (0.5, 0.5), (0.5,−0.5), and (−0.5,−0.5) for t > 1.
The field is discontinuous at t = 1. However, it has a continuous selection

z(t) ≡ 0.
Differential Inclusion (DI) is defined by the following statement:

dx

dt
∈ F(x, t), x(0) ∈ X0, (3.5)

where t is a real variable (representing the time in this chapter), x is a function of
time, x(t) ∈ Rn, F is a mapping from Rn × R to subsets of Rn , and X0 ∈ Rn is the
initial set. Rn is the real n-dimensional Euclidean space. In the following, R denotes
R1. F is also called the set of admissible directions. In the original Wazewski works
on DIs, the field of directions in Rn , defined by the multi-valued function F(x, t) of
(3.5) is called orientor field.

We will call the function x(t) a trajectory of the DI, if it satisfies (3.5) over
the interval under consideration. The trajectory must be absolutely continuous and
almost everywhere differentiable function.

3.3 Reachable Set

Recall that the graph of a function f (t) is the set of all ordered pairs (t, f (t)). Let
X0 be a closed and connected subset of Rn, I denotes an interval [t0, t1], x(t) ∈ Rn

is the model state vector, and F : Rn × R → P(Rn) is a set-valued function, where
P(X) denotes the power set, i.e., set of all subsets of a space X .

The reachable or attainable set (RS) of (3.5) is defined as the union of the graphs
of all trajectories of (3.5). The term emission zone has also been used in early works.
In many works on the DIs, the mapping F is called a field of permissible directions,
and a trajectory of the DI is also called a trajectory of the field F.

Let us comment on the term “solution to the DI.” It is commonly understood that a
trajectory of theDI is it’s solution. Observe however that a DI normally has an infinite
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number of trajectories. Thus, the trajectory cannot be just called “the solution.” Our
point is that THE solution to a differential inclusion is given by its reachable set.
Consider a sequence of DIs with shrinking right-hand side that, in limit, degenerates
to a single-valued function. The corresponding sequence of reachable sets tends to the
graph of the solution of the resulting differential equation. This is an argument to call
the reachable set the solution to the DI. However, to avoid ambiguity and conflict of
terms, the term “solution to a DI” will not be used in the following sections. Instead,
we will discuss trajectories and reachable or attainable sets.

An absolutely continuous function x(t) is called a quasitrajectory of the DI (3.5)
over an interval I with initial condition x0, if a sequence of absolutely continuous
functions {xi } exists such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) xi (t) → x(t) ∀t ∈ I = [t0, t1]
(i i) d(x ′(t), F(x(t), t) → 0 a.e. on I

(i i i) x ′
i are equibounded on I

(iv) x(0) = x0,

(3.6)

where the prime mark stands for time differentiation.
Recall that a sequence of functions xk : [t0, t1] → Rn, k = 1, 2, 3 . . . ,

t ∈ [t,t1], t0 < t1 is said to be equibounded if such M exists that

|xk(t)| ≤ M ∀ k = 1, 2, 3, . . . and t ∈ [t0, t1]. (3.7)

A function x(t) is called a strong quasitrajectory of the field F , if there exists a
sequence {xi (t)} of trajectories of F , such that xi (t) → x(t) in [t0, t1].

Turowicz [40] has given some sufficient conditions for a quasitrajectory to be
strong. Let us notice that the notion of strong quasitrajectory (“sliding regime”) was
introduced independently and earlier by Filippov [13] under stronger hypotheses.
The set E = conv(F) is defined as the smallest convex and closed hull of the set
F , and the set Q = tend(F) is the smallest closet subset of E that has the same
convex hull, conv(Q) = conv(F), see Fig. 3.2. Note that the tendor set Q of Fig. 3.2
contains the curved sections a and b and the point c.

A very useful property of quasitrajectories of the fields F, E , and Q was found
by Wazewski. He pointed out that, if the field F is continuous in the Hausdorff
sense, then the field E is also continuous and the field Q is lower semi-continuous.
The most important property of these fields is that, under some additional regularity
assumptions, the fields F, E, and Q have the same quasitrajectories. Moreover,
the Filippov–Wazewski theorem states that, if F satisfies the Lipschitz condition,
then for each quasitrajectory, a sequence of trajectories exists that converges to this
trajectory. Consequently, the three fields have the same reachable sets with accuracy
to their closures (reachable sets of the fields F and Q need not be closed).

This means that in any neighborhood of a trajectory of the field Q, a trajectory
of the field F exists. This also means that, in many cases of control systems, the
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Fig. 3.2 Example of sets F,
E, and Q

“tendor” or “bang-bang” type of control (field Q) can be used without restricting the
system reachable set. See also Raczynski [33, 34].

Let T = (−∞,∞),W = Rn × T . Consider the following hypothesis:
Hypothesis H(F): for each (x, t) ∈ W, F(x, t) ∈ comp(Rn), F(x, t) is

bounded, and continuous on W .
Wazewski [43] pointed out that under Hypothesis H(F), we have

{F}∗ = {Q}∗ = {E}∗ = {E}. (3.8)

Here, {*} denotes the reachable set for trajectories and {*}* is the reachable set for
quasitrajectories.

Let W = Rn × T and �(k) be the hyperplane t = k. Also, denote S(E, k) =
{E} ∩ �(k) (the “time section of E”). One of the results shown by Zaremba [48] is
that S(E, k) is a compact and connected set. Thus, the same property holds for the
sets of quasitrajectories of the fields F and Q. A more detailed discussion on this
issue and other properties of the reachable sets can be found in Wazewski [45]. For
the field E , it is also known that if a point is accessible from the initial point x(0) of
(3.5), then it is also accessible in optimal (minimal) time.

3.4 Differential Inclusions and Control Systems

TheDIs are closely related to control systems. To see this, consider a dynamic system
(3.9) ⎧⎨

⎩
dx

dt
= f (x(t), u(t), t), x(0) = x0, u(t) ∈ C(x(t), t)

x ∈ Rn, , u ∈ Rm, C(x(t), t) ⊂ Rm,
(3.9)
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where x(t) is the n-dimensional system state, u(t) is the m-dimensional control
variable, and the set C(x, t) represents the control restrictions. In the following, we
will consider differential inclusions with the initial set reduced to a point x0 in Rn .

Define a mapping F as follows:

F(x, t) = {z : z = f (x, u, t), u ∈ C(x, t)}. (3.10)

Using the set-valued function F in the differential inclusion (3.5), we obtain the DI
derived from the control system (3.9):

dx

dt
∈ F(x(t), t), x(0) ∈ Rn. (3.11)

The control system (3.9) and the DI (3.11) have the same quaitrajectories. In
(3.11), the control variable does not appear explicitly. The function f (x, ∗, t) is the
following mapping:

f : C → F, for each x, t. (3.12)

Define the bang-bang kernel of C(x, t) as follows:

B(x, t) = {u : u ∈ C(x, t), f (x, u, t) ∈ Q(x, t)}. (3.13)

The consequence of (3.8) is that we can use the bang-bang kernel B instead of C to
obtain a control systemwith the same quasitrajectories. This means that we can hit or
approximate any point inside the reachable set of (3.11), using the restricted control
set B. The set B contains less points than C . In many practical applications, B can
be reduced to a finite number of points. This permits us to use a simple bang-bang
control instead of continuous control, with less complicated instrumentation.

As a consequence of the above remarks, we may conclude that given a differen-
tial inclusion, we can find the corresponding control system by parametrizing the
function F with a certain parameter u (control variable). This is true in many cases.
However, the parametrization problem is not so simple. Consult Aubin and Cel-
lina [4], Chapter 1 Section 7, “Application: The parametrization problem.” In that
section, it is pointed out that the existence of continuous selection of F is not suf-
ficient to enable the parametrization of F . Fortunately, the mappings considered in
the following are regular enough to permit parametrization.

3.4.1 Uncertainty Treatment

Models are frequently charged with some uncertainty. This may be caused by the
errors in parameter estimation, or by the influence of the external, constant, or fluctu-
ating control signals and disturbances. A common approach to uncertainty treatment
is the use of randomvariables. This is also referred to as stochasticmodels that include
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such variables in the equations ofmodel dynamics. However, observe that, to use ran-
dom variables, we must know their probabilistic properties, like the expected value,
variance, probability distribution, and others. These data may be difficult to obtain
in practical applications. Instead, it is probable that we only know the limits where
the variable can change. In this case, the statistical methods can hardly be applied or
may provide wrong results. The point is that an uncertain variable need not be a ran-
dom variable. The uncertainty may cause fluctuation, permanent constant changes,
or unpredictanble tendencies. For example, this may be caused by natural disasters,
or an erroneous information generated intentionally, like in the stock market models
(remember also the law of Murphy).

Such uncertain factors are called tychastic variables, as defined in Aubin and
Saint-Pierre [3]. The reachable sets may show the influence of such uncertain vari-
ables on the system behavior. Note that using tychastic variables, the problem state-
ment is deterministic. We define the restrictions for tychastic variables and then
calculate the shape of the reachable set of the model affected by them. This gives
us insight into possible model uncertainty in the form of the RS. In the examples
shown below, the external input signals can be treated as tychastic variables and the
resulting RS images as the uncertainty regions.

3.5 Functional Sensitivity

The discussion about the functional sensitivity methods can be found in Chap. 4.
Here, there are only short, preliminary remarks.

The classical, local sensitivity analysis (basic local version) uses the partial deriva-
tives of the model output Y , with respect to components of an input vector (model
parameters) u = (u1, u2, . . . , un), at a given point u0:∣∣∣∣ ∂Y

∂ui

∣∣∣∣
u0

. (3.14)

The derivative is taken at some fixed point in the space of the input (hence, the
“local” in the name of the analysis mode). The use of partial derivatives suggests
that we consider small perturbations of the input vector, around the point of interest
u0. Consult Cacuci [8]. There are several kinds of sensitivity analysis. Consult, for
example, scatter plots (Friendly and Denis [16]), regression analysis (Freedman [15]
or Cook [10]), variance-based model, Sobol methods [37], the screening method
(Morris [25]), or logarithmic gain, (Sriyudthsak et al. [38]).

The SystemDynamics software offers tools for dynamic sensitivity analysis. Pro-
grams like Vensim or PowesSim include procedures that generate multiple model
trajectories where the selected model parameters vary from one trajectory to another.
However, in these packages, the parameters are constant along the trajectory. Our
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approach is different. As explained in the following sections, we treat the perturba-
tions as functions of time. The main tool used here is differential inclusion.

In this book, the local functional sensitivity is defined as follows:

Sk =
∣∣∣∣δxkδu

∣∣∣∣ (3.15)

Note the difference between the conventional local sensitivity (3.14) and the func-
tional sensitivity (3.15). The notation δu denotes the variation of the function u, as
defined in the calculus of variations (see Nearing [27] and Elsgolc [12]). A varia-
tional approach to sensitivity is also discussed in Arora [1], Mordukhovich [24], and
Sriyudthsak [38]. A more detailed explanation is given in Chap. 4.

3.6 Differential Inclusion Solver

The original algorithm of the solver has been published in 2002 [32]. Here, we
present the new version that includes the use of multiprocessing, improved accuracy,
and graphical presentation of the results.

The first version of the differential inclusion solver (DI Solver) was presented two
decades ago, see Raczynski [32]. We present this chapter because the publication
of 2002 was only a conference paper and has been unnoted by many researches.
The other reason is that during the last two decades important improvements to the
algorithm and related software have been done. Also, what is new in the present
article, is the application of the DI solver to a new concept of functional sensitivity
analysis.

First of all, note that the main idea of the software is to scan the boundary, and
not the interior of the reachable set (RS). Our point is that to explore the interior of
the reachable set is an error. The reasons are as follows.

1. For example, in the case of three-dimensional state-time space, the area of the
boundary of the reachable set grows with the square of the model size, while the
volume of its interior increases as the cube of the dimension.

2. The properties of the RS boundary are perfectly known for many decades. This
makes the RS calculation easier because the algorithm is based on already-proven
and well-documented methods of the optimal control theory (see Lee and Markus
[20], Pontryagin [30]).

The application of the optimal control methods for RS calculation has been re-
invented several years after the original publication in 2002.

There are some other approaches to the RS determination, for example, Girard
[17]. However, the method is limited to time-invariant linear systems. Matviychuk
[22] proposes external ellipsoidal approximation method. We will not comment here
on other numerous publications on this topic because nearly all of them propose
less efficient methods and have been published after 2002 when the problem has
been already solved. This remark does not refer to works that treat extensions of the
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problem and non-classic cases, like systems with time-delay or fuzzy logic elements.
For more references related to reachable set calculations and an overview, consult
Filippova [14].

The algorithm of the DI solver has been coded using the Embarcadero � Delphi
and requires that package to be installed on the user’smachine. A limited, stand-alone
“.exe” version of the solver is also available. Our main goal is RS determination and
not optimization. The DI solver and the present problem statement should not be
confused with the differential inclusions method used in the optimal control prob-
lems.

We are looking for the reachable set for a given initial condition. It is known that,
with sufficient regularity assumptions, the reachable set is continuous with respect
to the initial point or set, and it is a connected set for any fixed time instant. The
reachable set need not be convex and may have a complicated shape. It might appear
that a simple way to get the shape of the reachable set is to calculate a number of
solutions to the following equation:

dx

dt
= z(t), (3.16)

for different z(t), where the functions z(t) are selectors of functionF of (3.5). It might
appear that, by choosing z(t) randomly, we can cover the inside of the reachable set
with sufficient density and then estimate its shape. Unfortunately, this is not true,
even if we select only z(t) belonging to the boundary of F . We will call this method
simple or primitive shooting, and compare it with the DI solver algorithm. A simple
simulation shows that even in very simple cases the set of trajectories provided by
primitive shooting (using any density function) is concentrated in some small region
inside the reachable set and does not approach its boundary.

Using the DI solver, we explore the boundary of the reachable set, and not of its
interior. With enough trajectories that belong to the boundary, the shape of RS can
be estimated with reasonable accuracy. We should generate these trajectories in such
a way that the density of points be nearly uniform on the boundary. This permits to
avoid “holes” in the resulting graphical image.

To generate such “boundary trajectories” we use well-known methods of the
control theory. If the field F is not convex, but Lipschitzian, it is sufficient to estimate
the reachable set for trajectories of the corresponding tendor field instead of the
original field F . This can be easier because the tendor field contains few points, in
manycases only isolated extremal points of the given set F . Recall that thefields F, E ,
and Q (Fig. 3.2) have the same quasitrajectories and that for each quasitrajectory a
regular trajectory exists nearby.

The Maximum Principle (Pontryagin [30]) states that the necessary condition for
a trajectory to be optimal is to maximize the expression called Hamiltonian for each
time instant over the time interval under consideration. In other words, the principle
permits us to decompose the original optimization problem of maximization of a
function into a set of problems of function maximization. The original optimization
problem is as follows. Given a control system described by the Eq. (3.9), we look for
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an optimal control and the corresponding optimal trajectory that minimizes a given
criterion (3.17) over the interval I = [0, T ].

J =
∫ T

0
f0(t)dt. (3.17)

If f0 ≡ 1, then the trajectory is time-optimal, i.e., reaches the final point in optimal
time. To define the Hamiltonian, we must define the conjugated vector p ∈ Rn that
satisfies (by definition) the following equations:

dpi
dt

= −
n∑
j=1

∂ f j
∂xi

p j − ∂ f0
∂xi

, i = 1, 2, . . . , n, (3.18)

where f is the function of the right-hand side of (3.9). The necessary condition for a
trajectory to be time-optimal is to entirely lay on the boundary of the reachable set.
This means that we can suppose f0 ≡ 1, and eliminate f0 from the above equations.

The Hamiltonian function is defined as follows:

H =
n∑
j=1

p j f j . (3.19)

The Maximum Principle states that the necessary condition for the trajectory
to scan the RS boundary is that the control u(t) maximizes the Hamiltonian over
the interval I . This can be used to generate boundary trajectories of the differential
inclusion. If the inclusion is given in the form of a control system (3.9), then we apply
the principle directly. If it is given in the general form (3.5), we must parametrize
the set F and treat the parameter as the control.

The vector p must satisfy the transversality conditions (Lee and Markus [20]).
This provides the final condition for the conjugated vector. Consequently, to calculate
an optimal trajectory with a given optimality criterion, the two-point boundary value
problem must be solved. We know the initial condition for the state vector, but not
for the vector p that is defined at the final time.

In our case, we do not need to solve the two-point boundary condition problem.
Observe that starting with any initial condition for the conjugated vector and maxi-
mizing the Hamiltonian on each time-step, a single forward integration of the Eqs.
(3.9) and (3.18) provides a trajectory that lies on the boundary of the reachable set.
Thus, we can choose the initial conjugate vector randomly, obtaining random final
boundary points (and not the points inside the reachable set). We do not solve any
particular optimization problem, but we are just looking for the trajectories that scan
the boundary of the reachable set. The problem is how to generate the initial vector
p to cover the resulting final boundary set with a uniform density of points and to
avoid holes in it.
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The distribution D used below is a probability distribution function defined inside
the n-dimensional unit cube with a center at the origin of the coordinate system. The
algorithm is as follows (the discrete-time version of theMaximum Principle is used).

The new, parallel version of the DI Solver algorithm is as follows.

0. Define D as the uniform density function, set x = x0.
1. Generate initial vector p according to the density D.
3. Launch several concurrent tasks on the available processors of the current

machine, each of them, integrating the equations 3.9 and 3.18 over the interval I .
In each trajectory, use the control u that maximizes the Hamiltonian at consecutive
integration steps.

4. In each integration task, store the initial p and the whole trajectory in a con-
secutive record of a file.

5. Select the final point xk that lies in a region of the minimal density of points x,
searching in the file where trajectories have been stored.

6. Modify the distribution D, increasing the probability density in a neighborhood
of the point pk that corresponds to the point xk .

7. If there are enough trajectories stored, then stop; otherwise, go to step 1.

The difference between the original version of the solver and the present one is that
the trajectory integration is now executed concurrently on multiple CPU processors,
making the algorithm several times faster. By the term “region of minimal density
of points” (point 5), we understand the spot of low-density of points on the image
of the final reachable set or its two- or three-dimensional projection. This part of the
algorithm is rather heuristic.

It is important to notice that, although we randomly generate the initial conditions
for the conjugated vector, this algorithm has nothing to do with the simple shooting
method, mentioned earlier or with simple random disturbances. We do not explore
the interior of the RS but scan its boundary. In fact, the random generation of the
initial vector p can be replaced by other, deterministic, methods as well.

The stop condition is based on the user decision. As the result, we obtain a two-
dimensional image that is a projection of the reachable set on a given plane. In the
case of a second-order system, this image should be a closed curve; for systems
of higher order, it will be a cloud of points in Rn . The user can stop the program
if he/she recognizes the shape of the reachable set. A three-dimensional image of
the reachable set can also be generated. Practical experiments show that this can be
reached after integrating 500–1000 system trajectories. Anyway, this procedure may
be difficult to use for models of higher order (more than 10, perhaps).

The maximization of the Hamiltonian (step 3) can be done using any maximiza-
tion procedure. This procedure is not predefined because it may depend on each
particular case. Note that here we reduce the original problem of solving a DI to
some “sub-problems” that may not be easy to solve, but belong to well-known fields
of optimization techniques. If the original system is linear with respect to the con-
trol vector and the restriction set is a multidimensional cube, then the maximization
can be reduced to a simple scan over a finite number of points. We will not discuss
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here the methods of maximization of the Hamiltonian (step 3). There exists a huge
literature on it in the field of control theory (Lee and Markus [20], Polak [29]).

An important question is if, and when, you really need the reachable set calculated
by the DI solver. Obviously, if our system is of the first order, the determination of
the reachable set is rather trivial and can be done easily without involving DIs.
In some cases, when the modeled system is of higher order, but strongly damped,
the extreme points of the RS can be calculated simply by applying the extreme
values of control variables. However, in a general multidimensional case, the fixed
extreme controls (extreme points of the control restriction set) do not correspond
to the extreme or boundary points of the system reachable set. The RS becomes a
complex multidimensional shape, not necessarily convex, with a boundary surface
that may fold several times. Even in a simple two-dimensional case, the mapping
from the permitted control set C to the RS is highly irregular.

In some situations, the DI solver may fail. This occurs when the analyzed model
includes stiff equations. This is normal, recall that most of the numerical methods for
ordinary differential equations also fail for such type of equations, and the treatment
of stiff systems requires special algorithms. The model stiffness is not always easily
detected. The solver failures may, for example, occur when the model is of order
four or higher, and includes parts that oscillate at high frequency. For example, the
model of quarter-car suspension has the proper (“slow”) oscillations of the spring-
damper-mass part, and the stiff part that takes into account the tire elasticity and the
mass of the wheel.

For models of order greater than two, the time section of the reachable set cannot
be seen as a well-defined contour. For example, if the model is composed of a set of
three equations, the final RS is a cloud of points distributed over a three-dimensional
surface, like a balloon. If we look at a two-dimensional projection of this object, it
might appear that some points lie inside the reachable set, which is not true. Rotating
the image gives us a better understanding of the spatial distribution of points.

The algorithm was adopted for multi-processing. Note that the operations of inte-
grating model trajectories can be executed concurrently. This accelerates the task
due to the number of processors. Running on a quad CPU, we complete the task
four times faster. Further improvements can be done using the GPU (Graphical
Processing Unit) that may contain hundreds of processors. In this case, we could
reach the velocity of RS calculation comparable with the speed of recent numeri-
cal methods for the ordinary differential equations. However, such implementations
are hardware-dependent, and the practical applications are available mainly with the
NVIDIA graphic cards.

As mentioned before, the DI solver runs over the Delphi package. A new, stand-
alone exe version of the solver has been developed, that does not require Delphi. This
version has its own compiler formathematical expressions. However, this compiler is
rather slow compared that of Delphi and does not use multiprocessing. This version
of the solver can be used for simple examples and not for complicated models.
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3.6.1 Example: A Second-Order Model

Consider a simple non-linear model of the second order:

⎧⎪⎪⎨
⎪⎪⎩
dx1
dt

= x2

dx2
dt

= 1 − 0.2u1 − x1 − 0.1u2(x2 + 2.3x22 ),

(3.20)

where u1 and u2 are uncertain parameters. Let the parameter u1 fluctuate between
−0.2 and +0.2, and parameter u2 fluctuate between 0.025 and 0.175. The initial
conditions are x1 = x2 = 0, and the final simulation time is equal to 10. Figure 3.3
shows the 3D image of the model RS. The three axes of the plot represent x1, x2
and the time. The image was generated by our DI solver. It can be seen that even
for relatively small perturbations u1 and u2, the deviation of the state vector may be
quite big.

Figure 3.4 part A depicts the comparison of the functional sensitivity to the con-
ventional sensitivity analysis provided in some system dynamics packages. The con-
tour indicates the boundary of the reachable set for the model (3.20) at t = 10.
These are end points of about 2000 boundary-scanning trajectories. A small black
region marked with X is the result of the “Vensim-like” sensitivity analysis, where
the parameters are constant along each trajectory. The region X was obtained by

Fig. 3.3 Reachable set of model (3.20). The image of the reachable set produced by the DI solver
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Fig. 3.4 Final contour of the reachable set. Comparison with the simple shooting

Fig. 3.5 Functional sensitivity set projected into the x1−time plane

generating 50000 trajectories with the same limits of uncertain parameters. In part
B of the figure, we can see the region Y, obtained by generating 50000 trajectories
where the parameters can change the value randomly, within the same limits at each
integration step.

Figure 3.5 shows a side view of the same reachable set produced by the DI solver,
projected into the x1-time plane. Note that the functional sensitivity region coincides
with the conventional results for the initial time interval [0, 35], but it is very different
from the true reachable set for a greater time interval.

To perform the functional sensitivity analysis, the DI solver must be used. It
provides the estimates of the reachable sets. Comparing functional sensitivity with
the conventional sensitivity analysis, we can see that the obtained reachable sets are
almost always several times greater than that obtained using the classical approach.

More examples of functional sensitivity sets can be found in Chap. 4.
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3.7 Discrete Differential Inclusions

In the discrete case of differential inclusion (or rather difference inclusion), we take
an important assumption: The steps (increments) of time discretization, as well as
the model state, are finite. No operations or considerations that involve passing
with these increments to zero and looking for some limit values or properties
are considered.

In model building, we can frequently find the concepts of “discrete version” and
“continuous version.” For example, a system dynamics model may be described
by differential equations, as well as by difference equations. In the latter case, a
finite time-step is used, and the model trajectory is calculated by a simple numerical
algorithm similar to Euler’s method. In many cases, it is supposed that, by passing
with the time-step to zero, we obtain the continuous model of the same real system.
As stated before, we do not permit such operation in this section. In other words, we
treat the discrete (time and state) models as something different from the continuous
models, and no “passing to time-step zero” operations are possible. This does not
mean that there cannot exist some analogies between our discrete and continuous
models. We just treat them as different things.

There are some publications on discrete differential inclusions (DDIs), see for
example, Veliov [42], who discusses the approximations of differential inclusions
by discrete-time inclusion. However, the topic of the present paper is quite different.
We do not treat with approximations of the continuous version. In our approach,
the inclusion is discrete both in the time domain and in the state space. This is a
“strongly” discrete approach.

The DDIs can be treated as some kind of cellular automata. Recall that a cellular
automata consists of a collection of cells on a grid in space. Each cell can evolve
through consecutive time-steps, due to a given rule of change. This rule may be
constant or variable in time and normally depends on the state of the cell and its
neighborhood. However, the DDI approach is not exactly a cellular automata. In
the cellular automata, each cell has its state. While advancing in time, the cell may
change its state, for example, from “0” to “1.” In a DDI, the cells represent possible
states of themodel, and themodel trajectory jumps from one cell to another, changing
the state of the model and not of the cells.

The cellular automata evolve, creating interesting patterns and sometimes quite
unexpected images. This pattern creation and moving clusters resemble biological
systems and sometimes are treated as “artificial life.” The cellular automata are not
the subject of this book, so we will not discuss them here. Consult, for example, von
Neuman [41] or Wolfram [47].

In a DDI we have the following elements: the space of states, two- or multi-
diensional grid of states, the initial set the model movement starts from, the rule of
change and additional state restrictions. Compared to continuous DIs, the problem
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statement is similar. The rules of change of a DDI correspond to the right-hand side
of the DI (in the continuous case it is the set where the derivative of motion must
belong). The DDIs may be a useful tool in system simulation and decision-making.
Any trajectory of a DDI is a sequence of decisions taken about the systemmovement.
If we associate each state with an object function (e.g., a cost function), then we may
consider an optimization problem for a decision-making system.

Consider a DDI in which states are vertices of a two-dimensional grid of states.
The initial condition is given by one vertex of the grid. This restriction to two-
dimensional state space is not relevant. The problem statement can be n-dimensional,
as well. We limit the examples to two-dimensional cases because this permits us to
generate images that are clear and easy to interpret. Note that this grid is fixed, and
the spacing cannot be changed and it cannot approach a continuum. This problem is
conceptually completely different from the continuous version. We have no continu-
ous or differentiable functions and the concept of a derivative does not exist here. The
optimization problem cannot be treated by Pontryagin’s maximum principle, even
if this is applied in a discrete-time version, consult Pontryagin [30]. In our case, the
model state is also discretized and belongs to a space of isolated points. Recall the
very fundamental difference between a continuous and discrete state space. Consider
the space of real numbers. In this space, we can define a closed or open set. Now,
consider the set of all integer numbers. Recall that this set has no interior, in other
words, it has different topological properties.

Here, we describe an algorithm that calculates the reachable sets of DDIs and
provides optimal trajectories. Note that in the process description we don’t use much
mathematics. The optimality of the trajectories generated in this process needs no
mathematical proof.

3.7.1 Reachable Set, Optimal Trajectory

Let xk = (xk1, xk2) be the actual model state, where k represents the time. Both state
and time are discrete, so we suppose that k = 0, 1, 2, . . . .. The possible values of
each state component are integer numbers. While advancing in time, the new state
is calculated as equal to

xk+1 = xk + dxk, dxk = (dxk1.dxk2) = f (xk ., uk, k). (3.21)

Model specification defines the increment function f (xk, uk, k), where uk is an
external control vector that influences the state changes. In this discrete model, the
vector dx can be interpreted as a (discrete) decision that tells “where to go.” Vector
u can also be interpreted as the uncertainty in the decision-making process. Let the
control u be restricted so that

uk ∈ C(xk, k). (3.22)



3.7 Discrete Differential Inclusions 97

For k = 0, 1, 2, . . . , K , with given initial state x0 = (x01, x02) and permissible set
C. K is a given final model time. The formula (3.21) and (3.22) define the Discrete
Decision Inclusion (DDI). Note that, similar to the continuous DI, the right-hand
side of the first equation of (3.21) is a set. However, the model state x , as well as the
increments dx take discrete values.

A trajectory of the DDI (3.21) is a succession of states that satisfy Eq. (3.21) for
k = 0, 1, 2, 3, . . . , K .

The reachable (or attainable) set (RS) of the DDI (3.21) is the union of graphs
of all possible model trajectories with state x0 belonging to the initial set, and final
time K . In the following, the initial condition will be a one-point set, denoted as x0.
In other words, this is the set of all possible points xk , where xk belongs to one of
the model trajectories.

By an optimal trajectory we mean a trajectory that satisfies some optimality crite-
rion at the final time instant K . It may be, for example, the task to maximize one of
the components of the final state at time = K . Of course, optimality can be defined
in many ways, as is done in the optimal control theory. Here, we limit us to the
requirement that the final model state belongs to the boundary of the reachable set
at t ime = K . The optimality problem is not the main point of this chapter. There
are many works on this topic, see for example, Blackwell [7], where we can find the
description of the discrete version of dynamic programming method of Bellman [5].
See also Elmaghraby [11] and Ibaraki [19]. Here, we focus on the determination of
reachable sets, and the simple way to obtain optimal trajectories is a “side” product.

We should define the notion of the set boundary. Remember that our reachable
set is a cloud of discrete points of the two-dimensional grid (G) with spacing equal
to one. So, from a topological point of view, this set has no interior and no boundary.
However, for our needs, we will consider a state point as a boundary point, if it has
less than four neighbors (at distance one) in the grid G; otherwise, it is an interior
point.

Now, consider the problem of reaching a particular final state, startingwith a given
initial point. Suppose, for example, that we have K = 30 time-steps, the component
u1 has five possible values, and u2 has two. So, at each time-step, we have ten possible
control vectors. This means that we have 1030 combinations of control variables for
each trajectory. Obviously, it is hardly possible to generate this number of trajectories
in reasonable computing time,and select the optimal one. As for the shape of the
reachable set, one might suppose that, by generating randomly a sufficiently large
number of model trajectories, we can scan the interior of the reachable set and assess
its shape. Unfortunately, this is not the case. Such trajectories form a small cluster
inside the RS, and the probability that they approach the boundary is practically null.

So, instead of generating trajectories, we generate consecutive “slices” of the RS.
By a slice, we understand the set of points of the reachable set for a given time instant.

Let the number of possible values of u be fixed for each time-step and equal to
N . We start at K = 0, at the initial point x0, and generate the set of states for K = 1.
this will be a set of N points. Denote this set (slice) byS0. Now, repeat this starting
from the points of S0. We obtain a new slice S1 that can include up to N 2 points. Note
that the states are discrete so that some of the new points in S1 may be located in the
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same grid vertex. If we eliminate these double points, we have a slice with less than
N 2 points. This point reduction accelerates the process significantly. For example,
suppose that the limits both u1 and u2 change between 0 and 3, dx1 = u1, dx2 = u2.
Advancing in time, we get the consecutive slices with 1, 16, 49, 100, 169, 256....
points. Now, repeating the process without eliminating multiple points, the number
of points in consecutive steps is 1, 16, 256, 4096, and 65526 for only the first four
time-steps. This point reduction is an advantage of the fact that we have discrete, and
not continuous model states. It can be seen that while eliminating repeated points,
the process is computationally tractable and the reachable set can be calculated in a
reasonable time. In such types of models, the number of time-steps is not very big. If
we require, for example, 2000 time-steps, this would suggest that we intend to pass
with the size of the time-step to zero (approximate a continuous process), which is
not permitted in our problem statement. In the examples shown below, the number
of time-steps does not exceed 50.

Any trajectory that terminates in a given endpoint (including the optimal one)
can be easily retrieved. In each time-step, for each new point we store the actual
coordinates, coordinates of the previous point it comes from, and the corresponding
control u. These data permit to restore the trajectory, going backward in time. Note
that this is an additional, “postmortem” feature.

3.7.2 Example 1

Consider a model described by Eq. (3.21), where the decisions are as follows.

{
dx1 = x2 + u1
dx2 = 5 − r(0.3x1 − 0.45x1) + 2u2.

(3.23)

Here, (x1, x2) is the actual state, (u1, u2) is the external control or decision uncer-
tainty and r(∗) is the “round” function that returns the integer value nearest to the
argument. Remember that dx1 and dx2 are integer numbers. The initial state of x is
equal to (0, 0). The external control is limited as follows

u1 ∈ {−1, 0, 1.2}, u2 ∈ {−1, 0} (3.24)

Figure 3.6 shows a 3D image of the reachable set for K = 20 time-steps, shown
from two different view angles. In the figure, each small sphere represents system
state. Each gray sphere represents a state point that has four near neighbors in the
grid, in the consecutive slice. White balls are the boundary points, i.e., the points
that have less than four such neighbors. The irregularity of the RS boundary is the
consequence of the time and state discretization. The calculation of this reachable
set takes less than two seconds on a PC, including graphics generation.



3.7 Discrete Differential Inclusions 99

Fig. 3.6 Reachable set for example 1, shown from different view angles

Fig. 3.7 Optimal trajectory for example 1, viewed from the time-axis direction

As mentioned before, an additional feature of the program is optimization. After
generating the reachable set, the user can select any point from the final slice. The
trajectory that reaches this point and the corresponding control are displayed.

In Fig. 3.7, we can see the optimal trajectory that maximizes the final value of x2.
The 3D image of the reachable set with the optimal trajectory is shown in Fig. 3.8.
Note that the graph of the whole trajectory belongs to the boundary of the reachable
set. This property is well known in the optimal control theory, for the continuous
case, but here it appears in a very natural way.

The optimality property of the trajectories obtained by the algorithm described
here needs no mathematical proof. Simply, the reachable set we generate contains
all possible system states. Then, the user selects the required point (extremal point or
any other), and the program shows the corresponding trajectory and control. Figure
3.9 shows the two controls that correspond to the optimal trajectory. Obviously, to
reach the maximal value of x2, we cannot maintain the control u2 at its maximal
value in all time-steps.
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Fig. 3.8 Reachable set and optimal trajectory for example1. The problem is to maximize the value
of x2 at the final model time

Fig. 3.9 Optimal controls: u1 (left part) and u2 (right)

Note that in the process of reachable set calculation, we never calculate model
trajectories to assess the shape of the RS (we can retrieve them from the stored data,
and not integrate in time). Instead, the algorithm finds the consecutive time sections
(slices) of the RS.

3.7.3 Example 2

Consider the following model:

{
dx1 = r(0.2x1 − 0.015x1x2) + u1
dx2 = r(−0.3x2 + 0.01x1x2) + u1,

(3.25)

where −1 ≤ u1 ≤ 0, 0 ≤ u2 ≤ 1 Like in Eq. (3.7), (x1, x2) is the actual state,
(u1, u2) is the external control or decision uncertainty and r(∗) is the “round” func-
tion that returns the integer value nearest to the argument. The initial conditions are
as follows: x1(0) = 20, x2(0) = 5, final time K = 25.
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Fig. 3.10 A 3D image of the RS for model (3.25)

Fig. 3.11 The RS and the optimal trajectory for model (3.25)

The image of the RS for this model is shown in Fig. 3.10, from two different view
angles. Note that in this case, the slices of the RS can shrink while advancing in time
(Fig. 3.11).

3.8 Conclusion

In this chapter we discuss models based on differential inclusions, instead on the
ODEs. Differential inclusions are not very popular among the simulationists, though
they are known for more than 90 years. More applications can be found in works
on optimization methods. However, the images of the reachable sets of the DIs can
hardly be found in the literature. This chapter intents to show a new type of model.
Another topic is functional sensitivity that is a much dynamic approach, compared
to conventional sensitivity analysis.

