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The modelling and simulation community extends over a range of diverse 
disciplines and this landscape continues to expand at an impressive rate. Modelling 
and simulation is fundamentally a computational tool which has an established 
record of significantly enhancing the understanding of dynamic system behaviour 
on one hand, and the system design process on the other. Its relevance is 
unconstrained by discipline boundaries. Furthermore, the ever-increasing availabil-
ity of computational power makes feasible applications that were previously 
beyond consideration. 

Simulation Foundations, Methods and Applications hosts high-quality contribu-
tions that address the various facets of the modelling and simulation enterprise. 
These range from fundamental concepts that are strengthening the foundation of the 
discipline to the exploration of advances and emerging developments in the 
expanding landscape of application areas. The underlying intent is to facilitate and 
promote the sharing of creative ideas across discipline boundaries. The readership 
will include senior undergraduate and graduate students, modelling and simulation 
professionals and research workers. 
Inasmuch as a model development phase is a prerequisite for any simulation 

study, there is an expectation that modelling issues will be appropriately addressed 
in each presentation. Incorporation of case studies and simulation results will be 
strongly encouraged. 

Titles can span a variety of product types, including but not exclusively, 
textbooks, expository monographs, contributed volumes, research monographs, 
professional texts, guidebooks and other references. 
These books will appeal, varyingly, to senior undergraduate and graduate 

students, and researchers in any of a host of disciplines where modelling and 
simuation has become (or is becoming) a basic problem-solving tool. Some titles 
will also directly appeal to modelling and simulation professionals and 
practitioners.
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Preface 

Any scientific Body of Knowledge is a comprehensive and concise representation 
of concepts, terms, and activities needed to explain a professional domain by 
representing the common understanding of relevant professionals and professional 
associations. Defining this body for Modeling and Simulation (M&S) is essential 
for the discipline of M&S. These concepts must include the science-philosophical 
foundations and implications, the understanding what models are and how their 
implementation in form of simulations can be used to support the many application 
domains, such as gaining experience for training and education, as well as exper-
imentation for analysis, design, control, and optimization, within increasing number 
of computational disciplines. 

But is Modeling and Simulation really a discipline? To some people, simulation 
is a very useful technique for representing a system under study to enable com-
putational experimentation with a view to improve system performance. In this 
perspective, modeling, the representation itself, is of secondary importance— 
merely a necessary means to an end. For other users, simulation provides a virtual 
environment that allows to train people. The defense simulation community is a 
good example for this type of simulation use, but also the aviation community using 
flight simulators to educate and qualify their pilots. These users look at simulation 
as a powerful computational tool. 

In contrast, underlying the SCS Modeling and Simulation Body of Knowledge 
(M&SBoK) is the assertion that there is a discipline called Modeling and Simulation 
(M&S). Moreover, this discipline provides visibility into the holistic nature, and the 
conjoint activities, of model creation and simulation experimentation. At the core 
of the M&S discipline is the identification of the elements manipulated by its 
associated activities: real system data, experimental frame, model, and simulator, as 
well as the relationships that must bind these components together to form a 
meaningful composition. 

There is a huge paradigm shift from M&S as a computational tool to the M&S as 
discipline world view. Taking this shift, the M&S framework ontology (the four 
elements and their relations) effectively lays the foundation for computational 
experiments, clearly stating boundaries, and interactions, of systems, data, and 
representation. This shifts the focus from simulation to modeling, placing the model 
at the center, making the model the curated artifact of knowledge that must be
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maintained, enhanced, and reused over time. This viewpoint allows the application 
of simulation in many computational sciences to help gaining new knowledge by 
creating numerical insight into the dynamic behavior of the modeled entities, the 
use of M&S as an epistemological tool. 

These views are not mutually exclusive. Contrarily, they represent multiple 
facets of the variety how M&S is and can be used. M&S supports many disciplines, 
computationally as well as epistemologically. The simulation engineer must be 
aware of the whole picture to serve their communities best. They must understand 
the application domains and must be able to support the best conceptualization and 
capture this in a model that is implemented as a simulation. If the application 
domain uses IT support, the simulation engineer should be aware of interfaces that 
can support the data information exchange needs. The M&SBoK provides a first 
collection of such knowledge and surely needs to be a living document that is 
augmented over time. 

In this initial Guide to M&SBoK, Chap. 1 sets out the concepts of the M&S 
framework ontology that lay the groundwork for subsequent discussion. Chapter 2 
covers the core areas of M&S and provides an overall big picture portrait of this 
emerging discipline and how it supports other knowledge domains. Chapter 3 
covers the traditional view of simulation as experimentation. Indeed, there is no 
other discipline that can provide powerful simulations providing numerical insight 
into complex dynamic systems. And yet, the epistemology of M&S is the brain 
power that enables these tools. Simulation is the muscle; modeling is the soul! 

Chapters 4 and 5 introduce simulation as experience, both in the technical and 
entertainment arenas. Chapters 6–10 cover the internals of the M&S disciple, its 
mechanics, ethics, and economics, while Chaps. 11–16 concern the external rela-
tionships, how M&S is taking its place among, and increasingly central to, the 
recognized disciplines in science, technology, and the arts. Finally, Chaps. 17–19 
review the development of M&S over time and set forth the trends, aspirations, and 
challenges of the future. 

It is expected that the M&SBoK will grow over time. This first version is a first 
set of core concepts, but as the application domains of simulation grow, so will the 
body of knowledge. We already see growing fields that need to be addressed in 
more detail, such as complexity, deep uncertainty, and quantum simulation. We 
assume that in the next iteration, we will see how M&S can be increasingly used to 
address complex system, which comprises a variety of heterogenous entities, often 
highly interdependent and connect in nonlinear fashion. We assume to see an 
increasing use to address the challenge of deep uncertainty in operations research, 
which requires multi-model approaches and a new paradigm to conduct 
simulation-based optimization to understand the topology of the solution space 
instead of looking for point-solutions. And finally, with quantum computing 
becoming increasingly available, simulation engineers have to address how we use 
this new resource: like we developed concepts for parallel and distributed simu-
lation we will have to address quantum computing-based simulation soon to be 
ready as the community of simulation engineers when the time comes.
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1.1 Scope

1Preliminary 

Tuncer Ören , Bernard P. Zeigler , and Thorsten Pawletta 

Abstract 

In this chapter, we provide an introductory view for the scope of the SCS M&S 
Body of Knowledge, including the terminology. We provide a rationale for the 
theoretical basis of M&S and give an overview of the modeling and simulation 
framework (MSF) applied in many contributions, followed by the basic system 
entity structure (SES) concepts. 

Keywords 

Modeling and simulation . Discrete event systems specification (DEVS) .
Modeling and simulation framework (MSF) System entity structure (SES) 

Tuncer Ören 

The term simulation, based on the concept of similarity, has been used in English 
since mid-fourteenth century. Hence, simulation has non-technical as well as 
technical meanings. Accordingly, it has many definitions. A collection of about 100
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Gain experience

definitions of the term simulation is compiled and categorized in three groups and 
nine subgroups by Ören [1]. In a sequel article, a critical review of these definitions 
was given [2].

2 T. Ören et al.

In a Body of Knowledge document, it is imperative to delimit the scope of the 
main concept. Therefore, the meaning(s) of the term “simulation” as used in this 
document is clarified based on Ören [2]. 

From a pragmatic point of view, based on the purpose of its use, simulation has 
three aspects: 

(1) Perform experiments, 
(2) 

for training to gain/enhance any one of the three types of skills, or for enter-
tainment, and 

(3) Imitation, pretense. 
Only the experiment and experimentation aspects are within the scope of this 

study. 
From experimentation aspect: “Simulation is performing goal-directed experi-

ments with models of dynamic systems.” 
Purpose of simulation, as well as definitions and explanations of different types 

of experiments—outlined in Ören [2]—is elaborated later. 
From the experience perspective, simulation has two distinct usages for training 

and for entertainment: 
“Simulation is providing experience under controlled conditions for training, i.e., 

for gaining/enhancing competence in one of the three types of skills: 

(1) motor skills (virtual simulation or use of simulators), 
(2) decision and/or communication skills (constructive simulation such as business 

games, war games, or peace games; aka serious games), and 
(3) operational skills (live simulation).” 

Experience through gaming simulations can be used for training as well as for 
entertainment purposes. 

Simulation has many aspects. A recent publication lists 750 types of 
simulation [3]. 

1.2 Terminology 

Bernard P. Zeigler 

After several decades of development, there are still a wide variety of modeling and 
simulation terms and associated concepts with multiple interpretations. This variety 
derives from different historical streams of development of Modeling and Simu-
lation (M&S) within different contexts (whether industrial, governmental, or mili-
tary) or disciplinary (whether in “hard” or “soft” science or engineering). The 
premise behind the need for a body of knowledge for M&S is that there is some



core set of concepts that identify its activities as different from others and that are 
common no matter in which context they are employed. The reference list [4] 
contains 29 dictionaries of modeling and simulation. Some definitions can provide a 
good “first approximation” to understanding a term and how it is used, and they 
lack the precision and rigor that a BoK should aspire to. Therefore, this BoK 
employs a Framework of M&S (reviewed in Sect. 1.4) to map out the basic entities 
and their relationships employed in M&S and at the same time, providing a 
theory-based set of definitions employed in the framework. Terms such as “model” 
and “simulator” are often loosely used in current practice but have a very sharp 
meanings in the framework. Therefore, it is important to understand what is 
included and excluded by the definitions. (This is especially true if you have some 
experience in M&S and are likely to associate (or prefer) meanings that are different 
from those developed here.) Based on the Modeling and Simulation Framework 
(MSF), the basic issues and problems encountered in performing M&S activities 
and using their vocabulary can be better understood and coherent solutions 
developed. Understanding the MSF core concepts and employing the associated 
terminology will help everyone involved in a simulation modeling project such as 
analysts, programmers, managers, and users to better carry out their tasks and 
communicate with each other. 

1 Preliminary 3

1.3 Rationale for Theoretical Basis of M&S 

Bernard P. Zeigler 

“An established body of knowledge (BoK) is one of the pillars of an established 
discipline” [5]. The BoK establishes a kernel of topics that categorically charac-
terize the discipline. When sufficiently mature, a comprehensive theory of the 
domain provides an essential framework to define a kernel of topics and to organize 
these topics in a meaningful way. Further, the framework and its underlying theory 
provide a sound foundation for conduct of activities in the disciple. 

At this point in time, it has been asserted that “Theory of Modeling and Sim-
ulation (1976) gives a theory for simulation that is based on general system theory 
and this theory is considered the only major theory for simulation. This book 
showed that simulation has a solid foundation and is not just some ad hoc way of 
solving problems” [6]. Furthermore, “Theory of Modeling and Simulation (1976)] 
is a major reference for modeling formalisms, particularly the Discrete Event 
System Specification (DEVS). ... We mention the System Entity Structures and 
Model Base (SES/MB) framework as breakthrough in this field [Model-base 
management]. It enables efficiency, reusability and interoperability” [5]. 

For an empirically based discipline, still in its formative stage, the theory and 
framework provided by Theory of Modeling and Simulation (1976) provided a 
sound foundation for M&S to emerge as an established discipline. Such a foun-
dation is necessary to foster the development of M&S-specific methods and the use



1.4 Modeling and Simulation Framework (MSF)

of such methods to solve real-world problems faced by practitioners. Even when 
not fully accepted as gospel (as is theory in Theoretical Physics), the theory is 
sufficiently mature to provide the necessary skeleton to define a kernel of topics for 
the emerging M&S discipline and to meaningfully organize these topics. Further-
more, the theory’s basic entities and relations such as the separation, and 
inter-relation, of models and simulators, provide starting points to enumerate and 
address core M&S research challenges [7]. At the time of first writing of this 
M&SBoK, theory and practice are being more strongly aligned in a comprehensive 
formulation of the simulation development life cycle [8]. Indeed, as the richness 
and applicability of the field increase, it becomes more and more urgent to have an 
openly available M&SBoK. 

4 T. Ören et al.

Bernard P. Zeigler 

1.4.1 System Concepts 

The US Department of Defense M&S Glossary (M&S Glossary) gives these def-
initions: (1) system model: A representation of a system; and (2) simuland: The 
system being simulated by a simulation. These define “system model” and “sim-
uland” in terms of “system” but nowhere to be found is a definition of “system” 
itself. In contrast, the Modeling and Simulation Framework (MSF), to be reviewed 
here, includes the “system” as one of the four basic entities along with “experi-
mental frame,” “model,” and “simulator.” Moreover, we need some basic concepts 
about systems that are reviewed only in outline (for details, see Zeigler et al. [9], 
Theory of Modeling and Simulation, Chap. 1—any edition.) 

1.4.1.1 System Specification Hierarchy Levels of System 
Specification 

The MSF sets forth the fundamental entities and relationships in the M&S enter-
prise. To describe these items, we employ the systems’ specification hierarchy as 
the basis for the MSF. 

Table 1.1 identifies five basic levels of system specification forming a System 
Specification Hierarchy. The fourth column gives an example of a system speci-
fication at each level applied to a person in a conversation. Later, we will formulate 
a conversation, itself, as system composed of two interacting persons. At each level, 
we know some important things about a system that we did not know at lower 
levels. 

At the lowest level, the Observation Frame identifies a portion of the real world 
(source system) that we wish to model and the means by which we are going to 
observe it.
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Table 1.1 Levels of system specification 

Level Specification 
name 

What we know at this level Example: a person in a 
conversation 

0 Observation 
frame 

How to stimulate the system 
with inputs; what variables to 
measure and how to observe 
them over a time base 

The person has inputs and 
outputs at the usual cognitive 
level, such as streams of words 

1 I/O behavior Time-indexed data collected 
from a source system; consists 
of input/output pairs 

For each input that the person 
recognizes, the set of possible 
outputs that the person can 
produce 

2 I/O function Knowledge of initial state; 
given an initial state, every 
input stimulus produces a 
unique output 

Assuming knowledge of the 
person’s initial state when 
starting the conversation, the 
unique output response to each 
input 

3 State 
transition 

How states are affected by 
inputs; given a state and an 
input what is the state after the 
input stimulus is over; what 
output event is generated by a 
state 

How the person transits from 
state to state under input words 
and generates output words 
from the current state 

4 Coupled 
component 

Components and how they are 
coupled together. The 
components can be specified at 
lower levels or can even be 
structure systems themselves— 
leading to hierarchical structure 

A description of a person’s I/O 
behavior in terms of neural 
components and their 
interaction by spikes is at this 
level 

As the next two levels, the I/O Behavior and Function levels, we have a database 
of measurements and observations made for the source system. When we get to 
Level 3, the State Transition Level, we have the ability to recreate this data using a 
more compact representation, such as a formula. Since typically, there are many 
formulas or other means to generate the same data, the particular means or formula 
we have settled on constitutes knowledge we did not have at the lower data levels. 
When people talk about models in the context of simulation studies, they are 
usually referring to the concepts identified at this level. That is, to them a model 
means a program to generate data. 

At the highest level, the Coupled Component Level we have a very specific kind 
of generative system. In other words, we know how to generate the data observed at 
Level 1 in a more specific manner in terms of component systems that are inter-
connected together and whose interaction accounts for the observations made. 
When people talk about systems, they are often referring to this level of knowledge. 
They think of reality as being made up of interacting parts so that the whole is the 
sum (or sometimes claimed, more, or less, than the sum) of its parts. Although some 
people use the term “subsystems” for these parts, we call them component systems 
(and reserve the term subsystem for another meaning).
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The System Specification Hierarchy is a useful starting point since it provides a 
unified perspective on what are usually considered to be distinct concepts. From 
this perspective, there are only three basic kinds of problems dealing with systems 
and they involve moving between the levels of system knowledge. 

In systems analysis, we are trying to understand the behavior of an existing or 
hypothetical system based on its known structure. 

Systems inference is done when we do not know what this structure is—so we 
try to guess this structure from observations that we can make. 

Finally, in systems design, we are investigating the alternative structures for a 
completely new system or the redesign of an existing one. 

1.4.2 The Entities of the Modeling and Simulation 
Framework 

As illustrated in Fig. 1.1, the basic entities of the framework are source system, 
model, simulator, and experimental frame. The basic inter-relationships among 
entities are the modeling and the simulation relationships. The entities are defined in 
Table 1.2 which also characterizes the level of system specification that typically 
describes the entities. The level of specification is an important feature for distin-
guishing between the entities, which is often confounded in the literature. You can 
return to Fig. 1.1 and Table 1.2 to keep an overall view of the framework as we 
describe each of the components in the following presentation. 

1.4.2.1 Source System 
The source system (we will omit the “source” qualifier, when the context is clear) is 
the real or virtual environment that we are interested in modeling. It is viewed as a 
source of observable data, in the form of time-indexed trajectories of variables. The

Fig. 1.1 Fundamental entities and relationships in the M&S framework



data that has been gathered from observing or otherwise experimenting with a 
system is called the system behavior database. As indicated in Table 1.2, this 
concept of system is a specification at level 0 and its database is a specification at 
level 1. This data is viewed or acquired through experimental frames of interest to 
the modeler.
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Table 1.2 Defining the basic entities in M&S and their usual levels of specification 

Basic entity Definition Related system 
specification levels 

Source 
system 

Real or artificial source of data Known at level 0 

Behavior 
database 

Collection of gathered data Observed at level 1 

Experimental 
frame 

Specifies the conditions under which system is 
observed or experimented with 

Constructed at levels 
3 and 4 

Model Instructions for generating data Constructed at levels 
3 and 4 

Simulator Computational device for generating behavior of 
the model 

Constructed at level 4 

Applications of M&S differ with regard to how much data is available to pop-
ulate the system database. In data-rich environments, such data is abundant from 
prior experimentation or can easily be obtained from measurements. In contrast, 
data-poor environments offer meager amounts of historical data or low-quality data 
(whose representativeness of the system of interest is questionable). In some cases, 
it is impossible to acquire better data (e.g., of combat in real warfare); in others, it is 
expensive to do so (e.g., topography and vegetation of a forest). In the latter case, 
the modeling process can direct the acquisition of data to those areas that have the 
highest impact on the final outcome. 

1.4.2.2 Experimental Frame 
An experimental frame is a specification of the conditions under which the system 
is observed or experimented with. As such, an experimental frame is the operational 
formulation of the objectives that motivate a modeling and simulation project. For 
example, out of the multitude of variables that relate to a forest, the set {lightning, 
rain, wind, smoke} represents one particular choice. Such an experimental frame is 
motivated by the interest in modeling the way lightning ignites a forest fire. A more 
refined experimental frame would add the moisture content of the vegetation and 
the amount of unburned material as variables. Thus, many experimental frames can 
be formulated for the same system (both source system and model) and the same 
experimental frame may apply to many systems. Why would we want to define 
many frames for the same system? Or apply the same frame to many systems? For 
the same reason, we might have different objectives in modeling the same system or 
have the same objective in modeling different systems. More of this in the sequel.
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There are two equally valid views of an experimental frame. One views a frame 
as a definition of the type of data elements that will go into the database. The 
second views a frame as a system that interacts with the system of interest to obtain 
the data of interest under specified conditions. In this view, the frame is charac-
terized by its implementation as a measurement system or observer. In this 
implementation, a frame typically has three types of components (as shown in 
Fig. 1.2): generator that generates input segments to the system; acceptor that 
monitors an experiment to see the desired experimental conditions are met; and 
transducer that observes and analyzes the system output segments. 

1.4.2.3 Objectives and Experimental Frames 
Objectives for modeling relate to the role of the model in systems design, man-
agement, or control. The statement of objectives serves to focus model construction 
on particular issues. Figure 1.3 depicts the process of transforming objectives into 
experimental frames. Typically, modeling objectives concern system design. Here, 
measures of the effectiveness of a system in accomplishing its goal are required to 
evaluate the design alternatives. We call such measures, outcome measures. I  
order to compute such measures, the model must include variables, we will call 
output variables, whose values are computed during execution runs of the model. 
The mapping of the output variables into outcome measures is performed by the 
transducer component of the experimental frame. Often there may be more than one 
layer of variables intervening between output variables and outcome measures. For 
example, in military simulations, measures of performance are output variables that 
typically judge how well parts of a system are operating. For example, the success 
of a missile in hitting its target is a performance measure. Such measures enter as 
factors into outcome measures, often called measures of effectiveness, that measure 
how well the overall system goals are being achieved, e.g., how many battles are 
actually won by a particular combination of weapons, platforms, personnel, etc. The 
implication is that high performing components are necessary, but not sufficient, for 
highly effective systems, in which they must be coordinated together to achieve the 
overall goals. 

Fig. 1.2 Experimental frame 
and its components 

SYSTEM 

EXPERIMENTAL FRAME 

generator acceptor transducer



Example: Two-person Interaction
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Objectives 

Experimental Frame 

Outcome Measures 

Output Variables 

Fig. 1.3 Transforming objectives to experimental frames 

The conversation example for the System Specification Hierarchy of Table 1.1 
actually assumes an underlying experimental frame that was not completely spec-
ified. We can specify the objective of trying to characterize when a two-person 
interaction is a valid conversation, i.e., when the participants exchange words that 
make sense to an observer. We restrict the interaction to an exchange of greetings of 
two people passing by each other. There are relatively few pairs of words that make 
sense such as “Hello, Hi” as a greeting by one person and a response of the other, 
whereas most other pairs of words do not. Such pairs are in effect a description at 
the I/O Behavior level for the interaction of two persons. An experimental frame in 
this case centers on collecting such I/O pairs in both a real two-person encounter 
and a simulation model of it. The acceptor component of such a frame can monitor 
the interaction for pairs judged to be indicative of a valid conversation. 

Model 
In its most general guise, a model is a system specification at any of the levels of the 
System Specification Hierarchy. However, in the traditional context of M&S, the 
system specification is usually done at levels 3 and 4. Thus, the most common 
concept of a simulation model is that it is a set of instructions, rules, equations, or 
constraints for generating I/O behavior. In other words, we write a model with a 
state transition and output generation mechanisms (level 3) to accept input trajec-
tories and generate output trajectories depending on its initial state setting. Such 
models form the basic components in more complex models that are constructed by 
coupling them together to form a level 4 specification. 

Example: Two-person Interaction 
An example of a conversation between two persons can be modeled as agents 
interacting through exchange of messages carried by discrete events. This consti-
tutes a coupled model with atomic model components. Each component alternates 
between speaking and listening phases. If moreover, the components adhere to the 
discipline that only one is in the speaking phase at any time, then the result rep-
resents a valid conversation. If at any time, both components are in the same phase 
(speaking or listening) then the experimental frame acceptor just discussed will stop 
the simulation and declare this as an invalid conversation.



There are many meanings that are ascribed to the word “model.” For example, a
model is conceived as any physical, mathematical, or logical representation of a 
system, entity, phenomenon, or process. The definition in terms of system specifi-
cations has the advantages that it has a sound mathematical foundation and it has 
a definite semantics that everyone can understand in unambiguous fashion. Like 
other formal definitions, it cannot capture all meanings in the dictionary. However, 
it is intended to capture the most useful concepts in the M&S context. 
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1.4.2.4 Simulator 
As a set of instructions, a model needs some agent capable of actually obeying the 
instructions and generating behavior. We call such an agent a simulator. Thus, a 
simulator is any computation system (such as a single processor, a processor net-
work, the human mind, or more abstractly an algorithm), capable of executing a 
model to generate its behavior. A simulator is typically specified at a high level 
since it is a system that we design intentionally to be synthesized from components 
that are off-the-shelf and well-understood. Separating the model and simulator 
concepts provides a number of benefits for the framework:

. The same model, expressed in a formalism, may be executed by different sim-
ulators thus opening the way for portability and interoperability at a high level of 
abstraction.

. Simulator algorithms for the various formalisms may be formulated and their 
correctness rigorously established.

. The resources required to correctly simulate a model afford a measure of its 
complexity. 

Example: Two-person Interaction 
The two-person discrete event model just mentioned can be formulated within the 
Discrete Event System Specification (DEVS) formalism as illustrated in 
Chap. 10 of (Zeigler et al. 2017). This then allows the model behavior to be 
generated by a DEVS simulator, i.e., a simulation program implementing the rules 
of the Abstract DEVS simulation protocol that guarantees correct simulation of any 
DEVS model. 

1.4.3 Primary Relations Among Entities 

The entities—system, experimental frame, model, and simulator—become truly 
significant only when properly related to each other. For example, we build a model 
of a particular system for some objective—only some models, and not others, are 
suitable. Thus, it is critical to the success of a simulation modeling effort that certain 
relationships hold. The two most fundamental are the modeling and the simulation 
relations (Table 1.3).
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Table 1.3 Primary relationships among entities 

Basic relationship Definition Related system specification 
levels 

Modeling relation 
Replicative validity 
Predictive validity 
Structural validity 

Concerned with how well 
model-generated behavior agrees 
with observed system behavior 

Comparison is at level 1 
Comparison is at level 2 
Comparison is at level 3, 4 

Simulation relation 
Correctness 

Concerned with assuring that the 
simulator carries out correctly the 
model instructions 

Basic comparison is at level 
2; involves homomorphism 
at levels 3 or 4 

1.4.3.1 Modeling Relation: Validity 
The basic modeling relation, validity, refers to the relation between a model, a 
system, and an experimental frame. Validity is often thought of as the degree to 
which a model faithfully represents its system counterpart. However, it makes much 
more practical sense to require that the model faithfully captures the system 
behavior only to the extent demanded by the objectives of the simulation study. In 
the MSF, the concept of validity answers the question of whether it is impossible to 
distinguish the model and system in the experimental frame of interest. 

The most basic concept, replicative validity, is affirmed if, for all the experiments 
possible within the experimental frame, the behavior of the model and system agree 
within acceptable tolerance. Thus, replicative validity requires that the model and 
system agree at the I/O relation level 1 of the system specification hierarchy. 

Stronger forms of validity are predictive validity and structural validity. I  
predictive validity, we require not only replicative validity, but also the ability to 
predict as yet unseen system behavior. To do this, the model needs to be set in a 
state corresponding to that of the system. Thus, predictive validity requires 
agreement at the next level of the system hierarchy, that of the I/O function level 2. 
Finally, structural validity requires agreement at level 3 (state transition) or higher 
(coupled component). This means that the model not only is capable of replicating 
the data observed from the system but also mimics in step-by-step, 
component-by-component fashion, the way that the system does its transitions. 

The term accuracy is often used in place of validity. Another term, fidelity, is  
often used for a combination of both validity and detail. Thus, a high-fidelity model 
may refer to a model that is both high in detail and in validity (in some understood 
experimental frame). However, when used this way, beware that there may be a 
tacit assumption that high detail alone is needed for high fidelity, as if validity is a 
necessary consequence of high detail. In fact, it is possible to have a very detailed 
model that is nevertheless very much in error, simply because some of the highly 
resolved components function in a different manner than their real system 
counterparts.
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1.4.3.2 Simulation Relation: Simulator Correctness 
The basic simulation relation, simulator correctness, is a relation between a sim-
ulator and a model. A simulator correctly simulates a model if it is guaranteed to 
faithfully generate the model’s output trajectory given its initial state and its input 
trajectory. Thus, simulator correctness requires agreement at the I/O function level 
2. In practice, simulators are constructed to execute not just one model but a family 
of possible models. This flexibility is necessary if the simulator is to be applicable 
to a range of applications. In such cases, we must establish that a simulator will 
correctly execute a particular class of models. Since the structures of both the 
simulator and the model are at hand, it may be possible to prove correctness by 
showing that a homomorphism relation holds. Here, a homomorphism is a corre-
spondence between simulator and model states that is preserved under transitions 
and outputs. 

1.4.4 Other Important Relationships 

Besides the two fundamental modeling and simulation relationships, there are 
others that are important for the M&SBoK. These relations have to with the 
interplay and comparative complexity-related orderings of models and experimental 
frames. 

1.4.4.1 Modeling as Valid Simplification 
The inescapable fact about modeling is that it is severely constrained by complexity 
limitations. Complexity is at heart, an intuitive concept—the feeling of frustration 
or awe that we all sense when things get too numerous, diverse, or intricately 
related to discern a pattern, to see all at once—in a word, to comprehend. Gener-
alizing from the boggled human mind to the overstressed simulator suggests that the 
complexity of model can be measured by the resources required by a particular 
simulator to correctly interpret it. As such, complexity is measured relative to a 
particular simulator, or class of simulators. However, properties intrinsic to the 
model are often strongly correlated with complexity independently of the under-
lying simulator. Successful modeling can then be seen as valid simplification. We  
need to simplify, or reduce the complexity, to enable our models to be executed on 
our resource-limited simulators. But the simplified model must also be valid, a  
some level, and within some experimental frame of interest. As in Fig. 1.4, there is 
always a pair of models involved, call them the base and lumped models. Here, the 
base model is typically “more capable” and requires more resources for interpre-
tation than the lumped model. By the term “more capable,” we mean that the base 
model is valid within a larger set of experimental frames (with respect to a real 
system) than the lumped model. However, the important point is that within a 
particular frame of interest the lumped model might be just as valid as the base 
model. The concept of morphism affords criteria for judging the equivalence of base 
and lumped models with respect to an experimental frame.
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Fig. 1.4 Base/lumped model 
equivalence in experimental 
frame base model 

lumped  model 

Experimental Frame 

morphism 

1.4.4.2 Experimental Frame—Model Relationships 
Assume that we have a whole repository of models and experimental frames that 
have been built up over years of experience. Then, it is critical to have an ability to 
ask whether there are any experimental frames that meet our current objectives and 
whether there are models that can work within this frame. Only those models have a 
chance of providing valid answers to our current questions. The relation that 
determines if a frame can logically be applied to a model is called applicability and 
its converse is called accommodation (Table 1.4). Notice that validity of a model in 
a particular experimental frame requires, as a precondition, that the model 
accommodates the frame. 

The degree to which one experimental frame is more restrictive in its conditions 
than another is formulated in the derivability relation. A more restrictive frame 
leaves less room for experimentation or observation than one from which it is 
derivable. So, as illustrated in Fig. 1.5, it is easier to find a model that is valid in a 
restrictive frame for a given system. It turns out that applicability may be reduced to 
derivability. To see this, define the scope frame of the model to represent the most 
relaxed conditions under which it can be experimented with (this is clearly a 
characteristic of the model.) Then, a frame is applicable to a model, if it is derivable 
from the scope frame of the model. This means that a repository need not support 
both applicability and derivability queries. Only the latter is sufficient if each model 
has an associated scope frame. 

Table 1.4 Other M&S relationships important when dealing with a model repository 

Relationship Definition 

Experimental frame applies to a 
model (or “is applicable to”) 

The conditions on experimentation required by the 
frame can be enforced in the model 

Model accommodates experimental 
frame 

Frame is applicable to the model 

Experimental frame 1 is derivable 
from experimental frame 2 

Any model that accommodates experimental frame 2 
also accommodates experimental frame 1
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Fig. 1.5 Illustrating 
important M&S relations 
relevant to model repositories 

experimental 
frames 

models 

applies to 

derivable 
from homomorphism 

More demanding frames More Detailed Models 

1.4.5 Time 

A time base is an ordered set, usually the real numbers, for indexing events that 
models the flow of actual time (Table 1.5). If the interpretation of such a time base 
is left abstract in this manner, we refer to it as logical time. In contrast, when we 
consider events happening in the real world, in real time, we refer to a time variable 
as measured by an actual clock. Thus, physical time, also called metric time or 
wall-clock time, is measured by ticks of physical clocks, while logical time is 
measured by ticks of a clock somehow embedded in a model. Also, as relativity 
theory made clear, time, as perceived by observers at different locations may be 
different. Based on this distinction, time can be either local or global. The former is 
valid only within a component of a system; the latter is valid in the whole system. 
Thus, there are at least two dimensions for classifying time: one along the 
logical/physical axis and the other along the local/global axis. Consequently, a time 
base can be interpreted as falling in any one of the four combinations shown in 0. 

Traditionally, modeling and simulation have considered mainly the first (global, 
logical) combination. That is, we assume all components of a modeled system have 
the same time frame of reference and we consider time as an abstract quantity.

Table 1.5 A time taxonomy 

Logical/physical 

Logical time Physical time 

Local/global Global 
time 

Global logical: 
All components operate on the same 
abstract time base All components 
operate on the same abstract time base 

Global, physical: 
All components 
operate on the same 
system clock 

Local 
time 

Local, logical: 
A component operates on its own 
abstract time base 

Local, physical: 
A component 
operates on its own 
system clock



1.4.6 Mapping Informal Terminology to MSF Formalization

However, when a model is executing in a simulator, which may be distributed 
among computer nodes in a network and may also be interacting with the real 
world, it is hard to maintain this fiction. We note that synchronization between time 
bases requires maintaining a correspondence between the two. For example, a 
distributed simulation protocol synchronizes the local, logical times maintained by 
the individual simulator nodes. Another example of synchronization occurs in a real 
time, human-in-the-loop simulation-based training. Here, the simulator employs a 
physical time base (e.g., computer system clock) to synchronize between a pilot’s 
physically perceived time base and the logical time of a model of the aircraft being 
simulated.
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Bernard P. Zeigler 

Often in the literature of M&S, terminology is defined conceptually but not in the 
mathematically precise manner of the MSF presented here. For example, we have 
seen how the US Department of Defense M&S Glossary (M&S Glossary— 
M&SCO) defines “system model” and “simuland” in terms of “system” without 
giving a definition of “system” itself. A rough equivalence between terminology 
often found in the literature and entities of the framework can be established in 
Tables 1.6 and 1.7: 

Since the MSF defines its entities as mathematical systems, it can define typical 
activities involved in M&S work as mathematical relations. A rough equivalence is 
given in Table 1.7: 

Table 1.6 Some common conceptual definitions and MSF equivalents 

Conceptual definition of object MSF formalization 

A simuland is the real-world system of 
interest. It is the object, process, or 
phenomena to be simulated 

Real-world system is a source of data that can 
be represented by a system specification at a 
behavioral level 

A model is a representation of a simuland, 
broadly grouped into conceptual and 
executable types 

Model is a set of rules for generating behavior 
and can be represented by a system 
specification at a structural level. A modeling 
formalism, e.g., DEVS, enables conceptual 
specification and is mapped to a simulation 
language for execution by a simulator 

Simulation is the process of executing a 
model over time 

A simulator is a system capable of generating 
the behavior of a model; simulators come in 
classes corresponding to formalisms, e.g., an 
abstract DEVS simulator describes 
implementable simulators of DEVS models 

The results of simulation are the output 
produced by a model during a simulation 

The behavior of a model generated by a 
simulator constitutes a specification at the 
behavior level
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16 T. Ören et al.

Table 1.7 Conceptual definitions and MSF equivalents 

Conceptual definition of activity MSF formalization 

Verification is the process of determining if 
an implemented model is consistent with its 
specification 

There is a relation, called simulation 
correctness, between models and simulators. 
Verification is the process of proving this 
correctness in a simulator generating the 
behavior of the model. When this is done for 
a formalism, it certifies a simulator as correct 
for any model of the associated class 

Validation is the process of determining if a 
model behaves with satisfactory accuracy 
consistent with the study objectives within its 
domain of applicability to the simuland it 
represents 

There is a relation, called validity in a frame, 
between models and real systems within an 
experimental frame. Validation is the process 
of establishing that the behaviors of the 
model and real system agree in the frame in 
question. The frame can capture the intended 
objectives (extended to intended uses), 
domain of applicability, and accuracy 
requirements 

Abstraction is the omission or reduction of 
detail not considered necessary in a model 

Abstraction is the process of constructing a 
lumped model from a base model intended to 
be valid for the real system in a given 
experimental frame 

The definition of validation is a synthesis of various definitions in the literature 
that separately relate the model to a real system, the purposes of model construc-
tion, the domain of applicability, and the accuracy required. For example, Balci [10] 
defines validation as the assessment of behavioral or representational accuracy and 
then later conditions accuracy on intended use. Our intent is to best represent the 
conceptual literature for the purposes of relating it to the MSF. 

Thorsten Pawletta 

The System Entity Structure (SES) is a structural knowledge representation scheme 
introduced by Zeigler [11]. It contains knowledge of decomposition, taxonomy, and 
coupling of a system. In combination with a Model Base (MB), it supports different 
concepts for system modeling, investigating design alternatives, reusing good 
designs, and collaborative modeling [7, 12, 13]. 

Figure 1.6 shows the general procedure model of an SES/MB-based M&S 
according to Pawletta et al. [14]. Possible configurations of a system or a family of 
systems are analyzed. That means, basic dynamic components, their relations, and 
parameter settings are identified. Dynamic components are modeled or implemented 
as reusable basic systems with defined input and output interfaces and organized in a 
MB. The possible system structures and parameter settings are modeled with an 
SES, which specifies formal links to basic systems in the MB. Figure 1.7 shows an



example of an SES with associated MB. In the application phase, executable models 
are generated with transformation methods such as pruning and build. Based on 
defined objectives, the pruning method derives a unique system configuration from 
the set of possible configurations. The result of pruning is called Pruned Entity 
Structure (PES). Based on the information in the PES, the build method generates an 
Executable Model using basic systems from the MB. 
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Fig. 1.6 Procedure model of an SES/MB-based M&S according to Pawletta et al. [14] 

Fig. 1.7 Basic example of a SES, which describes ten admissible system structures. There are two 
variants of composing entity B (aspects B1-Dec and B2-Dec), three variants for selecting a specific 
type of entity C and entity D can be replicated one, two, or three times. However, the semantic 
condition limits the selection to C3_C and only one replication of D when using aspect B2-Dec. 
The coupling relations of the replicated entities D result dynamically dependent on the value of 
attribute numRepD
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The transformation methods can be executed interactively or automatically. 
Extended SES/MB-based architectures for automated and reactive pruning of SES 
are presented in Schmidt et al. [15] and Folkerts et al. [16]. Different approaches of 
the build method are discussed in Folkerts et al. [17]. The generation of executable 
models for different simulators based on a uniform MB is discussed by Pawletta and 
Folkerts (Sect. 18.6). 

An SES is represented by a directed tree structure, as illustrated in Fig. 1.7. The 
different edges are related to different node types. Each node can define attached 
variables, also called attributes. Real-world or imaginary objects are represented by 
entity nodes. Entity attributes represent properties of the respective object. The root 
and the leaves are always entities. Relations between entities are specified by three 
types of descriptive nodes, called aspect, multi-aspect, and specialization. The 
attributes of descriptive nodes specify relations between their parent node and 
children nodes or decisions for the pruning process. Aspects describe how entities 
can be decomposed in partial entities. Coupling relations can be specified in a 
couplings attribute. Multi-aspects describe the decomposition of an entity into 
entities of the same class. They define an additional attribute, called Number of 
Replications (numRep). The taxonomy of an entity is described by specialization(s) 
and concerns admissible variants of an entity. Rules for selecting a variant during 
pruning can be defined in a selection rule attribute. With the extended procedural 
knowledge representation according to Pawletta et al. [14], attributes can be 
dynamically assigned values. For example, coupling relations of a multi-aspect can 
result dependent on the value of attribute numRep. 

The semantics of the SES is defined by axioms. Types of each node have to 
follow the axiom alternating mode. Every entity node has to be followed by a 
descriptive node, and vice versa. A strict hierarchy is needed. In every path of the 
tree, a name of a node may occur only once. If nodes in different paths have the 
same name, they need to have the same variables and isomorphic partial trees. This 
is called uniformity. Nodes on the same level of a hierarchy, called sibling nodes, 
have to be valid brothers, meaning that sibling nodes must not have the same name. 
The axiom of attached variables implies that a node must not have variables of the 
same name. The axiom of inheritance implies that during pruning, the parent and 
the child of a specialization combine their variables, aspects, and specializations. 
The configurations modeled in an SES tree can be delimited by selection con-
straints and semantic conditions. 

There are numerous additional SES concepts, such as using the SES as a general 
ontology for data modeling [18], the specification of abstraction hierarchies and 
time granularities for families of systems [19], interfaces for automated, reactive 
pruning [15], methods for the pruning of deep hierarchies of certain node type 
combinations [16], or the combination with performance metrics to evaluate and 
select the best possible system configurations [20].
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Abstract 

This chapter deals with models, data, and their relations and use. It introduces 
the big picture of the SCS M&S Body of Knowledge, providing taxonomies for 
models and their uses and resulting perceptions as well as an extensive section 
on data. It addresses the questions of modeling and various modeling 
formalisms, model engineering, and model curation for repository integration. 
The chapter concludes with model-based simulation approaches and a section on 
the transient elimination in simulation. 
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2.1 The Big Picture 

Tuncer Ören 

This section is adopted from [1, 2] and has been updated accordingly. Simulation is 
a model-based activity [3]. Hence, core areas of simulation include models and 
data; their relationship is straightforward. Data is used to formulate and calibrate 
models, and models are used to generate data. Models are formulated according to 
modeling formalisms. Model engineering covers all aspect of formulation, pro-
cessing, and use of models. Experiments and experience are the main reasons of 
using modeling and simulation. 

Models or representations of existing or non-existing reality are used in simu-
lation. Study of reality/model dichotomy can help us explore different types of 
simulation. Table 2.1 outlines model/reality dichotomy based on usage in art, 
engineering, science, decision support, education, training, entertainment, as well as 
pretense and representation.

mailto:lailiyuanjun@buaa.edu.cn
mailto:zeigler@rtsync.com
mailto:atolk@mitre.org
mailto:Gregory.Zacharewicz@<HypSlash>mines-ales</HypSlash>.fr
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Table 2.1 Model/reality dichotomies 

Based on reality/model dichotomy 
In simulation, models or representations of existing or non-existing reality are used. Study of 
reality/model dichotomy can help us explore different types of simulation. Reality/model 
dichotomy depends on the purpose: art, engineering, science, decision support, education, 
training, entertainment, as well as pretense, representation 

Art In art, reality is a source of inspiration and is called ‘model’ 
The model—for an artist—is what a simulationist would say real 
system! 

Engineering There are two possibilities for design and control problems: 

Design A design (or a model) is an instrument to engineer a 
system 

Control A model is a basis to control a system 

Science Use of models in analysis problems 

Analysis A model is a representation to understand a system 

Decision support A model is a substitute of reality to perform experiments 
A model or a representation of reality can be used to gain experience 
to develop/enhance three types of skills 

Education A model is a representation to explain/teach dynamic systems 

Training A representation of a system provides experience to enhance three 
types of skills 
– Motor skills (virtual simulation, simulators, virtual simulators) 
– Decision-making skills (constructive simulation; serious games) 
– Operational skills (live simulation) 

Entertainment A representation of a system provides experience for entertainment 

pretense/representation We are often exposed to simulated reality, in postmodern societies 
[4] (boundary becomes blurred) 

Simulation can be perceived from different perspectives such as purpose of 
use, problem to be solved, connectivity of operations, types of knowledge pro-
cessing, and philosophy of science. 

Table 2.2 outlines perceptions of simulation based on purpose of use and 
problem to be solved. 

Use of simulation experiments for decision support has many aspects. Table 2.3 
outlines several ways simulation experiments are used for decision support. 

Perceptions of simulation based on the connectivity of operations of simulation 
and system of interest are outlined in Table 2.4. 

Based on knowledge processing, simulation can be perceived as a computational 
activity, a system theory-based activity, a model-based activity, a knowledge 
generation activity, and a knowledge-processing activity. Table 2.5 outlines per-
ceptions of simulation from the perspectives of computational and system 
theory-based activities. 

As a model-based activity, simulation has several advantages and covers four 
types of activities. Table 2.6 outlines advantages and four types of activities.
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Table 2.2 Perceptions of simulation based on purpose of use and problem to be solved 

Based on purpose of use 
This perspective is user oriented and clarifies main categories of uses of simulation 

Experiment Simulation is performing experiments (for decision support, understanding, and 
education) 

Experience Simulation provides experience (under controlled conditions) for: 
Training (for gaining/enhancing competence) for three types of skills: 

– Motor skills (virtual simulation by using virtual or simulated 
equipment) 

– Decision and/or communication skills (constructive simulation— 
serious games) 

– Operational skills (live simulation) 
Entertainment (gaming simulation) 

Imitation Imitation is another aspect of simulation (such as simulated leather or fake) and 
is the original meaning attached to the term simulation. Art can also be 
perceived as experience [5]. However, these aspects are beyond the scope of this 
document 

Based on problem to be solved 
(Simulation is perceived as an infrastructure to support real-world activities and is perceived as 
not being the “real thing”) 

Table 2.3 Several ways simulation experiments are used for decision support 

Use of simulation experiments for decision support 

Prediction of behavior and/or performance of the system of interest within the constraints 
inherent in the simulation model (e.g., its granularity) and the experimental conditions 

Evaluation of alternative models, parameters, experimental and/or operating conditions on 
model behavior or performance 

Sensitivity analysis of behavior or performance of the system of interest based on granularities 
of different models, parameters, experimental and/or operating conditions 

Evaluation of behavior and/or performance of engineering designs 

Virtual prototyping 
Testing 
Planning 
Acquisition (or simulation-based acquisition) 

Proof of concept 

Model analysis covers many model-based activities. It can be descriptive model 
analysis or model characterization and evaluative model analysis or model evalu-
ation. Table 2.7 outlines types of model characterization. 

Model evaluation or evaluative model analysis can be done with respect to 
modeling formalisms, another model (model comparison), real system, and goal of 
study. Table 2.8 outlines types of model evaluations. 

Model transformation is another type of model-based activity. Table 2.9 outlines 
types of model transformations.



2 M&S Bok Core Areas and the Big Picture 25

Table 2.4 Perceptions of simulation based on the connectivity of operations of simulation and 
system of interest 

Based on connectivity of operations of simulation and system of interest 
Two possibilities can be identified 

No connection This is the case of stand-alone simulation which is the most widely used 
type of simulation 

Operations are 
interwoven 

This is the case of integrated or symbiotic simulation. It can be used for 
two purposes 

To enrich real system’s operations 
(The system of interest and the simulation program operate 

simultaneously) for 
– Online diagnostics (or simulation-based diagnostics) 
– Simulation-based augmented/enhanced reality operation (for 

training to gain/enhance motor skills and related decision-making skills) 
(e.g., AI airplane in a dogfight training with real aircrafts) 

To support real system operations 

(The system of interest and the simulation program operate 
alternately to provide simulation-based predictive displays) 

– Parallel experiments while system is running 

Table 2.5 Perceptions of simulation from the perspectives of computational and system 
theory-based activities 

Based on types of knowledge processing 
Simulation is a computational activity, a system theory-based activity, a model-based activity, a 
knowledge generation activity, and a knowledge-processing activity 

Computational 
activity 

This point of view clarifies some legacy definitions of simulation 
Simulation is “A method for implementing a model over time.” [6] 
“Simulation: the exercising of a model over time.” [7] 
Some examples of circular, incorrect, and misleading definitions of 
simulation were cited by Ören [1] 

System theory-based 
activity 

This approach [8] is the basis of system-theoretic approach for 
modeling and symbolic model processing 
– The widely used standard approach is discrete event system 
specification (DEVS) [9] 

– General system theory implementor (GEST) was a system 
theory-based [10] declarative language for continuous systems 
expressible by ordinary differential equations [11, 12]. Its coupling 
features, which include time-varying coupling [13], go beyond 
traditional programming [14]. However, there is no commercial 
version 

– Dynamo (DYNAmic models) is a historic language developed by 
J. W. Forrester et al. in late 1950s and was based in industrial 
dynamics (later system dynamics) (Wikipedia-Dynamo)
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Table 2.6 Advantages of model-based simulation and four types of activities 

Based on types of knowledge processing: simulation is a model-based activity 

Some of the advantages of model-based approach [3] are efficiency in computerization, 
reliability, reusability and composability, and interoperability 

– Efficiency in computerization: model bases (or model repositories) may contain model 
specifications that can easily be converted into programs. Hence, programming aspect can and 
should be fully automated. This aspect also eliminates programming errors and contributes to the 
reliability of the computerization of models 

– Reliability: models can easily be read and understood by specialists in the field. This aspect 
can help assuring model reliability 

Model specifications can be checked by specialized software as well as manually for consistency, 
completeness, and correctness. This aspect is definitely superior to traditional V&V techniques 
that work on code only and can be the basis for built-in reliability in M&S studies 

– Reusability and composability: model specifications can easily be modified for model 
reusability as well as model composition. Some of the model composability techniques can be 
dynamically applicable for systems that not only have dynamic behavior but also can and should 
be modified dynamically as the simulation evolves 

– Interoperability: it is highly desirable to check interoperability of model specifications 
rather than the codes of models since executability of code does not necessarily signify its 
semantic interoperability 

As a model-based activity, simulation includes the following four types of activities: model 
building, model-based management, parameter base management, and model processing 

– Model building 
It consists of modeling (from scratch) and model composition including dynamic model 

composition at run time (or execution time) 

– Model-based management 
It includes model search, semantic model search, and model integrity 

– Parameter base management 
In some applications, such as nuclear fuel waste management simulations, a large number of 

parameters may be involved, and some parameters may not have point values and may be 
described by probability density functions 

– Model processing: it consists of 
– Model analysis (descriptive model analysis (model characterization)) evaluative model 

analysis (model evaluation) 
– Model transformation, and behavior generation 

Table 2.7 Types of 
descriptive model analysis or 
model characterization 

Descriptive model analysis (Model characterization) for 

Model comprehensibility 

Model documentation 

Static model documentation 

Dynamic model documentation 

Model ventilation (to examine its assumptions, deficiencies, 
limitations, etc.) 

Model usability 

Model referability 

Model-based management 
Model integrity 

Model composability
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Table 2.8 Types of model evaluations 

Evaluative model analysis (Model evaluation) with respect to 

Modeling formalisms 

Consistency of model representation 

Static structure of 

Component models 

Total system (coupled model, model of system of systems) 

Dynamic structure 

State transitions, output function(s) 

Structural change 

Dynamic coupling 

Model robustness 

Another model (model comparison) 

Structural model comparison 

Model verification (comparison of a computerized model and corresponding 
conceptual model) 

Checking 

Model homomorphism, model isomorphism 

Model equivalencing for: 

– Any two models 

– A simplified and original model 

– An elaborated and original model 

Behavioral model comparison (comparison of behaviors of several models within a 
given scenario) 

Real system 

Model qualification 

Model realism (model veracity, model verisimilitude) 

Adequacy of model structure: 

– Static structure (relevant variables, interface of models) 

– Dynamic structure 

Adequacy of model constants and parameters 

– Model identification, model fitting, model calibration 

Model correctness analysis 

Dimensional analysis 

Model validity 

Goal of the study 

Model relevance 

Domain of intended application(s) (appropriate use of a model) 

Range of applicability of a model 

Acceptability of a model with respect to its technical system specification
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Table 2.9 Types of model 
transformations 

Types of model transformation 

Model copying 

Model reduction 

Model pruning 

Model simplification 

Structural model simplification 

Behavioral model simplification 

Model elaboration 

Model isomorphism 

Model homomorphism 

Model endomorphism 

Table 2.10 Types of model 
behavior 

Types of model behavior 

Point behavior (as a result of) 

Computation 

Optimization 

Search 

Trajectory behavior 

Simulators 

Simulation 

Intermittent simulation 

Optimizing simulation 

Gaming simulation 

Structural behavior 

Growth systems 

Lindenmayer systems (L-systems) 

Mixed trajectory and structural behavior 

Table 2.11 Types of model 
behavior generation 

Types of model behavior generation by 

Numerical techniques 

Deterministic techniques 

Stochastic techniques 

Non-numerical techniques 

By symbolic techniques 

By analogical techniques 

Mixed numerical and symbolic techniques 
(multi-paradigm modeling)
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Table 2.12 Characteristics of simulation as a knowledge generation activity 

Based on types of knowledge processing: (Simulation is a knowledge generation activity) 
From this perspective, “Simulation is model-based experiential knowledge generation” [2]. 
Based on this feature 

– Advanced simulation environments can combine modeling, model processing, behavior 
generation, and other types of knowledge processing (integrated use of M&S with optimization, 
AI, and software agents) 

– Combination of simulation systems with sensors and affectors; and switching from 
simulation to real system operation or vice versa is possible 

– Combination of several types of knowledge processing such as soft computing, 
cognitive, and emotive computing is possible 

Table 2.13 Characteristics of simulation as a knowledge-processing activity 

Based on types of knowledge processing: (Simulation is a knowledge-processing activity) 

Advanced simulation environments can 

Combine modeling, model processing, behavior generation, and other types of knowledge 
processing such as 

– Integrated use of M&S with optimization, AI, and software agents 

Combine simulation systems with sensors and affectors; and switching from simulation to 
real system operation or vice versa 

Allow combination of several types of knowledge processing: soft computing, cognitive, 
and emotive computing 

A pragmatically important type of model processing is generation of model 
behavior which is done in every simulation study. Tables 2.10 and 2.11 outline, 
respectively, types of model behavior and types of model behavior generation. 

Characteristics of simulation as a knowledge generation activity are outlined in 
Table 2.12. 

Characteristics of simulation as a knowledge-processing activity are outlined in 
Table 2.13. 

From the point of view of philosophy of science, simulation supports and 
enriches modern scientific thinking as advocated by Bacon [15]. 

2.2 Data 

Umang Kant, Mayank Sing 

Data plays a pivotal role in the process of simulation. Data works as the input to the 
simulation models which in turn produce data. Simulations are often used to solve 
real-time problems, and hence, we need real-time data to make the simulation a 
success. Simulation process gives solutions to problems by giving clear insights. 
The data used for simulation will shape the outcome of the process. Hence, it is of 
utmost importance to be clear about what type of data is to be used.
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The choice and value of data used in simulation can have an impact on the 
underlying mechanisms that control the behavior of the system. In this chapter, we 
explore and discuss the types of data and various terms related to data with respect 
to M&S BOK. 

Accessible data 

Accessible data refers to the data which can be retrieved, modified, copied, or 
moved from an organization’s repository (hard drives, disks, database, data ware-
house, cloud, etc.) provided the party (users) accessing the data has proper 
authority. The data can be accessed on demand as per needs, and authorized users 
can perform above-mentioned functions at any location as per convenience. So, 
data access can be defined as the way by which authorized users can get access to 
this data and its location in an authenticated manner approved by the organization 
having that data. This data can either be at rest or in motion. When data is at rest in 
a repository, we can access the data in two ways: (i) sequential access: where seek 
operation is used till the required data is found and (ii) random access: data can be 
retrieved from anywhere in the disk. 

Actual data 

Actual data is the data which has been interpolated using the current parameters, 
hence making it more fluid data. Actual data is different from historical data, as  
well as forecast data; where the historical data is the collection the data which has 
happened in the past and has records of its existence, whereas forecast data is the 
prediction based on the correlations of the historical and current trends. 

Adjusted data 

The principle behind the concept of adjusting data is that the data is adjusted to 
satisfy the constraint which is believed to be true and is a fact. Hence, adjusted data 
can be defined as data which has had some modifications and manipulations to 
adjust in the required specifications of the application. Three of the most signifi-
cation methods of adjusting the data are (i) weighing data, (ii) variable respecifi-
cation, and (iii) scale transformation. 

ALSP data 

ALSP stands for aggregate level simulation protocol. This protocol facilitates 
interoperating the simulations with each other. It manages the adaptable demands of 
the system with respect to the application in use. ALSP data refers to the data which 
supports the various simulations and their relationship with each other. 

Ambiguous data 

Ambiguous data refers to the data having same representation but different meaning 
or value. Ambiguous data leads to ambiguous information which in turn affects the 
process of decision making. Ambiguous data can be mined using multi-instance 
multi-label learning and other algorithms.
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Auditable data 

Auditable data is set of data which is forwarded to the process of data auditing. Data 
audit is the process to auditing the data to evaluate the utility and quality of the data 
being used for a specific purpose. The process of data audit requires considering 
key metrics to assess the quality of the data set. The main objective to carry out this 
process is to check if the data set fits the organization’s data for a particular purpose, 
i.e., to check how the data set affects the performance, cost, and profits/loss of the 
organization. 

Bivariate data 

Bivariate data refers to the data of two related variables. For example, sale of ice 
cream and temperature are related; similarly, the booking of hotel rooms is 
dependent upon the weather and vacation months. Such examples refer to bivariate 
data. Bivariate data is different from univariate data which is dependent on only one 
variable. 

Calibrated data 

Calibration refers to the process of comparing a device under test (DUT) on an 
unknown value with respect to a standard of a known value. Calibrated data can be 
defined as the data upon which the calibrated settings have been applied. Cali-
bration settings are flexible, and they are applied after applying the suitable data 
settings. 

Certified data 

Data is interpreted as certified data when a certified data analyst (CDA) acquires, 
cleanses, processes, and analyzes the data. Certified data helps the certified data 
analyst in making efficient decisions and producing business reports in various 
industries such as retail, telecommunication, financial, medicine, tourism, and 
others. 

Coarse data 

Coarse data can be interpreted as data that one observes not the true value of 
variable of interest but rather a subset of the sample space in which the true data 
lies. When the data is not to be found, their true values are known to lie somewhere 
in their sample space. The process of coarsening is not stochastic in nature. The 
degree of coarsening is pre-decided and is known in advance. 

Complex data 

Complex data is a type of data which indicates the level of difficulty while trans-
lating it into some business value. As the name suggests, complex data is difficult to 
collect, model, and analyze than simple data. Such data requires various tools for 
interpretation and processing. Data falls into the category of complex data when it is 
‘big’ in nature and when it is coming from various disparate sources.
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Consistent data 

By consistent data, it is understood that the data is produced in a regulated and 
predictable manner. Consistent data is constant over time and relationship with 
other elements of the system environment. Each time the data is run on a particular 
system or application, it produces the same result, i.e., there is no data discrepancy. 
Data is considered to be consistent if it is formatted in a manner. A system is said to 
include consistent data if it does not contain contradiction or does not allow the 
users to infer any contradiction with respect to the data. 

Correct data 

As the name suggests, correct data is exact in nature, i.e., it is accurate and is free of 
faults and inconsistencies with respect to the system or the application, where that 
data is to be used and processed. 

Current data 

Current data lets the organization team to view the state-of-the-art analytics data 
even before the data is completely processed and confirmed for decision making. It 
is in the nature of current data to display the metrics in least amount of time, which 
in turn provides actionable data which is further used for decision making. In 
reports, the current data is enabled by default to support quick decision making. 

Digital data 

Information which can be stored on the machine in the form of collections of 0s and 
1s, i.e., in binary language is called digital data. A sequence or collection of 0s and 1s 
is forwarded to digital machines because these machines do not understand human 
understandable language (high-level language); hence, it is must to convert the 
information into low-level language and then covert the low-level language using a 
complier into a sequence of 0s and 1s. Digital data is different from analog data. 

DIS protocol data 

DIS stands for distributed interactive simulation. DIS refers to a protocol that has 
been specifically designed to facilitate communication between heterogenous 
simulators built by different manufacturers. The protocol data unit (PDU) is the DIS 
format for truth conveyance. It is an ambiguous data format for communicating a 
particular event or specific piece of information. 

Environmental data 

Environmental data refers to that data which is solely based on the (i) measurements 
of environmental characteristics such as pressure and temperature, (ii) state of the 
environment, and (iii) the environment impacts on the ecosystems. Environmental 
statistics are also often considered as environmental data. While understanding 
environmental data, we need to understand what data we need to collect and 
analyze and then break down the types of data. The environmental data can be



classified into following types: (i) continuous, (ii) count (simple or categorical), 
(iii) proportion, and (iv) binary or unary, etc. 
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Evaluation data 

Evaluation data refers to the compilation of data and the use of consistent analysis 
methods. Evaluation data includes identification of research goal, existence of 
research problem, methodology type, data compilation processes, sample data, and 
data analysis techniques and outcomes. If we are trying to find out: how many? how 
much? what percentage? how often? what is the average amount?, etc., then we 
must choose quantitative methods. If we are trying to find out: what worked best? 
what did not work well? what do the numbers mean? how was the project useful? 
what factors influenced success or failure?, etc., we must choose qualitative 
methods. 

Exchange data 

Exchange data refers to the data being shared among different stakeholders or 
different computer programs. Here the data is structured under a source schema and 
transformed into a target schema. It provides data points from various parts of the 
world to support data marketing and advertising. Here we can use previously 
unavailable or outdated data and use it to power the marketing campaigns. 

Experimental data 

In science and engineering, experimental data is the data produced by a test method, 
a measurement, an experiment design, or quasi-experimental design. 

Haptic data 

Haptic data is the data being generated by haptic technology. The aim of haptic 
technology is to simulate the sensory environment and enable the users to touch, 
feel, and manipulate virtual objects in the environment through haptic interfaces as 
true to the reality as possible. By incorporating perceptual cues such as feel, shape, 
texture, stiffness, and friction, one can depict properties of virtual object. 

Hardwired data 

By hardwired data, we mean the data which is not flexible and will not thrive in 
different environments. Hardwired data comes wired up by the developer or by the 
system before it can be used, and during the use, there is no possibility of changing 
its properties. 

Heterogenous data 

Data which is generated by Internet of Things (IoT) is heterogenous data. These 
types of data come with high variability of data formats and data types. These data 
are ambiguous in nature, and since they are collected over the Internet with sensors, 
i.e., they are collected on a large scale, there is no guarantee of their quality. This 
type of data needs to be analyzed before use. Heterogenous data falls into the



Historical data

In broad context, historical data can be defi ned as the data which is collected from
past events and situations pertaining to a particular application. This data is gen-
erated either manually or routinely within an enterprise. 

HLA protocol data

HLA stands for high-level architecture, and HLA protocol data refers to more
recent standard for interoperability among simulations. This data refers to archi-
tecture with a set of API standards as opposed to a networking protocol like DIS. 
Real-time infrastructure supports and implements the HLA protocol data and 
transports data from one federate to another. 

Input data

Input data serves as input to the system, device, or programs.

Instance data

Instance data completely describes the state of object in question. It consists of all
the internal states of the object so that it almost becomes synonymous to the object 
itself. 

Instance meta-data

Instance meta-data discusses the instance. This data can be used to manage the
current running instance. Instance meta-data can be divided into categories 
depending upon the application in question such as events, partners names, and 
security levels. Instance data can also be used to access user data specified at the 
launch of the instance. 

Irrelevant data

Irrelevant data refers to the data which is not connected or relevant to the appli-
cation being dealt. Using irrelevant data will lead to change in the desired outcome. 
Irrelevant data can also be understood as unimportant data. 

Legacy data

Legacy data refers to such data which comes in the category of enterprise essential
information. This data is stored in some old format in computer system. Legacy 
data is usually used in government schemes or in industries. This data is generally 
available online depending upon the use. It is important to handle the legacy data by 
following some steps: (i) develop data error handling strategy, (ii) support 
read-only legacy data access, (iii) encapsulate legacy data access, etc.

following categories: (i) syntactic heterogenous data, (ii) conceptual heterogenous 
data, (iii) terminological heterogenous data, and (iv) semiotic heterogenous data. 
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Livewired data 

Livewired data is complete opposite if hardwired data. As opposed to hardwired, 
livewired data provides huge flexibility and possibility of changes as per the 
environment. This type of data can thrive in any type of environment as it learns to 
adapt to the environment, and hence, the properties are also not fixed. 

Meta-data 

Meta-data refers to data about data. 

Model data 

Model data is the data used in a data model, where model data and other related 
elements are organized together. The related data follows model’s standardization. 

Monitoring data 

Monitoring data is obtained by the method of evaluating and reviewing the data at 
every step. The quality of the data is to be ensured and monitored so that it is fit for 
the purpose. For the monitoring purpose, we can use data monitoring software 
which helps in tracking the data for the use. 

Multisample data 

Multisample data is obtained in those instances where enough experiments are 
performed so that the reliability of the results can be assured by statistics. 

Noisy data 

Noisy data can be referred to as corrupt data or meaning less data. This data cannot 
be understood and interpreted by the machines used in the organizations. Other 
issues with noisy data are that it wastes the storage capacity of the machine and 
yields incorrect results. Noisy data is generated by human or computer error, faulty 
instruments, data transmission errors, naming convention inconsistencies, incon-
sistent formats, etc. 

Non-stationary data 

The data which is unpredictable and hence cannot be modeled or forecasted is 
known as non-stationary data. They yield spurious results and hence indicate that 
they are fake or nonexistent in nature. They must be converted into stationary data 
in order to obtain better results. 

Notional data 

Notional data refers to such data which exists only in theory, i.e., it does not exist. It 
is such data which has not been scientifically proven but still can be used for 
experimentation purposes.
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Observational data 

Observational data is collected by systematic methods and hence is valuable from the 
point of view of a particular research. Observational data, as name indicates, is col-
lected by observation. There are many observations which yield observational data: 
(i) participant and non-participant observation, (ii) simple and behavioral obser-
vation, (iii) direct and indirect observation, and (iv) covert and overt observation. 

Obsolete data 

Information which is either outdated or no longer in use, incorrect, or incomplete is 
termed as obsolete data. This type of data is usually replaced by new more accurate 
data. 

Original data 

Data or information relating to original material is referred to as original data. 

Output data 

Output data refers to the output value of the system or software. This data reports 
the extent to which the intervention impacts. 

Perceived data 

Perceived data measures the report of competency attainment, beliefs, and attitudes 
along with perceived gains in knowledge. 

Persistent data 

It refers to the data which does not change with time, does not change across 
systems, and memory. This data is non-volatile and durable even with the change in 
software and devices, and it exists from one instance to another. This data is 
opposite of transient or dynamic data. This type of data is also called as dimensional 
data with respect to data warehousing. 

Qualitative data 

Qualitative data describes the quality of the object. It characterizes and approxi-
mates the object. It is non-numerical in nature and is collected through methods of 
one-on-one interviews, observations, record keeping, focus groups, case studies, 
etc., and qualitative data can also be termed as categorical data with respect to 
statistics. 

Quantitative data 

Quantitative data represents the numerical value of the object. This data can be 
measured with respect to numbers or counts. This data is also termed as numeric 
data. Quantitative data can be further classified into (i) digital data and (ii) con-
tinuous data. This type of data can be used in census, data projection, data pre-
diction, etc.
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Real-world data 

Real-world data refers to the data which has been collected through observation and 
not through experimentations. Real-world data plays a pivotal role in real-time 
applications like healthcare systems, medical and clinical research, weather pre-
diction, air traffic control systems, etc. 

Reference data 

Reference data can be defined as the data which defines structures of other data 
stored in the database. They are used to categorize or classify other data. They are 
usually static in nature or are rarely or slowly changed over period of time. 

Relevant data 

The data which is useful and not distracting is termed as relevant data. They are 
used at the runtime to complete the work in hand. Relevant data is indisputable and 
can be used to create strong strategies. Relevant data is useful to optimize and 
quantify the research. 

Semantic data 

Semantic data is useful in semantic data model which is a method of structuring the 
data in order to represent it in logical way. Semantic data adds meaning to the data 
and the relationship among other data in the model. 

Sensor data 

Sensor data can be defined by the data which is the output of a sensor (things in 
IoT) that identifies and acts on the input from the environment. This data is col-
lected through sensors which in turn are connected through gateways, and collected 
data is transferred to the cloud or fog. 

Sensory data 

Sensory data is the data which is made available to the person through its sensory 
organs. In case of machines, the sensors are used to sense and collect the data. 
Sensory data can also be referred to as the physical effects of the external envi-
ronment on the senses. 

Significant data 

Significant data can be interpreted as relevant data. The data which is useful and not 
distracting is termed as significant or important data. They are used at the runtime to 
complete the work in hand. Significant data is indisputable and can be used to create 
strong strategies. It is useful to optimize and quantify the research. 

Simulated data 

The data produced by data simulation process is called as simulated data.
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Single sample data 

Single sample data is the type of data in which few uncertainties may not be 
discovered by repetition. They are the opposite of multi-sample data. 

Smooth data 

Data obtained by the process data smoothing is called as smooth data. Smooth data 
is free from outliers and noise. Algorithms can be used to perform data smoothing 
process. 

Source data 

Source data is the primary location from where the data comes. Also termed as data 
source, it can be data set, database, and Excel spreadsheet. 

Stationary data 

Stationary data is predictable in nature, and hence as opposed to non-stationary 
data, they are predictable in nature and can be forecasted. 

Technical data 

Technical data is a recorded information of a scientific or technical nature. It can be 
defined as recorded information regardless of the ways of recording. Technical data 
can be represented in a technical data package. 

Test data 

Test data is the data which is given as input to a software during test execution. It is 
used for testing purpose. It is the data which either gets affected by the software or 
affects the software. 

Theoretical data 

Theoretical data is collected by the process of theoretical sampling for generating 
theory. They are abstract in nature. 

Time indexed data 

Data which is naturally evenly spaced in time is called time indexed data. 

Traceability data 

Traceability data is the information which refers to completeness of information 
about every step of the process. 

Transient data 

Transient data is in contrast to persistent data. It is volatile in nature as it is created 
within an application session. As soon as the application session is over, this data is 
discarded or reset to their default state. 

Additional definitions and explanations on these topics are published in [16–23].
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2.3 Models and Modeling Formalisms 

Paul Fishwick, Mamadou Kaba Traoré 

We begin with a broad cultural introduction to the idea of modeling and follow this 
with a description of how models can be formalized. 

A model is a simplified representation of something in the world. A toy car 
represents an actual, real-sized automobile, but the toy car leaves out much detail 
while providing relatively inexpensive and flexible usability (i.e., handling the car). 
We say that the toy car models the automobile. Models are studied in every field, 
and there are significant differences depending on these fields; however, all models 
capture a simplified representation of something else. This overarching goal is the 
same regardless of discipline. Within single disciplines, there is much literature. For 
economic models, for instance, [24] presents a comprehensive review. 

Model taxonomy has to be constructed from the ground up, through induction of 
any use of the word ‘model’ within the broad literature. Such a taxonomy will not be 
explicitly defined here, but we introduce the sorts of models available. Modeling is 
fundamentally cultural. This cultural aspect of modeling is partly due to discipline. 
The electrical engineer may model an analog or digital circuit at different levels of 
abstraction. The languages used by the engineer have a cultural foundation. Engi-
neering as a discipline is strongly visual—in the form of schematics and diagrams. It 
comes as no surprise, then, that when the engineer thinks of modeling, they frequently 
refer to the dynamics of an object through liberal use of diagrams and drawing and 
contrast this culture with the culture of the mathematician. The mathematician and the 
physicist, who relies on applied mathematics, tend toward canonical modern math-
ematical notation, which is lexical. This is not to suggest that the mathematician does 
not use diagrams, but their work is most naturally found in text-based notation. These 
notations have evolved over the centuries and will continue to evolve. The ways of 
thinking, and so ways of modeling, differ among cultures. 

The following represents an incomplete list of types of model by topic area, 
while referring to specific examples: 

(1) The scale model—this is perhaps the most widely used type of model. The 
model is a scaled-down, simplified, geometrically similar, object when com-
pared to the object being modeled. We say that the scale model looks like the 
actual object; the representation is similar from a visual perspective. An 
example is the town model of Bourton on the Water [25]. While the Bourton 
village captures the model of category [26], other model villages [27] are 
examples of model for. 

(2) The art model—within the arts, a model is either a quick sketch or prototype of 
the target object or a human who models one example of an ideal human (e.g., 
the model who sits and poses for artists who sketch and paint). Examples are 
found in Bernini’s terra-cotta models [28] with a sample exhibition [29]. 

(3) The engineering model—based on mathematical notation or the use of dia-
grams [30].



(4)

(5) The logic model—based on an interpretation of a formal language satisfying
specified axioms (e.g., a mapping or set of equivalences that cause one or more
logical sentences to be true) [32]. 
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The mathematical model—based on mathematical notation indicating the 
modeling of a real scenario [31]. 

The case of system dynamics (SD), initiated by Forrester [33], captures the 
cultural essence of modeling. In SD, there are phases in the modeling process.
While all models can be said to begin with abstract concepts which eventually lead 
to more detailed concepts and formalisms, SD explicitly defines these transitional 
steps, whereas most modeling languages do not. SD begins with natural language 
where concepts are drawn on a board. These concepts are then connected with 
arrows. The arrows are labeled with plus and minus signs to define cause/effect or 
increase/decrease. Then, the directed graph of arrows creates negative and positive 
feedback loops. The process so far yields a causal loop diagram. The diagram must 
be annotated so that specific nodes in the graph become levels or rates, or one of a 
small set of other possibilities. This is then converted into a flow graph. Finally, the 
flow graph is translated into a set of ordinary differential equations. These equations 
are then translated into computer language and can be executed on the computer. 
Not only does SD capture an evolutionary process for a certain type of modeling, 
yielding ordinary differential equations, but each level represents a different cultural 
lens for the target objects being modeled. The starting point of natural language 
provides a common familiarity since anyone who knows English, for example, can 
create such a model. The diagrams have an engineering cultural appeal. The 
equations represent the formal foundation and for the casual user may appear 
daunting. Incremental modeling, or model engineering, involves baby steps at first, 
gradually moving toward an ever-refined mathematical model. 

Models are social and cultural in addition to having different forms of repre-
sentation. These representations reflect the cultural differences of those who model. 
Some models are simple, others complex. Some models use two-dimensional or 
three-dimensional materials. We also need to be aware of model for” versus model 
of. A model can be made from a preexisting object (i.e., the target of modeling) or 
the model can be a prototype for something not yet constructed. 

While models, across all disciplines, are deeply cultural with different types of 
representation and detail, there are notable standards based on mathematical nota-
tion used frequently in science and engineering. We refer to these models as formal 
models, where the formality derives from mathematical notation as a lingua franca 
for many disciplines. 

Formalisms provide the means to explicitly express models. While browsing the 
whole space of all formalisms seems not realistic, there has been attempts to classify 
them along criteria that can help choosing the right ones in a given modeling 
situation. One such approach is proposed under the umbrella of multimodeling [34], 
where the following classification of abstractions is done, and for each class of 
abstractions, a family of adequate formalisms is indicated:



constitute a knowledge base for subsequent abstractions. UML and natural

.

.

.

.

. The evolution of the state of the system of interest is specified as a continuous
process in a continuous time base. Formalisms that allow such a specification fall 
under the label DESS (for “Differential Equation System Specification”). 

. The state dynamics is specified as a continuous process in a discrete time base.
Formalisms for such a specification fall under the label DTSS (for “Discrete 
Time System Specification”). 

.

. Conceptual models describe, at the highest level of abstraction, the general 
knowledge about the system under study. Their purpose is to highlight system 
entities (or classes), as well as the relationships between them. They, therefore, 
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language are examples of adequate formalism for this abstraction level. 
Declarative models provide systems description in terms of sequences of events 
that move the system from one state to another. This level of abstraction is 
adequate to represent the dynamics of objects identified in the conceptual model. 
Sequential automata (for passive objects) or Petri nets (for active objects) are 
adequate formalisms for this abstraction level. 
Functional models provide system descriptions in terms of sequences of func-
tions (the outputs of the ones feeding the inputs of the others), arranged such that 
the final treatment performed by the system is found downstream of this 
sequence. Such a level of abstraction specifies the flow of processing within the 
system. Queueing networks or functional block diagrams are examples of ade-
quate formalism for this abstraction level. 
Constraint (or conservative) models provide system descriptions in terms of laws 
and constraints. Differential equations or difference equations are examples of 
adequate formalism for this abstraction level. 
Spatial models focus on describing the decision rules for systems operation. The 
main idea, at this level of abstraction, is to represent global decisions as the fruit 
of the interactions of multiple local decisions. Cellular automata or multi-agent 
systems are examples of adequate formalism for this abstraction level. 

A more system-theoretic approach to formalism classification emphasizes on the 
concepts of time and state [35] and distinguishes the following cases: 

The state evolution is specified as a discrete process. Therefore, the time base is 
necessarily discrete even if it can take values in a continuous (respectively, 
discrete) set, i.e., the set of reals or a subset (respectively, the set of integers or a 
subset). 

Modeling formalisms are strongly related to the modeling objectives. The latter 
are concerned with the overall process that makes use of models, while the former 
are tools used among others within this process to describe models. Therefore, the 
use of whether a unique formalism or multiple formalisms is guided by the mod-
eling objectives, including the questions to be answered about the system, the 
properties of the system to be analyzed, the capabilities of available model solver, 
the analyst's experience, etc. When multiple levels of abstractions are at stake, this



Lin Zhang, Yuanjun Laili

The life cycle of a model is shown in Fig. 2.1. It contains six phases, i.e., problem
definition, model design, model construction, VV&A (verification, validation and
accreditation), model implementation, model evolution and reconfiguration, and
model maintenance [39].

may lead to the use of various formalisms, each of them most suitable to a level of 
abstraction. Such heterogeneity raises issues related to semantics alignment of the 
overall model, like consistency between the different specifications, overlapping 
descriptions, or unifying semantics. At the other side, a single formalism, thought 
free from semantics alignment issue by construction, is rarely appropriate alone for 
all levels of abstraction. 

In order to conciliate the semantics unity of a homogeneous situation with the 
expressive power of heterogeneous specification, unifying modeling approaches 
have been defined, ranging from formalism interfacing (i.e., the use of a third party 
as a glue to combine various formalisms) as proposed in multimodeling [34], to 
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formalism federation (i.e., the use of complementary formalisms to cover various 
viewpoints of the same system) as proposed by UML [36], formalism subsumption 
(i.e., the act of defining a model of computation that subsumes the semantics of 
different formalisms) as proposed by DEVS [37], and formalism weaving (i.e., the 
creation of a pivotal formalism by weaving the metamodels of existing formalisms 
to create a new domain-specific language) as proposed by HiLLS [38]. 

2.4 Model Engineering 

Model engineering (ME) or named as model lifecycle engineering (MLE) deals 
with the model lifecycle credibility and scalability problem for complex systems,
especially systems of systems. ME is supposed to be taken as a sub-discipline of 
M&S, which aims to provide standardized, systematic, and quantifi able manage-
ment and control to guarantee the credibility of the model lifecycle. Moreover, ME 
can be used not only in the domain of M&S, but also other fields that need 
modeling and model management. 

2.4.1 Model Life Cycle 

Fig. 2.1 Lifecycle of a model
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Problem definition is to define the specification of requirements. Model design is 
to design the framework and relationships of different parts of the system. Model 
construction is to build the model using description languages or mathematical 
formalisms. VV&A is the process of verification, validation, and accreditation. 
Application is to apply the model in a specific simulation environment. Evolution is 
an incremental adaptation process to make the specific model more scalable and 
credible to the current system requirements, including modification and refinement 
of model parameters and relationships. Reconfiguration is to change parts of the 
model during its runtime. Maintenance is to manage data, parameters, and different 
versions related to all other phases of the lifecycle. 

2.4.2 Definition of Model Engineering Model Life Cycle 

Based on this cycle, model engineering is defined as a general term for theories, 
methods, technologies, standards, and tools relevant to a systematic, standardized, 
and quantifiable engineering methodology that guarantees the credibility of the full
lifecycle of a model with the minimum cost [40, 41].

2.4.2.1 Model engineering regards the full lifecycle of a model as its object of 
study, which studies and establishes a complete technology system at the 
methodology level based in order to guide and support the full model lifecycle 
process such as model construction, model management, and model use for com-
plex systems. 

2.4.2.2 Model engineering aims to ensure credibility of the full model lifecycle, 
integrate different theories and methods of models, study and find the basic rules 
independent of specific fields in the model lifecycle, establish systematic theories, 
methods, and technical systems, and develop corresponding standards and tools. 

2.4.2.3 Model engineering manages the data, knowledge, activities, processes, 
and organizations/people involved in the full lifecycle of a model and takes into 
account time period, cost, and other metrics of development and maintenance of a 
model. 

2.4.2.4 Here the credibility of a model includes functional and non-functional 
components. Functional components are measurement of the correctness of func-
tions of the model compared to the object being modeled. Non-functional com-
ponents include features related to the quality of a model, such as availability, 
usability, reliability, accuracy, integrity, maturity, ability of modelers as well as 
management of modeling process. Credibility is a relative index with respect to the 
purpose of modeling and simulation. Evaluation of credibility includes objective 
and subjective evaluation. Objective evaluation is mainly based on data and doc-
uments, while subjective evaluation is mainly based on expertise. Quantitative 
definition and measurement of credibility will be one of the most important research 
topics of model engineering.



In accordance with the standards of ME, modeling of model lifecycle process
means to build a structural framework of activities that usually happen in the
lifecycle. The framework is a visible pipeline to show the state of a model related to 
the key stages, key elements, and key data of its lifecycle management. It is also
designed as a reference to evaluate the lifecycle cost and comprehensive efficiency 
and improve both the model and the management strategy.

2.4.3 Key Technologies of Model Engineering 

According to the framework of the body of knowledge of model engineering given 
in (Zeigler and Zhang 2015; [41]), technologies involved in ME can be divided into
the following categories (Fig. 2.6) including general technologies, model con-
struction technologies, model management technologies, model analysis, and 
evaluation technologies, supporting technologies. Some key technologies in the 
categories will be discussed in this section (Fig. 2.2). 
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Key 
Technologies 

Body of knowledge of model engineering 

Model engineering standards and norms 
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Model engineering lifecycle management 
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Quantitative analysis and evaluation of the 
model engineering 

Model uncertainty analysis 

Model maturity definition and evaluation 

Conceptual modelconstruction 

Support environment and tools of model 
engineering 

Visualization technology of model engineering 

Model knowledge and data 
management 

Model execution and computing 

M
odel 

contruction 
technologies 

Analysis and 
evaluation 

technologies 

M
od

el
 

m
an

ag
em

en
t 

te
ch

no
lo

gi
es

 

Model evolution 

Model as a Service 

Fig. 2.2 Key technologies of model engineering 

2.4.4 General Technologies 

2.4.4.1 Modeling of Model Lifecycle Process 



2.4.4.2 Model Engineering Lifecycle Management 
The lifecycle management of model engineering is carried out for managing data 
(development data and runtime data), knowledge (common knowledge shared by 
different models and the domain knowledge), activities, tools (especially M&S tools 
and model evaluation tools), and person (the modeler, the tester, and the user).
Data/knowledge management technology focuses mainly on the data and knowl-
edge in model, runtime environment, and the whole model lifecycle. It includes the 
methods for key data extraction during the model engineering lifecycle, knowledge 
classification from multi-disciplines, information learning throughout modeling and 
simulation, and data/knowledge storage for further improvement. 
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In the near future, we expect that the number of multi-disciplinary models will 
grow, and the assembly and disassembly of a systems, data, and models will 
continue to become more complex. 

Accordingly, data mining strategies and knowledge extraction algorithms used 
in ME must become much more: (1) scalable, to adapt to a wider arrange of domain 
information, (2) efficient, to implement intelligent system construction, and 
(3) stable, to ensure credible simulation and model management. 

ME lifecycle management also consists of monitoring the processes of model 
reconfiguration, evolution and maintenance, and the multilayer optimization of 
modeling practices, operational workflows and maintenance schemes to realize an 
efficient risk/cost control and speedup throughout the whole lifecycle of a model. 

2.4.5 Model Construction Technologies 

A large amount of research on model construction (modeling) has accumulated over 
the years in the M&S domain. From the point of view of model engineering, some
issues for modeling methods are of most concern. Such issues include (1) acquisi-
tion and management of model requirements, (2) model specifications and mod-
eling languages, (3) modeling process management, and (4) conceptual model 
construction. 

2.4.5.1 Acquisition and Management of Model Requirements 
The model lifecycle starts with requirements. Accurate requirement acquisition is 
the key to credible M&S. However, requirement acquisition and management are 
very challenging due to uncertainty and ambiguity in the systems being modeled. 
Research on requirement acquisition is needed to improve the means to extract,
describe, parse, and validate requirements via automated or semi-automated means. 
Similarly, research is needed on management of requirements to formulate how to 
reflect changing requirements to influence model construction and maintenance in 
an accurate and timely manner. 

To acquire accurate model requirements for system simulation, we need to get as 
much information as we can to understand (a) the underlying modeling objectives 
of the simulation, (b) the nature of the targeted system, and (b) the kind of envi-
ronmental conditions that are required. Therefore, an analytical strategy is



particularly important in which we hierarchically decompose the structural 
requirements for further design and model matching. 
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Additionally, system features (user demand, system structure, and environmental 
conditions) extracted from the above strategy must be stored and managed by 
category of the facet. When a new requirement comes in, these facets will be used 
to match similar models and existing domain knowledge to support rapid system 
construction. 

2.4.5.2 Model Specification and Language 
Model specification is informed by the detailed description of system simulation 
requirements, model input/output, model functionalities, model activities/states and 
the related domain rules. The model requirement is not only a documental or 
structural description about what kind of model we need, but also a simple and 
uniform representation of the general features possessed by a targeted system.
These features should specify some common rules corresponding to system com-
ponents and their interconnections. Similarly, at the component level, the specifi-
cation for the meta-model (which performs some domain-independent 
functionalities/states/activities) and the domain rule (which represents some 
domain-dependent state transformation mechanisms) should be prebuilt. By 
dividing a general domain model into meta-model and domain rule, a domain 
model is easily assembled and disassembled for efficient reuse. In addition, this 
division enables the modeling data/knowledge to be clearer and easier to manage. 

Although a model can be built by different sorts of lower-layer model languages, 
an unified upper-layer language is still necessary for engineers to efficiently con-
struct a new system model or transform an existing one to meet the simulation 
demand. Following the vision of the above specifications, an upper-layer model 
language should also clearly describe the outer structure and inner behavior of a 
system and be able to transform into multiple lower-layer model languages. 