New DI solver contains considerable improvements compared to the original
version. Running on multiple processors, it can calculate the shape of the reachable
set in several seconds.A possible application of theGPUhardwaremay accelerate the
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solution hundreds of times. The graphical result display was redesigned to provide a
more clear and easier to interpret images. An application to the functional sensitivity
analysis shows that, in fact, the RS for dynamic systems is, at the same time, the
sensitivity set. This can be applied in the analysis and design of robust control and
other problems, subject to uncertain disturbances.

Discrete version of differential inclusion was presented. This may be useful in
multi-step decision-making process. It should be emphasized that in the discrete
inclusions, we treat time and state discretization with finite time-step and the grid
of discrete states with finite spacing. No “pass to zero” with the discretization
steps is considered. In the process of reachable set calculation, we never calculate
model trajectories to assess the shape of the RS. Instead, the algorithm finds the
consecutive time sections (slices) of the RS. Eliminating multiple points with the
same state, we accelerate the process considerably. Retrieving optimal trajectories is
an additional feature. After determining the reachable set, a trajectory that satisfies
a given optimization criterion can be easily retrieved. It can be seen that the graphs
of optimal trajectories lie at the boundary of the corresponding reachable sets.
This resembles the similar property of optimal trajectories known from the optimal
control theory in a continuous case.

3.9 Questions and Answers

Question 3.1 What is a differential inclusion?

Question 3.2 What is a selector of a field F(x, t)?

Question 3.3 What is a trajectory of a differential inclusion?

Question 3.4 What is theit reachabke or it attainable set?

Question 3.5 What is the difference between it uncertain and random parameter or
variable?

Question 3.6 How the differential inclusion solver works?

Question 3.7 What is the difference between the functional sensitivity of models
and the conventional sensitivity definition?

Answers

Answer 3.1 A differential inclusion is given in the form of the condition dx/dt ∈
F(x, t), where F(x, t) is a set, x is the state vector and t is the time. It is also called
differential equation with multi-valued right-hand side.

Answer 3.2 A selector of the field F(x, t) is a function z(t) ∈ F(x, t) over the time
interval of interest.
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Answer 3.3 A trajectory of a differential inclusion is an absolutely continuous func-
tion that satisfies the condition dx/dt ∈ F(x, t) over the time interval of interest.

Answer 3.4 The it reachabke or it attainable set is the union of the graphs of all
trajectories of a differential inclusion with a given initial set in the state space.

Answer 3.5 A random variable has certain probabilistic properties like the average,
variance, and others. The uncertain variable need not have such characteristics; it
has just a uncertain value. Such variables are also known as tychastic variables.

Answer 3.6 The differential inclusion solver generates trajectories that scan the
boundary, and not the interior of the reachable set.

Answer 3.7 The functional sensitivity provides the reachable sets or the model tra-
jectory related to parameters or disturbances that fluctuate in time. It is defined in
terms of the variational calculus.
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Chapter 4
Functional Sensitivity Applications

4.1 Introduction

The concept of functional sensitivity was mentioned in Chap. 3. Now, let us discuss
this kind of analysis with more detail and examples. Unlike the classic sensitivity
definition, we define the functional sensitivity in terms of variational calculus. It
is pointed out that the non-local functional sensitivity is given in the form of the
system reachable set. The solution to the functional sensitivity is shown, using the
differential inclusion solver that calculates and displays the system reachable set.
Comparison between functional sensitivity and the classical approach is done.

The topic of this chapter is the concept of functional sensitivity and reachable
sets, and not the particular models we use.

First, let us express some remarks on the conventional sensitivity concepts (SA).
There are many kinds of such analysis, as listed below.

Scatter plots represent a useful tool in the SA. Plots of the output variable against
individual input variables are displayed. This gives us a graphical view of the model
sensitivity. View Friendly and Denis [13] for more detail.

Regression analysis is a powerful tool for sensitivity problems. It allows us to
examine the relationship between two or more variables of interest. The method is
used to model the relationship between a response variable and one or more external
variables or perturbations. Consult, for example, Freedman [12] or Cook [8].

Sobol method and Screening are useful tools in the variance-based modeling. It
decomposes the variance of the output of the model or system into fractions which
can be attributed to the input or sets of inputs. Thus, we can see which variable is
contributing significantly to the output uncertainty in high-dimensionality models.
For more detail, see Morris [18] and Sobol [24].

Logarithmic gain is a normalized sensitivity defined by the percentage response
of a dependent variable to an infinitesimal change in an independent variable. In
dynamical systems, the logarithmic gain can vary with time, and this time-varying
sensitivity is called dynamic logarithmic gain. This concept is used in dynamic sen-
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sitivity analysis, where the core model is a dynamic system, described by ordinary
differential equations. Consult Sriyudthsak et al. [25].

The System Dynamics software (Forrester [11]) offers tools for dynamic sensi-
tivity analysis. Programs like Vensim or PowesSim include procedures that generate
multiple model trajectories when the selected model parameters vary from one tra-
jectory to another. However, in these packages, the parameters are constant along the
trajectory.

Our approach is different. As explained in the following sections, we treat both
the perturbations and uncertain model parameters as functions of time. Instead of
the classical sensitivity concept, we use the functional sensitivity, defined in the
following sections. The main tool used here is the differential inclusion solver that
calculates model reachable sets (see Raczynski [23]).

4.2 Functional Sensitivity

4.2.1 Differential Inclusions

Differential inclusions (DI) has been defined and discussed in Chap. 3. For reader
convenience, let us repeat here some basic concepts. Consider a dynamic model
given in the form of an ordinary differential equation (state equation)

dx

dt
= f (x, u, t), (4.1)

where x ∈ Rn is the state vector, t is the time, f is a vector-valued function and
u ∈ Rm is an external variable, called control variable in the automatic control theory.
Suppose that the values of the control u are restricted so that u(t) ∈ C(t), where
C(t) ⊂ Rm is a subset of the Rm space. For each fixed x and t , the function f maps
the set C (all possible values of u) into a set F ⊂ Rn . In this way, we obtain the
following condition, that defines the corresponding differential inclusion.

dx

dt
∈ F(x, t) (4.2)

A function x(t) that satisfies (4.2) is a trajectory of the differential inclusion. The
union of the graphs of all trajectories, over a given time interval and given initial
condition, is called the reachable set of (4.2).

4.2.2 Sensitivity Analysis

The classical, local sensitivity analysis (basic local version) uses the partial deriva-
tives of the model output Y , with respect to components of an input vector (model
parameters) u = (u1, u2, ..., un), at a given point u0 :
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∣
∣
∣
∣

∂Y

∂ui

∣
∣
∣
∣
u0

. (4.3)

The derivative is taken at some fixed point in the space of the input (hence the
“local” in the name of the analysis mode). The use of partial derivatives suggests
that we consider small perturbations of the input vector, around the point of interest
u0. Consult Cacuci [6].

Consider a dynamic model described by an ordinary differential equation

dx

dt
= f (x, u, t), (4.4)

where x = (x1, x2, ..., xn) is the state vector, u = (u1, u2, ..., um) is the perturbation
(parameters, control) vector, and t is the time. We have x ∈ X, u ∈ U, f : X ×U ×
R → X . Here, X is the state space, U is the control space, and R is the real num-
ber space. We restrict the considerations to the case X = Rn,U = Rm, R = R1, Rk

being the real Euclidean k-dimensional space. Let t ∈ I = [0, T ], andG be the space
of all measurable functions u : I → Rm .

Now, consider a variation δu of u and a perturbed control u∗. The variation is a
function of time, so that u′(t) = u(t) + δu(t) ∀ t ∈ I (prime mark is not the time
differentiation). The solution to (4.4) over I , with given initial condition x = x0
and given function u(∗), will be called a trajectory of (4.4). Thus, any component
xk of the final value of x(t) depends on the shape of the whole function u(∗). In
other words, xk(t) = xk(t)[u′] is a functional (not a function) of u′(∗). Unlike a
function, in our case, the functional is a mapping from the space G to R. Denote
δxk = xk[u + δu] − xk[u] = xk[u′] − xk[u].

In this book, the local functional sensitivity is defined as follows:

Sk =
∣
∣
∣
∣

δxk
δu0

∣
∣
∣
∣
. (4.5)

Note the difference between the conventional local sensitivity (4.3) and the func-
tional sensitivity (4.5). The notation δu denotes the variation of the function u, as
defined in the calculus of variations (see Nearing [20] and Elsgolc [9]). A varia-
tional approach to sensitivity is also discussed in Arora [2], Mordukhovich [17], and
Sriyudthsak [25].

The term (4.5) defines a local property of the trajectory xk(t). Here, we are inter-
ested rather in the response of the model to perturbations that are not necessarily
small. We will not enter in the methodology of the variational calculus. Our task is
to define the functional sensitivity as the set of the graphs of all trajectories of (4.4),
where u = u0 + �u. Here, �u(t) is a limited perturbation, not necessarily small.
Considering the control system (4.5), this is equivalent to say that u(t) belongs to the
set of restrictions C(x, t), u(t) ∈ C(x, t), ∀ t ∈ I . Here, C(x, t) is a subset of Rm .
When u scans all possible values inside the set C , then the right-hand side of (4.4)
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defines a set-valued function. This way, (4.5) with disturbed control also defines the
corresponding differential inclusion.

The functional sensitivity defined this way is non-local. We do not use the term
“global,” because this is not a global property of the model. We just do not require
the perturbation to be small.

Models with uncertain parameters and control systems are closely related to dif-
ferential inclusions. Consider a model defined as follows (Eq. 4.6):

dx

dt
= f (t, x(t), u(t)), x(t) ∈ Rn, u(t) ∈ C(x, t), t ∈ I = [t0, T ], t0 < T,

(4.6)
where Rn is the real n-dimensional Euclidean space, x ∈ Rn, u ∈ Rm, t is a real vari-
able representing the time, and C represents the restrictions for variable u. Equation
(4.6) may represent a control system with control variable u, as well as a model with
uncertain variable parameters u.

When u scans all possible values in C , then the right-hand side of (4.6) scans
the values inside a set F . This defines the corresponding differential inclusion, as
follows:

dx

dt
∈ F(t, x). (4.7)

Here, F(t, x) = {z : z = f (t, x, u), u ∈ C(x, t)}. This way, we obtain a differential
inclusion (4.7). More detailed assumptions and a comprehensive survey on differen-
tial inclusions can be found in Aubin and Cellina [1].

4.3 Differential Inclusion Solver

The description of the differential inclusion solver is included in Chap. 3 Here, we
only recall the main features. The basic version of the DI solver is not new. It was
published in Raczynski [23].

In few words, the Di Solver generates a series of DI trajectories that scan the
boundary, and not the interior of the reachable set. Our point is that it is an error to
look for a uniformly distributed cloud of points in the interior of the reachable set.
What we need is the boundary of the set than can be defined by smaller number of
attainable points. One could suppose that to assess the shape of the reachable set, we
can generate a number of trajectories that belong to its interior, and see the boundary
of obtained cloud of points. However, this is not true. Such simple random shooting
gives wrong results, very different from the true shape of the reachable set.

Shortly speaking, the solver algorithm uses some results from the optimal control
theory (Pontryagin [22]). From Pontryagin’s principle of maximum, it is known that
each model trajectory that reaches a point on the boundary of the reachable set at the
final simulation time must entirely belong to the boundary of this set for all earlier
time instants. Moreover, such trajectory must satisfy the Jacobi–Hamilton equations
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(the necessary condition). These equations involve a vector of auxiliary variables
p = (p1, p2, p3, ..., pn).

The algorithm generates a series of boundary-scanning trajectories with randomly
generated initial conditions p(0). These trajectories obey the equations of Hamilton–
Jacobi. After integrating a sufficient number of trajectories, we can see the shape of
the reachable set boundary, see Raczynski [23].

4.4 Example: The Lotka–Volterra Model

Lotka–Volterra (L-V) equations describe the dynamics of prey–predator ecological
systems (Takeuchi [26]). In the simplest case of two species, the prey population (for
example, rabbits) grows due to the birth-and-death process. The growth would be
exponential, but it is a limitation: there is a predator (e.g., wolves) who eat rabbits.
The population of wolves grow when they have food, but if there are few rabbits
available, the wolves die. Denote the rabbit population size as x1 and the wolves as
x2. The classical form of two-species Lotka–Volterra equations is as follows:

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt

= ax1 − bx1x2

dx2
dt

= −cx1 + dx1x2.

(4.8)

In the first equation, the term bx1x2 means that the rate of rabbits caught by wolves
is proportional both to wolves’ number and rabbits’ number. A similar term appears
in the second equation, telling that the growth rate of wolves increases when they
have more food. Coefficient a defines the rabbits natural grows rate, and c defines
the wolves natural death rate. There are many other versions of the equations used
in ecological models, with two or more species in the N-species food chains.

A simple simulation of the above equation is shown in Fig. 4.1.
Now, consider the two-species system with some uncertainty. Namely, suppose

that the growth rate of the rabbits is uncertain, subject to climate changes and other
external factors. For example, suppose that the parameter a may change in time,
within the range of ±25%. Thus, the system equations can be written as follows:

⎧

⎪⎪⎨

⎪⎪⎩

dx1
dt

= a(1 + u)x1 − bx1x2

dx2
dt

= −cx1 + dx1x2,

(4.9)

where u changes between −0.25 and +0.25. This way, we obtain a differential
inclusion, with the right-hand side parametrized by the variable u.
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Fig. 4.1 A simple simulation of the Lotka–Volterra model

Fig. 4.2 The time section of
the reachable set for the L-V
equations. Time = 45

The L-V equations have strong non-linearities (products of two state variables).
Thus, thesolutionrevealsaseriesofnon-sinusoidaloscillations.Themodelparameters
are a = 0.1, b = 0.02, c = 0.3, d = 0.001 and final simulation time equal to 100.

Now, applying the DI solver we obtain the attainable set of the size of the two
species in presence of uncertainty. Figure 4.2 shows the shape of the reachable set
boundary for time = 45. In Fig. 4.3, we can see the 3D image of the set.

In ecology andpopulationgrowthmodels,we almost always haveuncertain factors
that have unknown probability distribution and other probabilistic properties. In these
cases, the differential inclusions may be a useful research tool. Observe that for the
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Fig. 4.3 The shape of the reachable set of the L-V equation. 3D image

Lotka–Volterra model, even with small fluctuations of uncertain parameter, the size
of the reachable set after time approximately equal to the model oscillation period
is quite big. This means that this model is hardly useful for the predictions, even for
small time intervals.

4.5 A Mechanical System

A simple mechanical system is shown in Fig. 4.4. The system equations are as
follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x ′
1 = x3
x ′
2 = x4
x ′
2 = 1

M1
[F − K1(x1 − x2) − B1 f (x3 − x4)]

x ′
4 = 1

M2
[K1(x1 − x2) + B1 f (x3 − x4) − K2x2 − B2 f (x4)] .

(4.10)

Note that the dumpers may be non-linear. F is an external force that belongs
to [−0.5 , 0.5]. The time section of the reachable set for this system is shown in
Fig. 4.5. Here, t ime = 4,m1 = 1,m2 = 2, k1 = 0.3, k2 = 0.1, b1 = 1.5, b2 = 3.0 .
Some points appear to belong to the interior of the set. Those are not the points
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Fig. 4.4 Example of a mechanical model

Fig. 4.5 The shape of a time section of the reachable set of a fourth-order system of Fig. 4.4

obtained by primitive shooting. In fact, all visible points belong to the boundary of
the reachable set.What we see is only a projection of a four-dimensional figure (point
cloud) onto a two-dimensional plane x1, x2 for a given time instant (Fig. 4.6).

The graphical representation of the reachable sets for models of dimensionality
greater than 3 is somewhat difficult. The question is how to display a cloud of
points of n-dimensional space in order to show clearly the shape. If the cloud is
three dimensional, this can be done by displaying a rotating 3D image to produce
an illusion of 3D viewing. Other possible enhancements may be obtained using
techniques known in fuzzy set theory. Figure 4.6 shows the result of calculating
the fuzzy variable representing the level of membership in the region. Points with
membership value greater than 0.5 are shown as gray pixels. If there are not enough
points to analyze, then the holes in the region may appear. Anyway, such images
always depict approximate shapes.
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Fig. 4.6 The shape of the reachable set of Fig. 4.5 enhanced by fuzzy sets technique

4.6 Functional Sensitivity of the V/f Speed Control
of Induction Motor

The angular velocity w of the motor is given by the following equation:

x ′ = T − L

I
, (4.11)

(prime sign stands for time differentiation) where T is the torque (Nm), L is the
mechanical load (Nm), and I is the moment of inertia of the rotor (kg m2). The
formula for T used in this paper is as follows:

T (V, s) = kV 2r
(

z1 + r2
s

)2
sns

, k = fn
2π

, (4.12)

where
T—torque (Nm),
fn—nominal frequency,
V = supply voltage/1.73,
z1—stator impedance,
r2—rotor resistance,
ns—synchronous velocity r/min (supposed equal to 1800 for f = 60 Hz in the

following),
s = (ns-n)/ns (the slip),
n—motor velocity r/min,
P—number of pole pairs (supposed equal to 4 in the following)

.
Unlike the DC motor, the velocity of the induction motor cannot be easily con-

trolled by changing the supply voltage or stator current. The three-phase source
voltage inverters (VSI) must be used. These devices are based on bipolar transistor
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Fig. 4.7 Block diagram of a V/f speed control

(IGBT) semiconductor switches. There are other alternatives to the IGBT: insu-
lated gate-commutated thyristors (IGCTs) and injection-enhanced gate transistors
(IEGTs). Here, we do not discuss the technology of the VSIs. We assume an ideal
VSI that provides the three-phase supply of voltage V and frequency f, receiving a
necessary power supply. For more information about the VSI control consult Mujal-
Rosas and Orrit-Prat [19] or Chen et al. [7].

Changing the frequency, we can change the velocity of the motor. However, such
control with constant voltage makes the stator current grow for low frequencies and
produce saturation of the air gap flux. Therefore, the stator voltage should be reduced
according to the frequency, to maintain the air gap flux constant. The magnitude of
the stator flux is proportional to the ratio of the stator voltage and the frequency.
Hence, if the ratio of voltage to frequency is kept constant, the flux remains constant.
This method is referred to as V/f speed control. Figure 4.7 shows a typical scheme
of a V/f control, with a PI controller.

Here, we have:
ws—the set point (desired velocity, rpm)

e = ws − w (control error) (4.13)

y = K

(

e + z

Ti

)

(4.14)

z(t) =
∫ t

0
e(τ )dτ (4.15)

u =

⎧

⎪⎨

⎪⎩

y i f |y| ≤ ym
−ym i f y < −ym
ym i f y > −ym

(4.16)

v = u + w (4.17)

f = vP

120
(4.18)

V = Vre f
f

60
(4.19)
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dw

dt
= T (V, s) − L

I
, (4.20)

where I is the moment of inertia of the rotor (kgm2) and L is the load (Nm).
Here, we assume Vref = 440/

√
3 = 254.03. The velocitiesws,w,v and u are given

in rpm units, frequency f in Hz. From Eq. (4.15), we obtain

dz

dt
= e(t). (4.21)

Equations (4.20) and (4.21) form the ordinary differential equation model of the
system dynamics, where w and z are the state variables. Block S1 of Fig. 4.7 is a
delimiter. Block S2 also includes the necessary saturation restrictions.

To illustrate the action of the PI controller, let us show a simple simulation of the
control circuit of Fig. 4.7. The model parameters are as follows:

K=0.5,Ti = 2 s, ym = 200, P = 4, Vre f = 254V,L=10.1 Nm, I = 0.08 kgm2.
The simulation starts with motor rotating with 1800 rpm (synchronous speed, set

point), no load. The load is applied at time = 0. First, the velocity decreases because
of the load. The PI controller makes the velocity go back to 1800 rpm. The presence
of the integral part of the controller makes the steady-state velocity equal exactly to
the set point. At time = 50, the set point changes to 1900 rpm. The transient process
can be seen in Fig. 4.8.

It should be noted that in this simulation and in the following sensitivity analysis,
the controller setting is not optimal. We intentionally set the duplication time Ti to
a relatively small value, to make the transient processes oscillatory. The controller
gain is rather small, to avoid saturations and possible instability.

Now, let us see the functional sensitivity of the model. As stated before, the main
topic of this paper is not themodel of the control systemand simple simulations.Here,
we focus at the functional sensitivity. Such analysis can be useful while treating with
robust control design. Unlike the conventional sensitivity, the functional sensitivity
is a dynamic analysis, based on the differential inclusions. Note that the reachable

Fig. 4.8 Simple simulation of the control system of Fig. 4.7
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sets we calculate are not obtained by application of simple disturbances. We use the
DI solver (Sect. 4.3 and Chap. 3), then scan the boundary of the reachable set using
some results of the optimal control theory.

The control system of Fig. 4.7 has two external signals that may be treated as
disturbances: the load L and the set point ws . Of course, any other model parameter
can be changed. If the variables L and ws scan the interior of a given permissible set,
then the right-hand sides of (4.20) and (4.21) scan certain set F ⊂ R2. This is the
right-hand set of the corresponding differential inclusion. The reachable set of this
inclusion defines the functional sensitivity of our model.

Figure 4.9 shows the boundary of the reachable sets with different model param-
eters. These are intersections of the reachable set with the plane time = 20. Contour
A was obtained for L and w fluctuating by ±5% of their nominal value. Model
parameters are as follows:

K = 0.5, Ti = 2 s, ym = 200, P = 4, Vref = 254V, L = 10.1Nm, I = 0.08 kgm2,

setpoint = 1800 rpm.
Contour B was obtained with the fluctuations ±8%. The model is quite sensitive

with respect to the fluctuations of w . If we fix w, supposing the load L fluctuating
by±5%, the reachable set boundary is given by the contour C. This small sensitivity
with respect to L is because of a relatively small value of L, and due to the action of
the controller.

Model parameters for sets of Figs. 4.9 and 4.10 correspond to the stable oper-
ating region. If we change the saturation restriction and make the controller action
stronger, then the model non-linearities reflect in the images, and the sensitivity

Fig. 4.9 System reachable sets for time = 20
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Fig. 4.10 The 3D image of the functional sensitivity set

grows. This may affect the robustness of the system. Figure 4.11 shows the contour
of the reachable set for the following parameters:

K = 1.6, T i = 2 s, ym = 700, P = 4, Vre f = 254V, L = 10.1Nm, I = 0.08 kgm2,

setpoint = 1800 rpm, L and w f luctuation 8%.

The reachable set becomes “irregular,” approaching the break-down torque and
unstable operating region. In such cases, the DI solver algorithm may reveal some
irregularities, caused mainly by the time discretization and imperfections of the
numerical integration algorithm.

4.6.1 Comparison with the Classical Sensitivity Analysis

Let us run the model with another saturation restriction and greater final time, as
follows:

K = 0.5, Ti = 2 s, ym = 700, P = 4, Vref = 254V, L = 10.1Nm, I = 0.08 kgm2,

set point = 1800 rpm, final time = 50.
Figure 4.12 depicts the contour of the final reachable set. Note the set of points

marked with X. The solver displays these points as the boundary points, but, in fact,
they belong to the interior of the reachable set. This is due to the fact that the solver
is based on the concepts of the maximum principle that provides necessary and not
sufficient conditions for optimality. Anyway, each displayed point belongs to the
reachable set.

In Fig. 4.12, we also can see the reachable set obtained by the “Vensim-like”
sensitivity analysis. Analysis of this kind is provided by many System Dynamics
software tool, like Vensim, Powersim, and others. In this type of analysis, a series
of trajectories with randomly changed model parameters (w and L in our case) is
calculated. The parameters are different for each trajectory, but constant along with



120 4 Functional Sensitivity Applications

Fig. 4.11 Strong non-linearities revealed with greater amplitudes of the variations

Fig. 4.12 Reachable set for time = 50 and Vensim-like sensitivity set
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Fig. 4.13 Reachable set projections to (time-w) and (time-z) planes

each trajectory. It can be seen how different sensitivity sets are provided by the
functional sensitivity. Figure 4.13 shows the projections of the true reachable set and
the Vensim analysis into the time-state plane (a “side view”).

4.7 PID Anti-Windup Control

Functional sensitivity can be an important tool in robust control system design. Such
systems should not only be stable and perhaps optimal, but also must work satis-
factory with adverse external disturbances. For more information on robust control
consult, for example, Xu and Lam [27] or Zhou and Doyle [30].

Figure 4.14 shows a closed-loop control system. The controller is of the
proportional–derivative–integral action, and the process is of second order, oscil-
latory. The set point is denoted as p, e is the control error, z is a disturbance, q
and x are the process input and output, respectively. The control error e = p − x .
Two versions of the controller are used: the classic PID and the anti-windup version.
At the controller output, there is an actuator that may saturate when its limit L is
reached. The classic PID is described by the following equation (in terms of the
Laplace transform).

y(s) = KRe(s)

(

1 + Tds + 1

Ti s

)

, (4.22)
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Fig. 4.14 PID control circuit with disturbance

where KR is the controller gain, Ti is the integrator parameter (duplication time), and
Td is the derivative action parameter. To avoid differentiation of the set-point signal
that may have discontinuities, we use the controller where the set point is not applied
to the differentiator (a special case of the “set-point weighing”).

y(t) = KR

(

e(t) − Td
dx

dt
x + 1

Ti

∫ t

0
e(τ )dτ

)

, (4.23)

where the error e = p − x is replaced by − dx
dt . The controlled process is described

by the following equation:

a
d2x

dt2
+ b

dx

dt
+ x(t) = KRq. (4.24)

Further analysis of the system requires the canonical (vectorial) form of themodel
equations. To obtain this for equations, first let us denote

g(t) = 1

Ti

∫ t

0
e(τ )dτ . (4.25)

Now, we define the state vector (x1, x2, x3), so that

x1 = x, x2 = dx

dt
, x3 = g. (4.26)

From (4.23), (4.24), and (4.25), we obtain

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= x2

dx2
dt

= (Kp(y + z) − bx2 − x1)/a

dx3
dt

= v

Ti
(p − x1)

dx4
dt

= dg

dt
= KR(e − Tdx2 + x3).

(4.27)
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The variable v is added to simulate the anti-windup PID controller. This PID
version is implemented to avoid the windup effect, when the value of the integration
action may become very large. This occurs when the control error is positive or
negative during long time interval. In practical applications, due to the windup, the
actuator limit may be reached and the control signal y becomes constant.

There are several analog versions of the anti-windup controller (consult Astrom
and Hagglund [3]). However, in newer PID implementation, the anti-windup is done
by software. It turns off the integration actionwhen the saturation occurs. The variable
v is defined as follows:

v(e, y, L) =
{

0 if |y| ≥ L

1 if |y| < L or (y ≥ L and e < 0) or (y ≤ −L and e > 0),
(4.28)

where L is the saturation level. Variable v shuts down the integrator action when
the saturation level is reached and turns it ON when the integrated value is equal or
greater than L , and e is negative, or when the integrated value is equal or lower than
−L and e is positive.

As stated before, the functional sensitivity is given by the reachable set of the
model.

Consider the model (4.27) and (4.28).
The parameters are as follows:
a = 2, b = 1 (process parameters),
p = 1 (the set point),
KR = 2.5 (controller gain),
Ti = 2 (duplication time),
Td = 0.2 (derivative time),
L = 1.6 (actuator saturation level).
The above PID settings are not optimal. They were defined this way, to exaggerate

some imperfections in the transient process. Anyway, a robust control system should
work not only with optimal parameters.

Suppose that both the values of the disturbance z and the process gain KR are
uncertain and may fluctuate by ±20% around their original values. The system
response reaches a steady state after about 30 time units. However, we are interested
rather in system behavior during the transient process, so we will investigate the
functional sensitivity at shorter time, t = 8. Figure 4.15 shows the reachable set of
the process response to unit step input, process only, open loop. In Fig. 4.16, we can
see some, randomly selected (but not random), trajectories that scan the boundary of
the reachable set for process only.

Now, let the same parameter fluctuations be applied in the closed-loop control
circuit. First, we simulate the system without actuator saturation. The closed-loop
model is of order three. Thus, the reachable set boundary at a given final time instant is
not just a contour, but a three-dimensional cloud of points. The points are located on a
three-dimensional surface, like a surface of a balloon. Consequently, we cannot get a
two-dimensional contour. We can only see projections of the reachable set boundary
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Fig. 4.15 Open-loop reachable set for the process only. 3D image generated by the DI solver

Fig. 4.16 Some boundary-scanning trajectories, process in open loop
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into a two-dimensional plane. The DI solver generates a lot of such projections. Let
us show only some examples, namely, the projections into the plane x1 − x3 and
time − x1.

Figure 4.17 shows the projection of the reachable set at t = 8 into the plane
x1 − x3.

Figure 4.18 depicts the “side view” of the same reachable set, projected into
the t ime − x1 plane. Now, consider the anti-windup controller with actuator with
saturation level equal to 1.6. Figure 4.20 shows, like Fig. 4.17, the projection of the
boundary points at the x1 − x3 plane. Part B shows also the points obtained by the
classical risk analysis, with the same range of parameter changes. It can be observed
the difference in the shape of the reachable set. Note the difference between the
maximal value of x1 (overshoot) in Figs. 4.17 and 4.19, equal to 1.59 and 1.31,

Fig. 4.17 Functional sensitivity of closed-loop circuit. Reachable set at t = 8, no saturation

Fig. 4.18 Projection of the reachable set into the time − x1 plane
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Fig. 4.19 Functional sensitivity of closed-loop circuit. Reachable set at t = 8, anti-windup con-
troller, saturation level 1.6

Fig. 4.20 Projection of the reachable set into the time − x1 plane. Anti-windup controller, satura-
tion level equal to 1.6

respectively. As can be seen in Fig. 4.18, the functional sensitivity coincides with
the classical analysis for the initial interval (0–2 time units), but after this interval
the results are very different. The functional sensitivity set is several times greater
than that provided by the classical method. In general, this occurs when the model
contains oscillatory components (Fig. 4.19).

The functional sensitivity analysis can provide important information to be used
in robust control design. It can be seen that the functional sensitivity sets are larger
than those provided by the classic sensitivity analysis.
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4.8 Vehicle Horizontal Movement

Asmentioned before, the topic of this chapter is not the model design and validation,
but the functional sensitivity and reachable sets of some known models. The model
used below is used to show the functional sensitivity of the car horizontal movement
(Fig. 4.21). The results may help to design a robust control system for autonomous
car control system.

In Zhang [29], we can find the phase plane and stability analysis of the model.
Pepy et al. [21] use this model to vehicle path planning. Here, we use the model with
two degree of freedom, supposing the longitudinal car velocity to be constant.

Let us denote
m—vehicle mass,
vy—lateral velocity,
�—vehicle path angle (in absolute coordinates),
r—yaw velocity dψ/dt ,
δ—front wheel angle,
Fs f—front wheel lateral force,
Fsr—rear wheel lateral force,
L f—distance between front axle and center,
Lr—distance between rear axle and center,
I—vehicle yaw moment of inertia,
Radians and SI unit system are used.
The model equations, due to Zhang [29], are as follows:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dvy
dt

= Fs f cos δ + Fsr

m

dr

dt
= Fs f L f cos δ + Fsr

I
.

(4.29)

Fig. 4.21 Car horizontal
movement
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The wheel lateral forces depend on the following angles:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α f = δ − arctan

(
vy + r L f

vx

)

αr = −arctan

(
vy − r Lr

vy

)

.

(4.30)

The formula for the lateral forces is strongly non-linear

F = D sin (C arctan(Bα − E(Bα − arctanBα))) , (4.31)

where F, D, B,C , and α have suffix s f or r f for front and rear wheel, respectively.
The values of model parameters used in the simulations are as follows:
m = 1640 kg, vx = 20 m/s, I = 2900 kgm2, L f = 1.1 m and Lr = 1.4 m.
The parameters of the lateral force formula are
B f = 11.27, C f = 1.56, D f = 2575, E f = −1.999
Br = 19.53, Cr = 1.56, Dr = 1750, Er = −1.79.
The simulations and phase portraits of model (4.29) are given in Zhang [29]. Here,

we will calculate the functional sensitivity of the model determining the correspond-
ing reachable sets. Recall that in this kind of analysis we assume that some model
parameters have uncertain values that may change in time. The parameters that are
subject to such changes are mainly those related to the wheel lateral forces.While the
vehicle mass and moment of inertia can hardly change in time, the lateral forces do.
This may occur due to the irregularities of the road, obstacles, and variable friction
coefficients.

Thus, let us suppose that the lateral forces Fs f and Fsr have uncertain values and
may change in time by ±10% of the value calculated by Formula (4.31). We will
analyze the model for different steering angles. Suppose that the steering angle δ is
equal to 0.04 radians (2.29 degree), and the model final time is equal to 1.5 s.

Figure 4.22 shows the 3d image of the reachable set viewed from two different
angles. The image of the reachable set with the same parameters and δ equal to 0.25
radians is shown in Fig. 4.23. The range for variable vy is (−5.09 , −0.57) and for
r (yaw velocity) is (0.10, 0.52). Note that those are the model variables in the car
frame, not the absolute velocities or positions.

In Fig. 4.23, we can see the reachable set for δ equal to 0.25. The range for variable
vy is (-4.35 , -0.27) and for r (yaw velocity) is (-0.009, 0.37). The shape changes
according to the model non-linearities.

Figure 4.24 depicts the time section of the reachable set of Fig. 4.23, for time equal
to 1.5 s. The results of the conventional risk analysis are shown as the black cloud of
points. In this case, the extremal values provided by the functional sensitivity and by
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Fig. 4.22 3D image of the reachable of model (4.29). Two different view angles

Fig. 4.23 The reachable set of model (4.29) with δ equal to 0.25

the Vensim-like analysis are similar. This occurs when the model is more dissipative
or well dumped. As can be seen from the previous models, in case of oscillatory
system, the discrepancy between the sensitivity RS and the conventional analysis
may be rather great. Anyway, the set provided by the conventional analysis (4.24) is
significantly smaller than the true reachable set.
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Fig. 4.24 Model reachable
set compared to the set
obtained by conventional
risk analysis

4.9 Marketing Sensibility and Reachable Sets

A dynamic market model is used, with uncertain parameters. We look for reachable
regions in the model state space for possible strategies in the investment. The control
parameter is the share of investment, being a part of the revenue. This share, as well
as the uncertainty in model parameters, is treated using the differential inclusions.
The reachable sets are obtained, using the differential inclusion solver (Sect. 4.3).
Other result is the optimal control strategy.

The same market model is used as the object of optimization where Pontrya-
gin’s maximum principle [22] is used directly to obtain some more detailed optimal
marketing policies.

The market model itself is not the main topic of this chapter. Though the optimal
strategy of the market with respect to the investment is calculated, this is not the
main topic, either. The work is focused on the treatment of uncertainty by means of
the reachable sets, rather than stochastic modeling. The model we are using (at least
the model of the demand) is taken from the literature, with some dynamic properties
added.

A lot of demand models may be used for similar purpose. A comprehensive
overview can be found in Lilien and Kotler [15] (linear, non-linear, deterministic,
stochastic, static, dynamic, etc.). What we need is a model that can be adopted into
dynamic market simulation. The demand model we choose is taken from that book.
The dynamics is added to simulate the inertia of total accumulated revenue, and the
market growth due to the investment. The growth is charged with certain inertia,
which implies additional differential equations (see the next section for details).

The search for market models for simulation purpose dates from early 1960s, and
significant publications began to appear in late 60s. King [14] gives a comparison of
iconic, analog, and symbolicmodels. Recall that an iconicmodel represents reality on
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a smaller scale, an analogmodel shows reality bymeans of maps and diagrams, and a
symbolic model uses mathematical expressions to portray reality. Montgomery et al.
[16] discuss the descriptive, predictive, and normative models, where by descriptive
we mean models that consist largely of diagrams and maps or charts designed to
describe a real-world system. Predictivemodel is used in predictive analytics to create
a statistical model of future behavior, and normative model evaluates alternative
solutions to answer the question, “What is going on?” and suggests what ought to
be done or how things should work according to an assumption of standard.

Optimal control in marketing is not a new topic. There are many publications
in the field like, for example, Bertsimas and Lo [4]. In that article we can find the
application of the Bellman’s dynamic programming approach to the problem of the
price impact on the dynamic trading on the stock exchange. A tutorial and survey
on the relevant technical literature on models of economic growth can be found
in Burmeister [5]. Feichtinger et al. [10] consider a similar problem for a general
market and optimal advertising policy. In that article a detailed formulation of an
implementation of the Pontryagin’sMaximumPrinciple is shown. Yuanguo Zhu [28]
uses the Bellman’s Principle of Optimality, and derive the principle of optimality for
fuzzy optimal control. This is applied to a portfolio selectionmodel. As stated earlier,
the optimization is not our main subject. However, the presented method can also be
used to obtain optimal investment strategy. Anyway, to determine reachable sets we
use methods of the optimal control theory.

4.9.1 The Model

The demand model we use is a non-linear model of the demand and revenue which
parameters are: price, advertising, seasonal index, market overall growth, consumer
income, production or acquisition cost and the market elasticities with respect to the
price, advertising and consumer income (Lilien and Kotler [15]). The demand model
is as follows.

q(p, a, y, v, g, t) = q0v(t)s(t)

(
p(t)

p(0)

)ep (
a(t)

a(0)v(t)s(t)

)ea (
y(t)

y(0)

)ey

, (4.32)

where q—demand, q0—initial or reference demand,
t—the time,
s(t)—overall market size,
p(t)—price,
a(t)—advertising per time unit,
y(t)—consumer income,
v(t)—seasonal index,
ep, ea, ey—market elasticity with respect to price, advertising, and consumer

income, respectively.
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In the model of Lilien and Kotler, the market size s(t) is supposed to be equal
to (1 + g)t , where g is the market growth rate. We use the variable s instead, to be
able to link the market growth to the investment that the company may do in order
to expand the market (new installations, infrastructure, etc.).

Normally, the price elasticity is negative (price increase means less demand), and
the elasticity for advertising and consumer income are positive. Note that the term
v(t)s(t)multiplies the demand, and appears also in the denominator of the advertising
impact term. This means that if the market and the seasonal index grow, then wemust
spendmore on advertising to achieve the same effect. We do not consider any storage
or warehouse mechanism, so it is supposed that the sales are equal to the demand.
The revenue can be calculated as follows:

U = (I − b)e − a, where e = (p − c)q, (4.33)

where U is the net revenue, c is the unit cost of the product (production, acquisition
cost), a is the advertising, b is the investment factor, p is the price to the public,
and Q is given by formula (4.32). The investment b determines what part of the
utility e is being invested in the market growth, 0 ≤ b ≤ 1. The market growth rate is
proportional to the product be. It will be one of our control variables. In our equations,
the market size is relative with initial condition equal to 1. If the company does not
invest in the market (b = 0), then the market size has no influence on the model
trajectory (remains constant). The final total revenue is the sum (integral) of U over
the time interval under consideration.

Figure 4.25 shows the shape of the profit (utility) e as a function of the price and
advertising, when the time and other variables are fixed.

It can be seen that the utility function has a maximum that determines the optimal
price and advertising at the moment. This is a static case. Now, consider a fixed time
interval [0,T ]. To calculate the total revenue, we must integrate (4.33) over the time.
The variable b controls the investment, 0 < b < 1. The market size growth due to
the investment. Tomake the model more realistic, we suppose that the market growth
rate follows the investment with certain inertia. The basic equations are as follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr

dt
= (1 − b)v/v0 accumulated revenue growth, relative

v = (p − c)q(z, w, y, v, s, t) − a0, —initial value
ds

dt
= (x − s)/Tc , market size growth, relative

dx

dt
= gbv

v0
, accumulated investment, relative

(4.34)

In the above equations, r is the relative accumulated net revenue, s is the relative
market size, and x is an auxiliary variable. Tc is the time constant of themarket growth
inertia and g is a constant that defines the impact of the investment on the market
expansion. Namely, g tells what is the relative market growth per one currency unit
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Fig. 4.25 The revenue as function of the price and advertising. Static case, b = 0

invested. All other variables may change in time. Observe that the additional state
variable x has been introduced to manage the inertia.

Note that our model (4.34) has the form of a control system and defines the
corresponding DI. In the investment strategy problem, the control variable is b(t),
the share of investment we apply out of the total revenue (experiment 1, below).
The uncertainty of the other model variables can be treated in a similar way, letting
the variable change within a given interval. Below are presented the results of such
analysis for the uncertainty in the values of ep—market elasticity with respect to the
price.

The images of the sensitivity reachable sets shown in the following experiments
have been generated by the differential inclusion solver, described in Sect. 4.3 and
Chap. 3.

The final accumulated revenue and themarket size strongly depend on the changes
of the investment control variable b. So, it is important to be able to see the limits of
the revenue and the market size when b changes due to the investment strategy. Note
that if b = 1 all the time (maximal investment), then we have no revenue available,
and if b = 0 then the market does not grow, which also reduces the available profit.

The aim of the present work is to calculate the reachable sets for all possible
investment strategies, as well as to assess the impact of the uncertainty of important
market variables.

This should be emphasized that our approach to uncertainty has nothing to dowith
randomness or stochastic models. If a value of a parameter is uncertain, this means
that it can take values from some interval, but this does not mean that it is a random
variable. Such a parameter does not have any probability distribution. The changes
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in its value can be caused by any internal or external agents. For example, in the
stock market, the information about the actual share price can be obtained by means
of observations and predictions, but it also can be a false information introduced
intentionally. To obtain the reachable sets, we use the differential inclusion solver
(see Raczynski [23]).

4.9.2 Experiment 1

Now, our aim is to obtain the reachable set in the revenue/market size plane for all
possible strategies of investment, with final time fixed. As an additional result, the
DI solver provides the control function (investment as a function of time) for any
point on the boundary of the reachable set. So, we can obtain the optimal strategy
that maximizes the total revenue or the final market size. The model is given by Eq.
(4.34), where b is the control variable that can change within 0 and 1. The model
parameters are as follows:

Initial sales = 70000,
Initial (reference) advertisement = 10000 per time unit (a day),
Product unitary cost = 0.8,
Initial relative market size = 1,
Unit price = 1,
Unit initial relative price = 1.2,
Time constant for investment inertia Tc = 30 days,
g = 0.006,
Market elasticity for the product price = −2,
Market elasticity for advertisement impact = 0.6,
Final simulation time = 365 days.
Note that the initial relative price is set equal to 1.2 and not 1. This is to make the

demand change when the price elasticity changes. In this experiment, both seasonal
index and the consumer income are functions of time. The relative consumer income
is equal to 1 except the interval (200, 214) where it is equal to 2.5. The seasonal
index is equal to 3 within the interval (100, 128), equal to 0.5 in (160, 167) and equal
to 1 elsewhere.

Figure 4.26 shows the image of the reachable set for the revenue and market size
at the simulation final time, with the investment control b included in [0, 1]. It should
be noted that in our case the dimensionality of the state space is equal to 3. So, to
show the complete reachable set we should display it in the four-dimensional time-
state space, which is quite difficult. If we limit the displayed state-space components
to market size revenue, then the reachable set boundary is not always seen just one
contour, because for each time instant the two-dimensional image is a projection of a
three-dimensional reachable region. Fortunately, in this case, the boundary is clearly
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Fig. 4.26 Reachable set for experiment 1

seen, perhaps because the control vector dimensionality is equal to 1. On the same
figure, we also can see a set of reachable points obtained by simple random shooting
(10000 trajectories integrated). It is clear that the simple shooting provides a wrong
assessment of the reachable set. Figure 4.27 depicts the 3D image of the reachable
set in the time-state space.

This and other simulations show that both the net revenue and the market size
may reach greater values than that obtained with fixed elasticity ep.

4.9.3 Experiment 2

Now, suppose that the value of the market elasticity with respect to the price ep is
uncertain and may change up to plus minus 20% of its original value. Using model
parameters as in experiment 1, with variable investment control in [0,1] and uncertain
(variable) ep, we obtain a larger reachable set. In this case, the set ismore complicated
(2D projection of a 3D region). This results in a cloud of reachable points and not
in a simple contour. A post-processing of this cloud provides an assessment of the
reachable set, shown as the gray region on Fig. 4.28. To compare with experiment 1,
the boundary points of the previous reachable set are also shown on the same figure.



136 4 Functional Sensitivity Applications

Fig. 4.27 Experiment 1. 3D image of the reachable set

Both the net revenue and the market size may reach greater values than that obtained
with fixed elasticity ep.

Calculating reachable sets is something more than obtaining the optimal control.
Though we can get the optimal control strategy as an additional result, the possibility
of viewing the shape of reachable sets provides much more information about the
model behavior. The same simulation program can be used for many more experi-
ments, looking for reachable sets with variable advertising and uncertainty of any
one of themodel parameters. Addingmore inertia to themodel will result with higher
state vector dimensionality and more complicated images of the reachable sets. For
such sets, the problem is not only the set determination, but also the way to display
it. As the computer screen is (still) two dimensional, the good effects can be obtained
while displaying the cloud of points in movement, rotating around one of the state-
space axes. Unfortunately, such moving displays can hardly be shown as figures of
a printed version.
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Fig. 4.28 Reachable set with variable investment and uncertain price elasticity

4.10 Conclusion

The functional sensitivity is closely related to the differential inclusions. Here, we
use the non-local functional sensitivity that is defined as the reachable set of the
model with uncertain parameters. This approach is deterministic. We do not treat
the disturbances as random variables. Such deterministic approach seems to be
more useful in problems of robust control, when we are interested in “worst-case”
behavior, rather than in probabilistic model properties. The differential inclusion
solver works satisfactory for the presented models. The classical risk analysis
may, in some cases, coincide with the functional sensitivity. However, if the model
includes oscillatory components, the results are very different, and the functional
sensitivity sets may be several times greater than obtained by classical methods.
The very essential concept of the DI solver is that it explores the boundary of
the reachable set and not its interior. Though some mechanisms of Pontryagin’s
maximum principle are used, we do not solve any two-point boundary problem. This
makes the solver fast. To estimate the shape of a reachable set for a second-order
model, we need between 30 s and 2 min. If the non-linearities are strong, the time
may be greater. The calculation time grows significantly for higher order models. A
non-linear model of order six needs more than half hour of computing time. Some
imperfections of the obtained images may appear when the reachable set is com-
plicated and folds several times. This is normal; recall that the maximum principle
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provides necessary and not sufficient conditions for optimal control. Another cause
of imperfections may be the model non-linearity. The Jacobi–Hamilton equations
require the model functions to be twice continuously differentiable, which is not
always the case. However, in such cases, the solver keeps working. Anyway, all
the points provided by the solver belong to the reachable set, so we always obtain
the estimation “from below.” Further research should be done to accelerate the
algorithm and improve the graphical display of results for multi-dimensional models.

4.11 Questions and Answers

Question 3.1 What is the difference between the functional sensitivity of models
and the conventional sensitivity definition?

Question 3.2 What is the difference between the local and non-local functional
sensitivity?

Question 3.3 When the functional sensitivity analysis coincides with the conven-
tional, Vensim-like sensitivity, and when it does not?

Answers

Answer 3.1 The functional sensitivity provides the reachable sets or the model tra-
jectory related to parameters or disturbances that fluctuate in time. It is defined in
terms of the variational calculus.

Answer 3.2 The local and functional sensitivity is defined in terms of the vari-
ational calculus. The non-local functional sensitivity provides reachable sets that
correspond to the not necessarily small fluctuations of the uncertain parameters or
external perturbations.

Answer 3.3 The functional and conventional sensitivity may provide similar results
for models with highly dissipative or dumped elements. However, when the model
includes the oscillatory components, the results may be quite different. Also, for the
oscillatory models, the two methods may coincide for short time intervals, less than
the oscillation period.
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Chapter 5
Attainable Sets in Flight Control

5.1 Introduction

In this chapter, we present an example of application of the differential inclusion
solver. The main topic is the generation of the reachable sets and not the model
itself.

An important problem in aircraft control is the resolution of conflict situations.
What we need is the shape of the set of possible aircraft positions after a maneuver. In
other words, the information that the probability of an accident was equal to 0.0001
is not very relevant to a victim of an accident. He/she rather wants to know if the
accident or collision is possible or not. This information may be important in many
other situations. For example, the classical missile-plane (pursuit-evasion) game
cannot be won by the missile if the reachable sets of the plane and of the missile
positions do not intersect. This information may also be used while considering
differential games.

Weuse the differential inclusionmodel (seeChap. 3) as the tool for flight attainable
sets calculations. This problem is important for flight safety issues. As for the pursuit-
evasion games, a similar approach can also be found in works on the game theory.
Grigorieva and Ushakov [5] consider the differential game of pursuit-evasion over
a fixed time segment. The attainable set is appointed with the help of the stable
absorption operator. A more general, variational approach to differential games can
be found in Berkovitz [1]. The DIs are used by Solan and Wieille [13] to study the
equilibrium payoffs in quitting games. For general problems of the Game Theory,
consult, for example, Petrosjan and Zenkevich [9], Isaacs [7], or Fudenberg and
Tirole [4].

The applications of the DIs in flight control problems are not new. There are pub-
lications on this topic, mainly using the DIs as a part of optimal control algorithm.
Though the solver requires multiple solutions of the system state equations and of
the conjugated vector trajectory, it is not the same as to solve a series of dynamic
optimization tasks. The examples of applications of the DIs in optimal control can
be found mainly in the Journal of Guidance, Control, and Dynamics. For example,
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Seywald [12] describes an optimization algorithm based on the DIs. The similar
problem for desensitized optimal control is described in another paper of Seywald
[11]. An extensive and detailed report on an application of the DIs in flight control
is given by Dutton [2]. In that paper, the problem of the existence of the return-to-
launch-site trajectory for a space vehicle is considered. This is an important topic
in the abort mission scenarios, related to the reachable set determination. However,
finally, it is converted to an optimal control problem and the return trajectory cal-
culation, namely, the feasible aborts along the ascent trajectory. Other applications
of the DIs to optimal control can be found in Mordukhovich [8] Raivio [10], and
Fahroo and Ross [3]. However, these problems are quite different from the applica-
tion described here. What we are looking for is the shape of the whole reachable set
and not a particular optimal trajectory. Thus, we need a DI solver as described in
Chap. 3, rather than an optimization algorithm.

5.2 Control and Reachable Sets

5.2.1 Airplane Dynamics

The model we use is given by the following set of five differential equations that
describe a flight dynamics (see Figs. 5.1 and 5.2). This is a simplified flight dynamics.
It is supposed that the aircraft is in the in-route flight. The influence of the wind is
neglected. The angle of attack and the flight path angles are assumed to be small. The
thrust and drag are supposed to be aligned. The initial value of the inertial heading
is set equal to 90◦. The fuel consumption is neglected during the maneuver and the
air density is supposed to be constant. Consult Hull [6].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv

dt
= T − D

m
− gγ

dh

dt
= vγ

dψ

dt
= Lsin(ϕ)

mv

dx

dt
= v sin(ψ)

dy

dt
= v cos(ψ)

L cos(ϕ) = mg,

(5.1)

where
T—thrust,
D—drag,
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Fig. 5.1 Aircraft side view

Fig. 5.2 Aircraft front view

L—lift,
ϕ—aerodynamic bank angle,
γ—flight path angle,
ψ—inertial heading,
x, y—horizontal position (x-forward),
h—vertical position.
The definition and overview of differential inclusions can be found in Chap. 3.

In this chapter, we use the flight controls to generate the corresponding differential
inclusion. Then, the inclusion is solved using the differential inclusion solver (see
Chap. 3, Sect. 3.6). This provides the attainable sets for the aircraft maneuvers.

Variables T , γ, and ϕ are not exactly defined, only the restrictions for these
variables are given. Thus, when T , γ, and ϕ scan their limits, the right-hand side of
(5.1) scans a set in thefive-dimensional state space. In thisway,weobtain a set F(x, t)
(the right-hand side) of the corresponding differential inclusion. The solution to this
inclusion (the reachable set) shows the possible range of the flight state variables.

The drag D is calculated as follows. First, the coefficient CL is calculated from
the equation

L = 0.5 ρv2SCL , (5.2)
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where
ρ—air density,
S—gross wing area,
L—lift, calculated according to (5.1).
Then, the drag coefficientCD is calculated from the formulaCD = X0 + CDTC2

r ,
where C0 and CDT are known from the aircraft data. Finally, the drag is calculated
as follows:

D = 0.5 ρv2SCP . (5.3)

5.2.2 Attainable Sets

In the experiments shown here, the following parameter values have been assumed:
m = 200, 000kg,
C0 = 0.018, CDT = 0.0342,
S = 353m2,
T = 1, 200, 000N,
ρ = 0.5kg/m2,
γ ∈ [−18◦,+18◦],
ϕ ∈ [−21◦,+21◦],
v(0) = 200m/s,
h(0) = 0 (relative height),
ψ = 90◦,
x(0) = 0 y(0) = 0.
In the following figures, the state variables are as follows:
x1 = v, x2 = h, x3 = ψ, x4 = x, x5 = y,
Figure 5.3 shows the reachable set (RS) for the flight trajectories, coordinates

y and h. These are the trajectory end points reached after 15 s of flight. Each dot
represents a position that belongs to the boundary of the reachable set. Some points
seem to be inside the RS, but this is not true. Note that what we see on a 2D image
is only a projection of a five-dimensional cloud of points. Observe the small cluster
of points (small dots) in the center of the figure. This set is the result of simple
random shooting, where the control variables (γ,ϕ) are generated as random ones,
within the same limits. The cluster contains 10,000 trajectory end points, while the
RS obtained with the DI Solver consists of only 5000 trajectories. We can appreciate
how inefficient is the simple (primitive) random search.

In Fig. 5.4, there is a 3D image of the same RS, shown as a cloud of points, in
two different view angles. On the right image, bold lines have been manually added
to make the shape of the cloud much visible.

If we increase the limits for the control variables and the final flight time, then the
RS becomes much deformed due to the non-linearity of the model. In Fig. 5.5, you
can see the image similar to that of Fig. 5.3, with the final flight time equal to 30 s.
In the static image, the 3D shape may not be very clear. The DI solver displays these
images rotating around selected axes, so the 3D shape is better seen.
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Fig. 5.3 The reachable set for time = 15, coordinates y and h

Fig. 5.4 3D images of the reachable set

The system trajectories are being stored in a file, together with the respective
controls. Thus, selecting any point from the RS image we can see not only the model
trajectory, but also the corresponding strategies (controls). Figure 5.6 shows a 3D
view of the reachable set with model parameters as for Fig. 5.5.
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Fig. 5.5 The reachable set after 30 s of flight increased limits for the flight path angle

Fig. 5.6 3D view of the reachable set with model parameters as for Fig. 5.5
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5.3 Conclusion

In the flight control, the knowledge about the reachable set may be crucial for safety
problems. Parameter uncertainty analysis is a necessary task in robust control design.
The DI solver, implemented on new parallel processing hardware, could be used in
such practical applications.

The DI solver works satisfactory for the above and similar problems. For the
models of dimensionality greater than two, some difficulties may arise with the
results display. The solver produces a cloud of points that belong to the boundary
of the reachable set. However, what we can see on the screen are only the two-
dimensional projections of the cloud. A virtual reality technique and the animation
may help in RS visualization.

5.4 Questions and Answers

Question 5.1What kind of flight dynamics model is used in this chapter?
a. Linear multivariable differential equations,
b: A set of non-linear ordinary differential equations,
c: The fluid dynamics partial differential equation for the air flow around the craft,
d: A system dynamics (SD) model given in form of SD block diagram scheme.

Question 5.2
Why do we use differential inclusions in this research?

Question 5.3
What do we assume about the aircraft movement and the main model variables?

Question 5.4
With respect to which control variables the reachable set is calculated in this chapter?

Question 5.5
Why the images of the reachable sets show areas like clouds of points, instead of
contours that indicate the set boundary?

Question 5.6
To obtain the reachable set, are the fluctuations of control variables γ andϕ generated
randomly?
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Answers

Answer 5.1
b: A set of non-linear ordinary differential equations.

Answer 5.2
The main topic of this chapter is the attainable sets for flight trajectories. The differ-
ential inclusion is used to calculate the attainable sets, using the differential inclusion
solver.

Answer 5.3
It is supposed that the aircraft is on the in-route flight. The influence of the wind is
neglected. The angle of attack and the flight path angles are assumed to be small. The
thrust and drag are supposed to be aligned. The initial value of the inertial heading
is set equal to 90◦. The fuel consumption is neglected during the maneuver and the
air density is supposed to be constant.

Answer 5.4
The control variables are aerodynamic bank angle and flight path angle.

Answer 5.5
What we see are the end points of the trajectories that are located at the boundary of
the reachable sets. We do not see contours because what is displayed are projections
of a five-dimensional cloud of the boundary points (like a five-dimensional “balloon
surface”) into a two-dimensional plane.

Answer 5.6
No, the controls are not generated as random variables. The generation of these
functions is controlled by the differential inclusion solver in such a way that the
trajectories scan only the boundary of the reachable set, and not its interior. Consult
Sect. 3.6 of Chap. 3.
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Chapter 6
Modeling, Simulation, and Optimization

6.1 Introduction

This chapter is dedicated to optimal control. This topic is included in the book
because the methods of optimal control theory are closely related to the differential
inclusions, in particular, to the problem of finding the reachable sets. An application
in marketing is presented.

Dynamicmarket optimizationwith respect to price, advertisement, and investment
is considered. The model is non-linear. Its main parameters are the elasticities with
respect to price, advertisement, and consumer income. Dynamic elements have been
added to the static model. The parameters like seasonal index and consumer income
are functions of time, and the whole market grows due to the investment. The tools
of the optimal control theory are applied to calculate optimal policy for product
price, advertisement, and investment, controlled simultaneously. The total revenue
is maximized.

Here, we will discuss some practical aspects of the maximum principle of Pon-
tryagin [19] and give an example of, perhaps not so typical, application in marketing.

Recall the statement of the basic optimal control problem. Consider a control
system described by the following (vectorial) equations:

dx

dt
= f (x(t), u(t), t), (6.1)

where x ∈ Rn, u ∈ C(x(t), t) ∀ t ∈ [0, T ], T > 0. Denote x0 = x(0).
Suppose that f satisfies the Lipschitz condition and has continuous partial deriva-

tives with respect to the state vector x = (x1, x2, x3, ..., xn) and to the control vector
u = (u1, u2, u3, ..., um).C(x, t) is the set of control restrictions, t represents the
time, and T is the final time of the control process. With such assumptions, for any
function u(t) ∈ C(x(t), t) there exists a function x that satisfies (6.1), called admis-
sible trajectory. The problem is to find a control function u(t) ∈ C(x, t)∀ t ∈ [0, T ]
that minimizes the cost functional
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J = ψ(x(T )) +
∫ T

0
φ(x(t), u(t), t)dt, (6.2)

where φ is a continuous function with continuous derivatives with respect to u and
x . In the case considered in this chapter, the component ψ is not needed (ψ ≡ 0). In
a more general case, the derivative of x may also appear as an argument of F . The
control u is restricted as follows:

u(t) ∈ C(x(t), t)∀ t ∈ [0, T ]. (6.3)

Here, we restrict the problem to the case without equality constraints. The conju-
gated vector p = (p1, p2, ...., pn) is introduced. By definition, it obeys the following
equation:

dpi
dt

= −
n∑
j=0

∂ f j
∂xi

pi − ∂φ(x(t), t)

∂xi
. (6.4)

The Hamiltonian function for this problem is defined in the following form:

H ≡ pT f (x, u, t) + φ(x, u, t), (6.5)

where pT is the transpose of p. In the classical definition of the maximum principle,
the problem is to minimize the optimization criterion. According to Pontryagin’s
maximum principle [19], the optimal control which minimizes the cost functional J
over the time interval [0, T ] must maximize H for almost all t ∈ [0, T ]. Thus, the
problem of minimizing the object function can be replaced by the problem of finding
the maximum of H with respect to u, with the restriction u ∈ C(t), for almost all
t ∈ [0, T ]. The maximum principle gives the necessary condition of optimality.

The last problem of maximization of the Hamiltonian is easier than the original
one. Let us give a heuristic, rather intuitive explanation. Let us discretize the problem
in time, considering k discrete time steps. Let the number of numerical integration
steps over the interval [0,T ] is equal to k = 1000, and the control variable dimen-
sionality m = 3. Then, the original problem is to minimize J , which is a function of
k × m = 3000 variables. Using the maximum principle, we decompose the original
task into k separate tasks of maximization a function (Hamiltonian) of only three
variables. Thus, we repeat a simple optimization procedure k times, but never solve
any optimization problem with 3000 variables.

In some cases, the optimal control can be found analytically. If this is impossible,
iterative algorithms may be used, as described later on. Let us see a simple example
of analytic solution to an optimal control problem (Fig. 6.1).
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Fig. 6.1 Landing on the moon

6.2 Landing on the Moon

Suppose that the landing module is suspended over the moon surface, h = 500, with
no movement. It has two rocket engines which can provide a thrust P accelerating
downward or upward. The total thrust P is limited: −Pm ≤ P ≤ Pm .

The problem is to land on the surface in minimal time. To avoid a crash, the final
velocity must be equal to zero. The fuel consumption is also taken into account in
the optimality criteria. Only vertical movement is considered.

During landing, the module position h obeys the following equation:

d2h

dt2
= P(t)

M
− g. (6.6)

Positive velocity is oriented upward. M is the mass of the module (supposed to be
constant) and g is the moon gravity acceleration equal to 1.625m/sec2.We introduce
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the state and control variables: x1 = h, x2 = dh/dt , and u = u1 = P . Thus, the
movement equations became as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx1
dt

= f1(t) = x2(t)

dx2
dt

= f2(t) = u(t)

M
− g.

(6.7)

The landing final time is equal to T = ∫ T
0 1dt . Consequently, our object function

is given by the following expression:

J =
∫ T

0
(1 + k|u(t)|) dt, (6.8)

thus, φ(x, u, t) = 1 + k|u(t)|. Consequently, we have
∂ f1
∂x1

= 0,
∂ f1
∂x2

= 1,
∂ f2
∂x1

= 0,
∂ f2
∂x2

= 0,
∂ f1
∂u

= 0,
∂ f2
∂u

= 1/M. (6.9)

According to 6.4, the equations for the conjugated vector are as follows:

dp1
dt

= 0 and
dp2
dt

= −p1. (6.10)

This means that p1 is constant, and p2(t) == −p1t.
Thus, the Hamiltonian is as follows:

H = p1x2 − p1t

(
u(t)

M
− g

)
+ 1 + k|u(t)| (6.11)

with p1 and k constant.
First, suppose that k = 0 (we don’t care about the fuel consumption). Recall that

we must maximize H with respect to u over the interval [0,T ]. Observe that if p1 is
negative, then u1 must be equal to Pm , otherwise it must be equal to−Pm tomaximize
H . In our case, p2 can change sign only once, so we get the “bang-bang” type of
control with only one switch point or no switching at all. In fact, this is the only one,
but important conclusion we get from the maximum principle. As explained below,
for k > 0, we will have two switching points, and the control is equal to zero within
some interval of time.

For any constant u, the model trajectory is a parabola on (x1, t) plane (Eq. 6.6).
Let k = 0. If there were no switch, then we would have only one parabola and the
module can only go upward or go downward and crash with great final velocity. So,
wemust have one control switch. Thismeans that thewhole trajectory consists of two
parabolic segments, as shown in Fig. 6.2. Note also that x2(t) must be a continuous
function, so x1(t) must have the continuous derivative.
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Fig. 6.2 Landing trajectories

The solution for x1 is as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1(t) = h −
(
Pm
M

+ g

)
t2

2
for 0 ≤ t ≤ ts,

x1(t) = 1

2

(
Pm
M

− g

)
(t f − t)2 for ts ≤ t ≤ t f ,

(6.12)

where ts is the switch time and t f is the final time of the movement. As x1 is contin-
uously differentiable, we obtain the following equations:

⎧⎪⎪⎨
⎪⎪⎩
h −

(
Pm
M

+ g

)
t2s
2

= 1

2

(
Pm
M

− g

)
(t f − ts)

2 (a)(
Pm
M

+ g

)
ts =

(
Pm
M

− g

)
(t f − ts) (b).

(6.13)

Equation (a) of (6.13) results from the continuity of x1 at t = ts , and (b) holds
because x1(t) is continuously differentiable. From the above two equations, we can
calculate ts and t f . From (6.13 (b)), we obtain

t f = 2Pm
P − Mg

ts . (6.14)
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After substituting this to (6.13 (a)) and rearranging, we get

ts =
√

hM

P + Mg
. (6.15)

From (6.14), we calculate t f . Figure 6.2a shows the resulting trajectory.
Now, we incorporate the fuel consumption to the cost function, i.e., k > 0. Recall

that we must maximize the Hamiltonian with respect to u. The control u appears
also in the last term of (6.12). Remember that p2 intersects the horizontal axis (zero
value).When p2 is sufficiently small, the term k|u| dominates, so themaximumof the
Hamiltonian is reached for u = 0 because this maximizes the negative absolute value
of u. So, the trajectory is composed of three parts, u = −Pm, u = 0, and u = Pm
(see Fig. 6.2b). From the continuity assumptions, we can calculate, in the similar
way, the switching times tr and ts , and the final time t f . This will require somewhat
complicated geometrical considerations, but this is rather geometric and algebraic
problem.

6.3 Iterative Algorithm

In more complicated, multi-dimensional case, the (numerical) problem is that we do
not have the initial conditions for vector p and we cannot integrate (6.4) forward
in time because of the lack of initial conditions for p. Instead, we have the final
conditions for p. These conditions can be derived from the transversality conditions,
consult Lee and Markus [13]. This leads to the known two-point boundary problem.
Anyway, the control u is still unknown, so we cannot integrate the state and con-
jugated equations. A possible solution consists in assuming an arbitrary admissible
control, integrate the equations, and then looking for a way to improve the control.
The process is repeated with the new control function. To be able to improve the con-
trol, we must know the direction in which the control should change. This direction
is given by the gradient of the Hamiltonian (we try to maximize it).

The gradient of H is given by the following expression:

grad H = p · g, where g =
(

∂ f1
∂u1

,
∂ f2
∂u2

, ...,
∂ fn
∂un

)
(6.16)

for each time step.
In other words, gradH is, at the same time, the search direction in the control

space. To calculate gradH for all t ∈ [0, T ], a trajectory x(t) must be calculated
and stored, starting with a given initial condition for x and an arbitrary control. After
this, the conjugated vector equations are calculated backward, starting with the final
conditions for p.
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According to the transversality conditions for the problem, (fixed time, free
end point), the final condition for the conjugated vector is, in our case, p1(T ) =
1, p2(T ) = 0, ...., pn(T ) = 0. A possible iterative algorithm is as follows (see Polak
[18]):

1. Select an arbitrary control function u(t) (in fact, it should be an approximation
of an optimal control, if we can get one), integrate Eq. (6.1) over [0,T], and store the
state for each time step.

2. Starting with the final condition for p, calculate and store the trajectory of p(t)
backward in time, using Eq. (6.4). Simultaneously, calculate and store gradH.

3. Once gradH has been defined, adjust control u in the search direction. Now,
having this new control function, go to step 1.

The stop condition for this algorithm can be to achieve gradH small enough or
to detect a lack of improvement of the object function.

This is a simplest possible version of the optimization algorithm. To accelerate
the search, we can replace u in step 3 by the new value which maximizes the Hamil-
tonian, instead of advancing a small step in the search direction. This, however, may
provoke stability problems for non-linear models. Other common modification is to
implement a steepest descent with conjugated gradients in the control space (Polak
[18]). In our case, a simple steepest descent method was implemented.

6.4 Market Optimization

Themarket is a complex, non-linear, stochastic, socio-economic system. Suchobjects
are known as soft systems. Looking at the annals of the huge literature in the field
and comparing the models used, one can observe that the models almost always are
completely different from each other. Many publications in the field of marketing,
like those of Lilien andKotler [14], offer a large number ofmodels (linear, non-linear,
deterministic, stochastic, static, dynamic, etc.). Any model should be related to the
corresponding experimental frame (Zeigler [25]). To be realistic, the experimental
frame must include the most important marketing parameters.

The model must be clear enough to be understandable for marketing and man-
agement staff, and it must be useful while carrying out simulation experiments. If
we also want to find the optimal control of the market, then the simulations must
be embedded in optimization algorithms and must be fast enough. Finally, another
requirement is the ability to simulate the market dynamics. This means that the
optimization must be dynamic, like in optimal control problems. In this chapter, a
non-linear model with elasticities with respect to price, advertisement, and consumer
income has been modified with dynamic inertia added to the market response. The
resulting model is subject to multivariable dynamic optimization. Other important
variables are included, like seasonal index, overall market growth, and investment,
being functions of time.

The search formarketmodels for simulation purpose dates fromearly 1960s,while
significant publications began to appear in late 60s. King [10] gives a comparison of
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iconic, analog, and symbolicmodels. Recall that an iconicmodel represents reality on
a smaller scale, analogical model shows reality inmaps and diagrams, and a symbolic
model uses mathematical expressions to portray reality. Montgomery and Urban
[15] discuss the descriptive, predictive, and normative models, where by descriptive
we mean models that consist largely of diagrams and maps or charts designed to
describe a real-world system. See also Stanovich [23]. Predictive model is used in
predictive analysis to create a statistical model of future behavior, and normative
model evaluates alternative solutions in order to answer the question “What is going
on?” and to suggest what ought to be done or how things should work.

We should distinguish between macromarketing and micromarketing models
(Lilien and Kotler [14]). Macromarketing addresses big and important issues at the
nexus of marketing and society, while micromarketing refers to marketing strategies,
which are customized to either local markets, to different market segments, or to the
individual customer, see Shapiro et al. [20]. Here, we deal with the symbolic and
micromarketing model that can be implemented in computer simulations and then
used in optimal control algorithm.

Optimal control in marketing is not new. There are many publications in the field
like, for example, Bertsimas and Lo [1]. In that article, we can find the application
of the Bellman’s dynamic programming approach to the problem of the price impact
on the dynamic trading on the stock exchange. A tutorial and survey on the relevant
technical literature on models of economic growth can be found in Burmeister and
Dobell [2]. Feichtinger et al. [5] consider a similar problem for a general market and
optimal advertising policy. In that article, a detailed formulation of an implementation
of Pontryagin’smaximum principle is shown. Yuanguo [24] uses Bellman’s principle
of optimality and derives the principle of optimality for fuzzy optimal control. This
is applied to a portfolio selection model.

The general approach to optimization of economic systems including households’
consumption, labor supply, production, and government policies can be found in the
book of Dixit [4]. As the author explains, “the methodology is based on the use of
verbal and geometric arguments, but with the eye toward the mathematical sharpen-
ing and generalization. The concepts of optimizing with respect to such variables as
prices, consumer income and quantities of goods can make this methodology useful
in marketing problems.”

Chow [3] in his book describes the application of the Lagrangemethod to the opti-
mization of economic systems in general. Instead of using dynamic programming,
the author chooses the method of Lagrange multipliers in the optimization task.
A number of topics in economics, including economic growth, macroeconomics,
microeconomics, finance, and dynamic games, are treated. The book also teaches by
examples, starting with simple problems. Then, it moves to general propositions.

The Lagrange method is a powerful optimization tool, but needs some additional
conditions andmodifications to be applied in practice. Namely, optimization of mod-
els with constraints should be treated rather with the tools of the optimal control
theory, like the maximum principle used in this chapter.

Konno and Yamazaki [11] present a large-scale optimization problem of a stock
market with more than 1,000 stocks and show that the problem can be solved using
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the absolute deviation risk (called L1 risk function). In fact, stock market has its own
properties that need methods oriented to that particular problem.

Other approach to the stock market optimization can be found in Speranza [21].
The paper describes an application of an optimization algorithm to the Milan stock
market, taking into account portfolio with transaction costs, minimum transaction
units, and limits on minimum holdings. The author points out that the presence of
integer variables dramatically increases the computational complexity.