2.4.5.3 Modeling of Process Management 
Two kinds of efforts are necessary to guarantee the credibility of a model. One is to 
do VV&A after the model is built. The other is to manage and optimize the 
modeling process. VV&A has important implications to discover model problems 
and defects, but it clearly does not and cannot solve the problem of how to acquire a 
correct model. Especially for complex systems, due to the complexity and uncer-
tainty of the system, the modeling process can be very complicated, which makes 
VV&A of a model also extremely difficult. Even if the defects are found via 
VV&A, the modification of the model will be very difficult and expensive. 
Therefore, it is very important to structure and optimize the modeling process. 
Consequently, methods are needed to measure the degree of formality and opti-
mization (maturity) of modeling and simulation processes. A highly structured level 
of organizational capabilities and the use of proven processes applied to modeling 
can guarantee, to a large extent, the credibility of a model. (Fujimoto et al. 2017). 

Capability maturity model (CMM) and CMM integration (CMMI), originating 
in software engineering, can be introduced to establish a capability maturity model



2.4.6.1 Model Library

for the modeling and simulation process (M&S-CMMI) (Zhang and Mckenzie 
2017). Such an approach can enhance both the management efficiency and per-
sonnel capabilities in high-quality model construction and management. Related 
research opportunities include M&S-CMMI evaluation, optimization, risk analysis 
and control of modeling processes, notional mappings with CMMI, etc. 
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2.4.6 Model Management Technologies 

Model management consists of core methodologies and technologies that guarantee 
highly efficient and credible composition, sharing, reuse, evolution, and 
maintenance. 

A scalable model library is key to implement efficient model engineering. It should 
be able to handle heterogeneous models by using a formal description language, 
recognize multi-disciplinary model features, and enable a fast indexing and location 
of similar/suitable model for a task specification. The main techniques with respect 
to model library are model classification criteria, model storage mode, model 
indexing schemes, and ways of searching for models. In contrast to a database, the
model library stores and processes not only model descriptions, but also their 
instances and interconnection relationships. Currently, there is lack of techniques 
for establishing a model library. 

2.4.6.2 Model Evolution 
Model evolution is one of the most important innovations proposed in ME. From 
the separated meta-model and domain knowledge point of view, ME aims at using 
models as a service and enabling them to autonomously evolve to new improved 
version instead of through manual refinement. Borrowing the idea of incremental 
learning, model evolution refers to an incremental adaptation process to make the 
specific model more scalable and credible to the current system requirements.

The factors including parameters, states, behaviors, and functions in meta-model 
and different sorts of domain knowledge such like additional domain parameters, 
action rules, constraints, and domain-related functions are all able to be updated as 
modules of a simulation system, as shown in Fig. 2.3. To enable the meta-model 
and domain knowledge to update autonomously over time, we need to establish 
dynamic connections between system requirements and these lower-layer factors in 
line with the historical data from the model lifecycle. These connections, which can 
be trained by the existing incremental learning algorithms and intelligent 
multi-agent system-based strategies, will then guide the factors of a model to 
change toward the ones connected to the most similar requirements. 

2.4.6.3 Model Reconfiguration 
Different with model refinement in the stages of application and maintenance, 
model reconfiguration means to change part of model during its runtime. It is an



important basis to implement model reuse with a minimum rollback design cost. 
According to the above-mentioned model specification, a model should be designed 
to hold multiple functionalities and flexible interfaces. How to dynamically choose 
suitable functionalities and domain knowledge to ensure accurate response in 
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Fig. 2.3 Cloud-based servitization of simulation models 

simulation is the main concern of model reconfiguration methods. Specifically, it 
can be divided into lower-layer reconfiguration and upper-layer reconfiguration. 

Lower-Layer Reconfiguration 
The lower-layer model reconfiguration method is only for a meta-model which is 
independent with domain knowledge. It includes functional reconfiguration, 
structural reconfiguration, and parameter reconfiguration, as shown in Fig. 14. 
Specifically, structural reconfiguration refers to combined multiple meta-model to 
form a larger one with more functionalities. 

Upper-Layer Reconfiguration 
On the contrary, upper-layer reconfiguration is directly related to domain knowledge 
and the practical simulation environment. Thus, it can be divided into domain-related 
reconfiguration and simulation-related reconfiguration. The domain-related part is 
responsible for selecting add-on domain knowledge (i.e., domain functionalities, 
domain parameters, and constraints) to a model, while the simulation-related 
reconfiguration is set up to determine environmental parameters and simulation 
engine-related settings to assure a correct and fluent simulation process. Obviously, 
model reconfiguration is a complex dynamic optimization problem, in which the 
two-level variables can be either determined in two steps or in one time. 

2.4.6.4 Model as a Service 
With the development of cloud-based technologies, a heterogeneous model with its 
execution engine can be integrally encapsulated as a service. That is to say, not only



(Servitization is a new concept that has two meanings from IT and business
perspectives. From the IT perspective, it means the service encapsulation of objects 
with service-oriented technology. From the business perspective, it is defined as 
“the innovation of organization’s capabilities and processes to better create mutual 
value through a shift from selling product to selling Product-Service Systems,” 
where a product-service system is “an integrated product and service offering that 
delivers value in use” and a “servitized organization is one which designs, builds 
and delivers an integrated product and service offering that delivers value in use” 
(http://andyneely.blogspot.com/2013/11/what-is-servitization.html). 

a meta-model and a domain component model can be encapsulated, a composed 
system model is also capable of being encapsulated. This makes the execution of 
different sorts of model easier in any cloud-based environment. To implement 
flexible model sharing, the scheme of cloud-based servitization of simulation model 
is illustrated in Fig. 2.3. 
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First of all, a uniform servitization template (i.e., a service class) should be 
designed previously for different levels of model. When a system construction 
requirement arrives, the suitable models will be deployed or replicated into different 
virtualized cloud resources to support a distributed simulation. 

2.4.6.5 Model Composition 
Model composition is a technology established upon the flexible model reuse 
scheme. It is designed to realize more intelligent model collaboration and system 
construction when the number of models is too large to be implemented with 
manual selection. In the research of model composition, two critical problems are 
how to match suitable models to form a valid candidate set and how to select the 
best models for a collaborative system simulation. The former matching problem 
can be solved by some feature-based or domain-based model classification and 
model clustering methods, while the latter model selection has to be considered in
different conditions, i.e., offline condition and online condition. 

Offline Model Composition 
Different with the general service composition, the collaboration between models 
are not usually perform in a strict sequential or directed acyclic manner. Feedback 
cycles and concurrencies may exist simultaneously in their collaborative topology. 
Therefore, traditional algorithms designed for service composition may not appli-
cable. An offline model composition method should be able to recognize each kind 
of connection in a specific collaborative topology (extracted from a standardized 
system simulation requirement) and generate feasible solutions with the consider-
ation of sequencing rules, cycling rules, and concurrency rules between the can-
didate models. 

Online Model Composition 
Online model composition is executed during the real-time simulation process 
based on a given offline composition scheme. The main workflow of an online 
model composition method is drawn as shown in Fig. 2.4. Specifically, it is driven

http://andyneely.blogspot.com/2013/11/what-is-servitization.html


In addition, most current research focuses on qualitative analysis and quantita-
tive and formalized analysis methods are lacking, so VV&A quantitative analysis 
and formalized analysis technology are still main research content in the model 
engineering.

by online evaluation of the current system state compared with a desired state. If 
online adjustment threshold is reached, the method will perform the adjustment in 
four steps, i.e., candidate adjustment, domain rule adjustment, connection adjust-
ment, and parameter adjustment from the top down. After the online refinement, the 
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Fig. 2.4 General workflow of an online model composition method 

evaluation model will continue to monitor the system state and determine whether a 
further modification is required. In other words, an online model composition 
method should be perform at a high speed and provide a feasible solution at 
different levels and thus is more difficult to design. 

2.4.7 Analysis and Evaluation Technologies 

Model evaluation is a very traditional topic in the domain of M&S. In ME, it means 
not only the VV&A of a model, but also the evaluation of the whole process of ME. 

2.4.7.1 The VV&A of a Model 
In the past decades, different authoritative organizations and researchers have 
established a few standards for the VV&A of a non-separable model. However,
little research has been done on the evaluation of models in a composed situation
and in its further maintenance process. As demonstrated in Fig. 2.5, the bridge 
between the existing model evaluation indicators and the models in different layers 
of system construction is a key to implement the efficient evaluation of model 
lifecycle. 



2.4.7.2 The Evaluation of the Whole Process of ME 
The quality of the ME process will directly determine the quality of a model in its 
design, implementation, application, and maintenance. To ensure the control and 
management quality of ME, key issues from both the control stages and the 
management process should be extracted first for the construction of evaluation 
indicators. With a suitable set of indicators to fully cover the whole process of ME, 
existing expert scoring mechanisms such like fuzzy AHP and TOPSIS can be 
directly applied to assess it. Because the process of ME is not a one-time execution 
workflow but a long-accumulated management framework, the evaluation must be 
carried out based on historical information. Thereby, a case library is also a fun-
damental element in evaluation to quantify the quality of the ME process and so as 
to form a hybrid evaluation mechanism for fast ME evaluation. 
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Fig. 2.5 Gap exists between the existing evaluation indicators and the models in different layers 

Research topics related to evaluation also include quantitative analysis of the 
complexity and uncertainties risk analysis and control of ME processes, quantitative 
measurement of model lifecycle quality and cost, etc. 

With the combination of model lifecycle evaluation and ME process evaluation, 
a comprehensive evaluation scheme can be drawn as shown in Fig. 2.6 to guide the 
further optimization and calibration targeted to the whole ME framework. 

2.4.7.3 Model Maturity Definition and Evaluation 
The maturity of a model is a very important index for model composition, sharing, 
and reuse. Maturity definition of a model is not an easy job since different models
have different features, different application requirements, and different execution
environments. Model maturity will be a comprehensive index related to



The supporting technologies for the implementation of ME primarily consist of the
transparent visualization ways for model lifecycle and operational platform to 
enable fundamental execution of activities involved in the whole process of model 
engineering, as illustrated in Fig. 2.7. 
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Fig. 2.6 Comprehensive evaluation scheme 

multi-dimensional features. Research effort needs to be made on definition and 
evaluation of model maturity. 

2.4.8 Supporting Technologies 

2.5 Model Curation for Repository Integration: Discovery, 
Composition, and Reuse

Bernard P. Zeigler, Andreas Tolk, Tuncer Ören 

Within the context of model management (Sect. 2.4), we note that a large backlog 
of legacy simulation models has accumulated over the years that is potentially 
exploitable for reuse in solving newly arising problems at relatively low cost and 
quick turnaround. Unfortunately, although organized databases of simulation 
models were the subject of early research interest [42], much of this source of 
simulation model knowledge remains untapped. This is due to the fact that legacy
models were not developed with later reuse in mind for unforeseen applications.
Even today, simulation models are still developed for specific scenarios with 
built-in organization-specific data and domain-specific (often unstated) assump-
tions. This renders them hard to apply to evaluation of the effectiveness of newly
proposed strategies, designs, and plans. Consequently, interpretation of model
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Fig. 2.7 Vision on the support environments for the implementation of ME 

applicability and integration of models with others in a repository (Sect. 6.4) is a  
labor-intensive activity currently performed only by human modelers with assis-
tance of subject matter experts. 

Computational intractability of the general problem [43, 44] suggests that a firm 
theoretical foundation for producing robust and reliable reuse practices is critically 
needed to ensure efficient and error-free operation [45]. For semantics-based tools 
to be effective, they must be based on a solid foundation for modeling and simu-
lation (M&S) that views its products as legitimate knowledge structures. Specifi-
cally, the foundation must support effective knowledge representation of the 
multiple formalisms in which models can be expressed and the correspondences 
between model structures (parameters, state variables, and couplings) necessary to 
cross-validate the models for consistency and agreement with the specification of 
their intended applications. Indeed, there has been recognition of the need to codify 
the intended use (IU) of a model: in principle, a comprehensive listing of specifics 
in relation to the problem that the model is intended to address [46]. Reuse and 
composition entail automating the process of retrieval (specifying an IU and 
locating potential reuse candidate models within a model library), suitability 
evaluation (determining the relationship between a retrieved model and the



specification of the desired component), and adaptation (making changes to a 
model to meet reuse requirements). 

On the foundation the Theory of Modeling and Simulation (TMS) (Sect. 1.3) and 
Modeling and Simulation Framework (MSF) (Sect. 1.4), [47] formalized the 
duality between simulation models and experimental frames (EF) to support frame 
applicability to models in the service of composability and reuse. They defined a 
methodology to capture the observable/objectives, assumptions, and constraints 
(OOAC) associated with a given frame and that a model has to satisfy. To enable 
partial satisfaction, a more relaxed version of full applicability, it was formulated as 
a conjunction of satisfaction sub-functions (for the OOAC components, respec-
tively) and an interval estimating confidence in the applicability [48]. 

The formalization of experimental frames (EF) was extended by Traore and 
Muzy [49] as a basis for specifying the context in which simulation models are 
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built. Such formalization enables development of formal methods for verification of 
models’ consistency, composability, reuse, and validity. Cheon et al. [50] extended 
the concepts of model matching and the role of context to further support 
ontology-based model discovery, noting that much work is left to reduce the pro-
posed concepts to working mechanisms. 

Zeigler and Nutaro [51] further extended the TMS from the “modeling in the 
large” perspective of Zeigler [52]. The extension enables suitable EFs to compu-
tationally represent given IUs. In this theory, a model developed for an application 
is expected to be valid in one or more EFs associated with the IU that formalizes 
that application. In the context of evaluating candidate models, this enables users to 
select candidates for composition or integration that are best suited for a given IU. 
In effect, the EF associated with an IU acts as a key to inform search for the models 
whose EFs best fit it. 

This foundation allows us to discuss how to curate (annotate based on 
well-founded theory, [53] simulation models so that they can more easily discov-
ered from a model repository given analytical objectives. From a historical per-
spective, curation is a form of symbolic processing of simulation models [12] 
within a larger scope of model-based activity that was envisioned early in the 
development of simulation languages and concepts [12]. 

This breaks down into three main considerations: 

(1) Employ the system theory-based entities and relations identified by TMS to 
develop a knowledge structure that covers the most commonly employed 
modes of expression (mathematical, statistical, algorithmic) and types of formal 
specifications and suggests derivable mathematical specifications and useful 
theorems to support model curation; 

(2) Develop a model-matching process and workflow based on the developed 
knowledge structure to discover models that match analytical objectives for-
mulated in a manner attuned to the curation structure; 

(3) Augment the TMS-based knowledge structure to capture linkages and attributes 
necessary to validate the correctness of the curation with respect to the mod-
eler’s intent.



We assume that the entities in a model repository will be found in an uncurated
form that we will refer to as “Model Packages”. The questions then concern how to
design an approach to curation of such packages that can be executed with available
computational resources and coverts them into a form that satisfies the TMS
specifications for decomposition into model, simulator, experimental frame, and
associated relations.

. A simulator is the code sections that directly, or indirectly, execute the
model’s instructions and generate its behavior.

2. Identifying a model’s underlying formalism and level of system specification 
Having identified the model within a model package, critical to its curation for 
eventual reuse, and composition is the proper designation of the software from the 
perspective of the predictability of its behavior in new compositions. The system 
specification hierarchy of TMS provides an orderly way of establishing relation-
ships between system descriptions as well as presenting and working with such 
relationships. DEVS compliance is necessary to assign a model package to the right 
level of system specification and to curate it for accurate repository discovery using
the SMRC architecture. Wymore and Bahill [54] relate the incident in which a 
virtual reality simulator for troop movement in challenging terrain was reused to 
depict mobs of kangaroos in the same environment with superficial adaptations. 
This proved successful until a demonstration revealed that such ‘kangaroos’ also 
could regroup and launch missiles. Here reuse was based on behavioral equivalence
(with respect to movement) but neglected to check equivalence at the more 
revealing state equivalence level. The system specification hierarchy (Sect. 1.4.1) 
provides an orderly way of establishing relationships between system descriptions 
as well as presenting and working with such relationships.
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1. Decomposing a model package into its MSF elements 

Having assumed that model packages constitute our starting entities, we must 
develop an approach to representing a model package by its elements from the
MSF. Basically, this requires that we separate the model from the simulator and 
experimental frame. As a start, we consider the following characterization:

. A model is (collectively) that part of parts of the package that relates to the 
real system of interest, e.g., it might make a claim about how some mech-
anism in the system works. A model can be considered as a set of instructions 
that when executed are intended to replicate or predict the real system’s 
behavior.

. An experimental frame is constituted by the sections of code that relate to the 
conditions under which the model is intended to simulated, i.e., the inputs, 
controls, and expected outputs that specify the realm of system behavior of 
interest. 



Together, these processes implement the assignment of a model to a pair (system
specification level, system specification formalism) which constitutes essential 
knowledge upon which to base the possibilities for reuse and composition. 

To add models to the repository, we must develop an approach to characterizing 
the model package’s intended use. We must sufficiently refine the concept of ana-
lytical objective and relate it to the operational simulation consequences expressed 
in the experimental frame. Specifically, the IU requires. 

.

.

.

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

As in Table 2.14, orthogonal to the level at which a system is specified is the 
subclass of systems in which the model resides where the most common subclasses 
are spanned by the modeling formalisms shown in the table. Thus, curation entails 
assigning an incoming model to the correct cell in the table, and there are two 
corresponding activities:

. Determine the level of system specification in which a model resides: This 
requires characterization of the levels of system specification in an operational 
form that enables examination of the documentation to uncover whether the 
model is presented as data at the I/O behavior level, behavior generation 
instructions in the form of a state diagram, or in the form of interacting com-
ponents, etc.

. Characterize the system specification formalism of model: This requires iden-
tification of the models expressed in types of simulation languages as instances 
of the basic types of system specification: DESS, DTSS, and DEVS. The table 
shows that such system specifications can occur at any of the levels of 
specification. 
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Table 2.14 System specification levels and types framework for model package characterization 
[55] 

System 
specification/level 
of specification 

Differential equation 
system specification 
(DESS) 

Discrete time 
system 
specification 
(DTSS) 

Discrete event 
system 
specification 
(DEVS) 

Observation frame 

I/O behavior 

LO function 

State transition 

Coupled 
component 

Narrative description of the analysis problem and tasks or processes the IU 
stakeholder user performs 
Specification of the outputs that the stakeholder user will employ in the process 
Special conditions of experimentation or runs to produce outputs usable in the
stakeholder’s process



provide a basis for such matching.
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. Threshold acceptance or goal goodness criteria for each IU. 

Recommendation of best configuration fulfilling input objectives in the form of 
IUs is formulated in the form of model matching. The model-matching concept 
based on IUs requires developing concepts, and associated software tools enable 
locating the most suitable model in the repository for a given analytical objective. 
Here TMS provides a set of relations between experimental frames and models that 

The relations outlined in Table 1.4 in Sect. 1.4.4.1 must be implemented in 
algorithmic form so that the given EF can be tested for derivability against the EFs 
of models in the repository and accommodation by the model with best matching 
EF confirmed to enable simulation. The duality between simulation models and 
experimental frames for the algorithmic implementation given by Traore and Zei-
gler [47] can be employed to capture the observable/objectives, assumptions, and 
constraints (OOAC) associated with a given frame and that a model has to satisfy.
In addition, more advanced features need to be implemented such as partial match 
satisfaction and confidence interval estimation of signature matching and specifi-
cation matching [56] to build an efficient model frame/applicability prover. 

1. SES Support for Model Repositories 

The System Entity Structure (SES) (Sect. 1.5) is used to organize the family of all 
possible configurations of a system. The SES enables the development of model 
repositories of reusable M&S components. SES model repository components are 
composable and executable to fulfill the objectives of stakeholders’ IUs. Reusability 
support methodology differs in a major respect from most simulation environments 
in its use of the SES to support composability (Sect. 2.4). The composability fea-
ture of SES results in significant reduction in time to develop models for new 
objectives that can only be emulated with the use of ad hoc configuration scripts 
that are needed when using DEVS alone SMRC facilities for objective-driven SES 
pruning guide the user and automate the configuration process to achieve an exe-
cutable SMRC composition best suited to fulfill the stakeholder’s objectives for the 
IU [57]. The SES supports model repositories using the suites of models in the MS4
Me environment [58]. In a suite of models, each component SES represents a
family of models that can be pruned and transformed to execute in a simulation. 
Component SESs can be merged to a new SES with the same compositional 
properties. This functionality leads to the concept of a repository of models. SES 
supports families of models for combinatorial generation of architectural alterna-
tives for exploration and optimization. As an ontological framework, the SES 
supports composition of models drawn from one or more model repositories. 
Operations on SES objects such as merging ease development by maintaining 
coherence of shared constructs among modifiable components. Merging enables 
divide-and-conquer component-based development of suites of models. 

Figure 2.8 depicts a set of intersecting SESs representing a suite of related 
families of models concerning global warming. The families, and the questions they 
address, include:



. Greenhouse effect model family: What is the greenhouse effect that causes 
warming of the earth?

. Polar ice melting model family: How does global warming cause increased 
melting of the polar ice cap?

. Permafrost melting model family: How does the warming of the permafrost 
contribute to ever increasing global warming?

. Sea level rising model family: How does the global warming contribute to the 
rising of the sea level?

. Storm intensity increasing model family: How does the global warming con-
tribute to the increasing intensity of storms? 
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Fig. 2.8 Composition structure of SESs representing global warming families of models

. Flood increasing model family: How does the global warming contribute to the 
increasing incidence of floods?

. Drought increasing model family: How does the global warming contribute to 
the increasing incidence of droughts?

In such a suite, there are SESs that are “components of other SESs. This use of 
the term ‘components’ transfers the “component of” concept from its use in 
component-based model construction [59] to the domain of SES construction. Thus, 
an SES is a component of another SES in the sense that the models the first SES 
generates are components of models generated by the second SES. The operation of 
composing DEVS models to create a coupled model is mirrored by the merging 
operation for composing SESs. 

As illustrated in Fig. 2.8, these SESs form a set that is related by a composition 
relation. Here an arrow indicates composition, i.e., an SES is composed of the SESs 
and atomic entities sending arrows to it. For example, the GreenHouseEffect SES is 
composed only of atomic entities, while it is a component in many other SESs,



The process for developing, merging, pruning, and transforming an SES is
illustrated in Fig. 2.9. The workflow supporting the development of an SES rep-
resenting a new family of models in an existing suite of models starts with a 
top-down search starts with looking for existing models that can be used as com-
ponents. Identification of candidate models can be supported by the objectives and 
intended uses that motivate the development of the family as discussed in Section x. 
In Step 1, an experimental frame in the form of an SES is formulated either fresh or 
as needed from existing EF components. In Step 2, existing family of models is 
sought to accommodate the EF SES. Such existing models include families of 
models generated by SESs as well as atomic models in the repository. An existing 
family of models generated by an SES becomes a component SES when its name 
appears as a leaf entity in the SES under development. In a later pruning process, 
this component SES will be merged into the target SES. For needed components 
that are currently not available in the suite of models, the same procedure applies, 
with the additional task of recursively developing the components in the same 
manner as the target. Of course, one may decide at any point that is better to 
develop a needed component as an atomic model rather than as one generated by an 
SES. In Step 3, the EF and model SESs are merged to form a simulation model 
family for execution. Note that before pruning, the SES components of the resultant 
SES are merged (recursively) to give the merged version of the resultant SES. In 
Steps 4 and 5, the resultant SES is pruned and transformed to a hierarchical coupled 
model. For example, to create the merged SES for FloodIncreasing, the unmerged 
SES is merged with the component SESs GreenHouseEffect, SeanAndPolarIce, and 
LandFlood, where the latter is merged from components, LandFloodScape and 
LandFloodPlots. In Step 6, the executable model is configured by setting parameter 
values that are not set through the pruning choices and simulation results are
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Fig. 2.9 Merging, pruning, and transforming SESs 

refl ecting the case that greenhouse gases are a cause of the related climate change 
phe nomena. 



obtained [57] The cycle is repeated if necessary to converge to desire results 
(methodology for conducting such iterative experiments is discussed in other lit-
erature such as [29] (Fig. 2.9). 

The concept of repository of models extends the support for developing suites of 
models by using Web Services backed by cloud technology. For collaborative team 
developers, it provides the composition and integration facilities based on the SES 
described above. Going beyond support for sharing, it provides advanced support 
for browsing the SES structures of models aimed at enabling comprehension of 
model content and functionality. Such comprehension is necessary to realistically 
enable a developer to acquire and reuse a simulation model developed by someone 
else. Further research is needed to develop the most efficient and effective ways of 
generating views of SES entities, relationships, and variables. After construction, 
the suite of models can be hosted in a cloud-based repository of models as a basis 
for collaborative model development. 

1. Further Research Needed in a Wider Context 

A model–model coupling interface concept can be a prerequisite for many 
composition-related features [60, 61]. Acquiring additional interface information was 
found to provide a foundation for desired features such as (1) unit testing, (2) automatic 
unit conversion, and (3) the automatic detection of specialization and multi-aspect 
pruning options. Interfaces make the creation and management of unit tests easier for 
modelers. Unit conversion can be automated by inspecting the units of interfaces. The 
unit conversion feature includes the conversion of multi-dimensional units such as 
coordinate transformation (e.g., Polar to Cartesian). The SES concept can be expanded 
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to allow for pruning options to include models that satisfy certain interfaces. 
A significant technical challenge will be to characterize the composability of 

existing models, developed for use in external frameworks, as DEVS components. 
In addition to the theoretic elements of composability expressed in the SMRC 
architecture, there are the technical and computing elements of composability that 
defi ne the compute architecture and information exchange protocols that allow them
to work together.

The DEVS-DMF framework developed by Kewley et al. [62] is a DEVS 
implementation based on microservices that enables location transparency and 
affords the use of web and cloud-based technologies for integration. In short, DEVS 
models can be microservices running on any computational infrastructure and any 
location, integrated via a variety of widely used information exchange protocols 
such as HTTP, messaging systems, or websockets. Kewley et al. [62] developed 
soldier models that can be wrapped to work in a variety of simulation frameworks 
by breaking DEVS models into stateless (transition functions, output functions) and 
stateful (state variables) components in a distributed environment using the actor 
model of computation. 

MS4 Me and DEVS integrating technologies to capture the requirements and 
modeling and simulation as a service (MSaaS) are a promising approach to improve 
efficiency in simulation use and better utilization of valuable resources [63, 64].



Experiments are being conducted to investigate operational benefits of MSaaS 
repositories to improve awareness of existing resources and to offer workflow 
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support for key MSaaS activities such as resource discovery, exercise preparation 
and setup, service composition, and finally deployment and execution. 

Finally, it is interesting to place model curation within the broader framework of 
modeling and simulation as an integrative factor in bringing together multiple 
disciplines to address complex problems. Addressing the today’s challenging 
complex problems, such as the recent response to the pandemic, or the increasing 
social need for equality in many daily domains, requires the collaboration of experts 
from multiple disciplines. Simulation studies are increasingly conducted by teams 
of multidisciplinary, interdisciplinary, and transdisciplinary researchers and prac-
titioners, who apply theories, methods, and tools from their respective disciplines 
toward a common solution. To take full advantage of curation, a formal alignment 
of conceptual approaches is needed. Tolk et al. [65] present a conceptual framework 
for hybrid approaches generally applicable to all kinds of computational support of 
research presenting a framework that supports the collaboration of research efforts 
from multiple disciplines. This transdisciplinarity-enabling methodology allows 
such efforts to grow into transdisciplinary research. Research is needed to further 
evaluate the degree to which these concepts can be applied to allow the utilization 
of curations beyond the boundaries of the discipline that created the original model 
so as to enhance the model’s applicability in such a broader transdisciplinary 
context. These approaches can extend systems engineering approaches, such as 
described in [66]. 

2.6 Model-Based Simulation 

Greg Zacharewicz 

This section presents most commonly used model-based and model-driven 
approaches (MB-MD) to reach a simulation model. Indeed, all major research 
initiatives agree that the problem of inconsistency in system and simulation design 
can be partly solved by early unambiguous descriptions (i.e., semiformal or formal 
model) of the system [67]. We identify and detail the main problems related to the 
need of early modeling, discuss current solutions, approaches, and frameworks, and 
present the relative obstacles that need to be overcome to implement simulation. 

As pioneer contribution, authors of [3] described a simulation program that was 
dichotomized for the first time, and lines of simulation program code were iden-
tified as representing the model and different elements of the experimental
conditions.

The evolution from document or speech-based software engineering to 
model-based software engineering [68] concurs with the model-based approach
already successfully applied to simulation and systems engineering. The unified
modeling language (UML), also developed in the 1990s [69], has opened new



.

.

.
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horizons in the field of software-intensive systems engineering. In system domain, 
according to INCOSE, MBSE is part of a long-term trend toward model-centric 
approaches adopted by other engineering disciplines, including mechanical, elec-
trical, and software. Then, simulation-based analysis is an effective technique to 
support verification and validation of complex systems throughout their lifecycle, 
and it is another challenge in the model-driven cycle. 

According to Tuncer Ören, the motivation for model-based approaches in 
software engineering is to improve productivity through the generation of software 
artifacts, including source code through the transformation and progressive 
refinement of models [70]. 

2.6.1 Model-Based/driven Approaches 

There are several types of model-based/driven approaches in system and software 
engineering. We introduced a non-exclusive categorization of the model-based 
approaches used by engineering community frequently extended:

. Model-based engineering (MBE) utilizes model-driven practices pragmatically, 
not necessarily in an integrated fashion, in various steps of the engineering 
process. While models are important in MBE, they do not necessarily drive the 
development process. In this sense, all model-driven processes are regarded as 
model based.

. Model-based system engineering (MBSE) aims to facilitate system description 
understanding by moving from a classic documentary, textual approach, used for 
several years, to a model approach. The companies in charge of the imple-
mentation thus receive a model, a conceptual/formal/visual approach that is more
efficient than the textual approach. Current activities of the MBSE initiative are 
sponsored by the International Council on Systems Engineering (INCOSE) [71].

. Model-driven development (MDD) proposes a paradigm that utilizes models as 
the primary artifacts and redefines the implementation as (semi) automatic 
generation from the models. The process relies on the use of models and the
systematic production and transformation of models.

. Model-driven engineering (MDE) expands MDD to cover all engineering pro-
cess areas with a focus on developing metamodels to facilitate automated 
transformations. 
Model-driven architecture (MDA) is the particular vision of MDD proposed by 
the Object Management Group (OMG). It is originally focused on software 
development. 
Model integrated computing (MIC) refines MDD approaches and provides an 
open integration framework to support formal analysis tools, verification tech-
niques, and model transformations in the development process [72]. 
Model-driven systems engineering (MDSE) defined by Mittal and Martin [73] 
for system of systems utilizes the benefits of both MBSE and MDE



Model-driven interoperability (MDI) methodology that was realized in the frame
of the Task Group 2 (TG2) of INTEROP-NoE [74] to tackle interoperability. 
The goal is to tackle the interoperability problem at each abstraction level 
defined in MDA and to use model transformation techniques to link horizontally 
to ensure interoperability of models of collaborating enterprises at each level.

2.6.2 Simulation-Based/Driven Approaches 

Model-driven simulation engineering is hot topic in the 2020s. As one state of the 
art, authors [76] provides a comprehensive review of distributed simulation (DS) 
from the perspective of model-driven engineering (MDE), illustrating how MDE 
affects the overall lifecycle of the simulation development process. They describe a
road map for building a DS system in accordance with the MDE perspective and a 
technical framework for the development of conceptual models. They present a 
focus on federate (simulation environment) architectures, detailing a practical 
approach to the design of federations (i.e., simulation member design). They discuss 
the main activities related to scenario management in DS and explore the process of 
MDE-based implementation, integration, and testing. 
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.

. Model-driven system engineering architecture (MDSEA) [75] fills a gap in other 
methods by considering resource categories. It separates the IT, human orga-
nization, and physical means resources. This separation allows to better model 
and control their interaction with the system to be specified. 

These MB-MD approaches are tackling model-oriented needs of users, but the 
behavioral aspect regarding time is forgotten. Indeed, these approaches are not 
situating neither involving explicitly and natively simulation in the approaches. 
A simulation-driven engineering approach can be an important resource for all 
researchers and practitioners involved in system or software engineering, who may 
be interested in adopting MDE principles when developing systems. But the 
development of a simulation is by itself a challenging task in terms of effort, 
guidelines, and required know-how. 

Moreover, some more technical contributions have considered that project 
methodology or lifecycle is crucial because the inherently distributed nature of 
complex systems makes the use of heterogeneous simulation approaches hard to set
up. For that purpose, IEEE HLA standard [77] has proposed FEderation DEvel-
opment Process (FEDEP) and now Distributed Simulation Engineering and Exe-
cution Process (DSEEP) to develop distributed simulations with keeping the 
objective of model reuse and interoperability. Automated model-driven engineering 
principles and standards to ease the development of distributed simulations. 
Authors [78] approach is framed around the development process defined by the 
DSEEP standard, as applied to distributed simulations based on the high-level 
architecture (HLA), and is focused on a chain of automated model transformations. 
A case study is used in the tutorial to illustrate an example application of the



transformation to lower-level models requires systematic user enrichment.
As one recent tentative of convergence and inclusion of previous MB-MD

approaches, authors [81] introduced Fig. 2.1 with the goal to gather best practices 
in MD-MB. Efficient model matchings ensure both horizontal interoperability 
(between blocks) and vertical interoperability model transformation to ensure 
interoperability between business people (dotted zone) and the IT department 
(dashed zone). As well in this figure, authors introduced the simulation as a sys-
tematic step in MD-MB approaches. In consequence, one raw is dedicated to 
simulation in the figure (yellow blocks). Authors believed that simulation is a 
mandatory step in the model-driven approach. It is confirmed by authors [70] that 
stated that any complex system study (design, analysis, or control) cannot be 
conducted without considering simulation-based techniques. They state that 
simulation-based approaches in any discipline are a rational way to enhance 
engineering performance in an effective way. As recap, simulation is proposed to be 
used as a middle layer in system development for behavior prediction, performance 
analysis, analysis of alternatives, sensitivity analysis, engineering design test, vir-
tual prototyping, planning, acquisition, and proof of concept. To complete this 
approach, the framework includes a model discovery from legacy systems flow, and 
it is as well open to human and organization thanks social media links and human 
interfaces (Fig. 2.10). 

proposed model-driven approach to the development of an HLA-based distributed 
simulation of a space system. 

Another important point is about the fact that many projects start from existing 
and legacy systems approaches to simulation evolution and modernization, in-
cluding architecture-driven modernization for simulation modernization and, also, 
potential synergies and interoperability between other systems while developing 
and running such as agent, DS, and MDE methodologies, suggesting avenues for 
future research at the intersection of these three fields. 
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2.6.3 Models Simulations-Based/Driven Approaches 

As stated in the previous approaches, model development is mainly IT directed and 
the models are already designed with IT goal, not always centralizing the users view 
and requirements. Moreover, most of the MD approaches presented do not propose 
and support specific modeling languages. Another drawback is that model trans-
formation remains limited to certain categories of models as presented by Den Haan 
[79]. Also, the modeler is not guided to delimit the subpart of the system to be 
computerized. Silingas [80] stated that a tool to identify and delimitate the subpart 
of the model to be considered at a down level modeling would be valuable to 
prepare transformation. In addition, the transformation is not fully automatic; the 
model generated from model transformation is typically an abstract structure with 
slight content coming from the information collected in the source model. The 

Furthermore, although the MD-MB field is becoming increasingly aware of 
simulation, studies by Ören and his colleagues conclude that the role of simulation



is still not systematically and sufficiently taken into account methodologically. It 
needs to be promoted through education in many disciplines so that future pro-
fessionals in these disciplines can be better equipped for their profession. They 
propose to involve simulation—even non-computer based—in the teaching of 
young children, so that future generations will be better prepared to have better 
thinking skills. 

2.7 Transient Elimination in Simulation 

Mohammad S. Obaidat, Balqies Sadoun 

The practice of analyzing simulation outcomes is a crucial one since without such 
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Fig. 2.10 Models simulation-based/driven conceptual framework 

an analysis we will not have good confidence that the simulator is accurate and 
close to reality to a reasonable degree. Every time a model requires to be realized 
for a real-time application, we have to test if the functionality of the model meets 
our needs and meets the anticipated objectives. This article gives a review on the 
techniques used to eliminate transient results in simulation outcomes as transient 
results may affect the credibility of simulation results if they are not removed. It also 
sheds some light of criteria that are used to stop/end simulation in order to save 
resources without affecting credibility of outcomes.



simulation model at steady-state situations, which means that we should remove the
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2.7.1 Introduction 

In almost all simulation techniques, we are interested in the performance of the 

initial part of results from the final outcomes so that we can have accurate con-
clusions to make decisions. This initial portion of simulation results is frequently 
termed the transient part/state. Recognizing the completion of transient state is often 
called transient state elimination or removal. The key problem about transient state 
is that it is not easy to delineate the interval of the transient state and where it 
essentially ends [82–103]. 

In this article, we shed some light on the major approaches used to eliminate 
transient results in simulation outcomes as well as schemes to end simulation 
properly so that we get safe resources, but at same time get credible simulation
results.

2.7.2 Techniques to Eliminate Transient Results 

We, here, review the major techniques used for transient removals as well as their 
features and domains. Almost all of these schemes are heuristic techniques that are 
usually applied for transient elimination [82–86]. 

1. Long runs methodology. In this technique, the simulator is executed for an 
extended length to the level that the presence of initial states will be insignificant 
or will not affect the outcome. This technique appears to be easy; however, it 
misuses the computing time and related resources. Besides, it is difficult to 
identify the duration of the simulation run that can lessen the effects of initial 
outcomes [82–89] (Fig. 2.11). 

2. Batch means methodology. In this scheme, the simulation is executed for a long 
time, and then it is divided into several equal durations. Each part or division is
named a batch. Each mean observation in each batch is called a batch mean. This
is the reason that leads to call this technique the batch means [82–87]. 

(a) A batch average is calculated for every batch. 
(b) The overall average is then figured out. 
(c) Then, the variance of the batch means is then determined. 

These (a) and (c) steps are repeated by changing the size of each batch ‘n’. 
A chart is then drawn with variance for a range of batch sizes n. While the variance 
gets decreasing, the related value of ‘n’ is described as the length of the transient 
period/time [82–85]. 

3. Truncation procedure. In this scheme, we assume that the changeability or 
variability in the transient state is greater than that in the steady state, which is 
typically a rational hypothesis. This method determines the extent of the



changeability like the greatest and smallest number of observations. If we work 
out these observations on a graph, then we will be able to see that the curve turns 
out to be stable as the simulation moves to the steady state [82–89]. 

4. Good initialization. In this method, the simulation program is commenced in a 
state that is neighboring to the projected steady state, which is generally non-
zero. The length of the transient phase is decreased, thereby having a slight 
influence on the total performance results. For instance, the normal queue size in 
the input or output buffer of an asynchronous transfer switch model is nonzero;
therefore, in simulation we initialize the queue with a representative value that is 
found from experience and past record. 
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Fig. 2.11 Operating characteristic curves 

5. Initial data deletion. In this scheme, some of the early observations from the 
sample are eliminated after complete analysis. During the entire steady state, the 
mean does not vary, even though the observations are removed. Nevertheless,
the mean can change even during a steady state due to randomness of the 
observations. The outcome here can be minimized by averaging throughout a 
number of replications [82–91]. 
If we suppose that we have ‘m’ replication with size ‘n’ for each and xij is the jth 
observation in the ith iteration where j changes from 1 to n along the time axis, 
whereas i varies from 1 to m along replications axis, this methodology can be
summarized by the following steps:



(d) This, the relative change in the overall mean is calculated.
(e) Next, we do again the steps by changing the values of l from 1 to (n − 1).

The charts of the common average and relative change are plotted in order to
see that after a particular value of l, the relative variation plot settles down.
This point is termed the knee, which essentially provides the length of the 
transient period and exhibits the conclusion of the transient state [82–91]. 

6. Moving mean of separate replications. This scheme has good similarity with the 
initial data deletion procedure excluding that the mean in this method is found out
over a moving time period window rather than by computing the overall mean. 

If we suppose that we have ‘m’ replications with size ‘n’ for each. Then, let us 
denote by xij the jth observation in the ith iteration/repetition where j varies from 1 
to n across the time axis while i changes from 1 to m through the replications axis. 
The phases shown below summarize this technique: 

1. The average trajectory is attained by averaging the repetitions/replications.
2. Then, we plot a path for the moving average of the consecutive 2k + 1 values 

where k signifies the moving time interval window. 

(b) Next, we repeat phase 2 for various values of k = 2,  3,  …., until a smooth 
plot is achieved. 

(c) Finally, the interval of the transient interval is attained by locating the knee
on this curve. 
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Fig. 2.12 Moving average of independent replications 

(a) By averaging across the repetitions/repetitions, a mean trajectory is 
obtained. 

(b) Then the total (general) mean is attained. 
(c) If we suppose that the interval/length of the transient state is l, then the 

whole (overall) mean is obtained by removing the first l observations from
the mean path or curve/trajectory.

Figure 2.12 depicts two distinctive trajectories of moving averages. The curve of 
the second trajectory is smooth, and thus, identifying the knee would be easy.



2.7.3 Stopping Criteria for Simulations

We can identify three chief methods that permit the simulation to be executed
until the required confidence interval is obtained. These are independent replica-
tions, rebirth, and batch means techniques [82–97].

1. Independent replications scheme. In this scheme, simulation is reiterated with 
a different seed values so as to obtain various replications. Now, if we have m
replications that are performed of size n + n′, where n′ represents the transient 
interval length, then we remove the fi rst n0 observations and implement the
following phases [83–90]: 

2. For every repetition or replication, the mean is calculated.
3. The total mean is then computed for all of the replications.

2. Rebirth technique. A rebirth or regeneration point is defined as the instant at
which the system enters into an independent stage. The time between two such 
points is named as rebirth or generation cycle. 

1. The cycle totals are calculated, and the overall mean is established.
2. Next, the differences between expected and noticeable/observable cycle sums

are fi gured out.
3. Finally, the variance for these differences is also computed along with the 

mean cycle interval. 
The confidence interval is found out by exploiting the overall average, variance,

and the average cycle length. It is noted that the rebirth technique does not impose
the transient interval to be excluded. This scheme has some shortcomings: 
(a) Majority of the variance reduction schemes cannot be employed as the length of
the cycles is not fixed and cannot be projected, (b) the length of cycles is irregular,
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In simulation modeling, it is essential to simulate the system under study for suf-
ficient length of time. If the simulation time is short, then accuracy and credibility 
of the results are in doubt. However, if the simulation time is lengthy, then we 
mainly waste the computation power and used resources.

5. The confidence interval is achieved by the summation of the overall mean and the 
variance as shown below: overall mean ± Z1−a Var (x′) =  x″ ± Z1−a Var (x′), 
where Z1−a is obtained from special tables; quantile unit normal variate table. 

4. The variance of these replicate averages is then computed. 

The width of the confidence interval is inversely proportional to square root of 
mn. In this, we can get a narrower confidence interval by either enlarging ‘m’ or ‘n’ 
[82–87]. 

Now, let us suppose that we have a regenerative simulation that encompasses m 
phases with sizes N1, N2, N3… N . Thus, the confim dence interval can be found by 
following the steps below:



3. Batch averages/means. In this method, the full interval of the simulation length
is partitioned into m batches of similar size n by discarding the transient interval
period. The long run of (n + n′) is apportioned into m batches by eliminating the 
transient interval, where n’ denotes the transient interval length and the fol-
lowing phases can be performed: 

Thus, the confi dence interval is then obtained as the total of the entire mean and
the variance. Size of the confidence interval is conversely proportional to square 
root of mn. Given this, we can say a thinner confidence interval can be realized by 
either increasing ‘n’ or ‘m’ values [82–91]. 
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(c) the expected values for means and variances are not equal to the size that is 
bei ng assessed, and (d) it is hard to locate the rebirth points [82–86]. 

1. For each batch, the average/mean is determined. 
2. Next and after finding the average for all batches, the overall average is then 

computed. 
3. Finally, the variance of the batch means is then established. 

2.7.4 Conclusion 

We reviewed the key techniques to remove transient results of simulation outcomes 
in order to reduce their effects on credibility of simulation model and its validity 
and accuracy. The process is challenging, and most proposed approaches are 
heuristic. We also studied the chief criteria to stop simulation and decide when it is 
time to do so in order to save computation power and resources. 
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Abstract 

The different types of experimentation and reasons why to use simulation 
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3.1 Types of Experimentations 

Tuncer Ören 

Science as we know it today is no more than 500 years old. It is firmly based on 
certain rules of procedure that scientists must follow to obtain accurate knowledge. 
These rules were formulated during a revolution in scientific thinking−the birth of 
experimental science−and are upheld today by the world’s scientific societies. [1] 

The true worth of an experimenter consists in his pursuing not only what he 
seeks in his experiment, but also what he did not seek. (Claude Bernard) 

An experiment is “an operation or procedure carried out under controlled con-
ditions in order to: 

(1) discover an unknown effect or law, 
(2) to test or establish a hypothesis, or 
(3) to illustrate a known law.” (Merriam-Webster-experiment) (reformatted). 

Experiments—and specifically replicable experiments—are the backbone of 
scientific method since Francis Bacon who in 1620 published “Novum Organum” 
to lay down the foundations of the scientific method [2]. 

There are several types of experiments. 
As shown in Table 3.1 two types of experiments can be identified based on the 

location of the experiments. 
Types of experiments performed with living organisms are shown in Table 3.2.
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Table 3.1 Types of experiments based on the location of the experiment 

Criteria Type of 
experiment 

Also known as 

Experiment is 
performed 

In original place 
of objects 

In situ 
experiment 

Field experiment 

In a computer In silico 
experiment 

Simulated experiment 
(Computerized experiment) 

Table 3.2 Types of experiments performed with living organisms 

Criteria Type of experiment Also 
known as 

Experiments 
performed with 
living organism 

In their normal 
biological 
context 

In vivo experiment In the 
body 
experiment 

Outside their 
normal 
biological 
context 

ex vivo (on a 
biological sample) 
experiment 

Sample 
taken from 
the donor 

Lab 
experiment 

Sample 
cultivated in 
a test tube 

In vitro 
experiment 

Thought Experiment 

“Thought experiments are performed in the imagination. We set up some situation, 
we observe what happens, and then we try to draw appropriate conclusions. In this 
way, thought experiments resemble real experiments, except that they are experi-
ments in the mind. The terms ‘thought experiment,’ ‘imaginary experiment,’ and 
‘Gedankenexperiment’ are used interchangeably” [3, 4] (Table 3.2). 

Seven types of thought experiments are identified more information at 
(Wikipedia-thought experiment).

. “Prefactual thought experiments—speculate on possible future outcomes, 
given the present, and ask ‘What will be the outcome if event E occurs?’” 
(Wikipedia-thought experiment).

. “Counterfactual thought experiments—speculate on the possible outcomes of 
a different past; and ask ‘What might have happened if A had happened instead 
of B?’” (Wikipedia-thought experiment).

. “Semi-factual thought experiments—speculate on the extent to which things 
might have remained the same, despite there being a different past; and asks the 
question ‘Even though X happened instead of E, would Y have still occurred?’” 
(Wikipedia-thought experiment).

. Prediction (or forecast)—“attempts to project the circumstances of the present 
into the future.” (Wikipedia-thought experiment).



Hindcasting (historical re-forecasting)—is “to test (a mathematical) model by

.

.

Several interesting thought experiments exist in philosophy, science, and edu-

3.2.1 Aren’t the Reasons Obvious?

3.2.2 Relying on Data is Often Impossible

1. The needed data does not exist, although it could reasonably be obtained.

3. 

u
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.
observing whether it would have correctly predicted a historical event.” 
(Collins-hindcast) 
Retrodiction—“involves moving backward in time, step-by-step, in as many 
stages as are considered necessary, from the present into the speculated past to 
establish the ultimate cause of a specific event.” (Wikipedia-thought experiment). 
Backcasting—“involves establishing the description of a very definite and very 
specific future situation. It then involves an imaginary moving backward in time, 
step-by-step, in as many stages as are considered necessary, from the future to 
the present to reveal the mechanism through which that particular specified 
future could be attained from the present.” (Wikipedia-thought experiment). 

cation [5, 6]. 

3.2 Reasons to Use Simulation Experiments 

Paul K. Davis 

To some, it may seem obvious that we want experiments with models and simu-
lations. Today, however, data analytics is in vogue and it is common to hear 
questions such as “What does the data say?” as though data speaks to us articu-
lately, precisely, and insightfully. Truth is otherwise. The ideal for science and its 
applications is a combination of theory-informed experimentation and data analysis 
on the one hand, and data-informed theoretical development on the other [7, 8]. 
This chapter discusses some of the reasons. 

Relying on data is not possible when the needed data is not always available. This 
may be because 

2. The needed data does not exist and could only be obtained with unacceptable 
delays, expense, or trouble. 
The needed data cannot be obtained. 

4. Data exists, but is unreliable perhaps due to measurement uncertainty, mea-
surement error, non-representativeness, or fraud. 

The first two cases need no elaboration. The third, however, is sometimes 
nappreciated. The most evident example of data that cannot be obtained, outside of



3.2.3 Even if the Data Exists, It’s Not Enough: Understanding
and Reasoning Demand Causal Models and,
Sometimes, Systematic Experimentation 
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science fiction, is data on the future. Sometimes, of course, historical data can be 
used as a proxy, as when insurance companies set premiums by extrapolating from 
historical data and trends. Historical data often does not suffice, however, as when 
one is planning to introduce a new technology, reorganize a company, prepare for 
possible future wars, or negotiate an international treaty. The changes will create 
new incentives, new behaviors, and new relationships. The basic problem is that: 
(1) systems change, sometimes rendering past data obsolete; and (2) even for stable 
systems, issues arise for circumstances on which past data has not been collected 

As for the case of unreliable data, in this era of ubiquitous data connected by the 
Internet of Everything, it is easy to overlook the fact that the data pouring in does 
not adhere to experimental standards. It may suffer due, e.g., to measurement 
uncertainty, measurement error, non-representativeness, and various subtle biases. 
Also, some of the data may have been deliberately falsified. Historical examples 
include corruptly invalid battlefield data during the Vietnam War [9], bogus ratings 
of financial packages before the Great Recession [10], and initial underreporting of 
COVID-19 cases in China—later acknowledged even by China itself [11]. 

Even if we have massive, accurate data in a particular domain, and even if accurate 
predictive empirical models have been developed to answer some questions, we 
will still of- ten want theory, models and simulation, and related experiments. This 
will be the case whenever there is need to understand the phenomenon at issue 
(even if imperfectly), or when it is important to reason about the phenomenon and 
its underlying factors and processes. Such understanding and reasoning require 
causal models, and in complicated or complex problems, they require systematic 
experimentation. 

(Causal models are distinct from what are variously called correlations, asso-
ciations, or statistical models. The issue of causality is deep [12, 13], but it is 
fundamental to science and the practicalities of life). 

The issue of causality is deep, as discussed in several books. A particularly 
salient discussion is that of Pearl [14], particularly his Book of Why [15], written to 
be accessible to a broad audience of educated people. Policymakers, for example, 
want to know whether and how to intervene in a system. If their interventions will 
be more than marginal; i.e., if their interventions will change the system and per-
haps the actors within it and/or their incentives, previously collected system data 
may not even be relevant, much less the basis for estimating consequences. 

This is particularly so when dealing with complex or complex adaptive systems 
[16] something for which simulation experiments are particularly well-suited. This 
includes using newer methods such as agent-based simulation to generate potential 
trajectories of complex systems, such as modeled societies [17, 18].



As a first illustration of how simulation experiments can be valuable, consider the
history-making Project Apollo that led to man reaching the moon and returning

3.2.4 Planning Toward Objectives and Avoiding 
or Managing Failures 
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safely. Simulations (live, virtual, and constructive), and simulation experiments 
were used at every stage, as in designing the rocket and landing craft, in planning 
the trajectory to the moon and the technique for maneuvering its landing craft to the 
moon's surface, in choreographing the numerous activities undertaken by the crew, 
such as activities in space and collecting material and data from the surface of the 
moon itself, and for mission rehearsal. 

(Many materials exist describing these applications of simulation, such as those 
pertaining to engineering simulation [19] or space flight [20]) 

As a second example, consider the long history of using simulation experiments 
to avert or manage failures. This function was part of the narrative in Jay Forrester's 
pioneering work in System Dynamics as he pointed out how intuitively reasonable 
actions can prove counterproductive because of feedback phenomena, the effects of 
which become clear with simulation [21]. For example, addressing the problem of 
urban traffic by building more highways into the city leads over time to new 
home-building along the new high-ways, which in turn increases the eventual flow 
into the city [22]. Addressing the problem of urban poverty only with welfare 
payments and subsidized housing can attract more unemployed people to the area, 
making things worse, whereas creating attractive areas and effective infrastructure 
to attract job-providing companies can be more effective (but with its own prob-
lems) [22]. Constant economic growth powered by pollution-creating energy 
sources and avoiding pollution controls can increase GDP until it doesn't, after 
which the economy may decline disastrously [23]. Despite extreme controversy, the 
latter work on Limits to Growth has proven prescient and held up empirically [24]. 
The more recent analogue is, of course, the battle over climate change, where 
climate models have consistently predicted disastrous changes of climate in the 
absence of radical changes. Again, the model-based work has been controversial 
but the temperature trends have been accurately predicted [25] and, rather than 
exaggerating the threat of sea-level rise, modeling has tended to show a bias toward 
underestimating effects—for reasons such as the scientists leaning over backward to 
avoid being accused of exaggeration [26]. 

The feasibility of avoiding disaster by using simulation experiments was also 
championed in Europe by German psychologist Dietrich Dörner under the rubric 
“Complex Problem Solving” (CPS) using computer-generated scenarios. As with 
System Dynamics, many of the applications have been to aid executives managing 
large companies [27].



Unfortunately, models or the data on which they depend are imperfect. It is not just
a matter of obtaining the correct input data. Often, on consequential matters, the
correct structure of the model is uncertain. Does it include all the important vari-
ables? Are the cause–effect relationships captured correctly? Does it deal appro-
priately with random events, both discrete and continual? It has been argued that 
failure to confront model uncertainty continues to be one of the serious short-
comings in analysis supporting policymakers [34]. 

3 Simulation as Experimentation 83

A recent book by William Rouse discusses a broad range of failure types in 
business, health systems, and other settings using well-documented cases to illus-
trate them. Noting that failures will occur, despite best efforts, he argues that 
computational modeling can help avoid some and manage other failures, in part by 
establishing mechanisms for recognizing early signs of impending failure [28]. The 
book builds on previous research on organizational simulation [29] and 
human-centered decision support [30]. 

As the last example, during the early months of the COVID-19 pandemic 
simulation experiments convinced reluctant governments to take extremely con-
sequential decisions in order to avoid millions of deaths beyond those that would 
otherwise occur. Controversy abounds and time will tell which of the models were 
most and least sound, but doing nothing was not an option. An early model from 
Imperial College London influenced decisive actions by the UK and USA [31], and 
a more empirically driven model from the University of Washington was used 
continuously in subsequent months [32]. A third effort was notable for being fully 
public, documented, and posted as an interactive tool allowing state and local 
officials to conduct simulation experiments on easing restrictions faster or slower 
[33]. New models on the COVID-19 epidemic were continuing to emerge as this 
chapter was completed (e.g., the TRACE model from the Brookings Institution). 

3.2.5 Cautions 

3.2.5.1 Model Validity 

Even if the model structure is sound, the model often has many uncertain input 
parameters, changes of which can have profound effects. This was so with the early 
models (March to May 2020) of COVID-10 [35]. A key parameter (percentage of 
infected people reported as infected) was hugely uncertain, leading to predictions of 
death rate differing by an order of magnitude.
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The modeling theory and 
methods for comprehensive 

system 

The simulation system 
technology for 

comprehensive system 

The application engineering 
technology of simulation 

system for comprehensive 
system 

The technical framework of 
modeling and simulation 

technology for 
comprehensive system 

Metamodel framework-based modeling 
methods 

Qualitative and quantitative modeling 
methods for hybrid system 

Modeling method for dynamic changing 
structure system 

Big data-based modeling methods 

Depth learning-based modeling method 

Optimization algorithm-based simulation 
methods 

Four-level high-efficiency parallel simulation 
algorithms 

Machine learning-oriented simulation 
algorithms 

The multi-disciplinary virtual prototype 
engineering for comprehensive products 

The intelligent simulation cloud for 
comprehensive system 

The intelligent simulation language for 
comprehensive system 

The intelligent cross-media visualization 
technology 

The intelligent simulation system based on 
edge computing 

The CPS interface and intelligent parts 
technology 

The result management, analysis and 
evaluation technology of intelligent system 
simulation experimen 

The intelligent simulation model verification, 
verification and acceptance (VV&A) 
technology 

The big data-based intelligent analysis and 
evaluation technology 

As always, then, it is difficult to exaggerate the importance of assuring the 
quality of models and their data, as discussed further in Chap. 7 of this volume 
(Ôren et al., forthcoming). 

3.2.5.2 Analysis Under Deep Uncertainty 
As a related caveat, simulation experiments are frequently beset with the problems 
of deep uncertainty as discussed further in Sect. 7.3.1 and an overview book [36]. 
In such cases, experimentation should not be about finding an “optimum solution” 
based on best-estimate assumptions, but rather finding solutions (e.g., a strategy for 
action) that will prove reasonably good over a wide range of possible assumptions 
—i.e., across a sizable portion of the parameter-value case space (sometimes called 
scenario space, case space, input space). The experimentation may then be seen as 
exploratory analysis to support what is called robust decision making (RDM), 
associated with Lempert et al. [37]. This is drastically different philosophically and 
practically from merely doing some sensitivity analysis after having identified the 
nominal optimum solution. See also Chap. 14 (Davis).
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3.3 Types of Simulation Techniques for Experimentation 

Tuncer Ören 

Experimentation is one of the pillars of simulation (Sect. 1.1 Scope). The separation 
of experimentation and model parts of a simulation study was proposed in a historic 
document [38]. Specification of the experimental conditions is evolved to experi-
mental frames. 

3.3.1 Sections of BoK Guide Related to Experimentation 

Due to its importance, several aspects of experimentation are covered in the fol-
lowing sections: 

3.3.2 Simulation Experimentation for all 3 Types of System 
Problems 

Simulation can be used for all three types of system studies [39, 40], namely for 
design, analysis, and control problems as outlined in Fig. 3.1. 

In design problems, the aim is to determine a system which would satisfy a 
predetermined input/output relationship. 

In the simulation of design problems, for a design (i.e., a model), the state is 
given. During simulations with a given model, for input trajectories, output tra-
jectories (or model behavior) are generated. Model behavior, normally, consists of 
the trajectories of output variables. However, when model structure is variable, the 
sequence of model structures can also be part of the model behavior. If the model’s



simulated input/output behavior is acceptable, then the model can be implemented 
as the designed system. 
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System 
problem 

Known 
Determine 

Input State Output 

Design Input State - Output  

Analysis Input - Output State 

Control - State Output Input 

Fig. 3.1 Use of simulation in system problems 

In analysis problems, the state of the system is unknown, and the aim is to 
understand the mechanism of how it functions. 

In the simulation of analysis problems, input/output behavior of the system is 
known; the problem is to construct a model (i.e., define state and output variables as 
well as state transition and output functions) which for some input trajectories, will 
generate output trajectories comparable to the outputs of the real system under same 
input trajectories. This would be an iterative process to start with a model (state) 
and modify the model, until input/output behavior of the model is an acceptable 
replica of the input/output behavior of the real system. 

In control problems, a system (hence, its model—with its states, state transition 
functions, and output functions) is given; the problem is to determine the sequence 
of the input variable(s), which will cause generation of the output trajectories of the 
model comparable to the output variables of the real system for the same input 
variable(s). 

The simulation of control problems, like the simulation of analysis problems, 
an iterative process is needed. During the simulation study, one modifies the input 
trajectories, until a desired output trajectory is obtained. 

3.3.3 Relationship of Operations of Simulation and Real 
System 

As outlined in Table 3.3, there are two possibilities so far as the relationship of the 
operations of simulation and real system are concerned. 

3.3.4 Use of Simulation for Decision Support 

Simulation experiments are basically used for decision support. Table 3.4 outlines 
types of simulation used for decision support.
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Table 3.3 Possibilities of the relationship of the operations of simulation and real system 

Relationship of the operations 
of simulation and real system 

To Type of simulation For the purpose of 

The system of interest and the 
simulation program operate 
simultaneously and provide 
augmented- (enhanced- or 
mixed-) reality 

Enrich operations 
of real system 

Real-system 
enriching 
simulation for 

– Decision support/ 
online diagnosis 

– Training 
– Realistic virtual 
reality 

The system of interest and the 
simulation program operate 
alternately to provide 
predictive displays 

Support 
operations of real 
system 

Real-system 
support simulation 

– Decision support 
– On-the-job 
training 

Table 3.4 Types of simulation used for decision support 

Purpose of decision support Category of 
simulation 

Use of simulation for 

Description Descriptive simulation 

Explanation Explanatory simulation 

Prediction of behavior/performance Predictive simulation 

Evaluation of alternative models, parameters, 
experimental conditions (scenarios), policies 

Evaluative 
simulation 
for 

– Feasibility studies 
– Sensitivity studies 
– Acquisition 
(simulation-based 
acquisition) 

Prescription Prescriptive 
simulation 
for 

– Planning 
(simulation-based 
planning) 

– Online decision support 
– Engineering design 
(simulation-based 
design/simulative 
design) 

– Virtual prototyping: 
(Simulation-based 
prototyping/simulative 
prototyping) 

3.3.5 Statistical Experiment Design Techniques 

Designing simulation experiments is an essential aspect of simulation experiments 
[41–43]. It has been in practice since the early days of simulation [44].
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3.4 Simulation of Discrete Systems, DEVS 

Rhys Goldstein, Azam Khan 

Introduced in 1976, the Discrete Event Systems Specification (DEVS) formalism 
plays a foundational role in the body of M&S knowledge. DEVS provides a 
theory-based approach for modeling and simulating systems of essentially any type, 
with a focus on systems regarded as partially or fully discrete. What distinguishes 
DEVS from other modeling techniques is the way it incorporates simulated time 
into the state transition functions that specify the behavior of the represented sys-
tem. Note that physical time is the (DEVS) formalismtechnical term for “time” as it 
is perceived in the real world; simulated time is a quantitative representation of 
physical time that is also commonly expressed in units such as years, days, hours, 
minutes, seconds, and fractions of seconds. 

The book Theory of Modeling and Simulation by Zeigler et al. [45] serves as the 
definitive reference on DEVS and other foundational modeling formalisms. 
Here DEVS is presented from the ground up as special type of state machine that 
incorporates time into every transition. The presentation begins with a discussion of 
discrete systems and how they differ from continuous systems. 

A continuous system is a system in which the state varies continuously over 
simulated time. An example of a continuous system is illustrated in Fig. 3.2, where 
the system’s state is plotted on the vertical axis. In general, both continuous and 
discrete systems can have multi-dimensional states comprising many variables of 
different types. 

Although many real-world systems exhibit smoothly varying quantities like the 
one depicted in Fig. 3.2, there are also many systems that tend to alternate between 
long time periods of relative constancy and short time periods of rapid change. For 
example, an office worker may remain at their desk for an hour or more, then spend 
less than a minute walking to a conference room or other common area, then spend 
an hour at the new location interacting with colleagues. If the worker’s position is 
regarded as the state of the system, then the state will change continuously, but only 
for the relatively short time periods in which they are walking to a different loca-
tion. For the long periods of time in which the worker remains in one place, the 
state will remain constant. Figure 3.3 provides an example of this sort of “nearly 
discrete” system. 

Fig. 3.2 A continuous 
system. The state varies 
continuously over simulated 
time
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Fig. 3.3 A continuous system that is nearly discrete. Continuous state transitions unfold over 
relatively short periods of simulated time 

Fig. 3.4 A discrete system. The state transitions instantaneously at a finite number of points in 
simulated time 

A discrete system is a system that transitions from one state to another at a finite 
number of time points in any finite period of simulated time. In other words, the 
system transitions instantaneously from one state to another then remains in that 
state for a duration of time, then instantaneously transitions to another state. An 
example of a discrete system is shown in Fig. 3.4. Observe that the duration of time 
between successive transitions may vary. 

The choice of whether to regard a real-world system as discrete or continuous may 
require judgment. For systems that are nearly discrete, such as the one depicted in 
Fig. 3.3, it is often practical to treat short periods of continuous change as instanta-
neous. In many cases, this assumption simplifies the representation of the physical 
system without significantly affecting the results of a simulation-based experiment. To 
give an example, it may be reasonable to model an office worker as transitioning 
instantly from one location in a building to another. The time the person spends 
walking may not be significant, though that depends on the nature of the investigation. 

Electronic devices are often regarded as discrete systems. When someone flips 
on a switch, the state of the system is typically assumed to change instantly from 
“OFF” to “ON.” This assumption is made notwithstanding the fact that the



real-world transition involves a net flow of electrons that increase continuously 
from zero to some steady-state level. There are countless examples of both artificial 
and natural real-world systems that can be beneficial to regard as discrete. 

DEVS provides a set of conventions for representing discrete systems of 
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more-or-less any domain. Later it will be demonstrated that DEVS can model 
continuous systems as well. But since DEVS treats state transition as instantaneous, 
discrete systems are the most obvious application of the formalism. 

To understand the rationale for DEVS, it is helpful to consider a more basic and 
more widely known approach for modeling discrete systems: a state machine. Both 
state machines and DEVS feature discrete events, or events for short, which are 
self-contained sets of operations that occur at the points in time at which a discrete 
system may transition from one state to another. The key difference between a state 
machine and DEVS is that DEVS incorporates simulated time into these transitions. 

State machines are based solely on virtual time, a time representation that orders 
events in a way that is consistent with causality and consistent with simulated time. 
The consistent with causality (causal consistency) property tells us that if one event 
influences a second event, then the second event occurs at a later point in virtual 
time. The consistent with simulated time property means that if one event occurs 
before a second event in simulated time, then the second event occurs at a later 
point in virtual time as well. What is not captured by virtual time is the real-world 
duration of time between events. Two successive events in virtual time may be 
separated by any duration of simulated time, including zero duration. Figure 3.5 
depicts the same system as illustrated in the previous figures, but with the state 
plotted over virtual time. Each segment of the state trajectory is shown as the same 
width, even though the simulated time durations vary. 

Because a state machine is based on virtual time only, its events may not be 
triggered by the passage of simulated time. Instead, each event must be triggered by 
an input. One approach to formulating a state machine is to associate each event 
with an output as well. In Fig. 3.6, the same system that appeared in previous 
figures is shown with states labeled s1 through s7. Each transition from one state to

Fig. 3.5 A discrete system plotted over virtual time. The real-world duration associated with each 
state is not represented



the next is triggered by an input labeled xA through xG and produces an output 
labeled yA through yG.
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Fig. 3.6 A discrete system represented by a state machine. Each event is triggered by a single 
input and, in this example, produces a single output 

A state machine can be defined using a function f that is invoked at each event in 
response to an input. As shown below, the function may take the current state s and 
the input x as arguments, and produce the new state s′ and the output y. 

s0; y ¼ f ðs; xÞ 

Although they serve a foundational role in the specification of computing sys-
tems, state machines are limited in that they do not inherently represent the dura-
tions of time associated with real-world processes. DEVS addresses this limitation 
by incorporating simulated time into the state transitions that govern the behavior of 
a discrete system. In essence, a DEVS model is a state machine with time included 
as a component of the state. 

In the DEVS literature, the term state still refers to the set of variables that 
remain constant between events. However, a new variable called the elapsed 
duration is introduced to represent the continuously increasing duration of simu-
lated time that has elapsed since the previous event. As shown in Fig. 3.7, the 
elapsed duration falls instantaneously to zero whenever the state transitions, then 
increases linearly until the next event. 

Together, the state and the elapsed duration are referred to as the total state. The 
normal convention is that the state is denoted s, and here the elapsed duration is 
denoted Dte. The total state is therefore [s, Dte]. A DEVS model can be regarded as 
a state machine that specifies transitions of the total state [s, Dte]—that is, transi-
tions of the state and elapsed duration in combination—rather than transitions of the 
state s by itself. 

Combining the state and elapsed duration introduces a need for two types of state 
transitions. One type of state transition is analogous to that of a state machine in that 
it is triggered by an input from an external source. These externally triggered state
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transitions, or external transitions for short, are specified by an external transition 
function dext. In essence, the external transition function transforms the current total 
state [s, Dte] into a new total state [s′, Dte′] using the input value x as an additional 
source of information. However, the new elapsed duration Dte′ is always zero. The 
result of dext is therefore just the new state s′ by itself, as shown below. 

0 
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Fig. 3.7 A discrete system represented by the state in combination with the elapsed duration 

¼ extð ; e½ ]; Þ 

The other type of transition is triggered by the total state itself. Consider that the 
elapsed duration Dt e is a continuously increasing quantity. It follows that the total
state [s, Dte] also varies continuously with time and may in fact reach a point at 
which it is no longer desirable for the system to remain on its current trajectory. If 
such a point is reached, a transition occurs. These internally triggered state tran-
sitions, or internal transitions, are specified by the internal transition function dint. 
In essence, the internal transition function transforms the current total state [s, Dte] 
into a new total state [s′, Dte′]. But as with the external transition, the new elapsed 
duration Dte′ is always zero, so the result of dint is just the new state s′. Also, as 
explained below, the current elapsed duration Dte can also be omitted because it has 
a known value. Hence, as shown below, the definition of the internal transition 
function includes the current and new states but excludes any explicit quantity of 
time. 

0 ¼ intð Þ 

The internal transition occurs at the point where the continuously increasing 
elapsed duration Dt e reaches a certain duration that depends on the state. That
duration is specified by the time advance function ta, which is a function of s. The 
reason why the elapsed duration is not an argument of dint is because, at that 
moment of the simulation, the elapsed duration is known to be ta(s). 

e ¼ ð Þ ð Þ



In DEVS, outputs are associated with internal transitions and not external 
transitions. This convention is a practical one, as it allows there to be an arbitrary 
duration of time separating an input from the subsequent output. If ta(s) = 0, then 
an output may occur immediately after an input with no advancement of simulated 
time in between. But if ta(s) > 0, an output can be arranged to occur after an 
arbitrarily long delay. The output value is specified by the output function k, which 
is a function of the state prior to the invocation of dint. In essence, the output 
function could be considered a function of the total state [s, Dte], but Dte is not 
needed because it is known that Dte = ta(s) at that moment of the simulation. 
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y ¼ kðsÞ 

In the same way that a lone function f can specify the behavior of a state 
machine, the four functions dext, dint, k, and ta specify the behavior of a DEVS 
model. To complete a DEVS model specification M, one defines all four functions 
as well as the set of all possible input values X, the set of all possible output values 
Y, and the set of all possible states S. 

M ¼ X; Y ; S; dext; dint; k; tah i  

For an example of a DEVS model specification, consider simulating a person in a 
workplace. The worker exhibits the following behavior: 

1. At any point in time, the worker is either working or taking a break. 
2. When the worker begins working, they continue working for 1 h before starting 

their break. 
3. When the worker begins taking a break, they initially intend to resume working 

in 10 min. 
4. Despite their initial intent, the actual duration of the worker’s break is influenced 

by their co-workers. Specifically, if a co-worker transitions from working to taking 
a break, then the original worker increases the length of their break. In such cases, 
they remain on their break for a duration of (Dtp 

2 − Dte 
2 )1/2 , where Dtp is the 

duration they were planning to remain on break at the previous transition (which 
occurred at a duration of Dte in the past). If a co-worker on break resumes working, 
then the original worker decreases the length of their break. They resume working 
themselves after a duration of Dtp′= Dtp − (2⋅Dtp⋅Dte − Dte 

2 )1/2 . 

The example aims to capture a social behavior that may occur in certain work 
environments. If there are n workers taking a break and an (n + 1)th worker joins 
them, they are compelled to interact with their colleague and thus extend the 
remainder of their breaks. But if there are n workers taking a break and one of them 
leaves to resume working, the remaining n − 1 workers are reminded of the action 
of leaving and consequently shorten the remainder of their breaks.
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The behavior of a worker in this scenario is described by the DEVS model 
Mworker. 

Mworker ¼ X; Y ; S; dext; dint; k; tah i  

DEVS model inputs and outputs are often associated with ports. In this case, 
there is a single input port that receives the change in the number of other workers 
taking a break. As indicated by X, these inputs take the form of the port ID 
“Dnbreak” followed by the received value Dnbreak. 

X ¼ 00Dnbreak00; Dnbreak½ ]jDnbreak 2 Zf  

There is also one output port, named “task,” that sends out the task that has just 
begun. As specified by Y, the sent value task is either “work” or “break.“ 

Y ¼ f½00task00; task]jtask 2 f00work00;00 break00g 

The state consists of two variables: the task currently being performed (task) and 
the duration of time after which the worker is planning to switch tasks (Dtp). The 
definition of S below indicates that task is either “work” or “break,” and the planned 
duration Dtp is either zero or any positive real number. 

S ¼ task; Dtp
[ ]jtask 2 f00work00;00 break00g; Dtp 2 R þ 

0

{

When an input is received, an instance of the DEVS model responds differently 
depending on whether it is in the “work” or “break” state. If task = “work,” then the 
input is essentially ignored. To ignore the input, it is necessary to update the planned 
duration Dtp by subtracting the elapsed duration Dte. The new planned duration 
Dtp′ = Dtp − Dte effectively schedules the next internal transition at the point in 
simulated time that it would have occurred had there been no input at all. If the input 
value Dnbreak is received when task = “break,” then the length of the break is adjusted 
according to the calculations specified in the description of the model. The worker’s 
response to an input is formally defined by the external transition function dext. 

dext task; Dtp
[ ]

; Dte
[ ]

; 00Dnbreak00; Dnbreak½ ]( ¼ task; Dt0 p 
h i  

task ¼00 work00ð Þ  )  Dt0 p ¼ Dtp - Dte
( )

ðtask ¼00 break00Þ )  . . .  

Dnbreak ¼ 0ð Þ  )  Dt0 p ¼ Dtp - Dte
( )

Dnbreak [ 0ð Þ  ) Dt0 p ¼ Dt2 p - Dt2 e

( )1=2
( )

Dnbreak\0ð Þ  )  Dt0 p ¼ Dtp - 2 . Dtp . Dte - Dt2 e
( 1=2

(
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When the planned duration (Dtp) elapses, an internal transition must be triggered 
so that the worker can transition from working to taking a break, or vice versa. The 
state variable task changes from “work” to “break” or “break” to “work.” The 
planned duration is also updated with the amount of time the worker intents to 
perform the new task, either 3600 s (1 h) if they are now working or 600 s (10 min) 
if they are now taking a break. These planned state changes are formally defined by 
the internal transition function dint. 

dint task; Dtp
[ ]( ) ¼ task0; Dt0 p 

h i  

ðtask ¼00 work00Þ )  . . .  
task0 ¼00 break00 

Dt0 p ¼ 600 
ðtask ¼00 break00Þ )  . . .  

task0 ¼00 work00 

Dt0 p ¼ 3600 

Immediately before the internal state transition occurs, the output function k is 
invoked to provide the output value. The value is simply the worker’s new task, 
which is the opposite of the current task. 

k task; Dtp
[ ]( ) ¼ 00task00; task0½ ]

ðtask ¼00 work00Þ ) ðtask0 ¼00 break00Þ 
ðtask ¼00 break00Þ )  task0 ¼00 work00ð Þ  

The time advance ta function expresses the fact that, provided there are no 
intervening inputs, the internal transition will occur when the elapsed duration 
reaches the value of the state variable Dtp. 

ta task; Dtp
[ ]( ) ¼ Dtp 

Figure 3.8 shows the progression of a simulation with 12 workers who adjust 
their break schedule in response to their co-workers. The 12 schedules are initially 
staggered by 5 min, but eventually the workers separate into two groups. In each 
group, workers start and end their breaks at the same time. 

The worker model is just one example of a discrete system that can be modeled 
using the DEVS formalism. By incorporating time into every state transition, DEVS 
can be used to represent nearly any time-varying system. Due to its generality, DEVS 
can be considered foundational to modeling and simulation in much the same way 
that state machines are foundational to conventional software development. 

An important practical feature of DEVS is the ability to couple DEVS models so 
they can interact with one another. These interactions take the form of messages 
that originate from the output of one model instance and are then treated as inputs



i

for other model instances. If an output occurs at a certain point in simulated time, 
then it is received at the same time point. (In virtual time, however, a message is 
received at a later point than when it is sent.) 
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Fig. 3.8 A timeline produced by 12 instances of the worker example model. The workers enter 
the system at 5-min intervals starting in the “work” state. The colored bars indicate when each 
worker is taking a break. Although the breaks are initially staggered, a behavior emerges in which 
the breaks become synchronized within two distinct groups of workers 

Couplings between DEVS model instances are defined in the context of a 
coupled model, which is itself a form of DEVS model. A coupled (or “network”) 
model N is specified by supplying eight elements. Two of these elements—the input 
set X and the output set Y—are the same as in the basic specification. 

N ¼ X; Y; D; Mdjd 2 Df g; EIC; EOC; IC; Selecth  

The elements of a DEVS coupled model specify a graph-like or network-like 
structure involving instances of DEVS models referred to as components. Using the 
coupled model in Fig. 3.9 as an example, the component name set D contains the 
IDs of the three components (“A,” “B,” and “C”), and the component set {Md} 
contains the corresponding DEVS model specifications (〈XA, YA, …〉, 〈XB, YB, …〉, 
〈XB, YB, …〉). The external input coupling EIC formally represents all the purple 
links (arrows) in the diagram, which direct messages from the inputs of the overall 
coupled model to the inputs of the components. The external output coupling EOC 
represents the green links, which direct messages from the outputs of the compo-
nents to the outputs of the coupled model. The internal coupling IC represents the 
blue links, which direct messages from the outputs of some components to the 
inputs of other components. 

During a simulation, it may happen that multiple components are scheduled to 
undergo an internal state transition at the same point in simulated time. In such 
cases, the Select function is invoked to identify the component that should transi-
tion first. The Select function is part of the original formulation of the theory,



known as Classic DEVS. It is worth noting that a variant of DEVS called Parallel 
DEVS was introduced in 1994 to eliminate the Select function and allow the internal 
transitions of multiple components to be invoked in a synchronous fashion. There 
are many other subclasses and variants of DEVS, including Cell DEVS, Dynamic 
Structure DEVS, Multi-Level DEVS, Routed DEVS, and Symmetric DEVS, to 
name a few. Most of these derived formalisms are based on either Classic DEVS or 
Parallel DEVS. 
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Fig. 3.9 An example of DEVS coupled model 

A component of a DEVS coupled model may itself be a coupled model. This 
feature is enabled by a property of DEVS models known as closure under coupling, 
which means that any coupled model specification can be mapped onto a basic 
DEVS model specification with external and internal state transitions. It is 
impossible to tell, for example, whether each of the three components in Fig. 3.9 is 
an atomic or coupled model. Note that if Component A is a coupled model, then 
some of its components could also be coupled models. The ability to nest coupled 
models allows complex systems to be defined as hierarchies of simpler systems. 

Although the primary focus of DEVS is the representation of discrete systems, 
the formalism can be used to model continuous systems as well. Again, the key 
insight is that DEVS is essentially a state machine that specifies transitions of the 
total state: the state s in combination with the elapsed duration Dte. Whereas s is a 
discrete function of time, the total state varies continuously due to the linear 
increase of Dte between transitions. The downside to representing continuous 
systems using DEVS, however, is that either an analytic or a numerical solution to 
one or more differential equations must generally be incorporated into the model to 
derive the continuously varying quantities of interest from the total state. 

To demonstrate the representation of continuous systems using DEVS, consider 
the following differential equations expressing the height h and velocity v of a 
falling object subject to a gravitational acceleration g.
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dh=dt ¼ v 
dv=dt ¼ -g 

A DEVS model can track the continuous quantities h and v by integrating the 
differential equations from the time of the previous event to the current time, a 
duration that is always equal to the elapsed duration Dte. The updated quantities h′ 
and v′ have analytic solutions, which are given below for external transitions where 
Dte is available as a function argument. For internal transitions, one can replace Dte 
with ta(s). 

h0 ¼ h þ v . Dte - ð1=2Þ . g . Dt2 e 
v0 ¼ v- g . Dte 

Given a set of differential equations with no analytic solution, a numerical solver 
would have to be incorporated into the DEVS model to produce the trajectories of 
the continuous values. Note that in sophisticated models, the trajectories of con-
tinuous quantities are likely to change whenever certain inputs are received. 

Regardless of the system under investigation, the DEVS formalism can be 
applied in several ways. Modelers seeking to take full advantage of the formalism 
may create formal system specifications using mathematical conventions like those 
presented above. It is also possible to implement DEVS models without first 
specifying them. DEVS models are generally implemented using M&S libraries 
developed for mainstream procedural and object-oriented programming languages 
such as Python, Java, or C++. A third option is to implement a simulation model 
using a different paradigm or set of conventions and automatically map the authored 
model onto an equivalent DEVS model. With this third approach, modelers can use 
domain-specific languages dedicated to their areas of expertise, then couple the 
resulting models as if they had been implemented using DEVS conventions. In all 
three approaches, a DEVS-based simulation framework serves as a platform sup-
porting the integration of system models from any number of application domains. 

3.5 Simulation of Continuous Systems 

Amine Hamri, Laurent Capocchi 

The simulation of dynamic systems and especially of continuous systems allows 
reproducing the expected behavior of such systems on a computer (calculator) for 
verification and validation. However, the lack of concepts to model and simulate 
directly continuous systems forces the modeler to discretize some variables: the 
time, state variables, or both of them. Recently, many scientists have proposed 
paradigms and techniques to discretize such variables. In opposite to time dis-
cretization modeling and simulation techniques that are widely used by different 
communities, a small group of scientists at his head the professor Bernard P. Zeigler



has highlighted the discrete event simulation techniques that provide a clear 
framework for the modelers. We can cite Discrete Time Systems Specification 
(DTSS), Quantized DEVS (Q-DEVS), Generalized DEVS (G-DEVS) that allow 
modeling and simulation of dynamic systems more faithfully with some advantages 
and disadvantages [45]. 
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For example, G-DEVS [46] models the state trajectory of dynamic system with 
piece-wise polynomial functions instead of piece-wise constants like in DEVS. This 
characteristic enhances the simulation results of many applications like digital 
circuits and moving agents. The lack of such formalisms is that suffering from the 
powerlessness of formal and analytical techniques like theorem-proving to give 
solutions. However, these formalisms-oriented simulation remain excellent tools to 
understand and analyze continuous systems where analytical techniques fail due to 
the complexity of dynamic systems that increases more and more. 

3.6 Hybrid Modelling and Simulation 

Navonil Mustafee, Mamadou Kaba Traoré 

We begin with an introduction to the idea of hybridization, both within the mod-
eling and simulation (M&S) discipline itself as well as between M&S and other 
disciplines, and follow this with a formalization of hybrid M&S. 

3.6.1 From Complexity to Hybridization 

Managing complex systems can be tedious [47] not only because of a huge number 
of subcomponents that may compose them but also because of the complex pro-
cesses that govern the relations that exist between them rendering their analysis and 
design more difficult. Modern complex systems require multiple levels of expla-
nation to be provided to achieve their various objectives, while keeping a holistic 
understanding of the behavioral pattern of the overall system and its interaction 
with the surrounding environment [48]. As such, a hybridization of approaches that 
would evidently provide useful knowledge from various angles on how such sys-
tems perform at the holistic level rather than focusing on specific problems in 
isolation for specific solutions is an appropriate means to address their complexity. 
In modeling and simulation (M&S), such a hybridization can be envisioned 
endogenously or exogenously, and at different levels of concern [49–51]. 

As described in Table 3.5, the concepts level, where the universe of discourse is 
set (such as the notions of state, event, and concurrency), calls for formalisms and 
(more generally) methods to capture the required concepts in a symbolically 
manipulable way. While the M&S community traditionally distinguishes between 
discrete and continuous phenomena as regard to central time-related concepts, 
qualitative and quantitative computational approaches, such as operation research



or artificial intelligence methods, rather focus on problem-solving steps and 
mechanisms. Hybridization comes at this level with the objective-driven need to 
deal with temporal considerations for the system under study while trying to find a 
solution to the problem under study. Such a situation happens for example when 
optimization techniques make use of simulation as a black box-type of evaluation 
function (exogenous hybridization), or when the requirement for a fine-grained 
understanding of the system entails both continuous and discrete phenomena be 
considered (endogenous hybridization). At the specification level, the real-world 
system and problem under study are expressed as a model, using the universe of 
concepts adopted, i.e., discrete or continuous simulation model (within M&S 
world) or problem-solving algorithm (within the wider computational world). The 
literature has coined various terms to qualify the various possible hybridizations, 
such as DisM + ContM, or DisM/ContM + Alg (where “+” denotes a 
composition/mixing operation that can vary from loose to tight integration). At the 
operations level, engines are built to execute the model defined at the immediate 
upper level. Such engines are often referred to in the M&S world as simulators and 
integrators (for respectively discrete and continuous operations), while solvers 
implement the algorithms defined in non-M&S-centered computational approaches. 
Operational hybridization occurs here to support the requirement for multiple 
execution engines, each devoted to aspects that other engines do not support. The 
hybridization done at the operations level between computational engines and 
physical components is the essence of the so-called Cyber-Physical Systems. The 
hierarchy of levels in Table 3.5 implies stronger hybridization at the upper level and 
weaker hybridization at the lower level. 
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Table 3.5 Hybridization strategies in computational frameworks
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3.6.2 Definitions 

Hybrid Simulation is the combined application of simulation techniques like Sys-
tem Dynamics (SD), Discrete Event Simulation (DES), and agent-based Simulation 
(ABS) in the context of a single simulation study. Its objective is to better represent 
the system under scrutiny through the conjoined application of multiple simulation 
techniques. Traditionally, modelling efforts have primarily been undertaken in 
distinct M&S communities, each with their International Societies, Conferences, 
and Journals. For example, the SD, DES, and ABS communities have continued to 
thrive under scholarly societies like the System Dynamics Society, The Society for 
Modeling and Simulation International, and European Social Simulation Associa-
tion; each community has its conferences, e.g., International Conference of the 
System Dynamics Society, Winter Simulation Conference, Social Simulation 
Conference, and scholarly publication outlets, e.g., System Dynamics Review, 
Simulation: Transactions of the SCS, the Journal of Artificial Societies and Social 
Simulation. Hybrid Simulation presents the opportunity to draw on these different 
world views and structured methods of system representation and to realize syn-
ergies through mixing methods and applying them to model the increasingly 
complex systems of today. 