Karatzas et al. [8] consider a general consumption/investment problem for an
agent whose actions cannot affect the market prices, and who strives to maximize
total expected discounted utility of the consumption as well as terminal wealth. They
decompose the problemby considering separatelymaximizing utility of consumption
only, and ofmaximizing utility of terminal wealth, and then appropriately composing
them. Such decomposition may work in some special cases. However, in a general
case, it may not work. In the present article, we do not assume any possibility of
decomposing the optimization problem to any partial sub-problems.

In another paper of Karatzas [9], we can find a unified approach, based on stochas-
tic analysis, to the problems of pricing, consumption/investment, and equilibrium in
a financial market with asset prices modeled by continuous semi-martingales, and a
similar problemdecomposition. TheHamilton–Jacobi–Bellman equation of dynamic
programming associated with this problem is reduced to the study of two linear equa-
tions. The results of this analysis lead to an explicit computation of the portfolio that
maximizes capital growth rate from investment, and to a precise expression for the
maximal growth rate.

Korn and Korn [12] in their book offer a collection of graduate studies in math-
ematics, including the mean-variance approach in a continuous-time market model,
pricing of exotic options and numerical algorithms. Themarketingmodels in the book
are shown from the mathematical point of view and reflect the state of art in the field
(as for year 2001). Gomes Salema et al. [7] contemplate generic reverse logistics and
distribution network, where capacity limits, multi-product management, and uncer-
tainty on product demands and returns are considered. A mixed integer formulation
is developed, using standard B&B (Business-to-business) techniques. The model is
applied to an illustrative case. To learn more on the B-to-B strategies, consult, for
example, Morris et al. [16]. There are many other publications on optimal market
control, most of them applied to the stock market or to markets of specific goods. It
seems that the dominant tool is the dynamic programming and Lagrange method.

The market model itself is not the main topic of the present chapter (except,
perhaps some dynamics added). Let us start with the model taken from the book of
Lilien and Kotler [14], mentioned earlier. We discuss an application of maximum
principle to the problem of dynamic optimization of a non-linear revenue model with
respect to price, advertising, and investment. The elasticity-based model has been
modified to reflect the market dynamics, including the inertia with respect to model
response. This is a non-linear model of the demand and revenue. The descriptive
variables are price, advertising, seasonal index, market overall growth, consumer
income, production or acquisition cost, and the market elasticities with respect to the
price, advertising, and consumer income. The demand model is as follows:
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q(p, a, y, v, g, t) = q0v(t)s(t)

(
p(t)

p(0)

)ep (
a(t)

a(0)v(t)s(t)

)ea (
y(t)

y(0)

)ey

, (6.17)

where q—demand, q0—initial or reference demand,
t—the time,
s(t)—overall market size,
p(t)—price,
a(t)—advertising per time unit,
y(t)—consumer income,
v(t)—seasonal index,
ep, ea, ey—market elasticity with respect to price, advertising, and consumer

income, respectively.
In the model of Lilien and Kotler, the market size s(t) is supposed to be equal to

(1 + g)t , where g is the market growth rate. We use the variable s(t) instead, to be
able to link the market growth to the investment that the company may do in order
to expand the market (new installations, infrastructure, etc.).

Figure 6.3 shows the shape of the profit (utility) (p − c)q as a function of the
price and advertising, when the time and other variables are fixed (c is the unit cost
of product).

Normally, the price elasticity is negative (price increase means less demand), and
the elasticity for advertising and consumer income are positive. Note that the term
v(t)s(t)multiplies the demand and appears also in the denominator of the advertising
impact term. This means that if the market and the seasonal index grow, then wemust

Fig. 6.3 The revenue as function of the price and advertising. Static case
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spendmore on advertising to achieve the same effect. We do not consider any storage
or warehouse mechanism, so it is supposed that the sales are equal to the demand.

As for the competition, the model includes it in some indirect way. Observe that
the market elasticities with respect to price and consumer income are influenced
by the competition. If, for example, a company provides water to a village and has
no competitors, then the elasticity ep will approach zero because the consumers
must consume certain amount of water, anyway. However, if there is a competitor in
the region, then this elasticity must be negative because the price will influence the
demand of water provided by the company. Other way to introduce competitors to the
model would be to simulate the performance of two or more competing companies.
However, if we intend to optimize themarket for one company, thenwemust simulate
the optimal strategy of the competitors as well. This leads to a differential game and
not just a single optimization problem.

There are many approaches to competition modeling. Perhaps one of the most
representatives is the spatial competition model and the hedonic or Lancaster model,
see Page [17].

In the spatial model, there is an array of spatial attributes A that characterizes
the product, like the content of sugar of the vitamin C and price. The consumers
have their own attribute vector of preferences B. The consumer payoff depends on
the (Euclidean) distance D(A, B) between the spacial attributes and preferences,
expressed as K − D(A, B), K being a constant. So, the customers try to minimize
their distance from the preferred product and maximize the payoff. In the Hedonic
model, the consumers are characterized by theweights they associatewith the product
attributes, and the payoff is the scalar product of the attributes and weights. We do
not discuss spatial and hedonic models here because these are static models, and the
present book treats about dynamic systems.

In the model used here, the revenue can be calculated as follows:

U = (I − b)e − a, V = e − a, where e = (p − c)q. (6.18)

VariableU will be called total revenue and V just revenue. Here, c is the unit cost
of the product (production, acquisition cost), a is the advertising, b is the investment
factor, and q is given by formula (6.17). The investment b is supposed to be a part of
the utility e, 0 ≤ b ≤ 1. The factor b defines the market growth rate, proportional to
the product be. This will be one of our control variables. In our equations, the market
size is relative with initial value equal to 1. This means that if the company does not
invest in the market, then the market size has no influence on the model trajectory
(remains constant). The final total revenue is the sum (integral) of U over the time
interval under consideration. Figure 6.3 shows the shape of the profit (utility) e as
a function of the price and advertising, while the time and other variables are fixed.
It can be seen that the utility function has a maximum that determines the optimal
price and advertising at the moment. This is a static case.

Now, consider a fixed time interval [0, T ]. To calculate the total revenue, we must
integrate U over [0, T ]. We should also take into account the market inertia with
respect to the price and advertisement. In our model, we added the first-order inertia
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with time constants Tp and Ta , for the price and advertisement variables, respectively.
So, the model becomes of the fourth order, described by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr

dt
= (1 − b(t))v total revenue

where v = (p(t) − c(t))q(z, w, y, v, s, t) − a(t)
dw

dt
= (a(t) − w(t))/Ta advertisement inertia

dz

dt
= (p(t) − z(t))/Tp price impact inertia

ds

dt
= kb(t)(p(t) − c(t))q(z, w, y, s, t), market size

(6.19)
where r is the total revenue, w is the advertisement inertia called also consumer
goodwill related to advertising, and z is the price impact with inertia. The coefficient
k tells how fast the market grows due to the investment, its dimension is 1/(currency
unit). For example, k = 0.001means that one invested currencyunitmakes themarket
grow by 0.001(relative) in one time unit. The investment in the market growth cannot
be negative, so the control b in (6.19) is set equal to zero when (p − c)q non-positive.
It is supposed that 0 ≤ b ≤ 1.

Note that in (6.19) the demand depends on z and w instead of the price p and
advertising a taken at the current time instant. The object functional we want to
maximize is the final accumulated revenue r(T ), and the optimization is carried out
with respect to the price p, advertising a (through the corresponding controls, defined
later), and the investment factor b. This way we obtain a system of four non-linear
differential equations with three control variables. The variables r and s are closely
connected to each other and also depend on w and z. The model is rather simple, but
its optimization is not a trivial task.

In the optimization algorithm, the control variables are as follows:
u1—tells which part of initial (reference) advertisement is used as the actual

advertisement, a = u1a0;
u2—tells which part of initial (reference) price is applied;
u3—tells which part of the revenue V (6.18) is used as the investment (investment

factor b).
The advertisement a(t) does not depend explicitly on the investment factor u3.

However, the model includes a number of restrictions that result from the market
logic. The price, advertisement, and investment cannot be negative. Moreover, the
advertisement cannot be greater than U − (1 − b)e . This makes the advertisement
depending onU and on the investment factor b, through the corresponding restriction.
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6.5 Computer Implementation: Simulation and
Optimization

The program developed for this task permits a big variety of simulation and optimiza-
tion scenarios. Our optimization process is iterative, and the model is non-linear of
order four with up to three controls, so the whole process is rather slow, with several
minutes of computing time needed. As we need rather qualitative results, the inte-
gration of the model trajectories has been done by a fast, but not very exact, Euler’s
method, with a reasonable time step (1000 steps in the simulation time interval).
There was little difference observed between the results obtained by this method and
the Runge–Kutta integration scheme.

We assume the same fixed time horizon equal to 365 (days) in all simulations.
In addition to the model Equations (6.19), some simple arithmetic operations have
been added, to avoid negative revenue growth. In other words, we do not consider
the possibility of negative revenue at any moment, and all the advertisement and
investment must come from the instant sales income. Such restrictions, as well as
other non-negativity restrictions imposed on the controls, complicate the optimiza-
tion process. Recall that one of the assumptions of Pontryagin’s maximum principle
is that the right-hand sides of Equations (6.19) are continuously differentiable. In our
case, this is not exactly true. So, all the results should be treated as approximations
of the optimal solution (anyway, the algorithm is iterative), and some of the resulting
curves show certain irregularities (are not “nice and smooth”).

The initial conditions for the state vector have been fixed to (0, 0, 0, 1) for total
revenue r , advertisement goodwill w, price impact with inertia z, and the relative
market size s, respectively. Let us show results of four experiments, where themarket
is optimized with respect to price, advertisement policy, price and advertisement, and
finally for all three controls simultaneously. To see the market strategy in changing
environment, the seasonal index is set equal to one, except of two intervals of time:
(100, 128) and (160, 167) days. In the first interval, the index jumps to 3, and in the
second it falls down to 0.5. The relative consumer income also changes; it is equal
to one everywhere, except of the interval (200, 214), where its value is equal to 2.5.
It is supposed that the company (the decision-makers) is aware of those changes
before they occur. This is important assumption because the optimization algorithm
has a “predictive” ability, namely, the corresponding control changes anticipate the
changes of these two indices. Model fixed parameters are as follows:

Initial (reference) sales = 70,000 items,
Production cost = 0.8 CU (currency units),
Initial (reference) price = 1.0 CU,
Initial (reference) advertisement = 10,000 CU,
Market elasticity for price = −2,
Market elasticity for advertisement = 0.5,
Market elasticity for consumer income = 0.3,
Time constant for advertisement inertia (goodwill) = 14 days,
Time constant for price impact inertia = 2 days,
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Fig. 6.4 Price control only

Initial market size, relative = 1,
Final simulation time = 365 days,
Market growth factor = 0.00000005—this means that one invested CU makes the

market relative size grow by 0.00000005 per time unit.
The setC(t) of (6.3) is defined by the set of the restrictions imposed on the model.

In particular, all model variables that, logically, cannot be negative are restricted to
the non-negative values. The investment cannot be positive if the revenue V is equal
to zero. Also, the advertisement cannot be greater than U − (1 − b)e (6.18).

This is an optimization with fixed time horizon. In other words, the company
starts to sell goods and disappears after a given time interval. The final simulation
time is equal to 365 days. The behavior of the control variables for the last few days
appears to be somewhat strange. Obviously, the optimal control for investment and
advertising near the end of the interval falls down; there is no reason to waste money
if the activities terminate. On the other hand, the algorithm makes the price grow in
the last days of the activity. The sales do not fall down immediately because of the
market inertia with respect to the price, so we can get a little bit better final outcome.
All curves are normalized to the interval [0,1]. The real ranges are indicated at the
legend right to the plot.

Figure 6.4 shows the result of market optimization with respect to the price of the
product. Note that when the seasonal index and the demand grow, the recommended
policy is to lower the price. Anyway, the revenue (curve 1) grows faster in that period.
When the seasonal index becomes low, the strategy is first to increase the price and
then reduce it rapidly. As for the period of increased consumer income, the optimal
policy is to lower the price to make the demand even higher. All these changes should
be done with anticipation because of the market inertia.
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Fig. 6.5 Advertisement control only

The result of advertisement policy optimization is shown in Fig. 6.5. In the period
of augmented seasonal index, it is recommended to increase the advertising. When
the consumer income grows, the advertising should grow as well.

If we optimize both the price and advertisement simultaneously, the curves are
similar (Fig. 6.6). The total revenue at the end of the period is, in this case, greater
than that of price and advertisement optimized separately. Figure 6.8 shows the
comparison between the above optimization modes (revenue value).

The company may invest in the market (new marketing places, infrastructure).
The income from sales can be invested or “consumed” immediately. If we invest, the
market grows as well as the future income. Logically, the optimal policy should be to

Fig. 6.6 Price and advertisement control
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Fig. 6.7 Price, advertisement, and investment control

Fig. 6.8 Revenue curves. Comparison between optimization with respect to price only, advertise-
ment, both price and advertisement, and all control variables

invest at the very beginning, in order to obtainmore income later on. The optimization
algorithm generates a control of the “bang-bang” type for the investment. First, all
the income is being spent on investment and advertising, then the investment is set
equal to zero. See the corresponding curves in Fig. 6.7. Figure 6.8 illustrates the
comparison of the revenue growth for cases of optimization with respect to price;
to the advertisement; to both the price and advertisement; and, finally, to all control
variables simultaneously.
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6.6 Conclusion

Control theory provides useful tools for dynamic optimization of models in many
fields of research. Once we have the model equations, we can try to apply an opti-
mization algorithm to it. The problem is that, in the real world, not everything obeys
or can be modeled with differential equations. In marketing, optimization methods
work to some extent, due to the intense research that has been done in past decades.
This research resulted in a variety of models that can be used in dynamic simulation
and optimization.

Though the presented application of optimal control theory does not use differen-
tial inclusions, it has been included in this book because we use some mechanism of
the Maximum Principle in reachable set calculations. Anyway, each trajectory that
scans the boundary of the reachable set is optimal in some sense. Recall that if a
point in the model state space is accessible from the initial point by a trajectory of a
dynamical system (with appropriate regularity assumptions), then it is also accessi-
ble in optimal (minimal) time, and the trajectory must entirely lie on the boundary
of the reachable set.

The model itself is not the main topic of this chapter. However, its modification
(price and advertising inertia) represents perhaps a relevant contribution. The main
topic is the application of the methodology of the control theory (the maximum
principle) to the multivariable dynamic market optimization. Our point is that, due to
the restrictions imposed on control variables, Pontryagin’s maximum principle is the
most adequate tool. The algorithm and the experimental version of the software may
form a core of a more practical and commercial marketing optimization package.

Recall that the optimization task in this chapter has been defined for a fixed
time horizon. If we do not fix the time interval, supposing that the company will
operate forever or for a large period of time, the results can be quite different. In
such case, we should redefine the optimization criteria because the total revenue at
the end of the period will be less adequate. Once this optimization goal is defined, a
similar optimization tool can be applied. The further applications should include the
multiple product case, stochastic case, and the marketing (differential) games with
competition between multiple companies.

6.7 Questions and Answers

Question 6.1 What is the functional? What criterion of optimization is used in this
chapter?

Question 6.2 What is the advantage of the Maximum Principle of Pontryagin?

Question 6.3 What optimization criterion and conditions are used in the example
of the optimal landing on the Moon?
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Question 6.4 The solution to our optimal landing problem is derived analytically
or by an iterative algorithm?

Question 6.5 How the iterative algorithm, used in market optimization, works?

Question 6.6 What kind of demand model is used in this chapter (select):
1. A linear multivariable model.
2. A non-linear model based on market elasticities.
3. A multivariable regression model using market elasticities.
4. A partial differential equation model.

Question 6.7 The demand model of Lilien and Kotler [14], Eq. (6.17), is a dynamic
or static market model?

Question 6.8 What represent the elasticities in market demand model?

Question 6.9 What modification of the Lilien–Kotler [14] Eq. (6.17) model has
been done in this chapter?

Answers

Answer 6.1 A functional is amapping froma spaceS into thefield of real or complex
numbers. In this chapter, S is the space of integrable functions of time. An example:
the integral of a given function of time over a time interval is a functional.

In this chapter, we maximize a functional that represents the total utility of a
market.

Answer 6.2 In this method, the original problem of functional minimization (or
maximization) is reduced to the problem of maximizing the Hamilton function
(Hamiltonian)with respect to the control variable, subject to the control restrictions.
Note that the Hamiltonian is a function, and not a functional.

Answer 6.3 Weminimize the time of landing, requiring that the final velocity of the
lunar module is equal to zero. The total fuel consumption is also taken into account.

Answer 6.4 This is an analytical solution.

Answer 6.5 The algorithm calculates the gradient of the Hamiltonian with respect
to the control function. Then, it improves the control function by maximizing the
Hamiltonian in each time step. This procedure is repeated until satisfactory quasi-
optimal control is determined.

Answer 6.6 2. A non-linear model based on market elasticities

Answer 6.7 Static,

Answer 6.8 We use the elasticity parameters ep, ea, ey that determine how the
demand changes with respect to price, advertising, and consumer income, respec-
tively.

Answer 6.9 We added the first-order inertia with the price and advertisement vari-
ables. This makes the model more realistic, with an inertial delay in the market
response.
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Chapter 7
Discrete Event Models

7.1 Introduction

Here, we mention some basic concepts of Discrete event modeling and simulation,
necessary to well understand the remarks included in the other chapters. A greater
application of discrete event and agent-oriented model is discussed in Chap. 8 (sim-
ulation of growing organizations and their interactions).

The discrete event models contain specifications of possible events that may occur
in the modeled system. The order of event execution is not pre-established, and is
defined at the runtime by the corresponding software, and not by the user. So, each
one of the simulation tools like GPSS or Arena package is, in fact, certain version of
discrete event model, ready to use for a class of similar modeling tasks, like queuing
models andmanufacturing. In discrete event modeling and simulation, themodel and
its software implementation can hardly be separated. Defining a model, we should
define the possible event execution without fixing the time instants of execution.
Almost all known discrete event simulation packages include, in fact, such model
specification.

Creation of models and computer simulation are closely related, and sometime
inseparable tasks. From this point of view, each one of simulation packages like
GPSS, Arena, or ProModel represents its own modeling methodology. In discrete
event simulation, the very elemental concept is that of object-oriented modeling
(OOM). Recall that in OOMwe create objects that consist of data andmethods. The
data describe the object private data structures, visible or not from other objects. The
methods are computational procedures that process object data and/or execute object
events. One of the first discrete event simulation packages of early 1960s was the
CSL (control and simulation language) based on Fortran that used the concept of
the class of objects. Then, an excellent and quite complete object-oriented language
Simula67 appeared in 1967. This language, based on Algol68, ran on computers
with 64K operational memory, 100 KHz CPU clock, but, from the point of view
of programming methodology, it was perhaps never superated by the contemporary
object-oriented languages.
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Fig. 7.1 GPSS transactions
and facilities

The idea of object creation and model event execution dates from 1960s and was
well implemented in the GPSS package. The GPSS objects, named transactions,
are created at the runtime. They pass through the model events (GPSS resources),
interact with each other, and disappear. This concept repeats in nearly all discrete
event simulation tools.

Transactions are moving objects that are generated during program run, pass
through a number of facilities, and disappear. The GPSS facilities define possible
events that occur in the “life” of a transaction, see Fig. 7.1. This concept is still used
in other, more recent discrete event simulation software.

In GPSS, like in many others modeling tools, the events almost always occur is
some random time instants, depending on the rules of interaction. We will not give
here any overview or specification of the probability theory and statistics because this
is rather the topic of textbooks onmathematics. Let only recall that themost important
issue in the mass-service simulation is the correct definition of the distribution and
parameters of the inter-arrival time intervals and service time. For example, if the
clients arrive at a service facility according to the Poisson process (independently
from each other), then the inter-arrival time interval should have the exponential
distribution, and not the Poisson distribution.

In mass-service modeling, an important part is the modeling of waiting lines.
Recall that the formation of queues has been a topic of research works for many
years. The queuing theory was developed, based on the theory of probability. We
will not discuss here the results of the queuing theory. The reason is that this book
treats on themodels of dynamic systems. The core of queuing theory offers a series of
formulae for average queue length and other queue characteristics. In these formulae,
the time variable does not appear.
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7.2 The Event Queue

A discrete simulation language is as good as the algorithm that manages the event
queue. This queue should not be confused with a queue we want to simulate, for
example, a queue of clients in a mass-service system or a buffer in a manufacturing
system where the parts wait to be processed. The event queue contains a set of event
messages, each of them telling which model event to execute and specifying the time
instant when the execution will occur. The advantage of discrete simulation is that
the model time jumps to the next (in time) event to execute, instead of advancing
continuously (in small time steps). This means that the system (the program, which
controls the discrete event simulation) must know which the next event to execute
is. There are two ways to achieve this. First, we can maintain the event queue always
sorted due to the execution time, and second, to add new event messages at the end
of the queue, and then look for the nearest event to execute. Both options involve
the problem of sorting or scanning. This process is simple and fast if there are few
events in the queue. However, if the model is not trivial (has more than, say, two
queues and servers), the event queue can grow to hundreds or thousands of events,
and the event handling strategy becomes crucial for the whole system performance.

Observe that the event queue in the simulation process constantly changes. Any
event, while being executed, can generate one or more new event messages or cancel
some of the existing ones (see Fig. 7.2). Moreover, there are events that cannot be
scheduled through the event queue mechanism, being executed due to the changes
of the model state and not of the model time. Such events are called state events and
must be handled separately. There are three basic strategies in discrete simulation:
activity scanning (AS), event scheduling (ES), and process interaction (PI). In this
chapter, we treat activity and event as synonyms. More advanced strategies are being

Fig. 7.2 The event queue
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developed and can be found in publications on theDEVS (discrete event specification
formalism). See Chow [9] and Zeigler [67].

Activity scanning (AS) was the first discrete simulation strategy, developed in
the 1950s. One of the first implementations was the language CSL. According to
this strategy, the model time is set equal to the time instant of the nearest (time)
event. Then, all model activities (events) are scanned. Those that can be executed are
executed, and the others remaining inactive. Next, the time jumps to the next possible
event, and the whole process is repeated. This clock loop stops if no possible events
remain in the model. An event, while being executed, can schedule itself or other
events to be executed in the future, so the sequence of executions can be long, even
if the source program is relatively short.

The Event Scheduling (ES) strategy is somewhat more effective. In the computer
memory, the event queue is created. Every component (event message) of this queue
stores the time the event will be executed, and the event identifier. So, the only
problem is to maintain the event queue sorted according to execution time. If we do
this, then we simply take the first event and execute it, without scanning all possible
events. This event queuemanagement is transparent (invisible for the user) andworks
automatically. The user can schedule events, but he/she cannot redefine the model
time or manipulate directly the event queue. The most effective event management
algorithms are those using binary tree techniques to sort the event queue.

The Process Interaction (PI) strategy is more advanced. The model is defined
in terms of processes that can run concurrently. The rules of interaction between
processes are defined,while the specificationof a process includes the necessary event
scheduling. PI can be implemented in any object-oriented programming language,
and became the main feature of Simula, Modsim, BLUESSS, and other languages.

The three-phase strategy in discrete simulation is a combination of these three
strategies. The phases are as follows:

1. Model time jumps to the next event.
2. The event(s) scheduled to be executed at this time instant are executed.
3. All state events are revised. Those that can be executed are executed.
By the state event we mean an event in which execution depends on the model

state rather than the model time. Consult Lin and Lee [36] and O’Keefe [46].

7.3 Agent-Based Models

The methodological focus of this chapter is the object- and agent-based simula-
tion. No state equations or System Dynamics schemes are used. Recall that in the
discrete object-based modeling, we create objects that behave according to the user-
defined rules, and execute their events in discrete moments of the model time. The
agent-based models manage objects called agents, which are equipped with certain
“intelligence.” They can take decisions, optimize their actions, and interact with each
other and with the environment. Agent-based models (ABMs) are a type of micro-
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scale models of agents that simulate the simultaneous operations and interactions of
multiple agents in an attempt to recreate and predict the global, complex phenomena.

The individuals in ABM models may be of different types. Although the rules of
behavior are the same for individuals of the same type, the behavior is not identical for
all of them. Thismodelingmethod hasmany applications,mainly in ecology, biology,
and social sciences. The key notion is that simple behavioral rules (micro-model)
generate complex (macro) behavior. An important central tenet is that the whole is
greater than the sum of the parts. Individual agents are typically characterized as
rational. They are presumed to be acting in what they perceive as their own interests,
such as reproduction, economic benefit, or social status, using heuristics or simple
decision-making rules (Railsback et al. [52], Bandini et al. [3]). However, the agents
may also be irrational, in particular, when they act in groups. The collective behavior
is frequently irrational, what can be observed clearly in voting activities.

Note the main difference between object-oriented and simulation package. The
latter, in addition to object creation, provides (or should provide) a “clock” mecha-
nism that automatically manages the model time and the event execution. The ABM
modeling is supported by many programming and simulation tools. Let us mention
only some of the most popular tools: SWARM developed in 1994 by the Santa Fe
Institute (Swarm Development Group, [59]), Ascape program developed in 2001
(Parker [48]), Breve-2.7.2 (Klein [33]), Recursive Porous Agent Simulation Toolkit
released in 2003 (Michael et al. [45]), Cormas developed in 2004 by VisualWorks
(discrBommel et al. [6]), MASON (Luke et al. [41]), MASS package (Tatai et al.
[62]), FLAME (Coakley et al. [11], Holcombe et al. [24]), MATSim of EHT Zürich
(Bazzan et al. [5]), and SOARS developed in 2010 (Tanuma [60, 61], among others.

ABMs are widely used inmodeling of the dynamics of organizations. An example
of an agent-orientedmodel, called theBCmodel, can be found in the article byKrause
[34]. In that model, the agent’s attributes include “opinions,” and the interactions
between agents depend on the distance between their opinions in a non-linear way.
These interactions can result in an action being taken by the agent. Other examples
of models of social structures based on the concept of opinion interactions can be
found in Latane [35] and Galam [21]. A similar approach is presented by Chatterjee
and Seneta [7] and Cohen [13]. These works refer to the dynamics of formation of
social groups in accordance with the existing agents’ attributes (opinions). Some
quite interesting results, more closely related to the terrorism problem, are described
by Deffuant [18].

Some more general concepts of computational sociology and agent-based mod-
eling can be found in the article of Macy [44]. Other general recommended readings
in the field are: Bak et al. [2], Cioffi-Revilla [10], Gotts [23], Axelrod [1], Epstein
[19], and Holland [25]. An interesting contribution to a model of the structure of
the Osama Bin Laden organization is included in a Vitech Corporation page (link:
see References, Long [37]). Other, ABM-oriented approach can be found in Crow-
der [14] and Hughes [28]. In these publications, we can find discussions about the
potential advantages of the ABM approach through a range of examples and through
the identification of opportunities in the field of organizational psychology.
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Another approach is usedbyLustick [43],where the agents interact on a landscape.
It is shown that macro-patterns emerge from micro-interactions between agents.
An important conclusion is that such effects are more likely when a small number
of exclusivist individuals are present in the population. The simulations of other
mechanisms of clustering in agent-oriented models are described by Younger [65],
who deals with the creation of social structures in the process of food and material
storage.

7.3.1 People Agents

Human factor always appears in models of social dynamics, economy, interac-
tions of political parties, and groups. Terror organizations [56], self-organizing,
self-destruction models [57], and many others. Obviously, constructing models with
human actors is a difficult task because of the complexity of the human being and its
sometimes irrational behavior.

In the book of Page [47], Chap. 4 (modeling human actor), we can find the term
“Rational-Actor Model.” In such models, the human behavior is supposed to be
governed by individual’s preferences when the individual chooses the action that
maximizes its income or other benefits. These models work to some extent. Anyway,
there is a little choice in defining human behavior. Page illustrates the rational-actor
model using the model of person’s spending on housing and points out some model
imperfections.

Other applications of rational-actor concept appear in models where people max-
imize their benefit and income. Simulating these mechanisms, we can conclude that
the inequality in the society is one of the drivers of the economic growth and wel-
fare. An example of such simulation can be found in [58]. The conclusion from the
simulations described in that book is that artificially increasing the equality factor in
a society leads to economic disaster and decrease of the overall welfare.

The rational-actor model has limited application, simply because the human
behavior, in particular, the macro-behavior of big populations can hardly be con-
sidered rational. As stated before, the mass behavior in political activities like mass
beliefs and voting activities is, as we can see from the tendencies of the recent tears,
in most cases, completely irrational.

Adaptive behavior rules can be used when modeling human factor (Page [47],
Chap. 4). The rules change according to the possible payoff an individual can get
while taking a specific decision. An example of such behavior is referred to as ait
Farol Model in [47].

Other very important mechanism that should be taken into account when simulat-
ing human and animal populations is the herd or Gregarious instinct. The individuals
almost always are looking around and modify their behavior due to the behavior of
the others, mainly the near neighbors. The similar model property is called path
dependence in some sources, like [47]. This mechanism is adopted in the model of
self-organization presented in Chap. 8 of the present book.
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7.4 Discrete Event Specification Formalism (DEVS)

The theoretical base of discrete event simulation is defined in the Discrete Event
Specification Formalism (DEVS), see Chow [9].

7.4.1 A Remark on Ambiguity

One of the tenets of this book is that the discrete event models and simulation include
some elements that may cause some doubts about the validity of the discrete event
models. The point is that, if we define the general space of models, the discrete even
models may represent a singularity in that space. This fact is the cause of some
difficulties, mainly while treating possible simultaneous events.

Shortly speaking, the simultaneous events problem can be explained as follows.
Recall that in our model and in the simulation program, the simulated model time is
represented by a model variable that advances while the model events are executed.
It is not the real time that is the time of our (and of the computer) clocks. Suppose
that our computer has one processor that executes the events according to the event
messages issued by the event queue mechanism. When two events are scheduled
as simultaneous, they must be executed in the same model time instant. However,
the computer hardware cannot execute them simultaneously, in the real time. The
order of execution, in the real time, must be established by the simulation software
or just by the computer hardware. However, the model state, after event execution,
may depend on this execution order. So, we get an ambiguity that makes the results
software and hardware dependent. Here, we conside one-processor computer.

Consider the following, simple example of the model of a duel (Fig. 7.3).
In this model, we neglect the time interval of several milliseconds, when the

projectile travels over the duel area. The events are simply “shoot-and-kill.” If both

Fig. 7.3 A duel
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people are perfect shooters, then who shoots first wins, and the other dies. What
happens if they shoot simultaneously? A logical conclusion is that the two people
die. However, if we simulate this on a computer as simultaneous events, the computer
must execute the events in certain order. If the event “Joe shoots” is executedfirst, then
the other event cannot be executed because Fred is already dead. So, the final result
will always be “one death” instead of “two deaths.” Moreover, the resulting event
may also be “Joe dies” so the result is ambigue and hardware dependent. From this
example, we can see that the discrete event models may have some inconsistencies,
and sometimes may fail. This ambiguity as well as other examples and simultaneous
event problems are discussed in Chap. 9.

7.4.2 DEVS

There are many real systems, where we can define events that consist in changing
the state of the system. For example, the events may describe the start or the end of a
service process, a birth or death of a model entity or taking place in a waiting line. In
many situations, such events can be considered to be executed in a very small interval
of time, compared to the total length of model simulation time. By themodel timewe
understand the time variable that is controlled by the simulation program during the
simulation run. The real time represents the time of our (or computer) physical clock.
For example, simulating the movement of a galaxy, we simulate several millions of
model time years. On a fast computer, such simulation may take several minutes in
the real time. The discrete event simulation means that we suppose that the model
events are discrete, i.e., they are accomplished within model time interval of length
zero. This model simplification makes the simulations very fast.

TheDiscrete Event Specification (DEVS) formalism is used to describe models in
discrete event simulation. In the DEVS formalism, an “atomic” model M is defined
as follows (Zeigler [67]):

{
M = 〈X, S,Y, σint , σext , λ, τ 〉
σint : S → S, σext : Q × S → S, λ : Q → Y,

(7.1)

where X is the input space, S is the system state space, Y is the output space, σint is
the internal state transition function, σext is the external transition function, and Q is
the “total state.”

Atomic models can be coupled to form a coupled model. The coupled models
can also be coupled in hierarchical way, to form more complex models. The coupled
DEVS model is as follows:
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coupledDEV S = 〈
Xsel f ,Ysel f , D, {M}, {I }, {Z − i, j}, select 〉 . (7.2)

The sub-index self denotes the coupled model itself. D is a set of unique
component references. The set of components is

{Mi |i ∈ D} . (7.3)

The select component defines the order of execution for simultaneous events
that may occur in the coupled model. This component must be added to the model to
avoid ambiguities in the simulation algorithm and tomake themodel implementation
independent. There is an important research being done on the selected algorithms
because the treatment of the simultaneous events is rather difficult task.

The use of the DEVS formalism is relevant in big models, where the time of
execution, hierarchical model building, and portability are important factors. To
treat complex models with variable structure, the Dynamic Structure Discrete Event
System Specification (DSDEVS) is used.Wewill not discuss theDSDEVS formalism
here.

The Time and Event Management (TEM) includes the clock and event queue
management inside the “simulation engine,” and the basic queuing model operations
provided by the simulation package. The Object Behavior Modeling (OBM) is a set
of additional items like user-defined distributions and logical functions, non-typical
operations, object attributes, and the general object behavior.

7.5 Petri Nets

Petri Nets (PNs) is a graphical modeling tool for discrete event simulation. A good
review of the method can be found in David and Alla [17]. PNs were originally
developed by Carl Petri in 1962 to model and analyze communication systems. In
PNs there are four elements: places (represented by circles), transitions (represented
by bars), directed arcs, and tokens (represented by dots). In simulation terminology,
places are conditions, transitions are events, and directed arcs connect places and
transitions. A token in a place means that a particular condition holds. The transition
fires only when all input conditions are met. If so, it removes a token from each input
and deposits a token on each of its output places.

Petri nets are not commonly used, compared to such easy-to-use and quite com-
plete tools like Arena, ProModel, or Simul8. This is an example of an excellent
simulation system that remains lost in the huge amount of modeling and simulation
paradigms recently available.

Figure 7.4 shows a queuing network and the corresponding Petri net. This is a
simple model of a server with its input queue and a network that generates requests
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Fig. 7.4 Input/output validation

to be processed by the server. After processing a request, the server sends a response
to the network.

7.6 Distributed Simulation Models

Themost important way to accelerate the event simulation is tomove from sequential
to parallel execution. This means that the simulation task is distributed between
multiple processors at the same mainframe or in separate computers running in a
network.

In distributed simulation, each processor runs with its own model time clock.
Figure 7.5 illustrates problemswith time andmessagesmanagement in distributed

simulation. This is a simple model of naval battlefield. The ship and the helicopter

Fig. 7.5 A naval battlefield
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are friendly, and the airplane is the enemy. The simulation tasks of these three com-
ponents are assigned to three processors, running concurrently. Each of the model
components runs with its own clock that shows the model time (in hours). The hori-
zontal axis represents the real computing time, in milliseconds. The local model time
clocks are not synchronized. This occurs because the CPU time consuming of the
simulation of each component may be different. The most real time consuming is the
simulation of the airplane dynamics. The distributed simulation permits to free the
processors that have terminated their tasks and dedicate them to other activities. So,
the simulation of the movement of the ship terminates more than three times faster
than the simulation of the airplane dynamics (for the same final model tine of 4 h).

Model components issue messages to other components or to the environment.
Each message has the corresponding time stamp that stores the value of the model
time, and the action (an order, a piece of information, etc.). The messages are issued
in certain instants of the real CPU time (t1, t2, ...., t7).

The message specifications are shown in Table 7.1.
Suppose that the message M3 has not been issued. If so, we can see that the

ship issues a message M1 “Eliminate the aircraft” to the helicopter. The helicopter
executes the order after some model time, hitting and destroying the airplane, with
message M5: “I hit and kill you.” The ship sends messages M2 and M4 to the
environment (command center).