Hybrid Modelling is the combined application of simulation with methods and 
techniques from disciplines such as Computer Science/Applied Computing, Opera-
tions Research (OR), Humanities, Engineering, and Data Science. Unlike Hybrid 
Simulation, whose focus continues to be inward to the M&S community, Hybrid 
Modelling proposes a cross-disciplinary approach for the best possible representation 
of a system, more specifically, the combined application of simulation, or indeed 
Hybrid Simulation, with methods, techniques from broader disciplines. Examples 
include the use of game-theoretic approaches (Economics) with computer simulation, 
faster execution of simulations using Grid, Cloud, GPGPU and Parallel Computing 
technologies (Computer Science), formal testing (Software Engineering) of simula-
tion models, use of problem structuring methods and Qualitative System Dynamics 
(Soft OR) in the problem formulation and conceptual modelling stages of a simu-
lation study, the combined application of load plan heuristics (Hard OR) with 
computer simulation. As illustrated in Fig. 3.10, Hybrid Modelling is 
cross-disciplinary and, at its very core, is a call to the M&S community to engage 
with researchers from diverse disciplines, and learn the extant knowledge and 
underlying philosophies and methodologies, frameworks and techniques (subse-
quently referred to as discipline-specific artifacts) with the aim of extending the 
theory and practice of M&S. In the context of Hybrid Modelling, it is important to 
note that the discipline-specific artifacts could be used in one or more stages of a 
simulation study, for example, conceptual modelling phase, model coding, input data 
analysis, V&V, scenario development, experimentation and implementation of the 
results of a simulation study. Mustafee and Katsaliaki [52]  identified a plethora of OR 
methods and techniques, some of which are already used together with simulation 
approaches (e.g., the combined application of forecasting with DES—Harper et al. 
[53], Harper and Mustafee [54]). Yet, others are avenues for future research.
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3.6.3 The Unified Conceptual Representation of Hybrid 
Modelling and Hybrid Simulation 

Mustafee and Powell [56] present a unifying conceptual representation of Hybrid 
Simulation and Hybrid Modelling to clarify the terminologies further and put them 
in perspective. With increasing interest in Hybrid Simulation and debates around its 
definition, scope, and purpose [57], it was felt that it was essential to present the 
definition of Hybrid Modelling, which was distinct from Hybrid Simulation, and 
without which the community world continue to look inwards (Fig. 3.10). In 
developing the definition of Hybrid Modelling and Simulation, the authors con-
sidered its alignment with the historic (albeit infrequent) use of the term—see [51] 
—the past (Case 1); the use of Hybrid Simulation in present-day academic dis-
course—the present (Case 2); and, the use of the term to support future research in 
advancing the theory and practice of M&S—the future (Case 3). Figure 3.11 pre-
sents the classification of Hybrid Modelling and Simulation into distinct Model 
Types. In laying the basis of the unified definition, they revisited [58] definition of 
paradigm, methodology, technique, and tool and adapt it for hybrid study. 

Hybrid Model 
(cross-disciplinary) 

Hybrid 
Simulation 
(e.g., DES+SD) 

Conventional 
Simulation 

(e.g., DES) 

Operations 
Research (OR) 

Computer 
Science 

Social 
Sciences Psychology 

Conventional Simulation and Hybrid Simulation: Looking inward to the 
community of researchers and practitioners in M&S 

Hybrid Modelling: Looking outward and engaging with researchers 
from broader disciplines 

O
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ther subject areas 

Fig. 3.10 Hybrid models focus on cross-disciplinary engagement (adapted from Fishwick and 
Mustafee [55])



Paradigm: They distinguish between qualitative (interpretive, subjective, soft)
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Quantitative Paradigm Classification of Hybrid 
Modelling and Simulation 

Qualitative Paradigm 

CFD SD 

DES ABS 

Forecasting Game 
Theory 

Soft Systems 
Methodology 

Qualitative System 
Dynamics 

Other Problem 
Structuring and Soft 

OR Methods 

Hard OR 
Methodologies 

Discrete 
Methodologies 

(M&S) 

Continuous 
Methodologies 

(M&S) 

Type A - Multi-Methodology Hybrid 
Simulation 

Type B - Multi-Technique Hybrid 
Simulation 

Type C - Multi-Methodology, Multi-
Technique Hybrid Simulation 

Type D - Hybrid Modelling (with 
Hard OR) 

Type D.1 - Multi-Paradigm Hybrid 
Modelling (with Soft OR) 

Fig. 3.11 Unified conceptual representation of hybrid modelling and simulation into distinct 
model types (adapted from Mustafee and Powell [56])

.
and quantitative (positivist, objective, hard) paradigms; M&S is in the quanti-
tative paradigm. If qualitative approaches are used, e.g., in conceptual modelling 
phase, then it is an example of Multi-Paradigm Hybrid Modelling. 
Methodology: Methodologies develop within a paradigm and usually embody its 
philosophical assumptions (ibid.). In the quantitative paradigm, [59] distinguish 
between discrete and continuous methodologies. In discrete execution of com-
puter models, the system state changes from one event to the next (as in DES) or 
as per defined time steps (as can happen in both DEA and ABS). For continuous 
simulation, the change in system state is continuous (as with SD and Compu-
tational Fluid Dynamics, or CFD). A Multi-Methodology Hybrid Simulation is 
one which has both Discrete and Continuous elements, e.g., SD-DES, SD-ABS. 
Technique: Techniques exist within the context of methodologies and have 
well-defined purposes, e.g., DES (ibid). Mustafee and Powell [56] distinguish 
between techniques such as DES (event list/queuing theory) and ABS (time 
stepped/emergence) under discrete methodology, and SD (stock and flow) and 
CFD (numerical approach) under continuous methods. A Multi-Technique 
Hybrid Study is one which uses two or more techniques under the same 
methodology, e.g., using CFD to model traffic flow with SD to investigate 
strategic policy related to transportation at an urban level. It follows that a 
Multi-Methodology, Multi-Technique Hybrid Simulation is one which uses a 
combination of techniques from both discrete and continuous methodologies, 
with at least two techniques from either of the two methods. Studies demon-
strating the combined application of SD-DES-ABS are an example of this. 
Tool: We define these as M&S packages which can be used to “perform a 
particular technique” (ibid.), and more recently, can execute multiple techniques 
that are classified under one or more methodologies. Discussion of the tool is not 
important for the hybrid modelling and simulation classification scheme.
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3.6.4 Classification of Hybrid Modelling and Simulation 
into Distinct Model Types

. Type A—Multi-Methodology Hybrid Simulation—Models of this type align 
with present practice (Case 2). Numerous studies used SD-DES and SD-ABS.

. Type B—Multi-Technique Hybrid Simulation—Although these align with pre-
sent practice (Case 2, e.g., use of ABS-DES models), there is some debate as to 
whether these could be called as hybrid since both techniques conform to dis-
crete methodologies. In [56] classification, a combined application of ABS-DES 
is Type B Hybrid Simulation since there are fundamental differences in the 
execution of the simulation logic, which makes them agreeable to model par-
ticular category of problems (top-down queuing approach versus bottom-up 
emergence).

. Type C—Multi-Methodology, Multi-Technique Hybrid Simulation—This aligns 
with Case 2 (present practice, e.g., ABS-DES-SD models) and also accommo-
dates future hybrid studies (Case 3).

. Type D—Hybrid Modelling—This aligns with Case 1 and encompasses [51] 
original use of Hybrid Simulation/Analytical Model and the four defined Classes 
of such models. An example of Type D model is the combined application of 
mathematical modelling/optimization approaches with simulation models, e.g., 
use of load plan heuristics with ABS [60]. However, Hybrid Modelling is also 
Case 3 (the future), since there are numerous well-defined methods and tech-
niques to problem-solving in Operations Research—refer to the classification of 
OR [52]—and which could potentially be used in one or more stages of a 
simulation study. Also, as shown in Fig. 3.12, OR is but one of the many 
disciplines for cross-disciplinary collaboration with M&S (Case 3).

. Type D.1—Multi-Paradigm Hybrid Modelling—When Soft OR techniques are 
used with M&S, e.g., Soft Systems Methodology and Qualitative System 
Dynamics, then we have a special case of Type D model which interests para-
digm. This is our Type D.1 or Multi-Paradigm Hybrid Model. 

Types D and D.1 are referred to as Hybrid Model (rather than Hybrid Simula-
tion) since only one constituent of the combined model is a simulation model; the 
other component is a discipline-specific artefact (which could be a philosophy,

Fig. 3.12 RT-DES real-time simulation experimentation using synchronization algorithm



3.7.1 Overview:

methodology, framework, technique or a structured approach) that could be com-
bined in one or more stages of an M&S study. For Type A, Type B, and Type C 
Hybrid Simulation, please refer to the literature review paper “Hybrid Simulation 
Modelling in Operational Research: A State-of-the-art Review” [61]. Refer to 
Mustafee and Bischoff (2016) for an example of Type D Hybrid Model. Refer to 
Powell and Mustafee [62] for a review of literation on Type D.1 models.
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3.7 Real-Time Discrete-Event Simulation 

Alison Harper, Navonil Mustafee 

Real-time discrete-event simulation (RT-DES) uses real-time or near real-time data 
in a computer simulation. RT data can inform different stages of a simulation study. 
For example, in the conceptual modeling phase, RT data streams can inform the 
scope and the modeling objectives. In the input data analysis stage, the use of RT 
data enables us to recompute the distributions more frequently than has traditionally 
been possible (most simulations rely on distributions derived from historical data). 
In the model implementation stage, RT data can populate key variables at run-time, 
for example, the length of the queues, the number of servers available (e.g., 
machine breakdown would affect the replication count), and updated server pro-
cessing time (computed real-time). In the model validation stage, the output of the 
simulation can be compared with the real system; the comparison is especially valid 
for simulations developed for short-term decision making. 

With the growth of Industry 4.0 and the widespread use of ubiquitous computing 
technologies such as Internet of Things (IoT), RT data feeds from sensors and 
enterprise information systems are more readily available for subsequent process-
ing. RT data can be used in an overarching data analytics framework comprising 
descriptive, predictive, and prescriptive approaches. An example of this is the 
RH-RT data analytics framework for reducing wait time at hospitals [63]. 
Descriptive analytics (including business intelligence) has been the primary con-
sumer of RT data, for example, updating the location of a fleet of cars using GPS 
information being relayed in real time. Predictive analytics has also used RT data 
(as time series) for short-term decision making, for example, by applying fore-
casting algorithms on RT data streams [64, 65]. The focus of RT-DES is pre-
scriptive analytics. Here, RT data is used for both the modeling process 
(conceptual modeling, input data analysis, model logic, validation and verification, 
scenario development) and its eventual execution (updating distributions, global 
and local variables, and flow control). Arguably, the use of RT data is more 
challenging for the latter (i.e., real-time experimentation), as it may require



3.7.2 Two Forms of RT-DES

synchronization with time-stamped data streams. This is the realm of parallel and 
distributed simulation and the use of synchronization protocols [66]. 

The focus of this technical note is on real-time simulation experimentation. In 
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Sect. 3.2, we identify two forms of RT-DES and provide illustrations that con-
ceptualize the execution of two forms of real-time models and have identified key 
literature. 

RT-DES using time-stamped data may need to incorporate synchronization algo-
rithms to prevent causality errors. The concept of digital twins arguably adheres to 
this real-time simulation experimentation paradigm where RT data continually 
updates the DES model (Fig. 3.12). In such cases, the simulation time and 
wall-clock time can be kept in sync using conservative and optimistic synchro-
nization protocols. For example, Fig. 3.12 illustrates a scenario where the simula-
tion time is ahead of the wall-clock time. However, upon receiving time-stamped 
data from the real-time system, the simulation may be rolled back to a previous 
state. The rollback is necessary to prevent causality errors. Examples of synchro-
nization algorithms include Chandy–Misra–Byrant conservative time synchro-
nization [67, 68] and Jefferson’s Time Warp optimistic algorithm [69]. 

Faster than real-time experimentation is our second form of RT-DES. This 
experimentation strategy is implemented when the model automatically executes 
the pre-defined scenarios upon receiving a tranche of RT data (no further data 
updates are allowed until the simulations have concluded). The subsequent set of 
experiments can then be executed when new RT data is received. Note that the 
newly received data will often be a subset of the overall data being used by the 
model. As such, there may be logic to determine whether the new feed of RT data 
necessitates a fresh execution of the scenarios. In Fig. 3.13, it is assumed that data 
is received every half-an-hour and is significant. Thus, the model is initialized every 
thirty minutes and the experiments are executed until the simulation end time 
(shown as stop). The insights gained from the results of such faster than real-time 
experiments may enable decision-makers to swiftly make changes to the real-world 
system, with the intended objective of preventing bottlenecks that may have been

Fig. 3.13 RT-DES faster than real-time simulation experimentation



3.8.1 Connotation

3.8.2 The Technical Framework

identified through the experiments. Harper [64] provides such a framework for 
real-time decision support in the context of the emergency department. Here the 
decision-makers are clinicians and managers. 

The decision making can also be automatic (incorporated in an algorithm) and be
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used to make changes to a physical system. This is often referred to as symbiotic 
simulation. According to Aydt et al. [70], symbiotic simulation is the close coupling 
of a physical system and a computer model. Such simulations can benefit from the 
faster than real-time RT-DES approach. This is especially true for simulations of 
assembly lines and production facilities where decision making could be automated. 
For example, Onggo et al. [71] propose a hybrid modeling architecture for sym-
biotic simulation which includes data acquisition to receive data from the physical 
system, simulation and optimization models for faster than real-time experimen-
tation, and an actuator that relays the results to the physical system. 

3.8 Simulation of Comprehensive Systems 

Baocun Hou, Bo Hu Li, Yang Liu 

Simulation of comprehensive systems is an important means of development and 
application of a comprehensive system, and it is becoming one of the research 
highlights in the field of modeling and simulation technology. Comprehensive 
systems mostly behave as continuous-discrete mixed, qualitative and quantitative 
mixed systems. They pose new challenges to modeling and simulation technology 
not only because they are large in size, complicated in composition and imperfect in 
knowledge but also because their behaviors are fuzzy, uncertain, difficult to qualify, 
and characterized with self-adaptivity, evolution, chaos, emergence, and gaming. It 
is our belief that the modeling and simulation technology of a comprehensive 
system is a kind of modeling and simulation technology which integrates the 
new-generation information communication technology, the new-generation artifi-
cial intelligence technology and the modern modeling and simulation technology 
with the specialized technology in the field of comprehensive system application, 
aiming at optimizing the overall performance of comprehensive system modeling, 
simulation operation, and result analysis/processing [72]. 

The technical framework of modeling and simulation technology for a compre-
hensive system is mainly composed of three kinds of technology, i.e., the modeling 
theory and methods for a comprehensive system, the simulation system technology



3.8.3 Key Technologies

The modeling theory and methods for comprehensive systems covers qualitative
and quantitative modeling methods for a hybrid system, metamodel framework-
based modeling methods, modeling method for dynamic changing structure system,

Fig. 3.14 Technical framework of modeling and simulation technology for a comprehensive
system 

for a comprehensive system, and the application engineering technology of simu-
lation system for a comprehensive system, as shown in Fig. 3.14. 
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The key technologies included in the technical framework of modeling and simu-
lation technology of a comprehensive system are as follows. 

The modeling theory and methods for comprehensive systems
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big data-based modeling methods, depth learning-based modeling methods, 
four-level high-efficiency parallel simulation algorithms, optimization algorithm-
based simulation methods, and machine learning-oriented simulation algorithms, 
etc. [72]. 

(1) The qualitative and quantitative modeling methods for a hybrid system include 
the qualitative and quantitative unified modeling methods, that is, those studies 
oriented to the modeling theory and methods for system top-level description
and sub-domain description; the quantitative and qualitative interactive inter-
face modeling, i.e., those studies oriented to transformation of the quantitative 
and qualitative interactive data into the structure and format required by the 
qualitative model and the quantitative model; the quantitative and qualitative 
time advance mechanism, namely those studies oriented to the time coordi-
nation and advance mechanism of the quantitative and qualitative models. 
The metamodel framework-based modeling methods are the research on inte-
grated simulation and modeling methods for multi-disciplinary, heterogeneous 
and emerging comprehensive systems through the top-level abstraction of the 
metamodel. It mainly includes multi-disciplinary unified modeling method 
based on meta modeling, i.e., the unified modeling method for continuous, 
discrete, qualitative, quantitative, and other multi-disciplinary models in a 
comprehensive system; the meta-model-based modeling method for compre-
hensive adaptive systems, namely the integrated simulation modeling method 
for perception, decision making and interaction between various system com-
ponents in comprehensive adaptive systems. 
The modeling method for dynamic changing structure systems mainly studies 
the dynamic changeability of the contents, ports, and connections of dynamic 
changing structure system model, in support of the overall modeling of the 
system structure in dynamic change. 
The big data-based modeling methods: The high complexity of a comprehen-
sive system’s mechanism makes it difficult to build the system principle model 
on the mechanism (in an analytical manner), but renders it necessary to sim-
ulate its internal mechanism through a large number of experiments and 
application data. The big data-based modeling methods are a group of methods 
which enable an effective simulation of a comprehensive system with an 
unclear mechanism through massive observation and application data. The 
main research scope covers data-based reverse design, data-based neural net-
work training and modeling, and data clustering-based modeling. 
The depth learning-based modeling methods: In the environment of a com-
prehensive system, the data that can be collected and put to use grow explo-
sively. At the same time, the neural network that can learn and evolve based on 
AI-based deep learning and human brain simulation can provide evolutionary 
support for the development and application of modeling and simulation ori-
ented to a comprehensive system. 
The four-level high-efficiency parallel simulation algorithms: In order to make 
full use of the super parallel computing environment to accelerate the problem



(7)

(8)

The simulation system technology for a comprehensive system 

The simulation system technology for a comprehensive system includes the intel-
ligent simulation cloud for comprehensive system, the multi-disciplinary virtual 
prototype engineering for comprehensive products, the intelligent simulation lan-
guage for a comprehensive system, the intelligent simulation system based on edge
computing, the intelligent cross-media visualization technology, and the CPS 
interface and intelligent parts technology. 

(2)
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simulation of comprehensive systems, it is necessary to study high-efficiency 
four-level parallel simulation algorithms, including the job-level parallel 
method for large-scale simulation, the task-level parallel method for members 
of the simulation system, the model-level parallel method for members of the 
Federation, and the thread-level parallel method based on a comprehensive 
model solution. 
The optimization algorithm-based simulation methods: Multi-sample iterative 
simulation is carried out based on optimization algorithms. 
The machine learning-oriented simulation algorithms as an important driving 
force for the development of a comprehensive system to intelligence, machine 
learning, an important research field of artificial intelligence application, has 
evolved into a huge pedigree. How to effectively use machine learning to 
simulate and model comprehensive systems will become a new research ori-
entation of great significance. 

(1) The intelligent simulation cloud for a comprehensive system [73] is a new 
high-performance intelligent simulation mode that is based on ubiquitous net-
work (including the Internet, Internet of Things, narrowband Internet of things, 
Internet of Vehicles, mobile Internet, satellite network, space-ground integrated
information network, future Internet, etc.), being service-oriented and net-
worked. Based on the idea of cloud computing, it evolves in response to appli-
cation demands, integrating, and developing three kinds of technology, that is, 
(1) the existing networked modeling and simulation technology, (2) the emerging 
information technology such as cloud computing, Internet of Things, SOA, 
intelligent science, efficient computing and big data, and (3) the expertise for 
application fields. By virtualizing and servitization, it turns all kinds of simula-
tion resources and capabilities into a cloud-based service pool, which are coor-
dinated and optimized in terms of management and operation so that users can, 
via the network, terminals and cloud simulation platforms, gain access to such 
high-performance resources and capabilities for completion of various activities 
throughout the full life cycle of intelligence simulation [74]. 
The multi-disciplinary virtual prototype engineering for comprehensive products 
[75] is a kind of system engineering with a virtual prototype as the core and 
modeling and simulation as the means. Based on the integrated support envi-
ronment, it is applied to optimize the five factors, that is, human, organiza-
tion, business management, technology and data as well the four flows, 
i.e., information, knowledge, control, and service within the whole system of



a

(4)
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comprehensive product development throughout the full life cycle. Its main 
research contents include the multi-stage unified modeling methods for virtual 
prototype engineering, the comprehensive decision making and simulation 
evaluation technology, the comprehensive management and prediction methods 
and the multi-disciplinary virtual prototype engineering platform. 

(3) The intelligent simulation language for a comprehensive system [76] is  
simulation software system oriented to the modeling and simulation of a 
comprehensive system. Its main features are as follows: (1) the model 
descriptive form, which is composed of symbols, statements, and grammatical 
rules of the simulation language, and is very similar in terms of the model 
description to the original form of the system model under study; (2) the 
experiment description, which is composed of experimental operation state-
ments similar to macroinstructions, and some ordered control statements; (3) it 
has rich parameterized and componentized simulation algorithm library, func-
tion library, and model library. It enables system researchers to focus on the 
comprehensive system simulation problem itself, therefore greatly reducing the 
software programming and debugging work related to modeling and simula-
tion. Based on this simulation language, advanced simulation languages can be 
further developed for various special fields (such as military system-of-systems 
confrontation, multi-disciplinary virtual prototype simulation, etc.). Its main 
research contents involve the intelligent simulation language architecture, 
description specifications of simulation language for models and experiments, 
intelligent compilation and execution framework of simulation language based 
on simulation computer, etc. 
The intelligent simulation system based on edge computing refers to the inte-
grated intelligent simulation system that is aimed to optimize the overall per-
formance of “system modeling, simulation operation and result analysis / 
processing.” Oriented to two kinds of simulation users (high-end modeling of 
comprehensive systems and on-demand provision of high-performance simu-
lation cloud service), it enables three kinds of simulation (mathematics, human 
in the loop, hardware in the loop / embedded simulation) by integrating 
emerging computer technology (such as cloud computing, Internet of Things, 
big data, service computing, and edge computing), modern modeling and 
simulation technology, and supercomputer system technology. Its main 
research content involves computer system architecture, independent and 
controllable basic hardware / software, etc. 
The intelligent cross-media visualization technology [77] mainly includes the 
GPU group-based parallel visualization system technology and the 
virtuality-reality fusion technology. The GPU group-based parallel visualiza-
tion system technology involves the data organization and scheduling tech-
nology of large-scale virtual scene, the two-level parallel rendering technology 
based on multi-computer and multi-core technology, the high-efficiency visu-
alization technology of amorphous objects in a comprehensive environment, 
and the real-time dynamic global illumination technology.



The application engineering technology of simulation system for a compre-
hensive system 

The engineering technology of simulation system application for a comprehensive 
system mainly includes the intelligent simulation model verification, verification, 
and acceptance (VV&A) technology, the result management, analysis, and evalu-
ation technology of intelligent system simulation experiment, and the big 
data-based intelligent analysis and evaluation technology.

(2) The result management, analysis, and evaluation technology of intelligent

(3)

3.8.4 Development Trend 

With the rapid development of Internet of Things, big data, cloud computing, 
high-performance computing and artificial intelligence, as well as their deep inte-
gration with modeling and simulation technology and specialized technologies for
application fields, the modeling and simulation technology for a comprehensive 
system is developing to become more digitalized, high-efficient, networked / 
cloud-based, intelligent, service-oriented, and ubiquitous. 
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(6) The CPS interface and intelligent parts technology: It mainly includes the 
research of the CPS interface technology and the R&D of simulation-specific 
acceleration components based on big data and artificial intelligence 
algorithms. 

(1) The intelligent simulation model verification, verification, and acceptance 
(VV&A) technology [76] mainly includes such VV&A technologies as are 
applicable throughout the full life cycle and to the whole system, all hierar-
chical levels, all personnel, and all-round management. 

system simulation experiment [76]: It mainly includes the simulation experi-
ment data acquisition technology, the simulation experiment data analysis and 
processing technology, the simulation experiment data visualization technol-
ogy, the intelligent simulation evaluation technology, and the benchmark 
technology (including two kinds of users and three kinds of simulation). 
The big data-based intelligent analysis and evaluation technology [72] mainly 
includes the big data integration and cleaning technology, the big data storage 
and management technology, the big data analysis and mining technology, the 
big data visualization technology, the big data standards and quality system, 
and the big data security technology. 

(1) Digitalized 
Based on the Internet of Things and empowered with intelligent gateway, intelligent 
sensor and other means, the full life-cycle activities of the modeling and simulation 
for a comprehensive system are being digitized as a result of deep integration of the 
technologies used for collection, transmission, processing, and application of digital



systems, and the supporting technology as well as the engineering technology of

information with simulation modeling, simulation systems, and the supporting 
technology as well as the engineering technology of simulation application. 

(2) High-efficient 
The deep integration of high-efficiency (high performance, high reliability, high 
energy saving, high availability) computing technology with simulation modeling, 
simulation systems, and the supporting technology as well as the engineering 
technology of simulation application is promoting the modeling and simulation of 
comprehensive systems to become highly efficient in the full life-cycle activities. 

(3) Networked/Cloud-based 
The deep integration of network communication, cloud computing, edge computing 
technology and simulation modeling, simulation systems and the supporting tech-
nology as well as the engineering technology of simulation application is making 
the modeling and simulation of a comprehensive system realize the networked / 
cloud-based full life-cycle activities. 

(4) Intelligent 
The deep integration of intelligent science and technology (brain science, cognitive 
science, artificial intelligence technology) with simulation modeling, simulation 
systems, and the supporting technology as well as the engineering technology of 
simulation application is adding intelligence to the modeling and simulation of 
comprehensive systems in the full life-cycle activities. 

(5) Service-oriented 
The deep integration of service computing (expression, discovery, construction, 
operation, evaluation, etc.) technology with simulation modeling, simulation sys-
tems and the supporting technology as well as the engineering technology of 
simulation application is promoting the modeling and simulation of comprehensive 
systems to turn service-oriented in the full life-cycle activities. 

(6) Ubiquitous 
The deep integration of ubiquitous computing (the integration of computing, 
communication and network technologies, and the integration of information space 
and physical space into a whole) technology with simulation modeling, simulation 
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simulation application is making the modeling and simulation of comprehensive 
systems ubiquitous in the full life-cycle activities. 

3.8.5 Application 

The modeling and simulation technology for a comprehensive system is widely
applied to the full life-cycle activities of a comprehensive system in the fields of the
national economy, people’s livelihood, national security, and so on. Our team has
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developed some typical applications based on the research in respect of virtual 
prototype collaborative design simulation, intelligent simulation based on big data 
and cross-media reasoning, intelligent simulation based on virtual reality, and other 
related technologies. Examples are as follows: 

(1) Application of the virtual prototype-based multi-disciplinary design and sim-
ulation technology in collaborative design of comprehensive products 

In the field of intelligent manufacturing, the collaborative design of comprehensive 
products is realized through the virtual prototype-based multi-disciplinary design 
and simulation technology. A simulation application system for the virtual proto-
type collaborative design of intelligent aircraft is mainly composed of the control 
system model, the multi-body dynamics model, the hydraulic model, and other 
multi-disciplinary heterogeneous models. The aircraft shall be capable of moni-
toring its own flight parameters and status indicators, automatically predicting faults 
and adjusting flight status. Therefore, its capability of automatically anticipating 
faults and flight status is difficult to be described by a traditional quantitative model. 
It requires the use of qualitative rules. For this reason, we have built a simulation 
application system for the virtual prototype collaborative design of intelligent air-
craft based on the modeling and simulation technology of a comprehensive system. 
The main work is as follows: In the stage of system construction, the internal static 
structure and the dynamic behavior logic of the comprehensive system are modeled 
at the top level of the system to eliminate the differences between various 
multi-disciplinary heterogeneous models in the system for the purpose of unified 
modeling. After the top-level modeling, a graphic model of the automatic prediction 
of faults and flight status is built on the basis of the fuzzy cause and effect diagram, 
with fuzzy concepts defined and modeled. In the meantime, the membership cloud 
model is trained by the training algorithm for the membership cloud model reverse 
generator. During the operation of the system, the simulation component model of a 
comprehensive system will be solved by the qualitative and quantitative joint 
approaches via the quantitative solution engine and qualitative reasoning engine 
that are driven by the service simulation engine. 

(2) Application of multimodal data-based intelligent simulation analysis in Intel-
ligent City 

In the field of Intelligent City, the modeling and simulation technology is applied to 
realize the intelligent control of urban traffic light systems. The “green wave band” 
is the multi-point control technology of traffic lights, which can avoid congestion 
and save traffic time through intelligent control of signal lights. The “green wave 
band” uses the intelligent signal system, which senses the traffic flow through the 
underground coils, and automatically adjusts via computer the interval time of the 
traffic lights to reasonably distribute the signal period and prioritizes the traffic flow 
at the intersections. In the process of building a city’s green wave bands, the 
intelligent simulation and analysis are made based on multimodal data acquired 
through satellite navigation, monitoring cameras, traffic stations, sensor coils, etc., 
so that priority will be given to the installation and configuration of various
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equipment in the green wave band system for the specific road layout to provide 
real-time analysis data for the urban signal system. 

(3) Application of big data-based intelligent analysis in the medical field for 
disease early warning and prediction 

In the field of intelligent health care, it has been made possible preliminarily to have 
an intelligent early warning and prediction of diseases based on the modeling and 
simulation technology for medical big data applications. At present, there are 70 
million pieces of related infectious disease information on the national platform. 
Based on the ten million-level big data of major infectious diseases such as hepatitis 
B, tuberculosis and AIDS screening and queues, big data intelligence and 
cross-media reasoning technologies are used to establish a multi-factor analysis 
model and an intelligent visual analysis platform for the spread, evolution, and 
intervention of the “three diseases,” so as to enable intelligent early warning and 
prediction. 

(4) Application of crops intelligent monitoring based on VR and M&S technology 
In the field of intelligent agriculture, the independent growth of virtual crops is 
intelligently simulated by using the independent intelligent technology and the 
virtual reality technology, making it possible to reduce the research time and costs, 
and improve the quality and yield of crops through simulation and virtualization of
the phenomena and process of crop growth. A geometric, physical, and behavior 
simulation is made of the object through the intelligent behavior modeling tech-
nology of virtual object, so as to improve the intelligent, social, diverse, and 
interactive fidelity of virtual object behavior. And the human–environment fusion 
technology in the virtual environment is used to realize the high-resolution 3D 
display, orientation tracking, gesture tracking, data glove, haptic feedback, and 
sound positioning. 
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Abstract 

Enhancing skills is one of the main reasons for the use of simulation. This 
chapter of the SCS M&S Body of Knowledge looks mainly at training. The use 
of simulators, often referred to as virtual simulation, is described and followed 
by the use of constructive simulation systems, where all relevant entities of 
interests are simulated. Examples from the defense sector are given, but also 
health care and emergency management. Finally, a section describes the various 
options of live simulation, where trainees with their operational equipment are 
stimulated by simulated inputs. 
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4.1 Types of Simulation Techniques for Experience 

Tuncer Ören. 

Gaining experience is another pillar of modeling and simulation—along with 
experimentation. Simulation-based experience is used to gain/enhance three types 
of skills or for entertainment purposes. 

4.1.1 Simulation Experience for Training 

As outlined in Table 4.1, simulation experience can be used for training get/enhance 
three types of skills. 

1. Virtual simulation (i.e., use of simulators or virtual simulators) is used to 
enhance motor skills to gain proficiency of use of equipment such as an airplane, 
a tank, or a car. In virtual simulation, real people use virtual equipment in virtual 
environments, hence the term ‘virtual simulation’. 

2. Constructive simulation (or gaming simulation such as war gaming, peace 
gaming, international relations gaming, and business gaming) is used to enhance 
decision-making and/or communication skills. In constructive simulation, sim-
ulated people use simulated equipment in a virtual environment and real people 
get experience by interacting with the simulation system. 

3. Live simulation is used to gain/enhance operational skills by getting real-lifelike 
experience in a controlled environment. Live simulation is used in such diverse 
areas as military exercises as well as for the training of health specialists. In live 
simulation, real people use imitation (or virtual or dummy) equipment in the real 
world” [1]. 

Table 4.1 Use of simulation for training to get/enhance three categories of experience-based 
training 

Purpose of training Category of 
simulation 

Type of simulation 

To enhance motor skills Virtual 
simulation 

– Simulators 
– Virtual simulators 

To enhance decision-making and/or 
communication skills 

Constructive 
simulation 

– Gaming simulation 
– Wargaming 
– Peace gaming 

To operate by getting real-lifelike 
experience opportunities in a 
controlled environment 

Live 
simulation 

– Single platform simulation 
– Integrated multiplatform 
simulation 

– Live simulation of systems of 
systems; federations of federations; 
hyper federations



4 Simulation as Experience to Enhance Three Types of Skills 123

4.1.2 Simulation Experience for Entertainment 

Use of simulation in entertainment covers a large application area. The techniques 
used in this area have an important overlap with serious games [2] and education [3]. 

4.2 Virtual Simulation 

Umut Durak. 

DoD Modeling and Simulation Glossary [4] defines the term “virtual” as an entity 
or data that stems from a modeled or simulated representation of the actual system. 
At the same reference “virtual simulation” is defined as a simulation involving real 
people operating simulated systems. While there are various application areas, 
training simulators are typical examples of this type. 

Training is one of the major application areas of simulation. While the virtual 
simulation is not exclusive for training, the area is widely driven by training sim-
ulators. Application domains render a wide range from flight training to surgery 
training. Flight simulators can be taken as a representative example for virtual 
simulation. Allerton [5] and Page [6] present a comprehensive historical perspective 
for flight simulators. 

The flight simulators date back to the beginning of the twentieth century. During 
the early 1900s, the idea was to design a truly ground-based trainer that can provide 
the students with an understanding of how to fly an aircraft. Sanders Teacher [7] 
depicted in Fig. 4.1 was one of the earliest flight simulators, a virtual simulation, 
that was constructed from actual aircraft mounted on a universal joint facing toward 
an existing wind. It was simulating the real aircraft using the response of its 
aerodynamic responses to the prevailing wind. Due to the irregular nature of the 
wind, Sanders Teacher did not bring the expected success. Almost at the same time, 
Antoinette company designed its training rig, called “Tonneau Antoinette”— 
Antoinette’s barrel where the instructor is manually changing the attitude of the 
aircraft to train students for using controls. Edward Link is the founder of modern 
flight simulators. In the late 1920s, he designed his Link trainer, commonly known 
as the Blue Box applying compressed air to tilt the cockpit and drive the gauges for 
aircraft instruments [5]. Over half a million pilots were trained in Blue Boxes only 
during the Second World War. Since then, flight simulators are indispensable parts 
of flight training (Fig. 4.2). 

Flight simulators have also been utilized by the research community since the 
Apollo mission [8]. They are invaluable ground-based test facilities in developing 
and experimenting with advanced concepts and conducting human factor research. 
Some of the well-known early examples are ATTAS Ground-Based Simulator from 
German Aerospace Center (DLR), [8, 9] NASA Crew Vehicle Systems Research 
Facility in Ames Research Center [10], and Visual Motion Simulation and Cockpit 
Motion Facility from Langley Research Center [11]. Relatively recent research



flight simulators that are currently in operation include Air Vehicle Simulator 
(AVES) of German Aerospace Center (DLR) [12], HELIFLIGHT from the 
University of Liverpool [13], NASA Ames Vertical Motion Simulator [14], and 
SIMONA of Delft University of Technology [15]. 
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Fig. 4.1 Sanders teacher (Reprinted from [7]) 

Flight simulator experiments have long been used to evaluate the handling 
qualities of air vehicles [16–20]. Besides quantitative analysis, qualitative ratings 
can also be collected from the pilots by incorporating flight simulators in the air 
vehicle design process. Today, it is also a common practice to test avionic systems 
on the ground with flight simulation in respective integration test facilities before 
testing them in real flight. Examples include Boeing 777 System Integration Lab



[21] and F-35 flight simulators [20] in which support engineering laboratories from 
multi-ship simulations to HIL testing. 
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Fig. 4.2 Link trainer (the blue box) 

The human-in-the-loop nature of virtual simulation brings several challenges 
some of which are real-time constraints and high fidelity visual, aural, and motion 
queuing requirements [5]. Furthermore, the wide utilization of simulators for 
training the operators commonly in safety–critical domains, such as aviation, 
brought certification and accreditation regulations of virtual simulators. Examples 
could be the ICAO manuals of criteria for the qualification of flight simulation 
training devices [22, 23]. 

Typical organization of virtual simulators consists of the dynamic model of the 
device, its operational environment, a visual system, a sound system, possibly a 
motion system, a realistic human device interface, and an instructor operator sta-
tion. Figure 4.3 presents the architecture of the rotorcraft simulation at the German 
Aerospace Center (DLR) Air Vehicle Simulator (AVES). It depicts the simulator 
components that correspond the above-explained virtual simulator organization. 
Examples could be the Air Vehicle Model as the dynamic model of the device and 
its operational environment, or the Cockpit and the Control Loading System for 
human device interface. 

Virtual simulation−as a very powerful tool—is applicable to many disciplines. 
For example, several examples from the medical community are given in the virtual 
simulation section of a book on healthcare simulation [24]. Another book focuses 
on virtual simulation in nursing education [25]. Rozenblit et al., contributed to very 
specific applications of virtual simulation in health care, such as “haptic guidance 
system for computer-assisted surgical training [26].
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Fig. 4.3 German aerospace center (DLR) air vehicle simulator (AVES) architecture 

A completely different successful application is virtual simulation in manufac-
turing process of high-speed trains [27]. Another study focuses on “issues related to 
human effectiveness within embedded virtual simulations (EVS) for training.” [28]. 

4.3 Constructive Simulation 

Ernest H. Page and Andreas Tolk. 

According to the introduction of this section, constructive simulation is a computer 
simulation in which people, equipment, and environment are simulated, although 
real people get experience and enhance their decision-making and/or communica-
tion skills by interacting with the simulation and potentially with each other. Why 
do we call this category constructive? 

According to Dictionary.com, the adjective constructive has four different 
meanings, which are (1) helping to improve; promoting further development or 
advancement (opposed to destructive); (2) of, relating to, or of the nature of con-
struction; structural; (3) deduced by inference or interpretation; inferential; and 
(4) Law: denoting an act or condition not directly expressed but inferred from other 
acts or conditions. How do these definitions help to understand what constructive 
simulation is? 

We surely hope that all categories of simulation will be helpful (as in (1)), and 
we also assume that we use good practices when constructing our simulations (as in 
(2)), and we furthermore assume that we can exclude the law context (as in (4)). 
This leaves us with the third definition to be the most meaningful in our context:



Constructive simulation is simulation that has been deduced by inference or 
interpretation, leading to a computer simulation of the system of interest. However, 
as every simulation is based on a model which is a simplification and abstraction of 
the real system within the constraints of the experimental frame this is also not a 
clear distinction. 
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The best way to think about a constructive simulation is that all relevant pro-
cesses of the systems of interest, including possible users of those systems and their 
decision processes, are simulated. There will be trainees outside of the simulation, 
but everything important reacting to their inputs is simulated. There are obvious 
close relations to virtual simulation, particularly when the communication with the 
simulation uses everyday operational equipment of the trainees to do so, but while 
virtual simulators are focused more on individuals or small teams, constructive 
simulation is used to train decision makers, or leadership team group members. 
With the provided examples, this should become clearer. 

4.3.1 Examples for Constructive Simulation 

Constructive simulations provide reactive representations of complex, often socio– 
technical systems. Examples are battles with hundreds or thousands of weapon 
systems engaging along a very long front to train military headquarters, or highly 
complex flight tracking systems connecting continents to train crews of aviation 
administration. We can also think about a city to support city planners in many 
details, from coordination of traffic lights to maximize traffic throughput to better 
placing of restaurants or grocery chops. 

The application domains are not limited to training, but this simulation category 
is also used for analysis and planning, as the simulations often ran faster than real 
time, so that many repetitions are possible, allowing not only for sensitivity anal-
ysis, but also for exploratory modeling [29]. 

In some cases, game technology allowed for very realistic interfaces, as games 
are designed to immerse players into the simulated processes, at least as an 
observer. When, e.g., an avatar must provide a situation report via a video-feed, 
game technology gives simulated person a face. Another example is the use of 
video streams to display the discoveries of a drone when flying over an area. In 
some cases, the whole simulation can be a serious game [30]. 

Computer-Assisted Exercises 
Within the defense domain [31], the use of constructive simulation systems to train 
command posts and headquarters on various military levels and different scales is 
well-established. Training the headquarter personnel of a military organization is 
challenging. Headquarters oversee coordinating and synchronizing the activities by 
their subordinated commands by means of Command and Control. The activities are 
often captured in form of the so-called O–O-D-A loop, which stands for observe, 
orient, decide, and act. The loop starts with observation, which triggers all the fol-
lowing activities. Observation, in this context, is not just what can be seen visually,



Wargaming

but includes data and information available through other sensing mechanisms, 
communications reports, and so forth. Within orientation, the headquarter works 
toward understanding the observation, i.e., understanding where the opposing forces 
are, where their own forces are, in which state they are in, and other relevant con-
ditions. Based on the results of the orientation, the staff comes to a decision by 
evaluating alternative courses of action and choosing the best option. The decision is 
followed by actions putting this decision to work, usually by generating orders for the 
subordinated commands and forces. This leads to the next loop, as the result of such 
action is observed, leading to new orientation, decision, and action, and so forth. 

Providing realistic input to the training staff as well as adequate feedback on 
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developments and effects is the main challenge to be addressed for an exercise. The 
most realistic way is to use all the subordinated forces to provide the input and react 
to the commands (see the next subsection on live simulation and maneuvers), but 
even when not taking an enemy into consideration, the pure manpower needed 
quickly becomes overwhelming regarding costs and administration: A military 
battalion has 400 to 1000 soldiers, and lots of equipment, if you go up to the 
division level, this number grows to 6000 up to 25,000 soldiers. Only in war 
situation, such numbers of personnel will be available. 

Constructive simulation systems that realistically simulating all the soldiers, 
weapon systems, equipment, communication, movement, attrition, etc., were 
therefore always required by the armed forces. While in early computer-assisted 
exercise only the training personal had access to the simulation, and they did feed 
the resulting reports into the Command and Control systems used by the trainees (as 
well as taking the orders and feeding them into the simulation), the technical 
integration of simulation systems to directly communicate with the Command and 
Control systems allow for significant reduction of personnel needed for an exercise 
[32]. By the early 1990s, Command Post Exercises (CPXs) shifted from predom-
inantly live events to a mixture of live, virtual, and constructive, with the pre-
dominant amount of the force structure represented in constructive simulation, as 
discussed in Sect. 4.4.2). 

At its core, wargaming is a tool for exploring human decision making, particularly 
in environments with incomplete and imperfect information. Perla [33] defines 
wargaming as “…a warfare model or simulation whose operation does not involve 
the activities of actual military forces, and whose sequence of events affects and is, 
in turn, affected by the decisions made by players representing the opposing sides.” 

Typically, wargames are strategically focused. During a wargame, players may 
discover the need to make unanticipated decisions in order for the game to progress. 
According to [34], there can also be an educational component to a wargame. 
Experience has shown that players learn from each other while participating in the 
wargame. Most players find the exchanges of ideas and information that occur 
during a wargame to be professionally rewarding.



Some common types of wargames are [35]:

. Table-Top Exercise. A table-top exercise is a discussion-based wargame where
players sit at tables and interact with one another to address the key issues of the

.
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.
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.

.

.
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wargame. While not specifically structured as a turn-based game, facilitators will 
often cause players to consider issues in a particular order, to determine the 
relationship between specific decisions or actions. 
Workshop. Workshops involve subject-matter experts (SMEs) gathered to dis-
cuss a problem. Workshops have a narrow, discrete focus, and often serve as an
input to follow-on events. 
Inductive game. Inductive games begin without a pregame concept. With 
inductive games, the concept is discerned after analyzing game data for patterns.
This type of gaming is used early in the concept development process and makes 
use of open-ended brainstorming styles during the event. 
Deductive game. In contrast, deductive games begin with general game ideas to 
be tested, followed by observations collected during the game to support or
refute the initial game hypothesis. This type of gaming is used later in the 
concept development process, after the concept is more fully developed. This is 
used during course of action (COA) analysis or to test a plan prior to execution. 
Scenario-based game. This technique presents players with a specific scenario, 
which is used to guide the course of the wargame while the players examine a
particular strategic problem or issue. Scenario-based games, starting with 
present-day conditions, can be used to “take an intellectual walk into the future.” 
Based on a sponsor’s requirements, the wargame may be based on a specified 
scenario. 
Alternative futures game. An alternative futures wargame involves presenting 
the participants with two or more scenarios of a plausible future. Players are
asked to determine key indicators that would signal that the future represented 
by the scenario might be emerging. In contrast to the scenario-based game, an 
alternative future game starts in the future and works backward to the present. 
Game results often include identifying both unique and common indicators from 
across several scenarios. Toward the end of game play, the players may be asked 
to identify what they believe is the most plausible future based on game play. 
Single-sided game. A single- or one-sided game includes one player cell, with 
the opposition furnished by a control group that presents scripted scenario
injects. 
1½–sided game. A 1½–sided game also includes one player cell, with the 
opposition furnished by a control group, but with scenario injects developed
during game execution, versus pre-scripted, to force the players to wrestle with 
specific decisions related to game objectives. 
Two-sided game. Two-sided games involve two, separate, competing player 
cells. The two sides play by rules that vary from restrictive to entirely free play.
Player decisions from each cell are adjudicated, with results presented to the 
players and used to inform subsequent game play.



nity’s deliberate and aggressive use of wargames during the 1930s is often credited

Medical training applications are typically focusing on individual or small group
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. Multisided game. Games may be designed with several competing cells. These 
games are referred to as multisided, or by the actual number of sides (e.g., 
“three-sided”). The rules of conduct for multisided games can be significantly 
more complex than in a two-sided game due to the number of possible inter-
actions between the various player cells. 

Wargaming has a rich history in the US military. The Naval aviation commu-

with the defeat of the Japanese carrier force at the Battle of Midway in the Second 
World War [36]. 

As captured by [37], the reason for the need to rely increasingly on computa-
tional support by simulations lies in the complexity of evolving concepts. As 
observed in the epilogue, “such challenges of complexity and emergence have been 
addressed in language and constructs of their times by authors from Sun Tzu to 
Clausewitz. However, due to jointness, networking, long-range fires, precision 
weapons, special operations, gray-area operations, and other developments, the 
complexity of military planning and operations has increased substantially. Tradi-
tionally separated domains merge into each other on the modern battleground, 
including the new elements of cyber. This requires true creativity of wargamers, but 
also the support by simulation in two main categories: (1) providing a decision 
space with the necessary complexity to be representative of the real-world scenario, 
and (2) allowing for exploratory analysis of situations.” This observation is not only 
true for military application, but also in many other domains, from business to 
health care. 

Healthcare 

skills required, e.g., in the surgery room, so that more examples can be found in life 
and virtual training domains [24]. Examples given in [38] demonstrate that con-
structive simulations of hospitals or even hospital groups are increasingly used by 
decision makers in wargaming-like scenarios. Most of these exercises are currently 
conducted in support of finding better strategies, e.g., how to better organize a 
hospital, how many Intensive Care Units to run versus using the space alternatively 
for more hospital beds, but also how to better align with other hospitals in the 
region, e.g., by providing rarely needed specialty treatment not in all facilities, etc. 
However, conducting such efforts also leads to better problem understand and 
communication among these decision makers, as described among others in [39]. 

In addition, biology and health care are using constructive simulation increas-
ingly to understand the complex interplay of interest, as described among others in 
[40] and [41]. Such models were applied in the recent fight against the COVID-19 
pandemic as well. 

Emergency and Crisis Management 
Šimic [42] provides examples on how the crisis staff community can learn from the 
military community when using constructive simulation systems as a collaborative



4.3.2 Serious Games
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learning tool. Again, the constructive simulations of crisis situations comprising 
various personnel and equipment applicable to cope with these crises are in the 
center of the approach. Such applications are not yet as common as in the military 
domain, but the numbers of examples of successful use of constructive simulation 
are growing, as the scholastic community starts to engage more in this new 
application field [43]. Here are some examples. 

Planning and evacuation [44] is an endeavor that requires the orchestration of 
many organizations that usually do not work or train together daily. First respon-
ders, like fire departments and police, should know how to direct people from the 
danger zones. Neighbored cities must align their evacuation plans to avoid that one 
community uses a route for evacuation that another community reserves for quick 
responder movement and therefore blocks for standard traffic. Providing a realistic 
environment is key for success. Hurricane evacuations in coastal areas must react 
timely to flooding within the evacuation area: Are the evacuation routes still 
passable? Can hospitals still be reached? A good constructive simulation provides 
such challenges to the trainees in form of geospatial representations as well as 
simulating the related effects when simulating actions. 

Emergency with mass casualties [45] often require the collaboration of different 
organizations, from security forces safeguarding the emergency are, hospitals being 
prepared to accept certain numbers of patients and communicating their pre-
paredness, ambulance crews with the best equipment are directed to the victims in 
need and to the hospitals prepared to accept patients, etc. Using constructive 
simulation to prepare these crews, e.g., in case of a high-speed train accident or a 
bomb attack on a crowded sports event, will increase the awareness, preparedness, 
and communication between the various organizations. 

In his seminal paper, [46] defines a serious game as “a mental contest, played with a 
computer in accordance with specific rules that use entertainment to further gov-
ernment or corporate training, education, health, public policy, and strategic com-
munication objectives.” While traditional computer games are focusing on the 
story, presenting art, and software development challenges, serious games add the 
challenge of pedagogy. In other words, the main purpose is no longer entertain-
ment, but teaching a skill needed for real-life tasks. 

As in many of the other sections, the defense domain was among the strong 
supporters [47], and serious gaming has a secure place since 2006 as the Serious 
Games Showcase & Challenge (SGS&C) during the annual Interservice/Industry 
Training, Simulation and Education Conference (IITSEC), but as shown in [48] 
many other industry and business domains are applying serious games for team 
building, communication, interpersonal skills, negation skills, creativity, as well as 
learning innovation, risk management, health and safety, and more.



Within the previous section, we already extended the application domains beyond
the traditional domain of defense and emergence response. Those were geared 
toward command centers that are in charge to orchestrate many different processes, 
be it the coordination of a military operation or the synchronization of humanitarian 
relief operations after a hurricane. 

One of the reasons to use gaming technology for training and education was the 
development of immersive, realistic graphics. While traditional simulations used 
maps and dashboard-like displays, serious games used 3D displays of the story. In 
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the military domains, Virtual Battle Space from the company Bohemia Interactive 
Simulations gained a lot of support for its realistic display and integration of artificial 
intelligence to create challenging opponents [49]. As the entertainment industry 
provided significant resource for the development of these technologies for enter-
tainment, the serious gaming community could focus on the pedagogic elements. 

Serious gaming is today contributing to the body of knowledge with dedicated 
journals, such as Simulation and Gaming by SAGE Publications, but also in special 
issues of other simulation publications. As gaming and simulation are also taught 
together in high schools, this interdependence will likely become even more 
important in the future. 

4.3.3 Additional Application Domains of Interest 

With the increasing awareness how much complexity effects are decision-
making abilities, the use of constructive simulations to educate decision makers in 
coping with complexity becomes more and more popular. Rouse [39] proposes that 
decision makers must be able to immerse into the complex problem space. They 
also need to have controls at hand easy enough to use them intuitively, but also 
powerful enough to evaluate their various options. Rouse uses the picture of a 
“decision makers’ flight simulator” to help to look at alternative courses of action 
and their results. This kind of policy evaluation has been identified as a helpful use 
of constructive simulation in various domains and received great popular visibility 
during the COVID-19 pandemic, where various models were used to evaluate the 
effectiveness of interventions, see, e.g., [50] or [51]. 

Another topic of interest is climate change and its effects. Constructive models 
can link the effects of climate change and the effects of possible policy decisions 
and show the result to provide immediate feedback to the decision makers. Using 
the latest insights from computational social sciences, artificial societies can now be 
created that let agents act based on insights how humans perceive situations and 
make decisions from cognitive and psychological perspectives. This opens even 
more application domains, such as questions of social justice, equity, and others.
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4.4 Live Simulation 

Saikou Y. Diallo, Andreas Tolk. 

Modeling is as old as humanity. It is one of the ways we experience the world, teach 
our children, entertain ourselves, and maintain a link with our past. From the 
humanities to social sciences and the arts, models embody theories, ideas, concepts, 
and act as an effective means of communication. Live models should be quite 
familiar as we use them frequently to navigate our day. From parents modeling 
behaviors for their children, to actors role-playing in movies and the Theater, 
modeling is omnipresent in our life. 

Simulation modeling is essentially a mapping activity. Each map varies by person, 
activity, subject-matter, and objective. Mapping can be objective or subjective. It can 
be biased and instantaneous or follow strict rules over a long period of time. In some 
instances, mapping can be automated, discovered, or projected and in others it relies 
on ingrained and evolved processes that we are not even fully aware of. Mapping 
helps us identify, classify orient, solve problems, and make decisions. 

In the context of this section, we understand live simulation as acting upon these 
concepts, purposefully placing individuals of groups into a realistic scenario to 
expose them to experiences needed to better cope with upcoming challenges while 
minimizing the danger that comes with practicing the behavior in its real setting, 
such as battle, emergencies, and accidents. 

4.4.1 Examples for Live Simulation 

Live simulation or live modeling is mostly used to train, practice, and rehearse with 
the goal of gaining and enhancing skills through lifelike experiences in a controlled 
environment. The argument can be made that this is likely the oldest form of 
applied simulation borne out necessity and a pragmatic approach required to sur-
vive a sometimes harsh environment. For example, we have archeological evidence 
that hunters practiced their aiming skills to ensure successful hunting expeditions 
from the earliest days on. According to Flavius Josephus, as quoted in [52], the 
Roman Army successfully used organized training regiments at the beginning of 
our common era: “Their battle-drills are no different from the real thing... It would 
not be far from the truth to call their drills bloodless battles, their battles bloody 
drills.” This gave the Romans a clear advantage, as many of the peoples they faced 
during their conquests learned the art of war on the job: they gathered community 
members fit for military service for battle in case of need and often had little chance 
against the well-practiced drills. 

It is no surprise that live simulation in a controlled environment became practice 
in many domains. Surgeons practiced on cadavers to learn where important organs 
are in the human body, so they did not create additional harm by wounding 
important organs during the surgery on life patients. Architects experimented with 
different building styles before building houses. Today, fire drills help building



occupants learn how to best escape a real fire; active shooter exercises help schools 
and other organizations to be better prepared for such emergency. As a rule, live 
simulation is best suited when people need to gain skills in a domain but cannot 
train on the job because it is impractical, too dangerous, or too expensive. In the 
next section, we present a few examples. 
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Military and Law Enforcement Domain 
The military examples of drills and maneuvers are provided among others [31]. As 
defined above, in these drills and maneuvers, soldiers behave like they should do in 
real warfare, but they are not in danger by real opposing forces. There may be an 
opposing force in place, but their goal is to educate the soldiers, not to kill them in 
battle. They are today common practice in all defense forces and, as the next section 
shows, are increasingly made more realistic by borrowing methods from other 
simulation categories. 

Law enforcement personnel of local, state, and federal organizations practice 
their skills in live simulation environments, such as provided in the Federal Law 
Enforcement Training Centers (FLETC) in Glynco, GA. FLETC has multiple 
firearms ranges, including an indoor range complex with many separate firing 
points. Law enforcement officers do not only train the use of their firearms, but they 
are also put into realistic lifelike scenarios like hostage situations where they must 
decide of to engage using their weapons. Furthermore, driver training ranges, a 
physical techniques facility, explosives range, fully functional port of entry, and 
numerous other structures support the training effort. 

Medical and Healthcare Domain 
Medical simulation is also making use of life simulation. Cardiopulmonary resus-
citation (CPR) is a life-saving skill as many people as possible should have, and 
training for it requires drills in a controlled environment. Usually, mannequins are 
used to practice CPR to be prepared in case of need. A recently conducted study 
[53] indicates that simulation-based CPR training programs are effective in 
improving knowledge and performing CPR, as well as in decreasing stress of CPR 
in clinical nurses. Medical personnel are also trained by human actors who describe 
their simulated symptoms to the trainees, described beside other means by [54]. The 
live actors are using increasingly supplemental devices to provide additional sim-
ulated hints on the source of the symptoms. An additional example is the use of 
simulated hospitals, such as used in the Center for Simulation and Education 
Enhancement of the Health branch of the University of California in Davis. In a 
realistic setting, nurses practice CPR, assist in operation rooms, and have to take 
care of multiple patients with different symptoms and needs at the same time. 

Management, Theater, and Entertainment 
Many organizations provide employees regular training on how to behave legally 
and ethically to provide a safe and comfortable workplace for everyone. The 
training usually involves some live simulation where the employees are exposed to 
representative scenarios and vignettes that model key situations. In addition,



employees might participate in might participate in team-building exercises that at 
their workplace or during a retreat. These exercises often involve some form of live 
simulation where role-playing in a simulated context helps make a point or stress 
key aspects of teamwork. 
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Similarly, theater is used in schools to teach children social, cultural, and his-
torical aspects of life in society. In those cases, children are often asked to play 
archetypical roles where they embody an ethos. The group lead by a teacher is then 
asked to critique, explain, and discuss the situations represented in the play thereby 
simulating key situation and hopefully understanding the key concepts embodied in 
the play. The entertainment industry also relies heavily on live simulation to 
practice key aspects of their craft such as positioning, lighting and live rehearsal to 
ensure an effective delivery of the final product. 

4.4.2 Live Simulation in the Context of LVC Architectures 

The term “live simulation” became popular as part of the so-called live–virtual– 
constructive federation. It can be traced back to the 1993 Report of the Defense 
Science Board [55], which was tasked in a summer study to evaluate the impact of 
advanced distributed simulation on readiness, training, and prototyping for the 
armed forces of the United States. The defense community provides the following 
definitions, such as in the United States Department of Defense in the Modeling and 
Simulation Glossary (2014). The definitions are captured in Table 4.2 as well. They 
are applicable to the broad simulation community and by no means limited to the 
defense domain. 

Live—A simulation involving real people operating real systems. Military 
training events using real equipment are live simulations. They are considered 
simulations because they are not conducted against a live enemy. 

Virtual—A simulation involving real people operating simulated systems. 
Virtual simulations inject a Human-in-the-Loop into a central role by exercising 
motor control skills (e.g., flying jet or tank simulator), decision-making skills (e.g., 
committing fire control resources to action), or communication skills (e.g., as 
members of a C4I team). 

Constructive—A simulation involving simulated people operating simulated 
systems. Real people stimulate (make inputs to) such simulations but are not 
involved in determining the outcomes. A constructive simulation is a computer 
program. For example, a military user may input data instructing a unit to move and 
to engage an enemy target. The constructive simulation determines the speed of

Table 4.2 Live–virtual– 
constructive simulation 
categories 

Live Virtual Constructive 

People Real Real Simulated 

Equipment Real Simulated Simulated 

Environment Controlled Virtual Synthetic



movement, the effect of the engagement with the enemy, and any battle damage that 
may occur. These terms should not be confused with specific constructive models 
such as computer-generated forces (CGF), a generic term used to refer to computer 
representations of forces in simulations that attempts to model human behavior. 
CGF is just one example model being used in a constructive environment. There are 
many types of constructive models that involve simulated people operating simu-
lated systems.
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The environment is real but controlled for live simulation. For simulators, i.e., 
virtual simulators, the environment is virtual: implemented as a situated environ-
ment for the simulator and presenting it often in detail as an immersive represen-
tation. This immersive component is not always needed for constructive simulations 
but can be utilized, e.g., when the video-stream of a simulated drone through 
synthetic terrain and simulated enemy systems must be shown to live audiences. 

When building a composition of simulation systems from all three categories, 
some additional challenges must be addressed.

. LVC architectures require real-time simulations. Live participants with their real 
systems in their controlled but real environment cannot execute tasks faster than 
real-time, nor is it tolerated having to wait for slower-than-real-time simulation 
results too often, as that will contradict the training objectives.

. The controlled environment of life simulation cannot be controlled by virtual or 
constructive simulation results. A bridge in the real world is not destroyed by a 
simulated attack, and virtual bombing campaigns do not leave craters in landing 
strips of airports. However, the use of extended reality (see next paragraph) can 
support better alignment. 

4.4.3 Enhancing Live Simulation with Augmented Reality 

The recent developments in extended reality (XR), such as defined by Hillmann 
[56], which combines immersive techniques of virtual reality (VR)—lifelike display 
of virtual environments—and augmented reality (AR)—the lifelike display of 
synthetic objects overlayed into real world—are blurring the limits between the 
three simulation categories. Life soldiers participating in a maneuver wearing AR 
glasses displaying enemy troops that are simulated in a constructive simulation is an 
example using elements from all three categories. These recent developments 
support the original goal of live simulation: to gain or enhance operational skills by 
real-lifelike experiences in a controlled environment. We are just using new 
simulation-based methods to enhance this even further in all domains, as surgeons 
operating on realistically reacting cadavers or mannequins benefit from these 
developments as much as air traffic controllers having to react to hazardous situ-
ations realistically presented to them via all senses.
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4.4.4 Ethical Constraints and Conclusion 

We close this section with a discussion on the ethical considerations associated with 
live simulation. It is important to recognize that humans operate on a physical, 
cognitive, and socioeconomic spectrum. Modelers share the responsibility of 
ensuring that models capture the spectrum of stakeholders impacted by the solution 
they are designing. This is especially true for live simulations since it relies on the 
physical and cognitive abilities of the participants. As a result, it is essential to 
follow an ethical, inclusive, and traceable modeling process where bias is recog-
nized, managed, and disclosed. The modeling process for live simulation requires 
obtaining information from stakeholders to gain insight into their perspectives on a 
situation. It is also essential to consider those who are impacted by the models as 
part of the stakeholder group. Without those considerations, the simulation will 
miss key insights and will not be sable by some segments of the stakeholder 
community. An inclusive design tied to ethics in modeling is even more important 
to ensure that people of all spectrums (visual, hearing, etc.) are accounted for in the 
definition of the problem space. We also reiterate the need to be multidisciplinary 
and seek expertise where it exists. Modeling is a team effort that requires 
subject-matter experts, modelers, and analysts to collaborate. The teams need to be 
diverse and inclusive as much as possible to account for the diversity in experience 
and background found in society. We recommend actively seeking diversity as 
another way to account for the bias inherent in modeling. 

Although live simulation predominantly has been seen as training of physical 
skills, the domain is widening to social and even cognitive skills. New technologies 
can provide a nearly lifelike experience, immersive environments so real that our 
brains can hardly cope with the difference of live simulation and reality. This leads 
to tremendous opportunities, but also a great responsibility of the simulation experts 
supporting such endeavors to avoid manipulation of the participating individuals or 
groups. 
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Abstract 

This chapter of the SCS M&S Body of Knowledge describes scope, 
terminology, and applications of simulation in the context of gaming for health, 
education, business, transportation, environmental challenges, and sports. 
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5.1 Scope 

Rodrigo Pereira Dos Santos, Esteban Clua. 

According to Salen and Zimmerman [1], a game is a system in which players engage 
in fictional conflicts, operated by well-defined rules, resulting into an objective or 
quantifiable outcome. A digital game has the same definition, but it operates into a 
virtual world and environment. Typically, this system simulates different scenarios, 
inspired by real or completely fictional contexts. In any case, it is possible to assume 
that any game is and requires a simulation [2]. However, while entertainment games 
have as its main objective to entertain, a simulation system intends to create and 
operate a specific situation, not necessarily aiming to bring fun. 
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Therefore, it is comprehensible that the terms “game”, “simulation”, and  “simu-
lation game” have been explored by researchers and practitioners over the years, even 
though a common sense on their precise meanings is a challenge for quite some time 
[3]. Some features are explored or even required in games and, consequently, in 
simulation game: (1) technological and mathematical elements, (2) arts and design 
concerns; (3) cultural aspects; (4) focus on application domains; and (5) game ele-
ments such as participants, roles, rules, competition, and cooperation [4]. Other fea-
tures refine the definition of simulation games based on the simulation background: 
(1) real-world system representation, (2) rules and strategies for evolving flexible and 
variable activities; and (3) low cost of error with no critical consequences or losses [5]. 

The entertainment and engagement aspect of games brings important features 
related to the learning and understanding process. A game is interactive and 
requires actions of the player, who is the protagonist of the system. As such, the 
simulation only flows when a user is doing the required tasks and the player is also 
protagonist of his/her comprehension process, drastically enhancing the capacity of 
teaching [6]. For this reason, making simulation systems with game elements 
creates enhanced and powerful educational systems. 

In some contexts, simulation and serious games can be seen as a combination of 
game features and simulation features [7]. Within this scope, gamification became 
an important topic, in which elements of games (e.g., rules, storytelling, challenges, 
etc.) are incorporated into “serious” or real case simulations or processes [8]. 

Despite any blurred frontier, the preparation of (and participation in) a simula-
tion game can support a better understanding of a real-life situation, then enhancing 
participants’ knowledge and skills, even in the case of simulation for entertainment 
[9]. It is worth highlighting that the use of many game elements in simulation 
games varies according to the application domain. An example is presented in a 
recent systematic literature review on students’ experiences in learning clinical 
reasoning based on simulation games, in which self-developed instruments used to 
assess experiences were found, but most of them were poorly validated [10]. 
Moreover, results of another systematic review on the transportation domain show 
that the existing studies used to reproduce real environments through simulation 
games. To do so, such games combine achievement (challenges and points), 
immersion (role playing), and social (cooperation) resources [11]. As such, simu-
lation games have been played by experienced gamers because such games require 
some time for familiarity to be not only accessible, but also enjoyable [12]. 

More recently, another important topic related to the field is receiving special 
attention: the creation of metaverses or Digital Twins. Due to the big number of 
tools and resources available for modeling virtual scenarios for games and simu-
lations, the process of creating virtual clones of real elements (e.g., real cities, oil 
and gas platforms, vehicles, human bodies, etc.) is growing fast. This will allow the 
availability of complex simulations to many areas and application domains. NVI-
DIA Omniverse [13] and Microsoft Azure Digital Twins [14] are examples of 
powerful tools that are already commercially available. In the near future, it is 
expected that almost all factories, big corporations, and complex scenarios will have 
their virtual clone, allowing to simulate any kind of situation and process.
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Given the evolving nature and challenges on development and use of simulation 
for the past decades, different areas have explored games in the topic, for example: 

. “Organizational Simulation”, covering aspects from modeling and simulation to 
games and entertainment [15]; 

. “Ecosystem Simulation”, covering strategies to improve quality of life in the 
world based on analysis of trade-offs, e.g., a better environment and food pro-
duction, despite the potential limitation of simplifying scenarios [16]; 

. “Discrete-Event Simulation”, covering research and learning on modeling and 
simulation (M&S) in queueing systems, not only with real application in biol-
ogy, chemistry, physics, and statistics, but also considering entertainment [17]; 

. “Software Engineering Simulation”, covering education and training of software 
company management on teams, projects, products, and customers with the 
benefits of fun and entertainment, from conception to completion of the software 
development process [18, 19]; 

. “Information Systems Simulation”, covering simulation games for explaining 
and exploring case studies in some dynamic, contemporary actions such as 
digital marketing, given the previous successful adoption [20]. 

The potential of simulation games in those areas (and others) depends on active 
collaboration and interaction among players, especially due to the fact that humans do 
not learn from their own exposure to (or experience with) complex relationships from 
real-world scenarios [5]. In this direction, simulation games used to be more effective 
than other instructional methods, considering the intertwined affective and cognitive 
processes, so that its use in education is highly recommended to develop skills [21]. 
Moreover, augmented reality can enrich simulation games in their ability to connect 
educational content and the physical world, balancing and managing resources [22]. 
This combination is indeed confirmed by several studies published in the journal 
Simulation and Games from the end of 1960s [23]. A similar scenario was reported in 
the context of business simulation games from 1950s, in which seven key dimensions 
should be considered: realism, accessibility, compatibility, flexibility and scale, 
simplicity of use, decision support systems, and communication [24]. 

Finally, some effects of simulation game preferences relate to different game 
player profiles, e.g., age, gender, background, etc., [25]. Trade-offs between 
faithfulness to reality, simplicity, and fun factors should also affect players, for both 
card-based and automated approaches [18]. Other issues to be considered from 
game players are as follows: first adoption experience, objectives for use, 
achievements, information search, game evolution, etc., [26]. Additionally, simu-
lation games are more effective if players should develop decision-making abilities 
for managing complex and dynamic situations [27]. In the engineering domain, for 
instance, their use maximizes the transferability of academic knowledge to the 
industry, since “what-if” analyses can explore different (sometimes non-feasible) 
solutions based on a “practice in safety” approach [28].
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5.2 Terminology 

Rodrigo Pereira Dos Santos, Esteban Clua. 

Attributes [3]: It consists of characteristics or specific properties used to describe an 
element. For example, in the educational domain, some game attributes are player, 
conflict, rules, goal, artificial character, and educational character. In turn, some 
educational simulations attributes are a model of reality (system), dynamic-
simplified-valid, and an educational purpose. Finally, as a combination, educational 
simulation game attributes are a simulation, players in competition or cooperation, 
rules, and educational character. 

Concept [24]: A simulation game focuses on a specific area of an application 
domain. As such, a concept of simulation refers to such area. For example, in a 
business simulation game, a concept can focus on traffic management, advertising, 
sales, human resources, etc. This allows more precise analyses on players’ 
behaviors based on mental models and cognitive mapping as well as simulation 
game effectiveness [29]. 

Design [11]: It is a step that focuses on the identification of the most relevant 
decisions to be implemented. In addition, simulation game design aims to improve 
solutions and cope with complexity. As such, designers should analyze the pre-
defined goals as well as how to achieve them. For example, a multiplayer and 
cooperative simulation game explores shared situational awareness, whereas a 
single player simulation game explores achievement-based resources in order to 
stimulate individual efficiency. 

Debriefing [9]: It refers to an important phase in the use of simulation games, in 
which participants are invited to link experiences from playing the simulation 
game and experiences from real-life situations. Some issues raised when 
designing a debriefing session are as follows: transfer of knowledge and skills, the 
simulation game’s design, context of the participants, individual and collective 
learning, facilitator’s knowledge of the simulation game, participants’ perceptions 
of the relation between simulation game and real life, and type of process 
(stepwise or cyclical). Three phases are involved: description, analysis, and 
application [30]. 

Digital Twin [31]: It addresses a virtual and digital model from a real object, 
process, or complex scenario, capable of simulating and recreating different aspects 
of its functionalities. It involves a collection of relevant digital artifacts including 
domain data, behavioral descriptions, life cycle details, and interface information. 

Gamification [8]: It involves incorporation of game elements, such as objectives, 
points, badges, challenges, storytelling, etc., into a process or system in order to 
include more engagement and lucidity for the participants.
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5.3 Applications 

Rodrigo Pereira Dos Santos, Esteban Clua. 

Health: Simulation games influence behavioral determinants (e.g., knowledge, 
attitudes, skills, etc.). As such, improving quizzes with role-playing and simulation 
games stimulates behavioral determinants and intense interaction. Therefore, some 
important factors in the health domain are different formats, user customization, 
levels of difficulty, and feedback. Some applications: (1) In sexual health, real-world 
activities are mimicked through accurate depictions of steps in that process, and 
opportunities are provided for practice in a safe gaming environment [32], (2) in 
mental health, interventions included simulation games to improve communication 
with patients with disorders, as well as significant improvements in knowledge and 
skill scores post-intervention [33], and (3) in child health care, group interventions 
for the prevention of injuries in young children based on simulation games [34]. 

Education: Given the large number of studies on simulation game in the educational 
domain, four elements are pointed out as success key factors: the role of an 
instructor, the integration in the context of a course, the technical specifications 
covered in the course, and the practical experience based on intense collaborative 
work [35]. In this context, improvements on virtual learning environments to 
support remote education have been performed, as several institutions evolved their 
strategies, especially considering the COVID-19 pandemic [36]. This scenario 
opens opportunities for integrating simulation games in the development and 
improvement of knowledge, skills, and competencies [37]. In addition, students 
learn more in their experience in simulation games if there is a personalized 
communication agent [38]. This is somehow crucial to avoid some level of bore-
dom and anxiety, which can negatively affect problem solving strategies [39]. 

Business: Referred as business simulation games (BSG), the goal is to explore real 
aspects of a business environment in order to assist beginners and experts in 
managing organizational activities and decision-making based on risk-free sce-
narios and on a view of strategic functions [40]. In this case, the use of an attractive 
and interactive approach to do so is relevant, including research on user experience 
and its effects on the participants from the perspectives of psychophysics, cognitive 
neuroscience, and computer science [37], even considering some natural simplifi-
cation [41]. In addition, over a decade, supporting a virtual team member to rec-
ognize colleagues’ knowledge, trust in colleagues’ expertise, and coordinate 
knowledge remains as a challenge [42]. Some measures in this context comprise 
team performance, disposition to trust, and trust itself [43], sometimes depending 
on the team members’ distribution [44]. 

Transportation: According to a recent literature review on the topic [11], the 
existing studies focus on implementing simulation games to cope with operational 
level issues regarding road and maritime transportation modes when improving 
freight transportation. From 40 studies analyzed in this context, simulation games



covered all decision-making levels, considering psychological (experience, per-
ceived reality/learning/usefulness, fun, engagement, motivation, satisfaction, and 
attitude) and behavioral (efficiency and resilience) issues. Some scenarios investi-
gated in the existing studies are supply chain and logistics operation management, 
development of a new area in a maritime port, shipping schedule and optimization, 
as well as profit maximization in road transportation. 
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Environment: Simulation game allow the investigation of coupled natural and 
human systems if exploring interaction between humans and the environment in 
which they live (or have interested in). For example, considering urban hydrology 
and air pollution, a player (e.g., mayor) can analyze people's actions and the built 
and nature environment, as well as their how such relations dynamically affect each 
other, in the geography and novel engineering curricula [45]. 

Sports: The assessment of intensity and energy cost of different modalities in sports 
is also explored in Simulation game, including different levels of difficulties as well 
as training and performance indications. For example, quantity/quality of exercise 
for developing and maintaining cardiorespiratory fitness ensuring a player’s safety 
is addressed in a dance simulation game, driven by recommendations of reference 
authorities on the subject [46]. 
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Abstract 

Providing the appropriate infrastructure for simulation is the topic of this chapter 
of the SCS M&S Body of Knowledge. It provides sections on various simulation 
standards, standard organizations, and compliance certificates. Publications of 
some applicable codes of best practices and lessons learned are provided as 
well as a section on resource repositories. The currently dominant standard 
Distributed Interactive Simulation (DIS) and High-Level Architecture 
(HLA) conclude the chapter. 
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6.1 Standards 

Margaret L. Loper 

Standardization involves the use of common products, processes, procedures, and 
policies to facilitate attainment of business objectives. Standardization is about 
enabling interoperability: a fundamental objective of all stakeholders, be they 
policy-makers, industrial players, or users. Numerous industrial initiatives in a 
variety of different economic sectors owe their success to a commitment of the 
stakeholders to join forces to agree on open specifications for interoperable systems. 
Since the earliest days of distributed simulation, standards have played a crucial 
role in achieving interoperability. 

The most widely used distributed simulation standards in place today are the 
Distributed Interactive Simulation (DIS) Protocol, the High Level Architecture 
(HLA), and the Test- and Training Enabling Architecture (TENA). There are 
various means to establish standards, and the communities responsible for these 
Live, Virtual, and Constructive (LVC) simulation standards have chosen different 
approaches. 

6.1.1 De Jure, De Facto, and Proprietary Standards 

There are three basic types of standards in existence today and prevalent in the IT 
industry:

. De Jure standard: endorsed by a standards organization (TechEncyclopedia 
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=de+jure 
+standard);

. De Facto standard: widely used, but not endorsed by a standards organization 
(TechEncyclopedia http://www.techweb.com/encyclopedia/defineterm.jhtml? 
term=defactostandard); or

. Proprietary standard: belongs to an entity that exercises control over the 
standard. 

The three types of standards are not orthogonal. There are cases where the lines 
between the types of standards may become blurred or combined. An example of 
blurring the lines between De Facto and proprietary standards is the two “stan-
dards” for High Definition DVD formats. Each standard is supported by a group of 
vendors, and the formats are incompatible. The expectation is that one of the 
proprietary standards will become the community De Facto standard for digital 
video recording, much like the battle some years ago between VHS and BETA 
formats. An example of combining types of standards is the BMD benchmark 
environment used by the Missile Defense Agency (MDA). The MDA simulation 
community has created an environment for its developers to benchmark new

http://www.techweb.com/encyclopedia/defineterm.jhtml?term=de+jure+standard
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=de+jure+standard
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=defactostandard
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=defactostandard


algorithms and components. The environment, considered an MDA standard, is 
based on the proprietary MATLAB environment. Thus, MDA has created De Facto 
standards which use proprietary standards as its foundation. 
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6.1.2 Open Standards 

Open standard is another term often used when discussing standards. An open 
standard is more than just a specification; the principles behind the standard and the 
practice of offering and operating the standard are what makes the standard Open. 
The term “open standard” may be seen from perspectives of its stakeholders (“Open 
Standards Requirements”, Ken Krechmer, http://www.csrstds.com/openstds.pdf:

. Organizations representing the standards creators consider a standard to be open 
if the creation of the standard follows the tenets of open meeting, consensus, and 
due process.

. An implementer of a standard would call the standard open when it serves the 
market they wish, it is without cost to them, does not preclude further innovation 
(by them), does not obsolete their prior implementations, and does not favor a 
competitor.

. The user of an implementation of the standard would call a standard open when 
multiple implementations of the standard from different sources are available, 
when the implementation functions in all locations needed, when the imple-
mentation is supported over the user-planned service life, and when new 
implementations desired by the user are backward compatible to previously 
purchased implementations. 

There are numerous definitions of an open standard by national standards bodies 
(http://en.wikipedia.org/wiki/Open_standard). The definition by Krechmer lists ten 
requirements that enable open standards. 

6.1.3 Standards Organizations 

A standards organization is any entity whose primary activity is developing, 
coordinating, promulgating, revising, amending, reissuing, interpreting, or other-
wise maintaining standards that address the interests of a wide base of users. There 
are two general types of standards organizations: standards developing organiza-
tions (SDO) and standards setting organizations (SSO). 

SDOs are formal organizations accredited to develop standards using open and 
transparent processes. Examples include the International Organization for Stan-
dardization (ISO) and the Institute of Electrical and Electronics Engineers (IEEE). 
SSOs refer to organizations that set what the market perceives as standards. The 
term “recognized SSO” refers to any SSO recognized directly or indirectly by a

http://www.csrstds.com/openstds.pdf
http://en.wikipedia.org/wiki/Open_standard


government entity. Consortia is the term used for SSOs that are not recognized 
SSOs. Examples of a “recognized SSO” include the World Wide Web Consortium 
(W3C) and the Internet Engineering Task Force (IETF). 
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6.1.4 M&S Standards Organizations 

M&S standards organizations can be classified into two types: government and 
commercial. Government refers to standards forums under US government control. 
These types of standards organizations are typically composed of systems engineers 
and technical leads of major DoD stakeholders of the architecture. They discuss 
requirements, design trade-offs, and issues associated with the architecture. These 
standards organizations also have contractor support that is responsible for archi-
tecture design and prototyping. Simulation-related standards that have been created 
using this approach include TENA. 

Commercial refers to standards created in open forums outside of government 
control. Examples of this include IEEE, SISO, International Organization for 
Standardization (ISO), and Object Management Group (OMG). These types of 
organizations are composed of users, vendors, academics, government organiza-
tions, and developers of the architecture. Like government forums, they discuss 
requirements, trade-offs, and other issues associated with the architecture. However, 
they do not have contractor support for architecture design and prototyping. Instead, 
these forums rely on members to develop prototypes and provide technical feed-
back on the architecture specifications. 

Another model of standards development that has been successfully used for 
LVC architectures is a combination of government and commercial organizations. 
This was demonstrated with the first set of HLA standards. The government was 
responsible for developing and evolving the early versions of the HLA specifica-
tions. This enabled DoD stakeholders to include requirements and provide technical 
feedback resulting from their programs. Once they reached a point of maturity, the 
HLA specifications were transferred to SISO and went through IEEE standard-
ization. The HLA standards were also taken to OMG to be standardized. Similarly, 
the Synthetic Environment Data Representation and Interchange Specification 
(SEDRIS) (http://www.sedris.org/ and http://en.wikipedia.org/wiki/Sedris) stan-
dards were initially developed as government standards and then taken to ISO for 
standardization. Using IEEE, OMG, and ISO enabled the standards to receive a 
broader commercial review. Simulation-related standards that have been created 
using this approach include DIS, HLA, and SEDRIS. 

There are two main standards developing organizations in the LVC community 
today: the Architecture Management Team, which develops TENA standards, and 
SISO, which develops DIS and HLA standards. In addition to these standards 
organizations, the DoD services each have a group responsible for coordinating 
standards use, both from developing object model content (i.e., FOMs) as well as 
endorsing standards that meet the requirements of their programs. These groups

http://www.sedris.org/
http://en.wikipedia.org/wiki/Sedris


have people that participate in the AMT or SISO, but they do not have formal 
representation nor formal requirements generation functions for these standards 
developing bodies. 
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There are also commercial standards organizations involved in developing 
specifications and standards for technologies related to LVC. For example, the 
Internet Engineering Task Force (IETF) develops communication standards, 
including security; the World Wide Web Consortium (W3C) develops web-related 
standards such as SOAP and XML; the OMG develops modeling standards such as 
UML, SySML, and UPDM; OASIS and the Open Group have developed specifi-
cations for the service-oriented architecture; and ISO has standardized SEDRIS. 
Thus, there is a hybrid approach to standards, encompassing standards and tech-
nologies from all IT-related organizations. However, there is little, if any, coordi-
nation among these standards development activities resulting in a stovepipe 
approach to standards management. 

6.1.5 Compliance Certification 

The overarching purpose of compliance certification to a standard is to ensure that 
products adhere to that particular standard. Compliance certification provides a 
level of security to users of compliant products and provides a level of assurance 
that certified products satisfy some set of requirements. Compliance certification is 
an important element of the standards process. 

Compliance certification may be defined as the act or process of determining 
compliance to a defined standard. The primary reasons for standards compliance in 
the M&S LVC domain are a greater probability of interoperability between simu-
lation assets and a greater probability for reuse of those assets in different config-
urations. A number of processes are in use today with existing LVC standards. 
Those processes range from very informal approaches such as checklists to formal 
compliance tests. Operational certification is most often associated with verification 
and validation however. 

6.2 Code of Best Practice 

Tuncer Ören. 

“The set of best practices recommended for use for any MS&A application 
includes: 

1. conceptual modeling practice, 
2. innovative approaches, 
3. software engineering practice, 
4. model confidence/ verification, validation, and accreditation (VV&A), 
5. use of standards,
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6. interoperability, 
7. execution performance, and 
8. user-friendliness and accessibility” [1]. 
9. country modeling [2], 

10. military and business [3, 4], 
11. networks [5], 
12. participatory modeling [6], and 
13. railways [7]. 

Code of best practices for: Crash modeling and simulation [8], engineering 
applications [9, 10], healthcare [11, 12], homeland security applications [1], and 
modeling and simulation [13, 14]. 

6.3 Lessons Learned 

Tuncer Ören. 

The following list comprises seminal papers comprising lessons learned from 
selected application domains. 

6.4 Resource Repositories 

Valdemar V. Graciano Neto and Cláudio Gomes. 

The multiplicity of Modeling and Simulation (M&S) formalisms and simulation 
paradigms is high. That diversity often forces researchers to produce their own 
simulation models from scratch every time they initiate a new project due to dif-
ficulties in reusing existing models. Those difficulties range between (i) not 
knowing whether similar models already exist, (ii) differences in formalisms, even 
when models were produced for a similar domain, and (iii) lack of documentation 
about how to use such models. The Modeling and Simulation Resources Reposi-
tories (MSRR), also known as resource libraries or suites, have potential to foster 
reuse by gathering a diversity of resources in a unified access point. Resources (also 
known as assets or artifacts) such as models (simulatable or not-simulatable [15]), 
experimental frames, pairs of base and lumped models [16], specifications of 
physical environments and scenarios, datasets, composable simulation components 
and simulation services can be made available to a large audience [17]. Models 
capturing specific domains can be available in several formats, such as XML, UML, 
or DEVS, and model transformations can also be available to transform 
non-executable models into simulatable formats. 