Now, suppose that the message M3 has been sent at minute 45 of the model time
clock of the airplane. If so, the ship must disappear from the battlefield. The ship
receives this message in her past. The messages M2, M4, and M5 have already been
sent, but they cannot exist because the ship has been eliminated at t = 45, and the
airplane is not eliminated at 3 h 50 min of model time. This means that the model
time clock must be reversed to 45 min, and the simulation must be repeated from
this model time instant (the rollback in the simulation process). In other words, the
clock of the model time of the ship has advanced to more than 3 h, when the plain
sent message M3. This means that the message cannot be processed unless the ship
goes back with its clock to 45 min of his model time and repeats her simulation from
this model time instant. In model with multiple components, such situations result
in a chain of rollbacks, and slow down the simulation.

Several distributed simulation techniques have been developed, like Chandy-
Misra algorithm Chandy and Holmes [8], and the Time Warp algorithm (Jefferson

Table 7.1 Message specifications

Message id Real time Model time Destination Contents

M1 t1 2.5 h to Helicopter Eliminate the airplane

M2 t2 3.2 h to External component My report

M3 t3 40 min to Battleship I eliminated you

M4 t4 3 h 40 min to External component Report 2

M5 t4 3 h 50 min to Battleship I hit and kill you
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and Sowizral [29]. The former is pessimistic or conservative, advancing the processor
simulation clocks onlywhen conditions permit it. In contrast, TimeWarp assumes the
simulation clocks can be advanced until conflicting information appears; the clocks
are then rolled back to a consistent state.

Distributed simulation has no application on single-processor machines and PCs.
It is being implemented rather on supercomputers and computer networks. Applica-
tions belong mostly to military simulation, communication networks, defense strat-
egy, VLSI chips, and similar great-scale models. Therefore, the fundamental issue
is the extent to which simulations should be synchronized in a conservative manner
(i.e., without rollback) as opposed to an optimistic manner (i.e., with rollback).

7.7 Conclusion

The common, general classification of simulation models refers to continuous and
discrete event simulation. The last kind ofmodels is used inmodeling ofmass-service
systems, manufacturing, and others. This can be done always when we can define
the model events as the model state changes that occur in discrete moments of the
model time.

The most important theoretical base of discrete event simulation is given in the
DEVS (discrete event specification formalism) methodology. In this chapter, we
discuss the conventional tools,where the simulation is object- or agent-oriented.Also,
some problems related to distributed simulation, like the model time management,
arementioned. The general conclusion from this short overview is thatwe have a huge
number of modeling and software tools, to treat this kind of models. This facilitates
the simulation and offers an easy-to-use tool with advanced GUI (graphical user
interface). However, while creating the model, one must have certain knowledge
about the modeling system. For the models of mass-service systems, it is required
that the simulationist is aware of the probabilistic issues of the modeled system.

7.8 Questions and Answers

Question 7.1 What are the real time and model time?

Question 7.2 What is a discrete event model?

Question 7.3 What are the transactions and resources in theGPSS simulation pack-
age?

Question 7.4 What is the event message?

Question 7.5 The event queue in a discrete event simulation package is defined as
follows (select):
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1. A queue, created in the computermemory, where the eventmessages are placed.
2. Waiting line of objects that we want to simulate.
3. Waiting line of the simulation tasks to be executed.
4. Simulated queue of objects, like vehicles on the road or people in a supermarket.

Question 7.6 Which are the basic strategies in discrete event simulation? Explain.

Question 7.7 What is the difference between object-oriented and agent-oriented
model?

Question 7.8 What is DEVS?

Question 7.9 Why it must be added an additional element select to the coupled
model?

Question 7.10 What are Petri nets?

Question 7.11 When the distributed simulation can be applied and what are the
problems that arise in such kind of simulation?

Question 7.12 Suppose that entities arrive due to the Poisson input process, to be
attended by a server. A waiting line may be formed at the server. What is wrong in
the following parameter specification?

Inter-arrival time interval: Poisson distribution with expected value 5 (minutes).
Waiting line: FIFO (First in, first out, unlimited).
Service time (of one entity): Exponential distribution with expected value 6.

Answers

Answer 7.1 The real time is the time displayed by our (or computer) clock. The
model time is one of the model variables. It represents the time advance in the model.
For example, we can simulate the evolution of a galaxy over millions of model time
years, while the corresponding computer simulation may take several minutes of the
real time.

Answer 7.2 In a discrete event model, we assume that the changes of the model
state occur in discrete time instants. These changes, called discrete events, may take
some computing time (the real time), but their duration in the model time is equal to
zero.

Answer 7.3 The GPSS transactions are dynamic moving objects like the clients in
the bank division, or cars moving over the streets. Transactions appear, move over
the model resources, and disappear. The resources are fixed model elements.

Answer 7.4 In a discrete event simulation model, the event message is a data set
that must contain the event identifier and the time instant when the event will be
executed.
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Answer 7.5 1. A queue created in the computer memory, where the event messages
are placed.

Answer 7.6 1. Activity Scanning (AS), developed in the 1950s. One of the first
implementations was the language CSL. According to this strategy, the model time
is set equal to the time instant of the nearest (time) event. Then, all model activities
(events) are scanned and the time advances to the next event.

2. Event Scheduling (ES). In the computer memory, the event queue is created.
Every component (event message) of this queue stores the time when the event will
be executed, and the event identifier.

3.Process Interaction (PI). Themodel is defined in terms of processes that can run
concurrently. The rules of interaction between processes are defined, while the speci-
fication of a process includes the necessary event scheduling. PI can be implemented
in any object-oriented programming language.

Answer 7.7 In the discrete, object-based modeling, we create objects that behave
according to the user-defined rules and execute their events in discrete moments
of the model time. The agent-based models manage objects called agents, which
are equipped with certain “intelligence.” They can take decisions, optimize their
behavior, and obey some more complicated behavior rules.

Answer 7.8 DEVS (Discrete Event Specification Formalism) is a theoretical base
for discrete event modeling and simulation. In DEVS, we can define an elemen-
tal, “atomic” models, and then use them to create coupled models. These models
can be coupled again, in a hierarchical way, to create big, complex models. DEVS
models support portability and reuse of sub-models. A considerable speed-up of the
simulations is achieved.

Answer 7.9 The select element is added to handle simultaneous events. Such events
may provoke an ambiguity in the simulations. Select element resolves potential con-
flicts and ambiguity if simultaneous events occur.

Answer 7.10 Petri nets (PNs) is a modeling tool for discrete event simulation. PN
model includes four elements: places (represented by circles), transitions (repre-
sented by bars), directed arcs, and tokens (represented by dots). In simulation termi-
nology, places are conditions, transitions are events, and directed arcs connect places
and transitions. A token in a place means that the necessary conditions hold. The
transition fires (the event is executed) only when all input conditions are met. If so,
it removes a token from each input and deposits a token on each of its output places.

Answer 7.11 Distributed simulation can be run on computers with multiprocessing
(parallel event execution on multiple processors).

To accelerate the simulation, the tasks that run concurrently have their own model
time clocks. In general, the concurrent tasks are not synchronized because some of
them may be very fast, and others need more (real) computer time to be completed.
When the concurrent tasks send messages and interact with each other, this lack of
synchronization may provoke problems in the management of the local model time
clocks.
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Answer 7.12 The inter-arrival interval for the Poisson arrival process cannot have
the Poisson distribution. This is perhaps the most common and “fatal” error in dis-
crete event simulation. The inter-arrival interval for this process has the exponential
distribution.
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Chapter 8
Self-Organization, Organization
Dynamics, and Agent-Based Model

8.1 Introduction

Amodel of the dynamics and interactions between organizationswith self-organizing
hierarchical structures is presented. The active objects of the model are individuals
(people, organization members). The parameters of an individual are ability, cor-
ruption level, resources, and lust for power, among others. Three organizations are
generated and interact with each other, attempting to gain more members and power.
The individuals appear and disappear, due to a simple “birth-and-death” process. If an
individual disappears from the model, then the corresponding reconfiguration in the
hierarchical structure takes place. The growth of organizations and macro-patterns is
the result of the activities of the individuals. The aim of the simulation is to visualize
the evolution of the organizations and the stability of the whole system. A “steady
state” for the model is hardly achieved. Instead, in most parameter configurations,
the model enters into oscillations.

The model presented here is an abstract one, not related to any real social or
political system. So, the results should be only treated as qualitative. However, these
qualitative results may provide hits and a better understanding of real organizations.
The individuals should be understood in a more general sense. These may be people,
but also groups of people, aswell as sub-organizations. So,wewill use amore generic
term entity, used in the literature on the discrete event models (commonly referred
to as DEV or DEVS in the literature). The model entities, as well as the simulated
organizations, are charged with a certain corruption level, as explained forthwith.
Thus, this kind of model depicts political, business organizations, and trade unions,
rather than welfare or benevolent institutions.

It is known that the main goal of any political party is to obtain power and nothing
more.Many trade union organizations have lost sight of their original goal (defending
the interests of workers) and have also become power-seeking structures. A social
structure acts as a new agent, using its members as nothing more than a medium to
achieve its goal. However, in thismodel, an organization itself is not an active process.
The organization macro-patterns are the results of the activities of its members.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The interaction between different social structures can be simulated, to some extent
of course, as described in Raczynski [31] (the simulation of interactions between
terrorist and anti-terrorist structures.) Here, a similar approach and tools are used.

Many existing models of the dynamics of social organizations use the agent-
based modeling (ABM). An interesting agent-oriented model, called the BC model,
can be found in the article byKrause [23]. In that model, the agent’s attributes include
“opinions,” and the interaction between agents depends on the distance between their
opinions in a non-linear way. These interactions can result in an action being taken
by the agent. Other examples of models of social structures based on the concept of
opinion interactions can be found in Latane [25], andGalam [19]. A similar approach
is presented by Chatterjee [7] and Cohen [11]. The BC model and the above works
refer to the dynamics of forming of social groups in accordance with the existing
agents’ attributes (opinions). Some quite interesting results, more closely related to
the terrorism problem, are described by Deffuant [14].

Another agent-oriented approach is used byLustick [27], where the agents interact
on a landscape. It is shown that macro-patterns emerge from micro-interactions
between agents. An interesting conclusion is that such effects are more likely when a
small number of exclusivist identities are present in the population.The simulations of
other mechanisms of clustering in agent-oriented models are described by Younger
[41], who deals with the creation of social structures in the process of food and
material storage.

Some more general concepts of “computational sociology” and ABM modeling
can be found in the article of Macy [28]. Other general recommended readings in
the field are: Bak [4], Cioffi-Revilla [10], Gotts [20], Axelrod [3], Epstein [18], and
Holland [21]. Amodel of the structure of theOsama bin Laden organization, included
in a Vitech Corporation page (link: see References, Long, [26]) is also an interesting
contribution. Other, (ABM)-oriented approach can be found in Crowder [13] and
Hughes [22]. In these publications, we can find notes on the potential advantages of
the ABM approach through a range of examples and through the identification of
opportunities in the field of organizational psychology.

A very basic and comprehensive text on the organization theory and dynam-
ics can be found in Daft [12]. The book contains classic ideas and theories, and
real world practice. The problems and questions addressed are: “How organizations
adapt to, or control competitors, customers, government, and the environment? How
to avoid management ethical lapses? How to cope growing bureaucracy? How to
manage the use of power and politics among managers? What structural changes
are needed?” among others. Throughout the text, detailed examples illustrate how
companies behave in the rapidly changing, highly competitive, international environ-
ment. However, these topics are quite different fromwhat we consider in this chapter.
Daft does not consider modeling and simulation as an important tool in organiza-
tional design. The works like that address the organizational theory just from other,
perhaps more practical, perspective. Organization theory and design are treated in a
huge number of publications, sometimes from a completely different point of view.

It should be noted that looking for a model that simulates real human behavior
is Utopian. Nobody had ever simulated a human in its complete (mental, emotional,
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physical, etc.) behavior. All that can be done is to choose some little part of this
complex system in order to simulate its possible actions. In any case, in soft system
simulation and social simulation, one can hardly ever (or never) find any proof that
the model is valid.

Interesting models and simulation experiments on the survival of societies can be
found in the literature. Cecconi [9] simulates a survival problem in terms of individual
or social resources storage strategies. Saam [34] simulates the problems of social
norms, social behavior, and aggression in relation to social inequality. Staller et el.
[39] discuss the emotional factor in social modeling. They introduce the emotions as
an essential element of models that simulate social behaviors. Stocker [40] examines
the stability of random social network structures in which the opinions of individuals
change. It is pointed out that hierarchies with few layers are more likely to be more
unstable than deeper hierarchies. The study is related to political, organizational,
social and educational contexts rather than to the destruction problem itself, but it is
clear that an unstable social structure may be much more vulnerable to attack. There
are many approaches and aspects of ecological and social models, providing certain
reproduction/death formulas. See, for example, Moss de Oliveira [29], for a model
of aging and reproduction. The problem of survival and self-destruction treated from
the ABS framework can also be found in Raczynski [32].

Adamic et al. [1] address the question of how participants in a small world exper-
iment are able to find short paths in a social network using only local information
about their immediate contacts. A contact’s position in physical space or in an orga-
nizational hierarchy relative to the target is considered. The authors discuss the
implications of their research in social software design.

From a newer publications, we should mention the book of Edmonds et al. [15]
that is a collection of interesting papers. The editors aimed to present a flyover
of the current state of the art. They divide the 24 papers into three parts: model
oriented, empirically oriented, and experimentally oriented. In the other publication
of Edmonds [16] we can find an analysis of the role and effects of context on social
simulation.

Silverman [38], presents an agent-basedmodel of a human population. Themodel
illustrates the potential synergies between demography and agent-based social sim-
ulation. Elsenbroich [17] asks what kind of knowledge can we obtain from agent-
based models. The author defends agent-based modeling against a recent criticism.
Sibertin-Blanc [37] presents a framework for the modeling, the simulation, and the
analysis of power relationships in social organizations andmore generally, in systems
of organized action. In that article, we can find a discussion of a model of bounded-
rational social actors and analytical tools for the study of the internal properties
of organizations. The model pretends to explain why, in an organizational context,
people behave as they do.

The agent-based modeling is a powerful tool, very different from other modeling
paradigms, mainly SystemsDynamics (SD). In SDwe start from the interaction rules
for themodel global variables and from the structure of the real system to generate the
system trajectories. TheABMapproach is quite opposite: the interactions between the
variables are unknown, and the model is constructed by defining the events that may
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occur in the “life” of model components, named agents. Some artificial intelligence,
like the ability to take decisions and to interact with other agents can be added to the
agent specification. However, no interactions between global variables, like the size
of the organizations, are known. The global behavior of the model, the trajectories
of the model variables, and their eventual relations are the results of the simulation.
In other words, the agents are running their events, which results in the model macro
behavior. They form a system, in which behavior is not just a sum of the actions
of individual components. This is a known property of complex systems, related
also to the property of non-linearity (see Schachter [35]). No differential equations
are defined or used, like in the SD. This is the great advantage of ABM simulation,
because not all that occurs in the real system is governed by the differential equations
(something difficult to understand by electrical engineers).

An exhaustive comparison between SD and ABM has been done by Borshchev
and Filippov [5]. An interesting suggestion included in their paper is that the ABM
can be used as an add-on, which can be efficiently combined with System Dynamics
and Discrete Event modeling, resulting in multi-paradigm model architectures. An
attempt to create an SD-like simulation tool based onABMand not on the differential
equations is presented in Raczynski [33].

8.2 The Model

Our model is rather abstract and can hardly be validated for real organization in a
quantitative sense. However, a qualitative comparison with real organization dynam-
ics may be done. For example, the oscillatory pattern of the size of real competing
political parties coincides with the results of our model. The qualitative results pro-
vided by the model can be used as hints for the predictions about the real system
behavior. Note that the members of the model organizations move over a political
map PMwe introduce here. This map is a multi-dimensional “space of ideas,” which
coordinates may represent, for example, the level of “democratic orientation,” “total-
itarianism” or “religious orthodoxy” of the moving entities. For a simpler models
this PM can be interpreted as a geographical landscape where the agents move.

The concept of corruption in this chapter should be interpreted in the very general
terms. It may be unethical/illegal behavior, or just a deterioration of certain ideolog-
ical patterns or opinions. So, the corruption level can be also associated with a spot
in the political map. The main assumption is that corrupted spots on the political
map provide little benefit to the model entities. Thus, new entities that appear on
the map tend to avoid these spots. The corruption is also a topic of some interest-
ing publications. Anand and Blake [2] consider rationalizations, which are mental
strategies that allow employees (and others around them) to view their corrupt acts as
justified. Another approach to corruption in organizations can be found in Pinto [30]
or Lambsdorff [24]. However, most of the academic papers on this subject are based
on historic data analysis or psychological and social issues, rather than modeling and
computer simulation.
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An interesting, quantitative approach to the concept of corruption can be found
in Caulkins et al. [6], related to the earlier work of Shelling [36]. The authors are
looking for a “stable equilibrium levels of corruption” in their model. The point
of equilibrium is found as a solution to an optimization problem. The decision-
makers or leaders are supposed to follow the solution to an infinite-time non-linear
optimal control problem. The model is continuous, and its dynamics is described by
ordinary differential equations. However, as stated before, in the real world, and in
particular in the dynamics of organizations with human factor, the variables hardly
obey differential equations, and sometimes even a simple logic. So, theABMmodels,
where the only thing we define are possible events in the most elemental model
components (entities, members of the organization), seem to be more realistic. As
for a possible point of equilibrium, it is rather questionable if such point can be
reached. The real organizations are in constant movement and hardly can rest in a
theoretical “equilibrium point.”

As the model is not related to any real organizations and provides qualitative
results only, it cannot be strictly validated, for example through the input-output
validation. However, taking into account the qualitativemodel behavior, and looking,
for example, at the size of the Republican and Democratic parties in the US, we can
see that the main model property (oscillatory behavior) is very similar to the reality.

The main point of this chapter is that the ABM modeling can provide interesting
hints on organizational dynamics. The model trajectories show that no static equi-
librium of the model is reached. The resulting model movement can be interpreted
as the orbital stability known from the control theory, see Weinstein [42], Chen [8].
However, remember that no differential equations are used to describe the dynamics.
So, the concepts of control theory, like stability and optimality cannot be used here
directly as done by Caulkins [6].

Our model consists of three hierarchical structures interacting with each other
over a common (abstract) region. Let us comment on some terms used here.

Entity. An individual that can be a member of a hierarchical structure.
Organization. A collection of entities, with a hierarchical structure. In this simu-

lation, no initial structure is imposed on the organizations. They are self-organizing,
starting from the “chaos” (chaotic set of entities). Each organization has a corruption
parameter, telling how corrupt or “spoiled” the organization is. The corruption level
is calculated as the weighted average of the corruption parameters of all its members.
The weight is equal to the reciprocal of the entity level in the organization. The head
of the organization has level 1, its subordinates have level 2, 3... etc.

Political Map (PM). This is one- or multi-dimensional region, where the entities
are placed. The PM should be understood in very general terms. It can be just a
geographical region, or a generalized space of ideas or political orientation. For
example, in a two-dimensional case, one axis may be a religious orientation (from
atheism to religious extremism), and the other may be the ideology (from democracy
to totalitarianism or communism).

PM Corruption Field (CF). One of the concepts implemented here, related to
the PM is the assumption that the political and social ideas are subject to wear. What
was supposed to be a good idea a hundred years ago, is hardly considered good now,
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due to the corrupted organizations that resulted from its implementation. The CF is
a function of the spatial variable (entity’s position on the PM), that tells how “good”
the spot is. It returns zero if the spot is completely spoiled and one if it is a good spot.
The value of CF is used by the entities that appear (are born, created) on the PM. The
higher the CF is, the higher is the probability that the new entity occupies the place.
In other words, the CF defines the probability distribution for the coordinates of new
entities. The value of CF on the spot on the PM may be interpreted in many ways.
It may be the ideological deterioration (obsolete and erroneous trends and beliefs)
or just a position that, after some time, no longer provides incentives and benefits to
the entity.

Time. The model time is measured in abstract time units (TU). The simulations
are run with a final simulation time equal to 2000 or 5000 TU.

Entity personal data. It is the collection of the following parameters:
Ability. This is just the ability to climb in the hierarchy of the organization. Note

that such concepts as intelligence or education do not exist in this model, being
irrelevant in politics.

Lust for power. This is the most important entity parameter. In other words, the
entity may become a leader if it really wants to, which occurs in the real political
life.

Resources. The financial or other resources that help the entity to climb in the
hierarchy.

Corruption level. This parameter takes values from honest to totally corrupt. As
stated before, the corruption level can be the result of the unethical/illegal behavior or
other causes, like the rationalization tactics used by individuals committing unethical
or fraudulent acts. The corruption level may also be interpreted in a more general
sense. For example, it may be degenerative changes in the mentality of individuals
that occupy, for a long time, a high position in the organization (mainly political).

PM coordinates. The place the entity takes on the PM. In general, it is the entity
political orientation. As stated before, this may be a scalar or a set of coordinates on
multi-dimensional PM. In this simulation experiments, the PM is two-dimensional
(mostly for the sake of image clarity) and its image on the screen is a square.

Life time. The lifetime determines when the entity dies or just disappears from
PM (natural death). Lifetime is defined as a random variable with density function
exp(70.0),

Superior. The pointer to another entity, the “boss.” The entity is one of the sub-
ordinates of the boss.

Subordinates. Pointers to the subordinates of the entity. Each entity can have any
number of subordinates. However, for the sake of clarity in the organization images,
it is supposed that the entity should have four subordinates. So, if the number of
subordinates is less than 4, the entity attempts to catch more subordinates.

No physical units for the ability, lust of power, resources, and the corruption level
are defined. All these parameters are relative, with values in [0,1].
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8.2.1 Interaction Rules

It should be noted that using ABM the only model specification we need are the
individual interaction rules, defined by the events the entities execute during their
“life.” The model instability (or rather orbital stability) is the result of the individual
actions of the entities. There are no global rules: the entities are being launched and
what we obtain is the result of their individual actions. The resulting structure of the
organizations is the result of self-organizing. An organization is just a data structure
and does not take any actions of its own. However, organizations behave as if they
had a specific goal: to grow and keep growing.

The simulation program has been coded using the Bluesss Simulation System.
Recall that the main concepts of Bluesss are processes and events (see Sect. 8.3). A
process is a template, like a class declaration in object-oriented languages. At the
runtime objects (entities) are generated, being instants of the process declaration.
Within a process, a several events are declared. The event execution is controlled by
Bluesss package, according to the clock mechanism and to the internal event queue.
For more detail consult http://www.raczynski.com/pn/bluesss.htm .

The model includes two processes: entity andmonitor. Note that the “organiza-
tion” is not represented by any particular process; it is just a data structure. So, the
organization itself has no “awareness” and does not take any actions. On the other
hand, for an external observer, organizations behave as systems with their own goals
(to grow and to gain power). The evolution of the organization parameters is the
result of the simulation. The only rules of interaction are those of the members.

Model entities are created by the monitor process. After being created, the entity
occupies a place on the PM, due to a simple rule: the higher is the corruption level
on the spot, the lower is the probability the entity will appear there. The monitor also
initializes three organizations, marking three (randomly chosen) entities as organi-
zation heads. In this chapter, the growing organizations have a simple hierarchical
structure; each entity can have several subordinates which, in turn, have their own
subordinates and so on.

The interaction rules are defined by the actions taken by the entities, defined by
the following events:

Seek for subordinates. At the very beginning, only the organization top entities
(heads) seek for subordinates. This is done repeatedly, until the entity has gained
four subordinates. Each subordinate starts to seek for their subordinates, and so on.
Any entity that is the head of the organization or has its superior and less than four
subordinates does it.

Die. This makes the entity disappear from the PM. The event occurs at the end
of the entity life time. If the entity was a member of an organization, then one of its
subordinates (say X, if any) takes its place. A subordinate of X takes the place of X
and so on, iteratively. Another possibility of the entity disappearance is the result of
an action of one of its subordinates (the climb event).

Climb. The entity makes disappear his superior and takes its place. A subordinate
of the entity takes its place and so on, iteratively. To be able to climb, the sum of the
entity lust for power, ability, and resources must be greater than the same sum of its

http://www.raczynski.com/pn/bluesss.htm
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superior. As the entity superior may change, this attempt is repeated every 30 TU, in
average (exponential distribution).

Move. This is a slow random walk of the entity over the PM. The entity changes
randomly its position by a small amount. The event is repeated every TU. There are
also two modes of additional movement:

Attractmode: the entity is being attracted by the headof the organization it belongs,
and by its boss.

Escape mode: the entity escapes toward the less spoiled spots.
These two modes are enabled by the logical variables attract and escape, respec-

tively.
Propagate. The head of each organization propagates his own corruption level to

all members of the organization. Each entity changes its corruption level as follows:

entitycorruptionlevel = 0.1*headcorruptionlevel + 0.9*entitycorruptionlevel

This event is repeated each time unit. So, the corruption parameter within the
organization becomes more uniform.

Modify PM. The entity changes the local value of the corruption field CF. The
whole PM region is divided into 900 (30x30) square elements, each of them with its
corresponding CF value. In this event, a factor value is calculated using the following
formula:

F = (corruptionlevel/level + orgcorr)*0.04,

Where corruptionlevel and level are parameters of the current entity, and orgcorr
is the corruption level of the organization it belongs to. So, the entities with lower
level value have less influence on the CF value (the head level is equal to 1, its
subordinates have one level 2, and so on). The entity repeats this event each 0.5-time
units.

In such way, some parts of the PM become corrupted. The value of the CF is
truncated to [0,1]. On the other hand, the CF recuperates constantly. The monitor
process augments the CF in each spot by 0.015, each time unit. All this makes the
CF change constantly, depending on how corrupt is the organization that occupies
the spot. Recall that CF, after being normalized, is used as the probability density
function for the appearance of new entities. Note that this recuperation process is in
some sense the reflection of the lack of historical memory in the real societies. It is
well-known fact that the societies learn nothing from their history. Thus, the ideas
that failed some time ago, become attractive again after some time.

The agent parameters are not taken from any real organization, and the model is
rather abstract. However, observe that the above actions of the agents are similar to
the activities of members of many real organizations.
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8.3 BLUESSS Simulation Package

The Bluesss package (Blues Simulation System) was used to simulate the model.
Let us recall the main features of the package. The main features of the package are
as follows:

Object-oriented simulation
Continuous/discrete models
Clock mechanism
Inheritance
Easy to use, clear process/event structure
Low cost

BLUESSS runs with the Embarcadero C++Builder. As the Bluesss code is trans-
lated to C++, the package is extremely flexible; it can use all the features available
from the C++ code.

The Bluesss source code is converted into C++, then compiled and executed. The
resulted exe file is a stand-aloneWindows application. For more information, consult
http://www.raczynski.com/pn/bluesss.htm. The general concept is to declare a series
of processes and, inside each process several events that can occur during the “life” of
the corresponding object. The objects are the instances of process declarations. In the
following, by a process we understand an instance (object) created according to the
corresponding process declaration. For example, if we declare a process “client” as
a client at a bank, then we can generate and launch thousands of clients, each of them
running its own events, such as “enter the bank,” “join a waiting line,” and “occupy a
teller.” Each event has a body that may include a code for any, simple or complicated,
algorithm. Therefore, the user creates objects that represent the model agents and
equip them with a desired behavior. This makes Bluesss a good tool for agent-based
modeling. Inside the process declaration, there are several event definitions. The
events can be scheduled for their execution, which is controlled by the Bluesss clock
mechanism.

As the simulation process passes through the C++ compiler, we can use any fea-
ture that is available from C++Builder. Each object can interact with other objects,
change its own attributes or those of other objects, execute a complicated compu-
tational procedure, execute an external program, display an image, sing a song, or
communicate by the internet. These are features needed in agent-based simulation.
Such actions as making decisions about where and when to migrate, or following
the crowd (gregarious) instinct can be simulated. To run models like that described
in this paper, any of the software tools mentioned in the previous section can be
used. However, we used of Bluesss not only because this is a software developed
by the author. This tool is perhaps not such user-friendly as other packages because
it requires some abilities in C++ programming. On the other hand, it is extremely
flexible and permits the use of anything available from C++. This way, we can insert
into the events executed by the generated entities a simple, as well as complicated
behavior algorithms. There is a similar tool named PSM++, based on the Delphi
package. The only difference is that in PSM++ the code of the event body if written

http://www.raczynski.com/pn/bluesss.htm
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in Delphi Pascal instead of C++. Some examples of PSM++ applications in artificial
society simulation can be found in [31, 32].

8.4 Simulations

At the beginning of the simulation run, one instance of themonitor process is created
and activated. It creates 1000 entities randomly located over the PM. For each entity,
its parameters are being defined and the events seek for subordinates, move, modify
PM and climb are invoked. The entity event die is scheduled to be executed at the
actual model time (when the entity was created) plus the entity lifetime. If the entity
has disappeared earlier, this event is ignored. In the monitor process, the necessary
events are initialized, such as initiating organizations (mark the heading entities)
organization state display, and CF recovery. The monitor process also stores the
model state parameters for further analysis and trajectory plotting. Then, all other
events are executed automatically. The organizations grow, entitiesmove and execute
their own events. Figure 8.1 shows a typical image of the PM at the initial stage
(growing organizations).

Fig. 8.1 Initial simulation stage: The PM with growing organizations
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Fig. 8.2 The PM after 500 model time units

The three organizations are marked with circles, squares and triangles, respec-
tively. Small gray points represent new entities, not affiliated yet. The lines are links
between superior and subordinate. The big figure is the organization head, and the
size of the figures decreases for entities with descending level inside the organization.
The situation after about 500-time units is shown in Fig. 8.2. The “good” spots are
shown as light blue, and the spoiled areas are in dark.

The monitor process shows the situation on the PM with small time steps, pro-
viding an animated image. It is a nice program feature, where the entities move over
the area and the “spoiled” and “good” PM regions change color.

As stated before, the experiments provide only a qualitative information. The
model behavior is not easy to predict from the specifications of themodel components
and interaction rules. There are some possible scenarios. One would expect that
the size of the organizations as well as the other variables will change chaotically.
Another possibility is that one or two organizations will collapse and, after a long
simulation time, only one, the strongest “winning” organization will remain. we also
may suppose that the model reaches some kind of equilibrium. The experiments
show that none of the above occurs. After a short initial transitory period, the model
enters in quite regular oscillations. No “steady state” is reached. Figure 8.3 shows
the size of the three organizations, in relation to the size of the whole population. The
shape of the curves resembles interference between signals with slightly different
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Fig. 8.3 Relative size of organization 1, 2, and 3

frequencies. In our model everything is stochastic, so each simulation is different.
However, this oscillatory nature of the model can always be observed. Recalling
concepts of stability of the control theory, the model seems to be orbitally stable, see
Chen [8], Weinstein [42].

The attraction mode seems to stabilize the organizations. Figure 8.4 shows the
image of the organizations after 500 time-units. In Fig. 8.5 we can see the changes
in the relative organization size with attraction mode enabled. This mode makes the
organizations much more separated and stable.

With the “escape” mode enabled, the entities move faster, and the changes in the
PM stat are also rapid. In this case, the oscillations are greater, as shown in Fig. 8.6.
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Fig. 8.4 The organization image, attraction mode ON

8.5 Conclusion

The main conclusion is that no steady state is reached by the model and that the
organizations are in permanentmovement. Thismovement, after sufficient simulation
time, is oscillatory, like the stable cycles in non-linear, orbitally stable dynamic
systems (Chen [8], Weinstein [42]). The active components of this model are the
individuals called entities (the monitor process is only an auxiliary component). The
entities are “alive,” executing their events. Though the decisions they take are very
simple (where to appear on the political map, climb, etc.), they can be considered
as agents of an agent-oriented simulation. Both object- and agent-oriented models
provide interesting qualitative results that can be used as hints while dealing with the
reality. As mentioned in the introduction, the historical data from the real world are
similar to those obtained from our simulations.

The important advantage of such simulations is the possibility of obtaining results
that can hardly be reached by other (analytical, sociological) methods. For example,
how can be seen from the model description without simulating that the organization
sizewill oscillate with a period of about 250-time units (Fig. 8.3)? Another advantage
of the tool used here (Bluesss) is the open nature of the model. New events can be
easily added to the entity process, reflecting a possible entity behavior and resulting in
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Fig. 8.5 Relative size of the organizations, attraction mode ON

other, sometimes unexpected behavior of the organizations. This may be the topic of
further research. Such research may be a statistical analysis of the simulation results
and the series of simulation experiments with some kind of sensitivity analysis with
respect to the properties of the entities defined in the model. This, however, should
be done after defining a multi-dimensional and more realistic political map and
greater,may be variable, number of created organizationswithmore flexible, variable
structure. Some relation to terrorists and other illegal kinds of organizations may be
pointed out by combining this model with, for example, that presented in Raczynski
[31].
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Fig. 8.6 Relative size of the organizations, escape mode ON

8.6 Questions and Answers

Question 8.1 The model discussed in this chapter can be characterized as: (select)
1. System Dynamics model
2. A model with distributed parameters
3. An agent-based model
4. A celular-automata model

Question 8.2 What is the political map (PM) in the model presented in this chapter?

Question 8.3 What modeling/simulation tool is used here?

Question 8.4 What is the corruption field?

Question 8.5 What is the corruption level of an agent?
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Question 8.6 How the organizational structure is defined?

Question 8.7 The organizations are defined at the beginning of the simulation, or
they grow during the program run?

Question 8.8 What is the main result and conclusion from the simulations?

Answers

Answer 8.1 3. An agent-based model

Answer 8.2 Here, the political map is the region where the agents move. It can
be interpreted as a geographic region, as well as certain more abstract “space of
ideas,” where the coordinates the degree of, for example religious ortodox, socialist,
ecologist etc.

Answer 8.3 The BLUESSS simulation package, see Sect. 8.3

Answer 8.4 The corruption field is a function of the coordinates at the PM (agent
position) that tells how “good” or “spoiled” or “corrupted” is the spot in the PM.

Answer 8.5 The agent corruption level is one of the agent’s attributes. It takes values
between “honest” and “totally corrupted.”

Answer 8.6 Each agent has several subordinates (pointers to other agents), and the
pointer to its superior agent.

Answer 8.7 No organization exists at the very beginning. The organizations grow
during the simulation, as a self-organizing process. This is the result of the actions
(micro-behavior) of the agents.

Answer 8.8 The main result is that the organizations almost never reach any steady
state or equilibrium. The agents constantly move over the PM, and the organization
size enters in a well-defined oscillations. The influence of agent parameters and
behavior patterns on the model macro-behavior is discussed.
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Chapter 9
The Space of Models, Semi-Discrete
Events with Fuzzy Logic

9.1 Introduction

This chapter contains a report about some proposals and new insight on modeling
and discrete event simulation. Thus, it is not written as a textbook, where the basic
known facts are explained. Thus, the section “Questions andAnswers” of this chapter
is reduced, compared to that of the first chapters of the book.

To compare models, we should know how far is one model from another. So, we
must define the distance between models. Such distance induces a topology in the
space of models. Once we have a topology, we can verify if a sequence of models
converges, when a model parameter approaches a given limit, and verify if the limit
exists at all. This may also be useful in validity verification for some “idealized”
models and may help to avoid situations when the limit is tied to a singularity in the
model space.

Our distance is based on the Hausdorff set-to-set distance. This way we can
compare models, analyze convergent sequences of models and handle the mappings
from parameter space to the model space. The continuity of such mappings can be
investigated. This is useful when selecting a simplified model specification, deciding
if a model component can be removed or the model structure simplified.

Let recall the definition of the Hausdorff distance between sets.
Consider two non-empty subsets X and Y of a metric space. The Hausdorff

distance between X and Y is defined as follows:

dH (X,Y ) = max

{
sup
x∈X

inf
y∈Y d(x, y), supy∈Y

inf
x∈X d(x, y)

}
, (9.1)

where sup represents the least upper bound, and d(*,*) is the distance between two
points. The Hausdorff distance permits to use the concept of continuity of set-valued
functions. We say that a mapping from the real line to the space of closed subsets of
Rn is continuous in Hausdorff sense if it is continuous in the sense of the Hausdorff
distance (in the topology induced by the Hausdorff distance).
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If we do not impose some additional conditions, d is not a distance, but rather a
semi-distance in the given set of sets. A simple example is the distance between an
open set U and its closure W . According to the definition, d(U,W ) = 0, but the two
sets are not equal to each other.