Sharing and exchanging models have the potential to accelerate the systems 
development. Efforts have been made, for instance, to standardize the representation 
of physical system models, through languages such as Modelica [18], and interfaces



such as the Functional Mockup Interface (FMI) standard [19]. Modelica standard 
library is a collection of modular physical system models and common block 
diagram elements enabled by the Modelica Language, while FMU Cross Check 
Repository is a collection of black box simulators exported from different modeling 
and simulation tools. The Modelica standard library allows a researcher to quickly 
create a model for a physical system by reusing pre-existing components in the 
standard library. The FMI standard, in turn, through its black box and Intellectual 
Property (IP) protecting interface, enables an unprecedented level of integration of 
models (as black boxes) provided by different and even competing suppliers. 
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These advances democratize M&S by making it cheaper to produce high-quality 
models of the system, which in turn can be more easily exchanged with researchers. 
Smaller companies and universities can then reap the benefits of M&S, speeding up 
innovation. Another advantage brought by resources repositories is that they enable 
benchmarking. For instance, researchers who create a new machine learning 
technique can apply it to many freely available datasets. Over time, benchmarks 
emerge when researchers are expected to tackle their contributions. This leads to 
more mature contributions and easy comparison with existing ones. 

Ideally, a resource repository should be capable of: Catalog/index/organize the 
resources stored, persist, and allow for resources search and retrieve, resource 
management, and resources delivery through well-defined interfaces, resource 
stores (analogous to application stores), and as services (simulation as a service, for 
instance) [20]. Resources repositories are common in other areas, such as software 
engineering [21, 22] and biology [23]. MSRR have also been proposed over the 
years [24–26] (https://ntrs.nasa.gov/citations/20060023324). 

However, several challenges still remain, such as a standardized representation 
in order to enable their existence. This is hard to be achieved due to the diversity of 
formalisms, which can be categorized as [27–31]:

. Time Domain—The time can be a singleton (e.g., algebraic equations), a con-
tinuous set (e.g., Ordinary and Algebraic Differential Equations), discrete set 
(e.g., Difference equations, Petri-nets, Automata), or superdense set (e.g., Hybrid 
Automata and Classic DEVS). In Superdense time [32–34], each time point is a 
pair consisting of a real number and a natural.

. State Domain—The state domain can be a continuous set (e.g., ODEs and 
DAEs), a discrete set (e.g., Petri-nets), or a mix of both (e.g., DEVS and Hybrid 
Automata).

. Behavior Trace—The behavior trace can be discontinuous (e.g., DEVS and 
Hybrid Automata), and continuous (e.g., ODEs and DAEs).

. Causality—Models can be a-causal, when they can be coupled to other models 
without any notion of inputs and outputs (e.g., DAEs), or causal, when outputs 
need to be connected to inputs and vice-versa (e.g., DEVS and Difference 
Equations).

https://ntrs.nasa.gov/citations/20060023324
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. Evolution—The evolution of the state can be deterministic (e.g., DEVS), 
stochastic (e.g., Markov Chains), or non-deterministic (e.g., Hybrid Automata). 
To overcome these difficulties, the following suggestions have been made in the 
literature to conform different formalisms to make them be coupled [35]:

. Super Formalism—The formalisms used to express each model are unified into 
one single formalism, with well-defined syntax and semantics. This is what is 
done in [36, 37]. Other examples include: timed Petri-nets, Markov chains, etc.

. Common Formalism Reduction—The models are transformed into a model that 
is expressed in a single formalism. The “common” adjective refers to the fact 
that each model can be transformed into a restricted set of formalisms. Hence, 
one formalism must be found to which all models to be integrated can be 
transformed. For example, differential equations can be used to represent the 
model of a PID controller sampling a plant model. The latter was originally 
modeled as a differential equation. More examples are detailed in [35]. 

Co-simulation can be seen as taking the common formalism reduction integra-
tion technique to the extreme, where models that produce behavior are coupled 
solely on their behavior (inputs/outputs, over time). However, automatically con-
figuring co-simulation can be very difficult [29, 38]. 

For more challenges and potential solutions to establishing model repositories, 
we recommend the following references. Basciani et al. [23] established a discus-
sion on the reality of resource repositories some years ago. Zeigler et al. [20] show 
how to build a model suite relying on the MS4 Me tool and Ören [17] presents 
requirements necessary to achieve reuse through MSRR. 

6.5 Distributed Interactive Simulation (DIS) 

Ernest H. Page, Margaret L. Loper. 

For nearly a half-century, the defense simulation community has explored, devel-
oped, and applied technologies and methods that support the runtime interoperation 
of simulations and other systems. Major milestones in this history are:

. DARPA Simulator Networking (SIMNET) program [39–42]

. Distributed Interactive Simulation (DIS) protocol [43–47]

. Aggregate Level Simulation Protocol (ALSP) [48, 49]

. High Level Architecture (HLA) for Modeling and Simulation [50], and

. Test and Training Enabling Architecture (TENA) [51] 

Within this M&SBoK, we highlight DIS and HLA. But a brief discussion of 
SIMNET is warranted to establish the context for each of these distributed simu-
lation standards.
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6.5.1 Simnet 

Shortly after the development of the ARPANET, DARPA initiated the SIMNET 
program to investigate the feasibility of using networked simulators to support 
group training (also referred to as collective training) at large scales and at great 
distances. The SIMNET vision was a large-scale, interactive, collection of 
networked simulations forming a synthetic environment that could be entered by 
any authorized combatant from anywhere on the network using his/her simulator as 
a porting device. The initial project scope called for a simulator networking testbed 
with four geographically distributed sites hosting 50–100 vehicle simulators each, 
with a focus on slower-moving ground-based platforms, e.g., tanks and armored 
personnel carriers. The project required technological advances in a variety of areas, 
including image generation, distributed databases, and real-time network protocols. 
Key design principles for SIMNET included:

. Selective fidelity. In order to minimize simulator costs, a simulator should only 
contain high fidelity representations of those elements essential to the training 
task. Everything else should be represented at lower fidelities, or not all.

. Autonomous simulation nodes. Each node is responsible for maintaining the 
state of at least one object in the synthetic environment, and for communicating 
to other nodes any events caused by its object(s). Each node receives event 
reports from other nodes and calculates the effects of those events on its objects. 
All events are broadcast on the simulation network and are available to any node 
that is interested. There is no centralized controlling process. Nodes may join 
and leave the network without affecting other nodes. Each node advances sim-
ulation time according to a local clock.

. Transmission of ground truth data. Each node transmits the absolute truth about 
the current state of the object(s) it represents. Alteration of data to suit simulation 
objectives is the responsibility of the receiving node. For example, the position 
of a vehicle is broadcast to the network with 100% accuracy. If an object in 
another simulator determines that it would perceive the vehicle through a par-
ticular sensor, with an accuracy determined by the alignment of the sensor and 
current weather conditions, then the receiving simulator should degrade the 
reported position accordingly.

. Transmission of state change information. To minimize network loading, nodes 
transmit state update information only. To accommodate late-joining nodes and 
networks with high packet loss, this rule is often relaxed. In these situations, 
nodes send periodic (but relatively infrequent) updates for each owned object 
regardless of whether or not their state changes. This update interval is known as 
the “heartbeat.”

. Dead reckoning. Between state update messages, receiving nodes may extrap-
olate the last reported state of remote objects that are of interest. To keep the 
extrapolated values and actual values roughly aligned, the sending node main-
tains the same approximation used by the receiving node(s) and transmits a state



update whenever the true position (or orientation) of an object diverges from the
calculated dead reckoned values by more than an agreed-upon threshold. Lin
[ ] and Fujimoto [ ] discuss common dead reckoning algorithms.5352
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SIMNET was adopted by the Army as the basis for the Combined Arms Tactical 
Trainer (CATT) in 1990 and continued to be used in a variety of programs until 
supplanted by the DIS standard. SIMNET has been identified as one of the most 
significant transitions of technology from DARPA to DoD [40]. 

6.5.2 Origins of the DIS Protocol 

Recognizing the importance of the SIMNET program and concerned that activity 
related to networked simulation was occurring in isolation, a small conference was 
held in April 1989 called “Interactive Networked Simulation for Training.“ The 
group believed that if there were a means to exchange information between com-
panies, distributed simulation technology would advance more rapidly. The group 
also believed that technology had stabilized enough to begin standardization. The 
conference developed into the Distributed Interactive Simulation (DIS) Workshops. 

Through these workshops, networked simulation technology and the consensus 
of the community were captured in proceedings and standards. The standards ini-
tially focused on SIMNET, but evolved to include a broader range of technology 
areas. DIS Workshops were held semi-annually from 1989 through 1996. In 1996, 
the DIS Workshops transformed itself into a more functional organization called the 
Simulation Interoperability Standards Organization (SISO), which focused on 
creating standards for the broad area of simulation interoperability. The first Sim-
ulation Interoperability Workshop (SIW) held under the SISO banner was the 1997 
Spring SIW in Orlando. SIWs have continued since 1997, holding some workshops 
at various locations in Europe. 

The Distributed Interactive Simulation (DIS) protocols became the Institute of 
Electrical and Electronics Engineers (IEEE)1278.1 standard in 1993. The funda-
mental design principles for DIS follow directly from SIMNET, and much of the 
standardization effort focused on extending the basic SIMNET communication 
structure—the Protocol Data Unit (PDU)—a bit-encoded packet for communicating 
entity state and other types of information necessary for distributed combat simu-
lations, e.g., weapons fire and weapons detonation events. 

Like SIMNET, DIS was designed to support the internetworking of simulations 
that run in real-time. Whereas SIMNET had achieved the ability to support rela-
tively small numbers of concurrently running simulators representing platoon and 
squad-sized engagements, the vision for DIS was to support the interoperation of 
thousands of simulators/simulations and scale to a military campaign level (tens to 
hundreds of thousands of battlefield entities). This appetite for scale led to a bur-
geoning market in Semi-Automated Forces (SAF). SAFs—a concept initiated 
within SIMNET—were used to populate synthetic environments with background 
objects that behaved in a “reasonable” way [46]. They were dubbed



“semi-automated” because human intervention was often required to make the 
modeled entities maintain their reasonable behavior. However, the power and utility 
of SAFs were recognized very quickly. Entity behavior in SAFs became the focus 
of numerous conferences, workshops, and texts. SAFs were a ripe area for research 
in Artificial Intelligence engines such as Soar [54]. DIS-supported simulation 
environments consisting entirely of SAFs became commonplace. 
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One of the lasting contributions of the DIS Workshops was the definition of 
Live, Virtual, and Constructive (LVC) simulations. This taxonomy categorizes 
simulations by the way in which humans interact with them. Live simulation refers 
to real people operating real systems (e.g., a pilot flying a jet) for a simulated 
purpose. A virtual simulation is one that involves real people operating simulated 
systems (e.g., a pilot flying a simulated jet). Constructive simulations are those that 
involve simulated people operating simulated systems (e.g., a simulated pilot flying 
a simulated jet). 

6.5.3 DIS Today 

The goal of DIS is to create a common, consistent simulated world where different 
types of simulators can interact. Central to achieving this goal is a set of IEEE 
standards. The most commonly used standard is 1278.1, which describes the 
PDUSs. The first DIS standard defined 10 PDUs; the most recent standard, DIS 7, 
was published in 2012 and defines 72 PDUs arranged into 13 families. The 
approved IEEE Standards for DIS include:

. IEEE 1278.1—Application Protocols

. IEEE 1278.1A—Enumeration and Bit-encoded Values

. IEEE 1278.2—Communication Services and Profiles

. IEEE 1278.3—Exercise Management & Feedback (EMF)

. IEEE 1278.4—Verification Validation and Accreditation

. IEEE P1278.5—XXXX—Fidelity Description Requirements (never published). 

In addition to the IEEE standards, SISO maintains and publishes an “enumer-
ations and bit-encoded fields” document yearly. This document is referenced by the 
IEEE standards and used by DIS, TENA, and HLA. 

From an implementation perspective, simulation owners either custom-develop 
DIS interfaces or buy commercial products. There is also an open-source initiative, 
Open-DIS, to provide a full implementation of the DIS protocols in C++ and Java 
[55]. 

There have been numerous DIS federation events over the last 25 years. Two 
examples are “bookend” LVC events presented at the Interservice/Industry Train-
ing, Simulation and Education Conference (I/ITSEC). Twenty-three years spanned 
the two events, and while technology has progressed, some aspects have not pro-
gressed as quickly as we might think. The 1992 event was the first-ever



demonstration of DIS and distributed simulation among dissimilar, heterogeneous 
simulations [45]. The 2015 event was an effort to recreate the demonstration with 
modern technology and architectures [56]. 
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6.6 High Level Architecture (HLA) 

Ernest H. Page, Margaret L. Loper. 

By 1995, the evidence was clear that interconnecting simulations could be of 
practical value. SIMNET provided an efficient and effective mechanism for linking 
man-in-the-loop simulators. DIS extended SIMNET and provided scalability to 
many thousands of entities in SAF-based exercises. Another DARPA project, the 
Aggregate Level Simulation Protocol (ALSP), developed a capability to intercon-
nect “logical time,” e.g., discrete event, simulations [49]. Also by this time, many 
defense simulations had interconnection interfaces—some SIMNET, some DIS, 
some ALSP, some “homegrown,” and some had multiple such interfaces. To 
mitigate against the proliferation of interconnection approaches, the DoD, through 
the Defense Modeling and Simulation Office (DMSO) and SISO, began developing 
a standard for simulation interconnection known as the High Level Architecture 
(HLA). The HLA was envisioned as an approach to bridge live, virtual, and con-
structive simulations in one architecture, representing a generalization and exten-
sion of SIMNET, DIS, and ALSP. The HLA architecture is defined by three 
components:

. An Object Model Template—a common model definition and specification 
formalism,

. An Interface Specification—a collection of services describing the HLA runtime 
environment, and

. The HLA Rules—governing compliance with the architecture. 

The HLA standards began in 1995 under a government standards process 
managed by DMSO. The DoD adopted the baseline HLA architecture in 1996 and 
the standards were moved to an open standards process managed by SISO. The 
IEEE standards for HLA, first approved in 2000 and updated in 2010, include:

. 1516—Framework and Rules

. 1516.1—Federate Interface Specification

. 1516.2—Object Model Template (OMT) Specification

. 1516.3—Federation Development and Execution Process (FEDEP) Recom-
mended Practice

. 1516.4—Recommended Practice for Verification, Validation, and Accreditation 
of a FederationAn Overlay to the HLA FEDEP
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The HLA was conceived to have applicability across the full range of defense 
simulation applications, including those used to support training, mission rehearsal, 
analysis, and test and evaluation. 

At core of HLA is the notion of a federation. A federation is a collection of 
federates—simulations and other systems—that interoperate using the protocols 
described by the architecture. The HLA is based on the idea of separating the 
functionality of simulations from the infrastructure required for communication 
among simulations. This separation is accomplished by a distributed operating 
system called the Run-Time Infrastructure (RTI). The RTI provides common ser-
vices to simulation systems and provides efficient communications to logical groups 
of federates. Federation execution is accomplished through the RTI, which is an 
implementation of the services defined by the interface specification. 

In contrast to SIMNET and DIS, HLA includes time management services to 
support event ordering [57]. Both time stamp order, where messages are delivered 
to simulations in order of time stamp, and receive order, where messages are 
delivered to simulations in order received, are supported in HLA. While HLA 
provides global time management, use of these services is not required. Simulations 
can choose to advance time at its own pace, not synchronized with other 
simulations. 

In contrast to the static DIS PDUs, HLA uses the concept of OMTs to specify the 
information communicated between simulations. This enables users to customize 
the types of information communicated among federates based on the needs of the 
federation. A Federation Object Model (FOM), and instantiation of the OMT, 
provides the model specification and establishes a contract between the federates 
with respect to the nature of the activity taking place during federation runtime. 

In a typical federation execution, a federate joins the federation, indicates its 
operating parameters (e.g., information the federate will provide to the federation 
and information it will accept from the federation), and then participates in the 
evolution of federation state until the federate departs the federation, or the simu-
lation terminates. FOM data is provided to the RTI at runtime, enabling the 
infrastructure to enforce the information contract that the FOM represents. 

In 1996, HLA compliance was mandated for all defense simulations, with the 
intention that support for other protocols would cease [58]. To accommodate DIS 
applications the Real-time Platform Reference (RPR), FOM was developed which 
defines a translation between DIS PDUs and HLA services [59]. As with an earlier 
mandate of the programming language Ada, however, the “No Can Pay/No Can 
Play” HLA mandate was perceived as onerous and became too unwieldy to enforce. 

Distributed simulation architectures are designed to meet the needs of one or 
more user communities, and the design choices made by the HLA attempted to 
improve on perceived shortcomings of existing architectures [60]. The static nature 
of DIS PDU’s was identified as a significant problem; as the real world is always 
changing. A flexible object model capable of modeling changing data without 
having to continuously change the underlying standard was seen as a better 
approach. Allowing users to define their data exchange based on specific require-
ments using the OMT was seen as providing improved object model extensibility.



However, increased flexibility to the user also allowed users to independently 
develop a plethora of object models that were rarely interoperable. Additionally, 
HLA adopted an API Standard as opposed to an on-the-wire standard that allowed 
it to more rapidly adopt technological advancements in how data are transmitted. 
While this enabled commercial RTI developers the freedom to innovate and opti-
mize their RTI implementations, the result was non-interoperable RTIs. In practice, 
when disparate RTI versions are used in a given event, gateways or other 
inter-protocol translation mechanisms are used to bridge the federates. 
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Today, both HLA-compliant and DIS-compliant simulations abound. 
Since HLA separates the functionality of simulations from the infrastructure, it has 
had more success in being adopted by non-DoD applications, including NASA, 
transportation, and supply chain management. The existence of multiple architec-
tures means users will select the methodology that best meets their needs. This often 
results in multiple architectures being used in the same federation execution. In this 
case, incompatibilities between DIS, HLA, and TENA require the development of 
point solutions to effectively integrate the various architectures into a single, unified 
set of simulation services. The future of distributed simulation to solve and 
understand complex problems will rely on the development of simulation standards. 
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Abstract 

This chapter of the SCS M&S Body of Knowledge begins with a section on the 
types and sources of various errors, including an extensive list of relevant terms. 
The need for reliability leads to a section on validation as well as a section on 
verification. It is closed by a section on failure avoidance. 
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: an act involving an unintentional deviation from truth or accuracy

: an act that through ignorance, deficiency, or accident departs from or fails
to achieve what should be done
//an error in judgment: such as 

: the quality or state of erring
// the map is in error 

something produced by mistake
// a typographical error
especially: a postage stamp exhibiting a consistent flaw (such as a wrong 
color) in its manufacture 

a deficiency or imperfection in structure or function
// an error of metabolism.”
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7.1 Errors—Types and Sources 

Tuncer Ören 

7.1.1 Definitions 

The term “error” has the following meanings (Merriam-Webster-error: https://www. 
merriam-webster.com/dictionary/error): 

1: a. : an act or condition of ignorant or imprudent deviation from a code of 
behavior 

b. 
//made an error in adding up the bill 

c. 

(1) : a defensive misplay other than a wild pitch or passed ball made by a 
baseball player when normal play would have resulted in an out or prevented 
an advance by a base runner 

(2) : the failure of a player (as in tennis) to make a successful return of a ball 
during play 

d. : a mistake in the proceedings of a court of record in matters of law or of fact 
2: a. 

b. Christian Science: illusion about the nature of reality that is the cause of 
human suffering: the contradiction of truth 

c. : an instance of false belief 
3. 

4: a. : the difference between an observed or calculated value and a true value 
specifically: variation in measurements, calculations, or observations of a 
quantity due to mistakes or to uncontrollable factors 

b. : the amount of deviation from a standard or specification 
5. 

https://www.merriam-webster.com/dictionary/error
https://www.merriam-webster.com/dictionary/error
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7.1.2 Types of Errors 

Table 7.1 lists 360 types of errors. Some types of errors are not related with M&S. 
An example is medical errors (that result in deaths). A recent (2021 March) blog 
states that: “A recent study from Johns Hopkins suggests that medical errors are 
now the third-leading cause of death in the U.S., having surpassed strokes, Alz-
heimer’s, and diabetes. In addition, one in seven Medicare patients receiving care in 
a hospital are victims of a medical error. However, medical errors can occur in 
almost any healthcare setting including hospitals, clinics, surgery centers, medical 
offices, nursing homes, pharmacies, and patients’ homes. This post will explore the 
most common causes of medical errors” [1]. 

Considering useful and sometimes even vital contributions of M&S to many 
disciplines [2], it would be worthwhile to explore extensive use of M&S in 
healthcare to lower medical errors. 

7.1.3 Terms Related with Errors 

Table 7.2 lists terms related with “errors”. 

See Table 7.3. 

7.1.5 Other Sources of Failure 

There are other sources of errors in addition to those listed in Tables 7.1, 7.2 and 
7.3. They are based on several types of biases such as cultural biases and 
dysrationalia. 

The value systems of cultures differ—as clarified by Hofstede and debated by his 
critiques—(Wikipedia) hence cultural priorities can be different. 

Dysrationalia—The inability to think and behave rationally despite adequate 
intelligence—developed by Stanovich [4] has important implication in 
decision-making. 

The achievements in artificial intelligence (AI) increases expectations from it. 
However, it would be prudent to consider AI failures [5].



Table 7.1 List of 360 types
of errors (terms are selected 
from the TBD informatics 
dictionary) 

(continued)

170 T. Ören et al.

Absolute error 

Acceleration error 

Acceptance error 

Access error 

Accessibility error 

Accidental error 

Accounting error 

Accumulated error 

Accumulation error 

Activation error 

Active error 

Adjustment error 

Algorithm error 

Alpha error 

Ambiguity error 

Analysis error 

Angular error 

Anticipated error 

Anticipation error 

Application error 

Approximation error 

Ascertainment error 

Associative activation error 

Assumption error 

Asymptotic standard error 

Attribute error 

Attribution error 

Authentication error 

Authorization error 

Average error 

Azimuth error 

Azimuthal error 

Babbling error 

Balance error 

Balanced error 

Barometric error 

Benchmark error 

Beta error 

Bias error 

Biased error 

Bit error 

Bus error
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Calculation error 

Calibration error 

Capture error 

Chance error 

Chaotic error 

Circular error 

Classification error 

Clear error 

Clerical error 

Combined error 

Command error 

Communication error 

Compass error 

Compensated error 

Compensating error 

Compilation error 

Compile-time error 

Composite error 

Computational error 

Computer error 

Computerization error 

Conceptual error 

Configuration error 

Connection error 

Consistency error 

Constant error 

Constraint error 

Control error 

Convergence error 

Copying error 

Corrected error 

Correlated error 

Course error 

Creation error 

Cultural bias error 

Cultural perception error 

Cumulative error 

Cylindrical error 

Damping error 

Data error 

Database error 

Data-driven error
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Data-entry error 

Decision error 

Deductive error 

Definition error 

Deflection error 

Deletion error 

Description error 

Design error 

Detected error 

Detection error 

Device error 

Digitization error 

Discretization error 

Disk error 

Disk seek error 

Disk write error 

Driver error 

Dumping error 

Dynamic error 

Encoding error 

Encryption error 

Environment error 

Equipment error 

Error of closure 

Error of judgment 

Error of measurement 

Error of the first kind 

Error of the second kind 

Error of the third kind 

Estimation error 

Ethical error 

Evidentiary error 

Executable error 

Execution error 

Experimental error 

Experimentation error 

Exposure error 

External error 

Facial recognition error 

False alarm error 

Fatal error 

Fencepost error
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Fiducial error 

Fiducial registration error 

File creation error 

File error 

Filing error 

Formatting error 

Full-scale error 

Gain error 

General error 

Generalization error 

Grammatical error 

Hard error 

Hardware error 

Hardware installation error 

Harmless error 

Heeling error 

Heuristic error 

Human error 

Hypothesis error 

Hysteresis error 

Identification error 

Illegal access error 

Illegal error 

Illegal seek error 

Inadvertent human error 

Inconsistent accessibility error 

Inconsistent formula error 

Index error 

Initialization error 

Input quantization error 

Input/output error 

Inscription error 

Installation error 

Installer error 

Instrument error 

Instrumental error 

Instrumentation error 

Internal error 

Interpolation error 

Interpolation error 

Interpretation error 

Irrecoverable error
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Irregular error 

Judgment error 

Language error 

Legal error 

Legislative error 

Lexical error 

Linearization error 

Literal error 

Loading error 

Local error 

Logic error 

Logical error 

Loss-of-activation error 

Machine error 

Macro error 

Mean error 

Mean-square error 

Measurement error 

Measuring error 

Measuring instrument error 

Mechanical error 

Medical error 

Memory error 

Message error 

Method error 

Miss error 

Missed error 

Misspecification error 

Mode error 

Model error 

Modeling error 

Moral error 

Network device error 

Network error 

Network permission error 

Non-sampling error 

Non-spherical error 

Numerical error 

Obi-wan error 

Observation error 

Observational error 

Off-by-one bug
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Off-by-one error 

Offset error 

Omission error 

Operative error 

Overflow error 

Override error 

Parallax error 

Parity error 

Password error 

Percentage error 

Perception error 

Permanent error 

Persistent error 

Personal error 

Phenomenological error 

Pilot error 

Plain error 

Polarization error 

Position error 

Positive spatial error 

Prediction error 

Printer error 

Probability error 

Probable error 

Procedure error 

Process error 

Processing error 

Program error 

Programming error 

Program-sensitive error 

Projection error 

Proportional error 

Quantization error 

Quantum error 

Queue error 

Random error 

Ranging error 

Read error 

Reasoning error 

Recoverable error 

Rectification error 

Refractive error
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Register error 

Regular error 

Rejection error 

Relative error 

Remote error 

Renaming error 

Representation error 

Requirement error 

Residual error 

Residual standard error 

Resolution error 

Resource error 

Retrieving error 

Reversible error 

Root-mean-square error 

Rounding error 

Round-off error 

Runtime error 

Sampling error 

Scientific error 

Semantic error 

Sensitivity error 

Sensor error 

Sequence error 

Sequencing error 

Serious error 

Server error 

Set-up error 

Simplification error 

Simulation error 

Single error 

Soft error 

Software design error 

Software error 

Solution error 

Sorter error 

Span error 

Spatial error 

Spatially correlated error 

Specification error 

Specification error 

Specified error
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Spherical error 

Spherical probable error 

Stable error 

Standard error 

Standard error of estimate 

Static error 

Steady-state error 

Subjective error 

Substitution error 

Syntax error 

System error 

Systematic error 

Systemic error 

System-level soft error 

Table error 

Target registration error 

Technical error 

Temporal error 

Temporal prediction error 

Temporary error 

Tendency error 

Tiny error 

Tool error 

Tracking error 

Transaction error 

Transcription error 

Transfer error 

Translation error 

Transmission error 

Transposition error 

Trial-and-error 

Truncation error 

Tuner error 

Type I error 

Type II error 

Type III error 

Typical error 

Typing error 

Typographical error 

Unbalanced error 

Unbiased error 

Uncorrelated error
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Undefined error 

Unforced error 

Unification error 

Uninstaller error 

Unintentional computing error 

Unintentional error 

Unknown error 

Unknown hard error 

Unrecoverable error 

Unspecified error 

Unstable error 

Usage error 

User error 

User interface error 

Variable error 

Velocity error 

Virtual device error 

Virtual network device error 

Willful error 

Write error 

Write protect error 

Writing error 

Zero error 

Zero-scale error 

Automatic error correction 

Automatic error detection 

Barometric error code 

Bit error rate 

Circular error probability 

Circular error probable 

Err (v) 

Erring 

Error 

Error analysis 

Error bar 

Error-based testing 

Error checking 

Error code 

Error concealment
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Error control 

Error-correcting 

Error-correcting code 

Error-correcting memory 

Error correction 

Error correction code 

Error data 

Error detecting 

Error detecting code 

Error detection 

Error function 

Error handler 

Error handling 

Error interrupt 

Error log 

Error message 

Error propagation 

Error rate 

Error ratio 

Error recovery 

Error resilience 

Error-bar chart 

Error-based testing 

Error-correcting 

Error-correcting code 

Error correction 

Error correction qubit 

Error free 

Errorful 

Erroring 

Errorist 

Errorless 

Error-prone 

Error-prone image Transmission 

Error-tolerant 

Error-tolerant system 

Forward error correction 

Functional error correction 

Gauss error function 

Law of error 

Margin of error 

More errorful
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Most errorful 

Normal law of error 

Optimal error rate 

Plaintiff in error 

Ultra-low-error rate 

Ultra-low-error rate quantum system 

Accident 

Amphibology 

Blunder 

Bug 

Computer blunder 

Counterfactual 

defect 

Delusion 

Deviation 

Disinformation 

Erratum 

Failure 

Fallacy 

Fallacy of composition 

Fallacy of division 

False acceptance 

False alarm error 

False alarm error 

False document 

False information 

False negative 

False news 

False positive 

Falsehood 

Falsehood 

Falsity 

Fault 

Faulty 

Faux pas 

Flaw 

Formal fallacy 

Glitch 

Goof
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Howler 

Inaccuracy 

Inaccurate 

Inadequate 

Incorrect 

Lapse of time 

Lie 

Malfunction 

Malinformation 

Material fallacy 

Misapprehension 

Miscalculation 

Misconception 

Miscue 

Misdeed 

Misinformation 

Misinterpretation 

Misjudgment 

Mismanagement 

Miss (v) 

Misstep 

Mistake 

Misunderstanding 

Malfunction 

Noise 

Noisy 

Omission 

Oversight 

Paralogism 

Shortcoming 

Slight (v) 

Slip-up 

Slip-up (v) 

Solecism 

Sophism 

Stumble (v) 

Transgression 

Unethical behavior 

Untruth 

Verbal fallacy 

Weak 

Weakness 

Wrongdoing
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7.2 Need for Reliability (Including Philosophical/Ethical 
Considerations About Reliability) 

Valdemar Vicente Graciano Neto 

Under the modeling and simulation framework (MSF) established for this BoK, 
reliability comprises the property of a simulation model (and its respective simu-
lator) to be reliable, i.e., the simuland (system being simulated by a simulation, as 
seen in Sect. 1.4.1 of this BoK) should be enough detailed and accurate, and 
faithfully correspond to the system of interest being represented and/or developed. 
If the simulation model is reliable, conclusions and perceptions obtained from its 
execution can be reliably used to draw inferences about the simuland. 

The need for reliability becomes even more evident during the engineering of 
large-scale and/or critical systems, i.e., those ones whose failures or malfunction 
could cause extensive financial losses, damage, and injuries to their users [6], such 
as aerospace, nuclear reactors, defense, crisis and emergency response, health 
applications, among others. Hence, simulations are demanded to anticipate systems 
properties, enabling corrections, and adjustments to make the resulting system 
equivalently reliable. 

As seen in Sect. 1.4.4, models are valid simplifications that reduce the com-
plexity to enable them to be executed on simulators. Briefly, providing reliability 
then involve confirming that each part being represented in the simulation model 
has a mapping counterpart in the simuland. Hence, reliability assurance inherently 
relies on conducting verification and validation (V&V) activities in regard to the 
simulation model. Rereading concepts presented in Table 1.6b, both V&V of a 
simulation model involve the simuland. From a philosophical perspective, a sim-
ulation model is validated and verified (and should be considered reliable, as a 
consequence) according to the degree of correctness it offers in regard to the system 
of interest being represented. Validation concerns to the degree to which a model 
with its associated data has an acceptable range of accuracy in regard to the system 
of interest in the real world as determined by the established experimental frame to 
support inferences on that simulation [7, 8]. In turn, verification consists of ensuring 
that the simulation model implementation is correct and is correctly executed [8]. 
Under MSF formalization, verification is a relation, called simulation correctness, 
between models and simulators; while validation is a relation, called validity in a 
frame, between models and real systems within an experimental frame. A simula-
tion model should be validated and verified to be consistently reliable. 

Techniques can be used to enhance the simulation model reliability. Particularly, 
V&V and inspection techniques can be adopted. Regarding simulation validation, 
an entire book has discussed in more than 1000 pages techniques for validation of 
computer simulation models [9]. A list of simulation model validation techniques is 
available in the literature (See a brief list in Sargent [8], and a broad, philosophical, 
and practical discussion on Beisbart and Saam [9]). Multi-resolution technique is 
also a technique to support validation by an examination of a simulation model 
under different granularities in order to assure its correctness against the real-world



counterpart system [10]. In turn, verification is primarily concerned with deter-
mining that the simulation functions (e.g., the time-flow mechanism, pseudo ran-
dom number generator, and random variate generators) and the computerized 
(simulation) model have been programmed and implemented correctly [8]. Refer-
ence [11] mentions steps on the verification process, such as code verification and 
solution verification. A taxonomy of eight categories of techniques for simulation 
models verification is also available (See Whitner and Balci [12] for a quick 
summary of classic simulation model verification techniques). 
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7.3 Validation 

Paul K. Davis 

7.3.1 Introduction 

The literature on model validation is massive, and this article is by no means a 
comprehensive review. It identifies unifying definitions, principles, and themes, but 
then points to important sources in varied research communities. The article is 
drawn from Davis [13]. 

7.3.1.1 Validity: Perhaps a Misnomer, but One We Can Live with 
Models are imperfect and can never be given an unqualified stamp of validity. 
Further, working with models often goes far beyond just running a particular model 
that should be validated. As argued in by Jay Forrester in 1971 and reprinted later 
[14], 

In any real-life applications of modeling to the generation of policy...the models are always 
in a continuous state of evolution. Each question, each reaction, each new input of infor-
mation, and each difficulty in explaining the model lead to modification, clarification, and 
extension… 

Rather than stressing the single-model concept, it appears that we should stress the process 
of modeling as a continuing companion to, and tool for, the improvement of judgment and 
human decision-making. [underline added] 

Similar sentiments have been expressed in different domains of study, such as 
human-centered decision support in large organizations [15, 16]. One of the most 
valuable uses of simulation is in helping to educate senior leaders. Such leaders are 
often too savvy to imagine that the simulations are perfect, but they recognize the 
ability to learn from the simulations about the complex adaptive systems they deal 
with—enough to help them make better decisions currently and adaptively later as 
reality unfolds ([15, 17], p. 921). 

All of this said, the term validation will not go away. Thus, we must live with it. 
The key is simply interpreting the validity of a model as its usefulness in some



particular effort. Does the model provides information that is good enough for the 
purposes at hand? The validation process should be understood as testing the model 
in many ways to see when (i.e., for what purpose and in what context) we can have 
an acceptable level of confidence in using the model. Excellent discussions on this 
exist in the literature. 
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A rigorous text discusses validation while recognizing the need to be “living 
with error” (Zeigler et al. [18], pp. 443–67). The text on system dynamics devotes 
50 pages to testing of models (Sterman [19], pp. 843–92). Another text provides 
concepts and practical advice for military simulation (Tolk [20], pp. 263–94). Many 
other materials are readily accessible. Sargent and Balci [21] reviews the history of 
verification and validation (V&V), primarily for discrete-event simulation. See also 
Davis [22] Balci [23], Pace [24], Sargent [25] and a DoD best-practices guide and 
supporting material (Defense Modeling and Simulation Coordination Office 
(DMSCO), undated). The literature is meager on validation of agent-based models, 
but a Website includes sections on empirical validation http://www2.econ.iastate. 
edu/tesfatsi/ace.htm. The issues and challenges are discussed in short papers [26, 
27], including the need to think in terms of incremental validation. Another paper 
emphasizes an approach that justifiably improves a client’s trust in the use being 
made of agent-based modeling [28]. 

7.3.1.2 Over Interpreting the Cautions 
Many authors emphasize the conditional usefulness of models by repeating a 
famous quote from Box [29]: 

All models are wrong; some are useful. 

Regrettably, some of those hearing Box’s admonition take on a more negative 
attitude about models than is appropriate. It is not uncommon to hear something 
like the following from a modeler being pestered about whether his model has been 
tested. 

Give me a break. No, I have not carefully validated the model. After all, it is only a model. 
It seems useful for what I am doing. 

The phrase “only a model” should be troubling. If a model is being used to help 
understand the world and evaluate options for action, then it needs to be good for 
what it is being used for. 

To reinforce this point, consider that some models are intended to be extremely 
close to reality. This is so for certain kinds of command and control systems where 
learning, training, mission rehearsal, and operations may use the same software, the 
same displays, and many of the same underlying calculations. Some exercise data 
may be synthetically generated (e.g., that of adversary aircraft or of approaching 
tornadoes), but the displayed information may be the same as if the aircraft or 
tornadoes were real. As another example, consider training of airline pilots. The 
best aircraft simulators are expected to exhibit aircraft behavior very similar to that 
of a real aircraft. This is why it came as a shock when, in 2019, Boeing 
acknowledged that its simulator for the Boeing 737-Max had not yet been able to

http://www2.econ.iastate.edu/tesfatsi/ace.htm
http://www2.econ.iastate.edu/tesfatsi/ace.htm


reproduce the problems that led to the crashes of two such aircraft [30]. In par-
ticular, pilots using the simulator for similar flight conditions would not have been 
prepared for the strength and persistence of the airplane’s automated system forcing 
down the nose of the airplane when a sensor erroneously reported a troublesome 
angle of attack. As a last example, surgeons use virtual reality models to prepare for 
brain surgery [31]. Perhaps the models should be very good. 
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For most of those involved in modeling and simulation, it is nonetheless true that 
the models and their data are decidedly imperfect in some respects, and the issue 
becomes one of understanding whether they are sufficiently right in the respects that 
matter for the application. 

7.3.1.3 Definitions 
Against this background, there is need for corresponding formal definitions. These 
tend to address verification and validation as a set. The definitions used in this 
volume are (Zeigler, forthcoming). The U.S. Department of Defense uses similar 
definitions (Defense Modeling and Simulation Coordination Office (DMSCO), 
undated)

● Verification is the process of determining if an implemented model is consistent 
with its specification

● Validation is the process of determining if a model behaves with satisfactory 
accuracy consistent with the study objectives within its domain of applicability 
to the simuland it represents. 

7.3.2 Distinctions 

Primary Distinctions 

Discussing validation is easier with a set of distinctions. A primary set of idealized 
distinctions involves the real world, the body of knowledge that we have about the 
real world, a conceptual model to describe implications of that knowledge, a fully 
specified version of that model suitable for implementation in a computer program, 
the mechanism by which the model’s implications are generated (the program, 
computer program, computer model, or simulator), and the simulation results. 

Figure 7.1 is a simple sketch of this that builds on an influential depiction by 
Sargent [32] and on points made by Zeigler [33, 34], Patrick Hester and Tolk [20], 
and Davis [35]. The diagram is to be read as follows: Given something to be 
represented—i.e., the referent or simuland (sometimes called the problem entity or 
real-world aspect), a model is developed—perhaps first in a conceptual form that 
captures the primary entities, relationships, and processes but is neither complete 
nor precise; and then in a fully specified but abstract form that provides a set of 
rules for generating model-predicted behavior for specified inputs. A simulator 
(computer program or computer model) then “executes” the model. The distinctions



are valuable in understanding the many different ways that the activity of modeling 
can go badly: the knowledge base may be wrong, the model may represent the 
knowledge base poorly, or the program may fail to reflect the model’s intentions. 
Unfortunately, authors use terms for the concepts of Figure 7.1 differently because 
work developed in parallel streams. Table 7.4 compares the terminology. 
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Fig. 7.1 Important distinctions 

Defining Purpose: The Experimental Frame 

If a model’s validity (usefulness) depends on what it is being used for, then 
translating that broad idea into something more rigorous may require a good deal of 
detail. Precisely what variables will be held constant? Precisely what inputs will be 
provided? Precisely what outputs will be observed? And, for each, of these, what 
ranges of values will be considered? Recalling that “simulation” is often seen as 
experimentation (to others, the term refers to a model that generates system 
behavior over time), defining such matters can be seen as defining an experimental 
frame [18, 33]. 

A Fuller Depiction 

Figure 7.2 shows a fuller depiction of the idealized distinctions and activities [35]. 
It is only modestly different from a diagram of Sargent [24]. 

This indicates myriad activities, in both the real and model worlds, to observe, 
experiment, and compare. When comparing model predictions with empirical 
information, it shows where the concept of the experimental frame fits in. It also 
indicates that inquiry may consider alternative conceptual models and alternative 
implementations. The former may be necessary because opinions differ on how the 
world works and how to represent it (e.g., with continuous differential equations, 
discrete-event simulation, agent-based modeling, or some combination). Also, 
competing simulations may differ in their simulators rather than their conceptual 
model.
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Results might, for example, differ because of differently sized time steps in 
continuous simulation or having agents act in a different order. A discrepancy might 
reflect a failure to adequately specify the model or a failure to implement the model 
correctly. Sometimes, differences have arisen because of unusual and embarrassing 
sensitivity of simulated events to computational details close to a boundary or 
discontinuity, as in instances where the same computer program has different 
answers when implemented on different machines [36]. Sometimes, such phe-
nomena relate to the interaction of computer arithmetic and nonlinear effect, as in 
errors in the operation of the Patriot Air Defense System in 1991 [37]. 

Figure 7.2 is an idealization. In reality, it is rare for the conceptual model and the 
formal model to exist separately from the implemented model. One reason is that 
model builders use programming environments in which they can quickly “cut 
code” and build a running model with which to experiment. They may extoll the 
virtues of rapid prototyping in preference to prolonged agonizing in the abstract. 
However, a consequence is that it is difficult to understand and debate about either 
the conceptual model or a fully specified version. Instead, it is necessary to go 
immediately to often-opaque computer code or to trust documentation. This is a 
serious problem, but people disagree about how to do better. 

One approach is to do initial modeling in a high-level visual language so that 
major features of the conceptual model can be readily reviewed visually and so that 
details and mathematics can be sharply expressed with the economy of array 
algebra. Such a model may then be used operationally or reprogrammed for a 
particular research environment [35]. A second approach, favored by most com-
puter programmers, calls for better documentation, particularly of the conceptual

Fig. 7.2 Idealized relationships. Source Davis et al. [35], but only modestly different from 
Sargent’s depiction [24]



model, while assuming that details will need to be worked out by people who are 
adept at computer programming in such common languages as
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C, Java, R, and Python. A good protocol for documenting agent-based models 
has been proposed [38], and ambitious research continues in this spirit [39]. 

7.3.3 Generalizing the Concept of Validation 

Types of Validity as Recognized Early 

Historically, most discussion of model validation has reflected the perspective of 
physical scientists and engineers, such as those behind NASA’s first flight to the 
moon. It was both necessary and feasible for the models guiding the moon landing 
to be remarkably accurate. In such a context, model validity is about the model’s 
predictive accuracy. 

Since at least the 1970s, however, some authors have distinguished among 
replicative, structural, and predictive validity [18, 33]. A model has replicative 
validity if it can mirror the referent system’s input–output behavior, as when testing 
a model against empirical data. A simulation model has structural validity if its 
intermediate states and state transitions correspond to those of the referent system. 
A simulation model is said to have predictive validity if it can generate accurate 
predictions for circumstances other than those on which prior data exists. 

The difference between replicative and predictive is referred to in social science 
work with terminology such as “the regression model fits the data reasonably well (a 
reasonably high R2 ) versus “the regression model proved predictive when tested 
against out-of-sample data” (i.e., date not used in the model’s formulation and cali-
bration).” That distinction is crucial in modern artificial intelligence/machine learning. 

The issue of structural validity is more knotty. It demands not just that the model 
gives the right answers, but that its internal processing relates well to real-world 
processes. That may or may not be important. For example, if a simulation correctly 
predicts equilibrium conditions, perhaps it is not important whether the simulation’s 
intermediate states and processes are like those of the real world. Such was the 
argument of economist Milton Fried- man, who argued that the economy behaved 
“as if” actors made decisions according to a simple model without much internal 
structure [40]. The arguments were strongly but politely criticized by another 
economist, Robert Samuelson [41]. In any case, for many purposes a simulation 
must have a significant degree of structural validity. 

Broadening Scope of Information Used 

One early generalization of the validation concept emphasized the need to consider 
a broad range of information in evaluating models. In the military domain, this 
include drawing on expert testimonies from officers experienced in combat, as well 
as on history, laboratory and field tests, and so on [22]. Figure 7.3 illustrates the 
range of information that can be brought to bear, but frequently is not. For example, 
model validation often relies heavily on face validation, i.e., on experts observing



simulation behaviors and seeing them as credible, even though experts are far better 
at identifying the factors at work than at predicting consequences [42], much less 
the consequences of nonlinear interactions. The best use of subject matter experts is 
well structured and focused on eliciting the kinds of in- formation that experts are 
good at providing [43]. 
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Fig. 7.3 Illustrative classes of information to use in validation 

Diverse Testing Methods 

A more comprehensive approach recognizing the need for multifaceted evaluation 
of models can be found in the realm of system dynamics. From the pioneering work 
of Jay Forrester onward, those building such models have focused less on validation 
in its narrow sense conjuring up an image of precise calibration than to informing 
and testing the model against a broad range of information with a broad range of 
methods [44]. The authors noted that models are often used to look into matters for 
which no reliable data exists (e.g., the operation of future systems, conflict in future 
wars, side effects of innovative societal interventions). As a result, relatively, few of 
the tests can exploit the statistical methods that have been well developed for 
data-intensive testing. 

Challenges for Validation as Seen in 2004 

Early in the century, a good review article identified seven major challenges for 
model validation [24], all of which are still relevant despite notable progress. Pace’s 
challenges were (paraphrased slightly): 

1. Improving qualitative assessment (e.g., greater structure and rigor) 
2. Use of formal assessment processes 
3. Estimating costs and benefits of both M&S and V&V 
4. Confronting and quantifying uncertainty and making inferences about domains 

for which no data exists 
5. Coping with adaptation (e.g., validating agent-based models) 
6. Aggregation and multi-resolution modeling 
7. Human behavior representation in simulations (including by humans) (HBR).



7 Reliability and Quality Assurance of M&S 191

7.3.3.1 Rethinking the Concept of Validation 
It has been recognized for some time that the very concept of validation needs to be 
broadened if it is to be applicable in such realms as policy analysis and social 
science more generally. A recent review concluded that the definition of model 
validation can be improved in important ways by elaborating on the classic defi-
nition [35], pp. 23–31, 129–134). Adapting discussion to use this volume’s baseline 
definition, the improvement consists of adding the bolded language in what follows: 

Validation: It is the process of determining if a model behaves with satisfactory 
accuracy consistent with the study objectives within its domain of applicability to 
the simuland it represents. A model’s validity should be assessed separately with 
respect to five criteria, the model’s capability for (1) description, (2) causal ex-
planation, (3) postdiction, (4) exploratory analysis, and (5) prediction. 

That is, we should ask how well the model accomplishes the following:

● Description: identifying salient structure, variables, and processes in the target 
system (the system being modeled)

● Causal explanation: identifying causal variables and processes and describes 
reasons for behavior in corresponding terms;

● Postdiction: explaining past system behavior quantitatively with the benefit of  
knowing, afterward, the initial conditions pertaining at the time;

● Exploratory analysis: estimating approximate system behavior as a function of 
simultaneous changes in all identified parameters and variations of model 
structure (coarse prediction);

● Prediction: predicting system behavior accurately and even precisely;
● Prediction (the last item) is well understood, but the other items bear discussion. 

Causal explanation is a familiar and primitive concept but is also deep and subtle 
[45, 46]. Postdiction (sometimes called retrodiction) may sometimes be 
after-the-fact rationalization but is very important in physics and say, in the diag-
nosis of why an aircraft crash occurred. Exploratory analysis refers to studying the 
model’s behavior across the space of uncertain inputs (also called scenario space or 
case space), the space generated by discretizing the input parameters and listing 
alternative model structures, and then considering the possibilities implied by the 
combinations of all possible values of all the parameters and choice of model 
structures. With today’s methods and technology, this is not as daunting as it may 
seem if the model used for exploration is relatively small (e.g., 3–20 independent 
variables, rather than 100s). Capabilities-based planning assesses alternative port-
folios of capabilities (material, human, and otherwise) for their ability to address 
challenges across as wide a portion of the case space as is feasible within the budget 
[47]. Its cousin, robust decision-making (RDM) does similarly: searching for 
strategies that are as robust to assumptions as possible [48]. Such analysis can be 
used for a kind of coarse prediction, such as that a given strategy will do well (not 
necessarily optimally) in a range of circumstances and poorly (or disastrously) in a 
range of other circumstances.
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These dimensions refer to different model functions. They relate to the previ-
ously mentioned distinctions among replicative, structural, and predictive validity, 
but not always in a straightforward way. Further, the relationships are confused by 
differences of terminology across disciplines. To those using statistical models, 
“explanation” may mean large coefficients of determination (R2 ), whereas others 
have in mind cause-effect relationships. Similarly, whereas a statistician refers to 
predictive capability, the goal may be only to predict existing out-of-sample data 
(i.e., data not used to build and calibrate the model). Others have in mind predic-
tions based on cause-effect reasoning that may be applied to circumstances very 
different from those on which data exists (e.g., descending through the Martian 
atmosphere, operating a future weapon system in a future war, or making a social 
intervention that will change the incentives of numerous actors in society). 

The points causality being made here are closely related to those of Judea Pearl. 
As Pearl has notably observed, correlational information in insufficient to address 
many of the most important questions that face decision-makers, questions relating 
to influence, intervention, attribution, and so on. Pearl’s primary book on such 
matters is technical [49], but a more recent book is written for a broader audience. It 
has admirable examples [50]. He discusses what he calls a ladder of causation. The 
highest ladder corresponds roughly to the level of requiring a degree of structural 
validity (see also Zeigler [51]). 

Figure 7.4 illustrates how a particular model might be characterized for its 
validity along these dimensions. The values {1, 2, 3, 4, 5} correspond to the 
qualitative meanings{very poor, poor, marginal, good, very good}. How these 
would be measured would depend on the application context. Prediction to within 
10% might be very good in some cases and woefully inadequate in others. The

Fig. 7.4 Characterizinan an illustrative model’s validity along five dimensions. Source Davis 
et al. [35]



assessment might need to combine qualitative and quantitative considerations (e.g., 
a causal explanation might seem subjectively to be too complicated to be useful, 
meriting a 1). The particular example shown imagines a model that is very good at 
describing what happened in a studied case, very good for broad exploratory 
analysis, rather good for causal exploration and postdiction, but of very little use for 
prediction. Why? Perhaps the input variables have highly uncertain values although 
the values might be well defined when the time comes. In contrast, certain artificial 
intelligence models based on machine learning can be extremely good for what 
those in that field call prediction (predicting data not used in tuning the model or 
future data of the same system under different conditions), but useless for assessing 
the consequences of options that would substantially change the nature of the 
system (e.g., options greatly changing the incentives to which actors in the system 
respond).
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The concept of Figure 7.4 enhances our vocabulary for discussing the validity of 
models. Better methods are needed to assess models along each of these 
dimensions. 

7.4 Verification 

Bernard P. Zeigler 

7.4.1 Introduction 

Adhering to the definitions of Table 1.6a for verification and validation (V&V), this 
article focuses in on the problem of verification, particularly we discuss integration 
of simulation and formal verification as well the role of morphisms in providing the 
preservation of properties common to real systems and their simulation models. 

We start with noting that concepts for organizing models and data for simulation 
based on systems theory [52, 53] and implementable in model-based systems 
engineering [54] are included in the modeling and simulation framework 
(MSF) (see Sect. 1.4). The system specification hierarchy (Sect. 1.4.1.1) provides 
an orderly way of establishing relationships between system descriptions as well as 
presenting and working with such relationships. Pairs of system can be related by 
morphism relations at each level of the hierarchy. A morphism is a relation that 
places elements of system descriptions into correspondence. For example, at the 
lowest level, two observation frames are isomorphic if their inputs, outputs, and 
time bases, respectively, are identical. In general, the concept of morphism tries to 
capture similarity between pairs of systems at the same level of specification. Such 
similarity concepts have to be consistent between levels. When we associate lower 
level specifications with their respective upper level ones, a morphism holding at 
the upper level must imply the existence of one at the lower level. The morphisms 
are set up to satisfy these constraints.
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The most fundamental morphism, called homomorphism, resides at the state 
transition level consider two systems specified at level 3, S and S’, where S may be 
bigger than S’ in the sense of having more states. S could represent a complex 
model and S’ a simplification of it. Or S could represent a simulator and S’ a model 
it is executing. If such a homomorphism holds for all states of S’, then any state 
trajectory in the S’ will be properly reproduced in S. Often, we require that the 
correspondence holds in a step-by-step fashion and that the outputs produced from 
corresponding states be the same. In this type of homomorphism, the values and 
timing of the transitions and outputs of the big system are preserved in the small 
one. Thus, in this case, the state and output trajectories of the two models, when 
started in corresponding states, are the same. 

Within the MSF, the EF formally recognizes that the intended use (IU) of a 
model is a fundamental determinant of its validity with respect to the source system. 
The MSF helps clarify many of the issues involved in modular reuse, validity, and 
executability of simulation compositions and V&V. The MSF underlies the DEVS 
simulation protocol [55, 56], which provides provably correct simulation execution 
of DEVS models, thereby obviating commonly encountered sources of errors in 
legacy simulations. 

7.4.2 Intended Uses and Experimental Frames 

Figure 7.5 shows the application of the framework to V&V. First, we consider that 
an organization with a heavy reliance on M&S for SoS, the US Missile Defense 
Agency is establishing a standard IU specification that contains a comprehensive

Fig. 7.5 Architecture for SoS V&V based on M&S framework



listing of specifics in relation to the analysis problem that the model is intended to 
address [57]. Indeed, this specification significantly expands the set of elements that 
characterize the objectives of the user. The fundamental elements of an IU include 
pertinent analyst tasks, model inputs and outputs, experimental designs, calibration 
methods and data, test objectives, and concepts of operations (CONOPS). In 
addition, the specification requires characterization of key attributes, i.e., aspects 
and values that identified stakeholders and developers agree on such as focus (from 
narrow consideration of a component (e.g., specific radar) to broad scope of the 
end-to-end SoS), simulation type (constructive, virtual, live), fidelity, uncertainty 
quantification, interoperability, level of detail, and relation to operator training or 
exercise experience.
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Our formulation, based on such a specification, is that once the IU is known, 
suitable experimental frames can be developed to accommodate it. Such frames 
translate the IU elements into more precise experimentation conditions for the SoS 
base model and its various abstractions and aggregated models called lumped 
models. A model developed for an application is expected to be valid in each frame 
associated with the IU specification that formalizes that application. An IU specifies 
a focus, fidelity, and a level of detail to support the problems and tasks it concerns. 
Different foci, fidelities, and levels of details may both require and allow different 
models that exploit these factors to enable optimal set up and runtime attributes. 
The basic concept in Fig. 7.5 is that IUs act as keys to all data and models that 
have been acquired and developed thus far. In the storage process, a new data set 
or model is linked to the IU that motivated its development. In retrieval, given an 
application of interest to the user, the system supports formulating a representative 
IU and finding the closest IU matching the newly formulated IU. If the user is 
unsatisfied with the match, or wishes to explore further, the system supports syn-
thesizing a composite IU using available lattice-like operations (upper and lower 
bounds, decomposition, etc.). [58] provide a metric-based method which aims to 
guide experimental frame and/or model definition to assist finding the right model 
and the right experimental frame for a given intended use. 

7.4.3 Integration of Simulation and Formal Verification 

Zeigler and Nutaro [59] discuss the use of morphisms that builds upon recent 
extensive work on verification combining DEVS and model checking for hybrid 
systems. The mathematical concepts within the DEVS formalism encompass a 
broad class of systems that includes multiagent discrete-event components com-
bined with continuous components such as timed automata, hybrid automata, and 
systems described by constrained differential equations. System morphisms can 
map a model expressed in a formalism suitable for analysis (e.g., timed automata or 
hybrid automata) into the DEVS formalism for the purpose of simulation. Con-
versely, it is also possible to go from DEVS to a formalism suitable for analysis for 
the purposes of model checking, symbolic extraction of test cases, reachability, 
among other analysis tasks.



Table 7.5 Example
applications of model 
checking to a UAV 
multiagent system of system 
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Humphrey [60] explored the use of linear temporal logic, the SPIN model 
checker, and the modeling language PROMELA [61] for high-level design and 
verification in unmanned autonomous vehicles (UAV)-related applications. She 
reported some success while suggesting limitations and needed extensions. 
Table 7.5 shows three UAV-related cases she discussed. 

In each case, the focus of model is shown along with a simplifying assumption. 
Because they are oriented to verification, model checking tools tend to lack many 
functions that exist in DEVS environments and require abstractions that fit the 
tools’ operation. This forces an abstraction of the real system that, on the one hand, 
enables the modeler to better understand the model, and on the other hand entails 
numerous assumptions to enable the model checker to verify the focal requirement. 
Despite these drastic simplifications, state space explosion prevents employing 
more than a handful of UAVs and sensors. 

Several DEVS methodologies have been developed which incorporate 
non-DEVS verification methods [54, 62–64]. These methodologies attempt to 
employ DEVS to enable loosening the simplifying assumptions typically made by 
non-simulation models. In another variation, functional and temporal properties of a 
Timed Stream Petri Net models are checked using exhaustive verification or 
DEVS-based simulation [65] 

The combination of simulation and formal verification gives a much more 
powerful capability to test designs than can be achieved with either alone. In a 
design process that incorporates both types of analysis, verification models can be 
used to obtain absolute answers concerning system behavior under idealized

Model: A centralized UAV controller that coordinates the 
actions of multiple UAVs performing a monitoring task 

Focus of Model Checking: Assuring that all sensors are 
eventually visited 

Sample Simplifying Assumptions: Communication between 
UAVs and sensors can only occur when in the same location 
and is error free 

Model: A leader election protocol for a decentralized system of 
unattended ground sensors sending estimates of an intruder’s 
position to a UAV 

Focus of Model Checking: At least one leader exists at every 
time step 

Sample Simplifying Assumptions: The sensors all use 
sampling epochs of the same length enabling a single time step 
for time advance 

Model: Verification of high-level UAV mission plans for a 
scenario in which multiple UAVs must be used to safely escort 
an asset across a road network 

Focus of Model Checking: The path traveled by the asset is 
safe, i.e., all road segments in the path have been scanned by 
UAV



conditions. Failures in this verification stage should indicate a need to find and 
correct fundamental flaws in the system design. On the other hand, if a successfully 
verified model can be formally extended into a simulation model for which the 
verification model is a homomorphic simplification, the simulation model might 
retain the properties that were verified with the simpler model and then can be used 
to explore scenarios that are necessarily outside the scope of formal verification.
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The representation of this idea within the organization of relations is shown in 
Fig. 7.6. Here, the lumped model represents an analysis model that we are seeking 
to verify for a set of requirements and assumptions represented by EFAssum. Further, 
the base model represents a simulation model that has more of the structure and 
behavior representative of the real-world system and accommodates a “larger” 
frame, EFScope. The fact that the latter is “larger,” i.e., more inclusive, than the latter 
is captured by the derivability relation. Then, if we can demonstrate a homomor-
phism from the base to the lumped model EFAssum, we expect that any property 
proved to hold for the lumped model would also hold for the base model in that 
frame. However, it is more questionable whether the property continues to hold in 
EFScope. 

To illustrate, let EFAssum contains the first simplifying assumption of Table 7.5 
“communication between UAVs and sensors can only occur when in the same 
location and is error free” and suppose the lumped model of the UAV system has 
been shown to meet the requirements that “all sensors are eventually visited.” Now 
suppose that in addition, we construct a base model that allows for realistic com-
munication (less spatially constrained and error-prone). Under what circumstances 
would it be possible to show that all sensors are still eventually visited? Presum-
ably, the base model would have to be extended in such a way as to have the 
“same” structure and behavior as the lumped model—which would require that a 
strong morphism hold between them. It would be natural to first consider that the 
morphism holds when the simplifying assumption is made (i.e., within EFAssum), 
and then, whether it still holds when the condition is relaxed (i.e., within EFScope). 

A full framing of the problem for SoS is obtained by returning to architecture of 
Fig. 7.5 where for the UAV multiagent SoS in Table 7.5, we have at least 3 EFs

Fig. 7.6 Relation between verification and simulation



(each representing different simplifying conditions) and 3 lumped models (each 
representing a verified analyzable model). What can we say about a base (simu-
lation) model that attempts to be compatible with each of the simplified models and 
therefore retain the desired properties they satisfy? The fundamental ordering 
relations and the system theory hierarchy of specifications and morphisms give us, 
at minimum, a means to frame the problem and develop a methodology to approach 
its solution.
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In the last section, we address the question of what kind of morphic relation is 
needed between base and lumped models in order for proven properties of the 
lumped model to also hold for the base model. 

7.4.4 Morphisms and Preservation of Properties 

Consider base and lumped models with a homomorphism holding in an EF as in 
Fig. 7.6. Assume the lumped model has property P. Is it true that the based model 
must have property P as well? 

Consider Fig. 7.6, where for convenience, we will use S (or system) to refer to 
the base model and M (or model) to refer to the lumped model. We call upward 
preservation or structural inference. The inference: “If M has P, then S has P,” and 
as emphasized, it represents the kind of preservation we are focusing on here. 
However, downward preservation where a property P is inherited from S to M is of 
interest as well. The problem of downward preservation was raised by Foo [66, 67] 
who provided sufficient conditions for inheritance of stability properties for con-
tinuous systems and pointed out that downward preservation of P implies upward 
preservation of –P, the negation of P. Unfortunately, properties of interest seem not 
to be expressible in negative form. Indeed [68] clarified the situation by applying a 
well-known universal algebraic formulation of the logician Lyndon to finite auto-
mata. Informally, a positive property is one expressible in first order logic without 
use of negation. Conversely, a negative property is one that requires negation to 
express it. Sierocki enumerates a number of properties of automata that are of 
interest (e.g., relating to reachability, connectedness, and reversibility) and are 
positive by direct statement. Applying Lyndon’s theorem, Sierocki shows that 
upward inheritance of positive properties holds for the usual homomorphism of 
automata. Moreover, downward inheritance holds for negative properties. 

The general situation is unsettled. Saadawi and Wainer [63] show that some 
properties transfer upwards from safety timed automat models verified in UPPAAL 
to real-time advance DEVS models under a strong form of bi-simulation similar to 
isomorphism. Zeigler et al. [69] provide examples of morphisms and properties 
where it is both possible and not possible to make structural inferences. 

Given this situation, one direction for research is to look at more special cases. 
Another is to formulate the problem within a probabilistic, rather than logical, 
framework. It turns out we can get a more robust approach to making structural 
inferences as well as gaining more insight into the role of morphisms in the process.
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7.4.4.1 Probabilistic Perspective: Bayesian Reasoning 
The thin arrows in Fig. 7.7 denote paring of systems and models corresponding to 
morphisms. Consider that in the situation for downward preservation, with the blue 
arrows, that systems having P map to models having P. The problem is caused by 
the possibility, shown as a gray arrow, that systems not having P also map to 
models having P. In other words, a morphism may be deceptive even though it 
preserves behavior and/or structure at some level of the hierarchy. Certainly, if we 
set up a random pairing of Ss and Ms where Ss with P always map to Ms with P, we 
would not expect that Ss without P also map to M’s without P, However, there may 
be constraints on the Ss. Ms. and mappings that pull it away from pure randomness 
and make it less likely that a deceptive cross-mapping exists. Indeed, we can show 
that under conditions consistent with downward preservation of hard-to-prove 
properties, the posterior probability that S has P given that M has P is greater than 
the prior probability that S has P. In other words, demonstrating a homomorphism, 
or more generally a strong morphism, can significantly increase the likelihood that a 
lumped model property is truly reflective of the more complex base model [70]. 

7.4.5 Summary 

The extended MSF provides a framework for V&V of simulation models that 
include the concept of intended use, a characterization of modeler objectives that 
enriches experimental frames. The MSF framework is applied to the case of inte-
grating model checking with simulation where there is a need to have confidence 
that the properties proved for idealized models also hold in more realistic simulation 
models strongly related to them. Taking both logical and probabilistic perspectives 
clarify the situation and suggests that more research to introduce Bayesian rea-
soning to increase the robustness of V&V of simulation models. 

Fig. 7.7 Downward and upward preservation of properties
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7.5 Failure Avoidance 

Tuncer Ören 

“Simulation, agent-directed simulation, and its synergy with systems engineering 
similar to many other advanced and sophisticated artifacts are prone to several 
categories of failures. Hence, to get full benefits of simulation, without undesirable 
error-prone side effects, one needs to consider sources of failures in M&S and have 
them under control. For this reason, V&V and more comprehensibly QA studies are 
done in M&S. However, failure avoidance for agent-directed simulation as well as 
for systems engineering should also be considered, especially in advanced M&S 
systems benefiting from the synergy of agent-directed-simulation and systems 
engineering” [71]. 

As failures of systems based on simulation studies are not desirable, validation 
(Sect. 7.2), and verification (Sect. 7.3) techniques aim to eliminate them. Some 
early publications promoted avoidance of failures of systems based on simulation 
studies. A classical article by Annino and Russell [72] was on “the ten most 
frequent causes of simulation analysis failure—and how to avoid them!” Even an 
earlier publication was about “don’ts of mathematical modeling” [73]. Sturrock’s 
contribution is titled: “avoid failures! tested success tips for simulation excellence” 
[74]. A systematization of the acceptability of components of simulation studies 
was given by Ören [75] and later generalized by Sheng et al. [76]. A further 
elaboration about the criteria for assessment as well as elements of M&S to be 
assessed is given by Ören and Yilmaz [71]. 

To assure reliability, it is useful to analyze sources of failures. Some basic 
concepts which might compromise reliability were outlined by Ören and Yilmaz 
[71]. They are failure, mistake, error, fault, defect, deficiency, flaw, shortcoming, 
sophism, and paralogism. Section 7.1 elaborate on sources of failures and lists 360 
types of errors and many terms related with errors and failures. 

Contribution of simulation to failure avoidance as well as need for 
multi-paradigm approach for successful M&S projects (including failure avoidance 
paradigm for successful M&S projects) is elaborated by Ören and Yilmaz [71]. 
Furthermore, failure avoidance is utmost important for the following types of M&S 
studies [71]: 

(1) agent-based modeling, 
(2) agent-directed simulation, 
(3) simulation where rule-based AI systems are used, 
(4) agents with personality, emotions, and cultural background 
(5) inputs (both externally generated inputs and internally generated inputs), and 
(6) systems engineering of M&S studies 

In a follow up publication, Longo and Ören [77] elaborate on enhancing quality 
of supply chain nodes simulation studies by failure avoidance.



7 Reliability and Quality Assurance of M&S 201

“For example, the supply chain nodes operation study can be enhanced in the 
following dimensions:

● Role of terrorist activities: Impact of two types of activities can be studied; to 
eliminate them or to alleviate their impact: (1) Using containers to smuggle 
material to be later used in terrorist activities within a country. (2) Impact of 
terrorist activities on the equipment of a supply chain node.

● Global supply chain risk management simulations.
● Container scanning risk management simulation.
● Role of maintenance of several types of equipment: Similar to the simulation 

studies of a job shop, several types of equipment in a supply chain node would 
require maintenance. The existing study can be extended for this purpose. 
Otherwise, the existing study may not be sufficient to analyze the need and 
allocation of resources for maintenance purposes.

● Trend analyzes of the usage of the capacity of supply chain node: Under dif-
ferent past conditions, the capacity utilizations and associated usage trends can 
be established. This information can be used in marketing the unused capacity; 
or coupled with simulation studies with anticipated demands can be used to 
perform investment analyzes” [77]. 
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Abstract 

Ethics is a branch of philosophy that studies moral problems. This chapter of the 
SCS M&S Body of Knowledge starts with a broader look at how ethics are 
influencing technical disciplines in general before looking at ethics for computer 
simulation in more detail. It devotes a section on ethics for simulationists and 
analysts, as they often provide guidance for decision makers with significant 
consequences. The chapter concludes with the simulationists code of ethics. 
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8.1 Branches of Ethics 

Nico Formanek, Juan Manuel Durán 

8.1.1 Ethics in Technical Disciplines 

Ethics has grown into many different branches, treating increasingly specialized but 
also interdisciplinary problems. There are ethics of engineering, ethics of computers, 
and ethics of medicine—just to name a few branches. In general, we will call them 
ethics of X, where X can be basically any field where ethical problems emerge. To 
call them the ethics of X presupposes that each branch purports different and disjoint 
ethical issues. Thus, the ethics of engineering is concerned with issues alien to the 
ethics of computer simulations. But in practice, it is quite common to find shared 
concerns among all these branches of ethics. In this context, there are different 
connections between, say, the ethics of engineering and the ethics of computer 
simulation. If one thinks computer simulation as a sub-discipline of engineering, 
then the ethics of engineering will treat more general problems arising from engi-
neering practice without reference to computers, while the ethics of computer 
simulation will be an application of the ethics of engineering to computer science. 

A general problem which is treated in the ethics of engineering is the problem of 
unintended consequences. Every technology is designed with a specific end. To 
reach this end desired and undesired impacts are accounted for. It is obvious that 
not every effect of a technology, desired or undesired, can be predicted in the design 
process. For example, the use of fossil energy on a vast scale, which emerged 
during the industrial revolution, has as we now know some very undesirable side 
effects. Those were certainly not intended, nor known, by the early innovators 
constructing steam engines. 

A similar problem will of course arise with every technology, one of which 
happens to be computer simulation. 

Before we consider the special case of the ethics of computer simulation, let us 
talk briefly about what ethics and ethical problems are in general. 

Ethics is the branch of philosophy that studies moral problems, that is, problems 
of right and wrong action. It is thus closely connected to the philosophy of action. 
For the purposes of this article, it is sufficient if we remain close to a common-sense 
concept of what an action is: One does something under self-determining conditions 
of possibility (e.g., one is not being forced to take some action). Actions and their 
consequences can be evaluated, and the task of an ethics of X is to give reasons for 
evaluating the special class of actions picked out by X. The scenario is like this: If 
you ask yourself “What is the best action in situation A, is it F or G or …?” then the 
ethics of X will be a reservoir of reasons to pick out the best possible action—or so 
it is expected/desired. 

For example, the ethics of medicine treats concerns about medical interventions 
on humans. Questions evaluating the action of the relevant stakeholders might be:



How does a physician weigh the needs of patients suffering from an illness in a 
randomly controlled study? Should the cheapest but less effective treatment be 
chosen, or rather the most expensive but also most effective treatment be chosen? 

It should be noted that there is a more general classification of ethics in phi-
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losophy. Standardly, they are classified as consequentialism, deontology, virtue 
ethics, and pragmatic ethics. An ethics of X will employ one or more of these 
frameworks to evaluate the problem at hand. A perhaps too simplistic description of 
those frameworks would be that consequentialism only evaluates an action with 
respect to its consequences, deontology according to rules for carrying out those 
actions, virtue ethics corresponding to the virtue of the agent, and lastly pragmatic 
ethics evaluates actions according to the wider context in which they occur. 

Consider the following example on how an ethical evaluation could work in the 
different frameworks. 

Situation: You are in a hurry to get a job interview and are stuck in traffic. There 
is a shortcut, but you have to pass wrongly through a one-way road. 

Question: Should you take the shortcut? 
Actions: (A) Take the shortcut. (B) Don’t take the shortcut. 
Below are answers that certain ethical frameworks could give. 
Consequentialism: Act always to maximize utility. A maximizes utility. Answer: 

Do A. 
Deontology: Act always according to rule R. Action B satisfies rule R. Answer: 

Do B. 
Virtue ethics: Act always to preserve your virtuousness. Action B preserves 

virtuousness. Answer: Do B. 
Pragmatic ethics: The one-way road is rarely used by cars and taking it would 

reduce your stress levels. Answer: Do A. 
Ethical frameworks do not generally provide unique answers about what to do. 

This has several reasons. Firstly, the frameworks themselves are justified by 
adducing artificial situations (sometimes more or less so—think of trolley prob-
lems), which makes picking out the adequate framework dependent on the situation 
description and the moral intuition underlying said description [1]. 

Secondly, even for non-pragmatic frameworks, the provided answers depend on 
the preselected actions. Those actions are generally not picked out according to 
some specified rule in the ethical framework, they rather depend on what the person 
doing the ethical evaluation is willing to admit. The kind of arguments that these 
frameworks supply for or against an action are at the very least enthymematic; in  
other words, in most cases it is not unclear if these frameworks can provide 
deductive certainty at all about which action to choose. 

It is the uncertainty in the description of situations which connects ethics to other 
branches of philosophy like epistemology and philosophy of science. One of the 
biggest problems in ethics is how to make a morally sound decision under uncertainty. 

You will notice that our later examples from the ethics of computer simulation 
could all be labeled as decision under uncertainty. While it would be nice if phi-
losophy could reduce the uncertainty in the situation description, this is in many 
cases not possible. Uncertainty might even be the property of a situation



8.1.2 The Ethics of Computer Simulation 

description, e.g., limited time and mental capacity of a person to adequately eval-
uate all presented options. 
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With this in mind, we now turn to ethics of computer simulation. First, some 
foundations have to be laid. We would not say what a computer simulation is, but 
rather what can be done with it. A computer simulation can run on a computer to 
compute and obtain simulation results. These results give an answer to a previously 
—however vaguely—stated question. The quality of the answer depends on many 
factors, internal and external to the simulation. One external factor is the specificity 
of the question according to which the computer simulation was built. More specific 
questions lead to better models, which in turn lead to better computer simulations. 
An internal factor would be the quality of the program. Does it contain many hacks, 
kludges, etc., which might affect it is representational qualities? 

In philosophy of science, models have for long been an object of inquiry. 
Models try to represent a part of the world and might include a number of ideal-
izations, abstractions, and fictionalizations in order to do this. Uncertainty, then, is 
already introduced at these stages if it is unknown how those idealizations, 
abstractions, and fictionalizations affect the representational capacity of the model. 
The same is true for computer simulations with one addendum: computer simula-
tions typically introduce more and different sources of uncertainty. This will 
become apparent in later examples. Among other things epistemology evaluates 
why some forms of uncertainty are tolerable while others might not. 

Now, computer simulations would not be an interesting case for ethics if they 
did not figure prominently in ethical questions. And this is where the current 
literature on the topic takes its starting point. Everyone knows cases where simu-
lation results have been used to justify policy decision. Examples include the IPCC 
report on global climate and the simulation of pedestrian traffic preceding the 
approval of the 2010 love parade in Germany. 

So, whenever simulation results are used in situation descriptions for ethical 
questions this elevates the uncertainty of those results from a “mere” epistemo-
logical concern to an ethical issue. 

Following [2] Chap. 7 and [3], I will now discuss several frameworks that have 
been proposed to cope with the uncertainty of simulation results in ethics. 

According to Williamson [4], simulation results must be trustworthy if they are 
used in ethical decisions. Trustworthiness itself depends on several ethical and 
epistemic factors. For a simulation result to be trustworthy, it has to be credible, 
transferable, dependable, and confirmable. Williamson takes credibility to be 
established by inter-subjective methods of verification and validation, but also by 
expert authority. It is therefore a mixed epistemic and ethical concept to reduce the 
possible uncertainty inherent in the simulation results. The rest of the concepts are 
epistemic in nature. Transferability is the possibility of extending simulation results



beyond their original context. A situation that often happens in policy decisions that 
should apply across different situations. 
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Dependability is the property of simulation results to apply after a certain 
amount of time passed. Uncertainty might arise due to the target system changing in 
unknown and unaccounted for ways. 

Williamson’s last criterion of confirmability amounts to concerns about different 
idealizations that were introduced into the computer simulation, for example, ide-
alizations that make the problem computationally tractable in the first place. Such 
idealizations can introduce uncertainties in the simulation results if they are not 
properly accounted for. 

In the end, if uncertainties are present, they taint the ethical decision that rests on 
the simulation result, possibly leading to unethical choices of action. 

A similar point is made by Brey [5], for whom uncertainty enters through 
misrepresentations. Computer simulations can represent or fail to represent a phe-
nomenon, depending for example on which idealizations were in place during their 
implementation. Instances of misrepresentation might be hard to detect because 
direct comparison to experimental data is impossible. This epistemic concern again 
threatens ethical decision-making with uncertainty. 

As we saw earlier, the authors of the quoted studies on computer simulation 
ethics are concerned with harm that might arise from ethical decisions which are 
based on uncertain simulation results. It is very hard to say what could be done to 
reduce the uncertainties, which is not bordering on platitudes like “improve veri-
fication and validation procedures.” The most general kind of advice that is given in 
the existing literature is contained in codes of conduct. 

Ören et al. [6] proposes such code of conduct specifically for computer simu-
lations which is also described in Sect. 8.3 of this book. 

In general, codes of conduct follow the spirit of virtue ethics or deontology. 
They provide rules for action or guidance on how virtuous conduct can be achieved. 
Ören’s code is adapted to the needs of simulationists and thus applies only to ethical 
questions concerning the genesis, running, and use of computer simulations. The 
justification of the rules of the code depends on more general principles of good 
scientific conduct, best practices from programming, and previous codes of conduct 
for the engineering discipline. 

8.2 Ethics for Simulationists and Analysts Using Modeling 
and Simulation 

Paul K. Davis, Andreas Tolk 

The rationale for addressing ethics in this volume on modeling and simulation has 
several components. For engineers, the basic rationale is that engineers build things 
that change the world. In doing so, they assume responsibilities to individual, 
organizational, and government clients, and to humanity in the large. Sometimes, 
the obligations are in conflict, which creates difficult tensions. Scientists, who often



8.2.1 Definitions 

Ethics, also Called Moral Philosophy, is the discipline concerned with what is morally good 
and bad and morally right and wrong. The term is also applied to any system or theory of 

In making distinctions, we use the formula that 

Ethics are the science of morals, and morals are the practice of ethics. (Fowler and Crystal 
[ ]) 10

The adjectives “ethical” and “moral” can also be ambiguous, but “moral” usually 

8.2.2 Ethics in the Cycle of Modeling and Analysis 

use M&S, have obligations such as the search for truth and advance of science but 
also obligations to the people and even animals who participate in or are subjects of 
research. A third category of users consists of analysts. These may also be scientists 
or engineers, but they aid decision-makers and often support activities affecting 
people and the world. Those who build models have the obligation to make it 
possible for analysts to use the models well, correctly and wisely inform 
decision-makers, and assure fairness, and minimize harm. This article addresses, in 
turn: (1) definitions, (2) ethics in the modeling and analysis cycle, (3) why such 
ethics matter, (4) approaches to ethics, and (5) the role of professional codes. 
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A recent textbook covers definitions, distinctions, and comparisons. It then has a 
number of concrete examples that illustrate vividly the ethical issues that arise for 
engineers [7]. Most of its material applies also to those associated with science, 
technology, and analysis. This article draws also on ideas in other published papers. 
For example, an early text laid much groundwork that is still very relevant [8] and 
the need for simulationists to have a code of conduct was discussed in an influential 
conference paper [9]. 

The definitions of morals and “ethics” are often used interchangeably. Distinc-
tions are sometimes drawn, but in contradictory ways. Here, we use: 

moral values or principles. (https://www.britannica.com/topic/ethics-philosophy) 

refers to personal matters whereas “ethical” is favored when referring to matters of, 
e.g., medicine, law, science, or business. 

Why does ethics matter in a volume on modeling and simulation? Adapting a 
concept laid out in the text mentioned above [7], we note that ethical considerations 
are or should be important in each stage of the cycle shown in Fig. 8.1. The top line 
shows the process from problem definition to the delivery of well-articulated 
evaluation of options. Feedbacks (shown as dashed lines) occur throughout the 
process. For example, as options emerge, one recognizes the need to consider 
additional objectives with corresponding metrics. Also, when comparing options,

https://www.britannica.com/topic/ethics-philosophy


one may be sensitized to uncertainties that should be explicitly addressed in the 
analytic plan. 
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Fig. 8.1 Ethics in the cycle of modeling and analysis 

As indicated by the italic material at the bottom, numerous ethical issues arise or 
should arise at every step. These are illustrated by the items shown, which indicate 
only some of the many ethical errors or lapses that may occur, such as ignoring 
long-term effects on the environment or the public's interests in privacy [11], doing 
the analysis with biased data [12], or obfuscating risks and distributional issues (as 
in dwelling only on average economic effects). Some other examples are 
(1) omitting key variables, which precludes correctly analyzing their effects (e.g., 
omitting the possibility of a tax cut's stimulus effect), and (2) explaining results 
based on concepts not actually in the model (e.g., ascribing an intention to a model 
object that merely follows some rules, oblivious of intention). 

8.2.3 Why Ethical Considerations Matter 

Most readers may find the importance of such matters evident, but a few examples 
may be worthwhile. Consider urban planning that focuses entirely on economic 
rejuvenation. The results may include destroying neighborhoods and cultural fea-
tures, depriving people of their life-long homes, forcing such people to move to 
more hostile but affordable areas, and generating a “sterile” downtown without 
character. Such obliviousness to the many dimensions of the problem might be seen 
as incompetence, but not if the only consideration was stimulating economic 
growth in the downtown area. Or consider developing a simulator for a new aircraft, 
a simulator that is exceedingly accurate for most conditions but does not address



8.2.5 The Role of Professional Codes 

I am an Engineer; in my profession I take deep pride. To it I owe solemn 
obligations. 
Since the Stone Age, human progress has been spurred by the engineering 
genius. Engineers have made usable Nature's vast resources of material 
and energy for Humanity's benefit. Engineers have vitalized and turned to

some plausible circumstances that would be expensive to understand and represent 
well. Pilot training in such simulators would not be prepared if the trouble cir-
cumstances arose. This occurred in the notorious case of failures of the Boeing 
737-MAX. (A newspaper account touched high points [13], but more definitive 
accounts of the fiasco are slowly emerging [14]. The aircraft's failures killed 346 
people. Many other examples could be given [7, 15]. 
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One of the earliest discussions of ethics in the context of simulation was a paper 
by John McLeod, the founder of the Society for Modeling and Simulation [16]. 
McLeod was commenting on the danger that some use of simulation might be 
analogous to that of the accountant who “when asked ‘How Much is 2 + 2?’ replied 
‘How much do you want it to be?’” McCleod went on to provide draft ethical 
guidelines that emerged from a study by the National Science Foundation. Many 
other references might be named, each with own bibliographies (e.g., [7, 15]) A 
recent paper illustrates with critical review the important ethical subtleties that arise 
when attempting to address social issues with simulation [17]. 

8.2.4 Approaches to Applying Ethics 

It is sometimes useful to distinguish among three different approaches that scholars 
take in addressing issues. The exact labels vary, but the three approaches are 
(1) consequentialist (utilitarian); (2) deontological (duty-driven as with adherence to 
laws, norms, or principles); and (3) virtue-seeking (seeking good character traits, 
such as reliability, honesty, …). These are, roughly, associated, respectively, with 
Jerome Bentham and John Stuart Mill, Emanuel Kant, and Aristotle. They are 
discussed and compared, with examples, in Van de Poel and Royakkers [7]. 

Many ways exist for addressing ethical considerations, but in this volume, we 
address only one, having professional organizations adopt codes of conduct. 

Ethical codes can be crafted to be inspirational, advisory, or disciplinary in 
nature [18, 19]. Numerous examples exist, as well as a corresponding literature. 
Here, we merely touch upon examples. 

An inspirational expression of engineering ideals is the oath taken to join the 
Order of the Engineer: 



practical use the principles of science and the means of technology. Were 
it not for this heritage of accumulated experience, my efforts would be 
feeble. 
As an Engineer, I pledge to practice integrity and fair dealing, tolerance 
and respect, and to uphold devotion to the standards and the dignity of my 
profession, conscious always that my skill carries with it the obligation to 
serve humanity by making the best use of Earth's precious wealth. 
As an Engineer, I shall participate in none but honest enterprises. When 
needed, my skill and knowledge shall be given without reservation for the 
public good. In the performance of duty and in fidelity to my profession, I 
shall give the utmost. 
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(the Oath is copyrighted by the Order of the Engineer, Inc.) 

To be sure, not all engineers take the oath, and not all that do necessarily live up 
to it in all respects, but the oath reflects an ideal with which many can resonate and 
to which many make every effort to adhere. 

Advisory professional codes provide guidelines that help the simulationist to 
make good decisions, often very similar to Code of Best Practices. Many codes of 
professional conduct advise society members how to behave professionally. The 
IEEE Code of Ethics—documented in the IEEE Policies, Sect. 7: Professional 
Activities (Part A: IEEE Policies)—falls into this category. 

We, the members of the IEEE, in recognition of the importance of our 
technologies in affecting the quality of life throughout the world, and in 
accepting a personal obligation to our profession, its members and the 
communities we serve, do hereby commit ourselves to the highest ethical and 
professional conduct and agree: 

1. to accept responsibility in making decisions consistent with the safety, 
health, and welfare of the public, and to disclose promptly factors that 
might endanger the public or the environment; 

2. to avoid real or perceived conflicts of interest whenever possible, and to 
disclose them to affected parties when they do exist; 

3. to be honest and realistic in stating claims or estimates based on 
available data; 

4. to reject bribery in all its forms; 
5. to improve the understanding of technology; its appropriate application, 

and potential consequences; 
6. to maintain and improve our technical competence and to undertake 

technological tasks for others only if qualified by training or experience, 
or after full disclosure of pertinent limitations;



to seek, accept, and offer honest criticism of technical work, to 
acknowledge and correct errors, and to credit properly the contributions 
of others; 

8. 