Another definition that we will need is a distance between two functions of time.
Consider the set G of all integrable functions [0, T ] → R, where [0, T ] is a closed
interval of real numbers between 0 and T . The distance we will use is defined as
follows:

h( f, g) =
∫ t

0
( f (y) − g(y))2dy, (9.2)

where f, g ∈ G.

9.1.1 Distance Between Models

There are many ways to compare models. One could say that two models are similar
to each other if they have similar structures, use similar distributions of random
numbers or reveal similar behavior of the state variables or of the output variables.
Since we want to compare models of different structures or models with variable
structures, the model structure can hardly be used as a factor in the definition of
the distance. Two models with very similar structures can behave in a very different
way, and even small changes in the random variable generator inside the model can
imply big changes in simulation results. Another way to define the distance is to treat
models as “black boxes” and suppose that the observer can only measure the initial
conditions, and input and output variables. We use this approach in the proposed
distance definition.

Here, we will use the simplest, though limited concept of the distance between
models. Consider two models that start from the same initial conditions, run over the
same model time interval, and produce results in the form of one or more functions
of time. The distance can be calculated with the following assumptions:

Case 1. Both models provide N plots of functions of one variable, in response to
the same input signals. Then, the distance between models is calculated as the sum
of distances between corresponding functions, calculated according to (9.2).

Case 2. If the models produce a series of functions of multiple variables, calculate
the Hausdorff distance between the multi-dimensional surfaces (sets of points) given
by the plots.

Case 3. The models are stochastic, and produce plots like in case one and two,
different in each run. In this case, calculate the corresponding probability density
function(s) and calculate the distance in the similar way as in case one and two.
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Fig. 9.1 The probability density function of the length of a queue

Figure 9.1 shows an example of a density function that can be used to model
comparison. This is the probability density function for the length of a waiting line.
Vertical axis is the density value, as function of the queue length and the time.

9.2 Strictly Discrete Event Model

Strictly discrete events. In the strictly discrete event model, the actions of model
components occur in some time instants (discrete events). In Chap. 7 we discuss
such kinds of models. Let’s recall here some basic concepts.

The commonly used discrete event simulation like Arena, Promodel, or Simul8,
uses the strictly discrete event model. A theoretical base for such kind of models has
been formulated in theDiscreteEvent SpecificationFormalism (DEVS), seeSect. 7.4.
Using DEVS, one can construct complex models from simple “atomic” models, and
couple such models in a hierarchical way. The definition and applications of DEVS
may be found in many sources, see, for example, Barros [1], Chow [2], Zeigler [15],
see Chap. 7. The basic DEVS concept is the model specification. The specification
elements are themodel input space, the state space, output space, internal and external
state transition functions, and the output function that defines the model output as a
function of the total model state. This defines an elemental “atomic” model. Model
coupling is an important topic in DEVS theory, which provides the basic theoretical
frame for complex model creation.

Both the simple discrete event simulation, widely used from the early 1960s, and
the DEVS formalism, represent the common platform for many applications and
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lead to fast implementations. However, in this approach some problems arise. While
coupling small “atomic”models, a new element called selectmust be added to handle
the execution of simultaneous events, if any. Select resolves possible conflicts and
ambiguity in simultaneous event execution, see Saadawi [11]. The necessity for the
select element needs special treatment that is the topic of serious research work, see
sources cited above. Observe that

1. Discrete events do not exist in the real world.
2. The select component has no equivalent in the real system being simulated.

This is an artificial item added to the model.

This chapter is just a proposal to give the simulated events certain duration and
to use fuzzy logic to represent the state of model components, see Zadeh [14].

Recently, several papers on fuzzy discrete event simulation appear. Perrone and
Zinno [9] discuss the problem of processing fuzzy data within a discrete event sim-
ulation process. Lin and Ying [6] present a generalization of DES (Discrete Event
Simulation) to fuzzy event systems. The model observability is discussed and some
medical applications pointed out. An application of fuzzy logic in uncertainties,
vagueness and human subjective observation, and present fuzzy version of DES is
also discussed.

Du and Ying [4] discuss vagueness and imprecision concerning states and event
transitions of DESs where the membership grades are computed via fuzzy logic.
An application to computerized human immunodeficiency simulation is presented.
Zhang and Tam [16] use fuzzy logic to treat uncertain information input, vagueness,
imprecision, and subjectivity in the estimation of activity duration, especially when
insufficient or no sample data are available.

An application of discrete event simulation with fuzzy logic applied to production
control is also discussed byDassisti andGalatucci [3]. They propose a “pseudo-fuzzy
discrete simulation,” where the fuzziness is traced through a set of several classic
simulations. The idea is to use the simulator as a fuzzy operator that includes some
stochastic functions. Sadeghi et al. [12] propose to integrate the classic discrete
event simulation with fuzzy logic. The authors point out that their approach may
increase the accuracy of the simulation. This can be achieved by capturing imprecise,
subjective, and linguistically expressed knowledge in the simulation inputs using
fuzzy numbers.

Santucci and Capocchi [13] deal with an approach based on the use of Fuzzy Con-
trol Language allowing to facilitate the modeling and simulation of Discrete Event
Systems involving uncertainty. The main contribution is to integrate the proposed
language with the DEVS formalism.

The main objective of this chapter is to show an alternative approach to event
simulation and to the treatment of simultaneous events. This is a methodological and
conceptual framework rather than a proposal of a practical implementation. In the
classical discrete event model, an event executes in a specific time instant, changing
the state of the model. In our approach the event is a process that has a finite duration.
Moreover, the event is something more than a change of the model state. Our event
has, in addition, a goal to achieve (seize a server, enter a buffer, etc.). The goal
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achievement is a fuzzy variable that reaches the value of one when the goal has been
reached. The event terminates its activity when the goal has been reached, or when
its pre-defined duration period has elapsed and the goal variable is not growing.

9.3 Finite-Time Event Model

In the exact discrete event models, the events occur in discrete time instants. Each
event executes a piece of code that may change its own state or the state of other
components. Here, we assume that the model events are executed over a finite, non-
zero time interval. The time interval of an event may be very small, resembling the
discrete event models, or quite large. This type of event simulation will be called
hereFinite-TimeEvent Specification (FTES). The simulation that implementsmodels
with very short event duration (compared with the simulation final time) is called
semi-discrete event (SDE) simulation. Consider a model with only one event, which
starts at model time zero and terminates at the simulation final time. Such event may
describe a continuous model defined by a set of differential equations. So, there is
no conceptual difference between continuous and semi-discrete, SDE event model.
However, we do not consider events with execution time equal to zero.

To define a simulationmodel, wemust define its components, resources, and inter-
action rules. Here, we consider models with an object- or agent-oriented simulation
paradigm (Fishwick, [5]). Roughly speaking, the model components are active enti-
ties that are created, and then go through the model resources executing their events.
The entity is an instant of a generic entity class, where the entity events are declared.
Each event activation occurs due to the execution of a corresponding event message.
The simulation program manages the event message queue according to the pre-
defined clock mechanism. This is nothing new, this paradigm has been established
decades ago, see, for example, O’Keefe [8]. So, events are actions of the model
entities. The event message contains the event identification (the entity class, entity
instant, event id and the event start time). Here, we do not enter in detail of a particular
software implementation, rather treating with concepts of the FTES.

In addition to the event duration parameter (always non-zero), we require that
every event represents an action that must have a well-defined aim or event objective.
The event specification must include an algorithm that intends to achieve the aim
of the event. The result of this action is measured by an event attribute that starts
with value zero (not achieved) and reaches one if the aim is fulfilled. This attribute is
interpreted as a fuzzy logic variable, which tells us the “degree” of the aim fulfillment.
The objective may be achieved or not. So, another attribute of the event must be the
abandon switch and the abandon function. If the abandon switch is set equal to 1
(true), then the event action stops, and the abandon function is executed.
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9.3.1 The Chicken Game

In the game called Chicken, two people, say Jim and Fred, drive their cars toward
each other from opposite ends of the road. If one of them swerves before the other,
he is called a chicken, and the other wins. Of course, if neither swerves, they will
crash. So, the outcomes may be: 1. Fred wins, 2. Jim wins, 3. The cars crash.

In the model used here, we do not pretend to exactly simulate what appears in
the real game. This is just a simple example used to investigate the convergence of
a sequence of models in the model space.

The model rules are the following:
Car attributes:
Position(x, y), where x is the distance, y is the deviation from the initial straight

line.
Velocities vx and vy , in the direction x and y, respectively.
Fear factor fg . This is the fear growth rate. At certain fear threshold ft , the player

starts his decision event.
D—the duration of the “decision event,” that is, the event of decision-making
The initial positions for Fred and Jim are (−1, 0) and (1, 0), respectively. Initial

velocity of Fred is positive, the velocity of Jim is negative (they are going toward
each other).

After the game starts, the fear level of the two players begins to grow, and their
distance decreases. For each player, if his fear reaches the threshold level, he triggers
his decision-making event. During this event, the driver observes the movement of
the competitor. If the other player quits (his y coordinate becomes different from
zero), the driver follows with the straight movement. If the other player did not quit,
the driver may take the decision to turn out. A “human factor” is taken into account.
This means that the driver needs some (may be very small) time interval to decide if
he quits or not. The decision is taken at some time instant inside the decision-making
event. In addition, due to the human factor, the decisionmay bewrong or not be taken
at all. This means that the driver may quit even if the other did, or he can follow the
straight movement when the other does the same. Figure 9.2 shows the increasing
fear and the decision-making event according to the car movement. The endpoint is
where the possible crash may occur.

The decision event is an approximation of a continuous process. However, in our
(recent) computers nothing is continuous. Thus, the event is executed in some small
time steps, according to the following algorithm.

At each time-step, the player does the following:
1. If the other player quits, the player goes ahead. If the player velocity vy is

positive, it can be updated to be zero and the car follows the straight line. This occurs
with probability equal to 0.1 (in each step).

2. If the other player did not quit, the actual player quits with probability equal to
1/n at each time-step (n is the number of time steps).

Note that the last decision has the probability 1/n in each step, which means
that the decision can be taken at some moment inside the decision event. The total
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Fig. 9.2 Car movement, increasing fear and the decisions event

probability of taking the decision is approximately equal to one. As for the point 1,
there is some uncertainty about the decision. It may result to be mistaken, due to the
human error.

If the two players have different fear factors or fear thresholds, the player that first
enters the decision event will quit with high probability. This probability decreases
if the decision events overlap. Here, we focus on the case when the two players
have identical parameters. This means that the decision events start and terminate in
the same time instants. With such, strictly overlapping events, the final outcome is
uncertain.

Assume the following model parameters (equal for the two players):
Absolute initial velocity vx = 0.1, vy = 0
Fear grow rate fg = 0.1
Fear threshold ft = 0.6
Decision event duration D = 0.5
Number of steps in decision event n = 50
The simulation of the carmovement is rather trivial andwill not be discussed.What

is relevant here is the decision event execution and final outcome. The simulation
with the above parameters provides the following results:

Crash probability: 0.150
Fred wins: 0.424
Jim wins: 0.407
Crash due to false turn decision: 0.02
These are results obtained for the average the outcome from 5000 repetitions of

the simulation run.
As for the reproducibility of the simulation, it should be mentioned that the sim-

ulation program has been coded in the BLUESSS simulation language see
http://www.raczynski.com/pn/bluesss.htm .
The simulation is rather simple. It consists in simulating the movement of each

car in one or two directions, with uniform movement and detecting the crash.

http://www.raczynski.com/pn/bluesss.htm
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Table 9.1 Simulation results with D → 0

IntervalD Crash% Fred wins% Jim wins% Crash%(bad turn)

1.0 15.0 42.4 40.7 2.0

0.5 16.2 41.0 40.9 1.9

0.1 16.1 42.3 40.0 2.0

0.01 15.5 40.9 41.5 1.8

0.001 15.8 40.4 42.5 2.0

0 34.1 23.1 22.0 19.7

Observe that looking at the rules of the game, we can see that the outcome does not
depend on the decision event duration D. Indeed, running the same experiment with
different values of D, we obtain the same results (up to small random fluctuations of
the statistics). Now, suppose that D = 0. Taking this value, the model operations do
not change. Simply all n steps of the decision event are executed at the same model
time instant. The time advance step inside the event becomes equal to zero, but there
are still n steps, so the algorithm cannot stop in a “zero-advance” loop.

Consider a sequence of models with D approaching zero. As mentioned before,
the “limit model” with D = 0 is the discrete event model with simultaneous events.
It might appear that the final outcome for the limit case D = 0 should be the same.
However, this is not the case. With D = 0 we obtain the following:

Crash probability: 0.341
Fred wins: 0.231
Jim wins: 0.220
Crash due to false turn decision: 0.197
The other results also reveal discontinuity at D = 0, as shown in Table 9.1.
Now, define the distance between models with different values of D. In this case,

this is rather trivial; we take the difference in the model outcome, namely the average
of crash occurrences. Using this distance, we can see that there is a singularity in the
space of models (with different D), at the point D = 0.

Figure 9.3, as well as Table 9.1, show the simulation results with D tending to
zero, including the limit point D = 0. It can be clearly seen that the last point (discrete
event model) represents a singularity in our model space.

9.3.2 Semi-Discrete Model Specification

Consider the following event specification. Here, a simulation that implements mod-
els with very short event duration (compared with the simulation final time) is called
semi-discrete-event (SDE) simulation.

event = {ED, TG, AC, AV, AS, AA}
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Fig. 9.3 Model outcome with D approaching zero

The attributes are as follows:
ED—event duration time, greater than zero
TG—event objective
AC—event action: a function or algorithm that is executed in order to achieve the

objective
AV—a fuzzy logic variable with values between zero (no success) and one (the

objective achieved)
AS—abandon switch. It is set to one (“ON” state) when the event objective cannot

be reached.
AA—abandon action. This action is executed when the AS is ON.

Note that this is not an event message, so the event start time is not specified here.
The above specification describes an event, and not the entity. Any FTES entity can
have its own attributes, like the entity state XE, for example “on service (XE = 1)”
or “out (XE= 0).” The state of the whole model is visible from the AC algorithm, so
the actions may be modified according to the state of other entities. The FTES events
resemble the “time events” defined in the classic discrete event simulation. Note that
during the simulation entities interact with each other. In particular, an entity event
can change the state of another entity and generate new event messages in the event
queue. As for the fuzzy variables, they have been used in some discrete event models,
see, for example, Lin and Ying [6].

Recall that the discrete event strategy also considers the state events that are
invoked due to the changes in the model state. In FTES there is no need to introduce
a different mechanism for the state events. To execute such events, we can create a
“supervisor” entity object with only one event that starts at the simulation start time,
and ends at the simulation final time. The component AC of this event receives the
information about the model state, so it can trigger (put into the message queue with
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immediate event start time) an event of any other entity. In this way, we get a more
unified event simulation paradigm. The “supervisor” entity may also perform other
actions, like report generation, warning or error message display, etc.

In the exact discrete event simulation, simultaneous events occur in exactly the
same model time instant. Let us consider a sequential, one-processor implementa-
tion. The multi-processor parallel execution would rather be realized as distributed
simulation, which is not a topic of this chapter. So, the real time of the execution
cannot be the same, and the events must be executed in certain sequence. For exam-
ple, let the event A be “end service and unoccupy the server” and the event B be
“occupy the server” (by other entity). Suppose that the server has no buffer where the
entering entity can wait. If the hardware executes first the event A, and then B, the
entity occupies the server. However, if the sequence is B-A, then the entering entity
(of event B) cannot occupy the server; it may be lost, or an error may occur. This is
something that does not happen in the real system. To manage such situations and
other ambiguities in event execution, in the DEVS formalism the select element has
been introduced.

Now, consider the corresponding FTES model. Let A and B be simultaneous
events with identical start time and duration interval. The aim of the event B is to
occupy the server, and that of event A is unoccupy it. In FTES we have no ambiguity.
When the event B starts, its occupation fuzzy variable AV starts to grow. Simultane-
ously, the AV variable of event A decreases. Finally, AV of A reaches zero, and AV
of B reaches 1. The events terminate with well-defined final model state.

There may be other situations where the final state is ambiguous, even in FTES
simulation. If, for example, two identical simultaneous events intent to occupy the
same server, then the result may depend on the implementation. Observe, however,
that this ambiguity is originated in the real system, and it is not the result of the
model event execution. In other words, the ambiguity of the real system cannot be
eliminated, and should not be eliminated by any artificial model component defined
by the user.

The FTES entities run simultaneously in themodel time. So, it is difficult to define
a unique program flow diagram or algorithm that treats simultaneous events. To see
how this may work, we must define some event execution rules. A possible (and not
unique) rule definition may be as follows:

1. When the event starts, its achievement variable AV is set equal to zero, the
abandon switch is set to zero, and the AC algorithm is invoked. AC runs and changes
the value of aim achievement variable AV, due to the objective fulfillment. It also
may perform other actions.

2. When the event execution time reaches its duration time then:
(a) if the value of AV does not grow or reaches one, the event terminates.
(b) if the value of AV is growing, then the event execution continues, until AV

reaches one or stops growing.
3. The event execution terminates when one of the following conditions occur.
(a) the AV variable reaches one.
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(b) the value of AV is less than one, it does not grow and the event execution time
exceeds the event duration.

(c) the AS switch is set to 1.
4. If the event terminates for any reason and the value of AV is less than one, then

the abandon action AC is invoked.

Consider a simple event, which goal is to occupy a server (a model resource). The
AC algorithm may be defined by the following function (SO is a fuzzy logic variable
that represents the server occupation). AV variable is the actual server occupation by
the current model entity (a client that intends to occupy the server).

AV = (t − t0)/ ED when AV and SO are less than one. ED is the event duration.
AV stops to grow if SO reaches one (i.e., when the server becomes completely

occupied by another entity)
In the above formula, t is the model time and to is the event starting time. If two

entities start to occupy the same server, then the server occupation SO is given by the
fuzzy OR operator of the two AV variables. In the case when only one entity intents
to occupy the server, we have SO = AV.

Other situations similar to the DES simultaneous events may occur when the
events overlapbut are not exactly identical. In these cases, FTESdoes not generate any
ambiguity. The examples of the semi-discrete overlapping events are given further
on.

9.3.3 Model Coupling

Model coupling is not the main topic of this chapter. However, let us make some
remarks on this. A FTES model consists of one or more entity class declarations.
Using the object-oriented programming terminology (like C++ or Delphi), each class
has a set of public and private variables (attributes), and one or more methods. Due
to the class declaration, the corresponding objects are generated and activated at the
runtime, being the FTES model entities. The methods represent the events that may
occur in the entity “life” inside the model.

The clock mechanism and event queue management is a pre-defined task of the
simulation system, not of the user model definition. The “supervisor” class is just one
more class of the model, with only one event method and only one instant created at
the runtime. Note that a FTES event is not executed in one discrete time instant, but
it must run over certain model time interval, like a continuous process. This can be
done, but the necessary code will be a little bit more complicated compared with the
classic DES simulation.

Now, consider two or more FTES models. To couple the models, we can create
a new program that simply includes all class definitions of the original models (the
sub-models). Doing this, we obtain a model with two or more supervisor classes.
As these classes have the same structure as any other model class, we can treat
them as a “regular” model entity specifications. This means that we need a new
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“supervisor” entity. This entity will activate the supervisor entities of the sub-models.
Now, supervisor entities of the sub-models may start at any time instant, different
from zero, with duration ED different from the whole simulation period. Moreover,
these entities can be activated several times, and two or more sub-models of the same
type may run concurrently. Repeating this procedure, we can create a hierarchy of
models, including the previously defined ones.

In such way, FTES provides a unified frame for both semi-discrete events and
continuous simulation, which can run concurrently as the sub-models of the same
simulation program.

9.4 More Examples

It should be noted that the model proposed here is a conceptual and theoretic one,
rather than a ready-to-implement simulation scheme. The use of semi-discrete events
may perhaps eliminate the problem of simultaneous events of DEVS. The term Semi-
Discrete Event (SDE) suggests that the event duration is small compared to the total
simulation period. In fact the event can have any duration. Here, we focus on SDEs
because the examples and most of the other issues in this chapter refer to models
normally treated with the discrete event (of zero duration) simulation.

As for the state of the model component and the rules of interaction, we use the
fuzzy set logic (Zadeh [14], Novak [7]).

The SDE event message in a possible implementation should contain at least the
information about the event identification and its start time. The aim of the event is
an important item, given in the event description. The event can terminate if one of
the following conditions is fulfilled.

1. The aim variable is equal to one.
2. The aimvariable does not increase at themoment and the event duration expires.
3. The abandon switch AS is set equal to 1, possibly as a result of the action of

other entity.
In the examples below, the objective of the events TG (see Sect. 9.3.2) is defined

for each event, e.g., “seize the server,” “release the server” or “exist.” The latter
target refers to entities that enter the model or disappear. The event action AC is the
process of seizing the serve, entering the model, etc. These actions result in changes
of the corresponding target achievement variable AV, supposed to have a linearly
increasing or decreasing value.

9.4.1 Example 1: One Server

Suppose that, according to our semi-discrete event rules, an arriving entity that is
seizing a server will do it until it succeeds, or until the arrive event expires without
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improvement of the aim variable. Below, the entity X is arriving and the entity Y is
the entity actually on the server, leaving it.

The state of the entity contains a fuzzy logic variable, with values inside the
interval [0, 1]. It may be “on service” (XE = 1) or “out” (XE = 0). It also can be
equal to, say, 0.7 when the state is uncertain, most likely to be “in service.”Moreover,
as will be shown later on, the entity may occupy one or more servers at a time, with
occupation values being, for example 0.4 and 0.6, respectively (two server cases),
defined by two state components, XE1 and XE2.

The SDE events may be separated in time from each other, or overlapped. We will
call SDEs being strictly simultaneous if they have the same start time and duration.
The two or more SDEs will be called simultaneous if their execution periods overlap.
Let us use the fuzzy logic and permit that the server changes from “busy” to “free”
continuously, passing through all intermediate state values. The state parameter of
the server is given by the function free(time). This may be any monotonic function
of time, changing from 0 to 1. The entity observes the server, and occupies it due to
the function seize(time) being, in this case, equal to 1 − f ree(t ime). The interac-
tion rules of the model are as follows. The entity arrives at t ime = T S1 and starts
observing the server. If after T S1 + T 1 the entity state is “out,” the entity terminates
its activity. However, if between T S1 and T S1 + T 1 the server begins to change
its state to “free” ( f ree(time) > 0.0). The entity occupies the server to the same
degree as it becomes free. The entity remains active as long as it occupies the server
(with fuzzy occupation > 0.0), until it reaches the state “on service” (XE = 1).

Let the two events are strictly simultaneous. No ambiguity exists in this case,
see Fig. 9.4. The arriving one is Entity X, and that which releases the server is
Entity Y. The horizontal axis is the time, and the shadowed areas show the fuzzy
logic values between 0 and 1. In accordance with the logic of the real system, no
ambiguity or strange behavior occurs. The arriving entity observes the server and
occupies it “continuously” while the other entity leaves it. The degree of occupation
is a fuzzy variable, changing from 0 to 1. Those are simultaneous events, but not
strictly simultaneous. When the entity arrives, the server is still occupied. Just before
the arrive event terminates, entity Y starts leaving the server. Entity X seizes the
server (partially), so it does not deactivate when its arrive event terminates.

One can expect that if T 1 approaches zero then, in the limit, the model becomes
a discrete event one when the event’s duration approaches to zero. This, however, is
not the case. We have a discontinuity at T 1 = 0, because the outcome of the discrete
version is 50% lost entities, or undefined result. There is a singularity at the point
T 1 = 0.My point is that in the general space ofmodels (Raczynski, [10]) the discrete
event models represent a singularity. Now, consider a model with two entities that
enter the system.

Let us define the following fuzzy variables (all of them in [0.1] ):
XEX—the “existence” of the entity X .
Y OS—entity Y on server
XOS—entity X on server (this is the aim variable)
SFR—server free
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Fig. 9.4 Simultaneous events. One server

Suppose that the entity X arrives at time instant TX1, and that the duration of the
“arrive” event is equal to T X . The entity Y starts to leave the server at t = TY1 and
takes the time interval TY to release it completely. XEX (t) may be defined as any
monotonic function of time, changing from 0 to 1. Let us define it as follows:

XEX (t) =

⎧⎪⎪⎨
⎪⎪⎩
0 for t ≤ T
t − TX1

TX
for TX1 < t < TX1 + TX

1 for t ≥ TX1 + TX

(9.3)

In the similar way, we define the function Y OS(t), changing from 1 to 0 in the
interval [TY1, TY1 + TY ].

Once the entity appears (XEX > 0), it starts to observe the server. It occupies it
(in some degree) if Y OS is less than 1. The entity remains active until it has occupied
the server completely (XOS = 1). The variable XOS cannot be greater than XEX ,
and cannot be greater than 1 − Y OS. So, XOS = XEX AND (1 − Y OS), where
AND is the fuzzy logic “and” operator. Figure 9.4 shows an example of simultaneous
(but not strictly simultaneous) events. Entity X is arriving within the interval marked
as “arriving.” When it appears, the server is still fully occupied by the entity Y. Just
before the end of the arriving interval the entity Y is beginning to leave the server,
so the entity X starts to occupy it. The activities of entity X terminate when it has
fully seized the server. The process of Fig. 9.5 is different; now, the entity is arriving
slowly. The variable XOS starts to grow fast, but after it reaches the level XEX ,
the growth is slower because its presence on the server cannot be greater than its
presence XEX (fuzzy AND, as above).
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Fig. 9.5 Simultaneous events. One server, slow arrival

9.4.2 Example 2: Two Servers

In Fig. 9.6 we see a similar process with two servers that are released simultaneously.
These are simultaneous, but not strictly simultaneous events. At the beginning, server
1 is occupied by entity Y and server 2 by entity Z. Just before the entity has arrived,
entity Z starts to release server 2. Entity Y starts to release server 1 after the entity X
has arrived. Server 1 is being released faster than server 2. So, entity X first occupies
(partially) server 2. When server 1 is being released, entity X occupies also server 1.
The entity Y leaves server 1 quickly, so the entity X fully occupies it and terminates
its activity.

We have the following fuzzy variables:

XEX—entity X present
Y OS—entity Y on server 1
ZOS—entity Z on server 2
XOS—entity X on server 1
XOS2—entity X on server 2

The entity remains active until one of the fuzzy variables XOS1 or XOS2 reaches
value 1. We use fuzzy logic, so the entity can (partially) occupy both servers at the
time.

Entity X arrives at time instant T X1, and that the duration of the “arrive” event id
equal to T X . Entity Y starts to leave server 1 at t = TY1 and takes the time interval
TY to release it completely. Entity Z starts to leave server 2 at t = T Z1 and takes
the time interval T Z to release it completely. Entity X observes the two servers The
variables must obey the following relations:
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Fig. 9.6 Simultaneous events. Two servers

XEX (t)—given by the formula (9.3)

Y OS(t) =

⎧⎪⎪⎨
⎪⎪⎩
1 for t ≤ TY1
TY1 − t + TY

TY
for TY1 + TY

0 for ≥ TY1 + TY

(9.4)

ZOS(t) =

⎧⎪⎪⎨
⎪⎪⎩
1 for t ≤ TZ1
TZ1 − t + TZ

TZ
for TZ1 + TZ

0 for ≥ TZ1 + TZ

(9.5)
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XOS = XEX AND (NOT Y OS)
XOS2 = XEX AND (NOT ZOS)
Note that the server occupation XOS and XOS2 cannot be greater than the

presence variable XEX of entity X.
Here “AND” and “NOT” are fuzzy logic operators. Entity X may occupy the

two servers simultaneously (up to some degree). The expression (XOS and XOS2)
indicates such a simultaneous occupation.

9.4.3 Example 3: A Battlefield

Consider a situation, when there are four entities, two of them friendly: the tank F1
and the aircraft F2, and two enemies: a tank E1 and an aircraft E2 (see Fig. 9.7). Four
discrete events are scheduled to be executed at the same time instant: F1 shoots and
eliminates E1, E1 shoots and eliminates F2, F2 shoots and eliminates E2, E2 shoots
and eliminates F1. The aim of the shooting event is to hit. Obviously, an entity that
has been eliminated cannot execute its shooting event. If we assign any priorities to
the events or if the event execution is random or hardware-dependent, some of the
entities will survive. However, in the real system, if the entities shoot simultaneously,
then all of them should be eliminated. A simple solution in discrete event simulation
is to divide each event in two: “shoot,” and “being hit” (the event of the target), the

Fig. 9.7 A battlefield
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last one executed slightly after the first one. However, this will duplicate the number
of events.

Now, consider a similarmodel with semi-discrete events. The four entities execute
their “shoot” events simultaneously. There are eight fuzzy logical variables:

FnS—entity Fn shoots (n = 1, 2). The variable changes from 0 to 1, where 1
means hit.

EnS—entity En shoots
FnE—entity Fn exists. If the entity is shooting then FnE changes from 1 to 0,

where 0 means “destroyed.”
EnE—entity En exists
Obviously, an entity that has been destroyed does not exist and cannot shoot.

As in the previous model, it is supposed that once initiated an event, it cannot be
interrupted. The other rules are simple: The fuzzy logical variables change from 0 to
1 or from 1 to 0 due to the corresponding monotonic functions of time, like that of
the Eq. (9.3). Running this model with strictly simultaneous events, the final score
is zero survivals, as expected. No ambiguity arises. Figure 9.8 shows the plots of
the model variables for simultaneous, but not strictly simultaneous events (when
all events overlap, with slightly different start points and event duration. Whatever
would be the placement of the event intervals, the final score is the same: no survivors.
Again, note that the discrete event version of the model with event duration equal to
zero is not the limit case of the semi-discrete model with event duration approaching
zero. In the crisp discrete version, there are survivals, and in the SDE we have zero
survivals, independently of the event duration (supposing the events overlap).

9.5 Singularity of the Exact DES Models

Let us take a look at a model where the events always have a certain duration. Let’s
repeat a very simple example, discussed in the previous section. Entities arrive with a
fixed inter-arrival time equal to one. The aimof the “arrive” event is to seize the server.
There is one server without a buffer, with service time also equal to one. As shown
in that example, there is no ambiguity in the model, and the simulation outcome is
always “entity in service.” Denote the model as M(I), where I is the duration of the
model events. The first entity occupies the server. The second one arrives exactly
in the time instant when the server becomes free and intents to occupy it, if the
server is free. The obvious logic of the real system tells us that the entity should
occupy the server. The “arrive” and “end of service” events are simultaneous. While
implemented on a computer, they must be executed in some order in the real time.
Depending on the order of execution, the entity state may result to be “in service”
or “out” if the “arrive” event is executed first and finds the server still occupied
(remember that no buffer exists).

A simple way to avoid simultaneous events is a slight randomization, where the
events are executed in the exact time instant, plus a small random value. However,
in this case approximately 50% of entities will become “out” (cannot occupy the
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Fig. 9.8 A battlefield. Simultaneous (overlapping) events

server). If we let the hardware or the operating system decide which execution order
will be applied, then the result is undefined at all. Anyway, if the model is supposed
to be valid, the result cannot depend on the particular implementation. As the conse-
quence, we must add the selection rule to the model, as is done in the DEVS model
specification, see Zeigler [15] and Chow [2]. This may be avoided if we admit that
the event is executed within some finite time interval, rather than in a discrete time
instant with zero duration.

Let R(I) be the result of the simulation run.
As stated above, the outcome R(0) is “50% out” or undefined, implementation-

dependent result. Now, consider a sequence of models M(I) with I approaching zero.
For any I > 0 the outcome R(I) is “100% in service,” but in the limit point I = 0 the
result is completely different. So, in the sense of the simulation result R(I), the discrete
model (I= 0) is not the limit case of the sequence ofmodelswith I> 0. In otherwords,
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we have a discontinuity in I = 0. This may have important theoretical consequences.
In other words, while M(I) tends to M(0), the corresponding outcome R(I) does not
converge to R(0). This issue should be taken into account while considering the
validity of the DES models.

In further research, the topic should be treated bymeans of the theory of categories,
which gives an excellent theoretical support for modeling problems (see Raczynski
[10]). The concepts of morphisms, functors, and transformations of the theory of
categories can be comfortably interpreted and included in the modeling process.
Models can be treated as functors that convert the morphisms of the real world into
the morphisms of the models. While treating the model as a new category, its validity
can be related to the correctness of the category.

More examples on the singularities in the model space, like the models of the
“chicken game” or three.body collision can be found in Raczynski [10].

9.6 Conclusion

In this chapter, a proposal of the event simulation is presented, different from the
strict discrete event models, when the event duration, in the model time, is equal
to zero. It is pointed out that the appearance of simultaneous events may provoke
ambiguities in the model. The main point is that, in general, the strict discrete event
models represent a singularity in the general space of models. The validity of the
DEVS coupledmodels with the select element is questioned. On the other hand, if we
admit the finite duration of events, this may eliminate the problem of simultaneous
event handling.

One of the important tenets of this chapter is the concept of the distance between
models that permits to consider the convergence of sequences of models.

9.7 Questions and Answers

Question 9.1 How the distance between sets can be calculated?

Question 9.2 How we define the distance between models?

Question 9.3 What is the finite-time event model?

Question 9.4 Why the discrete event models represent a singularity in the space of
dynamic models?

Answers

Answer 9.1 We use the Hausdorff set-to-set distance, see Eq. (9.1).
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Answer 9.2 We calculate the distance between the corresponding sets of output
data, using the Hausdorff set-to-set distance.

Answer 9.3 We assume that the model events are executed over a finite, non-zero
time interval. The time interval of an eventmay be very small, resembling the discrete
event models, or quite large. This type of event simulation is called here Finite-Time
Event Specification (FTES).

Answer 9.4 Let P be one of the parameters of model M(P). Consider the sequence
{M(Pk), k → ∞} and suppose that the sequence converges. Let M(0) produces the
result R0 and {M(Pk), k → ∞} produces the sequence of results {Rk} that converges
to R∗.

In this chapter, it is pointed out that R∗ may be very different from R0. Thismeans,
that the limit model represents a singularity in the model space.

Now, interpret P as the duration of simulated events, and let limk→0 Pk = 0. Thus
the model M(0) is a strictly discrete-event model, and it is a singularity in the model
space. Consult Sect. 9.3.1 and Fig. 9.3.
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Chapter 10
Models and Categories

10.1 Introduction: The Language of Categories

In 1942–45, Samuel Eilenberg [2] and SaundersMac Lane [7] introduced categories,
functors, and natural transformations as part of their work in topology, especially
algebraic topology (see also [1, 5]). As the concepts of the theory of categories
provide a high level of abstracting, the language of the theory may be useful while
constructing models and examining their properties.

Recall the definition of the category.
A category is defined by its data and the axioms the data must satisfy. The data

are the following:
1. A collection of things called objects. By default, A, B,C,... vary over objects.
2. A collection of things called morphisms, sometimes called arrows.
By default, f, g, h, .... , vary over morphisms.
3. A relation on morphisms and pairs of objects, called typing of the morphisms.
By default, the relation is denoted f : A → B, for morphism f and objects A, B.

In this case, we also say that A → B is the type of f , and that f is a morphism from
A to B. Object A is called the source of f , and object B is its target. In other words,
src f = A and tgt f = B.

4. A binary partial operation on morphisms, called composition. By default, f ; g
is the notation of the composition of morphisms f and g.

5. For each object A a distinguished morphism, called identity on A. By default,
id A, or id when A is clear from the context denotes the identity on object A.

The morphisms of a category must satisfy the following axioms:
A1 f : A → B and f : A′ → B ′ ⇒ A = A′ and B = B ′ (unique-Type)
A2 f : A → B and g : B → C ⇒ f ; g : A → C (composition-Type)
A3 id A : A → A (identity-type)
A4 ( f ; g); h = f ; (g; h) (composition)
A5 id; f = f = f ; id (identity)
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Note that f : A → A does not mean that f is an identity (it is an endomorphism).
For example, ifX is the space of reals, the function y(x) = x3 mapsX to itself, but it
is not an identity. Also f : A → B and g : A → B does not mean that f = g.