9. 

10. 

recommendations. 
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7. 

to treat fairly all persons regardless of such factors as race, religion, 
gender, disability, age, or national origin; 
to avoid injuring others, their property, reputation, or employment by 
false or malicious action; 
to assist colleagues and co-workers in their professional development 
and to support them in following this code of ethics. 

Disciplinary codes impose negative consequences for violations of standards. 
The consequences may include, e.g., paying fees for not disclosing conflicts of 
interest, exclusion from certain types of contract competition because of past vio-
lations, or being removed from the professional society. 

Although many professional science and engineering societies have their own 
code of ethics (e.g., that of the Association for Computer Machinery [20]), certain 
elements are common to most of them, such as pursuit of truth, protection of 
community and environment, accountability for actions, mentoring the next gen-
eration, and informing and engaging the public. Recently, diversity and integration 
of minorities have been recognized as valuable goals for fairness because they 
allow new perspectives and ideas suggesting better solutions supporting society. 
Rigor, respect, responsibility, honesty, and integrity have been identified as the core 
values for scientists and engineers, including simulationists. 

It has been noted that policy analysts do not have an ethical code and that it 
would be difficult to develop a sensible code. Douglas Amy stated “Ethical inquiry 
is shunned because it frequently threatens the professional and political interests of 
both analysts and policymakers. The administrator, the legislator, the bureaucracy, 
and the profession of policy analysis itself all resist the potential challenges of 
moral evaluation” [21]. Others have long argued otherwise and have suggested a 
code of conduct [22, 23]. A book on the subject [24] includes examples and 

8.2.6 A New Obligation for Those Who Build M&S and Use It 
for Analysts 

It has long been an ethic that analysts identify the assumptions on which their 
results depend. Much more is necessary. Analysts should routinely discuss how 
results vary with major assumptions on which there is uncertainty or disagreement. 
This should reflect exploratory analysis in which assumptions are varied simulta-
neously, rather than mere variable-at-a-time sensitivity analysis. Further, analysts 
should demonstrate ways in which clients can hedge against uncertainties, i.e., how 
to identify strategies that are relatively more Flexible (to changes of mission),



Adaptive (to changes of circumstance), and Robust (to adverse shocks). This is 
sometimes referred to as planning for FARness [25, 26] or as what is becoming 
widely known as supporting Robust Decision-Making (RDM) under deep uncer-
tainty [27, 28]. Such efforts should become an ethical obligation. 

8 Ethics 215

To put the matter differently, the analyst should go well beyond so-called 
best-estimate calculations (which are often misleading because of uncertainties) and 
indicate the range of circumstances under which the consequences of the strategies 
being considered are relatively predictable and favorable, relatively predictable and 
bad, or very uncertain and therefore risky [26]. M&S should be designed so as to 
make related analysis easier and routine. Failure to do such analysis may leave 
decision-makers with inappropriate confidence in best-estimate results, which may 
lead to seriously harmful decisions. 

8.2.7 Final Observation 

Today’s simulations are powerful computational tools that can be seen as the third 
pillar of science [29], along with theory and empirical data. When used with 
visualization tools and augmented reality, they allow immersion into the problem 
space and direct interactions with the model. This vividness, however, can deceive 
a user that into seeing the simulations as valid surrogates of the real system when 
they are not. The ethical responsibilities of simulationists and those who use sim-
ulations are growing in parallel to these technological advances. 

8.3 Code of Ethics for Simulationists 

Tuncer Ören 

The code of ethics for simulationists (as posted at https://scs.org/ethics/) has been 
developed by the following members of the Ethics committee of the SCS: 

. Prof. Emeritus Tuncer I. Ören (Chair)—SCS AVP Ethicsş Founding Director of 
M&SNet—McLeod Modeling & Simulation Network of SCS 

. Prof. Emeritus Maurice S. Elzas, Wageningen Univ., Wageningen, The 
Netherlands 

. Prof. Emeritus Louis G. Birta—Ottawa Center of the McLeod Institute of 
Simulation Sciences 

. Dr. Iva Smit, E&E Consultants, Netterden, The Netherlands. 

The rationale for the code is clarified in:

https://scs.org/ethics/
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Ören, T. (2002). Rationale for A Code of Professional Ethics for Simulationists. 
Proceedings of the 2002 Summer Computer Simulation Conference, pp. 428–433. 
https://www.site.uottawa.ca/*oren/index-pubs/pubs-2000s.pdf 

The code is posted at different languages: 
English https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_ 

English.pdf 
Turkish https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_ 

Turkish.pdf 
French https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_ 

Turkish.pdf 
Italian https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_ 

Italian.pdf 
Chinese https://scs.org/wp-content/uploads/2015/12/ZH-20150810-03-Code_0_ 

Chinese_Zhang.pdf 
Bulgarian https://scs.org/wp-content/uploads/2020/08/Simulationist-Code-of-

Ethics_Bulgarian.pdf 
The English version of the Code is provided here in the following paragraphs. 

Simulationist Code of Ethics 
Preamble 

Simulationists are professionals involved in one or more of the following areas: 
Modeling and simulation activities. 
Providing modeling and simulation products. 
Providing modeling and simulation services. 

1. Personal Development and Profession 

1:1 Acquire and maintain professional competence and attitude. 
1:2 Treat fairly employees, clients, users, colleagues, and employers. 

As a simulationist I will: 

1:3 Encourage and support new entrants to the profession. 
1:4 Support fellow practitioners and members of other professions who are 

engaged in modeling and simulation. 
1:5 Assist colleagues to achieve reliable results. 
1:6 Promote the reliable and credible use of modeling and simulation. 
1:7 Promote the modeling and simulation profession; e.g., advance public 

knowledge and appreciation of modeling and simulation and clarify and 
counter false or misleading statements.

https://www.site.uottawa.ca/~oren/index-pubs/pubs-2000s.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_English.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_English.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Turkish.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Turkish.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Turkish.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Turkish.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Italian.pdf
https://scs.org/wp-content/uploads/2015/12/Simulationist-Code-of-Ethics_Italian.pdf
https://scs.org/wp-content/uploads/2015/12/ZH-20150810-03-Code_0_Chinese_Zhang.pdf
https://scs.org/wp-content/uploads/2015/12/ZH-20150810-03-Code_0_Chinese_Zhang.pdf
https://scs.org/wp-content/uploads/2020/08/Simulationist-Code-of-Ethics_Bulgarian.pdf
https://scs.org/wp-content/uploads/2020/08/Simulationist-Code-of-Ethics_Bulgarian.pdf


2. Professional Competence 

As a simulationist I will: 

2:1 Assure product and/or service quality by the use of proper methodologies 
and technologies. 

2:2 Seek, utilize, and provide critical professional review. 
2:3 Recommend and stipulate proper and achievable goals for any project. 
2:4 Document simulation studies and/or systems comprehensibly and accurately 

to authorized parties. 
2:5 Provide full disclosure of system design assumptions and known limitations 

and problems to authorized parties. 
2:6 Be explicit and unequivocal about the conditions of applicability of specific 

models and associated simulation results. 
2:7 Caution against acceptance of modeling and simulation results when there is 

insufficient evidence of thorough validation and verification. 
2:8 Assure thorough and unbiased interpretations and evaluations of the results 

of modeling and simulation studies. 

3. Trustworthiness 

As a simulationist I will: 

3:1 Be honest about any circumstances that might lead to conflict of interest. 
3:2 Honor contracts, agreements, and assigned responsibilities and 

accountabilities. 
3:3 Help develop an organizational environment that is supportive of ethical 

behavior. 
3:4 Support studies which will not harm humans (current and future generations) 

as well as environment. 

4. Property Rights and Due Credit 

As a simulationist I will: 

4:1 Give full acknowledgement to the contributions of others. 
4:2 Give proper credit for intellectual property. 
4:3 Honor property rights including copyrights and patents. 
4:4 Honor privacy rights of individuals and organizations as well as confiden-

tiality of the relevant data and knowledge.
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5. Compliance with the Code 
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As a simulationist I will: 

5:1 Adhere to this code and encourage other simulationists to adhere to it. 
5:2 Treat violations of this code as inconsistent with being a simulationist. 
5:3 Seek advice from professional colleagues when faced with an ethical 

dilemma in modeling and simulation activities. 
5:4 Advise any professional society which supports this code of desirable 

updates. 
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Abstract 

Manufacturing and other industries are entering the digital age with all its 
challenges, from systems-of-systems constraints to interoperability challenges. 
This chapter of the SCS M&S Body of Knowledge discusses challenges that can 
be addressed by enterprise modeling and simulation. Such challenges include 
collaboration with partners, establishing supply chains, and enterprise optimiza-
tion without becoming too brittle in an agile environment are. 
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9.1 Introduction
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Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts. 

Traditional manufacturing companies are entering the digital age either internally or 
when they need to collaborate [1]. The Information and Communication Tech-
nology (ICT) sector is faced with an increasing amount of information exchanged 
between partners through machines (physical means), people/organization, and IT 
in the context of business collaboration. Interoperability management is becoming 
increasingly critical, but it is not yet fully anticipated, controlled, and effectively 
supported to recover from security problems or failures. 

Enterprises decision-makers are faced by several questions when collaboration 
with partners within a supply chain process is required. Based on our experience in 
enterprise and business modeling on which we accompany companies in their 
projects, many questions arise. The most frequently received questions from 
companies are: What is the main objective of the collaboration? How to organize 
the collaboration? What interoperability barriers must be to overcome? What about 
focusing on the interaction with actors and humans? These questions clearly list the 
need of guidelines, methodology, and simulation support. 

This chapter intends to propose a model-driven method that addresses simulation 
in existing model-driven methods. For that purpose, it elaborates the Model-Driven 
Interoperability System Engineering (MDISE) that focuses on the vertical and hori-
zontal interoperability model-driven approach between enterprises while MDSEA 
remains focused on enterprise integration between internal domains (IT, human/ 
organization, physical means) before connecting the different models. The chapter 
concludes with some current development of the MDISE framework and method with 
model system tool box (MSTB) that evolved in the frame of Interop-V-Lab Task 
force. Finally, it gives some perspectives about the interest of MDISE in the frame of 
future cyber-physical system (CPS) research works. 

9.1.1 Problem Statement About Enterprise Modeling 
and Simulation 

An enterprise is an organization composed of people, activities, information, and 
resources involved in supplying a product or service to a consumer [2]. Physical 
supply chain activities involve the transformation of natural resources, raw mate-
rials, and components into a finished product that is delivered to the end customer 
[3]. This work focuses on enterprise system (ICT Supply Chain 2020), which 
requires the management of data linked by computer components. In addition, on 
each link between ICT components, different types of resources are also involved, 
so different simulation problems can arise. In the frame of Industry 4.0, a 
cyber-physical system (CPS) [4] and its environment can be considered as relevant 
instances of SC-ICTS with the inherent need of simulation. 

According to common definitions, supply chain management (SCM) is the 
management of the flow of goods and services and involves the movement and



storage of raw materials, work-in-process, and finished goods from the point of 
origin to the point of consumption. Here, we consider interdependent networks of 
goods or services, where ICT supply chain management is required to manage the 
channels and nodes for the delivery from source to end customers. To support 
services, SC-ICTS simulation is widely recognized as a major concern for orga-
nizations (ICT Supply Chain 2020) and companies [5]. More technically, SC-ICTS 
refers to data/information exchanges among ICT systems involved in physical 
supply chains or industrial systems. For instance, [6]have defined an ICT supply 
chain as “the full set of actors included in the network infrastructure”. It includes 
end-users, policy makers, procurement specialists, systems integrators, network 
provider, and software/hardware vendors that produce (big) data. 
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While they are booming, these systems face conceptual and technological bar-
riers that can limit their adaption. The lack of simulation is the cumulative effect of 
the increased sophistication of ICT, the scale of the information systems, and the 
increasing speed and complexity of a distributed global supply chain. The lack of 
sufficient visibility and control throughout the ICT supply chain is making it 
increasingly difficult to understand the exposure of the enterprise and manage the 
simulation associated with the supply chain. This, in turn, increases the risk of 
miss-exploiting the supply chain through a variety of means, including materials, 
products, data, and cyber-physical resources and processes. 

The authors in Reference [7] identified a demand for supply chain simulation 
guidance. However, the ICT supply chain discipline is in an early stage of devel-
opment with diverse perspectives on foundational SC-ICTS definitions and scope, 
disparate bodies of knowledge, and fragmented standards and best practice efforts. 
Additionally, there is a need to identify the available and needed tools, technology, 
and research related to ICT supply chain simulation and better understand their 
benefits and limitations. 

In brief, the SC-ICTS is not yet fully standardized or even well-defined. Yet, 
potential supply chain participants attempt to find or define terms, definitions, 
characterizations of the collaboration, but frequently fail to identify and evaluate 
current and SC-ICTS-related standards and practices (need, scope, and development 
approach). In consequence, a methodology that list models, tools, technology, and 
techniques useful in securing the building of ICT supply chain is still wanted. For 
that purpose, this chapter will acclaim to join efforts with methodology to improve 
the efficiency of SC-ICTS simulation based on a model and an approach to answer 
Industry 4.0 needs due to the hybrid/heterogeneous composition of CPS, they are 
interesting candidate nodes for this SC-ICTS approach. 

9.1.2 Methodological and Technical Approach 

According to the objective of identifying a list of models, tools, technology, and 
techniques useful in building consistent and interoperable ICT supply chain, this 
section recalls components about enterprise modeling, simulation, and MDSEA, 
which contribute to building a model-driven simulation for systems.
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9.2 Enterprise Modeling 

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts. 

Enterprise modeling (EM) is the abstract representation, of an enterprise with its 
structure, the various functions, the processes, the information, the resources 
(physical and human), the management, the relationships with the environment 
(customers and suppliers), and all activities required to produce industrial products 
or services. The goal of EM is to represent (based on models) a system as it stands 
and improve its performances or to follow the evolution of the enterprise. Addi-
tionally, the relation of EM and integration domain has been considered [8]. 

Enterprise modeling concepts in industrial environment were developed, starting 
at the end of 1970’s, mainly in USA by the Department of Defense (DoD), in order 
to improve the competitiveness of the industry that seems at this period to be behind 
the competitiveness of the Japanese industry. A second reason was the more and 
more use of Information Technology (IT) in manufacturing and the appearance of a 
new way to design manufacturing systems: computer-integrated manufacturing 
(CIM). The DoD launched several projects in cooperation with industrial compa-
nies such as Boeing, General Electric, Westinghouse, IBM, Hughes Aircraft, and 
Softech Inc. One of the first formalisms developed to represent a part of EM 
concept in this new approach was the IDEF method (integrated definition) (IDEFx) 
[9], for which a series of formalisms were proposed. Among them: IDEF0 to 
represent functions and activities with a simple syntax and a hierarchical decom-
position from a global representation of the enterprises to a detailed representation, 
IDEF1 to represent information, and IDEF 3 to represent the logic of process 
execution, which can be used to develop a simulation tool. 

At the same time, in Europe, the Group of Research in Automation Integration 
(GRAI) of the University of Bordeaux developed the graph with results and activities 
interrelated (GRAI) and also the GRAI model [10] to represent the manufacturing 
based on system theory [11, 12, 13], the theory of hierarchical multilevel system [14], 
which allows the decentralizing of the decision-making and to increase the reactivity, 
the organization theory [15, 16], the discrete event systems [17, 18], and the pro-
duction management concepts [19, 20]. Three subsystems are defined: physical 
(Fig. 9.1 (transformation of purchased items and information in products or ser-
vices)), decisional (to control the physical system (Fig. 9.1)), and information (to 
manage the creation and the exchange of information (Fig. 9.2)). This research work 
was completed by a cooperation with the industry to validate the concepts: Télé-
mécanique Electrique (in Nice) and Merlin Gerin (in Grenoble (today both in Sch-
neider Electric), and Crouzet (in Valence) in order to improve the performances of 
workshops; SNECMA (today Safran) in Le Creusot to design a flexible manufac-
turing system (FMS), AMRI (near Bordeaux) to design a FMS, and other companies 
such as Suez to improve the management of water distribution and Airbus Toulouse 
to improve the performance of a composite workshop. In the last four years, the GRAI 
model and method have been extended to be applied in the domain of services, but 
also to develop integrated solutions in the three domains: Information Technology



(IT), Physical System, and Organization/Human System called Model-Driven Sys-
tem Engineering Architecture (MDSEA (see Sect. 3.3.4). At the same time, other 
methods appear, one major one is CIMOSA [21], which was developed in the late 
1980’s. Additionally, IEM [22] and ARIS [23] have been largely used. 
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Fig. 9.1 Physical system and the control system 

Fig. 9.2 Creation of the information system in the GRAI model 

9.2.1 GRAI Model and GRAI Formalisms 

The previous section focused on the main theories that have supported the creation 
of the GRAI model. This section describes the structure of the basic model and the



formalisms to describe the enterprise. The previous concepts allow us to consider 
the enterprise as a complex system that can be split up into two entities (Fig. 9.1): 
The physical system or controlled system (also called the transformation system) 
which produces the products or/and the services, the decisional system (control 
system) that controls the physical system. 
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Fig. 9.3 IDEF0 

This systemic view introduces the concept of control loop. In Fig. 9.2, the 
information system is added to manage all the information. 

Currently, GRAI model uses various formalisms to graphically represent the 
components of a manufacturing system: physical, decision, and information. 

Concerning the modeling of activities, two formalisms are selected: IDEF0 and 
extended actigram star: (EA*). In IDEF0 (Fig. 9.3), there are four types of flows:

● Input represents the flow of entities which will be transformed.
● Output represents the flow of entities which have been transformed.
● Control represents the conditions or circumstances that govern the transforma-

tion (objectives, constraints …).
● Resource represents the resources required to perform the transformation. 

Extended actigram star (EA*) formalism is in line with IDEF0 and IDEF3 to 
facilitate the transformation of models from bottom business specific model (BSM) 
level to technology independent model (TIM) level [24]. The other GRAI for-
malisms are

● Global level for the control using GRAI grid formalism (Fig. 9.4)
● Detailed level for the control using GRAI nets formalism derived from EA* 

(Fig. 9.5). 

The GRAI grid is a formalism which represents the decisional subsystem. It is a 
matrix in which functions, decision levels, decision centers, and decision links are 
identified as follow. 

The functions are represented vertically; a function includes a set of activities 
that contributes to the same purpose. The decision levels for these functions are 
represented horizontally and define the temporality of the decisions. The criteria of



decomposition are the horizon and the period of time. Each cell represents a 
decision center, i.e., intersection between a function and a decision level. 
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Fig. 9.4 GRAI grid formalism 

Fig. 9.5 GRAI nets 
formalism 

The decision frames represent the hierarchical links between decisions and 
include all information for decision-making (objective, decision variable, con-
straint, and criteria). 

GRAI nets (Fig. 9.5) give the detailed description of the various activities in 
each decision center identified in the GRAI grid. By using GRAI nets, the result of 
one discrete activity can relate to the support of another discrete activity. 
With GRAI nets, four fundamental elements are to be identified:



228 H. Haidar et al.

Fig. 9.6 Information system 
formalism

● To do or to decide (activity name),
● Initial state (main input of an activity),
● Supports (information, decision frame, methods, and materials),
● Results (results of an activity). 

The formalism used to describe the information system is entity/relationship 
modeling proposed by UML (Fig. 9.6). It describes the information structure in 
coherence with the decisional system. 

Several IT tools have been developed to support the description of formalisms. 
The last one is the model system tool box (MSTB), as described in Sect. 5.1. 

9.2.2 BPMN 

At more technical level, business process modeling and notation (BPMN 2.0) (business 
process model and notation [25] language can be used. It is more complex to use than 
EA* but offers a wider range of detailed process modeling concepts. It is formalized in 
XML format, making model transformation easy. In addition, BPMN allows the rep-
resentation of human and technical resources that are required in model-driven 
approaches representation principles. BPMN has the advantage of providing a meta-
model developed by the object management group (OMG) that facilitates its imple-
mentation. Finally, it prepares the transition to the lower levels on the IT aspect thanks to 
its simulation with many BPM IT platforms, thus allowing the deployment and 
semi-automatic transformation for the execution of BPMN processes. 

9.2.3 Other Formalisms for Information System Design 

With a more technical view of information systems than BPMN, the open group 
architecture framework (TOGAF) and architecture-animate (ArchiMate) models 
can be used to capture other views at a more technical level. [26, 27]. In details, the



enterprise architecture frameworks TOGAF and ArchiMate propose different layers 
from business level to application level to design the information system of orga-
nization. TOGAF with its ADM cycle highlights a step-by-step methodology to 
migrate toward a new information system consistently. It does not propose any 
languages and relies on existing ones and adapted such as UML. ArchiMate pro-
poses different models at each layer (motivation, business, application, and tech-
nology) in addition to its framework. Let us note that the ArchiMate specification 
can be used with TOGAF to build expected models. While the languages proposed 
and deployed in these frameworks are fully adapted to develop an information 
system that meet enterprise expectations, they allow for the representations of 
different points of view but often in a less accurate way than a language fully 
dedicated and developed for a particular point of view. Some points of view are not 
considered by existing frameworks such as, for instance, the decisional and physical 
points of view. In addition, dedicated languages often go beyond the descriptive 
aspect and propose means to analyze and improve the system under study. This is 
the case, for instance, with the GRAI methodology that proposes formalisms (GRAI 
grid and GRAI networks) to model and analyze the decisional point of view of an 
organization. 
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9.2.4 Conclusions 

Currently, EM is not used as expected in industrial world, particularly in Europe. It 
seems that in USA, the use is more important, certainly based on the influence of 
IDEFx. Education must be developed in this domain by elaborating examples based 
on the concrete experience with real cases. Another argument is the development of 
end-users-oriented and adapted IT tools because they capture the knowledge on 
their own manufacturing system. For this purpose, the graphical modeling aspect 
and ease of use are very important. The last objective is to link EM to other areas 
like enterprise simulation and the model-driven approach as proposed in Sect. 3.5. 
Modeling Enterprise at the Different Levels of Abstraction 

Based on the modeling levels just previously described, the methodology 
MDSEA proposed to associate relevant modeling languages at each level to rep-
resent confidently the existing system and the future service product and service 
system. To achieve this goal, the standards for process modeling are gaining 
importance, with several process modeling languages and tools available to enhance 
the representation of enterprise processes. To choose among the languages, the 
level of abstraction required is important. 

The first specification step of a model to be established between two partners is 
crucial. At the BSM level, the modeling language must be simple to use, expres-
sive, and understandable by business-oriented users. Moreover, this (or these) 
language(s) must cover processes and decisions with coherent models. The choice 
is affected by the capacity of the language to propose a hierarchical decomposition 
(global view to detailed ones), which is especially required at this level. Indeed, 
business decision-makers often have a global view of the running system and need



o

languages allowing this global representation with few high-level activities 
(physical process or decisional activities). This global view must be completed by 
more detailed activities models elaborated by the enterprise sector responsible. 
These models are connected to top level models in a hierarchical and inclusive way. 
These are the principles of systemic and system theory to consider selecting the 
languages. However, it is also obvious that the choice of modeling languages is 
subjective, depending on the experience of the languages’ practitioners and on their 
wide dissemination within enterprises. 
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As for process modeling at the business level (BSM), several languages exist. 
Extended actigram* (EA*) presented in Sect. 3.1 was chosen to model processes at 
the BSM level due to its independence regarding IT consideration, its hierarchical 
decomposition, and the fact that it can model three supported resources: material, 
human/organization, and IT. It has been developed as an answer to the previous issues 
encountered with IDEF0 regarding its simulation with BPMN for example. It intends 
to capture business process models at a high-semantic level, independently from any 
technological or detailed specifications. Service-oriented modeling and architecture 
principles [28], developed by IBM, were also considered, but these languages are 
more IT oriented and thus were far away from our industrial requirements. 

At the TIM level, BPMN 2.0 is used because this language offers a large set of 
detailed modeling constructs, including IT aspects and benefits from the simulation 
of many BPMN? IT platforms allowing for the deployment and automated trans-
formation for the execution of BPMN processes. Moreover, BPMN also enables the 
representation of human and technical resources, which are required in the MDSEA 
principles of representation. BPMN also has the advantage to provide a metamodel 
developed by OMG, which facilitates the implementation of the language. It is also 
extensible with third party metamodels, which is important and respects the OMG 
simulation standards (e.g., Xmi). 

In detail, GRAI approach is to be used by business representatives at BSM and 
BPMN at the TIM level. BPMN is used to be the backbone language between the 
business view and IT level. However, because the languages have different con-
sideration and view on the system, it must be able to link them. In detail, the EA* 
models designed at BSM level need to be transformed into BPMN 2.0 models to 
obtain the coherent business process models at the TIM level. 

9.3 Driving Models to Simulation 

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts. 

9.3.1 Interoperability 

According to ISO 11354, enterprise interoperability is the “ability of enterprises and 
entities within those enterprises to communicate and interact effectively”. T  
structure the different concept of interoperability, ISO 11354 makes available a



framework that provides a set of interoperability solutions relevant with the prac-
titioners’ requirements. Thus, this framework for enterprise interoperability relies 
onto three dimensions such as concerns, barriers, and approaches (Fig. 9.7). 
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Fig. 9.7 Framework for 
enterprise interoperability 

Interoperability concerns highlights the interoperability viewpoints, i.e., the 
levels in enterprises at which interoperability needs to be developed. Interoper-
ability concerns include business level (ex. working methods, decision-making…), 
process level (collaborative business processes), service level (application deployed 
in collaborative processes), and data (shared and exchanged within the process and 
through application). 

Interoperability approaches take the classical approaches proposed in ISO 
14258: integration unification and federation. Integration encourages the use of a 
common format through all collaborative organizations (ex. use of BPMN 2.0 
language to model processes). Unification relies on the use of a “meta”-level 
principles to ensure the mapping between different formats (ex. use of model-driven 
engineering approach). Federation promotes to develop mechanisms allowing to 
collaborative organization get used to each other’s methods, data, and tools on the 
fly (no use of standard or any mapping). 

The barriers represent the problems of interoperability that can occur between 
the organizations. Conceptual barrier deals with exchanged information (syntax and 
semantic problems) [29]. Technological barrier deals with the compatibilities issues 
between application and information systems. Lastly, organizational barrier deals 
with the definition of responsibilities and authorization of involved actors, 
authority, process, and regulatory aspects. 

The intersection of three dimensions (e.g., conceptual x process x unification) 
makes available a set of relevant solution to develop interoperability according to 
the intersection’s requirements. Thus, the integrated approach, despite it is con-
straining, is likely the easy way to set up interoperability since each organization 
adopts the same methods, models, or tools. The unified approach seems the most 
implemented approach since the concepts and tools are well identified, defined, and 
equipped, the model-driven engineering or else model-driven engineering and their



practices are the most known approaches. Lastly, the federated, although it repre-
sents the most challenging approach and meets the simulation “spirit” expectations 
(no mapping, no standards but a dynamic and continuous adaptation), still remain 
poorly developed. Thus, the Enterprise Simulation roadmap published by the 
European Commission [30], developing the federated approach for interoperability 
is considered to be one of the research challenges in the next years. 
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9.3.2 Vertical Decomposition: Toward Alignment 
from Business to Operational 

Considering resource domains while modeling at the bottom BSM helps to antic-
ipate how the different kinds of resources will be called, how they will interact with 
the other components of the system and how they will be used to perform the 
process. Nevertheless, it requires an extraction strategy by choosing appropriate 
methods and models to get their specificity properly. 

Figure 9.8 shows the interest of such architecture that is to design and implement 
a service product and to produce a dedicated service system coherent with business 
service models, represented with enterprise models. Looking at TIM and TSM 
levels show how the methodology differentiates three kinds of resources catego-
rized into IT, human, and physical means. The reason is to tackle the different 
requirements of resources at the implementation stage of the service system. Then, 
the implementation of the resources detailed in the TSM model allows for the 
implementation of the service system and related service product through a set of 
services, i.e., a system in which the service provider (an enterprise inside a network, 
or in a cloud of service providers) is not directly identified by the customer, which

Fig. 9.8 MDISE architecture for enterprise interoperability



can only remain interfaced with a service delivery. The service maintenance and 
decommission activities can be ensured by different companies in the network 
without direct identification by the customer. However, the virtual organization 
keeps the property rights on the services.
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About IT domain, several model languages exist. GRAI introduced at the 
beginning of the chapter has demonstrated the capacity to tackle modeling aspect 
from the decisional perspective at the BSM level. At the lower level, UML can be 
used to describe more technical views. 

About physical means, some physical models can help to better catch the 
behavior of machines used in the systems. It can include performance models as 
well as other expressed properties thanks to physical and mathematical models to be 
considered in this part of the model. This topic is being discussed in several 
simulation projects (I-V-Lab (http://interop-vlab.eu/projects-i-vlab/)), including the 
DIH4CPS project [31]. 

About human and organization, we believe that holacracy, which is decision-
making distributed throughout a holarchy of self-organizing teams, can bring people 
to work together. The challenge is to catch and model holacracy systems. 

It is important to mention that the service system represented at each level of 
MDISE remains the same system, but with details and including implementation 
constraints. Nevertheless, after having described each category of resource with 
appropriate models, another challenge is to deal with the coupling of these models 
together. For this aim, simulation plays the role of gluing them together. 

Additionally, in Sect. 5.1, MDISE vertical decomposition will be implemented 
in MSTB evolved as an open-source tool extended to cover new category of models 
introduced in the next section. The new level of description introduced here will be 
considered as well, such as decisional models in addition to process models and 
human machine interaction in the simulation management life cycle. The service 
approach will keep driving this development [32]. 

9.3.3 Horizontal Alignment: Toward Simulation for Better 
Collaboration Between Service Network 

Figure 9.8 shows the collaboration between two enterprises to produce a service. 
Collaboration between different entities can happen at different MDSEA abstraction 
levels (BSM, TIM, and TSM). The BSM models allow to represent the TO BE 
models of both entities and to align the simulation of practices in terms of business 
process models and decision models. In MDSEA, simulation is a key factor for 
enterprise collaboration. Enterprise models ensure not only simulation of practices, 
but also between the human resources and IT systems supporting these practices. 

Business Service Model (BSM): BSM specifies the models, at the global level, 
describing the service running inside a single enterprise or inside a set of enterprises 
as well as the links representing cooperation between these enterprises. The models 
at the BSM level must be independent of the future technologies that will be used 
for the various resources and must reflect the business perspective of the service

http://interop-vlab.eu/projects-i-vlab/


system. In this sense, it is useful, not only as an aid to understand a problem, but 
also it plays an important role in bridging the gap between domain experts and the 
development experts who will build the service system. The BSM level allows for 
the defining of the link between the production of products and the production of 
services. 
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Technology Independent Model (TIM): TIM delivers models at a second level 
of abstraction independent from the technology used to implement the system. It 
gives detailed specifications of the structure and functionality of the service system, 
which do not include technological details. More concretely, it focuses on the 
operational details while hiding specific details of any technology to stay inde-
pendent from any technology, used for the implementation. At TIM level, the 
detailed specification of a service system’s components is elaborated with respect to 
IT, organization/human, and physical means involved within the production of the 
service. It is important to mention that, in comparison with MDA or MDI or 
service-oriented modeling and architecture (SOMA), the objective of MDSEA is 
not only IT oriented, and then, this requires enabling the representation of human 
and technical resources from the BSM level. At the TIM level, the representations 
must add some information in comparison with the BSM models. 

Technology Specific Model (TSM): TSM enhances the TIM model specifica-
tions with the implementation details of the system, i.e., how it will use a specific 
technology or physical means (IT applications, machine, or a person) for delivering 
services in the interaction with customers. At TSM level, the models must provide 
sufficient details to develop software applications, hardware components, recruiting 
human operators/managers or establishing internal training plans, buying, and 
realizing machine devices. As for IT applications, a TSM model enhances a TIM 
model with technological details and implementation constructs that are available in 
a specific implementation platform, including middleware, operating systems, and 
programming languages (e.g., Java, C++, EJB, CORBA, XML, Web Services, etc.). 
After the technical specifications given at TSM level, the next step consists in the 
implementation of the service system in terms of IT components (applications and 
services), physical means (machine or device components or material handling), and 
human resources and organization ensuring human related tasks/operations. 

Initially, the simulation models developed in the MDI focus on the principles of 
“mappings” to establish interoperability. In that sense, it implements the unified 
approach and requires the linking of concepts and relations of heterogeneous 
modeling languages, for example. This kind of approach is robust but time con-
suming, with a possibility of a partial overlapping of languages (e.g., one concept 
does not exist in both) requiring the extension of the languages and to develop 
transformation rules that can change if languages change. 

Thus, this approach is completely relevant, especially for collaborative organi-
zation mid- and long-term-oriented, i.e., stable over time and for which the intensity 
of the collaboration tends toward cooperation and collaboration and an important 
level of integration, according to Reference [33]. 

In the frame of MDISE, the purpose is to extend the MDSEA and MDI prin-
ciples to a federative approach to develop simulation. This means to prevent, as



much as possible, any common format or predetermined model, and each partner 
keeps its own organizational structure, business processes, tools, data format, etc. 
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To this end, the goal is to create a simulation model to insert between organi-
zations. This model aims to identify and allow simulation independently of the 
models, organizational structure, or physical means used by partners. This model 
can be initiated with known and simple but limited mappings (or any other basic 
mechanisms) to avoid reaching a unified or integrated approach. Thus, it must be 
built on the knowledge about the characteristic of partners without any (or at least 
strictly limited) modification or adaptation. These characteristics are the interfaces 
(I/O) requested for the collaboration (functional and/or physical), human resources, 
data, models, etc., allowing for the establishment of consistent interaction. Thus, the 
proposed simulation model does not take any interest in the modeling language, 
organizational structure, or physical means used by partners and does not aim to 
establish a strict mapping or equivalence between them. It aims to build a transient 
simulation bridge based on the identification and the analysis of knowledge, con-
straints, and specific features stemming from partners. It should be noted that the 
principle to build a “centric simulation model” approach to the “mutual adjust-
ment”, mentioned in Reference [34], thus fits the federated approach of the simu-
lation framework. 

Therefore, whether for the IT, the human/organization, or the physical means 
domain, this model can be considered in two ways: 

A “component mode” relying on commercial off-the-shelf (COTS) sufficiently 
generic to be deployed in different organizations. These bricks are 
pre-existing basic models (or skeleton) from identified and known simulation 
situations. These atomic COTS belong to a set and can be combined to 
provide a complex COTS to establish simulation in specific situations. They 
cannot be modified and are used from identified characteristics and 
requirements of the collaboration such as the synchronization, integrity, 
quality, or quantity of data. For instance, the buffer is a well-known 
mechanism that can be used for the IT domain to allow a synchronization 
between two processes. 

An “emergent” mode relying on a model built on the fly for complex 
requirements and constraints making the direct use of “component mode” 
impossible. In this case, the model is based on rules allowing for the building 
of simulation from scratch. These rules are built from the specificities of the 
collaboration in terms of IT, organization, or physical means. These primo 
rules set can be raised with other discovered rules. In that sense, the use of 
techniques from artificial intelligence (self-learning, process mining, data 
mining, etc.) is an important challenge for this approach. Moreover, a 
simulation model highlighted in the emergent mode can become a COTS in 
the component mode if it appears regular in different collaborative 
organizations. Thus, the purpose of this mode is to be free from any 
components—once a component deployed for simulation it cannot consider



modification of organization—and make a dynamic adaption possible in the 
case of the modification of partners and entailed constraints on the 
collaboration. For instance, the short-lived ontology can be used for the 
simulation of data in the IT domain, it uses an ontology valid for a limited 
duration. At the human/organizational level, the principles of the holacracy 
and its concepts of circles and roles can be considered, by way of an adaption 
for the simulation purpose, to make different organizational structures 
(hierarchical, functional, matrix, etc.) interoperable. Thus, by identifying 
actors from both sides, the definition of rules could authorize the building of 
time bounded circles and allowing for a coherent interaction between persons 
without any modification of internal structures. For the physical means 
domain, take the example of a floppy disk. The principles are to build a set of 
data that physically describe the system. The description of the object can be 
based on physical data (e.g., dimension), which is data related to the business 
or stemming from an image analysis. From this step, other partners can 
anticipate the reception of the object and be prepared to exploit it. 
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Lastly, both modes, “component” and “emergent”, can be used in a comple-
mentary manner. The simulation model can be initiated with existing components 
and continued with emergent ones if requested. 

9.4 Implementing Framework and Method in MSTB 
Evolved 

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts. 

As an historical perspective, to operationalize the models from BSM to TSM, [35], 
Gregory [36] proposed the frame of the EU FP7 Research Project MSEE “Manu-
facturing Service Ecosystem” ID 284860 (http://www.msee-ip.eu/). The authors of 
References [35] introduced the implementation of the SLMToolBox that is a ser-
vice graphical modeler, model transformer, and simulation engine. Since then, 
SLMToolBox has been improved and renamed MSTB. This tool has been imple-
mented as an Eclipse RCP service. In detail, it runs the transformation from service 
processes models designed by business users to BPMN models. Then, the BPMN 
models are transformed into DEVS models to simulate the behavior of the entire 
process model. Thus, MSTB aims at proposing a TO BE process-oriented modeling 
framework to represent the architecture and data workflows that exist in the ICT 
supply chain at the TIM level of MDSEA. 

Therefore, to meet the expectation expressed in the chapter, an operationaliza-
tion of MDISE to extend MSTB according to the MDISE methodology is under 
development. This will allow for the identification and modeling of the enterprise 
frontier that can be initially poorly compatible with the environment and potentially 
places the interoperability barriers in organizational relations, including managing 
multi-tenancy, multi-providers, and system/service continuity. In addition, it will

http://www.msee-ip.eu/


make a methodology available to model the planning and execution to mitigate or 
avoid interoperability issues during the whole life cycle, such as considering the 
evolution of ICT from both IT and OT points of views. Models will identify and 
highlight the need for simulation. It will help users mitigate barriers to simulation 
using models and simulations to manage exceptions and ensure business continuity. 
The objective is to prevent an ICT simulation issues occurring during production or 
manage it with short business resilience duration. The new version of MSTB is 
called MSTB evolved. 
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9.4.1 Models and Model Transformation in MSTB (BSM 
Level) 

To show the usability and applicability of MDISE and MSTB evolved in SC-ICTS, 
the methodology is detailed in this subsection. First, the conceptual workflows from 
the requirements established at level BSM are defined. Then, it prepares the tech-
nical works for the implementation of the information system. 

9.4.2 Using GRAI Grid and Extended Actigram* at Top BSM 

Among the different systems, complex systems (systems of systems and eco sys-
tems), and organizations, the GRAI grid focuses on modeling the decisional aspects 
of the management. The proposition in MDISE is to use the GRAI grid at the top of 
the BSM to define the coordination and simulation of two enterprises, detailing the 
points where decisions can be made (decision centers) while participating and the 
information relationships among these. In the frame of MDISE, models built using 
the grid allows for the analysis and design of how decisions are coordinated and 
synchronized at the frontier of two enterprises. 

As for process modeling at the business level (top BSM), several languages 
exist. EA*, introduced in Sect. 3.1.1, is chosen to model processes at the BSM level 
due to its independence regarding IT consideration, its hierarchical decomposition, 
and the fact that it can easily model three supported resources: material, human and 
IT. It was developed as an answer to the previous issues encountered with other 
enterprise modeling languages regarding its capacity to represent interoperability 
[35]. However, EA* is chosen to capture business process models at a 
high-semantic level, independently from any technological or detailed specifica-
tions in MDISE. Service-oriented modeling and architecture principles [37] 
developed by IBM were also considered, but these languages are more IT oriented 
and thus were far away from our requirements. EA* provide at top BSM a common 
and explicit graphical notation for business process modeling of enterprises inter-
faces within MDISE, so it fits business-oriented people requirements, who need to 
describe and communicate high-level business processes involving enterprise 
resources with the help of a simple and explicit formalism. In comparison with 
other initiatives such as BPMN2.0, it relies on a reduce set of graphical objects and



focus on the “business” aspects of enterprise processes. The accessible syntax of 
EA* facilitates the design of business process. 

238 H. Haidar et al.

To recap, at the top of BSM in MDISE, GRAI grid and EA* facilitate the 
modeling of business process and decision at the interface of the enterprise with its 
environment, offering a scalable view of the decision and process modeled. This 
level is addressed to users responsible of the creation of the first model, business 
people responsible of the management, and to technical developers responsible of 
the development of business process modeling tools. As a graphical modeling 
language, EA* and GRAI grid provide business users and analysts standards to 
visualize business processes in an enterprise, and thus in a comprehensible way. 

9.4.3 Domain Specific Languages at Bottom BSM 

At the bottom BSM, the approach needs to identify and catch different concepts 
related to the domains: IT, human, and physical means. To capture these concepts, 
models can facilitate description and abstraction. However, it is required to keep a 
simple set of modeling notations comprehensible by business users. This method-
ology will drive the BSM concepts down to TIM still independently of technologies. 
The proposition provides models to express each domain. Even at BSM, models will 
have to consider input/output information coming from the workflow along the 
supply chain. To support stakeholders, this methodology will make a library of 
potential simulation solutions available to handle them; they will be used to stress the 
models and simulate interoperability management scenarios to evaluate their interest. 

According to Sect. 4, and at this MDISE stage, it is required to integrate domain 
specific models with a process-oriented way for each domain human, IT, and 
physical means: 

At collaboration time, no orchestration is formalized between participant of two 
distinct entities and without any organizational structure between the enterprises. 
The idea of MDISE is to better train and support humans in this situation to reach a 
better response time in critical situations. The proposition takes advantage of 
holacracy structures and rules. Holacracy rules must be described by models. These 
models will provide a framework to help to customize the specific processes need 
for business process simulation. The holacracy consists of four key tools: 1. 
rationale, 2. role, 3. tension, and 4. meeting formats. These tools can be described 
with GRAI Net models introduced in Sect. 3.1.1. 

Each data used by stakeholders have specific structure that leads to semantic 
issues. The use of a short-lived ontology concept [38] can tackle this barrier. 
Short-lived ontology fits the federated Enterprise Simulation approach highlighted 
in the EIF. It uses no common persistent ontology; the communication must be 
accommodated on the fly. In consequence, the ontology that structures the mes-
sages exchanged must be short-lived, (i.e., non-persistent). EA* diagram from 
GRAI can be used with the notation of the ontology validity period and eventually 
rules to set and modify the validity.
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Finally, the physical means interaction processes that happen at the frontier 
between enterprises can be learned from good practices established in the past, in 
similar situations. Here, GRAI EA* models can be obtained from the process 
discovery approach to reveal interesting behavior from the legacy practice. For 
instance, process mining is an automated, data-driven AI technology that finds 
maps and documents of existing businesses tasks thanks to existing data. 

9.4.4 Interface Process Model at TIM Level 

This subsection focuses on the modeling of data workflows at the TIM level of 
MDISE. This task will select accurate language to the TIM level of modeling. These 
languages might be potentially specialized to clearly represent the data exchange. 
These data workflows will be derived thanks to the ATL model transformation from 
the bottom BSM conceptual models of Sect. 5.1.1. They will describe the data 
circulating from an operative level of ICT up to the decision department, as well as 
outside the enterprise along with other enterprise partners. The appropriate modeling 
language will allow for describing after the domain extractions of Sect. 4 data, 
handled both by human/organization with user devices, smart machines, and IT with 
M2M, at the technological independent level. It will also propose a methodology to 
transform these models inherited from the bottom BSM models proposed in 
Sect. 3.1. BPMN appears to be the most appropriate language due to its expres-
siveness, user-friendly description, and large user community. It would be the basis, 
enriched with specific concepts related to data security. 

According to the partners’ experiences and literature, the most appropriate 
domain patterns can be defined here. Among them, at the TIM level, BPMN 2.0 
(introduced in Sect. 3.1.2) can be chosen to model the connection of the domains 
because it offers a large set of detailed modeling construct, including IT aspects and 
benefits from the simulation of many BPM IT platforms allowing the deployment 
and automated transformation to the execution of BPMN processes. Moreover, 
BPMN also enables the representation of human and technical resources, which are 
required in the MDSEA principles of representation. BPMN also has the advantage 
to provide a metamodel developed by OMG, which facilitates the implementation 
of the language. 

9.4.5 Simulation Model Orchestration at TIM Run Time 

According to the previous works published in References [35], MDSEA was 
already instantiated to use the simulation to support decision-making. In this 
chapter, the authors considered the supply chain context and looks for simulation of 
different simulations derived from domain specific models of Sect. 5.1.1. According 
to Fig. 9.9, the first step of the decision-making cycle is started by the decompo-
sition of the decisions and the information (e.g., simulation needs and performance 
indicators (PIs) related to simulation objectives) supporting those decisions. This



step can be performed using decisional modeling methods such as GRAI grid (see 
Sect. 3description). Then, several simulation solutions should be selected according 
to the required information treatment (see (2) in Fig. 9.9). For instance, in a 
manufacturing system, the decision at a strategic level can deal with the choice of 
handling correctly at the frontier between two enterprises the structure of data. 
Therefore, the simulation needs a distributed approach gluing together different 
simulations coming from different domain specific models. The solution intends to 
provide an overall mechanism to overpass interoperability barriers according to 
situations in the ICT supply chain domain for a given period. 
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Fig. 9.9 Simulation-based decision aid for enterprise interoperability at the TIM level 

As discussed in Sect. 2, the distributed simulation and HLA standard can be 
used to overcome these barriers. HLA is providing interoperability regarding data 
and time management. Then, the methodology can provide facilities the transfor-
mation of TIM workflow models into distributed discrete event models (e.g., HLA 
DEVS; FMI/FMU [39] to support data exchange scenarios between domain specific 
simulations in order to dynamically observe the behavior of domain specific models 
coupled to orchestrate data exchange thanks to the run of these models. Practically, 
the methodology will propose a reference ICT model library to support a quick set 
up of the data exchange models according to the class of organizations that par-
ticipate in the ICT supply chain. Of course, the library of dataflows models should 
include the features to integrate the main simulation flaws and solutions described 
at the TIM level in the modeling and simulation data scenarios. The MSTB evolved 
will implement these models and simulation. MSTB evolved is under development 
but has not been released yet by the international group of researchers. This work is 
done in the frame of TF2 Model-Driven Interoperability, Engineering and Simu-
lation of Interop V-Lab ([40], p. 2).
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After the simulation, it is usually required to aggregate the results according to the 
same criteria of decomposition or enterprise layers (see (3) in Fig. 9.9). In the above 
example, the information about data interoperability barriers should be classified and 
aggregated based on annual objectives of data reliability, category of barriers faced 
and fixed, overall cost of data security interoperability, etc. The simulation models 
enabling the “simulation-aided decision-making cycle” can be the result of trans-
forming physical subsystem models (e.g., ICT data processing models). The mod-
eling work can be guided by ICT ecosystem techniques. The next step consists in 
connecting the conceptual models to the level that considers the architecture and the 
platform environment (e.g., IT/OT). Considering the structure of the ICT supply 
chain system described in Fig. 9.9, each stakeholder receives information from 
partners or from physical subsystems. It forms several data processes. 

In the data exchanged described previously, interoperability issues can occur, 
where it can be vital to prepare the ICT ecosystem to react, evolve, and adapt. 
A simulation-aided decision cycle can be used to validate process behavior sce-
narios. We propose a life cycle in Fig. 9.9 to train ICT stakeholders facing different 
threat situations. Here, we emphasize on the importance of a modular structure, 
covering, and connecting different enterprises faced to interoperability barriers. The 
use of simulation tools is a decision aid approach to keep business continuity and 
business resilience. Then, in ICT systems, it is not always possible to simulate the 
whole data process at the operational level due to the amount of information at 
runtime; thus, an abstracted scenario of interoperability cartography will be run in 
anticipation to observe the global behavior of the system in order to prevent 
business continuity breaks. 

9.4.6 Physical Infrastructure Interoperability with Simulation 
Model at TSM 

The TSM level is performing a holistic and technical-oriented interoperability 
Analysis, on all ecosystems SC-ICTS, including data workflows model of intercon-
nected supply chains and based on Sect. 4. To do that, this task proposes to implement 
the interoperability assessment method based on good practices requirements, on the 
compliance of all relevant regulations’ requirements like NIS, ISO 27001 series [41], 
including sectoral regulation such as ISO 21434 automotive regulation [42] and 
focusing on combined and sophisticated interoperability analysis. 

This interoperability assessment methodology is adapted to such a complex 
ecosystem with interlaced business manufacturing processes and value networks. It 
includes stakeholder criticality assessment regarding their accountabilities, roles, 
and accesses during production, supply chain, business continuity and crisis 
management, and multi-tenancy management. The aim of this level will be to 
ensure simulation coherence regarding all interfaces and interdependencies present 
in this complex ecosystem at all OT and IT levels, i.e., from RTUs, PLC, DPC, 
SCADA, ICS, OT, to IT and cloud, and at the interfaces between IT, OT, security, 
and safety infrastructure in order to highlight ecosystem simulation requirements.
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This level will also propose a GAP analysis and deployment plan based on 
models defined in the previous sections and available data. It will start from the 
identification of known potential technical issues in the ICT domain. Then, it will 
include the proposition of a list of prioritized actions according to issue categories 
described at the TIM level. The objective is to identify from the recent research 
some data interoperability threat description and to anticipate reactions with the list 
of actions to recover. It will prepare the action of implementation according to 
models of anticipated interoperability issues. If the interoperability issues were not 
to be fully anticipated at the modeling time, the models can describe some inter-
operability exception handling and management that can be developed in imple-
mentation works. In that case, the resilience, to permit to keep exchanging data in a 
degraded mode operation, will be described. 

The simulation evaluation and TSM principle is based on the comparison 
between the current situation (AS-IS top BSM model coming from Sect. 4.1), the 
projected situation (TO-BE bottom BSM model from Sect. 4.1) and interface 
process model at TIM level (Sect. 5.1.3). It is prepared from the previous level to 
identifying more quickly and efficiently the simulation levers at TSM and actions to 
be carried out to eliminate this gap. 

The impact assessment will lead to the choice of an appropriate action at the 
TSM level. The depth of analysis to be conducted will be driven by the data 
structure and workflow paths. Indeed, the understanding of the existing situation 
and especially the analysis of the gap and the levers to implement require the 
relevant use of methods and tools for diagnosis and problem-solving. This task will 
ensure to keep in sight the business level in the technical project and to prepare 
implementation works. The second phase will be performed to revise, upgrade, and 
improve the results to refine the target architecture. 

9.4.7 MDISE and MSTB Evolved for CPS 

Cyber-physical systems (CPS) combine digital and analog devices, interfaces, 
networks, computer systems, with the natural and artificial physical world. They are 
therefore an interesting area for experimenting with the conduct of SC-ICTS 
interoperability. Inherent combination of interconnected and heterogeneous 
behaviors of CPS falls naturally in the scope that needs interoperability in their ICT 
supply chains so it is a clear challenge for MDISE and MSTB evolved. 

MDISE support ICT interoperability processes modeling, workloads, and per-
formances, as presented in Fig. 9.10 that details CPS concepts within the MDISE 
approach. To facilitate and validate this user modeling step, the MSTB evolved tool 
will support the user-friendly assessment of the AS-IS as well as the TO-BE models 
of CPS environment models according to GRAI models in MDISE. The tool will 
help to populate models with different data exchange scenarios. With that objective, 
a user interface will allow the setting of these data. Among the MSTB improve-
ment, MSTB evolved will propose an enhanced graphical user-friendly interface 
including a set of description components and annotation features to easily define



the detail of the decisional model of the control system and data workflow models 
of the physical model and their potential interoperability threats in the ICT system. 
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Fig. 9.10 Basic cyber-physical system (CPS) by GRAI model in MDISE 

MSTB evolved will propose a library of model templates presenting classical 
activities of data exchange for CPS at the BSM top and bottom levels. For instance, 
the different category of connection between different types of actors will offer 
predefined components. Finally, MSTB evolved will embed a model transformation 
engine that will facilitate the creation of the reference framework of Fig. 9.10. In  
addition, the matching algorithms (Fig. 9.10 blue arrows) regarding MSEE version 
will be revisited as well as a new version of the simulation engine (Fig. 9.10 red 
arrows) will be proposed. The MSTB evolved will be released as an open-source 
tool to reach a broad adoption of a community of stakeholders. ROI for partners 
will be based on the customization of the tool, facilitated model building, and 
training of future stakeholders. 

9.5 Discussion and Conclusion 

Hezam Haidar, Nicolas Daclin, Gregory Zacharewicz, Guy Doumeingts. 

We proposed a guideline for enterprise interoperability modeling, model transfor-
mation, and simulation. This work will help the fine models setting for the simu-
lation and following the runs of scenarios in MSTB of potential SC-ICTS TO-BE 
situations to anticipate and/or correct interoperability issues. The proposition is to 
give more than simulation results with some aggregated information as a decision 
support in terms of efficiency of interoperability handling management. In detail,



the simulation will be used to run interoperability scenarios on the AS-IS models. 
Then, several anticipation models will be run to observe the efficiency of different 
interoperability plans anticipated and run to observe the gain of data interoper-
ability. Some indicators will be implemented to observe and measure the interest of 
the TO-BE model proposition before going to the implementation phases at the 
TSM level. 
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The proposed extension of the model-driven interoperability is compatible with 
the concept of full interoperability based on federative approaches, loosely coupled 
organization, and reversibility concept. The main expected benefit is to remain 
independent of the means used within the IT, human/organizational, and physical 
means domains of partners. Another benefit for partners is to preserve their means 
by limiting the needs to strongly modify or change their means to interoperate. 
Conversely, the drawback is the impact of the federative approach onto the partners 
and the collaboration. First, from the horizontal perspective, the federative approach 
means to be efficient in terms of time and quality to build dynamically a model and 
to adapt it in case of modification from a partner. Indeed, when “something” is 
issued from a partner the developed interoperability must not disadvantage the 
collaboration in terms both of time and quality of services. Second, from the 
vertical perspective, the approach must be also effective to disseminate consistently 
the modification of higher level (BSM) toward lower levels (TIM and TSM). That 
means, if a new interoperability model is built, the consequences must be trans-
mitted onto the lower models. For this purpose, mechanisms of dynamic verifica-
tion and validation must be implemented at each level and between levels. 

Lastly, this approach fits in with the industry 4.0 principles. Especially, it takes 
an interest in the cyber-physical system, data analysis and Internet of things. Indeed, 
the building and the adaptation on the fly of an interoperability model depend 
strongly on the information collected, analyzed, and treated acquired from each 
partner. MSTB will evolve to analyze and design of SC-ICTS and CPS. There is a 
challenge to keep MDISE aligned with latest development in Industry 4.0 
cyber-physical system. 

The chapter presents a framework and a method to guide enterprises in simu-
lation design when they are involved in SC-ICTS. The contribution started by 
recalling enterprise modeling, simulation concepts, and model-driven approaches. 
Then, based on MDSEA, it defines the model-driven framework MDISE and 
methods dedicated to simulation specification and conception in B2B situation. It 
details the different levels required to model interoperability. It starts by top BSM 
models where associated recommendations to use GRAI grid models are proposed. 
Then, it proposes to perform a selection of domain to be represented and modeled at 
bottom BSM. Considering that the method needs resilience to be aware of the 
trends in both domains, to design a holistic and interoperable architectures based on 
specificity of human/organization, IT, and physical means. It drives the business 
requirements of the platform to the technical architecture. Then, as a transversal 
task, it proposes to design a conceptual high-level business-oriented interoperability 
simulation approach, focusing on data and services to be exchanged between 
domains in the platform.
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In the second part, this work encourages modeling tools (such as MSTB) to 
evolve in order to describe dataflows models and architecture to be set up between 
enterprise partners at BSM and TIM. Guidelines are proposed to drive models 
between BSM and TIM to provide a data-driven methodology. Then, some 
appropriate modeling recommendations to overcome interoperability issue of CPS 
handling both at design and run time at TIM level are described. At the end, a 
holistic business-oriented interoperability modeling toolset about the B2B relation 
in an SC-ICTS ecosystem including potential interoperability needs has been 
described. It remains that metrics must be defined to attend and validate interop-
erability models derived along the approach. 
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10Maturity and Accreditation 

Tuncer Ören and Margaret L. Loper 

Abstract 

The maturity and accreditation of various educational programs are described in 
this chapter of the SCS M&S Body of Knowledge. It looks not only into 
academic education, but also into professional education. 

Keywords 

Modeling and simulation . Simulation education . Certified Modeling & 
Simulation Professional (CMSP) 

10.1 Models, Programs, Processes, Individuals, 
and Organizations 

Tuncer Ören 

Grading professional maturity involves assessing processes used in a profession, 
individuals and organizations active in this profession, and products and/or services 
of the profession. Capability maturity models started in software engineering with 
the Carnegie Mellon capability maturity model [1, 2]. 
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Capability Maturity Model Integration (CMMI) is a process level improvement training and
appraisal program. Administered by the CMMI Institute, a subsidiary of ISACA, it was
developed at Carnegie Mellon University (CMU). It is required by many U.S. Government
contracts, especially in software development. CMU claims CMMI can be used to guide
process improvement across a project, division, or an entire organization. CMMI defines
the following maturity levels for processes: Initial, Managed, Defined, Quantitatively
Managed, and Optimizing. Version 2.0 was published in 2018 (Version 1.3 was published
in 2010, and is the reference model for the remaining information in this wiki article).
CMMI is registered in the U.S. Patent and Trademark Office by CMU.1 [3]
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Mehravari [1], (slides 42–43) clarifies when does it makes sense to use maturity 
models: 

Requirement for a structured approach: 

Demonstrated, measurable results based on an established body of knowledge* 

A defined roadmap from a current state to a desired state 

An ability to monitor and measure progress, particularly in the presence of change 

. Response to a strategic improvement or new product/new market objective 

Desire to answer these questions in a repeatable, predictable manner: 

. How do I compare with my peers? (ability to benchmark) 

. How can I determine how secure I am and if I am secure enough? 

. How do I measure my current state? Characterize my desired state? 

. What concrete actions do I need to take to improve? And in what order? 

. How do I measure progress toward my desired state? 

. How do I adapt to change?” 

*The SCS M&S BoK Guide may be the beginning of the establishment of 
maturity models for M&S. 

Accreditation is a management or administrative decision that decides a simulation is 
acceptable for particular use, a stamp of approval on the simulation from an appropriate 
authority. Certification and similar terms (such as confirmation) have basically the same 
meaning as accreditation. Sometimes the accreditation decision for a simulation involves a 
very formal process and is based upon V&V information developed specifically to support 
such a decision. In other cases, the decision is informal and may even be defacto (i.e., the 
simulation is simply being used for some purpose). [4] 

Certification of modeling and simulation (M&S) applications poses significant technical 
challenges for M&S program managers, engineers, and practitioners. Certification is 
becoming increasingly more important as M&S applications are used more and more for 
military training, complex system design evaluation, M&S-based acquisition, problem 
solving, and critical decision making. Certification, a very complex process, involves the 
measurement and evaluation of hundreds of qualitative and quantitative elements, mandates 
subject matter expert evaluation, and requires the integration of different evaluations. [5] 

1 https://en.wikipedia.org/wiki/capability_maturity_model_integration#cite_note-1

https://en.wikipedia.org/wiki/capability_maturity_model_integration#cite_note-1
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The Certi fied Modeling & Simulation Professional (CMSP) certi fication program was created 
in 2002 to provide the Modeling & Simulation (M&S) industry with its own professional 
certification that remains valid for four years before recertification is required. The CMSP 
designation recognizes professionals with extensive experience and expertise in M&S. [6] 

10.2 Educational Programs 

Margaret L. Loper 

Continuous education of Modeling and Simulation (M&S) professionals and short 
courses to improve the knowledge of the work force has become as important as the 
initial academic education, as the turnaround time for new technologies in M&S is 
as fast as in other high tech professions. As M&S becomes increasingly important, 
there is a significant and growing need to educate, train, and certify M&S practi-
tioners, researchers, and faculty. Efforts to meet that need have taken a number of 
forms: academic degree programs, non-degree professional education, and profes-
sional certifications [7]. 

10.2.1 Academic Education 

An academic degree refers to a bachelor, master’s or Ph.D. program, non-degree 
professional education refers to skills and knowledge attained for career advance-
ment through facilitated learning, and professional certification refers to a desig-
nation earned to assure qualification to perform a job or task. 

A few universities offer M&S as an academic discipline with a degree program. 
Graduate-level programs are currently offered by the University of Central Florida 
(UCF), Old Dominion University (ODU), the University of Alabama in Huntsville 
(UAH), and the Naval Postgraduate School (NPS). These programs follow a tra-
ditional academic approach where students enroll in a graduate program and take a 
series of courses that lead to a degree. It is common for the curriculum to be based 
on the theory and science of the underlying subject area, and for the degree to 
culminate with a formal project, thesis, or dissertation. 

10.2.2 Professional Education 

An alternate form of M&S training is professional (or continuing) education. These 
courses differ from academic degrees in that they focus on applied learning rather 
than theory. They may also focus on a narrower area study. Professional education 
courses are taught by universities and industry, and come with differing levels of 
accreditation; thus, there are more choices in this space than for academic M&S 
degrees. These professional education programs serve an important role in M&S 
education. Many practitioners and researchers do not have the time nor desire to 
pursue a traditional academic degree program; however, they need to learn new 
skills and knowledge to be effective in their jobs.
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Professional education courses typically take a few days (sometimes up to a 
week, or very rarely, longer) and give a broader more general topic of instruction to a 
student. Many M&S topics are offered by universities that teach modeling and 
simulation topics as graduate coursework, and it may be the same faculty members 
that are also teaching the short courses. However, the information in a short course is 
more focused, and more likely to get to the point of applicability of knowledge faster 
than in a graduate course that might dwell more on background and theory. 
Exceptions to these trends exist, however, and most institutes that offer short courses 
make descriptive information about the contents of the course available online. 

The list of short courses below is not exhaustive in terms of the sources of such 
courses, nor is it exhaustive in the topics that the listed sources themselves offer. 
Rather, it is an example of the variety of topics in such courses, as they apply to 
M&S. 

. Averill M. Law & Associates—seminars in topics, including discrete event 
simulation 

. DiSTI—courses on distributed simulation technologies, graphics programming, 
and others 

. George Mason University—modeling throughout the lifecycle, M&S basics, and 
others 

. Georgia Institute of Technology—fundamentals and topics courses, across 
engineering fields 

. Massachusetts Institute of Technology—topical modeling courses on traffic and 
other areas 

. Old Dominion University—fundamentals, topics courses, and others through the 
VMASC center 

. University of Southern California—biomedical modeling topics 

10.2.3 U.S. Army M&S Professional Support 

An example of a different approach to educating M&S professionals, the U.S. Army 
has defined two different M&S career titles to develop and train its workforce, the 
Functional Area (FA) 57 Simulation Operations designation for military officers 
and the Career Program (CP) 36 Analysis, Modeling & Simulation designation for 
civilians. 

The FA57 is an officer with operational experience who understands military 
operations and training. They develop, plan, coordinate, and execute exercises at all 
levels of command: battalion, brigade, division, combatant command, interagency, 
and multi-national. FA57s are experts in modeling, simulation, and Army Battle 
Command Systems and facilitate the training and operational environment for 
commanders to conduct first-class mission planning and mission rehearsal exer-
cises. FA57 currently has 217 authorizations in the Active Army and 209 in the 
Reserve Component with ranks ranging from Captain to Colonel.
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The CP36 is the Department of Army’s civilian Analysis, Modeling and Sim-
ulation career program, for training, educating, and developing civilian human 
capital in a systematic fashion. The CP36 Army Civilian Training, Education, and 
Development Systems was approved on 15 April 2006. Analysis, modeling, and 
simulation are pervasive throughout the Army and are found in the Acquisition, 
Analysis, Operations, Testing, Training, Experimentation, and Intelligence 
communities. 

CP36 civilians work in a wide variety of organizations including program 
offices; research labs; technology, development, and engineering facilities; analysis 
centers; test ranges; logistics centers; headquarters; and training centers and ranges. 
CP36 careerists support M&S activities throughout the acquisition life cycle and in 
the analysis, experimentation, intelligence, operations and plans, testing, and 
training communities. 
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Keywords

Today, digital simulation is used in many areas of research and development:

simulation, mobile simulation, and wearable simulation. It further describes 
cloud-based simulation and high-performance simulation, with additional 
sections on parallel evolutionary algorithms and extreme scale simulation.
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Modeling and simulation . Digital simulation . Mobile simulation . Wearable 
simulation . Cloud-based simulation . High-performance simulation 

11.1 Digital Simulation 

Jean François Santucci 

mechanics, fluid mechanics, materials science, astrophysics, nuclear physics, 
aeronautics, climatology, meteorology, theoretical physics, quantum mechanics, 
biology and chemistry as well as in the humanities: demography, sociology, etc. It 
also operates in sectors such as banking and finance. In the logic of making faster, 
better … and cheaper, digital simulation has all the advantages. New challenges 
have appeared, of an economic nature: reactivity, anticipation and competitiveness 
(productivity gains). But also, safety and security issues thanks to a better under-
standing of accident situations in fields as varied as nuclear, automotive or aero-
nautics. Simulations can be used to predict failure or faults to determine the optimal 
time when a part should be repaired or replaced. All this concerns the products, but 
there are also simulations of entire factories to simulate their operations and sim-
ulations of the human body. 

Numerical simulation designates the process by which a program is executed on 
a computer in order to represent a given phenomenon. Scientific numerical simu-
lations are based on the implementation of theoretical models. They are therefore an 
adaptation to numerical means of mathematical models. They are used to study the 
functioning and properties of a system and to predict its evolution. A model is the 
translation of a phenomenon in the language of mathematical equations. The 
modeling of the phenomenon studied consists in taking into account fundamental 
principles, such as the conservation of mass and energy, and in determining the 
essential parameters for its description both simple and realistic. At each point of 
the object considered, several physical quantities (position, speed, temperature, etc.) 
describe its state and its evolution and allow to fully characterize its movement. 
These quantities are not independent but linked together by equations, which are the 
mathematical translation of the laws of physics governing the behavior of the 
object. There is only one step between the equations and the simulation codes: 
coding, called “discretization of equations”. This operation translates the equations 
into computer language, the only one understood by the computer.



There are two main approaches to numerically solve the mathematical equations 
of a model. The deterministic calculation method, which solves the equations after 
having discretized the variables, and the statistical (or probabilistic) calculation 
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method. There are many deterministic methods: finite volumes [1, 2], finite ele-
ments [3], level set [4, 5], etc., whose use depends in part on the equations 
considered. 

The second method, known as “Monte-Carlo” [6–10], is particularly suited to 
phenomena characterized by a succession of stages during which each element of 
the object can undergo different possible events a priori. From step to step, the 
progress of the sample will be determined by random draws (hence the name of the 
method). The deterministic and Monte-Carlo methods are the subject of numerous 
mathematical studies to specify their convergence in space, that is to say the 
variation of the precision of the approximation as a function of the number of 
meshes or of elements of the object, or their convergence in time, i.e., the variation 
of the precision according to the “time step” of calculation (delay between two 
instants of calculation). This calculation software or “codes” are the translation, 
through digital algorithms, of mathematical formulations of the physical models 
studied. 

Another important field of digital simulation concerns Digital Testing. Digital 
simulators are becoming a standard and necessary CAD tool in the circuit design 
process. Digital simulation is the process of modeling, by computer programs, the 
behavior of a digital network. Digital fault simulation is the modeling of a digital 
network in the presence of a physical defect. The term “fault” is used to refer to 
some representation of a physical defect. A simple example of this is the case where 
an input connection to an AND gate is broken. This would be referred to as a 
stuck-at-1 fault [11–14]. 

A deductive method of fault simulation which deduces the faults detected by a 
test at the same time that it simulates explicitly only the good behavior of logic 
circuit has been developed [15]. For large logic circuits (at least several thousand 
gates), it is expected to be faster than “parallel” fault simulators but uses much more 
computer memory than do parallel simulators. The simulator is table driven, 
employs selective trace, models the dynamic behavior of circuits reasonably well 
but does not perform race analysis, and accommodates both synchronous and 
asynchronous circuits. It simulates three logic states: ZERO, ONE and DON’T 
KNOW. 

The Concurrent and Comparative Simulation (CCS) which allows several 
simulations of a system in one single pass is also an important feature in digital 
simulation [16]. One of the first applications of CCS has been the Concurrent Fault 
Simulation (CFS) for fault simulation in digital systems described at the gate level. 
However, nowadays digital designers focus on more abstract languages such as 
VHDL (Very high-speed integrated circuits Hardware Description Language) rather 
than on these logical models [17–19]. Modeling and simulating of the digital circuit 
behaviors are possible using these languages, but they do not allow the concurrent 
simulation of faulty behaviors, also simply called faults. Technical barriers for the 
design of a concurrent fault simulator are on the one hand the lack of realistic fault



11.2 Mobile Simulation

Modeling and simulation (M&S) as a service (MSaaS) [ ] is a concept based on21

applications. MSaaS frameworks offer effective simulation environments that can

discrete event simulation, cloud storage (with web services interfaces) and mobile
terminals? (iii) How to use a generic approach to deal with these problems?

models and on the other hand the difficulty to integrate the concurrent algorithms 
into a simulation kernel. To reach this objective, the BFS-DEVS formalism 
(Behavioral Fault Simulator for Discrete EVent system Specification) has been 
proposed [20]. This approach based on the DEVS formalism allows to model and 
simulate behavioral faults on discrete event system such as digital circuits described 
with VHDL. The BFS-DEVS simulation kernel integrates the CFS concurrent 
algorithms and is based on a propagated fault list technique inside the models of the 
system. This technique speeds up the simulation process since it allows the 
simultaneous detection of several faults and also simplifies result observability at 
the end of the simulation. 
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Laurent Capocchi 

the as-a-service model of cloud computing that combines web services and M&S 

be deployed and executed on-demand by the users. They discover new opportu-
nities for working together and enhance their operational effectiveness, saving costs 
and efforts in the process. In a typical MSaaS platform, user can access to M&S 
functionalities as services by using browser or smart client. All the M&S services 
are stored in cloud and are accessible using smart clients that can embed web 
applications. However, while the number of MSaaS tools is growing [22–26], they 
need to propose some important features in the dynamic simulation realization 
(add/remove models that change the model structure during the simulation) and the 
real data acquisition for simulations. 

M&S of complex systems is a discipline dedicated to the field of engineering and 
research that tends to be exploited more and more by users and developers of 
mobile apps. Initially, the models and simulators were dependent on a specific 
application domain and they were developed by a team of engineers/researchers 
specialized in a given field of application (faults simulation in digital circuits, forest 
fires simulation, healthcare simulation, etc.). The analysis and development of a 
model and its simulator were therefore carried out by specialists whose working 
environment was confined to the workstation of a company or a research laboratory. 
The resulting computer programs were run locally using local input data (e.g., from 
a test bench). This unconnected mode of operation is no longer relevant with the 
advent of ubiquitous systems that need to be accessible online [27]. 

A set of research questions involved by the connection between simulation, 
cloud and smartphones can be addressed: (i) How to interface simulation software 
with smartphone application programming interfaces (APIs)? (ii) How to combine



Tuncer Ören

Wearable simulators can be used for several reasons, such as control, training and
education. For example, [ ] developed a virtual reality model simulation in order 
to control a drone using a wearable device in a 3D environment.

33

Wearable simulations are to be also useful for military training. An evaluation of
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To address the three previous research questions, a new web-based simulation 
approach including a collaborative discrete event M&S environment associated 
with a mobile app in order to remotely simulate discrete event models libraries via 
web services can be envisioned. A possible approach can be emerged from the 
domain of the design of System of Systems (SoS) [28, 29] based on discrete event 
simulation. The generic approach allows to automatically deploy a simulation 
model built by a team of engineers on a mobile terminal (smartphone, tablet, etc.). 
When the system is modeled and validated (by simulation) in a M&S software, it 
can be proposed to the end-users to remotely simulate the resulting model of the 
studied system with data acquired from mobile terminal sensors immersed in a real 
physical environment. The benefit of the approach and its motivation are high-
lighted through the ability (i) to perform data acquisition from mobile terminal 
sensors in order to simulate a system in a real physical environment and (ii) to 
interact with the dynamic simulation model from the mobile app during simulation. 

DEVS has been introduced as an abstract formalism for the modeling of discrete 
event systems and allows a complete independence from the simulator using the 
notion of abstract simulator. This explicit separation between the modeling and the 
simulation allows to perform development of models without worrying about their 
simulation that can be invoked by web services through mobile app. 
DEVSimPy-mob [30, 31] gives the option of executing DEVSimPy [32] models 
online from mobile terminals. This approach allows an automatic cross-platform 
mobile app generation in the context of MSaaS services with the addition of the 
possibility to interact dynamically with the simulation model (by adding/removing 
models during simulation) and perform simulation from real data (from mobile 
terminal sensors). 

11.3 Wearable Simulation 

Wearable simulators are used in healthcare training and education [34]. 

wearable simulation interface for military training is done by Taylor and Barnett 
[35]. 

A special analysis of power and execution simulator for wearable devices is 
done by Yankov [36]. 

A philosophical discussion of wearable simulations is offered by Kullman [37] 
in “Prototyping bodies: a post-phenomenology of wearable simulations.”



Modeling and simulation are two distinct activities. Likewise, cloud-based modeling
and cloud-based simulation require different capabilities. Fundamentally, they
require that the digital infrastructure be deployed in cloud environment and is 
accessible through remote mechanisms. While modeling activity requires editor 

ing any existing M&S application in a cloud-based environment requires explicit

standards, theory, methods and tools for doing modeling, and the management of

environment, bringing virtual (may include hardware) and live (hardware and
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11.4 Cloud-Based Modeling and Simulation 

Saurabh Mittal, Bo Hu Li, Lin Zhang, Ting Yu Lin 

workbenches that may be accessible through an Internet browser, the simulation 
activity requires specific simulation architecture to be cloud compliant. Transition-

M&S infrastructure engineering. Additionally, cloud-based M&S has challenges 
that have largely been solved in traditional simulation system engineering [38]. 

The cloud-based M&S foundation is built on offering modeling as a service and 
simulation as a service. This implies that both the model engineering and simulation 
engineering activities must be service-oriented. Further, these services must be 
deployed in a cloud environment to realize a cloud-based M&S solution. Model 
engineering (ME) [39] incorporates full life cycle management of the model and 
credibility to the model engineering process, which includes establishing the 

the model, data, knowledge, activities and organizations/people involved in the 
model engineering process in a collaborative manner. ME, to be cloud-deployed, 
requires the availability of a model repository and the execution of the ME process 
through a browser-based access mechanism. There exist many such tools (e.g., 
NoMagic Cameo, IBM Rhapsody, Eclipse IDEs, etc.) that facilitate ME in a cloud 
environment. Simulation engineering incorporates the execution of a model in a 
computational environment by a simulator and various tools and software depen-
dencies that are required by the simulator. However, deploying a simulator in a 
cloud environment is not straightforward. Simulators may require high computa-
tional resources, and the high-performance computing (HPC) community has been 
making large computational resources available for simulation execution for quite a 
long time [40]. Leveraging the HPC community body of work of the past few 
decades and masking it behind the service interface for cloud-enabled access are 
indeed the easiest solution when the simulation system is purely a software system. 

The newly emerging Cyber Physical Systems (CPS) and Internet of Things 
(IoT) ecosystem employ cloud-based systems engineering methodologies. As Mittal 
and Tolk [41] explore in their recent book, CPS M&S takes the form of a Live, 
Virtual and Constructive (LVC) system. LVC systems that incorporate simulators at 
varying levels of fidelity involve both hardware and software components. While 
one can make the constructive (i.e., software) components available in a cloud 

hybrid) components is not practical and requires simulation engineering to rely on 
specific technologies, standards and methods developed by the Distributed Simu-
lation Engineering community engaged in LVC System of Systems 
(SoS) engineering.



to CPS was out of scope. The group identified several focus areas or themes into
which the efforts and ideas could be organized to answer important questions or to
identify best practices. Potential themes included (but were not limited to): 

. Application of the Distributed Simulation Engineering and Execution Process

computing and big data environments. One of the goals is to enable interoper-

future.

.

11.4.1 Community Efforts and Emerging Standards 

The Simulation Interoperability Standards Organization (SISO) initiated the cloud-
based modeling and simulation (CBMS) study group in 2016 [42] to identify and 
document the existing M&S-in-the-cloud activities, document best practices, 
highlight lessons learned and identify various potential standards to facilitate 
adoption by other practitioners. Their focus was strictly on CBMS, and application 
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. Developing composable services 

. Service discovery 

. Security 

. Deployment, management and governance of services 

. DEVS modeling and other alternative modeling frameworks 

. Development of a Reference Architecture 

. Service-oriented architectures 

. Business case analysis and return on investment 

(DSEEP) 
. The emerging role of the cloud service provider 
. Impact on Validation, Verification and Accreditation (VV&A) practices 
. Data services (including terrain) 

The CMBS study group organized the group in four broad areas: 

. Models, simulators and data—Analyze cloud M&S efforts from an interoper-
ability perspective for the models, simulators and data aspects. This includes 
investigating semantic model interoperability, simulation architectures and 
handling of structured and unstructured data. 

. Architecture—Synthesize concepts and constructs from the current M&S 
architectures into a coherent vision for the future optimized for modern cloud 

ability with legacy architectures while providing an unconstrained path to the 

. Cloud infrastructure—Investigate the impact of cloud computing technologies 
on various aspects of M&S, including system scalability, advanced visualization, 
scalability of data systems and high bandwidth or low latency connections to 
compute and memory. Also investigate ease of integration into the Internet of 
Things-type scenarios, which is similar to embedding M&S into live military 
hardware. 
Services—Investigate, propose and evaluate standards, agreements, architec-
tures, implementations and cost–benefit analysis of Modeling and Simulation 
(M&S) as a Service (MSaaS) approaches.



The CBMS SG produced a report [ ], pending approval by the SISO Standards
Activity Committee. The CMBS SG also synchronized their effort with the North 
Atlantic Treaty Organization (NATO) Modeling and Simulation Group (MSG) 

43

eff
Ar
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ort named NATO MSG-136 [44]. NATO MSG-136 developed a Reference 
chitecture for MSaaS (Fig. 11.1). 
The NATO MSaaS Technical Reference Architecture is described in the form of 

architecture building blocks and architecture patterns. An architecture building 
block defines a capability, capturing among other requirements any applicable 
M&S and data standards, and enabling technology. An architecture pattern suggests 
ways of combining architecture building blocks. The idea is that the Reference 
Architecture is not a final product but provides a structure where more content can
be added over time. In principle, all capabilities for M&S in the cloud could 
(eventually) be captured in this Technical Reference Architecture. 

The NATO MSaaS Engineering Process (EP) is a description of the process for 
the development and execution of simulations within an existing MSaaS imple-
mentation (or infrastructure). An existing MSaaS implementation is assumed to 
have M&S Enabling Services in place (such as repository services, composition

Fig. 11.1 Allied framework for MSaaS (Reproduced from [44])



(PIMs).
The DEVS Unified Process (DUNIP) [ ] with the underlying DEVS Modeling45
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services and management and control services) and provides capabilities to create a 
simulation. The process is described as an overlay to the DSEEP and addresses the 
MSaaS-specific engineering considerations during DSEEP execution. The process 
description will be updated as the Technical Reference Architecture evolves. 

11.4.2 Theoretical Frameworks 

The application of M&S employing cloud-based resources using a unified process 
must be fully supported by a suite of modeling languages, i.e., domain-specific 
languages that preserve the semantics of the specific domain. This allows engineers 
to decouple the domain from the model and the model from the simulation 
framework. This provides many benefits, since models can be constructed inde-
pendently of the M&S platform, and with Domain Specific Languages (DSLs), 
models can still preserve the domain semantics. A modeling language also facili-
tates the definition of transformation from DSLs to Platform-Independent Models 

Language (DEVSML) stack [46] (see Fig. 11.2) was designed to fulfill all these 
requirements, using as a foundation the DEVS application of discrete event dy-
namical system theory. They integrated Docker with the granular SOA-micro-
service paradigm and advanced the state of the art in model and simulation inter-
operability in cloud-based M&S engineering. They described the architecture 
incorporating DevOps methodologies using containerization technologies to 
develop a cloud-based distributed simulation farm using the DEVS formalism. 

Another framework called the Simulation, Experimentation, Analytics and Test 
(SEAT) framework by The MITRE Corporation employs the Docker technology 
and Continuous Integration/Continuous Delivery (CI/CD) pipelines to address 
integration and interoperability challenges inherent in the CPS M&S engineering 

Fig. 11.2 DEVSML stack (Reproduced from [46])



technology areas can be conceptualized. Thus, various simulation resources and
capabilities could be virtualized and encapsulated as a service to form a service pool 
(cloud) for coordinated and optimized management and operation. This enables the 
users to access on-demand simulation resources and service capabilities remotely 
anytime and anywhere through the terminal, network and cloud platform to support 
the entire simulation life cycle for system engineering and M&S-based T&E 
[ , ].4847
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[47]. While the DEVSML stack is focused more on transforming various models 
into a DEVS specification, SEAT focuses on the black box approach of bringing 
user-apps packaged in Docker containers and providing them with a data model to 
interoperate with other Docker containers. The simulation environment (only the 
constructive in LVC) is deployed as another container app. The DEVSML stack can 
be subsumed in the SEAT framework as it is Docker compliant as well. Figure 11.3 
shows the SEAT layered architecture framework. 

Cloud simulation is a network-based (i.e., Internet, Internet of Things, 
telecommunications/broadcast network and mobile network) and service-oriented 
simulation paradigm with a new approach leading to a new ecosystem. 

Utilizing cloud computing, cloud simulation can also be classified in three types 
of technology areas (Table 11.1): 

1. Modeling theory and method 
2. Simulation system theory 
3. Emerging information technology usage (i.e., cloud computing, Internet of 

Things, service computing and high-performance computing) and specific 
domain application technology (Table 11.1) 

The modeling theory and method relate to the MaaS and SimaaS layers in SEAT 
stack. The simulation system theory and emerging information technology area 
relates to the SimaaS, PaaS, SaaS and IaaS layers in SEAT stack. The specific 
domain application technology relates to MaaS, ExaaS and VisaaS layers. 
Table 11.1 provides further details on how various other services in these three 

Fig. 11.3 SEAT layered architecture framework (Reproduced from [47])
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Table 11.1 Technology areas 

Technology area Description 

Modeling theory and 
method 

The modeling theory and method area includes three methods: 
1. M&S resources/capabilities/products for the entire simulation 

life cycle activities 
2. Definition of sensing/perception/access/communication for 

resources/capabilities/products based on the Internet of 
Things 

3. Description of requirements and tasks for edge/cloud 
simulation 

Simulation system theory 
and emerging information 
technology infrastructure 

The supporting environment technologies of the simulation 
system include: 
1. Infrastructure-as-a-Service (IaaS) 
2. Data-as-a-Service (DaaS) 
3. Platform-as-a-Service (PaaS) 
4. Software-as-a-Service (SaaS) 
5. Simulation-Resource-as-a-Service (SRaaS) 
6. Simulation-Capability-as-a-Service (SCaaS) 
7. Cooperation-as-a-Service (COaaS) 
8. Artificial intelligence service 
Simulation system construction and operation technologies 
include: 
1. Virtualization-and-service-based packaging technology of 

edge simulation resources/capabilities/product 
2. Virtualization-and-service-based packaging technology of 

cloud simulation 
resources/capabilities/products/sensing/access/communication 

3. Cloud modeling/integration/simulation 
4. Evaluation technology 
5. Edge/cloud simulation security technology 

Simulation application 
theory and technology 

The application provides applicable terminal interaction and 
cloud personalized customization portal for service providers, 
platform operators and users. It supports four modeling 
simulation standards: 
1. One agent completing one stage of simulation 
2. Multiple agents cooperating to complete one stage of 

simulation 
3. Multiple agents cooperating to complete a cross-stage 

simulation 
4. Multiple agents obtaining simulation capability as needed 

11.4.3 Essential Infrastructure 

Cloud simulation supports cloud-oriented simulation task submission and edge-
oriented simulation service deployment for agile systems engineering and real-time 
performance of simulation resources, capabilities and product integration [49]. 
Figure 11.4 shows a notional composition.



tion resources for the migration, distribution and specification of the deployment
strategy of micro-service containers. Dynamic migration of simulation tasks is

Introducing advanced computing system virtualization technology (including 
container-based simulation resources) and integrating other technologies for 
micro-service of simulation resources help achieve efficient development, compo-
sition, packaging, deployment, environment construction and operational execution 
[50]. Figure 11.5 shows an implementation instance of SEAT stack with more 
detailed service identification for some of the layers. 

Semi-automated resource scheduling is adopted for container-based virtualiza-
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High-performance 
cloud simulation resource pool 

Computing pool 
Data pool 

Data transmission and control module 

Edge node 

Edge node 

Data transmission and control module 

Data transmission and control module 

Edge node 

Fig. 11.4 The composition of high-performance cloud simulation 

executed on the container core state pre-replication technology and multi-instance 
of micro-service during migration and runtime [51]. Figure 11.6 shows the 
sequence of operations for intelligent resource scheduling and migration 
technology. 

Due to strong reliance on information and cloud computing technologies, 
following trends are in play: 

1. Digitization—Combined with the Industrial Internet, cloud simulation fully 
supports model-based systems engineering (MBSE) and the development and 
integration of various simulation application APIs throughout the product life 
cycle. Efforts are being made to incorporate MBSE tool chains with cloud-based 
simulation environments for an end-to-end digital engineering ecosystem. 

2. Networking/Cloudification—Through full cloudification, cloud simulation 
enables more implementation and simulator resources to be virtualized and 
serviced, based on the virtualization and service of various digital simulation



resources. The design of service layers and their integration with the backend 
networking and cloud platforms will continue to increase efficiency and 
automation. 

3. Incorporation of AI-based scheduling components—The objective of cloud 
simulation is to realize a user-centered virtual simulation and experimentation 
environment, effectively shielding the complexity of the simulation system 
composition and its integration and intelligently organizing and scheduling
various simulation resources/capabilities/product services. New scheduling 
mechanisms and intuitive user interfaces will continue to increase adoption and 
value addition for an integrated cloud-based modeling and simulation.
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Fig. 11.5 The architecture of simulation resource virtualization and service technology 



1. Package various simulation model services and software tools based on light-
weight virtualization technology and configure the container in the cloud sim-
ulation environment to form a simulation service pool.

2. Users make requests through cloud modeling services on the cloud simulation
portal, which can automatically combine various simulation model services and
software tool services as needed to construct a simulation system in a dynamic
way.

268 J. F. Santucci et al.

Fig. 11.6 Intelligent resource scheduling and migration technology 

11.4.4 Illustrative Use Case Application 

We now briefly illustrate the application of cloud simulation technology for aircraft 
landing gear system simulation [52]. Figure 11.7 shows the block diagram 
description of the system. The system involves input from multiple disciplines such 
as mechanical, electronics, hydraulics and control. The process of applying cloud 
simulation technology is as follows: 
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Fig. 11.7 The composition of aircraft landing gear system simulation 

3. Users perform simulation tasks interactively on the cloud simulation portal, 
complete the collaborative operation of the simulation tasks which is supported 
by co-simulation middleware service and finally obtain satisfactory results 
through the portal (Fig. 11.8).

Task submission 

Operation management 

Collaborative solution 

Automatic resource composition 

Release of used resources 

Dynamic collaboration of resources 

Fig. 11.8 The application process of cloud simulation



11.5.1 Simulation of Quantum Systems

“Quantum simulator” is a short form to denote “simulation of a quantum system.”

This Nature Physics Insight surveys the progress made so far. The series of articles review 
the state of the art for quantum simulators based on atomic quantum gases, ensembles of 
trapped ions, photonic systems and superconducting circuits. The list is by no means 
exhaustive; quantum simulations are being implemented in, or have been proposed for, a
number of other systems—among them nuclear spins addressed using NMR methodology, 

11.4.5 Synopsys 

M&S methods and applications have advanced with exponentially increasing
computing technology over the past few decades. Despite the amount of computing
power available in a desktop/laptop today, the increased complexity of M&S 
applications warrants the use of HPC farms and remote computing power for 
offloading tasks that require high computational resources. In the past decade, the 
computing technology has largely moved to cloud-based environments. Conse-
quently, M&S applications are evolving both in hardware and software to migrate 
to cloud-based environments. This migration is not straightforward and requires the 
development of various standards, best practices and sustained effort to integrate 
various legacy M&S applications with the latest infrastructure. This section pre-
sented the community efforts undertaken by the NATO M&S and SISO groups in 
laying the framework for MSaaS. We also described layered architectural approach 
being used in developing MSaaS architectures for integrating various DSLs with 
cloud-based M&S infrastructure. Finally, we demonstrated a sample workflow that
illustrates the usage of a cloud-based M&S environment.
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11.5 Quantum Simulation 

Tuncer Ören 

Some terms used in M&S have double meanings. For example, “computer simu-
lation” means: (1) simulation of computer systems (similar to “traffic simulation” or 
simulation of traffic systems) and (2) simulation where all computations are done on 
a computer (as opposed to manual simulation). Similarly, “quantum simulation” 
means: (1) simulation of quantum systems and (2) simulation performed on a 
quantum computer (like digital, analog or hybrid simulation). The origin of 
quantum simulation was Feynman’s keynote at the first conference on physics and 
computation in 1981 at MIT [53]. 

and electron spins in quantum dots or in point defects. [54]



but the research and development efforts continue [58, 59] and “the quantum race is

Seven years later, in autumn 2019, Googles quantum computer Sycamore reached this
milestone. In 200 seconds, the machine performed a mathematically designed calculation so
complex that it would take the world’s most powerful supercomputer, IBM’s Summit, 

11.6 High-Performance Simulation

11.5.2 Simulation Performed on Quantum Computers 

“Quantum computers are machines that use the properties of quantum physics to 
store data and perform computations. This can be extremely advantageous for
certain tasks where they could vastly outperform even our best supercomputers.”
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[55]. Some news about quantum computers can be found in [56]. Even though 
some quantum computers working only with limited number of qubits (quantum 
bits) currently exist [57], commercial-grade quantum computers do not yet exist; 

already underway” [60]. 
The speed supremacy of quantum computers is uncontestable: 

In 2012, theoretical physicist John Preskill came up with a formulation of quantum 
supremacy, the superiority of quantum computers. He named it the moment when quantum 
computers can do things that are not possible for ordinary computers.

10,000 years to do it. This makes Google's quantum computer about 158 million times 
faster than the world’s fastest supercomputer. 

With the speed supremacy of quantum computers, many advanced research in 
many disciplines (such as science, cosmology, physics, molecular modeling, 
material research, chemistry, drug design and development, artificial intelligence, 
cybersecurity and weather forecasting) as well as their simulations will become 
possible with all the unique advantages of simulation. 

Bo Hu Li, Lin Zhang, Ting Yu Lin 

11.6.1 Connotation 

High-performance simulation is a new simulation paradigm, new approach and new 
ecosystem, which combines four kinds of technologies including emerging com-
puter science technology (i.e., cloud computing, IoT, big data, service computing 
and edge computing), modern modeling and simulation technology, supercomputer 
system technology and artificial intelligence technology, aimed to optimize the 
overall performance of system modeling, simulation operation and result
analysis/processing for 2 kinds of users (high-end simulation user and massive
simulation user group) and 3 types of simulations (constructive simulation, virtual
simulation and live simulation) [ ].61



High-performance parallel algorithm modeling methods mainly include four
methods: job-level parallel method for large-scale simulation problems, task-level

(3) Simulation Application Theory and Technology

The simulation application theory and technology include high-performance sim-
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11.6.2 Technology System 

(1) Modeling Theory and Method 

parallel method among federates of simulation system/federation, model-level 
parallel method among federated members and thread-level parallel method based 
on solving comprehensive models. 

New generation digital modeling method combines typical M&S and artificial 
intelligent technologies [62], which is built based on correlation of data and 
real-time status of the physical system [63]. As high-performance simulation 
increasingly supports for deep reinforcement learning, intelligent algorithm mod-
eling methods are also being applied. 

(2) Simulation System Theory and Supporting Technology 

The simulation system supporting environment technologies include hardware 
support environment technologies including technologies of heterogeneous many-
core high-performance computers, big data processing components, artificial
intelligence processing components, high-performance Ethernet and high-
performance Infi niBand networks and software support environment technologies
including operating system kernels, high-speed communication systems (MPI/
shared memory/InfiniBand communication libraries) and resource management 
systems. 

Simulation system construction and operation technologies include service 
technology for building and running simulation systems in high-performance 
environments which is implemented through virtualization services, scheduling 
management services, load balancing services and resource management services 
and enabling technologies which are related to the construction and operation of 
simulation systems such as multi-level parallel simulation engines, solving tools 
and algorithm libraries in high-performance environments. 

ulation portal technologies to support high-end simulation users and mass simu-
lation user groups for simulation task definition, submission, execution, 
collaboration and monitoring, high-performance technologies of virtual scene 
communication and virtual reality fusion and high-performance simulation appli-
cation technologies related to model libraries, algorithm libraries and databases. 

In addition, the new generation of digital modeling technology is used to 
increase the credibility of the simulation process and achieve deep integration 
between people, information systems and physical systems [64].



data, algorithms and computing power, a big data and artifi cial intelligence pro-
cessing machine based on tightly coupled high-performance computing system has

Fig. 11.9 The structure of high-performance simulation-specifi c acceleration component
technology

11.6.3 Key Technology 

(1) High-performance Simulation-specific Acceleration Component Technology 
Based on Big Data and Artificial Intelligence Algorithm 

Since non-mechanism modeling and simulation technologies require the support of 
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been developed. The machine supports the integration of special artificial intelli-
gence chips, and the on-demand call of real-time computing algorithm models and 
offline computing algorithm models, such as statistical algorithms and machine 
learning algorithms [61] Fig. 11.9. 

(2) Interface Technology between High-performance Simulation Computer and 
Computer Physical System (CPS) 

When CPS system accesses high-performance simulation computer system, it has 
the interface requirements of large amount of data, large amount of concurrency and 
low latency. In response to the above problem, high-performance industrial intel-
ligent gateways are deployed at the edge of the CPS system and connected to
various types of installation and simulator equipment in the simulation life cycle to
support ubiquitous sensing, access and embedded simulation Fig. .11.10
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Fig. 11.10 The interface 
technology between 
high-performance simulation 
computer and CPS 

High-performance Simulation 

CPS 

Virtual Gateway 

Physical Gateway 

Control Level 

Equipment Level 

Model Simulation 

ControlData 

(3) Multi-level Parallel High-Performance Simulation Solving Technology 

According to the characteristics of comprehensive system simulation, the require-
ments of fully exploiting the parallelism of the simulation system and targeted 
design and implementation in software are needed. An improved computer system
is developed to support four kinds of parallelisms: job-level parallelism for 
large-scale simulation problems, task-level parallelism among members in the 
simulation system, model-level parallelism within federated members and 
thread-level parallelism based on comprehensive model solving [65], see 
Fig. 11.11. 

(4) Parallel evolutionary algorithms 

For real-world non-deterministic polynomial-time hard optimization problem, many 
parallel evolutionary technologies have been developed. [see Appendix: Parallel
evolutionary algorithms [ ]].66



11.6.4 Development Trend 

(1) Digitizing 

Combined with the Internet of Things and CPS, the simulation of digital twins is 
widely supported. Digital twins can evolve faster and make faster decisions.
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Fig. 11.11 The diagram of multi-level parallel high-performance simulation solving technology



11.6.5 Application Case

The high-performance simulation technology has been applied in research, pro-
duction, operation and maintenance of comprehensive system.

(4) Initialize the parameters of the multidisciplinary virtual prototype system
(some instance). 

Fig. 11.12 The diagram of high-performance simulation technology for aircraft control system
simulation
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(2) Networking/Cloudification 

Networking/cloudification is based on the virtualization and servicization of various 
high-performance infrastructures, which supports on-demand scheduling of 
embedded simulation and integrated scheduling of cloud/edge simulation. 

(3) Intelligentialize 

Intelligentialize is mainly reflected in high-performance simulation languages and 
high-performance simulation computers, and it can effectively shield the com-
plexity of high-performance simulation and intelligently meet the high-performance 
simulation needs of users in various fi elds.

As an example, a use case to show the high-performance simulation technology 
for aircraft control system simulation is given [ ]. The system refers to multiple65
disciplines such as aerospace, control and power. The application process of 
high-performance simulation is as follows: Figs. 11.12 and 11.13. 

(1) Submit the distributed multidisciplinary virtual prototype model. 
(2) Dynamically build the operating environment of the multidisciplinary virtual 

prototype system. 
(3) Generate multiple instances of the multidisciplinary virtual prototype system. 



11.7 Parallel Evolutionary Algorithms

for algorithm hybridization. So far, PEAs have seen many successes in solving 
comprehensive optimization problems [ , ]. In recent years, three main models
of PEA have been reported as design bases. These models are master–slave model, 
island model and diffusion model [ ]. Meanwhile, hierarchical hybrid models
combining one or more of the basic models have also been reported for certain

71

7069

cases. Owing to the widespread use of multi-core computers and clusters, island
model [ – ] has become the most common, in which each sub-population
evolves in an independent processor as an “island.” The “islanders” interact peri-
odically via individual migration, in accordance with a pre-defined topology.

7472
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Fig. 11.13 The application process of high-performance simulation technology 

(5) Visualize the simulation process of the multidisciplinary virtual prototype 
system 

(6) Optimizing parallel multi-instances for the multidisciplinary virtual prototype 
system. 

Lin Zhang, Yuanjun Laili 

Real-world non-deterministic polynomial-time hard (NP-hard) optimization prob-
lems are becoming more comprehensive to solve and are presenting more chal-
lenges to evolutionary algorithms (EAs). An EA mimics natural evolution with a 
population in generational iterations to search for feasible and optimal solutions to 
NP-hard problems [ ]. In dealing with these problems, parallel evolutionary
algorithms (PEAs) have become increasingly popular [ ]. Intuitive parallelism is
to divide the population of EA into a number of sub-populations and map them onto 
multiple processors that work concurrently. It partitions the potential solution space,
enhances global search for multi-peak problems and gives more room to maneuver

68
67



The resultant communication overheads are generally lower than that in master–
slave model and diffusion model [ , ]. Owing to the structure of island model,
individual migration policy and island topology are the most critical elements in 

7675

determining the efficiency of a PEA. Migration policy controls the migration fre-

culated and broadcast according to the new structure in every iteration. This takes a
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quency, the number of migrating individuals, the individual replacement rule and 
the synchronization of sub-populations [67, 77]. Much research has been reported 
on designing a migration policy in various scenarios, where certain offline schemes 
[70, 78, 79] and online strategies [80–82] are established not only to set the 
migration policy, but also to adaptively adjust key algorithmic parameters of 
sub-populations during the runtime. Island topology is also an important factor of 
PEA in determining the neighbors of each sub-population for individual exchanges 
[83]. The most commonly used ones are ring [84], mesh [85], full-mesh [86] and 
star topologies [87]. Generally, the island topology of a PEA is not easy to 
determine optimally, as communication objects of each sub-population are difficult 
to determine during the runtime. There are two major reasons for this. First, the 
correlation between the state of evolution and the topology is difficult to evaluate 
quantitatively. Second, the implementation means of a specific topology in a PEA 
are normally fixed. To deal with the above problems, studies on random topologies 
[88, 89] and graph-based dynamic topologies [90, 91] have been carried out. Those 
topologies are randomly changed during the iteration and then adapted to the 
problem structure [92]. However, the neighbors of each island need to be recal-

long time, resulting in performance degradation on the parallel evolution. Today, 
the design of an efficient PEA with a low communication overhead remains a 
challenge. 

One attempt to address this issue has been to tailor a PEA to the characteristics 
of the problem being tackled [93, 94]. Another has been to assign multiple 
problem-dependent heuristics to a sub-population. A third approach has been to 
adapt the size of sub-populations. Nevertheless, the migration policy and topology 
are generally kept unchanged. The deficiency of these problem-specific PEAs is that 
once the problem objectives or constraints change, the algorithm is hard to cope or 
adapt. This issue is partially addressed using memetic algorithms and 
hyper-heuristics with multiple EAs [95]. The most common design is to allocate a 
group of operators or memes (i.e., local search strategies) to different islands 
directly and let them interact with one another via individual migration [94, 96, 97]. 
However, it requires an extra algorithm selection process to update individuals 
inside each sub-population, which will largely degrade the parallel efficiency as 
well. For a multiple-EA-based PEA, as its operators and upper layer adaptation 
rules inside each sub-population are uniform, the search performance would be 
lower than those of the underlying EAs if the islands are not well balanced. 
Therefore, research on self-adaptation of island topology and dynamic selection of 
multiple EAs is imperative for PEAs. 

Laili, et al. [66, 98] developed a parallel transfer evolution algorithm, which was 
based on the island model of parallel evolutionary algorithm and, for improving 
performance, transfers both the connections and the evolutionary operators from



affects the mapping strategies of parallel algorithms to computer architectures all
the time. Lastly, low programming productivity stems from the fact that parallel
programming is a very specialized skill and parallel algorithm implementations 
have low extensibility and portability, while at the same time physical platforms

development productivity and supercomputer advancements [ ].107

one sub-population pair to another adaptively. Needing no extra upper selection 
strategy, each sub-population is able to select autonomously evolutionary operators 
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and local search operators as subroutines according to both the sub-population’s 
own and the connected neighbor’s ranking boards. The parallel transfer evolution is 
tested on two typical combinatorial optimization problems in comparison with six 
existing ad-hoc evolutionary algorithms and is also applied to a real-world case 
study in comparison with five typical parallel evolutionary algorithms. The tests 
show that the proposed scheme and the resultant PEA offer high flexibility in 
dealing with a wider range of combinatorial optimization problems without algo-
rithmic modification or redesign. Both the topological transfer and the algorithmic 
transfer are seen applicable not only to combinatorial optimization problems, but 
also to non-permutated comprehensive problems. 

11.8 Extreme-Scale Simulation 

Claudia Szabo. 

When analyzing particle models in physics and biology where the number of 
particles and the complexity of their interactions scale dramatically and very 
quickly, extreme-scale simulation becomes a necessity. Several particle-based 
simulation examples, such as, among others, Amber (Salomon-Ferrer et al. [99], 
NAMD [100] and GROMACS [101], are used for classical molecular dynamics 
simulations of biomolecules. For cosmological N-body simulations, PKDGRAV 
[102], Gadget [103], GreeM Ishiyama et al. [104] and The Last Journey [105] are 
just a few examples. All these models consider complex interactions between 
particles whose numbers range in the trillions and thus face challenges both due to 
their specific parallel implementations and their extreme scale. 

Mo [106] argues that parallel computing research for extreme-scale simulation 
exhibits three major challenges, namely limited computational scale, inadequate 
computing efficiency and low programming productivity. Computational scale is a 
challenge because the complexity of numerical algorithms increases super-linearly 
with the increase in the number of processor cores. Computing efficiency is a 
challenge due to the rapid evolution of parallel computer architectures, which 

evolve rapidly. These challenges continue to widen the gap between software 

Computational efficiency on modern HPC platforms is paramount. However, 
efficiency is challenging to achieve because few platforms have the optimal com-
bination of memory and network (ideally fast and rich) to allow for these 
extreme-scale simulations to run. Iwasawa [108] gives an example of the GreeM



16. Ulrich EG, Baker T (1973) The concurrent simulation of nearly identical digital networks.
In: Proceedings of 10th design automation workshop, IEEE and ACM, New York, June
1973, pp 145–150

software to illustrate this. GreeM is designed for large-scale cosmological N-body 
simulations on large HPC systems, and it was used for the cosmological simulation 
on the K computer, which was awarded the 2012 Gordon Bell Prize. The force 
calculation within one MPI process is further parallelized by Barnes’ vectorization 
algorithm, to make use of the SIMD execution units of modern computers. GreeM 
achieved an efficiency of more than 50%, for the cosmological N-body simulation 
of 102,403,102,403 particles on the entire K computer with 82,944 nodes. 
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However, many HPC systems lack these features and thus will be unable to achieve 
this performance. 

In this space, the Extreme-scale Simulator (xSim) [109] becomes appealing. 
xSim is a simulation-based toolkit for investigating the performance of parallel 
applications at scale. xSim scales to millions of simulated Message Passing Inter-
face (MPI) processes. xSim employs a lightweight parallel discrete event simulation 
(PDES) mechanism using a conservative approach. xSim supports highly over-
subscribed operations and thus has to oversee their process management and 
context switches, which become inherently costly. 
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12.1 Fuzzy Logic and Fuzzy Simulation

Jean François Santucci

n
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In the recent years, a set of work has concerned the introduction of fuzzy notions 
[1–5] into DEVS concepts in order to propose incorporation of uncertainty into 
models [6–11]. These approaches developed around the DEVS formalism have 
been proposed in order to apply fuzzy set theory to the sets and functions defined 
on crips sets in DEVS formalism. 

Fuzzy modeling and simulation can be useful in the study of different kinds of 
systems for example in the case of the modeling of systems for which we have few 
observations of how and where the human being acts as a sensor or expert. 

The fuzzy theories are a set of theories of mathematical concepts generally proved 
and tested, a formal framework for modeling and interpretation of fuzzy proposals 
(knowledge) and imperfect data. A proposal as “tomorrow there will be a lot of wind” 
is both inaccurate or uncertain and incomplete (according to Zadeh [1]):

. inaccurate because we cannot know how to quantify “a lot of wind”? A  
inaccuracy is a difficulty in articulating a fact, that is on its content “about 
20 km/h”; it does not give an accurate value but an interval. It generally occurs 
when the data is expressed in a linguistic way as “a lot”;

. uncertain, because we do not know how to be sure that tomorrow there will be 
really much wind, uncertainty is a doubt about the validity of an act. It refers to 
the veracity of the information. It is a coefficient given to a proposal which can 
be true or false;

. incomplete, because from this proposal we do not know exactly the true speed of 
the wind at a given time. Incompleteness is a lack of knowledge, or the partial 
knowledge on some features of the system. They may be due to the inability to 
get information or to a problem which occurred during the acquiring of the 
knowledge. The incompleteness can be seen as a particular case of inaccuracy. 

Fuzzy logic is an extension of classical logic. It was presented by Zadeh [1] as a  
framework for the approximate reasoning, a mathematical theory whose purpose of 
study is fuzzy systems. The approximate reasoning and treatment of inaccurate and 
uncertain facts are quite natural for human beings. For reasoning about such 
knowledge, classic modeling is not sufficient; in effect in this case, the approxi-
mations on variables generate, at the end, relatively large errors. 

Fuzzy modeling deals with the fuzzy values from the beginning, allowing the 
final to obtain a range of values (inaccuracy) larger but fairer. According to Zadeh 
[2], fuzzy modeling provides approximate but effective ways to describe the 
behavior of systems that are too complex or too badly defined to allow the use of a 
precise mathematical analysis. The study of these systems requires consideration of 
inaccuracies and uncertainties but also by a relevant and efficient reasoning on the 
system as a whole (input and output variables, behavior). 

Fuzzy set theory is a mathematical theory in the field of abstract algebra. It was 
introduced by Zadeh in 1965 [1], and we can infer from such a theory a new logic 
which bypasses the principle of excluded elements, unlike conventional membership



notions. Fuzzy logic [5] is based on the concept of fuzzy sets. The definition of a 
fuzzy set answers to the need for representation of inaccurate or uncertain knowledge 
or because they are expressed in natural language by an observer who gives little 
detail or is unreliable, either because they were obtained with observation instruments 
that produce errors or are unclear. In a reference set E, a fuzzy set f in E is char-
acterized by a membership function lf which associates every element x 2 E, the 
degree lf (x) between 0 and 1, where x is in f. The concept of fuzzy set aims to make 
gradations in the membership of an element x to a class f, i.e., to allow an element to 
belong more or less strongly to this class. The fuzzy set theory also provided a whole 
set of mathematical methods to manipulate the fuzzy sets. 
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The approaches integrating fuzzy sets into DEVS bring nice formalisms allowing 
to deal with fuzzy events, fuzzy transition functions, and even fuzzy time advance 
function. Fuzzy technology has the advantage of using explicit knowledge (the 
system works by applying rules) by highlighting three distinct steps: (i) Initially, the 
fuzzification process is studied in order to consider the inclusion of linguistic 
information. (ii) The second part is devoted to the identification of fuzzy rules mainly 
when observations on the behavior of the system are imprecise and uncertain. Fuzzy 
rules (such as “if X … then Y”) allow to express the knowledge concerning the 
problem to address. (iii) The last part concerns the defuzzification which is to convert 
the fuzzy domain to the digital domain, with a conversion preferences. The method 
of defuzzification is used to exploit the information encoded in the output fuzzy sets 
corresponding to expert knowledge on the output variable of the model. 

The integration of fuzzy logic into the DEVS formalism involves three steps: 
(i) the definition of concepts allowing to deal with fuzzy logic in the framework of 
DEVS; (ii) the selection of a fuzzy logic programming language in order to 
accomplish the integration of DEVS and fuzzy logic; and (iii) the implementation 
of the concepts into the DEVSimPy framework [6, 7]. The first step allows to define 
the concepts allowing to perform with the DEVS formalism the three required steps 
involved in fuzzy logic control: fuzzification, the fuzzy rule definition and firing, 
and finally defuzzification. A set of available fuzzy theory programming languages 
(FCL—Fuzzy Control Language [12], FPL—Fuzzy Programming Language [13], 
FTL—Fuzzy Technology Language [14], FSTDS—fuzzy STDS [15], FSML— 
Fuzzy System Modeling Language [16], etc.) can be used in order to be coupled 
with the DEVS formalism. 

12.2 Neural Networks and Neural Network Simulation 

Laurent Capocchi 

The artificial intelligence domain grows every day with new algorithms and new 
architectures. ANNs became a very interesting domain since the eighties when the 
back-propagation learning algorithm and the feed-forward architecture were first 
introduced [17, 18]. As time passed, ANNs were able to solve nonlinear problems and 
were being used in classification, prediction, and representation of complex systems.



Nowadays, ANNs are still in the research domain to enhance the performance and to 
facilitate the configuration parameters needed for the learning process [19–22]. 
Comparing multiple configuration parameters and learning algorithms is very com-
mon for ANN users and algorithm developers. To help users and developers test and 
compare different algorithm implementations and parameter configurations, the use 
of Comparative and Concurrent Simulation (CCS) [23] is a practical solution. 
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Artificial neural network since appearance is a black box capable of resolving 
problems that linear computer cannot. Therefore, the configuration of this revolu-
tionary computing remains a hard task for modeler since it depends on the appli-
cation complexity. DEVS formalism [24] has its hierarchical and modular aspect. 
This formalism gives the opportunity to defragment a system or a model in an easy 
way allowing interaction with the architecture or the behavior. The nature of the 
feed-forward ANN architecture is based on discrete messaging between neural 
layers or individual neurons. In this way, modeling ANN in a discrete event for-
malism might be considered. 

DEVS is a formalism and a very interesting platform which can be adapted for 
multiple applications by adding extensions to it. At the same time, CCS is a 
technique to compare between simulations with different paths and data values [23, 
25]. One of the first applications of the CCS is concurrent fault simulation (CFS) to 
simulate faults (mainly for digital systems) [26]. CCS can be applied to many fields, 
and it matches the idea of comparing multiple ANN configurations during the 
learning phase. This idea enables the simulation of multiple ANN configurations 
and compares their performances. 

12.3 Synergies of Artificial Intelligence and M&S 

Tuncer Ören 

Gardner’s theory of multiple intelligences posits that humans might have eight 
types of intelligences which are as follows: Linguistic, Logical/Mathematical, 
Spatial, Bodily-Kinesthetic, Musical, Interpersonal, Intrapersonal, and Naturalist 
Intelligences [27]. 

Cognitive abilities include: 
perception, 
focusing, filtering, 
intention detection, 
reasoning, 
generalization, abstraction, 
learning, 
understanding, 
formulating and solving problems, 
asking and answering questions, 
decision making, 
natural language understanding and conversing in a natural language, etc. [28].
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A definition of artificial intelligence follows: “Artificial intelligence is the study 
of mental faculties through the use of computational models” [29]. Another defi-
nition of artificial intelligence is as follows: “Artificial Intelligence (AI) is a broadly 
defined term that encompasses multidisciplinary research and development activ-
ities involved with emulating human intelligence on machines.” [30]. 

Some aspects of human intelligence are often not discussed in artificial intelli-
gence. In fact, some humans lie and deliberately other as well as nature. These human 
cognitive features should not be emulated by AI. (Please see Chap. 8 on Ethics). 

A list of my 45 publications and 35 presentations and other activities on the 
synergies of artificial intelligence, cybernetics, and simulation during 1970s through 
2000s can be accessed at (Ören–AISim [31]). Starting 1990s, I switched to 
agent-directed simulation (ADS). A list of 88 publications and 68 presentations and 
other activities on software agents and ADS can be found at (Ören-ADS [32]). 

For a long time, simulation contributed to the field of artificial intelligence by making 
possible the cognitive simulation studies. Now, simulation can benefit from the advances in 
artificial intelligence es well as from advances in general system theories, software and 
computer engineering, and mathematical modelling and experimentation techniques. 

The question is not whether or not to have artificial intelligence in simulation, but rather 
how to have it? at which level? how reliably? how soon? and above all how intelligently? 

In 1985, already over half a dozen simulation meetings are announced where artificial 
intelligence aspect is primordial. 

The quotation on the cover of this issue would well summarize an attitude: ‘... unintelligent 
computerization is not enough’. [33] 

For artificial intelligence systems, intelligence is a goal-directed and often adaptive 
knowledge processing ability. 

12.3.1 Contribution of M&S to Artificial Intelligence 

The term Artificial Intelligence was coined by John McCarthy in 1956. … Two different 
views form the roots of AI: understanding human intelligence and building machines that 
surpass human intelligence. 

In order to understand human intelligence, Newell and Simon [34] were the early scientists 
interested in the simulation of human thought processes (cognitive abilities). Simon also 
states a fundamental role of simulation: “The real power of the simulation technique is that 
it provides not only a means for stating a theory but also a very sharp criterion for testing 
whether the statement is adequate.” [34] 

The opposite view was to build super intelligent computers having cognitive abilities far 
superior than the humans. … This dichotomy in AI still continues. See for example, “Two 
Approaches to Machine Intelligence” . edited by Williams [35] 

The field of knowledge-based systems is a branch of AI. “Three fundamental concepts of 
knowledge-based systems distinguish them from conventional algorithmic programs and 
from general search-based programs: (1) The separation of the knowledge from how it is 
used. (2) The use of highly specific domain knowledge. (3) The heuristic rather than 
algorithmic nature of the knowledge employed.” [36 Most commonly used 
knowledge-based systems are rule-based systems. [37]
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12.3.2 Contribution of Artificial Intelligence to M&S 

Cognizant simulation (or AI-based simulation) is the use of artificial intelligence in a 
simulation study, for the generation of model behavior and for the associated learning 
abilities. Table 12.1 gives a synopsis of four major categories of possibilities. … 

In a cognizant simulation environment (or AI- supported simulation), artificial intelligence 
is used for computer assistance for interfaces, for processing elements of a simulation 
study, and for their cognitive abilities such as learning abilities. 

A simulation environment can have two types of interfaces: front-end and back-end 
interfaces. Front- end interfaces are used to specify, edit, or generate elements of a sim-
ulation problem. Back-end interfaces are used by systems to communicate to users the 
primary and auxiliary outputs of the system. 

Table 12.2 summarizes the functions offered and which might be offered within cognizant 
simulation environments. … 

Table 12.1 Categories of cognizant simulation (AI-based simulation)a 

No nesting with a 
non-simulation 
knowledge-based 
system 

(Single paradigm) 
simulation system 

(Multiparadigm) 
simulation system 

Nested with a 
non-simulation 
knowledge-based 
system 

(Single or multiparadigm) 
simulation system with a 
nested knowledge-based 
system 

Knowledge-based system 
with a nested (single or 
multiparadigm) simulation 
system 
(with an optional nested 
knowledge-based system) 

a AI is primarily used for the generation of model behavior (as it is the case of knowledge-based 
simulation and qualitative simulation) as well as associated machine learning
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Figure 12.1 depicts elements of cognizant simulation environments. They consists of cog-
nizant front- and back-end interfaces, specifications of single or multiparadigm (cognizant) 
simulation systems, knowledge-based systems used for non-experiential purposes, knowl-
edge bases and their associated machine learning modules.” [28] 

Fig. 12.1 Elements of cognitive simulation environments
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12.4 Example: Ant Colony Simulation 

Claudia Szabo 

The ant foraging model or the ant colony [38] is a widely used model to showcase 
self-organization and emergent behavior in complex systems research [39]. It is also 
used extensively in optimization algorithms [40]. In particular, ant colony opti-
mization is used extensively in a variety of domains such as manufacturing, 
transportation [41], Internet of Things [42] and networking [43] among others. 

In the model inspired from real-life ants, agents or ants from an anthill will 
randomly search for food sources. When a food source is found, ants will bring a 
unit of food back to the central nest. While returning, the ants will drop pher-
omones. If an ant is carrying food, it will follow the path of highest pheromone 
concentration back to the nest. 

Fundamental to the ant colony simulation model is pheromone communication, 
which is widely found in nature and forms the basis of a large number of 
swarm-based approaches. Pheromones are used by social insects such as bees, ants, 
and termites both for communication between agents and for communication 
between the agents and the swarm. Artificial pheromones have been adopted in the 
multi-robot and swarm robotic domains [44], where it can be implemented in 
various ways, such as chemical and physical among others. Pheromone-based 
communication and control are also widely used in swarming UAVs [45, 46]. 

12.5 Synergies of Agents and M&S 

Tuncer Ören 

The term “agent” has been used in English since 1610 to mean “one who acts” 
(OED-agent [32]). In software engineering and artificial intelligence, most often, 
the term “agent” is used as a short form of “software agent.” “Agents are software 
modules with cognitive abilities that can work as assistants to the users. They can 
observe and sense their environments as well as affect it. Their cognitive abilities 
include (quasi-)autonomy, perception, reasoning, assessing, understanding, learn-
ing, goal processing, and goal-directed knowledge processing [47, 48] (Finin et al. 
1997).” [49]. 

The following quotation provides additional clarification about agents: 

Agents are autonomous software modules with perception and social ability to perform 
goal-directed knowledge processing over time, on behalf of humans or other agents in 
software and physical environments. When agents operate in physical environments, they 
can be used in the implementation of intelligent machines and intelligent systems and can 
interact with their environment by sensors and effectors. The core knowledge processing 
abilities of agents include: reasoning, motivation, planning, and decision making. The 
factors that may affect decision making of agents, such as personality, emotions, and



cultural backgrounds can also be embedded in agents. Additional abilities of agents are 
needed to increase their intelligence and trustworthiness. Abilities to make agents intelli-
gent include anticipation (pro-activeness), understanding, learning, and communication in 
natural and body language. Abilities to make agents trustworthy as well as assuring the 
sustainability of agent societies include being rational, responsible, and accountable. These 
lead to rationality, skillfulness and morality (e.g., ethical agent, moral agent). [50] 
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Agent-based models (ABM) are a powerful paradigm, and use of agent-based 
models is widespread and important. Lists of ABM researchers and ABM resources 
(including organizations, centers, and institutes; tools; and tutorials) can be found at 
(ABM researchers [51] and ABM resources [52], respectively). 

Holons are special types of agents with ability to cooperate. “Holonic systems 
are excellent candidates to conceive, model, control, and manage dynamically 
organizing cooperative systems. A holonic system is composed of autonomous 
entities (called holons) that can deliberately reduce their autonomy, when need 
arise, to collectively achieve a goal. A holonic agent is a multi-agent system where 
each agent (called a holon) acts with deliberately reduced autonomy to assure 
harmony in its cooperation in order to collectively achieve a common goal. … 
Holonic agent simulation or holon simulation, in short, is an important type of 
agent simulation where agents represent holons. Some military application include 
use of simulation for preparedness for conflict management including conflict 
avoidance, conflict resolution, and conflict deterrence. Civilian applications include 
modelling and simulation of cooperation of different business entities.” [53]. In 
recent publications, ethical considerations in cooperation were elaborated on and 
conditions when cooperation is not desirable from an ethical point of view are 
clarified [54]. Ethical holon cooperation opens new vistas in artificial intelligence 
for cooperation of autonomous and quasi-autonomous systems. 

Agents provide a powerful computational paradigm. Appendices 1 and 2, 
adapted from (Ören [53] and TBD-dic [55]), provide lists of types of agents and 
agent-related concepts, respectively. 

A meaning of the term “synergy” is “a mutually advantageous conjunction or 
compatibility of distinct business participants or elements.” (M-W-synergy). Both 
experiment and experience aspects of simulation and agents do contribute to each 
other. As seen in Fig. 12.2 (adapted from [50], synergies of agents and modeling 
and simulation, also named agent-directed simulation (ADS), consist of: (1) con-
tributions of simulation to agents and (2) contributions of agents to simulation that 
can be shortened as simulation for agents and agents for simulation. 

Contributions of simulation to agents, as outlined in Sect. 12.4.1, are agent 
simulation which is widely used for the simulation of systems modeled as agents. 

Contributions of agents to simulation involve two classes of possibilities: 
agent-monitored simulation and agent-supported simulation. They are clarified in 
the following sections of this chapter in more detail. 

Historically, agent-directed simulation is started with the collaboration of Ören 
and Yilmaz. A list (covering four decades) of over 80 publications and over 60 
meeting activities of Ören and his colleagues on software agents and agent-directed



simulation can be found at Ören-agents [32]. Yilmaz’s contributions to ADS can be 
seen at (Yilmaz-CV). 
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Agent-
Directed 

Simulation 

Agents for simulation:              Agent-supported 
simulation 

Agent-monitored 
simulation 

Simulation for agents:              Agent simulation 

Fig. 12.2 Synergies of agents and modeling and simulation, also named agent-directed 
simulation (ADS) (adapted from [50]) 

As previously mentioned, when cooperation is concerned, holonic agents may 
become important in all aspects of agent-directed simulation and may open the door 
for Holon-directed Simulation (HDS). 

A Historic Note 
Ándras Jávor did pioneering work by using “demons” in modeling and simulation. 
In those early days, even the term “software agent” was not yet introduced in the 
scientific literature [56–58]. Other early contributors to the field are Hesper and 
Hogeweg [59]. For an additional overview, the interested reader is referred to [60]. 

12.6 Facets of Agent-Directed Simulation 

Valdemar Vicente Graciano Neto, Tuncer Ören 

12.6.1 Agent Simulation or Agent-Based Simulation 

In artificial intelligence (AI), an agent refers to an autonomous entity that acts 
toward achieving goals, using observation through sensors and actuating upon an 
environment [61]. Agents are often engineered to be governed by internal rules that 
drive how they interact and react to its surrounding environment or its represen-
tation. Due to their appealing nature, agents are recurrent technologies used to 
represent multiple independent entities interacting among themselves and with the 
environment, such as in avatars in virtual games, social interaction studies, or 
swarms.
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A study that analyzed 32,576 studies on agents enables to affirm that agents and 
computer-based simulation have almost the same age, both with seminal studies in 
1950s and 1960s [62, 63]. Indeed, agent design and simulation are congruent 
sub-domains of agent-based computing [63]. 

Several tools have emerged to support an agent-based simulation, i.e., the 
conception of simulation models based on the same idea of agents as individual 
autonomous entities that can interact to support a better understanding of global or 
emergent phenomena associated with complex adaptive systems [63]. 

The synergy of simulations and agents enabled visual perceptions of agents’ 
interaction and supported visualization of emergent structures, such as in NetLogo, 
which provides agent-based simulation and mechanisms for visualization. 

Moreover, it is not rare to find studies that combine agent-based simulation and 
DEVS, for instance [64]. 

12.6.2 Agent-Monitored Simulation 

Agent-monitored simulation is a powerful possibility for advanced simulation 
methodologies and consists of roles agents can play during simulation run-time. 

An example on agent-monitored simulation is agent-monitored anticipatory mul-
tisimulation: a systems engineering approach for threat-management training [65]. 

Multisimulation with multimodels, multiaspect models or multistage models needs mecha-
nisms to decide when and under what conditions to replace existing models with a successor 
or alternative. The control agent, shown in Fig. 12.3, monitors the multisimulation subsystem 
through the anticipatory learning component. The control agent partly enables branching into 
contingency plans and behavioral rules in response to scenario or phase change during 
experimentation. Graphs of model families may facilitate derivation of feasible sequence of 
models that can be invoked or staged. More specifically, a graph of model families can be 
used to specify alternative staging decisions. Each node in the graph depicts a model, whereas 
edges denote transition or switching from one model to another. [65]. 

Another example for agent-monitored simulation is the role of agents in dynamic 
model couplings. Model coupling allows a robust way of model composition from 
component models (some of which can be already coupled models). Clarification 
about model coupling can be found at [65–68]. In dynamic couplings, there may be 
two types of time or state-dependent changes: (1) Input/output relationships of 
models may be updated during run-time, (2) some models (or multi-models) may be 
replaced by some others, or (3) both I/O relations and models may be updated. 
Agents are most adequate for monitoring condition to implement dynamic 
couplings.
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Fig. 12.3 Anticipatory learning in threat management (from Ören and Yilmaz [65]) 

12.6.3 Agent-Supported Simulation 

Agent-supported simulation “is the use of agent technology to support modeling 
and simulation activities as well as simulation-based problem solving environments 
(or simulative problem solving environments).” [60]. Possibilities for agent support 
in modeling and simulation are outlined in Table 12.3. 

In this section, agent support in modeling and simulation is covered in the 
following categories of important possibilities for advanced M&S: 

1. Agent support for front-end interfaces 
2. Agent support for back-end interfaces 
3. Agent support to provide cognitive abilities to the elements of M&S systems 
4. Agent support for symbolic processing of elements of M&S studies 

4:1 Agent-supported model processing including model transformation 
4:2 Agent-supported experimentation 
4:3 Agent-supported interoperability 
A reference on agent-supported simulation was developed by Ören et al. [60]. 

R&D , both at academic and industrial levels, are warranted to explore the benefits 
of ag ent-supported simulation. 

12.6. 3.1 Agent Support for Front-End Interfaces 
Table 12.4 “outlines the front-end functionalities for the elements of a modeling and 
simulation environment.” 



Table 12.4 Some front-end
interface functionalities in 
M&S environments (adapted 
from Ören et al. [60])
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Table 12.3 Possibilities for agent support in modeling and simulation (adapted from Ören et al. 
[60], Ören [69]) 

Applicable for For specification/generation/edition of For processing 

Goal . Goal specification/editing
. Goal generation
. Hypotheses formulation

. Goal processing 
– goal seeking 
– goal modification 
– goal evaluation 
– goal selection 

Parametric model . Modeling 
– model composition 
– model coupling 
– model editing

. Model-base 
management

. Model analysis 
– model 
characterization 

– model evaluation
. Model transformation 

Parameters of 
– models 
– 

experimentation/ 
experiences

. Parameter estimation/calibration

. Editing 
– parameters 
– auxiliary parameters

. Symbolic processing 
– parameters 
– auxiliary 
parameters 

Design of 
experiments

. Design/editing of experiments . Processing of design 
of experiments 

Every experiment . Specification/editing of experimental 
conditions (experimental frames) 
– initial conditions of state variables 
– behavior generator

. Automatic selection of 
– behavior generator 
– behavior 
generation 

. Anticipation of user’s needs

. Help formulate/specify problems

. Methodology-based model specification

. Awareness, just-in-time-learning, explanation

. Assistance, guidance, (un)solicited advice

. Abilities to process advanced types of inputs: 
– perception (focusing) 
– speech input 
– body language, deictic input, haptic input 
– holographic input 
– thought-control input 

12.6.3.2 Agent Support for Back-End Interfaces 
“Back-end interfaces are used by systems to communicate to the users the primary 
and auxiliary outputs of the system. Table 12.5 outlines the back-end functionalities 
for the elements of modeling and simulation environments. 

Back-end interface functionalities provide support for behavior display, 
instrumenting/monitoring, processing, evaluation, and advice. Advanced types of 
outputs such as augmented/enhanced reality and virtual reality are part of the



12.6.3.4 Agent Support for Symbolic Processing of Elements
of M&S Studies 

Agent-Supported Model Processing including Model Transformation
Agent-Supported Experimentation.
Agent-Supported Interoperability.

Table 12.5 Some back-end
interface functionalities in 
M&S environments (adapted 
from Ören et al. [60])

functionalities of back-end interfaces. Back-end interface functionalities are appli-
cable to behavior displays, instrumenting, processing, evaluating, explanation, and 
warning/advice.” [60]. 
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. Primary outputs

. Unprocessed behavior 
– behavior processing 
– statistical 
– analytical 
– visualization 
– performance measure 
– evaluation 
– advice on the problem

. Auxiliary outputs 
– automated documentation 
– explanation

. With advanced abilities to process outputs such as: 
– virtual reality 
– augmented reality 
– holographic visualization 

12.6.3.3 Agent Support to Provide Cognitive Abilities 
to the Elements of M&S Systems 

This is distinct from simulation of systems modeled by agents (or agent simulation). 
Software agents can provide cognitive abilities such as perception [70], antici-

pation [65], and understanding (Ören, Ghasem-Aghaee, and Yilmaz, 2007) to the 
elements of simulation studies. Table 12.6 outlines some additional possibilities. 

Intelligent agents can provide support in various stages of the M&S process. “For 
instance, in Model-Driven Engineering (MDE) that involves automated transfor-
mation of platform-independent abstract models, agents can serve as transformation 
engines, by which increasingly concrete and platform-dependent models and sim-
ulations can be generated. 

Agents can also function as mediators and brokers for distinct simulations by 
bridging the syntactic and semantic gap between their representations. To support 
goal-directed experimentation, agents can bring transparency to the overall exper-
iment design [70], execution, analysis, and adaptation process for various types of 
experiments such as sensitivity analysis, variable screening, understanding, opti-
mization, and decision-support.” [60]. 

In this section, the following possibilities are outlined:



Agent-Supported Model Processing including Model Transformation

Table 12.6 Some
possibilities to add cognitive 
abilities for the elements of 
M&S studies (adapted from 
Ören et al. [60])
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. Cognitive abilities to the elements of M&S systems such as 
perception, anticipation, understanding, learning, and/or 
hypothesis formulation

. Program understanding for documentation and/or maintenance 
purposes

. Agents in simulation-based problem solving environments

. Holons for goal-directed cooperation and collaboration 
(including “principled holons” who can refuse certain types of 
cooperation)

. Simulation-based predictive displays for social and financial 
systems: 
– to train future policy/decision makers 
– to predict abnormal deviations and 
–to test and select possible corrective actions

. Auto-simulation to test and evaluate autonomous decisions by 
agents

. Agent-based ubiquitous (mobile) simulation 
(including agent-based mobile cloud simulation) 

– selection of models 
– selection of matching scenarios for experimentation 

“The common strategy in MDE is based on the application of a sequence of 
transformations starting with platform-independent models down to the concrete 
realization of the simulation system. Besides the reuse of models and deployment of 
designs in alternative platforms, MDE improves the reliability of simulation sys-
tems through correctness preserving transformations that allow substantiating the 
accuracy of realizations with respect to explicit constraints and assumptions defined 
in the abstract models. … An agent with understanding capabilities as presented in 
Ören et al. (2007) can be used to map constructs of a source meta-model to 
equivalent features of the target meta-model.” [60]. 

Agent-Supported Experimentation 
“An agent-coordinated support system could greatly enhance the experimental 
design process in several ways, but mainly by providing expert knowledge that the 
user might lack [70].” [60]. 

Agent-Supported Interoperability 
“In distributed simulation, interoperability refers to the ability of system models or 
components to exchange and interpret information in a consistent and meaningful 
manner. This requires both syntactic and semantic congruence between systems 
either through standardization or mediators that can bridge the syntactic and 
semantic gap between peer components. Such mediator or bridge agents ensure 
both data-level interoperability (i.e., metadata/data interchange) and operational-
level interoperability (i.e., behavioral specification). Common strategies for



(continued)

developing adapters involve the provision of standard APIs and connecting com-
ponents through published interfaces that explicitly specify the required and pro-
vided services. These low-level connectors are often limited and do not achieve full 
data interoperability.” [60]. 

12 Synergies of Soft Computing and M&S 303

Appendix 1: Types of agents (adapted from Ören [53] 
and TBD-dic [55]) 

Adaptive agent Competent agent Dispatched agent 

Advertising cookie Competitive agent Dispatched mobile agent 

Agent Complete agent Distant agent 

Agent-based holon Computational agent Distinguished agent 

Animated agent Computer interface agent Domain-specific agent 

Antagonistic agent Computer-controlled bot Emotional agent 

Anticipatory agent Contractee agent Endomorphic agent 

Application agent Contractor agent Essential cookie 

Artificial moral agent Conventional agent Ethical agent 

Authorized agent Conventional software agent Fixed agent 

Autistic agent Conversational agent Functional cookie 

Autodidactic agent Cookie Global agent 

Autonomous agent Cooperating agent Goal-directed agent 

Autoprogrammable agent Cooperation agent Goal-oriented agent 

Believable agent Coordination agent Holonic agent 

Bot Coordinator agent Independent agent 

Broker Coupled multiagents Individual agent 

Broker agent Deceptive agent Information agent 

Client agent Deleted cookie Information disseminating agent 

Cognitive agent Deliberative agent Information filtering agent 

Co-located agent Diagnosis agent Information gathering agent 

Co-located agent Digital agent Information spider 

Communication agent Disabled cookie 

Intelligent agent Persistent cookie Stationary agent 

Inter-agent Personal agent Subagent 

Interface agent Personal digital agent Subordinate agent 

Intermediate agent Personal software agent System latency agent 

Internet agent Proactive agent Task-specific agent 

Itinerant agent Purposeful agent Teachable agent 

Knowledge-based agent Rational agent Temporary cookie 

Learning agent Reactive agent Tightly coupled multiagent
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Local agent Reliable agent Tracking cookie 

Long-lived agent Remote agent Transient agent 

Loosely coupled multiagent Resident agent Transportable Information agent 

Mail agent Retrieval agent Trusted agent 

Marketing cookie Root agent Trustworthy agent 

Message transfer agent Rule-based agent Unauthorized agent 

Messaging agent Scriptable agent Understanding agent 

Mobile agent Search agent Uniform resource agent 

Model-based agent Self-motivated agent User agent 

Multiple mobile agent Self-replicating agent User interface agent 

Network agent Semantic agent User-programmed agent 

Neural net agent Semi-autonomous agent Virtual agent 

Notification agent Service agent Vivid agent 

Pedagogical agent Session cookie Wanderer 

Permanent cookie Sociable agent Web search agent 

Permanent cookie Software agent Web site agent 

Persistent cookie Spider Web-oriented agent 

Appendix 2: Agent-related concepts (adapted from Ören 
[53] and TBD-dic [55]) 

Agency Agent development platform Agent software 
Agent architecture Agent efficiency Agent system 
Agent autonomy Agent framework Agent understanding 
Agent behavior Agent implementation Agent user 
Agent class Agent interactivity Agent-assisted workflow 

support 
Agent code Agent language Agent-based 
Agent communication language Agent model Agent-based adaptive 

mechanism 
Agent communication protocol Agent security Agent-based adaptive system 

Agent service 
Agent-based assistant Agentive Multiagent learning system 
Agent-based cloud computing Agent-monitored Multiagent learning technique 
Agent-based cognitive 
architecture 

Agent-oriented Multiagent software 

Agent-based complex system Agent-oriented methodology Multiagent system 
Agent-based complex system 
development 

Agent-oriented modeling Multiagent understanding 

Agent-based design Agent-oriented problem solving Multiagent understanding 
system
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Agent-based fault-tolerant system Agent-oriented programming Ontology-based agent service 
Agent-based interaction protocol Agent-oriented requirements 

engineering 
Privacy in agent-based systems 

Agent-based interface Agent-oriented tool Safety in agent-based systems 
Agent-based knowledge 
discovery 

Agentry Security in agent-based systems 

Agent-based marketplace Agent-supported Self-adaptation in multiagent 
systems 

Agent-based model Animated agent technology Self-adaptation via multiagent 
systems 

Agent-based modeling Autonomous agent-based 
technique 

Semantic agent system 

Agent-based 
modeling-as-a-service 

Cookie policy Service-oriented agent-based 
architecture 

Agent-based social simulation Cookie preference Service-oriented agent-based 
protocol 

Agent-based software Ethics for agents Subagency 
Agent-based software 
engineering 

Holonic agent simulation Task execution in multiagent 
systems 

Agent-based software provider Intelligent agent modeling Task planning in multiagent 
systems 

Agent-based system Intelligent agent system Task-oriented agent-based 
system 

Agent-based system application Intelligent agent technology 
Agent-based technique Inter-agent communication 
Agent-based trust model for 
cooperation 

Inter-agent communication 
language 

Agent-based ubiquitous service Inter-agent knowledge 
processing 

Agent-based ubiquitous system Learning via multiagent system 
Agent-based virtual enterprise Lifetime of cookies 
Agent-directed Mobile agent paradigm 
Agented Multiagent architecture 
Agent-enabled Multiagent design-system 
Agent-enabled feature Multiagent intelligent system 
Agential 
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Abstract

Science areas supporting modeling and simulation are overviewed in this chapter
of the SCS M&S Body of Knowledge. The areas are systems science and
engineering, simulation programs for differential equation solution, key features
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of frequently used distributions in modeling and simulation, queueing theory, 
characteristics of queuing systems, and statistical tests of hypotheses.
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13.1 Systems Science 

Bernard P. Zeigler, Paul Wach 

This chapter briefly reviews systems science and engineering primarily from the 
perspective of modeling and simulation and its conceptual basis in systems theory 
as presented in Chap. 1. The Wikipedia website on systems science [1] has an 
excellent overview of this topic, and we quote the introduction: “Systems science is 
an interdisciplinary field that studies the nature of systems—from simple to com-
plex—in nature, society, cognition, engineering, technology, and science itself. To 
systems scientists, the world can be understood as a system of systems [2]. The field 
aims to develop interdisciplinary foundations that are applicable in a variety of 
areas, such as psychology, biology, medicine, communication, business manage-
ment, technology, computer science, engineering, and social sciences. 

Systems science covers formal sciences such as complex systems, cybernetics, 
dynamical systems theory, information theory, linguistics, and systems theory. It 
has applications in the field of the natural and social sciences and engineering, such 
as control theory, systems design, operations research, social systems theory, sys-
tems biology, system dynamics, human factors, systems ecology, computer science, 
systems engineering and systems psychology.” 

For our purposes, we can divide early systems work into conceptual scheme 
development and mathematical formalization. Early system theorists naturally 
focused on conceptual scheme development. Some well-known theorists and their 
contributions include von Bertalanffy’s General Systems Theory [3], Ashby’s 
Cybernetics [4, 5] general systems theory. Conceptual scheme development led 
eventually to attempts to capture the main concepts in mathematical/logical form 
often with the aim of enabling computerized assistance in dealing with the com-
plexity that systems approaches could engender. Klir’s architecture of systems 
problem solving [6] and [7] abstract systems are examples. 

Perhaps, the first attempt to establish a strong mathematical foundation for 
systems theory was that of Wymore’s Theory of Systems Engineering [8]. Views of 
simulation from the perspectives of computational and system-theory-based activ-
ities are outlined in Table 2.5 where the influence of Wymore’s system theory on 
modeling and simulation as a discipline is evident. We include in the category of 
mathematical systems theory, work in the 1960s that generalized theories from the 
burgeoning engineering area of mathematical control theory and sought a



Fig. 13.1 Representation of T3SD operating as a system in conjunction with a simulation
program

“rapprochement” with the logic of computers and automata theory arising from the 
newly emerging field of computer science. Both control and computer science 
areas, while hosted by separate research and application communities, have a set of 
common concepts such as inputs, outputs, states, state transition functions, and 
input/output time functions, that can be captured by general systems theory. Such 
rapprochement was the basis for the mathematical systems theory developed by 
Kalman et al. [9]. As in much of the early development, the latter was developed 
independently of Wymore’s earlier work and yet related to many of the same 
concepts. 
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Wymore [10] Model-Based Systems Engineering can be credited with coining 
the term MBSE [11, 12], but so far has received minimal attention in the systems 
engineering community. The related concept of Model-based Simulation is 
reviewed in Sect. 17.1.5. 

Wymore’s tricotyledon theory of system design (T3SD) was created “to provide 
the system theoretic foundations necessary to the study and practice of systems 
engineering” and “to explicate mathematical system theory as the basis for the 
development of models and designs of large-scale, complex systems consisting of 
personnel, machines, and software” [10]. An explicit connection between the 
concepts of T3SD and the Modeling and Simulation Framework (see Chap. 1) was 
made by Zeigler [13]. 

Wach and Salad [14] characterized this connection by representing T3SD as a 
system coupled to a simulation program as shown in Fig. 13.1. Here, inputs to the 
system come from the client, the problem, and the design team. Outputs of the 
T3SD methodology include an input/output (I/O) design specification, performance 
indexes, test plan, and system design. To provide computational support for 
determining the performance of the designed system based on the I/O specification, 
the outputs are coupled with a “simulation program” which generates behavior 
specified by an I/O relation that is evaluated by the performance indexes under the 
test plan. In effect, the simulation program transforms these inputs into a model of 
the proposed technology in virtual (as opposed to actual) form. The modeled 
technology is then fed back to T3SD for iteration toward improvements needed to 
achieve the desired performance: 
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The workflow of Fig. 13.1 underlies much effort in the systems engineering 
community in the direction of MBSE and Digital Engineering, its embodiment in 
computer support [15]. 

13.2 Mathematics: Differential Equations 

Laurent Capocchi 

The simulation programs for differential equation resolution have been used since 
the beginning of the 60’s. There are more than hundreds of them, and this is event 
difficult to have an exhaustive list and/or a classification. However, some of them 
are well known and have been described in the literature such as EMTP, ECAP, and 
NETOMAC which have been initiated in the late 60’s. Some more recent package 
such as SPICE (its adaptation to power systems) or MATLAB (its power systems 
simulator) has been successfully used for many applications. Many of them are 
adapted to simulation a model defined by sets of ordinary differential equations 
(ODE) which are related generally to continuous systems under textual or 
block-diagram representations [16]. During the last twenty years, many efforts have 
been made in order to give the user modular modeling environments with easy 
user-based interfaces for transparent and automatic simulation. Nowadays, all the 
available programs propose graphical interfaces to simplify the modeling process of 
any physical system. However, these interfaces are more and more complex and can 
only be fully exploited by experts of the studied domain. Moreover, the simulation 
algorithms proposed within the programs are mainly based on numerical integration 
methods such as Runge-Kutta, Euler, Adams, and so on. These methods are specific 
in the sense that they are all based on a classical discretization resulting in a 
discrete-time simulation model that could require much more execution time. 

An interesting modeling and simulation approach of differential equations res-
olution using a DEVS-based (Discrete EVent system Specification) graphical 
environment can be proposed. The DEVS formalism [17] has been defined thirty 
years ago to allow the specification of discrete event systems. It provides a way to 
define complex models in a hierarchical and modular way. This environment allows 
the implementation of numerical simulation algorithms based on a discretization 
which is not linked to time anymore but to space on state variables if the system is 
continuous. Many years ago, DEVS was upgraded in order to permit the modeling 
of continuous systems and two main formalisms were developed. In GDEVS 
(Generalized Discrete EVent Specification) [18], the trajectories are organized 
through piecewise polynomial segments. In the literature, the key contribution of 
GDEVS is considered as its ability to develop uniform discrete event executable 
specifications for hybrid dynamic systems. Moreover, discrete event systems 
including DEVS and GDEVS are simulated at high speed on a host computer 
because of significant changes in the system. By speaking again of ODE-efficient 
numerical simulation, another DEVS-based method called quantized systems was



proposed by Zeigler [19]. In this approach, the time discretization is replaced by the 
state quantization and a DEVS simulation model is obtained instead of a discrete 
time one. This idea was reformulated and formalized by Kofman [20] as a simu-
lation method for general ODE in where the quantized state system (QSS) method 
was defined. In [21], the author shows that from the computational cost point of 
view, the QSS method can reduce the number of iterations. Many examples like 
block-oriented DEVS simulation of a RLC circuit have been recently presented [22] 
but the configuration of the QSS integrator model is not explicit. Another example 
of the circuit simulation based on bond-graph translation was also presented [22]. In 
[23], Cellier and Kofman give a good reference and strong study of the QSS and its 
application in the domain of power systems. Recent advances concerning QSS have 
been published [24–26] and show the power of the QSS method regarding to the 
classical approach based on time quantization. 
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13.3 Mathematics: Probability 

Paul Weirich 

Physical probability and evidential probability play distinct roles in science. Con-
sider physical probability first. An example is the probability that an atom of U235 

will decay within a year. This probability depends on the physical features of the 
atom. Another example is the probability of randomly drawing a red ball from an 
urn with a mixture of red and green balls. This probability depends on the per-
centage of red balls in the urn. 

According to a frequentist interpretation, a physical probability attaches to an 
event type in a series of trials with outcomes that may belong to the event type, and 
it equals the limit of the relative frequency of the event type in outcomes of the 
trials as the number of trials goes to infinity. Hence, the physical probability of 
getting a red ball from an urn as a result of a random draw with replacement is the 
limit of the relative frequency of red balls in such random draws as their number 
goes to infinity. A rival interpretation takes a physical probability to attach to an 
event and to be the propensity of the event to happen. This physical probability, so 
interpreted, applies to a single event rather than to a type of event that may recur in 
a series of trials. It may change as factors influencing the event change. The 
physical probability of rain on a given day, taken as a propensity, changes as the 
day’s weather conditions change. It may move from 70% in the morning as clouds 
form to 100% in the afternoon as raindrops begin to fall. 

Next, consider evidential probability. The evidential probability of an event is 
relative to the evidence bearing on the event. At the beginning of a courtroom trial 
of a defendant accused of committing a crime, the probability of the defendant’s 
guilt may equal 20% given the initial evidence a jury member possesses, but at the 
end of the trial the probability of the defendant’s guilt may equal 80% given 
the jury member’s accumulated evidence. Although the evidential probability of the



defendant’s guilt varies with evidence, the physical probability of the defendant’s 
guilt remains constant throughout the trial and is either 0 or 1, depending on 
whether the defendant committed the crime. 
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According to the subjective interpretation of evidential probability, the evidential 
probability of an event is relative to a person’s evidence, and two rational people 
with the same evidence may assign different subjective probabilities to the event. 
According to the objective interpretation, the evidential probability of an event is 
relative to a body of evidence and is settled by the body of evidence. If two people 
with the same evidence attribute different evidential probabilities to the same event, 
then at least one of them is mistaken about the event’s evidential probability. 

According to all interpretations of probability, in an algebra of events proba-
bilities comply with three axioms that Kolmogoroff formulated. (1) The probability 
of every event is non-negative. (2) The probability of a tautology equals 1. (3) The 
probability that at least one of two exclusive events occurs equals the sum of the 
probability that the first event occurs and the probability that the second event 
occurs. Many theorists define the conditional probability of one event given another 
as the probability of their combination divided by the probability of the second 
event, the condition. However, some theorists take a conditional probability to be 
meaningful independently of the ratio of probabilities that this definition uses and 
hold that a conditional probability equals the ratio because of constraints on con-
ditional probabilities. 

For additional information about these topics, the interested reader is referred to 
the articles [27–31]. 

13.4 Mathematics: Frequently Used Distributions 
in Simulation and Their Characteristics 
and Applications 

Mohammad S. Obaidat, Balqies Sadoun 

Abstract 
Probability distributions are usually proper way to describe real quantities as there 
is variability in almost any value that can be measured in a system. Furthermore, 
almost all quantities are made with some inherent error. 

In general, a probability distribution is termed discrete if its cumulative distri-
bution function only raises in leaps. It is termed continuous if its cumulative dis-
tribution function is continuous. Many probability distributions have been exploited 
in various applications. Among the popular and most often used distributions/ 
variates are the exponential distribution, normal/Gaussian distribution, Erlang dis-
tribution, Weibull distribution, Poisson distribution, geometric distribution, and 
binomial distribution. In this section, we present main characteristics and applica-
tions, the description, and the properties of the probability distributions that are



This distribution is very popular in many applications. It establishes a specific
essential class of continuous probability distribution [32–37] as it can be employed
to model countless systems. The general form of the probability density function
(pdf) of an exponential distribution has the form given below:

widely used in modeling and simulation, especially in modeling and simulation 
computer and network systems. 
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Probability distributions/variates allow the simulationist to use the right distri-
bution to represent an event or a process based on historical valid experience as this 
will save a lot of effort and time. The key practical utilizations of the probability 
distributions/variates include: 

1 To allow simulation analysis using pseudo-random numbers produced from a 
particular variate. 

2 To establish a rational distributional model for the process or phenomenon 
under study. 

3 To calculate confidence intervals for parameters and outline crucial areas for 
hypothesis analyses. 

13.4.1 Exponential Distribution 

f t; kð Þ  ¼  ke
-kt; t . 0 

0; t . 0

{
where k[ 0 is a parameter of the distribution, usually called the rate parameter. 
This distribution is defined in the interval 0 to 1. If X is a random variable that is
exponentially distributed, then the Cumulative Distribution Function (CDF) is the
integration of pdf and is given by:

F x; kð Þ  ¼ 1- ke-kt; x . 0 
0; x . 0 :

{
Fig. 13.2 depicts the pdf ðfðxÞ and the CDFðFðxÞ for the exponential distribution 

for various values of the parameter k. This distribution is regularly used to model 
the time between independent events that occur at a constant mean rate. It can be 
used to model systems, processes, and phenomena where an element, initially in 
state so, then moves to state s, at time t, with an unceasing probability per unit time 
k. Thus, the integral from 0 to t of the exponential distribution function is the 
probability that the system is in state s at time t. In practical scenarios, the 
hypothesis that k is constant is hardly met, but in different condition k can be 
supposed constant in an interval of time. For instance, the frequency of incoming 
telephone calls varies based on the time of day, however, if we concentrate on a 
time interval in which the rate is nearly constant, like around a peak hour, then 
exponential distribution may be considered as a reasonable estimated model for the 
time until the subsequent call comes.



Fig. 13.2 Probability density function and cumulative distribution function of the exponential
distribution 
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In general, exponential variates may be considered to model the times between 
customers entering the system, nevertheless, the interval of a process that can be 
considered as a series of several autonomous tasks is better be modeled by a 
variable obeying the sum of a quite a few independent exponentially distributed 
variables. Furthermore, exponential distribution is suitable for reliability studies as 
it is very easy to augment failure rates in a reliability paradigm. However, the 
exponential distribution is not appropriate to model the total lifetime of systems as 
“failure rates” are not constant. Besides, more failures are expected to occur at the 
start and end of life phase of a system. 

Key Properties of Exponential Distributed Variables 
The expected value and variance of an exponentially distributed random variable X 
with rate parameter k are given as follows: 

E Xð Þ  ¼  
Z1 

0 

e-yt dt ¼ 
1 
k 
; and 

V Xð Þ  ¼  r2 Xð Þ  ¼  
Z1 

0 

e-yt - 1 
k

( )2 

dt ¼ 
1 

k2 

One key feature of the exponential distribution is that its memoryless, which fully 
characterizes the exponential distribution. This means that if a random variable X 
is exponentially distributed, then its conditional probability obeys the following 
relation: 

PðX [ s þ t j X [ sÞ ¼  PðX [ tÞ; for all s; t . 0



where X measures the time to wait until the first arrival of a customer such as a 
packet in a computer system or telecommunication network and s and t represent 
real numbers. 
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The reverse cumulative distribution function (or quantile function) for the 
exponential variate with parameter p; k is given by: 

F-1 p; kð Þ  ¼ -ln 1- pð Þ  
k 

; for p 2 0; 1½ ½  

Suppose that we know that a particular variable X is exponentially distributed, 
then the likelihood function for k, given an independent and identically distributed 
sample x ¼ x1; . . .; xnð Þ  obtained from variable X, is given by: 

L kð Þ  ¼  
Yn 
j¼1 

ke-kxj ¼ kn e-k x1 þ ... þ xnð Þ  

¼ kn e-knx 

Here, x is the sample average given by x ¼ 1 
n1 j n 

P
j.. . 

13.4.2 Normal (Gaussian) Distribution 

The normal or Gaussian distribution is a very popular distribution with many 
applications in various domains including Electrical Engineering, Computer 
Engineering, and Science as well as Business Administration and Operation 
Research. 

The normal distribution is a two-parameter family of curves. The first parameter, 
denoted by l, is the average/mean and the second parameter, designated by r, is the 
standard deviation. 

The probability density function (pdf) of the normal distribution is given below 
[32]: 

f ðx; l; kÞ ¼ 1--------
2pr

p e-ðx-lÞ2 =2r2 

1p -x2=2The Gaussian function uðxÞ ¼  ----
2p 
e is the density function of the “stan-

dard” normal distribution; the normal distribution with parameters l ¼ 0 andr ¼ 1. 
One of the major applications of the normal distribution is to use it as a con-

tinuous estimate to the binomial distribution via the central limit theorem, which 
asserts that the sum of independent samples from any distribution with finite mean 
and variance congregates to the normal distribution as the sample size grows to 
infinity.



The Cumulative Distributive Function ðCDFÞ is given as shown below:

Here, GerðxÞ cannot be evaluated in a closed form in terms of elementary functions
[32–36]; however, it can be expressed in a Taylor series as given below:

Fig. 13.3 Probability density function and cumulative distribution function of the normal
distribution 
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F x; l; rð Þ  ¼ 1------
2p

p
r 

Zx
-1 

e-ðt-lÞ2 =2r2 dt 

¼ U 
x- l 
2r

( )
where ðxÞ is the cumulative distribution function of the standard normal distri-U 
bution (or Fðx; 0; 1ÞÞ (Fig. 13.3) 

Fðx; 0; 1Þ ¼  
1------
2p

p 
Zx
-1 

e-t2=2 dtt 

The standard normal cumulative distribution function can be conveyed in terms 
of the Gaussian error function that we signify by Ger (–): 

UðxÞ ¼  1 
2 

1 þ Ger x---
2

p
( )( )

: 

Function Ger(−) is defined by: 

GerðxÞ  ¼  2---
p

p 
Z1 

0 

e-t2 dt 



X
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GerðxÞ ¼  2---
p

p 
1 

n¼0 

ð-1Þn 
2n þ 1 

. x
2n þ 1 

n! 

Here, the Taylor series converges for every real number x. 
Normal distribution has many applications especially modeling errors of any 

type. 
The inverse standard normal cumulative distribution function, or quantile 

function, can be conveyed in terms of the inverse Gaussian error function 
U-1ðyÞ ¼  

---
2

p 
Ger-1ð2y- 1Þ. In other words, the inverse cumulative distribution 

function can be expressed as: 

F-1 y; l; rð Þ  ¼  lþ r 
---
2 

p 
Ger-1 2y- 1ð Þ: 

The moment generating function is delineated as the expected value of etx, 
anywhere this expectation exists. The moment generating function of the normal 
distribution can be given by: 

E etxð Þ  ¼  
Z1
-1 

1------
2p

p
r 
e-ðx-lÞ2 =2r2 etx dx ¼ elt þðrÞ2 =2 : 

As the moment generating function occurs in an interval around t ¼ 0, and 
E etxð Þ  ¼  1 þP1 

j¼1t 
jmj then the nth moment is given by: 

dðnÞE etxð Þ  
dtn

|||||
t¼0 

: 

In order to use statistical parameters such as average/mean and standard devi-
ation reliably, it is essential to have good estimators of them. Here, the 
maximum-likelihood estimates (MLEs) offer one such estimator, nevertheless, an 
MLE may be biased, which means that the expected value of the parameter might 
not be equal to this parameter. Thus, an impartial estimator that is commonly used 
to assess the parameters of normal distribution is the minimum variance unbiased 
estimator (MVUE). The MVUEs of parameters l and r2 for the normal distribution 
are the sample average and variance. 

Assume that X1; ::; Xn are independent and normally distributed random vari-
ables with mean l and variance r2. The observed values of these random variables 
form a sample from a normally distributed population. This is used to estimate the 
population mean l and the population standard deviation r. The joint probability 
density function of X1; ::; Xn is given by: 

f X1; . . .; Xn; l; rð Þ  ¼  a 

rn 
Yn 
i¼1 

e- xi-lð Þ2 =2r2



P

!
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The prospect function LðX1; ::; XnÞ is proportional to: 

r-n e
-
Pn 
i¼1 

xi-lð Þ2 
2r2 

: 

P
The likelihood function is a growing function when the sum n 2 

i 1 ð Þxi - x
diminishes. Then, the maximum likelihood is minimal when this sum in

¼
minimal.

Let x be defined by:

x ¼ 
1 
n 

Xn 

i¼1 
xi 

which is the sample mean. 
Therefore, the sum n 

i¼1 xi - xð Þ2 is minimized by l ¼ x; that is the 
maximum-likelihood estimate of l. Next, we substitute x in the likelihood function. 
The value of r that maximizes the resulting expression is obtained using the log-
arithm of the likelihood function, and we have: 

l rð Þ  ¼  log L x; rð Þ  ¼  cte þ - n log r-
Xn 
j¼1 

xi - xð Þ2
 !

=2r2 :

 

By applying the derivative to l we obtain: 

dl rð  Þ  
dr 

¼ -n 

r 
þ 

1 
r3 
Xn 
j¼1 

xi - xð Þ2 ¼ -n 

r3 
r2 - 1 

n 

Xn 
j¼1 

xi - xð Þ2
 

: 

2 1 
Pn 2 Obviously, it is maximized when r ¼ n j¼1 xi - xð Þ  . Consequently, the 

computed value is maximum-likelihood estimate of r2, and its square root is the 
maximum-likelihood estimate of r. This estimator is biased because, if: 

S2 ¼ 1 
n 

Xn 
i¼1 

Xi - X
( )2 

; where X ¼ 1 
n 

Xn 
i¼1 

Xi 

Then 

E S2
( ) ¼ n- 1 

n 
r2 

(a) Impartial estimation of parameters: Because the maximum-likelihood estimator 
of the population mean l from a sample is an unbiased estimator of the mean, the 
estimator given below is employed. 

S2 ¼ 1 
n- 1 

Xn 
i¼1 

Xi - X
( )2 

2So, this is an unbiased estimator of variance r .



It is a one parameter discrete distribution that selects non-negative integer
quantities [32–35]. The probability that there are correctly k events is specified by
Poisson probability distribution function:
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13.4.3 Poisson Distribution 

Poisson distribution is a popular discrete probability distribution. One known 
characteristic of Poisson distribution is that its mean is equal to its variance. It is 
called after the famous French mathematician Siméon Poisson. It expresses the 
probability of a number X of events occurring in a fixed period of time if these 
events occur with a known average rate and are independent of the time since the 
last event. The Poisson distribution was discovered by Poisson in 1837 when 
estimating formulas for the binomial distribution considering that the number of 
trials is high, and the probability of success is little. 

f k; kð Þ  ¼  kk e-k 

k! 
; 

Here, is a positive real number that is equal to expected value (mean) and itsk 
variate. 

Fig. 13.4 shows the Poisson distribution function for different values of Lambda, 
k. The expected value of X is given by the expression shown below: 

EðXÞ ¼  
X1 

k¼0 

k 
kk e-k 

k! 
¼ ke-k 

X1 

k¼0 

kk 

k! 
¼ ke-k ek ¼ k 

Fig. 13.4 Illustration of Poisson distribution function for different values of Lambda, k



If k is the average number of occurrences per unit time and Nt is the number of
occurrences before time t, then we can write:
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Furthermore, as indicated earlier, the parameter k is not only the mean number of 
occurrences of events, but also its variance, hence, the number of perceived 
occurrences varies about its mean k with a standard deviation value of 

---
k

p 
. Such 

fluctuations are often called the Poisson noise. 
Thus, as the size of the numbers in a specific sample of Poisson random numbers 

becomes larger, the variability of the numbers will increase as well. 
The Poisson distribution has the following main features: (a) Poisson distribution 

is a discrete distribution, (b) the occurrences in every interval can stretch from zero 
to infinity, (c) it portrays discrete occurrences over an interval, ðdÞ the average 
number of occurrences, E(x), must be constant during the experiment, (e) every 
occurrence is not dependent of the other, (f) it describes the distribution of rare 
events, and ðgÞ the binomial distribution can be approximated by Poisson distri-
bution as n ! 1; p ! 0 and np stays constant; hence, a Poisson distribution with 
k ¼ np strongly estimates the binomial distribution if n is big and p is little. This 
distribution can be used to represent the distribution of uncommon events in a big 
population. It is appropriate for purposes that encompass totaling the number of 
times a random event transpires in a given period of time, distance, and area, among 
others. 

Here are some examples where Poisson distribution can be used: (a) number of 
viruses that can corrupt a system tied to a network or other systems during a unit of 
time, (b) number of times a web server is reached per unit time, (c) number of 
telephone calls at a call center per unit time, (d) number of data packets arriving to a 
switch per unit time, and (e) number of customers arrive to Hypermart per unit time. 

Poisson distribution has special relation with exponential distribution and 
binomial distribution as explained below: 

If the number of counts/arrivals follows the Poisson distribution, then the 
interval time between individual counts follows the exponential distribution. Thus, 
the Poisson distribution deals with the number of arrival events in a fixed period of 
time, and the exponential distribution deals with the time between occurrences of 
successive events as time flows by continuously. 

Poisson distribution is a special case of the binomial distribution as the number 
of trials, N, is large n and the expected number of successes remains fixed and 
small. Thus, the Poisson distribution is employed as an estimate of the binomial if n 
is substantial and p is little. 

P Nt ¼ kð Þ  ¼  f ðk; ktÞ ¼  ðktÞ
k e-kt 

k! 
: 

Here, the waiting time X until the first event/occurrence is a continuous random 
variable with an exponential distribution (with parameter k); hence, the probability 
distribution for X can be expressed as follows:



P X  [ tð Þ  ¼  P Nt ¼ 0ð Þ  ¼  e-kt : 

If random variables Xi; i ¼ 1; . . .; n follow a Poisson distribution with parameter 
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ki and Xi are independent, then the sum S ¼ 
Pn 

i¼1Xi also follows a Poisson dis-
tribution whose parameter is the sum given by: k ¼ 

Pn 
i¼1ki. 

The moment generating function of the Poisson distribution with expected value 
k is expressed as follows: 

E etX
( ) ¼ 

X1 

k¼0 

etX f ðk; kÞ ¼  
X1 

k¼1 

etk 
kk e-k 

k! 
¼ ek et-1ð Þ: 

Given a sample of n measured values ki. To approximate the value of the 
parameter k of the Poisson population from which the sample was obtained, we can 
form the log-likelihood function as follows: 

L kð Þ  ¼  logð
Yn 
i¼1 

f ki; kð ÞÞ  

¼ 
Xn 
i¼1 

log f ki; kð Þð Þ  ¼  
Xn 
i¼1 

log 
e-kkki 

ki!

( )

¼ -nk þ log kð Þ  
Xn 
i¼1 

ki

 !
-
Xn 
i¼1 

log ki!ð Þ: 

In order to compute a maximum, we can find the derivative of function L, with 
respect to k, and equate it to zero. This gives us: 

dLðkÞ 
dk 

¼ -n þ 1 
k 

Xn 
i¼1 

ki ¼ 0 

bThus, by solving for k, we get the maximum-likelihood k estimate of k using: 

bk ¼ 1 
n 

Xn 
i¼1 

ki: 

In general, the Poisson distribution is a means that helps to forecast the probability 
of particular events from occurring when you know how frequently the event has 
happened. It provides us the probability of a specified number of events occurring in a 
fixed interval of time. It is valid only for integers on the horizontal axis.



The standard uniform distribution is a special case of the Beta distribution,
obtained by setting both of its parameters to 0 and 1, respectively. The Cumulative
Distribution Function (CDF) of the uniform distribution is expressed by:

Among the key characteristics of the discrete uniform distribution is that if a
random variable has n possible values k1; . . .; kn that are equally possible, then it has
a discrete uniform distribution. Thus, the probability of any outcome ki is 1=n. CDF
of a discrete uniform distribution is expressed by:

g
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13.4.4 Uniform Distribution 

The uniform distribution is a discrete distribution that has a constant probability 
distribution function between two parameters, called the minimum and the maxi-
mum, a and b, respectively. 

It signifies a type of distribution in which all outcomes are similarly probable; 
every variable has the equal probability that it will be the result. 

Fðx; a; bÞ ¼  x- a 

b- a 
v½a;b]ðxÞ 

Here, is the function defined by: ðxÞ ¼  1 () x 2 ½a; b].v½a;b] v½a;b] 

F x; nð Þ  ¼  
1 
n 
v k1;...;knf gðxÞ 

Here, is the function defined by: ðxÞ ¼  1 () X 2v k1;::knf g v k1;:;knf g  
k1; k2; ::; kn-1; knf g: Figure 13.5 shows an example of cumulative distribution 

function (CDF), F, with 10 values given by k1 ¼ 0; k2 ¼ 1; ::; k9 ¼ 8; k10 ¼ 9f . 
Here, CDF or F, is given by: 

Fðx; 10Þ ¼  
i 

10 
; x 2 ½i- 1; i½ 

One common example of the discrete uniform distribution is tossing a fair die. 
The probable values of outcome k are 1; 2; 3; 4; 5, and 6. Every time the die is 
thrown, the probability of a given score is 1=6. 

Fig. 13.5 Cumulative Distribution Function (CFDF) of a discrete uniform distribution



a ¼ lower limit, b ¼ upper limit, where b[ a.
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This distribution (discrete uniform distribution) can be used to represent random 
occurrence with several possible outcomes. 

As for the continuous uniform distribution, it is one of the easiest distributions to 
use. It is often used if a random variable is confined, and no additional information 
is available. Examples include (a) distance between source and destination of 
message on a computer communication network, (b) seek time on a disk of a 
computer system, (c) time taken for process to be performed as there are an infinite 
number of possible times that can be taken, and (d) an individual has an equal 
probability of drawing a spade, a heart, a club, or a diamond in card dock. 

Note that an idealized random number generator is represented by continuous 
uniform distribution 

In order to generate Uða; bÞ, generate u ~ Uð0; 1Þ and return a ¼ ðb- aÞu. 
The key parameters for this distribution are: 

13.4.5 Multinomial Distribution 

The binomial distribution that has parameters n; p, and k is the distribution of the 
random variable X, which counts the number of occurrences that happen when n 
successive data packets are received in a computer network (or a coin is thrown n 
times), supposing that for any packet, the probability that the packet includes an 
error (or a head occurs in the case of coin tossing) is p. Here, the distribution 
function is given by the following formula: 

PðX ¼ kÞ ¼  bðn; p; kÞ ¼ n 
k

( )
pkð1- pÞn-k 

An easy computation reveals that the expected value (mean) and variance of X 
are equal to np and np(1 − p), respectively. 

Binomial distribution is basically a special case of multinomial distribution. The 
multinomial distribution is the probability distribution of the number of “successes” 
in n independent Bernoulli trials, where every trial resulting in one of specific fixed 
finite number k of possible outcomes happening with probabilities p1; . . .; pk, and 
there are n independent tests. If Xi represents the number of times an outcome 
number i was observed over the n trials, then the multinomial distribution X can be 
stated as the distribution of the vector X1; ::; Xnð Þ  [1,5]. These probabilities can be 
expressed as follow: 

P X  ¼ k1; ::; knð Þð Þ  ¼  P X1 ¼ k1; ::; Xn ¼ knð ÞÞ  

¼ 
n! 

k1!:kn! 

Qn 
j¼1 

p 
kj 
j ; if 

Pn 
j¼1 

kj ¼ n 

0; otherwise 

8<: :



Once computing PðX ¼ kÞ, one can affirm that:

bðn;p;k-1Þ kð1-pÞ k

P X 1 ke-k and P X k kk

k! e
-k, for large values of n:

The log-normal distribution has the following probability density function, pdf:
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Now, every component Xj; j 2 f1; ::; ng of random variable X separately has a 
binomial distribution with parameters n and pj, and has a mean (expected value) 
equals to npj and a variance equals to npj 1- pj

( )
. Thus, due to the constraint that 

the sum of the components is n, then variables are correlated. Here, the covariance 
matrix Covi;j

{ }
i;j . n is described by: (a) the off diagonal quantities are expressed by 

Covi;j ¼ cov Xi; Xj

( ) ¼ -npipj; i 6¼ j, and (b) the elements of the diagonal are 
expressed by Covi;i ¼ var Xið Þ  ¼ -npi 1- pj

( )
. 

It is recognized that the Poisson distribution can be employed as an estimate of 
the binomial distribution when the parameter n is big and p is little. Thus, let us 
consider a random variable X having a binomial distribution with factors n and p. If  
we let X count the occurrences of an event in an assumed interval, we can notice kt 
happenings of an event in a time interval of length t. Thus, if this time interval is 
allotted into n small intervals, then we must have kt ¼ np. 

Consequently, we have: p ¼ kt n . 

PðX ¼ 0Þ ¼  bðn; p; 0Þ ¼ ð1- pÞn ¼ 1- k 
n

( )n 

bðn;p;kÞ k-ðk-1Þp k¼ ffi , for large n (and, therefore, little values of pÞ 
ð ¼ Þ ~~ ð ¼ Þ ~~  

As a consequence, one can infer that when n is large, the distribution of X is the 
Poisson distribution. The multinomial distribution is used to discover probabilities 
in experiments where there are more than two products. 