10.1.1 Examples

Following Fokkinga [3, 4]: Each pre-ordered set (A,≤) can be considered a category,
in the following way. The elements a, b, .... of A are the objects of the category and
there is a morphism from a to b precisely when a ≤ b. Formally, the category is
defined as follows:

An object is: an element in A
a morphism is: a pair (a, b) with a ≤ b in A
(a, b) : c → d ≡ (a = c) ∧ (b = d)
(a, b); (b, c) = (a, c)
id a = (a, a)
Another example can be a mechanical system, composed of a set of bodies. The

corresponding category M0 can be defined as follows:
An object ofM0 is the pair (X (t), t) where X is the system state and t stands for

the time.
A morphism is a pair ((X (t1), t1), (X (t2), t2)) with t1 ≤ t2
((X (t1), t1), (X (t2), t2)) : (Y, r) → (Z , s) ≡ (Y, r) = (X (t1), t1) ∧ (Z , s) =

(X (t2), t2)
id = ((X (t), t), X (t), t)).
IfM0 is a real physical system, then themorphisms are physical rules ofmovement

(state transitions) from a given time instant to some other, future time instant.
The functor is a mapping from one category to another, preserving the categorical

structure. It preserves the property of being an object, a morphism, typing, compo-
sition, and identity. To be more precise, the definition is as follows (as given in [4]).
Let A and B be categories; then a functor from A to B is: a mapping F that sends
objects of A to objects of B, and morphisms of A to morphisms of B in such a way
that

A6 F f : F A →B FB whenever f : A → AB
A7 F idA = idFA for each object A in A
A8 F( f ; g) = F f ;Fg
The symbol →A denotes a mapping in the category A. The axioms A7 and A8

imply the following: F (f ; . . . ; g) = F f ; . . . ; F g .
Now, consider again the system M0. What we can do is merely to observe its

behavior. This is rather a philosophical assertion telling us that no object or system
of the realworld can be completely understood and its functioning completely known.
So, let us assume thatM0 is a category. If so, we can look for another categoryM in
such a way that:

A9 The properties of M are simple enough to be understood
A10 There exists a functor F : M0 → M.
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We will call the category M the model of M0, and the functor F the operation
of modeling. The model M does not have to be unique, so we can look for other,
simpler or more sophisticated models for the same physical (or proposed) system.
The definition of the validity implies that any valid model must form a category, and
the operation of modeling must satisfy the above functor axioms.

For example, define the objects ofM0 as pairs (X0(t), t), where X0 is the state of a
set of particles (3D positions, velocities, body temperature, spacial orientation, spin,
etc.) moving in space and subject to gravitational forces in such the way that they do
not collide. Then, the model M may be a category of material points, the objects of
M being paired (X (t), t), and the morphisms fa,b ofM being defined by solutions to
a system of differential equations (Newtonian or relativistic) that describe the state
transition over amodel time interval [a, b]. The functorF maps the real world objects
(X0(t), t) into (X (t), t) taking the positions and velocities of the mass center of each
body only. Themorphisms ofM are defined as f1,2 : (X (t1), t1) → (X (t2), t2), where
f1,2 means to solve the model differential equations over [t1, t2] with initial condition
X (t1). In the sequel, we will omit the subindices of f . If the systemM0 is subject to
some external excitation (forces), then this (input) functions should be added to the
definition of the morphism.

Note that a consequence of the fact that F is a functor (see A6) is that the graph
of Fig. 10.1 must commute (passing from X0(t1) to , X (t2)). If it does not, there is
something wrong with the definition of the functor. This is a well-known condition
of model validity. Bernard Zeigler [10] defines the validity in the same way.

Note that on Fig. 10.1 we have (X (t), t) = F(X0(t), t), where the sub 0 means
the original (real) system. Remember that the functor F maps category objects as
well as morphisms.

Now, suppose that in the real system the bodies can collide (due to their finite
diameter or to the movement itself). In such the case, the graph Fig. 10.1 does not
commute, simply because the real transition rule fo takes into account possible

Fig. 10.1 Model validity
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collisions and the morphism f does not (the model contemplates a movement of
material points only, not the real bodies). In this case, the model is invalid.

For the basic model (the real world), consider the pairs (state, time) as category
objects, andmorphisms f as the rules of state-time transition.While constructing the
model, the functor maps (state, time) pairs into (model state, model time) pairs. This
functor alsomaps the real systemmorphism f into the rules of transitions in a discrete
event case, or some differential equation or other rules for the continuous case.
As discussed earlier, the discrete model may provide false results for simultaneous
events. If so, the corresponding graph of Fig. 10.1 does not commute.

Now, take a closer look at simultaneous events. Let category M be a set of pairs
(Xn, tn), where X is the model state and tn a time instant. We introduce a weak
order in M , with respect to time, namely we define (Xi , ti ) ≤ (X j , t j ) iff ti ≤ t j . Let
for any two objects A and B in M , such A ≤ B there exists a morphism between
A and B. We will interpret morphisms as discrete events. More precisely, an event
morphism between A and B can be expressed as follows:

f : A → B ≡ “take the value of X, perform an operation over it and substitute
the result of the value of X in B, take the value of time for src f add a non-negative
(may be zero) value to it and substitute it as the time of tgt f .” We will say that the
event occurs at time equal to the time of tgt f .

Consequently, if there are two or more objects with the same value of t ,
then morphisms must exist between each other. This is the case of simultaneous
events. Figure 10.2 shows a diagram for three events that occur in time instants
tn < tn + e < tn+1. If e approaches zero, the events f and h have nearly the same
target time. One may suppose, that the model with simultaneous events f and h is the
limit case for e → 0. However, this is not the case. Figure 10.2 shows the diagram
for e = 0. As the targets of morphisms f and g have the same value of t , there must
exist morphisms between the corresponding nodes, namely h and i . The morphism
h; i is not necessarily an identity. As for the morphisms j and k we may assume that

Fig. 10.2 Two versions of the model. The suffix of X is omitted, supposed to be the same as that
of the time t . Identity morphisms are assumed, but not shown
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these are identities. Observe the following:

* The model changes its structure at when e reaches 0
** W have f ; h; k = g; i; j which means that f ; h = g; i

10.1.2 Simultaneous Events

Consider the following example:
The model Md has two components A and B. Denote the state of the components

as a and b (real numbers), respectively.
Denote : model state x , a real number, define x = a + b.
Result space = R (space of reals), the output y is y = x
Let the model includes only two following discrete events:
E1 : add one to the state of component A
E2 : replace the actual value b with a2

The initial condition: a = 3, b = 0.
Let the two events execute in time instant t1 and t2 respectively. If t1 < t2 then the

final outcome is equal to 20, and if t1 > t2 then the outcome is equal to 13.
What happens when t1 = t2 ? In this case, we have simultaneous events at t1.

The two events occur simultaneously in model time. In the real (computer) time,
they must be executed in some order. If the order is E1, E2 then the outcome is 20,
otherwise it is equal to 13. Which result is valid? Recall that the DEVS (Discrete
Event Specification) formalism [6], in the case of multi-component coupled models,
provides the formal model component, named select. It is a function that embodies
the rules employed to choose which of the imminent components (those having the
minimum time of next event) is allowed to carry out its next event. However, select
is not related to any information provided by the modeled system, at least in this
case. Consequently, the modeler must define it. As there are only two options for the
execution of the events, the two possible results are equal to 20 for t1 < t2 or 13 for
t1 > t2. If the modeler has no idea about the selection, then he/she could define the
order as random, and take the average value over a set of simulations, which will
tend to 16.5. Such outcome, however, never takes place for this model.

The select component may be defined when we have some data about the real sys-
tem, collected from experiments. However, such approach to the selector definition
may be questioned. If we have data about the real system, sufficient to elaborate the
select algorithm, we perhaps need no simulation at all.

Relaxing the discrete events to semi-discrete so that each of them has a finite
duration (the changes are continuous over some small interval), we can overcome
the need for any “select” rule and get rid of the discontinuity and ambiguity caused
by the simultaneous events.
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In the above example, let both f and i correspond to the event EV1, g, and k to
the event EV2 (add one to X and take the square of X, respectively). Obviously, f ; h
cannot be equal to g; i . So, we have an ambiguity at tn+1

10.2 Conclusion

In fact,wedidnot prove anythingnew.This chapter only showshow to expressmodels
and their properties in the categorical language, and to encourage researchers to look
for newmodel specifications. The categorical language may be useful when we want
to have a higher level of abstraction. Each morphism can be a function, an algorithm,
a piece of software, or even a textual specification of state transitions. In the case of
the discrete events, we show again (see also [8, 9]) that they form a singularity in
the space of models. This may cause problems in model validity.

The theory of categories was created by mathematicians, and most of the books
and texts about the theory are full of examples taken from advanced mathematics.
Note, however, that the definitions of the basic concepts are not very complicated and
need not be always applied to structures of high mathematics. If the knowledge on
the category theory were a little bit more propagated in the modeling and simulation
community, itmight become a good and uniformway to expressmodel specifications.

10.3 Questions and Answers

Question 10.1 What is a category (in the theory of categories)?

Question 10.2 What is a functor?

Question 10.3 How can we interpret the operation od modeling in the language of
categories?

Question 10.4 What fact in discrete event modeling we demonstrate here, in terms
of the language of categories?

Answers

Answer 10.1 A category is defined by its data and the axioms the data must satisfy.
The data are the following:

1. A collection of things called objects. By default, A, B,C, ... vary over objects.
2. A collection of things called morphisms, sometimes called arrows.
By default, f, g, h, .... , vary over morphisms.
3. A relation on morphisms and pairs of objects, called typing of the morphisms.
A morphism f is a mapping between objects, f : A → B. For more detail and

axioms consult Sect. 10.1.
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Answer 10.2 The functor is a mapping from one category to another, preserving
the categorical structure. It preserves the property of being an object, a morphism,
typing, composition, and identity. Let A and B be categories. The functor sends
objects of A to objects of B, and morphisms of A to morphisms of B.

Answer 10.3 The operation of modeling (creating a model) can be treated as a
functor that operates between the real world and the model.

While constructing the model, the functor maps pairs (state, time) into (model
state, model time) pairs, and the real system interactions into the morphisms of the
model (a new category).

Answer 10.4 Ambiguity problem in simultaneous event modeling, model validity.
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Chapter 11
Fuzzy Time Instants and Time Model

11.1 Introduction

In this chapter, we suppose that the time instant is not just a point on the time axis,
but it has a finite duration. Inside the interval of such fuzzy time instant, the events
occur gradually and not in a sharp, discrete moment of time. In the case of time
discretization, it is supposed that the duration of a fuzzy time instant is greater than
several time steps. The gradual change of the system state is being applied with
intensity defined by a probability density function. If the standard deviation of this
distribution tends to zero, then the density function approaches Dirac’s function, and
the changes in the system state occur in discrete (sharp) time instant. The fuzzy time
instant may be a better approximation of our perception of time. An example of the
behavior of a dynamic second-order system is used to illustrate themodel trajectories
with fuzzy time instants.

In modeling and simulation of dynamic systems, the concept time is always
present. In practical applications, the time is understood in an intuitive way, just
using the time axis, where one can mark points representing time instants. Here,
we take a somewhat more detailed look at the time instants, and our perception of
what we really understand by “now”. Our common perception of the term “now” is
somewhat vague, perhaps because the time is running constantly. In this chapter, we
permit that the time instant has a finite duration and that the events occur in a some-
what “fuzzy” way.We are not using the concepts of fuzzy set theory, just considering
the time instant as fuzzy or “soft” event.

There are many sources where the mechanics of time is considered. Hooft [5]
discusses the concept of time-arrow. This concept is closely related to the concept
of causality. In the chapter, the time coordinate is subject to ordering, or orientation.
This is called the arrow of time. The problem of the mechanics of time is frequently
focused on the problem of time-reversal. In the conclusion, we read “this author does
not believe that quantummechanics will be the last and permanent framework for the
ultimate laws of nature”. Here, we do not discuss the problem of time-reversal and
the implications of quantum mechanics, supposing the time coordinate(s) to have a
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defined orientation. More discussion on the time properties in quantum mechanics
can be found in the book of Muga, Sala and Egusquiza [6].

Craig and Weinstein [3] discuss the multi-dimensional time and the initial-value
problems for the wave equation. They show that the Cauchy problem for a higher
dimensional case may be ill-posed. This may cause uniqueness problems for the
solutions. Let us express here our, perhaps somewhat subjective opinion on such
and similar research. Many authors believe that the mechanics of the real world is
described by differential equations. This is not exactly true. The differential equations
have mostly a nice property of reversibility. Newton’s equations of motion can be
integrated forward, aswell as backward in time.However, in the realworld everything
is charged with some uncertainty. Introducing such uncertain terms to the movement
equation, we obtain a differential inclusion instead of differential equation. The
solution of a differential inclusion (the reachable set) is not reversible. Changing the
direction of time variable (integrating it backwards in time), we do not obtain the
initial point or set, consult Raczynski [8], Raczynski [7]. Note that an uncertain term
is not necessarily random. It is rather a tychastic variable, see Aubin et al. [1]. For
other works on the mechanics of time consult Hilgevoord [4] or Velev [9].

The concept of fuzzy time instant consists in considering the time instant as a
distribution with small standard deviation that moves in time (over the time axis).
It can be any continuous probability distribution. However, in this paper we assume
that it is the normal density function, truncated if necessary. The main tenet is that
the events happen gradually during certain time interval, and not in a sharp time
instants.

If the standard deviation of the distribution tends to zero, then the density function
approaches the pulse of Dirac, and the time instant becomes as in the conventional
approach. Treating the time instant as a distribution, maybe different from zero
over the whole time axis, we violate the concept of causality. In our approach, the
traditional causality of events does not exist, and the executionof an eventmaydepend
on the future. However, this dependence vanishes when the distribution becomes
Dirac’s pulse, and the causality property recovers its conventional sense. In other
words, an event may depend on the future, though the probability of this dependence
tends to zerowith small standard deviation of the time instant function. If we consider
time discretization, as suggested by quantum physics, then the distribution we use is
replaced with its discrete approximation. To avoid the violation of the causality, we
could define the distribution as equal to zero for all x ≥ t , t being the actual time.
However, in out case we will not do this, allowing the distribution to be non-zero,
even over the whole time axis.

11.2 The Fuzzy Time Instant

Here, we do not discuss the quantummechanics concepts of time.We assume that the
timemay be a continuous or discrete, one-dimensional variable. As stated before, our
time instant is a distribution that moves along the time axis. The changes of the state
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Fig. 11.1 Sharp and fuzzy time instants

(events) of the system under consideration happen with certain intensity, defined by
a density function defined over the interval, see Fig. 11.1.

In other words, the fuzzy time instant (FTI) is defined by a distribution function
that moves over the time axis. Any probability density function can be used, though
this is not a probabilistic approach. Using Dirac’s delta function as the distribution,
we get a conventional, sharp time instant. In the case of discrete time, we will use a
corresponding discrete density function. In this case, we assume that the duration of
theFTI is greater than thediscretization step.Here, the time instant in the conventional
sense will be called actual time or sharp time instant. It is just a point at the time
axis.

Note that the FTIs may overlap. This, and the fact that the events occur over finite
time interval raises some causality questions. Here, we assume that the principle of
causality is valid in large time intervals (larger than the time instant duration), but
inside the FTI it is not. This is perhaps an arbitrary supposition, but anyway, our aim
is to learn a “what if” scenario. A modified causality principle can be formulated
as follows: The event depends on the system state over the whole interval where
the time instant distribution is different from zero. Obviously, if the distribution is
Dirac’s function, the event depends on the previous time instants (we discard exactly
simultaneous events). If the standard deviation of the distribution approaches zero,
then the probability that the event depends on the future states also tends to zero.

First, let us see what is our perception or observation about the state of the world,
or a part of it referred to as a system. The (real) system state x is supposed to be a
function of time. It can be a scalar- or vector-valued function. Then, our observation
is given by the following expression.

Consider any function of the time and state, f (x, t). The observed value of f ,
denoted as F(x, t), is given by the following equation.
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F(x, t) =
∫ ∞

−∞
f (x, τ )p(τ − t)dτ , (11.1)

where p(*) is a distribution. In the following, for the sake of simplicity, we use
the normal density distribution function, truncated to the time instant interval, and
normalized. Observe that if the standard deviation of the distribution tends to zero,
then the distribution approachesDirac’s function, and the expression (11.1) reduces to
x(t). Recall that for an integrable function y(t)we have

∫ ∞
−∞ y(τ )δ(τ − t)dτ = y(t),

where δ is Dirac’s delta function. The function F will be called fuzzy observation.
One of the consequences of Eq. (11.1) is that the observed state depends not only

on the past system states but includes some values from the near future. This means
that our perception permits us to predict with more probability what will happen in
the very small time instant. For example, a football player can predict where his body
will be located within the future fraction of second, and hardly can know where it
will be after five minutes.

In the case of discrete time, the system state is a sequence xn = {x0, x1, x2, ....},
and the discrete version of the expression (11.1) is as follows.

Fk(x) =
k+n∑

m=k−n

f (xm, hm)pm−k, (11.2)

where k is the number of the discrete time step, and h is the time step. Here, n defines
the interval where p is defined, that is, pk > 0 for all −n ≤ k ≤ n, zero otherwise.

Looking at Eq. (11.1) we can see that inside the (FTI), the observationF depends
on all states along the FTI (remember that f depends on x(t)). If the movement is
described by differential equations, then this set of states is changed according to
the derivatives that, in consequence, depend on the value of the observation over the
whole FTI. This makes it difficult to integrate the model trajectory because the rate
of change at the moment depends also on some future values of the model state.
Consequently, it is necessary to apply an iterative algorithm, as explained in the next
section.

The fuzzy derivative D of x(t), is defined as follows.

D(t) = lim
h→0

∫ ∞
−∞ x(τ ) (p(τ − t) − p(τ − t + h)) dτ

h
(11.3)

In the discrete time version, this converts in the following.

Dk = 1

h

k+n∑
m=k−n−1

xm(pm−k − pm−k+1), (11.4)
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where k is the time step number, pk is the discrete density function defined over
[n − 1, n + 1], pn−1 = pn+1 = 0, h is the discrete time step.

Consider the following equation of movement (supposing that the movement is
described by an ordinary differential equation):

dx

dt
= f (x, t) (11.5)

In the conventional Euler integration procedure, the change of the model state is
done in consecutive time steps: xk = xk−1 + h fk−1, where h is the time step interval
and f is the derivative. In the FTI version, this event executes during the fuzzy
time interval, and the change of state is done according to the fuzzy observation F .
Namely, it is applied to the state vector over the fuzzy time instant duration, with the
weight defined by the distribution p (see Eq. (11.1))

The problem is that in the FTI, the change of xk depends not only on the past,
but also on some future values of x (see the definition of F , (11.1) and (11.2)). This
is the consequence of the lack of causality principle inside the FTI. In this case, we
cannot integrate the model trajectory using the simple Euler’s method, starting from
an initial condition and advancing in time. We cannot change the sum limits so that
no future values of x will be needed because would introduce an additional, artificial
time delay. We must look for a global solution for all the 2MN values of x , where M
is the total number of time steps of the trajectory, and N is the model dimensionality.

Below, x and x∗ are vectors of N components, and [−n, n] is the interval where
the density function is defined. A heuristic algorithm may be as follows.

Algorithm A
1. Define initial trajectory xk = 0 for k = −n, ...,M (the whole trajectory of

M + n discrete values). The values of xk for k < 0 can be set equal to zero.
2. Store the actual trajectory in the array x∗

1 , x
∗
2 , ..., x

∗
M .

3. Calculate Fk, k = 1, ..,M according to (11.2)
4. Integrate system trajectory usingF , store the trajectory in xk, k = 1, ...,M . The

integration procedure applies the increment Fk−1 to all x j , j = k − n/2....k + n/2,
each increment with weight p j−k .

5. Calculate zk = (1 − q)xk + qx∗
k , k = 1, ...,M, 0 < q ≤ 1, (x∗

k is the state
taken from the previous iteration).

6. Substitute xk with zk for k = 1, ..,M
7. Repeat steps 2 to 6 until the solution xk does not change.
Again, it is easy to see that if p tends to Dirac’s function, then the expression in

(11.3) reduces to the conventional derivative of x .
Note that in this algorithm we apply a “double averaging,” calculating the fuzzy

observation F , and then applying the necessary changes of model state inside the
fuzzy time instant and not in the current point on the time axis. This is not a unique
algorithm for the implementation of fuzzy time instant dynamics. We can use an
exact observation, as well as a fuzzy observation applied in the strict time instant.
What is required is the fuzzy observation or fuzzy state changes to be applied in
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Fig. 11.2 Simple simulation of system (11.6)

such a way that the results converge to the conventional state integration when the
standard deviation of the distribution p tends to zero.

11.2.1 Example

Consider a second-order dynamic system given by the following state equations.

⎧⎪⎨
⎪⎩
dx1
dt

= x2(t)

dx2(t)

dt
= A(u(t) − x1(t)) − Bx2(t),

(11.6)

where A and B are constants, and u(t) is an external control function. Let A =
20, B = 0.8 and u(t) = 1 for t ≤ 5, u(t) = 0 for t > 5. Figure 11.2 shows a sim-
ple simulation of the system movement over time interval J = [0, 10] (variable x1
shown). Here, we assume discrete time, 10000 time steps over the interval J . So,
the integration is carried out by simple Euler method, that provides the sequence
xn = x0, x1, x2, ....xM , M = 10000.

Now let us see how the use of fuzzy observation and gradual event execution
influence the model trajectory.

Consider the trajectory integration with fuzzy time instants, non-zero standard
deviation, and discrete time. Now, the model state xk changes not in the one, discrete
time instant, but the change occurs gradually when the time instant passes over the
time equal to k. The rate of change Fk at time k is given by Eq. (11.2).

We use the discrete density pn defined over the interval −250 ≤ n ≤ 250 that
corresponds to the interval [−0.25, 0.25] of continuous time with time step equal
to 0.001. The density function is derived from the normal distribution with standard
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Fig. 11.3 Trajectory x1(t) for different values of standard deviation of function p. The plot with
value 0 is the result of simple simulation with sharp time instants

deviation s, centered in n = 0 truncated and normalized. So, the distribution value
at the point t ime = hi is equal to pi−k , where k is the discrete time where the fuzzy
time instant is actually located.

In the above example, the solution provided by the first iteration is unstable, and
x grows or decreases rapidly for greater values of k. Generating the plot of xk it can
be seen how the stable solution propagates toward greater k. Finally, we get a stable
solution that no longer changes in the consecutive steps of the algorithm. It is not
the topic of this paper to prove that the algorithm converges for other models. We
just look for the solution to our problem to illustrate the behavior of the model with
FTIs. The algorithm does not converge for q = 0. A stable solution was obtained for
q = 0.5.

Figure 11.3 shows the plot of x1,k (the first component of x , time step k) obtained
with different values of the standard deviation of p. The curve with deviation zero is
the result of the simple simulation with sharp time instants, like in Fig. 11.2. These
results are similar to the trajectories that can be obtained by a smoothing algorithm
applied to the simple simulation. However, what we are doing is not smoothing a
curve, but simulating the model behavior with fuzzy time instants. The standard
deviation values correspond to the original normal distribution before truncating
and normalizing. The values are expressed in the continuous time units (the whole
simulated interval is equal to [0,10]).

In Fig. 11.4 we can see the model response to Dirac’s pulse applied at t ime = 2,
for fuzzy time instantwith standard deviation 0.05 and0 (simple simulation).Observe
that the model with fuzzy time instant is able to “predict” the pulse, and the response
starts slightly before the excitation. Again, this is due to the lack of causality within
the fuzzy time instant.
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Fig. 11.4 Model response to Dirac’s pulse at time equal to 2, for standard deviation 0.02 and 0

11.3 Conclusion

We consider a generalization of the concept of the time instant. Instead of the sharp
time instant defined as a point at the time axis, we define the fuzzy time instant
as a (maybe narrow) distribution density function that scans the time axis. Such a
definition of the time instant perhaps fits better to our intuitive perception of the time
and the concept of “now”. Also note that if an event is related to energy flow, then
the model with fuzzy time instants may describe better the system dynamics.

We assume that the observations of the system state variables are the weighted
averages due to a distribution function. Moreover, it is assumed that the events,
like the changes in the model state, occur gradually inside the fuzzy time instant.
It can be seen that the fuzzy time instants and the observation results converge to
the conventional sharp time instants, if the distribution function tends to the delta
function of Dirac. The model events occur within the fuzzy time instant with finite
duration and not in a sharpmoment of time.One of the consequences of the fuzzy time
instant is the violation (or redefinition) of the principle of causality. The conventional
causality does not work inside the FTI. However, if we redefine the causality in a
probabilistic way, it tends to the strict causality definition when the FTI distribution
function tends to Dirac’s pulse. An example of oscillator dynamics presented here
depicts the difficulties and the way the system trajectories can be calculated.
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Chapter 12
Uncertain Future, Reversibility and the
Fifth Dimension

12.1 Introduction

The contents of this chapter are not science fiction, though some fictitious elements
can be found here. We treat some, rather abstract, models of a real world that can
hardly be validated but may serve as a cognitive insight and new paradigms in mod-
eling. In the following sections, we discuss a model with feedback from the future
(the ideal predictor), the problem of reversibility of model trajectories (as well as
the events of the real world), and a model of the universe, encapsulated in a ball with
finite radius. In fact, the encapsulated universe is an example of a useless model
which, however, may have some cognitive elements, and may stimulate our imagi-
nation. According to this model, all the universe we can observe is enclosed in an
open unit sphere. The local observer (like us) cannot see the sphere limits and the
non-linearity of the metrics inside the sphere. Once the sphere has finite radius, the
problem arises if a moving particle can go out of the sphere, and what happens if it
does. This would be a trip behind the infinity.

12.2 Uncertain Future

This section treats on the trajectory calculations for dynamic model with positive
time-shift (ideal predictor). We replace the element with unknown future model state
with a set that represents the uncertainty of the future. This leads to a differential
inclusion. The differential inclusion solver program provides the solution to this
inclusion, in the form of a reachable set in the time-state space. Then, an iterative
process is proposed that converges to a single trajectory, being the solution to the
original problemwith the positive time-shift. Some examples of linear and non-linear
models with ideal predictors are provided. This treatment of the positive time-shift
is different from the known predictor algorithms. We use the differential inclusion
solver to treat the problem, instead of differential equations.
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If we suppose that our world is causal, then we should discard the possibility of
traveling to the future, going back, andmaking decisions or actions. The decisions are
taken according to the information taken from the future. There are a lot of examples
of the paradoxes that arise from time traveling. Let recall only one, perhaps the most
illustrative. Imagine, that young Beethoven has traveled to the future and went to a
concert where his Fifth Symphony is being played. Then, he returns to the original
time. As he has the perfect musical memory, he puts the music he heard into the
musical score and publishes it. Thus, the Fifth Symphony has never been composed.

This chapter is not science fiction. We discuss just the possibility of simulating an
ideal predictor (that, in fact, contradicts the principle of causality). Note that we do
not deal with any known prediction algorithms used in decision-making processes, in
marketing, economy, stock market, control, and other fields. Such predictors provide
an approximate, perhaps more probable scenario for future system behavior, but they
are not ideal predictors. By the ideal predictor we mean an object that gives us the
exact information about the future system state.

The literature, as well the WEB, is full of articles and other publications on time-
traveling. Most of them belong to the field of science fiction, so we will not discuss
them here. From some more serious publications let us mention Nahin [13], where
we can find remarks on time concepts in quantum physics and more references.

In the field of system dynamics and control theory, there are many publications
that deal with time-delayed systems. These considerations are more realistic because
we can, to some extent, have the information about the history of the system under
consideration. This information may be exact or charged with some uncertainty. On
the other hand, the future system states are more uncertain, and the uncertainty grows
with the time distance to the supposed future system state.

We restrict our problem to the continuous ODE models. Consider the equation.

x ′ = f (t, x(t), x(t + r)), (12.1)

where the prime mark stands for time-differentiation. Here, x is a point in the one- or
multi-dimensional state space, r is the time-shift (negative for time-delay systems),
and f is a vector-valued function. Another, linear version of time-shift system is
frequently given by the following equation

x′ = Ax(t) + Bx(t + r), (12.2)

where A and B are matrices.
If r is less or equal to zero, there is no problem with simulating the above models,

with given initial conditions for x . If no analytical solution can be found,we can apply
anyof the knownnumericalmethods for ordinary differential equations. The presence
of the delayed argument requires the past model trajectory to be stored. Having such
a history file, we can retrieve the data necessary to advance with the solution in time.
If the time-shift r is positive, integration of model trajectory is difficult. Note that
we cannot simply reverse the time axis and go backwards, converting the positive
time-shift into a delay because we don’t have the final state conditions.
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The second argument of the function f of (12.1) is unknown and uncertain. Now,
let us treat this argument not as a point in the state space, but a set V , as below.

x ′ = f (t, x(t), V (t)), (12.3)

where V is a set, maybe changing in time. This set represents the uncertain future.
This way, our model (12.1) takes the form of a differential inclusion, instead of a
differential equation (consult [3]):

x ′ ∈ F(t, x(t)). (12.4)

Here, F is a set-valued function, defined as follows:

F(t, x) = {z : z = f (x, u, t), u ∈ V (t)} (12.5)

Consequently, our problem is to solve a differential inclusion, instead of differ-
ential equation. In practice, we can assess the possible limits of V . The solution
to a differential inclusion is a set, called reachable or attainable set, discussed in
Chap. 3. Observe that the equations of the original problem (12.1) include unde-
fined elements. In turn, in the corresponding differential inclusion (12.4) nothing is
undefined. Instead of uncertain parameter, we have a well-defined set. Differential
inclusions may be used as an alternative to stochastic and probabilistic approach to
uncertainty. Instead of stochastic, we can use tychastic variables, which values are
uncertain, but not random, see Aubin [4].

Figure 12.1 shows a rough explanation of our problem. It is supposed that we have
exact information about the present model state x (it also could be questionable). The
future states are uncertain (gray region). In the figure, there is also assumed some
uncertainty of the past states.

While using differential inclusions, the problem with time delay is not very dif-
ferent from the problem of the ideal predictor. In both cases, we need to solve the
corresponding differential inclusion. In this section, we consider a somewhat abstract
problem of systems with positive time-shift, and we don’t care about the causality
principle. We are just looking for a method to solve differential equations with a
positive time shift. Some examples are given in further on.

12.3 Differential Inclusion Solver

The overview of differential inclusions has been done in Chap. 3. Here, let us recall
the applications of the differential inclusion solver (DI solver) (conult also Sect. 3.6).

While working with differential equations, one can find a huge number of numer-
ical methods and software. On the other hand, for the DIs there is nearly nothing that
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Fig. 12.1 System trajectory, uncertain past, and future

could help a simulationist. The DI Solver is the result of an attempt to fill this gap.
The basic version of the DI solver is not new. It was published in 2002, see [17].
Here, we only recall the algorithm. In Chap. 3, a new version of the solver and some
new applications to the functional sensitivity are described.

The solver has been coded in the Embarcadero Delphi. A limited stand-alone
“.exe” version of the solver is available. It should be emphasized that our main goal
is the RS determination and not optimization. The DI solver and the present problem
statement should not be confused with the differential inclusions method used in the
optimal control problems.

To avoid repetitions from earlier articles, we will not discuss here the algorithm
of the DI Solver. The basic version of the algorithm has been published in [17]. In
few words, the Di Solver generates a series of DI trajectories that scan the boundary,
and not the interior of the reachable set. The differential inclusion is derived from
the model state Eq. (12.6) that includes the vector of uncertain parameters u =
(u1, u2, ...um .).

dx

dt
= f (x(t), u(t), t) t ∈ I = [0, T ], T > 0 (12.6)

Vector u belongs to a given set of restrictions C . When u scans the interior of the
set C , the right-hand side of (12.6) scans the set F , being the right-hand-side of the
corresponding differential inclusion (12.4).

The solver algorithm uses some results from the optimal control theory (Pon-
tryagin [15]). From Pontryagin’s Principle of Maximum it is known that each model
trajectory that reaches a point on the boundary of the reachable set at the final simula-
tion time, must belong to the boundary of this set for all earlier time instants. Consult
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Pontryagin [15] and Lee andMarkus [10].Moreover, a boundary-scanning trajectory
must satisfy the Jacobi-Hamilton equations (the necessary condition). These equa-
tions involve a vector of auxiliary variables p = (p1, p2, p3, ..., pn). In the optimal
control, the problem is that we have the initial conditions for the state vector x , but
the conditions for the vector p are given at the end of the trajectory, for t = T . If no
analytic solution is available, then we must use an iterative procedure to solve the
so-called two-point-boundary-value (TPBV) problem. In our case, we are in better
situation. Observe that starting with the given initial condition for x and with any
initial condition for p, we obtain a trajectory that scans the boundary of the reachable
set. This means that we do not have to solve the TPBV problem. The algorithm gen-
erates a series of trajectories with randomly generated initial conditions p(0). After
integrating a sufficient number of trajectories, we can see the shape of the reachable
set boundary. In other words, we are looking for the mapping MP : p(0) → RS(T ),
where RS(T ) is the boundary of the reachable set at t = T . The problem is that the
mapping MP may be extremely irregular even for a simple linear model. The solver
algorithm uses certain heuristic procedure to avoid the “holes” of the final image.

Somebody might suppose that by generating a number of trajectories randomly
from inside of F , we can cover the inside of the reachable set with sufficient density,
and then estimate its shape. Unfortunately, this is not the case, even if we select only
points from the boundary of the set F . Simulation experiments show that even in
very simple cases the set of trajectories provided by such primitive shooting (using
any density function) is concentrated in some small region inside the reachable set
and does not approach its boundary. Anyway, it is an error to explore the interior
of the reachable set. The DI solver used here explores the boundary of the set, and
not the interior. With a sufficient number of generated trajectories, the shape of the
reachable set can be estimated with reasonable accuracy.

12.4 Solving the Ideal Predictor Problem. Feedback From
the Future

Suppose that the present state of the system is known (see Fig. 12.1), and the future
states are uncertain, but belong to a given (maybe big) permissible set. Our model is
given in the form of differential inclusion (12.4). Using the DI solver, we can solve
the inclusion and obtain the reachable set (RS) for a future time interval. The resulting
RS can be greater or smaller than the estimate of the limits of an uncertain future
state. As the initial estimate is normally given as a big set, it is probable that the RSwe
obtain is smaller than the initial uncertainty estimate. In many practical applications,
this is the case because many physical systems have some limiting elements like
saturation and delimiters. Now, we replace the initial uncertainty estimate with the
RS provided by the last run of the solver and solve the inclusion again. Repeating
these steps, we get an iterative process that can converge or not to a single function
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x(t). If the process converges, then we obtain a very narrow RS, which is an estimate
of the solution to the original problem with an ideal predictor.

12.4.1 Example 1: A Linear Model

Consider the following model:

{
x ′
1 = x2 − 0.07x1(t + 0.6)

x ′
2 = 10 − x1(t) − 0.35x2(t + 0.6)

(12.7)

with initial condition x1(0) = x2(0) = 0, final simulation time equal to 6.
Figure 12.2 shows the 3D image of the boundary surface of the reachable set for

model (12.7). In this run of the solver, the initial uncertainty of the state variables was
defined as a permissible rectangle that delimits both variables to the interval ±100.
The range of the final state resulted to be even greater, with −165 < x1 < 165 and
−161 < x2 < 156, approximately. During the calculation process, the actual ranges
for the two variables have been stored. In the next iteration, the stored range values
are used to calculate the next approximation of the RS. In this case, this iterative

Fig. 12.2 The 3D image of the reachable set for model (8)
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Fig. 12.3 Comparison of the RS contours for final time instant (A) and time = 5 (B), consecutive
iterations

process produces a sequence of reachable sets that converge the solution to the
original time-shift problem (12.1).

In Fig. 12.3 we can see the comparison of the consecutive reachable sets for the
final time equal to 6 (part A) and 5 (part B). Note that for the final interval [t − r, t]
we have no range parameters stored for x(t + r), so the set V is taken equal to that
of the first iteration (±100 rectangle). This is why the contour of the final reachable
set is always finite and does not converge to one point. The first contour (iteration
0) looks somewhat different from the next contours because in the first iteration the
set V is equal for all time steps, and in the consecutive iterations it is different for
each time-step (stored before). From the part B of Fig. 12.3, we can see that the
convergence of the iteration process is quite good.