13.4.6 Log-Normal Distribution 

A log-normal or Galton distribution is basically a probability distribution with a 
normally distributed logarithm. In general, we say that a random variable is log-
normally distributed if its logarithm is normally distributed. Thus, if X is a random 
variable with a normal distribution, then the random variable eX has a log-normal 
distribution. This definition is articulate as loga X is normally distributed if and only 
if logb X is normally distributed. 

f ðx; l; rÞ ¼ 1 

r 
------
2p

p 
x 
e-ðlogx-lÞ2 =2r2 ; x [ 0 

Here, log X is to base e or Ln x. The expected value and the standard deviation ofe 

X are given by:



( )

It is a continuous distribution, and its probability density function, pdf, can be
given as below:

EðXÞ ¼  el þr2=2 ; and r2ðXÞ ¼  er2 - 1 e2l þr2 : 

More generally, the kth moment, k. 2, is given by: 
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mkðXÞ ¼  ekl þ k2 r2=2 : 

In order to provide the greatest possibility estimators of the log-normal distri-
bution parameters l and r, we basically can use the approach applied to the normal 
distribution. Else, we can observe that the density function f L of the log-normal 
distribution and the normal distribution, f N , are related by the expression below: 

fL x; l; rð Þ  ¼  1 
x 
fN log x; l; rð Þ  

This, we can write the log-likelihood function lLðl; rÞ using the log-likelihood 
function lNðl; rÞ as shown below: 

lL l; rð Þ  ¼  
X 
k . n 

log xkð Þþ  lN l; rð Þ: 

As the first term is the expression right side is constant with respect to l andr, 
thus, the logarithmic likelihood functions lLðl; rÞ and lNðl; rÞ reach their extreme 
values with the same values of factors l and r. Thus, the expressions for the normal 
distribution maximum-likelihood parameter estimators, that we have previously 
established, can be employed to infer that: 

bl ¼ 
1 
n 

X 
k . n 

log xkð Þ  and br2 ¼ 
1 
n 

X 
k . n 

log xkð Þ - blð Þ: 

13.4.7 Weibull Distribution 

The Weibull distribution is called after its inventor, Waloddi Weibull. It is being 
used in many applications especially reliability engineering due to its flexibility and 
relative cleanness. It is considered as one among the most popular statistical model 
for life data. Moreover, it is used in many other applications including weather 
prediction and for fitting data of all types. It can be utilized for traffic engineering 
analysis with smaller sample sizes. 

f x; k; kð Þ  ¼  
k 
k 

x 
k

( )k-1 
e-ðx=kÞk ; x . 0; k [ 0 
0; x\0

{



k

Fig. 13.6 Probability density function and cumulative distribution function of the Weibull
distribution 

Here, k [ 0 is called the shape parameter and k [ 0 is called the scale parameter of 
the distribution [38]. 
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The Cumulative Distribution Function (CDF) of this distribution is given by: 

F x; k; kð Þ  ¼  1- e-ðx=kÞk ; x . 0; k [ 0 
0; x\0

{
It is interesting to note that when k ¼ 1, then the Weibull distribution becomes 

Exponential. Obviously, the exponential distribution is a particular case of Weibull 
distribution. Figure 13.6 shows the pdf and CDF of Weibull distribution for dif-
ferent values of the parameters k and k. 

An important quantity called failure rate in the Weibull distribution is defined by 
kxk-1 

kk 
. Here, we have three circumstances that can occur: (a) If k\1, then the failure 

rate decreases over time, (b) if k ¼ 1, then the failure rate is constant over time and 
the distribution turns out to be exponential, and ðcÞ if k [ 1, then the failure rate 
increases over time. 

In order to show why this definition is made, let us recall that, if f ðtÞ and FðtÞ are 
a probability density function (pdf) and its Cumulative Distribution Function 
(CDF) of t, then the failure rate is given by: 

h fð Þ  tð Þ  ¼  f tð Þ  
1- F tð Þ  

: 

By substituting pdf and CDF, the exponential distribution for f ðtÞ and FðtÞ 
above produces exactly kx

k-1 

k . 
The Weibull distribution is frequently used to imitate the behavior of other 

statistical distributions like the normal and the exponential. Among its main 
applications are reliability and lifetime modeling. In general, it is suitable to use it to 
model random failures and multiple source failures, as well as to model the valuable 
life of products.
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Weibull distributions also can be utilized: (a) to model channel fading since the 
Weibull fading model appears to reveal good fit to experimental fading channel 
measurements, (b) to model the scattering of the received signals level created in 
radar systems, (c) to generate statistical model in reliability engineering and 
breakdown analysis, (d) to describe manufacturing and transfer times in industrial 
engineering problems, and (e) to represent wind speed distributions and weather 
predicting models. 

This distribution is tightly related the Gamma distribution/function. For instance, 
we can note that the expected value, nth moment, and standard deviation of random 
variable X having a Weibull distribution are given by expressions below: 

r2ðXÞ ¼  k2 . C 1 þ 2 
k

( )
; 

EðXÞ ¼  k . C 1 þ 
1 
k

( )
; and 

mn ¼ kn . C 1 þ 
n( )

; respectively: 
k 

13.4.8 Pareto Distribution 

This distribution is called after Vilfredo Pareto who is an Italian economist/ 
engineer/sociologist; it is popular in applications in the domain of traditional sci-
ence, social science, and geography, among others. It can be applied to many 
situations in communication. 

And it is very popular to represent distribution of income in the society. 
In general, Pareto distribution can also be applied to many situations in which 

equilibrium can be found using the distribution. The following examples represent 
classical examples that sometimes seen as approximately Pareto-distributed: 
occurrences of words in lengthy texts, file size distribution of communication 
traffic, and the standardized price returns on individual stocks [32]. 

If X is a random variable, we say it has a Pareto distribution if there are a positive 
parameter/factor “k” and a positive real value “a” such that the probability that X is 
greater than some number x is expressed by: 

P X  [ xð Þ  ¼  a 

x

( )k 
; x . a: 

The probability density function, pdf, of Pareto distribution is expressed by: 

f ðx; k; aÞ ¼  k 
ak 

xk þ 1 ; x . a; k [ 0:
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Fig. 13.7 Pareto probability density function (pdf) and its cumulative distribution function (CDF) 

Pareto distribution is considered a continuous distribution. The expected value 
and variance (if k\1) of a random variable X following a Pareto distribution are 
expressed as follows: 

EðXÞ ¼  
ka 

k - 1 
; and r2ðXÞ ¼ k 

k - 2 
a 

k - 1

( )2 
; k\1: 

Further, the nth moment of a Pareto random variate, X, is expressed by: 

mnðXÞ ¼  
kan 

k - n 
: 

Here, the moments are only described for k n, which means that the moment[ 
generating function, which is just a Taylor series, is not well defined. (Fig. 13.7) 

Given a sample x ¼ x1; ::; xnð Þ  of a Pareto distribution, the likelihood function 
Lðk; aÞ for parameters k and a is expressed by: 

Lðk; aÞ ¼  
Yn 
i¼1 

k 
ak 

xk i 
¼ kn akn 

Yn 
i¼1 

1 

xk þ 1 
i 

Applying the logarithm function to Lðk; aÞ, the logarithmic likelihood function is 
given by: 

lðk; aÞ ¼  logðLðk; aÞÞ ¼ nlogðkÞþ  nklogðaÞ - ðk þ 1Þ
Xn 
i¼1 

log xið Þ: 

It can be noticed that the function logðLðk; aÞÞ is monotonically increasing with 
respect to parameter a. Since xi 2 ½a; 1½ for every 1 . i. n, we can conclude that 
the least xi gives an estimation of parameter a (i.e., â ¼ mini xi). To find the 
estimator for k, we calculate the partial derivative with respect to k and equate it to 
zero as demonstrated below:



@lðk; aÞ 
@k

¼ 1 
k 
þ nlogðaÞ -

Xn 
i¼1 

log xið Þ  ¼  0: 

Consequently, the maximum-likelihood estimator for k is expressed as follows: 
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k̂ ¼ 1=logðaÞ -
Xn 
i¼1 

log xið Þ: 

The generalized Pareto distribution permits a continuous range of potential 
shapes that include the Pareto and Exponential distributions. Here, the probability 
density function, pdf, for the generalized Pareto distribution has three parameters: 
shape parameters k, location parameters l, and scale parameter r. The probability 
density function, pdf, can be expressed as follows: 

f ðx; k; l; rÞ ¼  1 
r 

1 þ k x- l 
r

( ) -1-1 
kð Þ
: 

The Cumulative Distribution Function, CDF, can be expressed as follows: 

F x; k; l; rð Þ  ¼  1- 1 þ k x- l 
r

( ) -1 
kð Þ
; for x . l and x . l- r 

k 
ðif k\0Þ 

Here, when k comes near 0, pdf can be given by: 

gðx; l; rÞ ¼  
1 
r 
e-

x-l 
r 

Clearly, the generalized Pareto distribution is equivalent to the exponential 
distribution. 

13.4.9 Geometric Distribution 

The Geometric distribution is a discrete distribution, described on the non-negative 
integers. It is considered as an oversimplification of together the exponential and 
chi-squared distributions. Like the exponential distribution, it is employed for a 
state-of-the-art model of waiting times. It is useful for modeling the runs of repeated 
successes (or failures) in recurrent independent trials of a system. The geometric 
distribution models the number of successes prior to one failure in an independent 
sequence of tests where each test leads to success or failure. Again, it is considered 
a special case of the negative binomial distribution and deals with quantity of trials 
necessary for a single success; hence, the geometric distribution is a negative 
binomial distribution in which the number of successes (r) is equal to 1:



the variance is r2ðX 1-pÞ ¼ p : The Cumulative Distribution Function, CDF, is given
by:
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The geometric distribution probability distribution function, pdf, is usually given 
by the expression: 

f ðk; pÞ ¼  pð1- pÞk 

The expected value of a geometrically distributed random variable X is 1=p and 

Fðk; pÞ  ¼  PðX [ kÞ ¼  1- ð1- pÞk 

Here, the parameter p can be estimated by equating the expected value with the 
sample mean. Thus, if we let k1; ::; kn be a sample such that ki [ 1; i . 1, then p can 
be estimated by: 

p̂ ¼ 1 
n 

Xn 
i¼1 

ki

 !-1 

The use of geometric distribution is imperative in the theory of waiting queues. It 
is frequently assumed that, in each small time slot, either 0 or 1 a new packet arrives 
to the switch. The probability that a customer/packet arrives is p and that no 
packet/customer arrives is q ¼ 1- p. Then, the time X till the following arrival has 
a geometric distribution. The probability that no customer arrives in the next n time 
slots is given by PðX [ nÞ and it is expressed as follows: 

PðX [ nÞ ¼  
X1 

j¼n þ 1 
pqj-1 ¼ qn p 

X 
j . 0 

q j ¼ qn 

Similar to the exponential distribution, the geometric distribution is the property 
of memoryless, which means that if an experiment is duplicated until the first 
success, then, given that the first success has not yet occurred, the conditional 
probability distribution of the number of further experiments is not contingent on 
how many failures have been experienced. For instance, a die that one through does 
not have a `̀ memory'' of the failures seen. The memoryless property in this context 
can be stated as shown mathematically below: 

PðX [ i þ j j X [ iÞ ¼  
PðfX [ i þ jg\ fX [ igÞ 

PðX [ iÞ ¼ 
PðX [ i þ jÞ 
PðX [ iÞ 

¼ 
ð1- pÞi þ j 

ð1- pÞi ¼ ð1- pÞ j ¼ PðX [ jÞ: 

The geometric distribution Y is a special case of the negative binomial 
distribution with r ¼ 1. More precisely, if X1; . . .; Xn are independent geometri-
cally distributed random variables with parameter p, then the random variable 
Y ¼ 

Pn 
j¼1Xj obeys a negative binomial distribution with parameters r and p.



The probability density function, pdf, of the gamma distribution can be
expressed using the gamma function C:

The Cumulative Distribution Function, CDF, of the gamma distribution can be
expressed in terms of the gamma function C:
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Conversely, let us consider r and k such that 0\r\1 and 0\k . n, then the 
random variable Xk has a Poisson distribution with expected value equals rk=k. 
Here, the finite sum: Y ¼ 

Pn 
j¼1jXj has a geometric distribution choosing values in 

the set of ordinary integers, N, with mean equals r= ð1- rÞ. 

13.4.10 Gamma Distribution 

The Gamma distribution is a family of continuous probability distributions 
described by two parameters that represent the sum of k exponentially distributed 
random variables, each of which has a mean l. 

The gamma distribution is used in reliability work to match failure data, as it is 
appropriately flexible to manage decreasing, stable, and rising failure rates; how-
ever, the Weibull distribution is more commonly used. 

f ðx; a; bÞ ¼ 1 
ba CðaÞ x

a-1 e-
x 
b; x [ 0; a [ 0; b [ 0 

where a is termed the shape parameter and b is termed the scale parameter of the 
gamma distribution. 

The gamma distribution can be employed to model the time till the next n events 
happen. The Geometric distribution emerges in machine learning as the `̀ conjugate 
prior'' to a duo distribution. 

The gamma function is expressed by: 

CðaÞ ¼  
Z1 

0 

ta-1 e-t dt: 

Otherwise, another parameterization of the gamma distribution can be used in 
terms of the shape parameter and a parameter b, called the rate parameter, expressed 
by b ¼ 1=b. The two parameterizations are commonly used. Their use is dependent 
on the nature of the problem to be modeled. 

Fðx; a; bÞ  ¼  
Zx 
0 

f ðt; a; bÞdt ¼ 
c a; x b
( )
CðaÞ



Here, the incomplete gamma function c [1, 5] is defined by:

Þ

Fig. 13.8 Probability density function and cumulative distribution function of the Gamma
distribution 

336 B. P. Zeigler et al.

cða; xÞ ¼  
Zx 
0 

ta-1 e-t dt: 

R1 a-1 -twhere CðaÞ ¼  cða; xÞþ  x t e dt; x [ 0. (Fig. 13.8) 
If N is an independent and identically distributed random observations 

x1; ::; xnð Þ, then the likelihood function related with these observations can be 
expressed by: 

L a; bð Þ  ¼  
YN 
i¼1 

f xi; a; bð Þ: 

By calculating the logarithm of Lða; bÞ, we can get the log-likelihood function 
lða; bÞ as given below: 

l a; bð Þ  ¼  log L a; bð Þð Þ  ¼  a- 1ð Þ
XN 
i¼1 

log xið Þ -
XN 
i¼1 

xi 
b
- Nðalog ðbÞ - log CðaÞð : 

Thus, by deducting the partial derivative of lða; bÞ, with respect to b, and 
equating it to zero, we can obtain the maximum-likelihood estimate b̂ of the b 
parameter. A straightforward computation gives: 

b̂ ¼ 
1 
aN 

XN 
i¼1 

xi:



Þ

The inverse Gamma distribution is a continuous probability distribution of the
reciprocal of a variable distributed according to the gamma distribution. It is used
often in Bayesian statistics. It is a two-parameter family of continuous probability
distribution that represents the multiplicative inverse of the gamma distribution. The
inverse gamma distribution's probability density is expressed over the subset of
positive real numbers as follows

Cumulative Distribution Function, CDF, is expressed by:
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Then by substitution into the log-likelihood function, we can obtain: 

l a; b̂
( ) ¼ a- 1ð Þ

XN 
i¼1 

log xið Þ -
XN 
i¼1 

xi 
b
- N a- alog 

PN 
i¼1 xi 
an

 !
- log CðaÞð :

 

^
( )

This, the maximum of l a; b with respect to a is found by taking the derivative 
and setting it equal to zero, which gives us: 

logðaÞ - C0ðaÞ 
CðaÞ ¼ log 1 

n 

XN 
i¼1 

xi

 !
- 1 
n 

XN 
i¼1 

log xið Þ: 

The above expression does not have a closed-form solution as a function of a; 
hence, a numerical solution can be found using, for example, the Network's method 
and beginning with an initial value for a that can be found by using the approxi-
mation given below: 

logðaÞ - C0ðaÞ 
CðaÞ ~~ 1 

2k 
þ 1 

12k þ 2 
: 

Consequently, a can be estimated as follows: 

a ~~ 
3- s þ 

----------------------------
ðs- 3Þ2 þ 24s

q 
12s 

; Where s ¼ log 1 
n 

XN 
i¼1 

xi

 !
- 1 
n 

XN 
i¼1 

log xið Þ: 

13.4.11 Inverse Gamma Distribution 

gðx; a; bÞ ¼  b
a 

CðaÞ x
-a-1 e-

-b 
x ; x [ 0; a [ 0; b [ 0 

Here, a and b are the shape parameter and the scale parameter, respectively. The



( ) Z
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Gðx; a; bÞ ¼  
C a; x b 
CðaÞ ; where C a; 

x 

b

( )
¼ 

1 

x=b 

ta-1 e-t dt 

x
( )

where C a; b is the upper incomplete gamma function. 
As an example, consider the issue of examining computer memory ICs and 

gathering data about their lifespans. We assume that these lifetimes follow a gamma 
distribution and that we want to find out how long we can anticipate the mean 
memory chip to live. Here, parameter assessment is the process required to deter-
mine the parameters of the Gamma distribution that is appropriate for the setting. 
We will need to have sample values or observations x1; ::; xnð Þ, which are the fixed 
constants. Variables a; b to be found out are the undetermined parameters. Maxi-
mum Likelihood Estimation (MLE) deals with finding the values of the parameters 
that offer the highest likelihood given the specific set of data as described earlier. 
Typically, the 95% confidence interval can be determined for a and b in order to 
provide a range of likely values. 

13.4.12 Erlang Distribution 

The Erlang distribution is a simplification of the exponential distribution. Although 
the exponential random variable defines the time between contiguous events, the 
Erlang random variable defines the time interval between any event and the kth next 
event. 

Erlang distribution is a continuous distribution that was devised by Agner 
Krarup Erlang, a Danish engineer and mathematician who was working in tele-
phone switching and who invented queueing theory and traffic engineering disci-
plines. He discovered it while studying the number of telephone calls which might 
be made at the same time to the operators of the switching stations. It has been often 
used in communication traffic engineering for over 100 years. The Erlang distri-
bution is described by two parameters: an integer k, called the shape; and a real 
number k, called the rate [39]. 

The probability density function, pdf, of the Erlang distribution is expressed by: 

f ðx; k; kÞ ¼  k
k xk-1e-k 

k - 1ð Þ! ; x [ 0: 

A different parameterization can be performed by replacing in the above 
expression k by 1=h, where h is signified as the scale parameter. The expression 
shows that the Erlang distribution is only described when the parameter k is a 
positive integer. 

Erlang distribution is considered a special case of the Gamma distribution where 
the shape parameter k is an integer. As the shape parameter k is 1, the distribution 
becomes an exponential distribution.



The cumulative distribution function, CDF, of the Erlang distribution is
expressed by:

This destruction has two free parameters that are categorized according to one of
two notational conventions; the beta probability density function is expressed as
follows:
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Probability density function Cumulative distribution function 

Fig. 13.9 Erlang density and cumulative distribution 

Fðx; k; kÞ ¼  
cðk; kxÞ 
ðk - 1Þ! 

where cðÞ is the lower incomplete gamma function outlined above. Figure 13.9 
depicts the probability density function and cumulative distribution function of the 
Erlang distribution. 

13.4.13 Beta Distribution 

Beta distribution represents a group of probabilities that is a flexible way to denote 
outcomes for proportions. For instance, how likely we will find vaccine for 
COVID-19 by end of 2020? You might think the probability is 0:7 while your 
colleague might think it is 0:8. The Beta distribution is a scheme to describe this. 

f x; a; bð Þ  ¼ 1 
B a; bð Þ  

xa-1ð1- xÞb-1 ; B a; bð Þ  ¼  
Z 

ta-1ð1- tÞb-1 dt 

f x; a; bð Þ  ¼  C a þ bð Þ  
CaÞC bð  Þ  

xa-1ð1- xÞb-1 

Here, is the gamma function [32, 40]. The expected value and variance of a betaC 
random variate X with parameters a and b are expressed as below:



b B p;q b

( )( )
2 bapBðp;qÞ 1þ x

bð Þð Þ

E Xð Þ  ¼  a 
a þ b 

r2 Xð Þ  ¼ ab 

ða þ bÞ2 a þ b þ 1ð Þ  
: 

As for the cumulative distribution function, CDF, it is expressed as follows: 
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Fig. 13.10 Beta probability density function and cumulative distribution function 

Fðx; a; bÞ ¼  
cðx; a; bÞ 
Cða; bÞ 

Here, ðx; ; Þ is the incomplete Beta function. Figure 13.10 depicts the pdf andc a b 
CDF of the Beta distribution. 

If we have n observations x1; ::; xnð Þ  and x and r are the sample mean and 
sample standard deviation, respectively, then we can write: 

x ¼ 
1 
n 

XN 
i¼1 

xi; r
2 ¼ 

1 
n 

XN 
i¼1 

xi - xð Þ2 : 

The moments scheme approximates the parameters as given below: 

a ¼ x 
x 1- xð Þ  

r2
- 1

( )
b ¼ 1- xð Þ  x 1- xð Þ  

r2
- 1

( )
: 

Some simplifications have been devised to the Beta distribution [41]. Examples 
include two random variables as given pdf functions, g1 and g2 shown below:

• g1ðx; a; b; p; qÞ ¼  jaj
ap xap-1 1- x a a-1 , for 0\xa\ba ; a [ 0; p [ 0; q [ 0.

•
ð Þ 

g ðx; a; b; p; qÞ ¼ jajxap-1 

a p-q, for 0\x\1; a [ 0; p [ 0; q [ 0.



Here, a random variable X that obeys the binomial distribution and has
parameters n and p will have a probability of obtaining just k successes specified by
the probability mass function (pmf), f, expressed by:

succession of n events is given by:
k

.
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The first type of pdf, g1, includes Pareto and Gamma and few other distributions. 
For instance, Pareto distribution is inferred by Pareto(x, b, pÞ ¼  g1ðx;-1; b; p;-1Þ 
and the Gamma distribution is deduced from lima!0g. Furthermore, the second 
category, g2, fits serval essential distributions as unique cases including the expo-
nential, Weibull, gamma, log-normal, and others. 

It was found that the Beta distribution and its generalized distributions have been 
proven to be extremely beneficial in the study of family revenue, daily stock rev-
enue, and the approximation of the slope of regression paradigms. Moreover, it is 
possible to use it as a rough model in the lack of data distribution of a random 
quantity such as the quantity of defective items in a sample, portion of packets that 
need to be retransmitted due to error, and fragment of remote procedure calls 
(RPCs) taking more than a specific amount of time, among others. 

13.4.14 Binomial Distribution 

Binomial distribution abridges the number of tests, or observations when each test 
has the same probability of achieving one particular value. It defines the probability 
of experiencing an itemized number of profitable outcomes in a defined number of 
attempts. 

The binomial distribution is the discrete distribution that is known to be asso-
ciated with the problems that study number of 1’s in a sequence of n independent 
f0; 1gexperiments, where the outcome produces success with a given probabilityp. 
Such a success/failure test is also called a Bernoulli trial. Thus, when n ¼ 1, then 
the binomial distribution is the Bernoulli distribution. The binomial distribution 
simulates the whole number of successes in replicated trials from an endless pop-
ulation under the following scenarios: (a) All trials are independent of each other, 
(b) only two outcomes are achievable on each of n trials, and (c) the probability of 
success for each trial is steady. 

f k; n; pð Þ  ¼ n 
k

( )
pkð1- pÞn-k for all k ¼ 0; 1; 2; . . .; n

( )
Here, 

n 
k 

is the binomial coefficient is read as “n choose k,” which can also be 

written as Cðn; kÞ; nCk, or  nCk. 
Since k successes can happen anywhere in a succession of n events, if k . n, the 

probability of k successes knowing their location is specified by pkð1- pÞn-k . The 
expression obeys the fact that the number of likely locations of k successes within a 

n
( )



If X is a binomial distributed random variable (represented by ~~ Bðn; pÞ), then
the expected value and standard deviation of X can be expressed by:
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Since the probability of calculating the probability of n- k successes, knowing 
that the likelihood of a success is equal to 1- p, is basically the probability of 
having n successes; knowing that the probability of a success is equal to p, one can 
infer that the probability mass function (pmf), f ð-Þ, satisfies the following 
expression: 

f ðk; n; pÞ ¼  f ðn- k; n; 1- pÞ 

The cumulative distribution function, CDF, can be expressed as follows: 

F k; n; pð Þ  ¼  P X  . kð Þ  ¼  
Xk 
j¼0 

n 
j

( )
p jð1- pÞn-j ; 

k 0 k nstipulated that is an integer and . . . (Fig. 13.11) 

E Xð Þ  ¼  
Xn 
k¼0 

kP X ¼ kð Þ  ¼  
Xn 
k¼0 

k 
n 

k

( )
pkð1- pÞn-k 

¼ 
Xn 
k¼1 

np 
n- 1 

k - 1

( )
pk-1ð1- pÞn-1- k-1ð Þ  ¼ np 

Xn-1 

j¼0 

n- 1 

j

( )
p jð1- pÞn-1-j ¼ np 

r2 Xð Þ  ¼  E ðX - npÞ2
( )

¼ np 1- pð Þ: 

Here, the variance can be calculated directly or by exploiting the following 
explanations: 

For n ¼ 1, it can be simply established that: 

r2 1 ¼ ð1- pÞ2 p þðO- pÞ2 1- pð Þ  ¼  p 1- pð Þ; 

Fig. 13.11 Binomial probability mass function (pmf) and cumulative distribution function



Þ

A unique case of the negative binomial distribution is when r ¼ 1, which gives a
geometric distribution that models the number of successes before the first failure as
explained earlier. Usually, parameter r can have non-integer quantities. The neg-
ative binomial is suitable in modeling tally of data. If the r parameter is an integer,
then the pdf can be expressed as follows:
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Now assume that n is general, so given that the trials are independent, we can 
add the variances for each trial, supposing that X is the sum of n independent 
Bernoulli variables. Thus, the expression below holds: 

r2 1 ¼ 
Xn 

k¼1 
r2 1 ¼ np 1- pð Þ: 

Parameter approximation is the process of finding the parameter, p, of the 
binomial distribution that matches well an agreed-on set of trials of a binomial 
distributed random variable X. Thus, if we have n observations x1; . . .; xnð , then p 
can be estimated by: 

p̂ ¼ 
1 
n 

XN 
i¼1 

xi: 

13.4.15 Negative Binomial Distribution 

The negative binomial distribution represents the number of successes beforehand a 
given number of failures are attained in an independent series of recurrent indis-
tinguishable trials. Its parameters are the likelihood of success in a single trial p and 
the quantity of failures, represented by r. 

f ðk; r; pÞ ¼ r þ k - 1 
k

( )
prð1- pÞk 

Here, r is not an integer. The binomial coefficient in the delineation of the prob-
ability mass function, pmf, is substituted by a corresponding expression using the 
function C, which can be expressed by: 

f ðk; r; pÞ ¼ Cðr þ kÞ 
CðrÞCðk þ 1Þ p

rð1- pÞk 

13.4.16 Chi-Square Distribution 

The chi-square distribution (also referred to as v2 distribution) is one of the most 
widely used distributions in statistical significance test [32, 42]. It is the distribution 
of the summation of squared standard normal deviates. The degrees of freedom of



The v distribution is a distinctive case of the gamma distribution. The proba-
bility density function (pdf) of the v2 distribution can be expressed by:

The cumulative distribution function, CDF, of the v2 distribution X is given by

the distribution are equivalent to the number of standard normal deviates being 
summed; hence, chi-square with one degree of freedom, v2ð1Þ, is basically the 
distribution of a single normal deviate squared. 
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Chi-square distribution is useful since under realistic assumptions, easily cal-
culated quantities can be established to have distributions that can be estimated by 
v2 distribution if the null hypothesis is correct [32, 43, 44]. The v2 distribution has 
one parameter, designated by k, which is a positive integer, which denotes the 
number of degrees of freedom as shown below. 

Consider k random variable Xi; i . k, that are independent and normally dis-
tributed with mean value 0 and standard deviation 1, then the random variable X 
expressed by: 

X ¼ 
Xn 
k¼1 

Xk 

2 

f x; kð Þ  ¼  
1 

2k=2C x=2ð Þ  x-1 þ k=2e-x=2; x . 0 
0; x\0

{
Here, represents the gamma function.C 

F x; kð Þ  ¼  P X  . xð Þ  ¼  
Zx 
0 

1 

2k=2C t=2ð Þt
-1 þ k=2 e-t=2 dt 

¼ P X  . xð Þ  ¼  
c k=2; x=2ð Þ  
C k=2ð Þ  

;Here, cð- -Þ is the lower incomplete gamma function. Furthermore, the expected 
value of a random variable having chi-square distribution with k degrees of freedom 
is k and the standard deviation is 

-----
2k

p 
. 

If X is a v2 distributed random variable of k degrees of freedom, then as k goes to 
infinity, the distribution of X turns to normal distribution. Moreover, it has been 
found that 

------
2X

p
is nearly normally distributed with a mean equals to 

-------------
2k - 1

p
and a 

standard deviation equals to 1. 
There are special tables of the v2 distribution, which are commonly available, 

and the function is integrated in numerous spread sheets and statistical tools. 
The chi-square distribution was first originated by Karl Pearson in 1900, and in 

his original article, he signified the sum by the character v2 and since then statis-
ticians and modelers have referred to this distribution as chi-square v2ð Þ  distribu-
tion. In general, v2 distribution is used when a sum of squares of normal variables is



The F-distribution is a skewed distribution of probabilities like chi-squared dis-
tribution; however, the chi-squared distribution deals with the degree of freedom
with one group of variables, but the F-distribution deals with several levels of
events with various degrees of freedom. Thus, there are a number of forms of the
F-distribution for different levels of degrees of freedom. F-distribution is considered
as a continuous probability distribution, and sometimes, it is called the Fisher–
Snedecor distribution. It is described using two v2 distributed variables, X1 and X2,
as follows. This, if X is a random variable defined as shown below:

The probability density function (pdf) of an F distributed random variable
X Xð Þ~~ F kð Þ1; k2 is expressed as follows:

affected, as for modeling sample variances. Figure 13.12 shows the pdf and CDF of 
the chi-square distribution. 
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Fig. 13.12 Chi-square probability density function and cumulative distribution function 

Other related distributions to chi-square distribution include the inverse 
chi-square distribution and chi distribution. 

13.4.17 F-Distribution 

X ¼ 
k2X1 

k1X2 

2then X has an F-distribution if X1 or X2 has a v distribution with k1 or k2 
parameters, respectively. Furthermore, X1 and X2 must be independent. Typically, 
the F-distribution arises often as the null distribution of a test statistic, and most 
particularly in the analysis studies of variance. 

f x; k1; k2ð Þ  ¼ 1 
xB k1=2; k2=2ð Þ  

k1x 

k1x þ k2

( )k1=2 k2 
k1x þ k2

( )k2=2



Here, x is a non-negative real value, d1 and d2 are the degrees of freedom, and B is 
the Beta function. 
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F-distribution is utilized in hypothesis testing and in modeling the ratio of 
sample variates. 

13.4.18 Student’s t-Distribution 

The Student’s t-distribution, (also called t-distribution) is a probability distribution 
that is applied to estimate population parameters while sample size is small and/or 
when the population variance is undetermined. 

Based on the central limit theorem, the sampling distribution of a statistic such as 
an expected value of a sample will obey a normal distribution, providing the sample 
size is appropriately large. Given this, if we identify the standard deviation of the 
population, we can determine a z-score and employ the normal distribution to 
assess probabilities with the sample mean. Nevertheless, sample sizes are at times 
small, and frequently, we do not have the standard deviation of the population. If 
either of these issues happens, modelers depend on the distribution of the t statistic 
or sometimes called the t score. 

The t-distribution is a probability distribution that is used in the problem of 
estimating the mean of a normally distributed population when the sample size is 
small. It was realized by William V. Gosset, [43–45], through his work at Guinness 
brewery. It is a family of curves depending on a single parameter (the degrees of 
freedom). As the degree of freedom bI 1=2 shots to infinity, the t-distribution con-
gregates to the standard normal distribution. 

Assume that we have n independent random variables X1; . . .; Xn which are 
normally distributed with mean l and standard deviation r and Xn and Sn are their 
sample mean and sample standard deviation, then we can express the mean and 
standard deviation as follow: 

Xn ¼ 1 
n 

Xn 
k¼1 

Xk; Sn ¼ 1 
n- 1 

Xn 
k¼1 

Xk - Xn

( )2 
It can be easily demonstrated that the variable Z expressed by: 

Z ¼ 
---
n

p 

r 
Xn - l
( )

is normally distributed with mean 0 and variance 1, as the sample mean Xn is 
normally distributed with mean l and standard deviation r--

n
p . The T variable is 

expressed by [32, 43]: 

T ¼ 
---
n

p 

Sn 
Xn - l
( )



that the distribution depends only on v and not l or r. Such an attribute makes the t-
distribution very special in theory and practice. The t-distribution is associated with
the F-distribution as follows. The square of a t-distributed random variable with
n- 1 degrees of freedom is an F-distribution with n- 1 degrees of freedom.
Assume that the number a is chosen in a way that:
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And is shown to have the following probability density function, pdf: 

f ðxÞ ¼ Cðn=2Þ-----------------ðn- 1Þpp
Cððn- 1Þ=2Þ 1 þ x2 =ðn- 1Þ( )-n=2 

: 

The parameter ðn- 1Þ is called the number of degrees of freedom. It can be seen 

Pð-a\T\aÞ ¼  b 

T n 1where is t-distributed with - degrees of freedom. The inequality above is 
equivalent to: 

P Xn - Sn---
n

p a\l\Xn þ Sn---
n

p a
( )

¼ b 

Sn Sn
i h

Thus, we can say that the interval Xn - --
n

p a; Xn þ --
n

p a is a b-percent confi-

dence interval for l. There are particular handy tables available for t-distribution for 
various degrees of freedom values [32, 43]. 

13.4.19 Concluding Remarks 

To conclude, we have reviewed the key features of the frequently used distributions 
in modeling and simulation. These distributions can be continuous while the others 
can be discrete. Among the major popular probability distributions are the uniform, 
exponential, normal, Poisson distribution, Weibull, Pareto, Geometric, Beta, 
binomial, Gamma, Erlang, chi-square, chi-distribution, inverse chi-distribution, 
F-distribution, and Student's t-distribution. We reviewed the main characteristics of 
these distributions and their key applications. 

13.5 Queuing Theory 

Claudia Szabo 

Queueing theory, first advanced by Agner Erlang [46], refers to the mathematical 
study of the formation and function of queues. The two key elements of queueing 
systems are customers and servers, where customer refers to anything that requests 
or needs a service, and a server is anything that provides that service. There are 
many examples of queueing systems, including reception desks, airplanes, nurses, 
computing servers, and web servers among others.
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There are several characteristics of a queuing system, including the calling 
population (the population of all potential customers), system capacity (the limit to 
the number of customers that may be waiting in the line), arrival process (describing 
how frequently customers arrive in the system), queuing behavior (how customers 
are served), and the service time and mechanism (how long does it take for requests 
to be served, and how they are served: first in first out—FIFO; last in first out— 
LIFO, etc.) [47]. 

Recognizing the many different types of queueing systems and the variety of 
customer and server-specific characteristics, [48] proposed a notation for parallel 
server systems based on the format A/B/c/N/K, where:

• A—is the inter-arrival time distribution (common are M—exponential, Markov; 
D—deterministic, G—general)

• B—is the service time distribution (common are M—exponential, Markov; 
D—deterministic, G—general)

• c—is the number of servers
• N—is the system capacity
• K—is the size of the calling population 

The most well-known example is the single-server queue, M/M/1/∞/∞, which 
is usually shortened to M/M/1. 

As queueing systems are ubiquitous, understanding their measure of perfor-
mance is critical. Several measures of performance include server utilization, 
system throughput, the time average number of customers in the systems (L), and 
the average time spent per customer (w). The conservation law or Little’s Law 
L = kw is valid for any queueing system, where k captures the customers’ 
inter-arrival rate [49]. 

13.6 Statistics 

Paul Weirich 

A statistical test of a hypothesis collects data bearing on the hypothesis. For 
example, the hypothesis may be about the mean value of a trait of members of a 
population, and the test may obtain the mean value of the trait in a random sample 
of the population. 

Statistical methods fall into three camps. Frequentist methods do not attribute a 
probability to a hypothesis or to possible results of a statistical test of a hypothesis. 
They classify a test result’s type as probable or improbable given the hypothesis, 
and they do this using probability in the frequentist sense, so that, more precisely, 
they use the relative frequency of the test result’s type in a long run of repetitions of 
the statistical test, assuming the hypothesis’s truth.
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Likelihoodism holds that the import of the evidence that a statistical test provides 
concerning a hypothesis and its rivals is completely expressed by the likelihoods of 
the hypotheses on the evidence, that is, the probability of the evidence given each of 
the hypotheses. It does not attribute probabilities to the hypothesis and its rivals, or 
to possible results of the statistical test. 

In contrast, Bayesian methods, applied in the context of a statistical test of a 
hypothesis, attribute probabilities to the hypothesis and to the possible results of the 
test. They use Bayes’ theorem to obtain the probability of the hypothesis given the 
evidence, and they use a type of probability that applies to events, rather than to 
event types, and is relative to evidence, including background information. 

Selection of a statistical method from the three camps remains controversial, as 
each method seems to have failings as well as appealing features. For example, 
frequentist methods fail to provide a probability of a hypothesis given the result of a 
statistical test of the hypothesis, that is, a probability to guide practical action when 
consequences depend on the hypothesis’s truth-value. Bayesian methods use, but 
do not offer an objective way of obtaining, the probability of a hypothesis prior to a 
statistical test of the hypothesis and the probabilities of the possible results of the 
statistical test. For additional in-depth information on these topics, the reader is 
referred to publications [50–56]. 
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Abstract 

The engineering disciplines supporting, and supported by, simulation are in the 
scope of this chapter of the SCS M&S Body of Knowledge. The chapter 
provides descriptions for systems engineering, virtual and augmented reality 
engineering, and visualization engineering. 
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Body of Knowledge (SEBoK), an effort that aims at sharing and centralizing 
experiences and successful practices, currently governed by the International 
Council on Systems Engineering (INCOSE), the IEEE Systems Council and the 
Systems Engineering Research Center (SERC) [1]. Notwithstanding the several 
success stories resulting from the application of systems engineering processes, 
many projects still experience time and cost overruns or fail to deliver systems that 
meet the needs of customers, users, and other stakeholders.
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Systems development processes have traditionally focused on document-centric 
approaches based on the use of documents and data available at different levels of 
abstraction and using different notations. A significant step forward has been 
achieved with the introduction of Model-Based Systems Engineering (MBSE), 
which refers to the formalized application of modeling to support the system 
development, along all the different development phases [2]. 

With MBSE, a common model of the system architecture is used to support and 
drive the engineering process [3], so to bring significant advantages over the 
document-centric approach in terms of improved quality, enhanced communication 
and stakeholder engagement, increased productivity, enhanced knowledge transfer, 
and reduced risks. 

Modeling and simulation (M&S)-based systems engineering further promotes 
executable models and proposes simulation as the native mechanism to address 
measures of performance and effectiveness throughout conceptual design, devel-
opment, and later systems life cycle phases, so to overcome the previously men-
tioned difficulties in terms of budget overruns and systems quality [4]. 

As the system complexity increases, the executable system architecture (i.e., the 
simulation model) may become so complex that it is necessary to assess it not only 
as a valid support of SE processes but also as an objective of SE efforts. Executing 
an interdisciplinary systems engineering process for developing, maintaining, and 
employing simulations, which enable systems engineers to experiment and gain 
insights about the systems of interest, is referred to as simulation systems engi-
neering (Durak and [5]. 

The following subsections provide more details about M&S-based systems 
engineering and simulation systems engineering, respectively, while Sect. 14.1.3 
compares the reference life cycle processes practically adopted in the M&S and 
systems engineering fields and proposes an integrative approach that allows sys-
tems engineers and M&S practitioners to fully catch the benefits of using M&S for 
systems engineering and vice versa. 

14.1.1 M&S-Based Systems Engineering 

The development of complex systems strongly benefits from the adoption of 
quantitative analysis techniques that enable a prompt evaluation of the system 
behavior, so to assess, before starting implementation or maintenance activities, 
whether or not the to-be system is going to satisfy the stakeholder requirements and 
constraints. In this context, M&S-based approaches may be effectively introduced



to enact evaluation of various structural and/or behavioral properties of the system 
under study, both at design-time and at run-time. 
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The adoption of M&S-based approaches is widely recognized as a cost-effective 
alternative to the development of experimental prototypes and as a valuable strategy 
to mitigate the risk of time/cost overrun due to redesign and re-engineering activities 
[4], yet their potential and organized implementation in the systems engineering field 
are not yet fully exploited, even though there are plenty of applications in specialty 
engineering fields, as well as in other fields, such as physical science, social science, 
computing, medical research, military, business, and finance. 

In order to enact a successful synergy between M&S and systems engineering 
disciplines, significant effort has been spent at educational, theoretical, method-
ological, and professional levels. 

In this respect, at educational level, the book from Loper provides an intro-
duction to the fundamental concepts of M&S and systems engineering, and how 
M&S is used in the systems engineering life cycle [6]. The book can be viewed as a 
handbook that introduces the reader to the broad discipline of M&S that systems 
engineers need to understand to be effective in their jobs. 

The theoretical and methodological contributions of M&S to systems engi-
neering are clearly explained in focused editorial efforts. The book from [4] collects 
reusable M&S lessons for systems engineering, offering an initial mean for 
cross-domain capitalization of the knowledge, methodologies, and technologies 
developed in several communities, and identifying a way forward to use the 
potentials of M&S for better systems engineering in the domains of architecture 
alignment and improvement, collaboration tools and repositories, and theoretical 
foundations [4]. 

An additional useful resource is the book from [7], which represent an important 
and decisive step forward in demonstrating the theoretical and methodological 
contributions of M&S to system-of-systems (SoS) engineering, through the lenses 
of application. The book addresses how M&S approaches assist system engineers to 
appropriately face critical challenges of SoS, which are required to integrate and 
coordinate multiple systems so to achieve levels of performance and offer capa-
bilities that are beyond the grasp of individual constituent systems. The use of M&S 
to properly address the scalability, adaptiveness, self-organizing, interoperability, 
independence, and emergent behavior properties of SoS is also illustrated in the 
book from [8], which introduces a unified process based on the well-known discrete 
event systems specification (DEVS) formalism and a formal computational com-
plex dynamical systems framework. In addition to M&S approaches based on 
discrete-event model representation, the use of agent-based simulation approaches 
to support systems engineering is clearly and extensively addressed in the book 
from [9]. The theoretical considerations and the tools required to enable the study of 
emergent behaviors in complex systems engineering are addressed in the book from 
[10], which offers a number of M&S-based methods, technologies, and approaches 
that are designed to broaden the understanding of emergent behavior in complex 
systems. A recent addition to the aforementioned resources is the book from [11], 
which provides a compendium of the state of the art in cloud-based M&S as a



medium for facilitating engineering and governance of cyber-physical systems, the 
next generation of systems for a highly connected society. 
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Finally, at professional level, a successful implementation of M&S-based sys-
tems engineering requires an effective integration of M&S and systems engineering 
life cycles. In this respect, Sect. 14.1.3 illustrates an attempt to integrate the life 
cycle processes currently used by systems engineers and M&S practitioners, by 
specifically addressing the ISO 15288 (Systems and Software Engineering—Sys-
tem Life Cycle Processes) standard and the IEEE 1730-2010 [12] (Recommended 
Practice for Distributed Simulation Engineering and Execution Process—DSEEP) 
standard, respectively. 

14.1.2 Simulation Systems Engineering 

The inherently compositional and distributed nature of complex systems make the 
use of distributed simulation approaches a natural fit. A distributed simulation (DS) 
results from the orchestration of a number of simulation components that essentially 
mirror the component-based structure of the system under study. 

However, the implementation of a DS is a challenging task in terms of the required 
effort and the significant know-how that is needed to properly use the available 
frameworks, such as the high-level architecture (HLA), and the related implemen-
tation technologies (IEEE, [13]). In some cases, the development of a DS is seen as a 
task of complexity comparable to the development of the system under study [14]. 

For such reasons, the DS implementation activities are to be carried out according 
to a well-defined engineering process that effectively supports the DS development 
through the use of formal models and the introduction of a significant degree of 
automation. This is obtained by using advanced approaches that apply metamod-
eling techniques and automated model transformations, introduced in the more 
general model-driven engineering (MDE) context, to increase the level of automa-
tion throughout the DS life cycle, thus reducing the costs of DS development and 
maintenance activities. 

Model-driven engineering (MDE) is an approach to system design and imple-
mentation that addresses the raising complexity of execution platforms by focusing 
on the use of formal models [15]. According to this paradigm, the abstract models 
that are specified at the beginning of the system life cycle are then given as input to 
model transformations that generate models at lower levels of abstraction, until 
stepwise refined models can be made executable. 

One of the most important initiatives driven by MDE is the model driven 
architecture (MDA), the object management group (OMG) incarnation of MDE 
principles [16]. MDA introduces standards for specifying technology neutral 
metamodels (i.e., models used to describe other models), for specifying 
model-to-model and model-to-text transformations, and for serializing MOF 
metamodels/models into XML-based schemas/documents. 

The core idea of MDA in the DS domain is base DS engineering on a series of 
model transformations that replace some of the manual effort applied by DS experts 
with precise transformation rules and formal evaluations.
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Figure 14.1 illustrates a proposed enhancement of DSEEP that benefits from the 
adoption of model-driven engineering principles and that has been tailored to fit the 
systems engineering domain’s needs [17]. 

The relevance of model-driven approaches for researchers and practitioners in 
the DS field is witnessed by the various editions of the International Workshop on 
Model-Driven Simulation Engineering (Mod4Sim), started in 2011 by D’Ambrogio 
and [18] within the SCS Spring Simulation multi-conference, by the book from 
[19], and by tutorials offered in the context of M&S-focused conferences (see, e.g., 
[17]). Model-driven approaches start being applied to carry out DS efforts at 
industrial level also, such as in the “HRAF: EDLS Distributed Simulation Feder-
ation and Model-driven Engineering Framework Development” project, funded by 
the European Space Agency [20]. 

14.1.3 Bridging the Gap Between M&S and Systems Life 
Cycle Processes 

In order to help realize successful systems, the systems engineer supports a set of 
life cycle processes beginning early in conceptual design and continuing throughout 
the life cycle of the system through its manufacture, deployment, use, and disposal. 
The systems engineer must analyze, specify, design, and verify the system to ensure 
that its functional, interface, performance, physical, and other quality characteris-
tics, and cost are balanced to meet the needs of the system stakeholders. 

There are a number of different systems engineering process models available to 
support execution of the systems engineering efforts. A notable example is the 
ISO/IEC/IEEE 15288 standard, which results from a coordinated effort by IEEE 
and ISO/IEC and provides a common process framework for describing the life 
cycle of systems created by adopting a systems engineering approach [21]. The 
ISO/IEC/IEEE 15288 standard introduces a set of 30 processes, grouped into 
agreement processes, which specify the requirements for the establishment of 
agreements with organizational entities, organizational project-enabling processes, 
which help ensure the organization’s capability to acquire and supply products or 
services through the initiation, support, and control of projects, technical man-
agement processes, which are used to establish, execute, control, and evolve 
management plans, and technical processes, which are executed to carry out the 
whole set of technical activities throughout the system life cycle. 

A successful implementation of M&S-based systems engineering requires an 
integration of systems engineering and M&S life cycles, as standardized by 
ISO/IEC/IEEE 15288 and IEEE DSEEP, respectively. 

There are several contributions that address the need to look at systems engi-
neering and M&S as mutually supportive disciplines, as well as the need to look at 
simulation support for systems engineering or to apply the systems engineering 
process for simulation, as described in the previous sections. However, the 
ISO/IEC/IEEE 15288 standard does not specifically address how to exploit M&S 
within systems engineering efforts. Indeed, the term “simulation” occurs only in a



few sections of the standard, as a possible technique (with mathematical analysis and 
experimentation) to analyze technical performance, system behavior, quality char-
acteristics, technical risks, and life cycle costs, and as a possible validation method or 
technique (with inspection, analysis, analogy/similarity, demonstration, peer-review, 
testing, and certification). Analogously, the term “simulator” (i.e., simulation 
implementation) is only referred to as a possible validation enabling system. 
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Vice versa, the INCOSE Handbook on Systems Engineering [22] recognizes 
M&S as a powerful and effective method, whose value increases with the size, be it 
physical or complexity, of the system or system of systems under development, and 
also underlines the fact that the completed model or simulation can be considered as 
a system or a product in its own right (and thus to be built and maintained through a 
dedicated process, as specified by the IEEE DSEEP standard). 

Looking at M&S simply as one of the possible methods or techniques that may be 
effectively used for systems analysis and/or validation does not contribute to fully 
exploit its potential. M&S, and particularly distributed simulation, should be con-
sidered as necessary and cost-effective enabling systems or services to augment the 
capabilities of the set of processes defined by the ISO/IEC/IEEE 15288 standard. 

In this respect, efforts are being carried out to make an overlay of IEEE DSEEP 
onto ISO/IEC/IEEE 15288, in addition to the standard overlays that IEEE DSEEP 
already provides for HLA, distributed interactive simulation (DIS), and test and 
training enabling architecture (TENA). It is almost clear at a first glance that 
IEEE DSEEP basically corresponds to the technical processes of the ISO/IEC/IEEE 
15288 and has references to the technical management processes, as described in 
the proposed mapping illustrated in Fig. 14.2 [14]. 

The ultimate goal of such an overlay proposal can be stated as creating an impact 
in the evolution of the life cycle standards toward addressing integration of the 
systems engineering and DS life cycle processes. 

14.2 VR/AR Engineering 

Chen Yang, Bo Hu Li 

14.2.1 Connotation of VR/AR Engineering 

Virtual reality/augmented reality (VR/AR) engineering is an engineering branch 
that integrates computer science and engineering (computer graphics, computer 
vision, digital image processing, etc.), software engineering, electronic science and 
engineering, control science and engineering, psychology, and VR and AR technol-
ogy. Its main target is to build and improve the engineering technology of VR/AR 
application and support the design and implementation of VR/AR software, hardware, 
and systems with practical application value for relevant domains and scenarios. 

We here set forth the basic concepts of VR/AR to make further discussions easy 
to understand.
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Fig. 14.2 IEEE DSEEP overlay on ISO/IEC/IEEE 15288 [14]
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Virtual reality (VR for short) is the use of computer simulation to generate a 
three-dimensional virtual world, providing users with simulated vision, hearing, 
touch, and other senses so that users feel as if they were in the real environment and 
were able to observe things in the three-dimensional space immediately without any 
restrictions [23, 24]. When the user moves, the computer can immediately conduct 
complex calculations and transmit the accurate image of the three-dimensional 
world back to produce a sense of presence. This technology integrates the latest 
achievements of computer graphics, computer simulation, artificial intelligence, 
sensing, display, and parallel processing technologies. It is a high-tech simulated 
system generated by computer technology. 

Augmented reality (AR for short) is a new technology that integrates the 
real-world information and the virtual world information seamlessly. Through 
computer technology, it simulates and superposes physical information (visual 
information, sound, taste, touch, etc.) that is difficult to experience in a certain 
spatio-temporal range of the real world. And in this way, virtual information is 
applied to the real world and perceived by human senses so that it delivers a sensory 
experience beyond reality. Real environment and virtual objects are superimposed 
on the same picture or in the same space in a real-time manner [25]. 

14.2.2 Architecture 

As shown in Fig. 14.3, an architecture of the VR/AR engineering system [26] 
consists of four layers: hardware layer, software layer, user interface layer, and 
application layer, as follows: 

(1) Hardware layer: including VR/AR hardware infrastructure (various embed-
ded sensors, computing systems, and display devices), such as VR/AR hel-
mets, VR/AR smart glasses, VR/AR tablets/smartphones, VR/AR simulators, 
and VR/AR displays. 

Fig. 14.4 Architecture for 
the VR/AR engineering 
system
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(2) Software layer: including controller module, video tracking module, render-
ing module, VR/AR model library, audio–video-image database, etc. The 
controller module is responsible for sensing location, viewpoint, lighting and 
other information, performing related computing tasks, and coordinating the 
video tracking module, rendering module, VR/AR model library, etc., to 
complete VR/AR tasks; the video tracking module is responsible for matching 
reference enhancement information, computing the transformation that is 
necessary to fit the reference enhancement information to the video image, and 
integrating the final enhanced information into the video graphics; the ren-
dering module is responsible for the presentation of all the above information 
(current viewpoint information, enhanced information, audio and video, 3D 
models) to the user. 

(3) User interface layer: including the interaction interface between the VR/AR 
engineering system and users, which supports interaction modes such as voice, 
posture, touch, and vision. 

(4) Application layer: supporting VR/AR engineering applications oriented to 
medical care, education, games, military, and other industries. 

14.2.3 Key Technologies 

14.2.3.1 Human–Computer Interaction Technology 
Human–computer interaction technology (HCI) is a kind of hardware and software 
technology that realizes the dialog between human and computers in an effective 
way through input and output devices of computers. The hardware technology 
includes the input equipment technology for calculating all kinds of information 
(language, expression, action, etc.) from humans and the output equipment tech-
nology for feedback information to humans from the computer; the software 
technology mainly includes the algorithms and technologies for the computer to 
accurately recognize and understand all kinds of information given by humans and 
give appropriate feedback. Multi-channel human–computer interaction technology 
is the main focus of current research efforts. It is helpful for computers to receive 
and process various information sent by humans and realize effective communi-
cations between men and computers on a deeper layer. Human–computer interac-
tion technology is one of the most widely used technologies in many fields. 

14.2.3.2 Haptic Feedback Technology 
Haptic feedback technology is a technology that is utilized to reproduce real tactile 
sensation for users through a series of actions such as force or vibration provided by 
the professional equipment. This technology can be used to mimic the real touch in 
the virtual scene and bring more real experience to people. Haptic feedback tech-
nology is widely used in business, film and television, games, medical care, and 
other industries.
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14.2.3.3 Environment and Object Modeling Technology 
Environment and object modeling technology refers to the technology that can 
extract the characteristics or attributes of the real environment/object and build a 
virtual environment/object model according to the application needs. 

14.2.3.4 System Integration Technology 
System integration technology refers to the technology that can help integrate 
various technologies applied in VR/AR (such as information synchronization 
technology, model calibration technology, data conversion technology, recognition 
and synthesis technology, etc.). 

14.2.3.5 3D Registration Technology 
3D registration technology is one of the core technologies in reality enhancement 
(AR). It mainly includes the position-orientation identification and tracking tech-
nology and the localization technology of virtual objects in the real world. Real 
time (no delay), accuracy (no jitter of camera equipment), and robustness (not 
affected by lighting, occlusion, and other realistic factors) are the key elements of 
3D registration technology. 

14.2.3.6 3D/4D Display and Stereo Synthesis Technology 
3D/4D display and stereo synthesis technology refers to a kind of technology that 
enables the real-time generation of stereo graphics in complex scenarios, as well as 
the elimination of the correlation between the direction of sound and the movement 
of the user’s head in the virtual reality system. This technology is very important for 
VR/AR to reproduce the reality of virtual scenes. 

14.2.3.7 Virtuality and Reality Fusion-Based Display 
Technologies 

Virtuality and reality fusion-based display technology [27] is a technology that can 
support adding virtual objects to the real scene, showing the user a picture of 
combined virtuality and reality. It is one of the key technologies in AR, and the 
main display devices are generally divided into helmet display, hand-held display, 
projection display, etc. 

14.2.4 Development Trend 

14.2.4.1 Miniaturization and Mobility 
Consumer demands for the portability and mobility of VR/AR devices and appli-
cations promote the development of VR/AR engineering toward miniaturization 
and high mobility, in order to improve user experience.
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14.2.4.2 High Fidelity 
The main task of VR engineering is to create a virtual world that allows users to 
have an immersive experience. VR engineering applications will continue to move 
forward in the direction of higher resolution and fidelity, delivering users a sense of 
immersion and real experience. Fidelity evaluation also involves VR psychology, 
VR sociology, and other disciplines [28]. 

14.2.4.3 High-Virtuality-Reality Fusion 
The main target of AR engineering is to integrate virtual world information and 
real-world information “seamlessly” to provide users with sensory experience 
beyond reality, so it develops to provide more extrasensory information and realize 
more seamless sensory experience of virtuality-reality integration [23]. 

14.2.4.4 Networking 
The emergence and development of new network technology (such as 5G) have 
greatly improved the bandwidth, real time, and reliability of the network, which will 
promote the development of VR/AR to the direction of networking, and facilitate 
the development of remote and interactive online VR/AR engineering applications 
with large-scale involvement of distributed users. 

14.2.4.5 Intelligence 
With the rise of research and application of big data and the Internet, learning how 
to efficiently build models through analyzing image, video, and domain big data has 
become a hotspot, and improving the adaptability of virtual environment is 
receiving increasing attention, making intelligence an important feature of VR/VR 
research and applications in the new era [23]. 

14.2.5 Applications 

VR/AR engineering is widely used in the manufacturing industry, medicine, mil-
itary, aerospace, energy, entertainment games, education, marketing, and other 
fields [29, 30]. Figure 14.4 shows a subset of the many application domains of 
VR/AR engineering. For example, in the industrial field, VR/AR can show the 
industrial details and operation management completely [31], in the medical field, 
doctors can use VR/AR to practice more difficult operations, and then easily con-
duct the precise positioning of the operation site; in the military field, VR/AR can 
be used by the army to identify the operational environment and obtain the real-time 
geographical location data and other important data, as well as to military exercises 
and training [29], in the education field, VR/AR technology is used for training and 
practice as well as making VR/AR books; in the field of marketing, AR technology 
is used to show consumers the shape and characteristics of vehicle models via 
terminals in a virtuality-reality fusion way so as to promote vehicle sales.
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Fig. 14.4 Applications of 
VR/AR engineering 

14.3 Visualization for Modeling and Interactive 
Simulation 

Hessam S. Sarjoughian 

Visual artifacts provide potent means for the modeling, simulation, verification, 
validation, and accreditation life cycle stages. From hand-drawn to digital, 
multi-dimensional visualizations have served as part and parcel of capabilities for 
creating, maintaining, executing, and evaluating simulation models. Compared with 
descriptive and mathematical modeling, visual modeling is uniquely placed to help 
create useful models for a wider range of users. Visual abstractions can lead to 
reducing time and effort, for example, in defining models, developing and executing 
experiments, and evaluating observed structures and behaviors of simulation 
models. 

Primitive and compound visual objects, which are generally more accessible to 
human cognition and thinking, are instrumental for existing and advancing con-
cepts, theories, methodologies, frameworks, and practices. As a result, visualization 
has steadily become a critical part of models’ development, especially for com-
ponent-based modeling theories and their corresponding frameworks and tools [32]. 
This is evident as information at different levels of abstraction and distinct aspects 
best supports different modes of human problem understanding, problem-solving, 
and decision-making. Indeed, a myriad of static and dynamic graphical represen-
tations have been developed and targeted for modeling and simulation communities 
at large and numerous user communities as diverse as archeologists, biologists, 
climatologists, educationists, immunologists, neuroscientists, physiologists, and 
roboticists. Engineering and the arts have long been the beneficiaries of visual-
izations to simplify and elaborate concise complex problem formulations and 
complicated solutions. 

Models can range from conceptual to semi-formal and formal representations. In 
principle, they can be formulated as descriptive, mathematical, and visual artifacts 
or actual proxies of real-world processes. Simulations enabled with visual objects



offer unique benefits for the development, operation, and use of actual and hypo-
thetical complex systems-of-systems, including cyber-physical systems. Visual-
izations further the reach and impact of simulation for learning, training, and 
maintenance of real-world computational and physical systems to modeling and 
simulation practitioners. 
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Visualization can present operational purposes (e.g., supply and demand flow), 
causal structures (e.g., information dependency), system operations (e.g., electricity 
transmission), physical parts (e.g., electric grid components), and processes (e.g., 
feedback control) [33]. The use of visualization where concrete details are illumi-
nated via abstract organizational, functional, and purposes for simulations is sig-
nificant [34]. Insights via visual notations of the parts and their connections in whole 
models at varying resolutions can be gained. Graphical representations enabled with 
flexible hierarchical organizations reveal direct/indirect constraints for observing 
intricate simulation models that may have linear, superdense, or combined time data 
sets benefiting from visual behavioral debugging to visual analytics [35]. 

Early simulation tools, such as Matrixx [36] supporting hierarchical block dia-
gram modeling with linear time plots and STELLA [37] supporting graphical 
system dynamics modeling, showed the advantages and better development of 
simulation models using different and complementary visual notations and user 
interfaces. Such capabilities continue to become even more critical due to the 
importance of formal composable heterogeneous modeling [38]. Very large-scale 
models naturally lead to needing simulation models with bigger data sets, hetero-
geneous hierarchical structures, and multimodal behaviors. Numerous frameworks 
and tools have been developed by employing different types of structurally orga-
nized shapes and lines with corresponding control and view graphics for user 
manipulation and viewing. Visualizations to support the creation, execution, and 
evaluation of heterogeneous models remain at the forefront of research challenges 
facing modeling and simulation science, engineering, and practice [39]. 

14.3.1 Visual Component Modeling 

Visual modeling serves the needs of science, engineering, and humanity and 
increasingly, the topics that blend them for highly complex systems of systems. Of 
especial importance has been to serve highly diverse, sophisticated, and evolving 
modeling communities and stakeholders. In recent years, visual modeling has been 
gaining a greater prominent role in all aspects of simulation-based scientific and 
engineering research, innovation, and practice. It has become invaluable as a 
uniquely powerful means for developing models, conducting simulations, verifying 
models, validating simulations, and using them in operational settings. 

From a broad point of view, general-purpose textual and visual languages, 
frameworks, and tools are commonly used for model representations, displaying 
simulation results, and user interfaces for evaluations and decision-making. Data 
visualization has been serving two classical complementary roles. One is for the 
post-simulation output data analytics. Another is for observing and interacting with



executing simulations. The former is for the data to be represented as charts, 
geo-location maps, controls, object graphs, and forms in dashboards [40]. The latter 
is for facilitating simulation executions (e.g., using standalone and Web-services 
computing platforms) as well as for managing simulation experiments (e.g., be-
havior exploration) targeting different audiences. 
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A key capability beyond those noted above is to develop simulation models 
visually. Visual modeling refers to the graphic representation of systems of interest 
using general-purpose and domain-specific graphical modeling languages. Visual 
models promote human understanding and comprehension of complex ideas and 
thus contribute to higher quality models at a faster development time and lower 
cost, especially when used with model syntax and supported with well-defined 
execution (operational or denotational) semantics. Visual modeling can simplify 
and increase communication and collaboration among stakeholders having varying 
backgrounds and skills. This is evident in the widely in-use, open, and standardized 
general-purpose visual languages, including UML and SysML, that are commonly 
used across many modeling and simulation communities. Behavior modeling is 
commonly specified using state machines, sequence, and activity diagrams [41]. 

Visual modeling affords concepts, methods, frameworks, languages, and tools to 
enrich the creation of different kinds of simulation models in any existing or 
conceivable application domain. Visual modeling can support any kind of modeling 
such as agent, declarative, functional, spatial, and more broadly component-based 
continuous, discrete-time, and discrete-event model types. General-purpose lan-
guages, frameworks, and tools are used to present data, structural, and behavioral 
abstractions using different widget types with a mixture of texture, geometric, and 
sound data. These are built using frameworks and tools such as the business 
intelligence reporting tool [42] and data driven documents [43]. 

Domain-specific languages (DSL) specialized for numerous kinds of application 
domains exist using many programming languages supported with built-in graph-
ical passive and active widgets. An example framework is developed for waste 
management systems [44] based on model-driven architecture (MDA) [45] and 
frameworks supporting graphical modeling [46]. The visualization studio modeling 
SDK has a DSL definition diagram for specifying hierarchical metamodels and the 
graphical notation for domain-specific languages. The resulting application 
framework has an underlying formal language enabling domain expert modelers to 
build, configure, and manipulate wastewater management systems flexibly. Such 
visual languages are well-suited for conceptual modeling, where entities in the real 
world have transparent and one-to-one visual counterparts. Because conceptual 
modeling languages map directly from entities in the real world to visual objects, 
they are easier and more natural to use for developing modeling and simulation 
frameworks and tools. Recent visual programming languages built using the Eclipse 
modeling framework (EMF) [47] with the graphical modeling framework offer 
capabilities that make the development of DSLs simpler. 

The combination of visualization capabilities for modeling, simulation, and 
evaluation is instrumental in identifying and addressing the why, what, and how 
questions tied to the uncertainty and stochasticity common to dynamic, large,



complex hybrid systems [48, 49]. They help determine the purposes of every 
simulation by defining the model’s scope, the details in the built simulation, and the 
simulation results to be observed and evaluated subject to many external stimuli and 
experimental conditions. Conceptualization, design, implementation, testing, and 
debugging of intricate structural and behavioral separately and together benefit from 
visual modeling. 
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14.3.2 Visual Interactive Simulation 

Visual modeling naturally leads to visually rich interactions with executing simu-
lations. The visual abstraction of modeled objects provides useful decision support 
together with the capability for automated model checking and coded generations. 
Visual interactive simulation (VIS) supports symbolic manipulation, interactions, 
and offline analysis [50]. Dynamic visual displays, changing the model during 
simulation runs, linking dynamic input/output time trajectories, and histograms 
creating graphic replicas of actual and future systems to be built. Such capabilities 
are aimed at user-friendly systems that mesh human judgment and computation to 
improve the decision-makers’ effectiveness. Users can use benefit from visual 
analytics to gain insight into simulation data sensitivity and as well as identify and 
dynamically interact with any model components for special transient changes 
needed essential for validation of complex models requiring parallel and/or dis-
tributed execution [35]. 

Visualization of models and their simulations requires identifying data sets from 
big data, changing data resolution, and selecting displays with varying operational 
modes. They help users in calibrating models useful for any purpose for which 
simulations are to be used. It is easy to observe the value of general- and 
special-purpose dynamic, multi-layer visual interactive interfaces. They allow 
identifying problems with data, models, and experiments, understanding from very 
small to very large data continuum, forming hypotheses, and discovering emergent 
dynamics [51]. Effective simulation configurable displays should account for sub-
tleties in data content, data heterogeneity, data coherency, and limited spaces for 
statistical, descriptive, and exploratory analyzes [52]. In general, it should be noted 
careful analysis is needed to choose and aggregate data well-suited for displays 
while allowing intuitive controls for multi-layer and multi-aspect user interfaces. 

14.3.3 Visualization Designs 

Effective visualizations should serve multiple purposes, although they can become 
demanding due to requiring extensive computational power and complex infor-
mation and controls to enable manipulations of phenomena, comprehension, and 
evaluation. Visualization capabilities are being expanded to help explore the 
structural relationships and behavioral evolutions of phenomena using machine 
learning and other methods [53].
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Concrete methods can be undertaken to develop powerful visualizations to 
complement the development of abstract, computable models [54]. First, descrip-
tions of alternative ways for users (use-cases and use-case scenarios) to achieve 
their purposes are identified. Second, suitable abstraction levels for data sets of 
interest are defined. Third, controls for executing and viewing simulation trajec-
tories are devised. Forth, the static and dynamic data and control in view of soft-
ware architectures such as Model-Façade-View-Control architecture are formulated. 
Fifth, use-case scenarios are used to minimize the total number of displays and 
controls, thus leading to simpler and more effective user interfaces and visual 
analytics. Visual modeling with interactive simulation can lend itself to formulating 
and understanding causal and logical scalability and complexity traits, especially to 
address ambiguity inherent in the modeling, simulation, design of experiments, and 
evaluating predicted outcomes in time and space. 

References 

1. SEBoK Editorial Board (2020) The guide to the Systems Engineering Body of Knowledge 
(SEBoK), v. 2.2. In: Cloutier RJ (eds) The Trustees of the Stevens Institute of Technology, 
Hoboken, NJ. Last accessed on 29 Sept 2020. www.sebokwiki.org 

2. INCOSE (2017) Systems Engineering Vision 2020, version 2.03. International Council on 
Systems Engineering (INCOSE), INCOSE-TP-2004-004-02 

3. Estefan JA (2008) Survey of model based systems engineering methodologies. International 
Council of Systems Engineering, San Diego, CA 

4. Gianni D, D’Ambrogio A, Tolk A (2014) Modeling and simulation-based systems 
engineering handbook. CRC Press 

5. Durak U, Ören T (2016) Towards an ontology of simulation systems engineering. In: 
Proceedings of the SCS spring simulation multi-conference, Pasadena, CA, USA 

6. Loper ML (2015) Modeling and simulation in the systems engineering life cycle. Springer, 
Berlin 

7. Rainey LB, Tolk A (2015) Modeling and simulation support for system of systems 
engineering applications. Wiley 

8. Mittal S, Martín JLR (2013) Netcentric system of systems engineering with DEVS unified 
process. CRC Press 

9. Yilmaz L, Ören T (2009) Agent-directed simulation and systems engineering. Wiley-VCH 
10. Mittal S, Diallo S, Tolk A (2018) Emergent behavior in complex systems engineering: a 

modeling and simulation approach. Wiley 
11. Risco Martin JL, Mittal S, Ören T (2020) Simulation for cyber-physical systems engineering: 

a cloud-based context. Springer, Berlin 
12. IEEE (2010) IEEE recommended practice for distributed simulation engineering and 

execution process (DSEEP), IEEE Std 1730-2010 
13. IEEE (2010) Standard for modeling and simulation high level architecture—framework and 

rules, IEEE Std 1516-2010 
14. D’Ambrogio A, Durak U (2016) Setting systems and simulation life cycle processes side by 

side. In: Proceedings of the 2016 IEEE international symposium on systems engineering 
(ISSE 2016), October 3–5, Edinburgh, UK 

15. Atkinson C, Kuhne T (2003) Model-driven development: a metamodeling foundation. 
Software IEEE 20(5):36–41 

16. OMG (2003) MDA Guide, revision 2.0 (ormsc/14-06-01)



370 A. D’Ambrogio et al.

17. Bocciarelli P, D’Ambrogio A, Giglio A, Paglia E (2019) Model-driven distributed simulation 
engineering. In: Mustafee N, Bae K-HG, Lazarova-Molnar S, Rabe M, Szabo C, Haas P, Son 
Y-J (eds) Proceedings of the 2019 Winter Simulation Conference (WSC 2019), December 8– 
11, 2019, National Harbor, USA 

18. D’Ambrogio A, Petriu D (2011) First international workshop on model-driven approaches for 
simulation engineering (Mod4Sim’11). www.sel.uniroma2.it/mod4sim11 

19. Topcu O, Durak U, Oguztuzun H, Yilmaz L (2016) Distributed simulation: a model driven 
engineering approach. Springer 

20. D’Ambrogio A, Bocciarelli P, Delfa J, Kisdi A (2020) Application of a model-driven 
approach to the development of distributed simulations: the ESA HRAF case. In: Proceedings 
of the 2020 Spring Simulation Conference (SpringSim 2020) 

21. IEEE (2015) ISO/IEC/IEEE International Standard-Systems and software engineering— 
System life cycle processes. ISO/IEC/IEEE 15288:2015 

22. INCOSE (2015) Systems engineering handbook: a guide for system life cycle processes and 
activities. In: International Council on Systems Engineering (INCOSE), INCOSE-TP-2003-
002-04, Wiley 

23. Zhao Q, Zhou B et al (2016) A brief survey on virtual reality technology. Sci Technol Rev 34 
(14):71–75 

24. Yin RM, Li BH, Chai XD (2007) Image-based rendering techniques in virtual reality: a 
survey. J Syst Simul 19(19):4353–4357 

25. Azuma RT (1997) A survey of augmented reality. Presence Teleoperators Virtual Environ 6 
(4):355–385 

26. Dahne P, Karigiannis JN (2002, October) Archeoguide: system architecture of a mobile 
outdoor augmented reality system. In: IEEE Proceedings. International symposium on mixed 
and augmented reality, pp 263–264 

27. Li BH, Chai XD, Zhang L, Li T, Qing DZ, Lin T, Liu Y (2018) Preliminary study of 
modeling and simulation technology oriented to neo-type artificial intelligent systems. J Syst 
Simul 30(2):349–362 

28. Zhao Q (2011) 10 scientific problems in virtual reality. Commun ACM 54(2):116–117 
29. Van Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, 

applications and limitations. Int J Virtual Reality 9(2):1–20 
30. Berg LP, Vance JM (2017) Industry use of virtual reality in product design and 

manufacturing: a survey. Virtual Reality 21(1):1–17 
31. Ong SK, Yuan ML, Nee AYC (2008) Augmented reality applications in manufacturing: a 

survey. Int J Prod Res 46(10):2707–2742 
32. Rhyne T-M, Chen M (2013) Cutting-edge research in visualization. Computer 46(5):22–24 
33. Rasmussen J, Pejtersen A, Goodstein L (1994) Cognitive systems engineering. Wiely 
34. Bennett KB, Flach JM (2011) Display and interface design: subtle science, exact art. CRC 

Press 
35. Sarjoughian HS, Sundaramoorthi S (2015) Superdense time trajectories for DEVS simulation 

models. SpringSim (TMS-DEVS), pp 249–256 
36. Richmond B (1985) STELLA: software for bringing system dynamics to the other 98%. In: 

International conference of the system dynamics society. Keystone, CO, USA, pp 706–718 
37. Walker R, Gregory C, Shah S (1982) MATRIX x: a data analysis, system identification, 

control design and simulation package. IEEE Control Syst Mag 30–37 
38. Sarjoughian HS (2006) Model composability. In: Proceeding of the 2006 winter simulation 

conference. Institute of Electrical and Electronics Engineers, Inc., Piscataway, New Jersey, 
pp 149–158 

39. Li JK, Takanori F, Kesavan S, Ross C, Mubarak M, Carothers CD, Ross RB, Ma K-L (2019) 
A visual analytics framework for analyzing parallel and distributed computing applications. 
IEEE visualization in data science. Vancouver, Canada, , pp 1–9 

40. Few S (2006) Information dashboard design: the effective visual communication of data. 
O'Reilly Media, Inc.

http://www.sel.uniroma2.it/mod4sim11


14 Supporting Engineering Areas 371

41. Sarjoughian HS (2017) Restraining complexity and scale traits for component-based 
simulation models. In: Winter simulation conference. Institute of Electrical and Electronics 
Engineers, Inc., Piscataway, New Jersey, pp. 675–689 

42. BIRT (2018) Business intelligence reporting tool. http://www.eclipse.org/birt/. Retrieved 
from http://www.eclipse.org/birt/ 

43. Bostock M, Ogievetsky V, Heer J (2009) D3 data-driven documents. IEEE Trans Visual 
Comput Graph 17(12):2301–2309 

44. Zarrin B, Baumeister H (2014) Design of a domain-specific language for material flow 
analysis using Microsoft DSL tools: an experience paper. In: Proceedings of the 14th 
workshop on domain-specific modeling. Portland, Oregon, United States, pp 23–28 

45. Object Management Group (2014) MDA Guide Version 2.0. Retrieved from https://www. 
omg.org/mda/ 

46. Fuhrmann H, von Hanxleden R (2010) Taming graphical modeling. In: Petriu DC, 
Rouquette N, Haugen Ø (eds) International conference on model driven engineering 
languages and systems. Springer, Berlin, Heidelberg, pp 196-210 

47. Steinberg D, Budinsky F, Merks E, Paternostro AM (2008). EMF: eclipse modeling 
framework, 2nd edn. Pearson Education 

48. Zeigler BP, Sarjoughian HS (2017) Modeling and simulation of systems of systems, 2nd edn. 
Springer, London 

49. Kellner M, Madachy R, Raffo D (1999) Software process simulation modeling: why? what? 
how? J Syst Softw 46(2–3):91–105 

50. Bell PC, Taseen AA, Kirkpatrick PF (1990) Visual interactive simulation modeling in a 
decision support role. Comput Oper Res 17(5):447–456 

51. Ware C (2019) Information visualization: perception for design. Morgan Kaufmann 
52. Tufte ER (2001) The visual display of quantitative information. Graphics Press 
53. Isaacs KE, Gimenez A, Jusufi I, Gamblin T, Bhatele A, Schulz M, Hamann B, Bremer P-T 

(2014) State of the art of performance visualization. In: Proceedings of Eurographics 
conference on visualization, pp 141–160 

54. Rouse WB (2015) Modeling and visualization of complex systems and enterprises: modeling 
and visualization of complex systems and enterprise. Wiley

http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
https://www.omg.org/mda/
https://www.omg.org/mda/


.

15Supporting Social Science 
and Management Areas 

Paul K. Davis 

Abstract 

This chapter of the SCS M&S Body of Knowledge addresses two topics, 
namely, using causal modeling and simulation to enhance aspects of social 
science and using causal models to aid managers and other decisionmakers. To 
this end, it discussed simulation approaches supplementing traditional social 
science approaches, particularly agent-based generative models. 
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15.1 Background: Contrasts of Paradigm and Semantics 

Paul Davis. 

This article addresses two topics: (1) using causal modeling and simulation (M&S) 
to enhance aspects of social science and (2) using causal models to aid decision-
makers. The first section sets the stage by contrasting how social scientists and 
physical scientists approach modeling and define terms. Section 15.2 discusses how 
modern causal M&S can supplement traditional social-science methods. Sec-
tion 15.3 discusses how M&S can better aid strategic-level decision-making. 
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Stark differences of paradigm and terminology exist between two classes of
research. Class A is traditional physical science and most branches of engineering.
Class B is traditional social science, data science, and some aspects of engineering
(e.g., machine learning). Table 15.1 draws some contrasts. The dichotomy is
imperfect, exceptions exist, and some researchers straddle the classes, but under-
standing the distinctions is important. The following paragraphs elaborate on the
items of the table.
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Table 15.1 Contrasts 

Term Class A. Most physical science and 
engineering 

Class B. Most social science and data 
science 

Theory Coherent characterization of a system 
or broad phenomenon based on both 
empirical knowledge and logic 
Example: Newton’s laws, Quantum 
Mechanics 

A relatively general expression of 
relationships within a domain with an 
empirical basis 
Examples: Equilibrium economics or 
Prospect Theory in psychology 

Model (a) the application of theory to a 
problem context; 
(b) a useful but simplified version of 
theory; 
(c) a synonym for theory 

A hypothesized relationships in a 
given context; or notional 
relationships to be viewed 
skeptically; or a synonym for theory 

Explanation Description of how elements of a 
system affect each other, either at a 
time or in generating system behavior 
over time 
Examples: statistical-dynamics 
explanation of thermodynamics; 
Newton’s explanation of solar eclipse 

The fraction of variance predicted by 
the main terms of a regression 
Examples: demographic explanation 
of election results; explanation of 
Supreme Court verdicts based on its 
political composition 

Causal 
variables 

System variables that, if changed, can 
change other system variables 
Example: Flattening an object will 
cause increased drag and a slower 
rate of fall when the object is 
dropped in the atmosphere 

Observable variables that, if changed, 
are associated with subsequent 
changes in other observable variables 
Example: A teenager’s zip code 
predicts his or her future wealth 

Prediction System behavior expected from a 
causal model and its inputs 
Examples: Expected braking of an 
automobile; the expected safe 
landing of the Apollo Lunar Lander 
in 1969 

System behavior expected based on a 
historical-statistical model 
Example: Predicted frequency of 
fierce storms based on a regression 
model using historical data 

15.1.1 Theory 

To those trained in physics and classic engineering, theory is revered—it is what 
pulls together knowledge coherently in causal terms. Social science, despite some 
unifying themes [1], is more fragmented [2]. Social scientists are accustomed to 
having many competitive and even contradictory theories in a particular domain.



They are comfortable with this and attempt to choose the theory that is most useful 
to them. They are often skeptical about attempts to develop unifying theory because 
contextual matters are so crucial in social phenomena. In the current era of “big 
data,” some see empirical analysis as superior to theory and refer scornfully to 
theory, by which they have in mind what might be termed bad but pretentious 
theory, as when economic theory is derived rigorously from axioms that do not 
realistically describe the real world (Bookstaber [3], p.184). 
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15.1.2 Models 

A model is best seen as an application of theory to a particular problem and context, 
or as a useful simplification of theory. In practice, the terms “theory” and “model” 
are often used synonymously. In the physical sciences, however, models describe 
cause-effect relationships and sequences. In social science, they usually refer to a 
statistical association. 

15.1.3 Explanation 

Physical scientists explain phenomena with cause-effect relationships and sequences. 
Social scientists’ concept of “explanation” refers to how much of the scatter in 

data is accounted for by the explicit terms of their statistical model. Even Occam’s 
Razor is used differently across communities. To a social scientist, applying 
Occam’s Razor means preferring as few regression variables as needed to fit the 
data without over-fitting. Physical scientists have in mind Einstein’s interpretation 
of Occam’s Razor: using a model that is “as simple as possible, but not simpler” 
[emphasis added]. This means including variables that theory sees as important 
even if some of the variables are not easily measured and even if they have small 
effects for the particular cases on which empirical data exists. 

15.1.4 Causal Variables 

Although the social sciences are currently dominated by statistical methods, they 
would benefit from a rebalancing giving relatively more emphasis to causal models 
[2]. The argument for this has been made especially well by Judea Pearl, who notes 
the inability to discuss fundamental questions without resorting to causal models 
(e.g., questions such as “Why?” and “What if...?”) [4, 5]. Ideally, inquiry includes a 
mix of theory-driven and data-driven approaches [6]. 

15.1.5 Prediction 

Physical scientists see a predictive model as giving an accurate forecast of something 
before it happens (e.g., before next year’s eclipse). A social scientist, however, may



refer to a model as predictive if it describes accurately existing data that was not used 
in creating the model (the out-of-sample data). That is confusing because the model 
might very well not be predictive about future events if the system changes. 
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Table 15.2 Dimensions of model validity 

Dimensions Interpretation 

Description Identify salient structure, variables, and processes 

Causal 
explanation 

Identify causal variables and processes and describe reasons for behavior in 
corresponding terms 

Postdiction Explain past behavior quantitatively with inferences from causal theory 

Exploratory 
analysis 

Identify and parameterize causal variables and processes; estimate 
approximate system behavior as a function of those parameters and 
variations of model structure (coarse prediction) 

Prediction Predict system behavior accurately and even precisely (as assessed with 
empirical information) 

15.1.6 Evaluating Models 

How models should be judged also varies across discipline and subdisciplines. It is 
counterproductive to argue about a model’s validity without distinguishing among 
very different dimensions, as suggested in Table 15.2 [2]. A similar breakdown 
refers to the uses of models as reason, explain, design, communicate, act, predict, 
and explore (Page [7], p. 15). 

As an aside, an overlapping but different set of dimensions draws distinctions 
based on specification level. Does a model and the system it purports to describe 
agree at the level of the observation frame, input/output behavior, input/output 
function, state transition, or coupled components? This framework has been applied 
particularly for discrete-event and continuous simulation [8]. 

15.2 Supplementing Traditional Methods of Social 
Science (and Other Type-A Endeavors) 

It is one thing to use M&S as part of social-science inquiry. It is quite another to use 
it to aid strategic decision-making. Section 15.2.1 touches lightly on classic 
attempts to do so. Section 15.2.2 discusses newer themes, such as dealing with the 
special challenges of complex adaptive systems 

15.2.1 Classic System Methods 

M&S has been used since the 1950s for problem areas involving individual and 
social behaviors. Only a few aspects of this are mentioned here.



System Dynamics
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“System dynamics” refers generically to how systems change over time. “System 
Dynamics” (with capitals) originated with Jay W. Forrester at the Massachusetts 
Institute of Technology. It has been refined and nurtured for decades [9, 10, 11] and 
has a noted textbook [12], an international organization (the System Dynamics 
Society), a journal (System Dynamics Review), and a Web site with extensive 
resources https://www.systemdynamics.org. It has been applied successfully in 
countless studies. Although System Dynamics suffered from controversy after a 
1972 study on the Limits to Growth (see the 30-year update [13]), the study’s 
insights and even its predictions have held up well [14, 15]. 

By and large, System Dynamic models reflect social-behavioral considerations 
indirectly through deterministic influences on stocks and flows, feedbacks, and the 
parameter values thereof. With rare exceptions, it does not include agents. 

Soft System Thinking 
Another strand of system thinking has attempted to recognize human aspects of 
social-behavioral phenomena that fit uncomfortably in frameworks originating in 
rational-actor economics, control theory, or engineering. Historically, these have 
been more influential in Europe than the United States, as with the work of Peter 
Checkland [16] and texts on “soft OR” [17], but some American efforts are well 
known [18], sometimes under such different labels as methods for “learning 
organizations” [19]. As a related example of how trends may be changing, at least 
one graduate school of policy analysis is changing its core curriculum to reflect the 
nature of complex adaptive systems and lessons learned from past often-failed 
efforts to intervene effectively in such systems [20]. 

Multiple Types of Modeling 
One consensus has long been that social scientists and policy analysts should 
employ a wide range of modeling methods, depending on the nature and context of 
their work [7, 21] 

15.2.2 Newer Themes 

15.2.2.1 Qualitative Modeling 
Social scientists understand a great deal about phenomena that resist precise 
description because the variables in question are often hard to observe directly, 
because hidden variables create variation, and for other reasons. Nonetheless, much 
can be described well with qualitative models—as in system diagrams, tables, or other 
mechanisms [16, 22]. Narrative analysis can be seen as a powerful use of qualitative 
modeling [23]. So also, human gaming (as distinct from game theory) can be seen as a 
kind of M&S that lacks some kinds of rigor (e.g., precise reproducibility), but can 
illuminate such factors as player values, mental models used by the players, and the 
ways in which humans adapt creatively to circumstances [24, 25].

https://www.systemdynamics.org
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15.2.2.2 Agent-Based Generative Modeling (and Inverse 
Generative Modeling) 

The advent of agent-based modeling (ABM) was a particularly consequential 
development for the use of models in social science. An early book by Joshua 
Epstein and Robert Axtell sketched a revolutionary vision for simulating societal 
phenomena [26]. The authors noted that we need models that truly explain 
social-behavioral phenomena and that this requires the modeler to be able to 
generate the observed behavior in detail [26, 27], preferably from the bottom 
up. Much progress has been made in ABM technology since then. It has become 
accessible to researchers with relatively simple languages such as NetLogo [28] and 
more heavy-duty systems such as RePast-Symphony [29]. Many platforms exist 
with different strengths and weaknesses [30]. A good Web site of ABM-related 
resources exists with particular emphasis on economics http://www2.econ.iastate. 
edu/tesfatsi/. 