Figure 12.4 shows the comparison of reachable sets for iterations number 5 and
10. The images have the same scale as that of Fig. 12.3. The convergence of the
process is clearly seen.

Fig. 12.4 Comparison of reachable sets from iteration number 5 (A) and iteration 10 (B)
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Fig. 12.5 Reachable set for
model (12.8), uncertain
future state in [−100, 100]

12.4.2 Example 2: A Non-Linear Model

The system equations are as follows:

{
x ′
1 = x2 + 0.1x1(t + r)

x ′
2 = 20 − x1(t) − 0.2x2(t) − 0.024 x22 (t)

(12.8)

Here, r = 0.35, final simulation time equal to 5. Figure 12.6 shows the conver-
gence of the iterative process, like in example 1.

12.4.3 Example 3: A Control System

Consider a control system of Fig. 12.7. The controlled processmay be interpreted as a
thermal object with the simplified transfer function of second order. The “time-shift”
block can represent time delay or time advance. Supposing a time delay we obtain
a typical academic control problem described in elementary books on automatic
control. Now suppose that instead of time delay we have a time advance element, an
“ideal predictor,” the “feedback from the future.”

Here, � is the process output that may be, for example, the temperature to be
controlled. u is the set point (desired temperature), K is the controller gain, and y
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Fig. 12.6 The contours of the reachable set for model (12.8), consecutive iterations

Fig. 12.7 A control system with ideal predictor

is the controller output signal. The actuator delimiter is described by the function
v = g(w). Let denote: x1 = � and x2 = d�/dt . The output signal of the time-shift
element is equal to x1(t + r), where t is the time and r is a positive constant.
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The model equations are as follows:
With this notation, the state equations for this system are as follows (a simple

saturation function is used).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2θ

dt2
+ 0.5

dθ

dt
+ θ(t) = y

y = Ke, e = u − v

w = θ(t + r)

v = w for w < 2 and w > 0

v = 2 for w ≥ 2

v = 0 for w ≤ 0

u = const = 1

(12.9)

Note that the set point is equal to one, so the desired operation point for the
model output x is also equal to one. Consequently, the delimiter works in the range
0–2, symmetric with respect to this operation point. Other model parameters are as
follows. K = 2, r = 0.5, simulation final time equal to 8. Thus, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx1
dt

= x2(t)

dx2
dt

= K (1 − v) − 0.5x2(t) − x1(t)

(12.10)

Due to the assumptions of the Pontryagins Maximum Principle, the right-hand
sides of (12.10) should be continuously differentiable. From the simulation experi-
ments, it follows that the solver works also for systems with (not necessarily contin-
uously) differentiable right-hand sides of the state equations.

In the Eqs. (12.9) and (12.10) the value of x(t + r) and, consequently, the value of
v are uncertain (uncertain future). Replacingwwith the set of all its permitted values,
we get a differential inclusion. Here w is the “control” parameter that parametrizes
the set of the DI right-hand side. After introducing the above equations to the DI
solver, we obtain the following results. Figure 12.8 shows the system reachable set
for the initial uncertainty range. The resulting limits ofw are stored for all time steps.
In the next iteration, these limits are used, and so on.

In this case, the convergence of the iterative process is also quite good. After sev-
eral iteration we obtain an approximation of the trajectory that satisfies Eq. (12.10).
Figures 12.9 and 12.10 show the shape of the reachable set for iterations 14 and 40,
respectively.

In this experiment and in other similar situations the algorithm converges quite
well. However, there are situations when it does not. The convergence is out of the
scope of this chapter and could be a good subject for more theoretical considerations.
Note that this is not the problem of the convergence of the DI solver. Here, the solver
is used as a part (one step) of a bigger algorithm. If the convergence occurs, we obtain
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Fig. 12.8 Reachable set for the initial future uncertainty

Fig. 12.9 Reachable set after iteration 14

one and maybe unique trajectory that satisfies the general rules of movement on a
system with an ideal predictor. This means that if the procedure converges to one
trajectory, the system with “traveling-to-the-future-element” may be stable. But, this
is a rather abstract and philosophical question.

It can be shown that a small external disturbance added to the feedback signal
affects considerably the convergence. It also can be seen that the stability of the
model itself is necessary for the convergence. Running the same model with, for
example, K=5, the algorithm does not converge to any single trajectory. As for the
disturbances in control systems, if we treat them as uncertainty instead of stochastic
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Fig. 12.10 Reachable set after iteration 40

functions, we again get a DI. Solving such DI we obtain the range for the output
variables. This may be useful in such problems as system safety and robustness

12.5 Reversibility

Consider a dynamic ODE model, as follows:

dx

dt
= f (x(t), t) (12.11)

with initial condition x(0) = 0, t ∈ [0, T ].
The problem for anODEmodel is: Given the final state of a dynamic system, what

was the initial state that originated it? For the ODE model (12.11) we can simply go
backwards in time, from T to 0. This means that we solve the equation:

dx

ds
= − f (x(s), s), (12.12)

where x may be a scalar or a vector-valued model state.
Theoretically, this works, and we will get the original, initial model state. Unfor-

tunately, this works only for analytical solutions. The reversibility of the numerical
solution, as well as a hypothetical reversibility of the real world, do not take place,
for a simple reason: the uncertainty.
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It might appear, that starting from a given final state, and using a sophisticated
numerical method, we can obtain the exact initial state. However, this is not true.
The reason is very simple: in a digital computer, even a simplest operations on real
numbers (float or double type) like addition and subtracting, are not reversible Try
the following. Let x = 1.0 and y = 1.0/3.0. Perform the addition x = x + y, 200
times. Then, execute x = x − y also 200 times, and print the initial and final value
of x with 10-digit precision. We get (C++Builder used x, y of type float)

Initial x = 1.0000000000
final x = 1.0000032187
If these, elemental operations are irreversible, then any complicated numerical

method that calculates thousands of integration steps with huge number of arith-
metic operation cannot be reversible. The size of the error does not matter. The
uncertainty in dynamic models, as well as in the real world always exists. Inside
a digital computer, this may be the imperfection of the arithmetics, and in the real
world the natural uncertainty of things.

12.5.1 Irreversibility of Differential Inclusions

Consider a differential inclusion in the most general form, with necessary regularity
assumptions (see Chap. 3).

dx

dt
∈ F(x, t), (12.13)

with initial condition x ∈ X0, where X0 is the initial set. Let (12.13) be considered
over the interval [t0, t1], t0zt1.

Now consider a similar inverse problem for the model (12.13) (a dynamic system
with uncertainty): Given the final reachable set, whatwas the initial set that originated
it? In this case, we cannot just go backward in time. Indeed, consider, for example,
the inclusion:

dx

dt
∈ [−1, 1], (12.14)

Starting from the initial point x = 0, t = 0 and calculating the RS at t = 1 we get
RS(0, 1) = [−1, 1]. Now, if we start from t = 1 and from the final set [−1, 1], and
go backwards (inverting the sign of the derivative), we get the set (interval) [−2, 2]
instead of the original set (point) (0, 0). It is clear that the RS must grow, because
the uncertainty remains the same for the inverse problem. Figure 12.11 illustrates
this in two-dimensional case. The reachable set obtained by inverting the sign of the
derivatives (going backward in time) is denoted as BRS, and B = RS(A, t1).

In the general case of the differential inclusion (12.13), over a fixed time interval,
the solution to the inverse problem should give us the initial set A (see Fig. 12.11).
Denote this solution by I RS. So, it should be I RS(RS(A, t1), t0) = A. In other
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Fig. 12.11 Initial set A, reachable set RS and the backward reachable set BRS

words, we must express the set A in terms of the reachable set at t = t1. The second
parameter of I RS (as well as of BRS) is the target time instant.

In [16] the following corollary has been prooved:
Corollary 1. The I RS(B, t0) is the intersection of all the BRSs going out of the

points of B as initial sets at t1, backwards in time.
The above corollary does not mean that the differential inclusions are reversible.

This is a theoretic result. A practical application of the corollary may be difficult
because it requires an infinite number of backward reachable sets to be calculated.
This leads to numerically untractable problem.

In [16] there is a remark on a possible generalization. Namely, if we define the
reachable set as a set of all possible futuremodel stateswithout referring to differential
inclusions and the strictly mathematical definition of the IDs and model trajectory,
the corollary 1 remains valid. This means that it may work also for discrete time-
space models and any other model dynamics where the reachable set is well defined.
The irreversibility of the trajectories of real systems is illustrated in Fig. 12.12. The
reachable set is not necessarily a solution to any differential equation or inclusion.
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Fig. 12.12 Irreversible trajectories in presence of uncertainty

12.6 Encapsulated Universe and the Fifth Dimension

Let us discuss a fictitious world, encapsulated in a ball. This can be treated as a
fiction, but it is not what we commonly understand as science fiction. It can hardly
be proved that our world is contained in a ball, but it is also difficult to prove that it
is not.

This chapter contains examples of somewhat unconventional approaches, and
more abstract modeling tasks. The main purpose is to showmodels that perhaps have
little practical applications, but offer new and cognitive topics and may stimulate our
imagination.

In this section, we define a universe encapsulated in an open ball and simulate
particle movements in it. The metrics and the linear vector space inside the ball
are defined. They are based on the addition and multiplication operators defined
below. Properties of this space are discussed and some simulations of a moving
particles are described. This includes a simulation of the movement of several thou-
sand particles that explode, starting from the initial singularity (a “small bang”). The
four-dimensional space-time ball universe is defined. This ball is used to encapsu-
late the whole time-evolution of the three-dimensional world. Then, we extend the
dimensionality of the ball, adding the fifth dimension, being a new, “hyper-time”
coordinate. It is suggested that this process can be continued, by treating the time as
a multi-dimensional variable.

Nomenclature
Rn—n-dimensional real Euclidean space. We denote R = R3

Bn—n-dimensional open ball with radius equal to one. We denote it as B when
the dimensionality is defined by the context.

x̂ = (x, y, z)—a point in B
X̂ = (X,Y, Z)—a point in R
t—the time
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d(û, v̂)—distance in B
d(Û , V̂ )—distance in R
M(x̂)—a mapping B → R
M−1(X̂)—a mapping R → B
⊕—addition operator for two vectors in B
⊗—multiplication operator (number by vector)

NOTE: In the following, the term boundary of B means the boundary of the
closure of B.

12.6.1 General Remarks

This chapter is not related to any cosmological theory. We focus rather on the geo-
metrical properties of the ball and the possible spatial structures defined inside.

The idea of a spherical universe is not new.However, it seems that it gains popular-
ity in recent years with new observations and ideas. Di Valentino and Melchiorri [5]
discuss an enhanced lensing amplitude in the cosmic microwave background power
spectra, and point out that the closed Universe can provide a physical explanation
for the effect. Linde [11, 12] and Efstathiou [6] discuss similar problems of a cosmic
spatial curvature. Guth and Nomura [7] study the problem of the spatial curvature
and its consequences.

The problem of symmetry breaking in the early history of the universe is discussed
in Albrecht [2]. Aghanim et al. [1] describe a hybrid method with simulations based
on the use of the high-frequency polarization data instrument and cosmic microwave
background data.

There are a lot of related works in the available literature.Wewill not provide here
awider survey because the present paper is not exactly in the field of observations and
their cosmological consequences. For more works on that field and more references,
the reader may consult Hildebrandt et al. [8], Riess et al. [18], Sintunavarat [19] or
Uzan [20]. For more information on the expanding universe and the theory of the
“Big Bang” consult Peebles et al. [14].

Observe that if we admit a Universe to be enclosed in a limited ball or other
regions, we should establish some kind of mathematical structure in it. From the
mathematical point of view, the “Space of the Universe” should have a linear vector
and metric structure. So, we define such structures inside an open n-dimensional
ball with a radius equal to one. This permits us to use the operators of addition and
multiplication of vectors, and to simulate the movement of sets of particles in our
abstract ball-world.
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12.6.2 The Ball

Imagine an abstract Universe that consists of a set of particles moving according to
certain laws of physics, valid inside the open unit ball B. Recall that, as stated before,
the term boundary of B means the boundary of the closure of B.

Before considering the events in B, we should define a space inside the ball. Up
to now, B is just a set of points (or vectors). To convert this set into space, we must
define the certain structure(s) in it. Let’s start with a metric structure. First, consider
the mapping M from B to the real, three-dimensional Euclidean space R, defined as
follows:

M(x, y, z) = (X,Y, Z) such that

⎧⎪⎨
⎪⎩
X = x/s, Y = y/s, Z = z/s,

for (x, y, z) ∈ B, (Z ,Y, Z) ∈ R,

where s = 1 − x2 − y2 − z2
(12.15)

The inverse mapping is M−1 : P → B, due to the formula

x = Xs, y = Ys, z = Zs, (12.16)

where s is defined in Eq. 12.15. In the following, the vector −x̂ = (−x,−y. − z).
The algorithm for M−1 is not so straightforward as that of M . To calculate x, y

and z, let sum the respective squared left- and right-hand sides of (12.16). We have

⎧⎪⎨
⎪⎩
x2 + y2 + z2 = (X2 + Y 2 + Z2)s2, where s = (1 − x2 − y2 − z2)

thus, 1 − s = (X2 + Y 2 + Z2)s2

(X2 + Y 2 + Z2)s2 + s − 1 = 0

(12.17)

Let a = (X2 + Y 2 + Z2), b = 1 and c = −1.
This way, s is a solution to the equation as2 + bs + c = 0. So, we have

s = −b + √
b2 − 4ac

2a
(12.18)

Figure 12.13 shows the image of a uniform grid of points in R, mapped to B
using M−1 (an intersection with the x, y plane, with z = 0). Note that if a point in
R tends to infinity, then the corresponding point in B approaches the boundary of
the ball. Look at the section x in Fig. 12.13. If such an object moves in the direction
of the arrow, then its (absolute) length decreases. This means that the individuals
that live near the limits of B are smaller than these living near the center. However,
they cannot notice this. The length of X in terms of the distance d (Sect. 12.6.3) is
unchanged, and they have no reference to assess their real size.

It is interesting to see what happens if we accept the other, negative solution in
(12.17). To do this, we can modify the mapping M , considering its domain as the
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Fig. 12.13 Mapping a
uniform grid of points from
R to B

outside of B, namely E = (cl(B))C (the complement of the closure of B). In other
words, we suppose that x2 + y2 + z2 in (12.17) is greater than one, and we take the
negative solution in (12.18). Figure 12.14 shows the map of a regular grid in R to the
set E . Again, the infinity of R maps to the boundary of E . The point “zero” (origin
or R) maps into the infinity of E . In E , we can define a metric structure similar to
that of the metric in B. The world created in E will be called the dual world with
respect to B. However, no particle that moves in B can “jump” to the dual world,
and vice versa, unless we admit some uncertainty in the mappings M and M−1 (see
Sect. 12.6.9). In the following, we focus on the space B, rather than E .

Both M and M−1 are one-to-one mappings. Observe also that

M(0, 0, 0) = (0, 0, 0), M−1(M(â)) = (â), and M(−â) = −M(â). (12.19)

12.6.3 The Metric Structure

Let D(Û , V̂ ) be a conventional distance between points in R. We define the distance
d in B as follows:

d(û, v̂) = D(M(û), M(v̂)) ∀ û, v̂ ∈ B (12.20)

As D satisfies the axioms of a metric, d also does.
Absolute value or norm of u ∈ B is |u| = d((0, 0, 0), u) (defined in terms of d(∗)

and not D(∗)). We also denote ‖ u ‖= D((0, 0, 0), u) =
√
u2x + u2y + u2z .
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Fig. 12.14 The dual world

For example, let u = (0.9, 0, 0). Then ‖ u ‖= 0.9 and |u| = 10.752.
Ifwe define a section of a straight line between twopoints F andG as the trajectory

of minimal length that connects F and G, then the straight lines in the ball B with
metrics d become curves (d-straight lines). See some examples of d-straight lines in
Fig. 12.15. A particle with a given initial velocity and no forces applied to it moves
along such the d-straight lines (uniform line movement).

The simple Euclidean distance D can be also calculated for two changes between-
minus points in B, as D(â, b̂).

12.6.4 Linear Vector Space Operators

Vector sum in B:⎧⎪⎨
⎪⎩
Z = (x3, y3, z3) = (x1, y1, z1) ⊕ (x2, y2, z2)

i f f

(x3.y3, z3) = M−1(M(x1, y1, z1) + M(x2, y2, z2))

(12.21)

Obviously, (x3.y3, z3) ∈ B.
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Fig. 12.15 D-straight lines in the ball B, projection on the x-y plane

Now, calculate the following:
â ⊕ (b̂ ⊕ ĉ) = M−1(Mâ) + M(b̂ ⊕ ĉ)) =
M−1(M(â) + M(M−1(M(b̂) + M(ĉ)))) = M−1(M(â) + M(b̂) + M(ĉ)),
where â, b̂, ĉ ∈ B.
Calculating, in the similar way, the sum (â ⊕ b̂) ⊕ ĉ we obtain the same result.

This means that the summation operation ⊕ in S is associative. Other axioms of the
summation operator are also satisfied. The operator of multiplication is defined as
follows (K and N are numbers, M is the mapping (12.15)).

K ⊗ â = M−1(KM(â)), K ∈ R1 (12.22)

We have (multiplicative axiom):

K ⊗ (N ⊗ â) = M−1(KM(N ⊗ â)) =
M−1(KM(M−1(NM(â))) = M−1K NM(â)) = K N ⊗ â
and distributive axioms (C, D–real numbers)

C ⊗ (â ⊕ b̂) = C ⊗ M−1(M(â) + M(b̂)) =
M−1(CM(M−1(M(â) + M(b̂)))) =
M−1(C(M(â) + M(b̂)))

(C ⊗ â) ⊕ (C ⊗ b̂) = (M−1(CM(â)) ⊕ (M−1(CM(b̂)) =
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M−1(CM(â) + CM(b̂)) = C ⊗ (â ⊕ b̂)

This way, we convert the set of all points in B into a real linear vector metric
space B. Let us consider the velocity of movement and use differential equations in
B. By a small vector we mean a vector â ∈ B, such that ‖ â ‖<< 1. More precisely,
we assume that in the mapping M the factor s (see (12.15)) may be supposed equal
to one. So, for small vectors, mappings M and M−1 become identities. For small
vectors we have

(â ⊕ b̂) = â + b̂, k ⊗ â = kâ
Note also that â ⊕ (−a + r) becomes a small vector when r approaches zero.

12.6.5 Local Ball and Local Observer

Local ball LB is a ball included in B with the diameter sufficiently small to neglect
the changes of the value of the coefficient s of (12.15) inside LB (s treated as a
constant). Let’s recall that here, we not only discuss the mappings between the R3

Euclidean space and the interior of the ball.We suppose that the real, physical world
is located inside the ball, and not outside.

A local observer is that who can get information only from the local sphere where
he/she is located. The local observer concludes that he/she is leaving in the real
linear vector space (s is a constant, M and M−1 are linear mappings). For the local
observer, the operations ⊕ and ⊗ reduce to the conventional operations on vectors
in Euclidean space, and transformations M and M−1 become linear transformations.
The local observer cannot know if the origin of his/her local world is located in the
center of B or not. In fact, he/she has no information about where his LB is located.

Note that there is a simple transformation (self-mapping) that moves the origin
of the LB to the origin of B, defined as follows:

b̂ = â ⊕ (−â0)∀â ∈ B,

where â0 is the center of the LB
The above transformation is a mapping that maps the inside of the ball B into

itself, preserving all properties of the space B.
Let the spatial coordinates of a point â(t) = (x(t), y(t), z(t)) ∈ B depend on the

time t . Denote f (t) = (x(t), y(t), z(t)). This describes a curve in B. We will name
it the trajectory of f (t). It is the graph of the function (x(t), y(t), z(t)) into the
three-dimensional space B. If we define the B-world as a set of moving particles,
then the set of the trajectories of all particles will be calledworld trajectory. Observe
that to represent the state of a moving particle, we need its position, as well as
the velocity. It could be supposed that the trajectory (recorded movement) already
includes this information. However, to numerically retrieve the velocity from the
movement, we would need to perform numerical differentiation. This operation is
not recommended and may provide considerable errors. So, if we need to record
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the complete information about the moving particles, we must use six and not three
variables for each point. This will be the world state trajectory. In this case, the
spatial part of our world must be B6 ball instead the B3. In more general case, we
may treat with a model of a complex dynamic system, which state is a point in an
n-dimensional space. In this case, the spatial part of the model will be Bn-world,
and the time will be treated as the coordinate n + 1. Section 12.6.10 provides more
discussion on the 4th dimension of the B-world.

12.6.6 Velocity Superposition

Let â(t) = (x(t), y(t), z(t)). Consider the expression

v̂a = dâ

dt
|B = lim

h→0

(
1

h

)
⊗ [

â(t) ⊕ (−â(t − h))
]

(12.23)

If the limit exists, then the above expression is the velocity of the point with
respect to the origin of B. The subscript B means that we use the operators defined
in B.

Some authors admit that the real time advances in discrete time steps (a quantum-
mechanics approach) [9]. If we admit that the time advances in finite time steps
h̄, then the formula (12.23) remains valid with only one change, namely without
the “lim” operation. The discrete time case fits better with Heisenberg’s uncertainty
principle. According to this principle, we cannot assess both position andmomentum
of a particle simultaneously, basing on the particle state at one time instant. In the
formula with finite h = h̄, we use time instants t and t − h̄ to assess the velocity.

Velocity vector belongs to B. The superposition of vectors, for example, the
velocities, in B is different from the vector sum in R. For example, the superposition
of two velocities in the x direction, each of them equal to 0.2 (in terms of distance
D), is the vector 0.2 ⊕ 0.2, which D length is equal to 0.362.

With discrete time, the formula for the next position of a particle with a given
velocity is the same as provided by the simple Euler’s method: â(t + h̄) = â(t) ⊕
(h̄ ⊗ v̂(t)).

Recall that |u| = d((0, 0, 0), u). We denote ‖ u ‖= D((0, 0, 0), u).
Consider a velocity ĉ, such that ‖ ĉ ‖= 1. This vector does not belong to (open)

B, and no particle can move with such velocity. Instead, we will consider a vector
ĉε, such that

‖ ĉε ‖=‖ ĉ ‖ −ε, where ε > 0 and ε << 1. (12.24)

Velocity ĉ is the limit case of ĉε, when ε approaches zero. Further on, we will dis-
cuss the velocity ĉε also referred to as the ε-velocity, assuming that ε is an arbitrarily
small parameter. However, we will not pass to zero with ε. Any velocity vector that
satisfies (12.24) will be named ε-velocity.

Consider the sum ŝ = v̂ ⊕ ĉε.
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We have
v̂ ⊕ ĉε = M−1(M(v̂) + M(ĉε)),
but, M(v̂) + M(ĉε) ≈ M(ĉε) because M(ĉε) tends to ∞ for small ε.
So, v̂ ⊕ ĉε ≈ M−1(M(ĉε)) = ĉε.
In other words, the sum of the ε-velocity and any other velocity in B is also an ε-

velocity. This means that if a particle moves with velocity v̂ and generates any object
that moves with the ε-velocity, the velocity of that object is equal to the ε-velocity
and does not depend on v̂. Consider the product of ε-velocity and a real constant k.

k ⊗ ĉε = M−1(kM(ĉε)), ĉε = (cxε, cyε, czε), ‖ ĉε ‖= 1 − ε.

Denote M(ĉε) = d̂ = (dxε, dyε, dzε) ∈ R.

Here, k is a finite constant, k> >ε. As ‖ ĉε ‖ approaches 1 for small ε, the length
of D approaches infinity, and so does kD. According to (12.16), the infinity of R
maps into the boundary of B. This means that |k ⊗ ĉε| is also the ε-velocity. A ⊕
sum of two or more ε-velocities in the same direction, is also an ε-velocity.

The constant ε can be easily obtained from the quantum theory. Suppose that
both time and space are discrete and that no particle or piece of information can
“jump” more than one space step in one time step. Using the Planck minimal length
equal to 1.616 × 10−35 and the Planckminimal time-step equal to tm = 5.39 × 10−44

we calculate the maximal speed in R as xm = 299.8 × 106 m/sec. Calculating
M−1(xm), we obtain ε � 1.669 × 10−9. However, this is only the estimate of the
lower limit for ε, obtained from the time-space discretization, related to the speed
of light. We do not discuss here the speed of light or any other issues that arise from
the theory of relativity, focusing rather on the geometrical properties of the ball and
not on the advanced mechanics.

12.6.7 Particle Movement and a Small Bang

Consider a set of particles (or material points) in B. Define the state of this set (the
B-world) as the set of the positions and velocities of all particles. The evolution
of the B-world is the set of the trajectories of all particles over the whole time
interval [−∞,∞]. As B is a normed linear vector space, we can suppose that the
particle movement obeys the known equations of movement, expressed in terms
of the operators ⊕, ⊗. In our simulations, the equations of movement are carried
out using these operators. The same result can be obtained simulating the particle
movement in R (with conventional Euclidean geometry), and then, mapping the
particle positions into B. However, we use the operators ⊕, ⊗ and the geometry of
B for a more conceptual reason: Our real universe is inside, and not outside the
ball. The “external” space R is treated as an auxiliary object, only

As an example, consider a small bang that occurs in B, over the time interval
[0,∞]. The force between two particles depends on the distance d between them.
Suppose that for small d the particles repel, and for greater d they attract each other.
A simple expression of this force may be, for example,
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f = g

(
1

d2
− a

d3

)
, (12.25)

where g is a constant, a represents the “repelling radius” and d is the distance between
the two particles. Moreover, we suppose that the force between two particles that are
located at the same point is equal to zero. Let’s simulate the movement of N = 5000
particles.

The scenario for the small bang is as follows. In the beginning, all the particles are
located in the same point x0, y0, z0, with zero velocity (a singularity). Consequently,
all the forces between particles are equal to zero and the system remains at a standstill.
To anobserver, the cloudof particlesmay evenbe noted as one, still particle.However,
there is a huge potential energy in the system, that may be released. To release this
energy, we apply a very small impulse of force to the particles. They start to move
out of the singularity, receive a great force pulse of repelling force, and the explosion
begins.

The integration of movement in a near neighborhood of the singularity is difficult.
In our case, the repelling force is truncated to avoid numerical problems. We call this
simulation “Small Bang.” This is an implementation on a standard PC. Obviously,
the simulation of the real Big Bang should be (and it is) rather carried out on a
supercomputer.

In Fig. 12.16 we can see the images of some consecutive system states (the evo-
lution of our B-world), marked as A, B, C, and D, respectively. First, the cloud of
points rapidly expands. The initial repelling pulse results in an initial velocity that
influences all the further expansion. The model is highly sensitive with respect to
the parameters of the force expression. If the initial repelling is big, then the cloud
expands to infinity, and no interesting structures are formed. On the other hand,
for a smaller initial pulse, the attracting forces prevail and the cloud collapses one
or more times. While collapsing, the points rapidly approach the initial singularity,
and the forces between them grow. This results in a secondary explosion. In fact, the
resulting velocities are the consequence of the imperfection of numerical integration,
rather than the true particle movement. However, there are some parameter settings
that result in the slow expansion after the initial “bang.” If this slow expansion in
reached, some local clusters of particles begin to appear, consolidate, and then remain
in the slowly expanding cloud.

In the image of the final state (D) of the universe we can see the quite stable
distribution of particles, with several clusters or “galaxies” (some of them rotating).
It can be observed that the clusters are formed at the early stage of the evolution, but
not just after the initial bang.

The force expression (12.25) formodel of Fig. 12.16 has the following parameters:
g = 0.08, a = 0.01, lower force limit = −360. The integration step was fixed to
h = 3 × 10−7.

It should be noted that we can start simulating the particle movement in R, and
then map the system state into the ball. This will provide the same images. However,
this is not conceptually correct.Our world is defined in B and not in R. So, we should
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Fig. 12.16 The expansion in the B-world; small bang. Projection on the x-y plane

simulate anything using the operators ⊕ and ⊗. This, of course, results in slower
simulations.

12.6.8 Adding the Time Dimension

It is common to treat the time t as a 4th dimension and consider events in the four-
dimensional spacewith coordinates (x, y, z, t).Up to now, Bwas a three-dimensional
open ball with radius one. Now, we add to it the time t as the fourth dimension, the
resulting ball being B4. For this ball we redefine the mappings M and M−1 given by
(12.15) and (12.16), respectively, as follows:
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M(x, y, z, t) = (X,Y, Z , T )

× such that

⎧⎪⎨
⎪⎩
X = x/s, Y = y/s, Z = z/s, T = t/s

for (x, y, z, t) ∈ B4, (Z ,Y, Z , T ) ∈ R,

where s = 1 − x2 − y2 − z2 − t2
(12.26)

The inverse mapping is M−1 : R4 → B4, due to the formula

x = Xs, y = Ys, z = Zs, t = T s, (12.27)

where s is defined in Eq. 12.26.
We will use the same notation M(∗) as in the three-dimensional case, supposing

that the dimension of the domain of M is defined by the context.
The mappings (12.26) and (12.27) differ from (12.15) and (12.16) only by the

change of the dimensionality of the domain. They, as well as B4, have the same
properties as in the three-dimensional case. In particular, B4 is a real, linear, vector
metric space, equipped with operations ⊕ and ⊗.

In B4, the time t changes between minus and plus infinity. This way, we obtain a
ball B4 that incapsulates the whole evolution of our B-world.

Figure 12.17 shows the section of the four-dimensional ball with the plane
y = 0, z = 0. Each curve is a set of points with the same value of the time. The
constant time curves are shown both inside the ball B and for the dual world.

12.6.9 Uncertainty and Traveling Beyond the Infinity

Now, suppose that the mappings M and M−1 are charged with some uncertainty.
This means that the result of the operations ⊕ and ⊗ provide sets of possible values,
instead of a single point in B. Consequently, the particle movement and the evolution
of the B-world become irreversible. Let start with a given particle position â(t) and
velocity v̂(t). We have

â(t + h) ∈ â(t) ⊕ (h ⊗ v̂(t)) (12.28)

Due to the uncertainty, the right-hand side of (12.15) is a set and not a single point.
Now, if we intend to go back in time (reversing the direction of the velocity), we
must start from a point inside the set U (Fig. 12.18) given by the right-hand side of
(12.26). As the result, we obtain a set W of possible positions at time instant t . This
set may include or not the original point. This means that the particle can occupy
two or more positions in the same time instant (Fig. 12.18), shown also in Sect. 12.5.
If we don’t permit this, the conclusion is that going back in time is impossible in
our B-world. Note that in the case of uncertainty, the particle movement is described
by a differential inclusion instead of a differential equation, and the movement is
irreversible. This was also discussed in Sect. 12.5.
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Fig. 12.17 Time discretization, plane t − x . Curves of constant time

Fig. 12.18 Going forward and back in time with uncertainty
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Fig. 12.19 Traveling behind
the infinity. Simulated
trajectory in the real and dual
worlds

The uncertainty of M−1 can be interpreted as an uncertainty of the position in
the coordinates of the ball B. If we define the amount of uncertainty in terms of
the metrics d (see (12.20)), then the attainable set of all possible trajectories of the
particle remains inside of the ball B. However, this changes when we define the
uncertainty using the (simple Euclidean) distance D. The source of such uncertainty
may also be a consequence of time- and space discretization.

This uncertainty has interesting consequences. Consider a particle that moves on
a d-straight line with constant velocity, toward the boundary of the ball B4. With this
kind of uncertainty, the attainable set may intersect with boundary of (closure of)
B4. This means that the particle may escape from B4 and enter the dual world E (see
Fig. 12.17). Once entering E , the particle keeps moving according to the kinematics
of E . Note that in E , the vector operations and the metrics remain the same as in
B, except the formula for M−1 (the negative solution in taken in (12.17)). So, we
can simulate the further movement of the particle. Figure 12.19 depicts a simulated
trajectory of the particle in B and E .

First, the particle approaches the limit of B (infinite time). Due to the uncertainty
in the positions, it can jump to the dual world. We suppose that the velocity of the
particle does not change. Once in the dual world, the particle keeps moving. The
simulation shows that it approaches the limit of B at the other side, with time tending
to infinity (in the dual world). Then, due to the same uncertainty, the particle can
jump to the ball B again, and keep moving. This cycle is repeated infinite times.
Note that the trajectory in the dual world is not completely defined because of the
uncertainty of particle position just after the first jump. So, after returning to B, the
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trajectory may, or not, pass through the original starting point. However, the reentry
point R is always the same for each possible trajectory.

12.6.10 The Fifth Dimension

In B4, the time t changes between minus and plus infinity. This way, B4 encapsulates
the whole evolution of our B-world.

Now, the question is why our space is limited to four dimensions? Our mind has
been designed to understand the three-dimensional environment and the time. How-
ever, this is the only reason to limit us to the four-dimensional space-time universe.
In other words, this limitation is strictly subjective. Thus, consider an extension of
our universe to n-dimensional space. Let us consider an additional, fifth dimension
with the corresponding coordinate u. Transformations (12.26) and (12.27) remain
similar, only the coordinate u (a “hyper-time”) is added, so that

s = 1 − x2 − y2 − z2 − t2 − u2

The coordinate u is a “hyper-time.” For B5, we can define new laws of physics.
We can use the same principles of causality and uncertainty as in B4, or define
completely different rules. Remember that here, we are creating the world(s) and we
don’t look for analogies with the real world (this is left to the reader’s imagination).

The new B5-universe encapsulates the “evolution of evolutions.” In other words, it
encapsulates the changes of all the possible evolutions of B4. Figure 12.20 illustrates
the process of adding new dimensions to B. Each ball B3 represents one state of
the three-dimensional world. The series of all consecutive B3s form the evolution
that is encapsulated in B4. In turn, advancing in the hyper-time u, we have a new
“evolution of evolutions,” that is enclosed in B5. This process may be continued by
adding new “hyper-time” coordinates. In fact, we should ask ourselves if the time
must be a one-dimensional variable, and why not n-dimensional?

Though the fifth dimension and the two-dimensional time is difficult to accept
by our intuition, this extension of the concept of time has some elements simi-
lar to the one-dimensional time. Consider a continuous dynamic system, with a
one-dimensional state variable. With sufficient regularity assumptions, the system
movement can be described by an ordinary differential equation

dx

dt
= f (x, t), or, in a more general form, f (x, x ′, t) = 0 (12.29)

Now, suppose that the time is two-dimensional, and each time instant is a point
on the plane (t, u) where u is the other time coordinate. Now, the system dynamics
may be described by a set of partial differential equations, instead of the ordinary
one, as follows:
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Fig. 12.20 Adding the fifth and sixth dimension

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂x

∂t
= f11(x, y, z, t, u),

∂x

∂u
= f12(x, y, z, t, u)

∂y

∂t
= f21(x, y, z, t, u),

∂y

∂u
= f22(x, y, z, t, u)

∂z

∂t
= f31(x, y, z, t, u),

∂z

∂u
= f32(x, y, z, t, u)

(12.30)

12.6.11 Conclusion

In this chapter, a non-conventional application of differential inclusions is discussed.
In this application, the problem is if we can integrate system trajectories with ideal
predictor (“feedback from the future”). The uncertainty is defined as the set of all
possible future model states. This permits us to calculate the reachable set. It is
pointed out that the iterative procedure described here may converge to the unique
trajectory that is the solution to the ideal predictor problem.

Other parts of the chapter deal with the idea of encapsulating our Universe in
an open n-dimensional ball of radius one. We can define a metric and linear vector
structure inside the ball. This makes it possible to discuss particle movements inside
the ball using ordinary differential equations. There is one-to-one mapping between
the ball space and the space Rn . The main tenet is that the real world is enclosed in
the ball, and the Euclidean space R around is only an additional, abstract structure.
Adding the fourth dimension that represent the time, we can encapsulate the whole
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evolution of our B-world into the ball. Then, we can consider the fifth and higher
dimensions, adding a “hyper-time” coordinates, and encapsulate “evolution of evo-
lutions” in similar balls, with higher dimensions. If we add an uncertainty to the
mapping from and into the ball, it is possible that a moving particle goes through the
limit of B. The particle keeps traveling behind the infinity and enters a “dual world”
defined outside the ball.
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