At this point, a plethora of generative models exist that purport to explain 
social-behavioral phenomena. A deep problem, however, is that different 
agent-level rule sets can generate the same macroscopic behavior. How do we better 
understand which of these rule sets is best? That is the challenge of “inverse 
generative modeling.” An important start on meeting that challenge is described in 
the Agent Zero work of Joshua Epstein [31]. 

15.3 Aiding Strategic Decision-Making 

If M&S is to be effective in decision-aiding on problems with social-behavioral 
aspects, as distinct from merely being a rich source of insight for science, it needs to 
be designed accordingly. In particular, it needs to reflect the major advances that 
have occurred over the last 25 years in dealing effectively with uncertainty and 
disagreement. Table 15.3 summarizes related admonitions [32]. The following 
sections elaborate on three themes: dealing with uncertainty, designing models for 
exploratory analysis, and seeing simulation as a mechanism for helping policy 
makers learn and prepare, rather than as a tool of prediction. 

15.3.1 Dealing with Uncertainty and Disagreement 

A core concept of much modern work has been seeking courses of action likely to 
perform well across a wide range of assumptions, i.e., in any of a wide range of 
futures. This is by contrast with seeking to optimize a plan for a particular set of 
assumptions. It is also in contrast with considering uncertainties on the margin by 
varying assumptions one at a time. Exploratory analysis may, for example, test a 
strategy across the full space of cases or scenarios generated by changing all model 
inputs simultaneously. It was difficult to pursue such a strategy 30 years ago when it 
was first proposed [33], but the technological hurdles have tumbled. Equally 
important, the concepts and analytical techniques have improved.

http://www2.econ.iastate.edu/tesfatsi/
http://www2.econ.iastate.edu/tesfatsi/
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Table 15.3 Admonitions about making M&S useful in aiding decision-making 

Admonition for social-behavioral modelers 
and analysts 

Comment 

Begin with campaign plan for analysis and 
decision-aiding 

Plan to exploit diverse methods, tools, and 
information sources. Include interactive 
methods for discovery, testing, and education 

Use system approach to comprehend the 
whole and to frame the problems within it 

See the whole and interactions of its parts. 
Include all relevant factors, variables, and 
processes 

Use causal models Understand, reason, and communicate 

Recognize different classes of system state: 
use different models or variable structure 
models 

Account for changes in character of system, 
including emergent phenomena 

Use data to test, inform, and calibrate causal 
models 

Use theory-informed approach to data 
analysis, but also encourage competition to 
challenge existing theories and allow 
data-driven approaches to show their virtues 

Construct multi-resolution models or model 
families 

View issues at deeper level to avoid blunders 
and at higher level to see simplifications 

Design from outset for exploratory analysis 
of uncertainties and disagreements 

Understand where intervention is and is not 
feasible, controllable, and valuable; 
understand vulnerabilities; anticipate possible 
problems; plan for adaptation (requires ability 
to explore at low resolution and to zoom as 
appropriate) 

Generate uncertainty sensitive outputs Go beyond “what-if? Questions” with region 
plots, tradeoff curves, phase diagrams, and 
other devices 

See decision-aiding as helping people 
understand the system, game board, and 
moves, rather than to predict the future 

Move from predict-and-act paradigm to 
paradigm of exploring possibilities and 
planning for flexibility, adaptiveness, and 
robustness (FARness) (planning for 
adaptiveness for short) 

These have applied not just to narrow planning, but to strategic planning that 
involves choosing among alternative portfolios of action necessary for strategic 
planning [34, 35]. In recent years, the newer approaches have been pursued under 
the rubric of Robust Decision-making (RDM) [36] and have exploited advances in 
model composition, data mining, and other techniques. A recent book provides an 
overview and a sampling of past applications related primarily to climate change 
and water management [37]. A related international organization, the Society for 
Decision making Under Deep Uncertainty, is young and vibrant. Its Web site is 
http://www.deepuncertainty.org. 

Two admonitions from Table 15.3 perhaps merit elaboration. The first is the 
need to design from the outset for broad multidimensional uncertainty analysis. 
Although it is easy enough with standard simulations to conduct traditional sen-
sitivity analysis, it is quite another matter to conduct exploratory analysis across the 
multidimensional input space.

http://www.deepuncertainty.org
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15.3.2 Designing for Exploratory Analysis 

What does such designing-from-the-outset look like in M&S? It likely includes 
multi-resolution modeling (MRM) so that relatively simple models can be used for 
broad exploration, followed by more detailed exploration on selected matters as 
necessary [32]. Increasingly, it should also include ambitious architectures with 
self-aware and self-adapting characters [38, 39]. 

A core concept here is that policy makers need to be able to reason about the 
decisions they are making [35]. They will seldom want merely to follow the advice 
of some unfathomable algorithm. To reason, however, they need a model with a 
small number of top-level variables (e.g., 3 or 5 rather than 10, 100, or 1000). This 
puts a premium on relatively simple high-level causal models. The simplified 
models are good for broad, exploratory analysis, but not for understanding deeper 
issues. For that, one needs analysis that zooms into detail where detail is warranted. 
In some cases, decision aids can be designed for real-time zooming into detail. In 
other cases, the detail can be provided as back-up material. It should, however, be 
available at the time policy makers are reasoning, so that if they have penetrating 
questions, those questions can be answered immediately. 

Having such MRM capability is often feasible in applications, but it is far easier 
to attain if the capability is sought from the outset and the models are built 
accordingly. Further, it is essential to recognize that the lower resolution models are 
necessarily approximations, which should be tailored to the application and its 
context. Being able to generate such good approximations requires deeper 
knowledge and an understanding of how to project deeper knowledge into a 
lower-dimensionality depiction. Human beings do such skillful aggregation con-
stantly in everyday life without being consciously aware of doing so. It is relatively 
uncommon, however, for modelers to think much about it. Instead, they may 
assume, for example, that simple averaging is a good aggregation. Systematic 
methods for “good” context-dependent aggregation have yet to be developed and 
built into tools. 

15.3.3 Designing Decision Aids with Education 
and Experience-Building in Mind 

It is tempting to believe that M&S should aid policy makers by providing accurate 
predictions upon demand and, with that in mind, to build detailed data bases with 
the best available information and models representing the best estimate of how the 
world works. 

When dealing with complex systems, however, and particularly complex 
adaptive systems (CAS), that approach is misguided. Uncertainties and disagree-
ments dominate—about data and even about model structure [40]. Just as 
exploratory analysis is preferred to point prediction, so also decision-aiding should 
help the policy maker navigate, orient, and operate despite such complications [41, 
42]. This is akin to having flight simulators when training pilots: No one knows



precisely what circumstances a pilot may encounter, so the pilot should be good at 
characterizing circumstances and adapting to those that arise. Such skills can be 
obtained with “many hours on the simulator.” Interestingly, strong policy makers 
are often comfortable with this: They understand that uncertainties make firm 
predictions implausible and that they will have to make recurring decisions with 
only partial knowledge and with a variety of constraints reflecting disagreements 
and conflicting considerations at the time. With experience, however, they can 
become much better at navigating such turbulent seas. Lest this point be missed, the 
reader should note how different this paradigm is from running a computer model 
for best-estimate cases and presenting results to the policy maker. 
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Keywords

The discussion of philosophical topics only recently resurfaced within the profes-
sional modeling and simulation (M&S) societies. The ideas themselves are not new 
at all and have deep roots, often interwoven with discussions about ethics and the 
responsibility of the simulationist to clearly communicate the opportunities, but also 
to constraints and dangers of simulation, and today, this is more important than 
before, as our simulations are becoming more and more realistic, and users without 
a strong computational background can often no longer distinguish between the real 
and the virtual world, experiments conducted in both, and what they mean for 
knowledge generated from conducting and evaluating this experiments. Episte-
mology is the branch of philosophy that copes with the question of how to gain new 
knowledge within a discipline. It is deeply connected with ontology, the question of 
how to capture knowledge. This first subsection on epistemology will introduce the 
concepts and definitions and dive a little bit deeper into the importance of ontology 
and epistemology for simulation and vice versa. 

16.1.1 Concepts and Definitions

including some idea about the role of ontologies as well. A timeline on scientific 
research and method development shows how simulation contributes to 
scientific research methods. This leads to the section dealing with the challenge 
of what type of knowledge can be acquired from simulation—the core question 
of epistemology. Additional sections investigate criteria for acceptance and 
hypothesis/proposing explanation in simulations. After working out differences 
of simulation and experience as well as simulation and experiments, the chapter 
concludes with observations on M&S as a discipline.
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Modeling and simulation . Epistemology of simulation . Ontology for 
simulation . Scientific method . M&S as a discipline 

16.1 Philosophical Discussion of Simulation Epistemology 

Andreas Tolk and Ernest H. Page 

This chapter is interested in the use of ontology and epistemology in support of 
M&S. Both terms are derived from the realm of philosophy but have also strong 
computer science applications. Ontology and epistemology pose the questions of 
what we know and how we can gain knowledge. As such, more than just a short 
definition is in order.
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16.1.1.1 Ontology 
Ontology is the study of being or the study of what exists. According to Kienzle [1], 
the concern of ontology is with reality: What are things made of, how many kinds 
of things are there, and what is the relation between mind and matter? According to 
Feibleman [2]: 

Ontology is the widest system in any finite set of systems. It would perforce have to be an 
abstract body of knowledge and make the claim to truth. This could be either a tentative or 
an absolute claim. Its own terms of description are the categories of traditional metaphysics. 
The definition of Bentham, that the field of ontology is the field of supremely abstract 
entities, refers to these categories; in modern logical and mathematical systems we would 
call these categories the undefined terms employed in the unproved propositions which 
constitute the postulates of the system. There is no official ontology and contending 
ontologies must support their claims on the basis of the same criteria used by other kinds of 
system: consistency, completeness, and applicability. Rival ontologies exist theoretically 
and practically and assert both abstractly and concretely their respective claims. 

From this excerpt, it can be observed that ontology is the description of reality. 
As we are discussing philosophy in this section, the question what reality itself is 
may have to be addressed as well. Very generally, the concept of reality can be 
divided in positivistic and post-positivistic views. Positivism assumes that we 
experience reality and can understand it through experiments and collection of 
empirical data. In post-positivistic science views, reality is understood as 
unknowable and indescribable, exemplified by the case of the supreme abstract 
entities, and we have access to different realities which are described under different 
ontologies. The wider the ontology, the closer the ontology is to be to reality, and a 
claim made in this ontology is going to be considered an absolute claim. Although 
each ontology for each model must be consistent, we cannot assume that all model 
ontologies describing the same reference also are derived from one common 
ontology that describes one reality. They may differ substantially, in particular in 
soft science (but, as we know, also in micro- and macro-scale of physical sciences). 

Ontologically, we perceive in substantive or process terms [3]. Substantive 
ontology focuses on describing what something is, in terms of its parts and relations 
among parts. Process ontology focuses on describing how something is done. 
However, we describe processes in substantive terms. This can be explained from 
the perspective that the only way of observing how something is done is by 
observing the states of how something is transformed. Yet, this transformation is 
still a description of the thing itself and not on the undergone process. 

16.1.1.2 Epistemology 
Epistemology is the study of how we come to know. Epistemological beliefs are 
individual’s belief about the definition of knowledge, how knowledge is con-
structed, how knowledge is evaluated, where knowledge resides, and how knowl-
edge occurs. Epistemology seeks to answer the question: What can be considered 
knowledge, and how do we derive or create new knowledge? The answer to this 
question, formulated by the ancient Greeks, is still in debate today with a no clear 
consensus in sight. Epistemologically, a satisfactory definition of knowledge is that



16.1.2 Ontology and Simulation

. Benjamin et al. [6] are among the first to publish about the possibility to address

of justified true belief “with conditions.” These conditions remark where justified 
true belief cannot be considered knowledge. Pragmatically, epistemology focuses 
on the validity of knowledge, considering, its sources, how it is justified, and under 
what conditions claims can truly be considered knowledge. 

Epistemologically, we come to know through empirical or rational means. 
Empirically, we come to know through correspondence; what an individual 
perceives through his/her senses and it can be proven scientifically or accepted 
through pragmatical means is accepted as knowledge. Rationally, we come to know 
through coherence; what an individual creates in his/her mind, whether initiated by 
observation, and can be explained within a system of premises is accepted as 
knowledge. Both currents are accepted in the body of knowledge, and both have 
supporters and detractors. Biologists and experimental physicists, for instance, 
abide by seeking knowledge through empirical means. Mathematicians and M&S 
researchers, on the other hand, abide by seeking knowledge through rational means. 
For the conceptualization of a model, the epistemological constraints can therefore 
easily become very relevant when it comes to identification and selection of 
compassable solutions. 
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The archives of professional simulation societies comprise many contributions on 
ontology and simulation. However, most of them are more technologically than 
philosophically oriented. They apply ontologies to describe simulation systems or 
capture application domains using ontological means that help the simulation 
engineer to get access easier to this domain. As discussed in Robinson et al. [4], this 
use of ontologies is a valuable contribution, as it allows to unambiguously capture 
the result of the conceptualization process leading to a simulation. After all, these 
ontologies address methodological as well as referential questions [5]. Method-
ological ontologies capture knowledge about “how to model,” which means they 
focus on modeling paradigms, techniques, and formalisms. Conversely, referential 
ontologies capture knowledge about “what to model,” which means they model the 
referents and relations of the application domain. 

There are a couple of contributions that shall be used as examples of current 
research and development efforts important for the body of knowledge. This enu-
meration can neither be exclusive nor complete and requires to be updated from 
time to time. 

technical challenges in distributed simulation modeling using a generalizable 
ontology-based framework instead of a domain-specific solution. This work was 
inspired by the earlier discussion on composability of simulation components, 
which had been proven to require more transparency of the components to be 
composed.



Examples for methodological ontologies are the Discrete-event M&S Ontology

.

Simulations are based on models. These models are a purposeful abstractions

16.1.3 Epistemology of Simulation
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. 
(DeMO) [7] or the Component-oriented Simulation and Modeling Ontology 
(COSMO) [8]. 
The System Entity Structure (SES) provides a high-level ontology introduced for 
knowledge representation of decomposition, taxonomy, and coupling of systems 
based on system-theoretic principles [9]. The proximity to the simulation for-
malism DEVS, captured in its own sections of this compendium, allows the 
structural and dynamic representation of systems using SES describing the 
structure, and DEVS the dynamic of the components as well as the composed 
system. SES is applied in several recent research efforts in many application 
domains, such as cyber-physical systems. 

and simplifications of a perception of reality; it is the result of the conceptualization. 
Ontologies are conceptualizations as well, so they are strong candidates to play a 
stronger role within the M&S domains. Gruber [10] defined an ontology to be an 
“explicit specification of a conceptualization,” and Borst [11] defined an ontology 
even stronger as a “formal specification of a shared conceptualization.” The value 
of formal specifications is that they support the construction of proofs regarding 
underlying properties of a specification, so that in many cases validity of formal 
specifications can be mathematically proved, plus they are machine readable. (Per 
the incompleteness theorem of Gödel, there can be true properties of a specification 
that cannot be proven. In that sense, validity is not provable per se. However, the 
general insolvability of this problem should not be used as an excuse not to do it 
where possible.) As such, they can provide for the transparency required for the 
conceptual alignment of conceptual representation, as it has shown to be needed for 
new concepts, such as M&S as a Service. 

The question on how to create knowledge using M&S has been discussed for at 
least two decades, but predominantly in the philosophy of science community. The 
use of models is well established in the scientific community. Scientists have 
always used models of the world to capture knowledge. Over time, in properly 
organized processes of inquiry, they modify the models, making them better, 
adding attributes or relations, implementing new processes, and overall improving 
accuracy and fidelity. In his philosophical primer, Gelfert [12] overserves that the 
heterogeneity of models in science and the diversity of their uses and functions are 
nowadays widely acknowledged. 

The use of simulation, however, is not as widely recognized as a possible 
epistemological method or tool. Winsberg [13] was among the first scientist to 
systematically deal with this challenge. A workshop on epistemology of simulation 
(EPOS) was organized by Professor Frank and Professor Troitzsch at the University 
of Koblenz in 2004. This workshop was among the first attempts to bring natural



and social scientists, philosophers, and computer scientists together to address their 
common epistemological and methodological issues [14]. Several EPOS workshops 
followed, and their results were evaluated by Grune-Yanoff and Weirich [15] in a  
systematic review. At the same time, Winsberg [16] summarized his research on 
these topics in his book. Within the Society for Modeling and Simulation, an expert 
panel during the Winter Simulation Conference [17] introduced some of these ideas 
to the broader community. 

The core ideas of epistemology of simulation can be summarized as follows. 
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Computer simulations are computer programs. As such, they follow the constraints 
and limitations of computation, including fundamental insights as captured in the 
Church-Turing thesis or Gödel’s incompleteness theorem. Simulations cannot 
overcome them. However, simulation allows us to capture concepts by its axioms 
and rules in an executable form. This forces scientist and researchers to be very 
precise when formulating theories. When doing so, computational science is the 
result. Ken Wilson’s discoveries about phase changes in materials using simulation 
earned him a Nobel Prize in physics [18]. The discovery of the Higgs boson 
elementary particle [19], in which simulation was successfully used to guide 
experiments to allow for successful observations, is another example of computa-
tional science success. The simulation comprised all aspects of the guiding theory 
and therefore could help to look exactly where the theory predicted certain events to 
occur so that the scientists could focus their observations of the real world 
accordingly. 

These core ideas also hint to three potential pitfalls when using simulation-based 
experiments in lieu of real-world experiments. First, simulations capture all the 
available knowledge in an executable form, but that implies that only what has been 
captured will also be executed. The simulation-based experiment cannot reveal 
some new insight into a phenomenon that was not captured by the algorithms or the 
input data for the simulation. Therefore, if an important factor, relation, or process 
required for a discovery is not modeled, the simulation cannot support the desired 
discovery, which leads to the second pitfall, hermeneutical mistakes. Scientists 
using simulation-based experiments must constrain their interpretations to what is 
in the model and not what they expect following their worldview. While episte-
mological mistakes happen when we do not model important aspects of the research 
questions, hermeneutical mistakes interpret something into simulation results that is 
not included in the model. Finally, simulation-based experiment can result in 
regress, which is a series of statements in which a logical procedure is continually 
reapplied to its own result without approaching a useful conclusion. When we test a 
hypothesis by implementing it as a simulation and then use the simulated data in 
lieu of empirical data as supporting evidence justifying the propositions, we are 
actually only proving that we build a correct simulation of the hypothesis, not that 
the hypothesis itself is true. 

It is the task of the simulation engineer to ensure that these pitfalls are avoided 
and the simulation is only applied and interpreted within its validity constraints. 
This requires a solid understanding of the philosophical underpinnings of simula-
tion that could only be touched in this short summary.



Andreas Tolk

Scientific research methods adapted and improved over the centuries. Our under-
standing of the scientifi c method is relatively young, as described by Goldman [20].
It generally is understood to have started 500 years ago, when two scientists shaped 
our understanding of what science knows, and how we can increase this knowl-
edge: Sir Francis Bacon in England and René Descartes in France. 

Sir Francis Bacon (1561–1626) is considered the father of the inductive-
empirical method. He postulated that knowledge can only be derived by observa-
tion and data collection. Only that which can be observed should be the subject of 
science. Parallel to these efforts, René Descartes (1596–1650) defined the 
deductive-rational method. It assumes that a world order of physical laws can be
described by mathematical models that are the basis of knowledge. Observations 
and data validate knowledge. 

more than 200 years and is still the foundation of high school physics. Newton

16.2 Scientific Research Methods and Simulation 
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The introduction to the epistemology of simulation in the previous section 
provided the philosophical foundation on how to gain knowledge using simulation. 
In this section, a short historical timeline on scientific research methods through the 
lens of simulationists is given before evaluating further how simulation is used in 
support of scientifi c research today.

16.2.1 A Timeline of Scientific Research Method 
Developments 

These two competing visions of the scientific methods, also known as Baconian 
Empiricism and Cartesian Rationalism, were unified in the work of Sir Isaac 
Newton (1642–1727). His work on “Mathematical Principles of Natural Philoso-
phy” (original 1687 in Latin, Newton et al. [21]) was the standard literature for 

utilized mathematical models that allowed for coherent and consistent interpretation 
of observations. In other words, he used models for the conceptualization of 
experience generalizing observations and validated them by empirical observations. 
The work of Newton was continued by John Locke (1632–1704) and David Hume 
(1711–1776), who introduced the ideas of skepticism and challenges of inductive 
reasoning. They asked the question: On what evidence can we assume that our 
experiences are universal or even repeatable in the future? Immanuel Kant (1724– 
1804) reintroduced a kind of certainty and stability with his cosmological theory. 
His “Universal Natural History and Theory of the Heavens” (original 1755, Kant 
and Jaki [22]) provided a renewed foundation for rationalism. 

The nineteenth century focused on the application of science within many 
engineering efforts. Theory often took a backseat to application. At the same time, 
scientist started to focus on basic principles. In the twentieth century, Bertrand 
Russell (1872–1970), Henri Poincaré (1854–1912), and Percy Bridgman (1882–



1961) agreed on the principles that scientific knowledge is not about reality, but 
focuses more on common concepts, how to measure them, and how to express 
them. Mathematical logic was the common language to express these concepts. 
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Science was interpreted as a commonly conceptualized and experiential world, 
expressed by models based on logic. Their work became the foundation of logical 
positivism, embracing the idea that only science can provide a rational account of 
the world. In their view, truth was driven by a physical-deterministic account of 
reality. 

This viewpoint was shaken by Albert Einstein (1879–1955) and Niels Bohr 
(1885–1962) with their relativity theory and quantum theory. The work of Werner 
Heisenberg (1901–1976) and Erwin Rudolf Josef Alexander Schrödinger (1887– 
1961) added to the new challenges: Scientific theories had become so complex and 
often argued against empirical observations of the daily life. As a result, scientific 
theories were no longer understood as a converging process getting closer and 
closer to reality, but a discontinuous and even revolutionary process, in which 
old theories were replaced by new ones in a non-convergent but progressive 
process [23]. 

The philosophical underpinnings of the philosophy of science were also shaken 
during this period. After the devastating events of two world wars, the waning 
influence and often perceived loss of credibility of religious worldviews, and even 
disappointment with alternative secular worldviews, several philosophers of science 
started to question the objective role of science to search for reality and serve 
mankind by allowing scientific progress. Michel Foucault (1926–1984), Jacques 
Derrida (1930–2004), and Jean- François Lyotard (1924–1998) provided the jus-
tification for postmodernism in their work, which arose in various forms but can be 
characterized by radical skepticism of the possibility of obtaining objective 
knowledge. Relativism and constructivism, the idea that scientific knowledge is a 
mere social construction and knowledge must always be understood in a social 
context, influenced not only the social sciences, but quickly took root in the 
humanities and the broader philosophical foundations. The ideas did lead to the 
development of critical theories, that mainly address the misuse of science and the 
scientific method in favor of currently ruling classes and the need to deconstruct 
“scientific findings” that are rooted in too much bias resulting from such 
misuse [24]. 

However, despite the criticism of variants of the scientific method, the role of 
modeling has not diminished. The definition of modeling as a task-driven pur-
poseful simplification and abstraction of a perception of reality holds under all 
paradigms and allows for communication between scientists across the borders of 
paradigms and belief systems. As stated by Robert [25]: “I have been, and remain, 
entirely committed to the idea that modeling is the essence of science and the 
habitat of all epistemology.”



While modeling as the process to provide a conceptualization was essential to the
scientific methods since Newton, computer simulation had to wait for the necessary
computational power to be available, which started to build up since the middle of 
the last century. As simulation allows to execute the conceptualization, this also 
allowed to bring theories to life. As discussed in Tolk [26], computational sciences 
are applied in archeology, biology, chemistry, materials science, economics, elec-
tromagnetics, engineering, finance, fluid dynamics, forensics, geophysics, history, 
informatics, intelligence, law, linguistics, mathematics, mechanics, neuroscience, 
particle physics, physics, sociology, statistics, and more. They all have in common 
that they use a conceptualization of their field to execute them; in other words, they 
are conducting simulations. The discovery of the Higgs boson particle was already 
mentioned in the last section. A more recent example is the use of supercomputers 
to analyze Covid-19 data leading to significant supporting observations for the 
Bradykinin hypothesis [27]. Using the Summit supercomputer at Oak Ridge 
National Lab in Tennessee, scientists analyzed more than 40,000 genes from 17,000 
genetic samples trying to better understand the effects of Covid-19. Models of how 
the virus enters the human body and affects and utilizes human enzymes were used 
to compute effect predictions that could be verified by observation. The simulation 
shows how the SARS-CoV-2 virus consequently leads to the so far hypothesized 
Bradykinin Storm, which is an increased level of the bradykinin molecule in the 
cells, resulting in changes of diverse body functions on the organ level. These 
insights can explain many of the Covid-19 symptoms and even more important 
support the research for better treatment and even prevention. 

In summary, while modeling has been tightly interwoven with the scientific 
method for centuries, the increase of computational power enabled the use of 
simulation to drive computational sciences and increased their role for gaining new 
insights as well as educating students using the power of immersive visualization of 
the underlying dynamics. 

Whereas the heterogeneity of models in science and the diversity of their uses and functions
are nowadays widely acknowledged, what has perhaps been overlooked is that not only do 
models come in various forms and shapes and may be used for all sorts of purposes, but 
they also give unity to this diversity by mediating not just between theory and data, but also 
between the different kinds of relations into which we enter with the world. Models, then,
are not simply neutral tools that we use at will to represent aspects of the world; they both

16.2.2 The Increasing Role of Simulation with the Scientific 
Methods 
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16.2.3 Modern Role of Models in the Scientific Method 

The modern role of models in science has been described in detail by the 
philosopher of science Gelfert [12], who observes in his philosophical primer on
models in the summery the following:



In one of the first sections of this book, Sect. 1.4.2, the entities of the Modeling and
Simulation Framework were introduced. Although many textbooks start with the
development of a conceptual model that is then transformed into a computer 
simulation, the experimental frame that encapsulates the source system, real or 
imagined, is pivotal when it comes to simulation-based experiments. A model is a 
task-driven abstraction and simplification, and it is the experimental that specifies 
the conditions under which the system is observed or experimented with. Like 
understanding the environment of a real-world experiment and excluding all 
unwanted effects from its context, so defines the experimental frame the context for 
the model. This is extremely important for simulation-based experiments, as the
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constrain and enable our knowledge and experience of the world around us: models are 
mediators, contributors, and enablers of scientific knowledge, all at the same time. (Gelfert 
[12], p. 127). 

In other words, models are used in the scientific community as mediators, 
contributors, and enablers of scientific knowledge, contributing to the compre-
hensive and concise representation of concepts, terms, and activities that make up 
the scientific domain, also known as the body of knowledge. They allow to com-
prehend, share, and reproduce research results, presenting theories in a more gen-
erally comprehensible and testable form. Modeling is intrinsically tied to scientific 
work. 

It is this view that also shows the potential to support multidisciplinary team. 
Current big challenges often require that experts from multiple disciplines have to 
collaborate on a solution, and some of the disciplines differ significantly in the 
methods and tools, sometimes even terms used. The aspect of hybrid modeling, as 
discussed in other sections of this book as well, supports the use of different 
modeling paradigms in a coherent way to support a common research goal. Tolk 
et al. [28] showed how this approach can enable transdisciplinary research. 

Finally, we are increasingly facing challenges that are defined by conditions 
“where analysts do not know, or the parties to a decision cannot agree on, (1) the 
appropriate conceptual models that describe the relationships among the key 
driving forces that will shape the long-term future, (2) the probability distributions 
used to represent uncertainty about key variables and parameters in the mathe-
matical representations of these conceptual models, and/or (3) how to value the 
desirability of alternative outcomes [29].” Lempert and colleagues call this deep 
uncertainty, and the usual parametric variations and sensitivity analyses are not 
sufficient to address them. Marchau and colleagues [30] edited a recent book that 
provides various examples how to use families and hierarchies of models and 
simulations to conduct exploratory modeling and analysis to gain a better insight 
into the topology of the solution space under various assumptions. 

16.2.4 Simulation-Based Experiments Supporting Scientific 
Methods 



model becomes the reality of the simulation: Whatever is excluded from the model 
cannot be observed or influence the simulation. If we exclude something important 
in our model, it cannot be observed in the simulation. This is an epistemological 
error. The counterpart is that we also cannot interpret simulation results by using 
something that has not been part of the context. This would be a hermeneutical 
error. Simulation experts must ensure that both kinds of mistakes are avoided: that 
everything important to address a challenge is modeled and that nothing is used in 
the interpretation of results that is not part of the model. 

Despite these nontrivial challenges, simulation has matured to a point where it is 
widely accepted as an analysis and design tool complementary to theoretical con-
siderations and experimental investigations, becoming the third pillar of gaining 
scientific knowledge. In his work, Ihrig [31] proposes a framework bringing theory 
building, simulation, and experimentation into the common context of epistemo-
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logical insight, as captured in Fig. 15.1. 

. In the theoretic setting, shown on the left side of the figure, propositions are 
derived from an existing theory, which also drives the design. 

. In the experimental setting, shown on the right side of the figure, the real-world 
issue provides access to the empirical data and also is the source for the desired 
insights.

. In the simulation setting, the model provides the simulated data within the 
context of the simulation environment. Figure 16.1 

Ihirig [31] shows that these settings provide a consistent reference frame to 
understand simulation experiments in the context of the conventional research 
approach, pointing also to the duality of simulation experiments: Looking at sim-
ulation from the theoretic settings, it is perceived as a possibility to conduct 
experiments. From the experimentation side, a simulation can be perceived as a
theory capturing tool, opening the possibility to understand simulation systems as a 
good way to capture knowledge.

Fig. 16.1 Research Architecture proposed by Ihrig [31]



16.2.5 Conclusion on the Role of Modeling and Simulation 

We started this section on “Scientific Research Methods and Simulation” with a 
short and simulation-focused view on the history of scientific methods, showing 
that models play an essential role in science general. We closed it with the
observation that simulation can be justified to be part of the knowledge repository
gained by such work.
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However, a word of caution is in order as well. As discussed, each model is a 
simplification and abstraction of reality, and the model becomes the reality of the 
simulation. A simulation is therefore highly unlikely to represent all aspects of a 
systems, which is easily forgotten when the simulation drives a high-resolution, 
immersive environment that makes it feel very realistic. The context of validity is 
more important than ever, particularly when the user of the simulation is taking the 
results as face value. 

Furthermore, there is the possibility of regress, as discussed in Tolk [32]. The 
danger of the simulationist’s regress is that predictions are based on a hypothesis, 
and then, the implementation of the hypothesis in form of the simulation system is 
used to conduct a simulation experiment that is then used as supporting evidence 
that the hypothesis is true. In other words, we test a hypothesis by implementing it 
as a simulation and then use the simulated data in lieu of empirical data as sup-
porting evidence justifying the propositions: We create a series of statements—the 
hypothesis, the simulation, and the resulting simulated data—in which a logical 
procedure is continually reapplied to its own result! By assuming we are right, we 
show that we are correct! Particularly when addressing challenging problems in the 
social and philosophical realm, like social justice or the effects of climate change, or 
recently the effects of a pandemic and possible countermeasures, moral and epis-
temological considerations are deeply intertwined. In such conditions, it is human 
nature to cherry-pick the results and data that support the own worldview [33]. 
Simulationists are not immune to this, and they can implement their beliefs into a 
complex simulation system. This simulation system can then be used by others to 
gain quasi-empirical numerical insight into the behavior of the described complex 
system. As a result, the implemented worldview of the simulationist can easily be 
confused with a surrogate for real-world experiments. 

In summary, the connections of modeling, simulation, and the scientific methods 
are stronger than ever before, and simulation is playing an increasing role in 
understanding and communicating results in this context. It is the role of the 
simulation expert to ensure that this is conducted within the context of validity, as 
captured in the code of ethics.



Simulations come in many flavors and formalisms. The definition adopted in this
BoK in Sect. 1.1 (scope) states simulations have three aspects: (1) perform
experiments, (2) gain experience for training to gain/enhance skills, or for enter-
tainment, and (3) imitation, pretense. Moreover, for scope purposes, this BoK 
delimits that solely experiment and experimentation aspects are within the scope of 
this study. A further extension on that concept says that “simulation is providing 
experience under controlled conditions for training, i.e., for gaining/enhancing 
competence in one of the three types of skills: (1) motor skills (virtual simulation or
use of simulators), (2) decision and/or communication skills (constructive simula-
tion such as business games, war games, or peace games; aka serious games), and 
(3) operational skills (live simulation). We then can sum this discussion of three 
aspects: knowledge, experience, and experiments. Experiments will be further 
elaborated in Sect. 16.4. Hence, this discussion will focus on knowledge and 
experience. 
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16.3 What Type of Knowledge Can Be Acquired 
from Simulation? 

Valdemar Vicente Graciano Neto 

From a pragmatic point of view, knowledge involves (i) facts, information, and 
skills acquired through experience or education and the theoretical or practical 
understanding of a subject or (ii) awareness or familiarity gained by experience of a 
fact or situation [34]. However, from an information science perspective, knowl-
edge is a more elaborated network of linked findings obtained from (scientific) 
discoveries and the highest form an information can assume [35]. 

Simulations have actually been source of knowledge from several sciences 
precisely by enabling the simulation consumer to (i) acquire skills, such as driving
and piloting skills in airplanes or car simulators, (ii) reveal (theoretical or practical) 
understanding based on the elaboration of a simulation model or by data being 
consumed by the simulation (such as in black hole simulation), (iii) draw conclu-
sions on a physical model, such as the feasibility of a structure in civil architecting 
and engineering simulators, (iv) predict the feasibility of organic structures, such as 
in simulation of synthesis of chemical molecules, (v) anticipate properties of a
non-existent system, such as quality attributes of a novel spacecraft system, and 
(vi) predict patterns and emergent properties, such as birds grouping phenomenon. 

The knowledge that can be acquired from a simulation is then related to the level 
of details and trustworthiness of the model being simulated. As detailed is a model 
as diversified is the number and types of information (and knowledge) that can be 
acquired from that simulation model.



Acceptance in science is generally provisional because new information may
prompt re-evaluation [36]. The criteria for acceptance depend on the type of can-
didate; the criteria for acceptance of a hypothesis differ from the criteria for 
acceptance of a model. 

396 A. Tolk et al.

16.4 Criteria for Provisional Acceptance in Science: 
Objectivity, Completeness, and Reproducibility 

Paul Weirich 

Acceptance has various senses [37]. In frequentist statistics, acceptance of a 
hypothesis occurs if the result of a statistical test does not lead to rejection of the 
hypothesis. Rejection occurs if the result’s type is suffi ciently improbable given the
hypothesis. In another sense, acceptance of a hypothesis is voluntary endorsement 
of the hypothesis and entails belief that the hypothesis is true and a readiness to act 
on the basis of the hypothesis. The standards for acceptance of the hypothesis may 
depend on the gravity of the mistake of accepting the hypothesis when it is false and
the mistake of not accepting the hypothesis when it is true [38]. 

In science, acceptance of a hypothesis is warranted only if the hypothesis is 
objective in the sense of being scientifically testable, and testing has yielded evi-
dence that makes the hypothesis sufficiently probable considering the context, and 
so confirms the hypothesis [39]. Presentation of the hypothesis and its support 
should be complete, and acceptance is warranted only if the evidence supporting the 
hypothesis is extensive enough that collection of additional evidence is unlikely to 
undermine support for the hypothesis. Moreover, acceptance is warranted only if
the evidence, if gathered from a test, is robust in the sense that the type of result 
obtained from the test recurs in repetitions of the test, and so is reproducible. 

The criteria for acceptance of a model of a phenomenon depend on whether the 
model is proposed as an approximate description of the phenomenon, a means of 
approximately predicting the phenomenon, or a partial explanation of the phe-
nomenon. For acceptance as an approximate description of the phenomenon, the 
criteria are similar to those for acceptance of a hypothesis. However, because a 
model may be useful despite some inaccuracy, a model may be accepted even if the 
evidence supports only its approximate accuracy. A predictive model may be
accepted because it yields good predictions, even if the mechanism by which it 
obtains predictions does not correspond to the mechanism behind the phenomenon 
it treats. Its acceptance is warranted only given the model’s validation by a track 
record of good predictions in cases not used to construct the model [40]. Accep-
tance of a model as a partial explanation of a phenomenon requires evidence that 
the model represents some features of the mechanism producing the phenomenon.



The deductive/nomological account of explanation is the oldest of the modern
ones, dating back to 1940s [41], and the causal/mechanical one became popular
during the 1970s [42], while the unifi cationist account had its heyday in the 1980s
[43]. Every account has a pragmatic component. However, the label “pragmatic”
here is reserved for the ones that count the explanation as a social or psychological
process (e.g., Achinstein [44]). It what follows, we very briefly describe the four
main accounts of explanation.

16.5 Hypothesis/Proposing Explanation in Simulation 

Nico Formanek, and Juan Manuel Durán 

Computer simulations are valuable instruments to explore a wide variety of sci-
entific questions. But are they just instruments to compute analytically intractable
models or do they change the way of scientific inference?
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Philosophy of science has traditionally considered such questions under the label 
of scientific explanation (henceforth “explanation”), stating that the aim of science 
is to explain rather than just give descriptions. The goal was then to elaborate what 
it means that “X explains Y” (also called the explanatory relation between X and 
Y). Generally, it is hoped that at a suitably abstract level a description of expla-
nations and reasons why some of them are better than others can be given. This 
should in no way be confused with the idea that such a description constitutes a 
norm for explanations and therefore scientifi c conduct. While in some cases it might
help single out severely defective explanations, it is generally rather the other way 
round: The concept of explanation is abstracted from scientific practice. 

Before we introduce some of the ideas what explanation could be, it is worth noting 
that one also needs to be concerned with the unit carrying out the explaining X (i.e., the 
explanans) and the unit to be explained Y (i.e., the explanandum). On a very general 
level, they are just propositions, statements, or sentences. On a more fine-grained 
level, theories, models, causal processes, and natural laws have variously been pro-
posed as constituting the explanans, while phenomena of the real world are generally 
considered to be in want of explaining. As we will see later, this might change with the 
introduction of computer simulations into scientifi c reasoning.

Theories of explanation can roughly be divided into the following classes: 

. Deductive/Nomological 

. Causal/Mechanical 

. Unificationist 

. Pragmatic. 

. Deductive/Nomological Account: 
A scientific explanation is a deductive argument from a general law and certain 
other premises to the desired conclusion. The general law needs to be an essential 
premise. Deductively invalid arguments fail to explain, as do arguments not 
containing a general law.



.

. Causal/Mechanical Account: 
A scientific explanation gives a description of the causal processes that lead to the 
production of the desired explanandum.
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. Unificationist Account: 
A scientific explanation maximally unifies the current set of scientific beliefs. 
Maximally unifying means to use as few and stringent argument patterns as 
possible to generate that set. 
Pragmatic Account(s): 
These generally view scientific explanation as a social or psychological process. 
Conditions for successful explanation are sought in terms of those processes and 
thus highly context dependent. Pragmatic accounts are also sometimes called 
subjective to distinguish them from the other accounts which are considered 
objective. 

Unsurprisingly many hybrids have been proposed that try to mitigate one or 
another problem of the pure accounts (for a review, see Salmon [45]). 

Concluding this section, it should be noted that the general way to construct an 
account of scientific explanation proceeds through examples. This means that 
examples of good explanations from special sciences are examined and their shared 
properties are then made explicit. The deductive/nomological account for example 
is mainly derived from explanations found in physics, which was at that time 
considered a paradigm for science. So unsurprisingly, its treatment of explanation
works well for physics and other highly mathematized sciences. Other accounts also 
trace their roots back to the special sciences from whose examples they were 
originally derived (e.g., the pragmatic account has a connection to social sciences). 
It can be argued that this mode of construction is too narrow to yield a general 
theory of explanation and some accounts tried to remedy that by being more 
abstract (e.g., the unificationist account). Nonetheless, their failings are mostly 
discussed by presenting counterexamples of purported explanations from ACMO 
special sciences which they are apparently unfit to deal with. The main aim is still to 
give an account of scientific explanation and not to give an account of explanation 
for a special science. 

16.5.1 What Can Be Expected of the Explanatory Relation? 

Giving an account of scientific explanation might be considered one of these 
philosophical exercises that does not have much impact on how science is done. In 
a sense this is very true, scientists in the past have echoed varied opinions if science 
explains at all. Duhem and Mach are probably the most famous naysayers, while
the general consensus nowadays seems to be that science is the foremost purveyor
of explanations. But the deeper issue at stake here is one of rationality. We would
like to know which explanations are to be preferred above others or even to single
out the scientific ones without referring just to contextual pragmatic facts. This is
what is to be expected of a philosophical treatment of the explanatory relation. To



One strand of thought, which might be called tool view or “the received view of
computer simulations” (see Durán [48]), has emerged that views simulations as
purely instrumental to explanation. While they might help explore the consequences
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isolate the objective from the subjective conditions, to separate the pragmatic from 
the logical parts of explanation. What cannot be expected is some kind of auto-
mated method which could be algorithmically employed to generate or check 
candidate explanations. 

If such an account can be given, it in turn can be used to justify and understand 
the use of computer simulations in science. 

16.5.2 Description, Prediction, Confirmation, 
and Explanation 

Apart from explanation, description and prediction have been offered as the main 
goals of science. Scientific theories should also be well confirmed, so all these 
things are epistemic goals of science. Philosophy of science has expounded their 
relative merits on various occasions. Explanation and description have often been 
contrasted to show that explanation offers knowledge gains beyond description. It is 
for example thought that having an explanation facilitates further theorizing about a 
phenomenon. Computer simulations can play a role in all of those processes,
depending on the aim of the simulation. Like theories or scientific models, they can
figure in prediction, confirmation, and explanation simultaneously. Take for 
example the stated aims of the Illustris project, a cluster of large-scale hydrody-
namical simulations of the matter distribution and evolution in the universe. The “ 
[…] ultimate goal in each case is a deepening of our understanding of the processes 
by which the observed population of galaxies formed and evolved over cosmic 
time.” [46], while reproducing and confirming existing theories are only thought of 
as ancillary. 

So, while describing and predicting phenomena have their place in science, 
explaining or understanding them seems to have a special epistemic role. Unsur-
prisingly, the relation between understanding and explanation has been the subject 
of recent studies in philosophy of science (for a review, see Baumberger et al. [47]). 

16.5.3 Can Computer Simulations Explain? 

Most accounts of scientific explanation date back to times where computer simu-
lation in science either did not exist or was not as pervasive as it is today. This led 
philosophers to question if and how they could incorporate it in the existing 
frameworks. The leading question is which role, if any, does computer simulation 
play in scientific explanation and the explanatory relation? It is to be expected that 
the answers depend on the account of scientific explanation. So far, computer 
simulations have been discussed using either the causal/mechanical or the unifi-
cationist account.
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of analytically intractable theories or models, they do not represent the target 
system in any sensible way because they introduce numerical approximations and 
errors. The causal mechanisms or natural laws at play can therefore not be part of a 
simulation, which thus is in turn unable to explain directly [49]. A similar argument 
was already leveled against theories or models containing idealizations (so basically 
every theory or model) most famously by Cartwright [50]. One strategy to cope 
with this objection is to claim that incomplete models or theories still partially 
explain or at least help identify and control for explanatory factors (see Mäki [51]). 
In the debate for computer simulation, this strategy culminated in the tool view by 
Krohs [49] and Weirich [52]. Computer simulations are viewed as tools to identify 
and control for explanatory factors in intractable models. They are not a necessary 
part of the explanatory relation and can, so to say, be discarded after their work is 
done. The (partial) explanations are still achieved only by models and theories. 

Durán leveled an indispensability argument against this classification of com-
puter simulations as mere tools and proposed that the unificationist account more 
accurately reflects the explanatory work simulations do [53]. Noting that the main 
use of computer simulations is in cases of extremely intractable models, he argued 
that they are our sole provider of knowledge about explanatory factors. So, we 
cannot identify which factors are in fact explanatory without the simulation. Thus, 
the simulation has to be an essential part of the explanatory relation, namely it 
explains its results. The explanandum is not a statement about the world but a 
statement generated by the simulation about the computational model and the 
world. In the same vein, the explanans is assumed to be the computational model 
and not theories, natural laws, or mathematical models. 

Of course, the main epistemic goal is to gain some understanding of natural 
phenomena not the results of a computer simulation, and this is achieved by 
embedding the explanatory work of the simulation within a somewhat modified 
unificationist framework. It is claimed that successful explanations are achieved by 
maximally unifying the set of beliefs about theories, models, and simulations. 

If this account can be defended for less intractable models remains to be seen. 

16.5.4 Generating/Testing Hypotheses with Simulations 

The received view in philosophy of science is that science is a human activity and 
so scientists come up with hypotheses and experimentally check them. While the 
thought of a fully automated science has been entertained before, it is rarely 
expounded in detail because of the alleged remoteness of the situation (see, e.g., 
Humphreys [54]). Hybrid situations where part of the scientific process is auto-
mated (perhaps by computer simulations) have indeed been duly considered. 

Recently, the role of models as exploratory tools has been noted with some of 
the examples relying heavily on computer simulations (see Refs. [55, 56]). So, one 
might argue that if simulations are essential to explore the consequences of models,
they in turn are exploratory tools. Unfortunately, their specific contribution to
generate hypotheses in these cases has not been considered in the literature.
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Simulations have often been compared to experiments in their role of testing 
hypotheses that are otherwise intractable (for a review, see Winsberg [57]), with 
some going so far to argue that computer simulations are experiments [58]—the 
caveat being here that “being an experiment” is seldom meant ontologically but 
often epistemically. So this would mean that computer simulations could in some 
sense at least be used to replace experiments. Of course, this violates the empiricist 
leanings of many philosophers and scientists (see Beisbart [59], who argue for the 
indispensability of experiments. It is out of questions that computer simulations are 
heavily used in statistical inference, and there have been questions especially about 
the epistemic role of Monte Carlo simulations. Beisbart and Norton, for example, 
hold that they are part of the statistical inference and cannot be considered 
experiments. 

The somewhat construed situation where one can choose between an equally 
epistemically valuable simulation and experiment rarely or never happens in sci-
entific practice. So it is more plausible to think of computer simulations as 
extending the scientific process rather than replacing parts of it. 

A perhaps more interesting question with regard to the advent of machine 
learning methods is if they could be classed as computer simulations and what 
exactly they then would simulate. At least on the face of it, they seem to automate 
large chunks of the scientific process including hypothesis generation and testing, 
so perhaps what they simulate is part of the scientific process (see Jantzen [60]). As 
most of these methods are still in their early stages and widespread success has not 
yet been achieved, it is perhaps not surprising that little consideration is given to 
them in the recent literature on the epistemology of computer simulation. A recur-
ring argument in the case of machine learning methods is that they eliminate the 
need for human intervention in hypothesis generation and testing. Even in the case 
of Unsupervised Learning, this is at least somewhat doubtful (see Hennig [61]), 
because the methods still need fine tuning by humans. 

In conclusion, it can be said that we are certainly in a hybrid situation where 
computer methods like simulation and machine learning extend our epistemic grasp 
of the world, but a fully automated science seems still out of reach. 

16.6 Experiments Versus Simulation 

Valdemar Vicente Graciano Neto 

Simulation has been faced as a platform for the conduction of experiments. 24 of 
the 100 definitions for the term simulation collected in Ören’s work associate 
simulations with experiments [62]. Experiments are a test done in order to learn 
something or to discover if something works or is true [63]. Also, scientists can 
evaluate the validity of an evaluated hypothesis by simulation.
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Simulations are particularly valuable to support experiments in (i) a real rather 
than a virtual trial could be excessively expensive or dangerous, such as experi-
ments on resistance of space probes or chemical reactions, such as in atomic bombs 
[64], (ii) the subject of study is inaccessible due to distance (galaxies) or dimensions
(atoms or molecules), (iii) the system to be developed is not tangible, such as 
software, (iv) large scale and complex, such as a smart city, (v) optimization sce-
narios, where many combinations should be evaluated according to a pre-defined 
set of variables to be maximized or minimized, and (vi) social sciences in which 
ethics can prevent experiments, among other domains.

Results provided by simulation-based experiments are reliable if the morphism 
relation exists between the lumped and the base model and between the base model 
and the simuland. Moreover, the results should also be complemented with tests 
with the real final product to assure the required quality and precision in operation. 

Studies have reported guidelines for experiments in software engineering 
research [65] and social sciences [66], and benefits from the use of simulation have 
been reported in several domains. Once experiments imply on the elaboration of 
hypothesis and observation in a controlled environment, the nature of the subject of 
investigation should be considered to accordingly select the variables and simula-
tion formalisms that are suitable to that domain. 

16.7 Experience Versus Simulation 

Jean François Santucci 

From the seventeenth century, models were more and more often inspired by 
laboratory experiments. Finally, it sometimes happens that they are deduced from 
theories themselves conceived without experience, thanks to a purely intellectual
approach, the “thought experience” (the theory of relativity conceived by Albert
Einstein in 1915 could only be experienced ‘in 1919). Today, several physical
theories provide models that it has not yet been possible to validate by experience. 
For some, moreover, no experimental protocol will ever be able to fully test them.
In addition, there is often a question of “digital experience” to underline the analogy 
between the practice of a simulation and the conduct of a physics experiment.

Experience and simulation can be defined using a spectrum of activities. At one 
end of the spectrum, those classic experiences are used when studying a given 
phenomenon. The hope is to learn something from the experience. On the other end 
of the spectrum, we can find simulations, which mimic a real-world scenario 
exactly. 

Experiential learning sits in the middle of this spectrum and is involved in 
Artificial Intelligence. 

Planning and decision problems belong to an area of Artificial Intelligence (AI)
that aims to produce plans for an autonomous agent, that is, a set of actions that it
must perform in order to reach a given goal from a known initial state. Because of
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the stochastic nature of the problems, the planning and decisions very often lean on 
machine learning (ML) [67, 68]. However, the computer implementation of models 
and algorithms associated with ML may require lot of work because (i) it is difficult 
to select which model (algorithm) will fit with the problem to solve (there is a large 
choice of models allowing to develop a ML algorithm), (ii) once the model has been 
chosen, it is difficult to select the hyper-parameters of the chosen model that will 
allow to give good results after the learning phase, and (iii) classical tools dealing 
with ML do not allow to connect learning agents involved in ML with a powerful 
simulation environment. This lack of connection implies difficulties to deal with 
temporal aspects which may appear in the problem definition or to deal with 
multi-agent or even harder to deal with dynamical aspects as agents that may appear 
or disappear during simulation. For instance, the AI can help the “simulationist” in 
the modeling of complex systems that are impossible to represent mathematically 
[69–71]. On the other hand, M&S can help AI models failed to deal with complex 
systems for lack of simple or unworkable heuristics [72, 73]. 

AI learning techniques have already been used in a DEVS simulation context. 
Indeed, in [70] the authors propose the integration of some predictive algorithms of 
automatic learning in the DEVS simulator in order to considerably reduce the 
execution times of the simulation for many applications without compromising their 
accuracy. In [69], the comparative and concurrent DEVS simulation is used to test 
all the possible configurations of the hyper-parameters (momentum, learning rate, 
etc.) of a neural network. In [74], the authors present the formal concepts under-
lying DEVS Markov models. Markov concepts [75] of states and state transitions 
are fully compatible with the DEVS characterization of discrete-event systems. In 
[72], temporal aspects have been considered into Generalized Semi-MDPs with 
observable time and a new simulation-based RL method has been proposed. 

Machine learning is a type of AI that use three types of algorithms (Supervised 
Learning, Unsupervised Learning, Reinforcement Learning) in order to build 
models that can get input set to predict an output set using statistical analysis. For 
the simulation part, Monte Carlo simulation [76] is often used to solve ML prob-
lems by using a “trial and error” approach. Monte Carlo simulation can also be used 
to generate random outcomes from a model estimated by some ML technique. 

Simulation can also be useful in the context of Reinforcement Learning 
(RL) [77] and Markov Decision Processes (MDPs) [75]. For example, simulation 
can improve the experimental replay generation in RL problems where the agent’s 
experiences are stored during the learning phase. 

RL components can be developed to replace rule-based models. This is possible 
when considering human behavior and decision-making. These learning compo-
nents can either be used in simulation models to reflect the actual system or be used 
to train ML components. By generating the data sets needed to learn neural net-
works, simulation models can be a powerful tool in deploying the algorithms of 
recursive learning.



Cutting-edge technologies such as novel space aircrafts, deployment of satellites,
or smart cities can be too complex and expensive to be prototyped or deployed
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16.8 Simulation in the Spotlight of Cutting-Edge 
Technologies 

Valdemar Vicente Graciano Neto 

Simulations allow the anticipation and study of characteristics of systems under 
development, especially critical and large systems. Thus, simulations are particu-
larly important for cutting-edge technologies, particularly smart cities, and other 
classes of system-of-systems, i.e., systems that are themselves formed as a set of 
other independent systems [78, 79]. 

under trial conditions [80]. Hence, simulations can support a cheaper but enough 
precise analysis of these new systems to be built. Moreover, in most of the design 
problems and particularly regarding to cutting-edge technologies, the real system 
does not exist, yet, which motivates the use of simulations [64]. 

Several cutting-edge technologies are benefited by simulations. Cyber-physical 
systems (CPS), smart cities, deep learning and advanced Artifi cial Intelligence
mechanisms, robotics, blockchain, superfast broadband, wireless power, nan-
otechnology, quantic computing, and brain-machine interaction are instances of 
such technologies that can be dangerous or expensive or impactful to be deployed 
without a reasonable prototyping. Simulations provide the means to predict their 
properties, enable visualization at large of microworlds, and safe prototypes.

16.9 Modeling and Simulation (M&S) as a Discipline 

Saurabh Mittal 

“Discipline” as defined by Oxford English Dictionary [81] is  “a branch of learning 
or scholarly instruction.” Building on a list by Krishnan [82] for defining an aca-
demic discipline, we present the following factors and how M&S addresses it. 

1. A specific object of research: There must exist a unique object or a relationship 
with other established objects that becomes a subject of study. There are cer-
tainly two objects here: modeling and simulation. These two objects have
specific definitions. Both objects are associated with separate activities and
generate unique artifacts.

2. A body of accumulated specialist knowledge: This factor identifies the specific 
knowledge set that is accumulated over a period, and it would take a consid-
erable effort to arrive at that level of specialist skills. There are over 834 M&S
books recorded in the United States Library of Congress , with 119 pub-
lished in the last century and 714 published in the past two decades.

[83]



4. 

5. 

6. Institutional manifestation in the form of subject taught at universities or col-
leges: This factor establishes post-secondary, undergraduate, and graduate 
educational programs that disseminate the knowledge to the next generation for 
their inclusion in the specialist group. There are many universities today that 
offer graduate courses, as well as full degree programs on M&S. A compre-
hensive list of universities and research centers is available in Oren et al. [85]. 

7. 
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3. Theory and concepts for organizing the specialist knowledge: This factor doc-
uments the theory and various concepts that define the specialist knowledge. It 
puts together a unique paradigm and worldview. The theory of M&S originated 
in mid-1970s . As simulation got pervasive and got applied to other
domains, mechanisms for performing modeling and simulation activities and 
management of various artifacts were developed based on theoretical founda-
tions leading to best practices. 

[84]

Nomenclature and technical language: This factor defines a glossary, lexicon, 
and taxonomy that contributes to a vocabulary, a lingua franca for the specialist 
knowledge. Information about this aspect of M&S is available in Appendix A1 
– Dictionaries of Modeling and Simulation (M&S), Cybernetics, and Systems. 
(Compiled by Tuncer Ören) 
Specific research methods and tools: This factor pushes through the innovative 
disruption and documents various research methods and tools that are applied by 
the specialists to continue to advance the object under study and in turn create 
more tools that provide efficiency and increase productivity. As evident from the 
published literature in the past two decades, the application of M&S to various 
domains and disciplines has developed specific research methods and various 
domain-specific and domain-independent tools. 

A group of professionals practicing the specialized knowledge: This factor 
creates an environment where the specialists can organize and discuss the 
subject at hand on a regular basis. Through the establishment of societies, 
research groups, conferences, and symposia, specialists gather and share the 
cutting-edge developments and refine the established methods and knowl-
edgebase. There exist many peer-reviewed journals such as Transactions of 
Society of Modeling and Simulation (SCS), Transactions of Association of 
Computing Machines (ACM), Simulation Modeling in Practice and Theory 
(SIMPAT) by Elsevier, and many others. Conferences like Summer Computer 
Simulation Conference (SCSC) have been in existence for over 60 years. 
Today, there are many other conferences all year round. For example, in the 
United States there are Spring Simulation Conference, Autumn Simulation 
Conference, and the Winter Simulation Conference. There are others that are 
located in Europe (European M&S Symposium) and in Asia as well. 

8. Pursuit of synergy with other established disciplines: This factor explores the 
relationship of the discipline with other established disciplines. It identifies the 
boundaries of the new discipline and further explores how it could advance 
other established disciplines. This leads to transdisciplinary and multidisci-
plinary efforts that strengthen all the participating disciplines.



Adopted from Ören et al. [64]
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9. Sustainment of the discipline at economic and political levels: This factor 
integrates the discipline into the societal fabric at economic and political levels 
where it starts having impact at national and global levels and may even become 
established as an enabling technology defining the future of mankind. 
The first simulation game may have been created as early as 1947 by Thomas T. 

Goldsmith Jr. and Estle Ray Mann. M&S has now been in existence for over 
70 years [86]. It addresses all the nine factors as we have seen above. The current 
MSBoK that this article is contributing to brings together the M&S knowledgebase. 
The contributions by leading experts in MSBoK and the content herein cover the 
first seven factors. The eighth factor was recently documented in a book by Mittal, 
Durak, and Ören [87]. 

Synergies play a critical role in the evolution of disciplines. Contribution of 
simulation to a discipline “x” is called “simulation-based x.” Already, simulation-
based science, simulation-based engineering, and many other simulation-based 
disciplines are important examples of contributions of simulation to other disci-
plines, making simulation a powerful infrastructure for them. Table 16.1 (adopted 

Table 16.1 Simulation-based disciplines (examples). 

Areas Disciplines 

Engineering Simulation-based (all types of) Engineering (Chaps. 3, 4, 7, 8) 
Simulation-based Cyber-physical Systems (Chap. 5) 
Simulation-based Complex Adaptive Systems (Chap. 6) 
Simulation-based Physical Internet (Chap. 13) 

Natural Science Simulation-based (all types of) Science (Chap. 9) 
Simulation-based Cosmology 
Simulation-based Astronomy 

Health Science Simulation-based Health Care (Chap. 10) 
Simulation-based Pharmacology 

Social Science and 
Management 

Simulation-based Social Science (Chap. 11) 
(Behavioral science, psychology, demography, 
sociology, public administration, political 
science, archeology, environmental studies, etc.) 
Simulation-based Economics 
Simulation-based Enterprise Management (Chap. 12) 
Simulation-based Planning and Scheduling 
Simulation-based Optimization 
Simulation-based Policy Improvement 

Information Science Informatics 
Artificial Intelligence (Machine Intelligence) (Chap. 6) 
Software Agents 
Communication 
Library Science 

Education/ Training Simulation-based Education (Chap. 13) 
Simulation-based Training (Chaps. 10, 14) 
(including Health Care and Military Training) 

Entertainment Simulation-based Games



A comprehensive review of these disciplines along with the impact M&S has on

An important subset of total spending are investments relating to research and
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from Ören et al. [64]) highlights an extended list of disciplines that benefit 
tremendously from simulation-based approaches. 

them is documented in [87]. The following enumeration gives a short overview of 
the chapters of the book [87]. Chapter 2 lays out the M&S national and global 
landscape. Chapter 3 introduces simulation in the classical engineering process. 
Chapter 4 presents the role of simulation in systems engineering. Cyber-physical 
systems (CPS), Internet of Things (IoT), and, further, complex adaptive systems as 
emerging system architectures come along with a new set of challenges. Simulation 
is being pronounced as a key tool in tackling the upcoming challenges of engi-
neering such complex sociotechnical adaptive systems. Accordingly, Chapter 5 
presents simulation-based CPS and IoT, and Chapter 6 explores simulation-based 
complex adaptive systems. In Chapter 7, readers can find a discussion about the role 
of simulation in software engineering, and Chapter 8 explores simulation in 
architecture. Natural and health sciences are also benefiting from the contribution of 
simulation in great extent. Chapter 9 presents simulation-based science, and 
Chapter 10 introduces simulation in health care and health education and training. 
In the field of social sciences and management, there are various applications of 
simulation. Chapter 11 elaborates on simulation-based social science, and Chapter 
12 elaborates on simulation-based enterprise management. In the direction of 
learning, education, and training, while Chapter 13 presents simulation-based 
learning, Chapter 14 presents simulation in military training. 

In addition to the disciplines listed in Table 16.1, some other disciplines are 
already using simulation-based approaches. They include experimental archeology 
and simulation-based cosmology. 

For the ninth factor, Glotzer et al. [88] stated: 

Today we are at a ‘tipping point’ in computer simulation for engineering and science. 
Computer simulation is more pervasive today – and having more impact – than at any other 
time in human history. No field of science or engineering exists that has not been advanced 
by, and in some cases transformed by, computer simulation. Simulation has today reached a 
level of predictive capability that it now firmly complements the traditional pillars of theory 
and experimentation/observation. Many critical technologies are on the horizon that cannot 
be understood, developed, or utilized without simulation. 

As Page [89] reported, there is an estimated annual global market exceeding 
$18B USD, despite difficulties in accurate quantification due to M&S ubiquity and 
its strong incorporation in various disciplines. The countries with the highest 
investment levels in training simulation and simulators include United States, 
Russia, China, India, and the United Kingdom. The heaviest investors in Product 
Life-Cycle Management (PLM) software are France, United States, and Germany. 
Asia–Pacific and Latin America are expected to have the highest growth in medical 
simulation, driven by India, China, South Korea, Singapore, Brazil, and Mexico. 

development (R&D). Within the government sector, M&S R&D investments are 
typically embedded within the enterprise Science and Technology (S&T) budget, or 
as part of the Research, Development, Testing, and Experimentation (RDT&E)



8. Teo YM, Szabo C (2008) CODES: An integrated approach to composable modeling and
simulation. In: Proceedings of the 41st annual simulation symposium. IEEE CS Press, 
pp 103–110 
Kim TG, Lee C, Christensen ER, Zeigler BP (1990) System entity structuring and model base 
management. IEEE Trans Syst Man Cybern 20(5):1013–1025

13.

14.

15.

16.

17.

budget for new/developing systems. Again, direct measures are elusive, but within 
the United States alone, annual R&D spending easily exceeds $100B USD [90]. 
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With respect to investments by industry, in-depth market surveys for global 
industrial R&D funding are available. A 2016 assessment suggests that total global 
R&D investments approach $2 T USD [91]. 

The U.S. Government, recognizing the contribution of M&S technology to the 
security and prosperity of the United States, declared M&S as a National Critical 
Technology in 2007 [92]. 

To summarize, M&S qualifies as a discipline with a strong academic, economic, 
research, technological, and political impact. Additional arguments and contribu-
tions are given by Tolk and Ören [93]. 
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Abstract 

The chapter on history of simulation is foundational contribution to the SCS 
M&S Body of Knowledge that reviews the development of the discipline. The 
development of continuous and event-oriented simulation with the support of 
accompanying languages is the topic of one section. How simulation evolved to 
support experiments and experimentation is another facet of history. Finally, the 
evolution of simulation in analysis to support real-world decision making is 
evaluated in more detail. The chapter closes with a tabular view on previous 
studies on a M&S BoK, going back twenty years. 
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17.1 General History of Modeling and Simulation 

Bernard P. Zeigler 

History provides a valuable perspective on the development of simulation as a 
model-based activity aimed at understanding and gaining control over reality (see 
the framework for modeling and simulation elucidated in Chap. 1). Perhaps, we are 
fortunate that reality displays multifarious regularities that can be exploited to 
construct useful models. The historical period of computer simulation as we know it 
spans less than a century (at this writing in 2019). However, some insight can be 
gleaned by regressing to the earliest references to human activity that foreshadow 
today’s model-based activity. 

17.1.1 “Modeling and Simulation” in Pre-History 

Apparently, humans started counting at least 50,000 years ago [1]. Counting is a 
form of model-based activity which relies on the stability and persistence of 
common objects and their ability to be identified as members of a set of interest. 
The model abstraction underlying counting is the set of integers. Computation 
involves iterating through a one–one correspondence of the integers with the set of 
objects of interest. Tally marks on a tree trunk etched by an axe could provide the 
computational substrate needed to perform this operation. The abacus [2], dating as 
far back as 2700 BC, provides an analog form of decimal representation that 
enables efficient arithmetic calculation. It can be regarded as the earliest computing 
technology to support simulation of models of processes that are amenable to basic 
arithmetic manipulation. For example, consider using addition to predict the 
amount of wine in a jug to which the contents of another jug have been poured. 
Mathematical notation, a system of symbolic representations of mathematical 
objects and ideas, stems from 2000–1800 BC. 

Throughout such history, calendar and navigation tools have been used in 
increasingly sophisticated forms [3]. They can also be considered as analog rep-
resentations of time and space that enable predictions of recurring events and 
persistent locations in space (viz., some of the most important regularities men-
tioned above). Throughout the modern historical period, advances in representa-
tions in relatively permanent symbolic memorialization improved the written form. 
In the early eighteenth century, Leibnitz and Newton (in competitive fashion) 
developed the calculus, an abstract representation of motion, but Leibnitz recog-
nized the need to provide a simulator to generate the behavior of models (of 
heavenly bodies and falling objects on earth): “Leibnitz actually designed and built 
a working calculating machine, the Stepped Reckoner …inspired by the somewhat 
earlier work of Pascal, who built a machine that could add and subtract. Leibniz’s 
machine could add, subtract, divide, and multiply, and was apparently the first 
machine with all four arithmetic capabilities.” Since that time until the early 1950s 
continued development in computation technology was, in effect, devoted to



improving the simulation of differential (and difference) equation models expressed 
in Newton-Leibnitz notation cf., Babbage’s Analytical Engine, hand calculators, 
and electronic analog computers. Interestingly, humans were referred to as 
“computers” and were organized into teams that computed ballistic missile tra-
jectories in the Second World War before the advent of the electronic digital 
computer. 
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17.1.2 Continuous System Simulation 

Continuous System Simulation Language (CSSL) was developed by a distin-
guished team at SCi (currently SCS) [97]. CSSL was a very successful and 
influential language at that time. System Dynamics (SD) is a modeling methodol-
ogy developed since the late 1950s at the MIT School of Industrial Management by 
the engineer Jay Wright Forrester [4]. First expressed in the language DYNAMO, 
typical systems amenable to be described with SD are those for which complexity 
hinders the overall understanding by relying exclusively on domain-based first 
principles (e.g., demographic, biological, economic, environment, health, and 
managerial systems). Dynamics are mostly described by basic components of type 
“level” (or “stock”) representing state variables, and “rate” representing first order 
differential equations. SD operates on a continuous-time, continuous-state scheme 
yielding a set of ordinary differential equations. DYNAMO tightly coupled together 
model specification with simulation technique. The modeler himself “programs” 
both his domain-specific knowledge along with the differential equation solver (1st 
order Euler method). Current environments supporting SD (e.g., Stella [5] provide a 
palette of global solvers to choose from, so the modeler focuses mainly on con-
structing the model visually, a feature present in current simulation environments. 

17.1.3 Event-Oriented Simulation 

The first use of a form of digital simulation roughly identified as event-oriented 
simulation appeared in the 1950s. An event-oriented simulation language provides 
a model representation that permits generation and analysis of system behavior. 
According to Nance [6], this provision entails six requirements: generation of 
random numbers, process transformation to statistical distributions, list processing 
capability, statistical analysis routines, report generation, and timing control. At its 
advent, it was mainly thought to be distinct from classical simulation in being a 
form of programming associated with the recent introduction of the digital com-
puter and applied to operational research problems. In contrast, classical simulation 
was taken to be a form of numerical solution applicable to physics and related 
sciences whose speed could be greatly increased with mechanical rather than hand 
calculation. The distinctive trend of computational science is the continual trend 
toward greater abstraction and identification of the true underlying commonalities 
and distinctions between apparently different phenomena. This trend is realized in



the evolution of concepts relating to event-oriented simulation that transpired since 
its inception and which forms the core of the historical perspective on discrete event 
simulation. 
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Tocher [7] first conceived of discrete events as the right abstraction to charac-
terize the models underlying the techniques that he and others were adopting in the 
mid-1950s. According to Hollocks [8], Tocher’s core idea was of a system con-
sisting of individual components, or “machines,” progressing as time unfolds 
through “states” that change only at discrete “events.” The history of discrete event 
simulation (now using Tocher’s characterization) began with Monte Carlo sampling 
and the recognition of the limitations of analytic queueing analysis. These fore-
runners lead to machine language coding, to different attempts to handle specific 
real systems, and, eventually to general-purpose tools. In his history of discrete 
event simulation programming languages, Nance [6] breaks this history until 1986 
into four periods: The Period of Search (1955–1960), The Advent (1961–1965), the 
Formative Period (1966–1970), the Expansion Period (1971–1978), and Consoli-
dation and Regeneration (1979–1986). 

17.1.4 Discrete Event Simulation Programing Languages 

Early simulation programing languages were developed in the USA, including GSP 
[9], later GPSS [10], GASP [11], and SIMSCRIPT [12] in the USA; SIMULA in 
Norway [13]; and in the UK, GSP [7] (not the same as Gordon’s GSP) and CSP 
[14]. The modeling strategies behind these programming languages became 
encapsulated in the concept of world views or conceptual frameworks. 

The four major conceptual frameworks for DES emerged: (i) event scheduling, 
(ii) activity scanning, (iii) three-phase approach, and (iv) process interaction. These 
“world views” guide scientists in the design and the development of simulation 
models [15]. Among these frameworks, activity scanning is also called two-phase 
approach, the first phase being dedicated to simulation time management, the 
second phase to the execution of conditional activities (e.g., during scanning, 
execution of simulation functions depends on the fulfillment of specific conditions). 
The three-phase approach is an optimization of the activity scanning approach. This 
optimization is interesting for systems in which potential activities can be detected 
at each time step. The first phase is the same as in the activity scanning approach. 
The second phase is different since it handles the execution of all unconditional 
activities (avoiding rules scanning for rules known to always to be fired). The third 
phase is then similar to the second phase of regular activity scanning (an activity is 
considered and executed if the corresponding rule can be fired). These are also 
familiar as rule-based programming (expert systems) [16]. For example, in the 
Control and Simulation Language (CSL) when a rule is “fired” a corresponding 
action is taken and the system state is updated [14]. This approach is often con-
sidered to be dual with the event-scheduling method. A (partial) list of today’s 
discrete event academic and commercial simulation software is available in 
Wikipedia DES [17].
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17.1.5 Model-Based Simulation 

The concept that the model underlying a simulation program should be separated 
from other elements of a simulation study (see Chap. 1 of BoKMS) first appeared in 
“Concepts for Advanced Simulation Methodologies” [18]. The article pointed out 
the shortcomings of existing simulation software and offered the then novel con-
cepts to develop advanced simulation environments. The term “model-based” 
simulation [19, 20] aims to lay down the foundations for advanced methodology of 
simulation emphasizing the importance of central role of the models in simulation 
and opens up the possibility of novel methods for model processing. An account of 
the early development of the model-based simulation approach and the intellectual 
resistance it encountered is provided in Refs. [21, 22]. 

Ören [23, 24] developed the first simulation model specification language called 
GEST (General System Theory Implementer) based on Wymore’s book (“A 
Mathematical Theory of Systems Engineering” [25]. It concentrated on systems 
represented mostly by ordinary differential equations, aimed to ease robust speci-
fication and readability, and aimed at automatic translation to generate a simulation 
program in a general-purpose programing language [26, 27]. 

As the first system theory-based modeling and simulation language, GEST aimed 
to provide a language faithful to Wymore’s system theory that was well defined as 
understood in computer science (i.e., has well-defined syntax (via BNF) and 
semantics). GEST supported hierarchical (or nested) composition implementing 
Wymore’s coupling recipe concept for systems represented mostly by ordinary dif-
ferential equations (later included finite state systems). The underlying goal was to 
“reduce” Wymore’s mathematical formalism to computational form so that modelers 
could take advantage of the digital computer while enjoying the benefits of the theory. 

Another approach to such “reduction to practice” was developed by Zeigler a 
few years later and took off from the system specification theory exposed in his 
1976 book [28]. Zeigler defined such set-theoretic specifications as Differential 
Equation System Specification (DESS), Discrete Time System Specification 
(DTSS), and Discrete Event System Specification (DEVS) as shorthand means of 
specifying Wymore’s general system objects. For an introduction to DEVS, see, for 
example, Wikipedia DEVS [29]. DEVS took Tocher’s discrete event idea one step 
further using the set theory of logicians and mathematicians [30, 31] and its use by 
Wymore [25]. 

As with GEST, the goal behind the DEVS approach was to provide a compu-
tational basis that was faithful to Wymore’s concepts, but the difference lay in 
seeking an iterative form for such specifications. You can understand this 
requirement by recognizing that Wymore’s system definition (given above) 
essentially defines the global solution of, say, a differential equation without pro-
viding a means to generate this solution. The most natural means of generating a 
system trajectory on the digital computer is by iteration or marching forward in 
time, either in fixed steps or by picking off imminent events from a calendar. The 
latter two forms of iteration, time step-based and event-driven, were formalized in 
the DTSS and DEVS formalisms and shown to generate the expected subclasses of



Wymore’s systems. The subsequent concentration on DEVS stemmed from the 
recognition that DEVS was the more general formalism. The reason for this is that 
DEVS includes DTSS within it, i.e., any system generated by a DTSS can be 
generated by a DEVS. Later the expressiveness of DEVS was shown to include 
differential equation systems through the characterization of their time-stepped and 
quantized solvers [32]. 
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Around the time of the emergence of DEVS as the computational basis for sys-
tems simulation, another important trend took hold. Object orientation (OO) was first 
introduced in simulation [33] and later spread to programming in general. It is fair to 
say that OO is at the heart of current information technology, so much so, that its 
presence is often taken as a given. For simulation modeling, DEVS and OO formed 
an ideal marriage. DEVS brought the formal and conceptual framework of dynamic 
systems while OO provided a rapidly evolving wealth of implementation platforms 
for DEVS models and simulations—first in languages such as Java and C++, and 
later in network and Web infrastructures, and today continuing in the future toward 
Cloud information technologies [34]. The first implementation of DEVS in object 
orientated form was described in Zeigler [35], and there are currently numerous such 
implementations, some of which are listed in Wainer DEVS Tools [36]. 

Zeigler [37] characterized these world views showing that they could all be 
represented as subclasses of DEVS. This representation also suggested DEVS’s 
universality for discrete event models including those or other representations such 
as Timed Automata and Petri Nets. Zeigler et al. [32] later proved DEVS’s ability to 
uniquely represent any system with discrete event input/output behavior. At the 
same time, a distinction between modular and non-modular DEVS was made, 
showing that the world views fit within the non-modular category. Moreover, while 
the modular class was shown to be equivalent to that of the non-modular one, it 
better supported the impending concepts of modularity, object orientation, and 
distributed processing on the software engineering horizon. Zeigler and Muzy [38] 
provide a timeline of DEVS research developments (see also Zeigler et al. [39]). 

17.2 History of Simulation for Experimentation on Digital 
Computers 

Breno Bernard Nicolau de França and Valdemar Vicente Graciano Neto 

As mentioned in the very first chapter of this BoK, one of the main purposes of 
simulation is to perform experiments. Hence, understanding simulation as the act of 
“performing goal-directed experiments with models of dynamic systems” leads the 
simulation community to strive for more robust strategies for exploring the simulation 
models through appropriate experimental frames (see Sect. 1.4.2). Particularly, the 
concept of experimental frame supports the definition of a clearer scope for experi-
ments by specifying the conditions under which the system is observed or experi-
mented with. The source system is then intentionally abstracted, and its observation is 
reduced to a subset of the myriad of variables that could be observed [39, 40].
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Over the years, simulations have certainly been applied for scientific purposes, 
particularly for proofs and prediction of properties, such as in climate or car crashes 
simulations. Simulation enables scientists to experiment with a model rather than 
the real-world object itself, which can be very useful for complex scenarios where 
analytical models are not enough or for scenarios where the real experiment is 
impossible or expensive. Thus, from a philosophical and epistemological point of 
view, simulations have the ability to support experiments and yield hypotheses and 
conclusions about source systems being simulated [41, 42]. 

In Statistics, the area addressing concerns of establishing experimental frames is 
called Design of Experiments (DOE) [43], which has a long history even before its 
application to computer simulation experiments. Kleijnen and van Groenendaal 
recall references from 1930, when Sir Ronald Fisher started developing experi-
mental designs for agriculture experiments. In 1950, George Box further developed 
these techniques inspired by Fisher applications in chemistry. Since then, statistical 
techniques for simulation-based experiments have evolved and been widely studied 
theoretically and practically in several areas of knowledge. 

Richard Conway [44] is credited with the beginning of experiments in computer 
simulation as a research area, initially called “analysis methodology” [45]. He 
described simulation experiments in three phases: (i) model implementation or 
development, (ii) strategic planning, and (iii) tactical planning. The first phase 
comprises the elaboration of the simulation model. Strategic planning (the second 
phase) stands for the design of a simulation experiment or establishing the exper-
imental frame. Finally, tactical planning consists in the determination of how each 
simulation run in the experimental design should be performed. Conway concen-
trated his work on tactical planning, discussing issues on the estimation of 
steady-state parameters, variance-reduction techniques, and statistical approaches 
for comparisons of alternative solutions. 

Since the early 1960s with Conway’s work, the research on how to conduct better 
simulation experiments has improved significantly, developing methodological 
support for relevant topics, such as design and analysis of simulation experiments 
[46], determination of appropriate batch sizes, output analysis [47], and others. More 
specifically, a core aspect regards the experimental designs for simulation experi-
ments, which allow to compare alternatives, search for optimal solutions, sensitivity 
analysis, metamodeling, and validation [48]. In a historical perspective, simulation 
experiments were strongly influenced by classical experimental designs such as one 
factor at a time, full factorial, and incomplete or fractional factorial. These designs 
work well for comparing alternatives, but they can be very limited when considering 
a huge number of factors in an experimental frame. Furthermore, screening designs 
support the decision of more influential factors. Finally, optimization designs con-
centrate on performing simulation experiments to obtain optimal configurations. 

During the 1970s, Kleijnen deepened in the statistical analysis of simulation-
based experiments with his seminal works [49, 50] and presented guidelines 
including techniques for statistical analysis and experimental designs [51]. In this 
context, Response Surface Methodology (RSM) in simulation was first detailed in 
the monograph [49, 50]. However, RSM (unlike search heuristics) has not yet been



implemented widely into commercial-off-the-shelf simulation software. Regarding 
its application, Van den Bogaard and Kleijnen [52] reported one of the first case 
studies on RSM in random simulation, reporting on a computer center with two 
servers and three priority classes—with small, medium, and large jobs—estimating 
the 90% quantiles of the waiting times per class for different class limits, and 
applying RSM to find the optimal class limits [52]. 
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In the same decade, Schruben and Margolin [53, 54] illustrate the adoption of 
two different variance-reduction techniques in a simulation-based experiment. They 
discuss the use of pseudo-random numbers. These authors bring in 1978 a retro-
spective of the 1970 decade, highlighting the seminal work of [49, 50] and also 
exposing how authors have agreed on the benefits brought by either statistically 
designed experiments and variance-reduction techniques. 

In 1981, Ören presented a series of concepts and criteria to evaluate the 
acceptability and credibility of simulation studies [55]. These relate to data, model 
(conceptual and executable), experimental design, and methodology adopted to 
conduct the study. In the end of the decade, Sacks et al. [56] approached the 
pioneering work of Box and Draper [57] to discuss the design of physical exper-
iments using simulation. They highlight the selection of inputs for a simulator as an 
experimental design problem and making predictions as a statistical problem that 
must consider stochastic models (or components) in computer experiments to 
quantify uncertainty. 

In 1990, Balci presented guidelines for the success of simulation studies, 
organized according to the simulation model lifecycle and what the author calls 
“credibility assessment,” a set of V&V activities concerning each lifecycle step 
[58]. In 1992, Kleijnen published his important book on statistics for simulation 
[48]. Also in this period, considerable research has been conducted in Ranking & 
Selection procedures in general [59]; and specifically for simulation [60], which is 
now included into several commercial simulation products. Several researchers 
approached the use of variance-reduction techniques in the context of design of 
experiments and with R&S procedures for simulation experiments. 

In the 2000 decade, Saltelli et al. published a book [61] on the sensitivity 
analysis for simulation-based studies, while other applications of simulation to 
specific domains started to be performed. Chen and colleagues [62] presented a 
literature review on statistical methods applied to computer experiments, more 
specifically, focusing on the goal of optimizing a complex system via deterministic 
simulation models. Since in previous decades researchers concentrated on suitable 
statistical methods to deal with simulations, in the end of 2000 decade, Kleijnen 
published a study on factor screening, i.e., searching for the most relevant factors 
(or inputs) to be varied when experimenting with real or simulated systems [63]. He 
published a review on Sequential Bifurcation (SB), which is a screening method for 
simulation experiments and summarized a case study, namely a supply-chain 
simulation with 92 factors where SB identified a shortlist with 10 factors after 
simulating only 19 combinations [63]. During the 2010 decade, Kleijnen also 
consolidated his work by publishing a second edition of his seminal book “Design 
and analysis of simulation experiments” [64].



17 History of Simulation 421

Regarding the experimental concerns with simulation in other areas, in Medicine, 
Burton et al. present a checklist with relevant issues for developing simulation 
research protocols [65]. Generally, there is a concern with simulation model validity 
and with a statistically adequate experimental design. In Social Sciences, Rah-
mandad and Sterman published a set of reporting guidelines for simulation studies. 
Their proposal discusses three main aspects: model visualization for diagrams, 
model description for equations and algorithms, and simulation experiments design 
w.r.t. random numbers and optimization heuristics [66]. More recently, in 2016, de 
França and Travassos [67] presented several guidelines for planning and reporting 
simulation experiments in the context of software engineering. 

In 2016, Nelson [68] revisited the Conway influential 1963 paper and stated 
tactical problems will still remain for digital simulation in the next 10 years (until 
2025). Those problems include dealing with the analytics of large amounts of data 
generated by modern simulation, parallel simulation, and use of simulation to 
support decisions and how these factors impact on experiments feasibility, sensi-
tivity, and optimization. 

As a vast research field, simulation for experimentation has dense and solid 
research, both in theoretical and applied perspectives. Contributions across the 
years achieved a mature body of knowledge, establishing a more reliable path for 
conducting research supported by simulation experiments. However, challenges are 
still on the way as application areas demand more complex study settings and 
theoretical investigations as well. 

17.3 Evolution of Computational Modeling 
and Simulation for Problem Solving 

Raymond R. Hill and Lance E. Champagne 

As Roberts and Pegden [69] note, simulation modeling is part of a problem-solving 
process. The focus of their paper is on the specific use of an executable model to 
support that problem-solving process. However, as noted in Hill and Miller [70] and 
Hill and Tolk [71], the use of simulation, in its most general form as a 
problem-solving paradigm, stretches back millennium in the military sciences; one 
might easily imagine this problem-solving paradigm just as applicable to 
non-military situations. Section 17.1 provides a great overview of the computa-
tional history associated with simulation as a general problem-solving framework. 
This chapter augments Sect. 17.1 by specifically examining computer-based 
modeling and simulation problem-solving. 

17.3.1 Monte Carlo Modeling 

Monte Carlo simulation is arguably the first real computerized instance of simu-
lation. Goldsman et al. [72] indicate that the Monte Carlo method of using random



samples to conduct numerical calculations dates back to 1777 with the Buffon 
needle experiment. They also note the use of the method by Gosset in the early 
1900s to develop the ubiquitous t-distribution. Complex mathematical calculations, 
when done manually, can be extremely time-consuming. For many years, this 
manual approach was the only option. Things started to change when electronic 
computing machinery started appearing in the 1940s as basically high-speed cal-
culators. Scientists were quick to note these machines were adept at doing math-
ematical calculations quickly and accurately. One such calculation attainable with 
these new machines was the generation of pseudo-random numbers produced using 
an algorithm whose output (of those numbers) attained acceptable statistical 
properties. The Monte Carlo computational method of implementing statistical 
sampling for numerical calculations began in the late 1940s and truly demonstrated 
the power of these early computer systems. See the narrative by Metropolis [73] for 
a first-hand view of this key development in simulation. Extensions to Monte Carlo 
simulation continued to yield tremendous advances in numerical methods, risk 
analysis, non-dynamic simulation applications, and random variate generation. 
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17.3.2 Emergence of Simulation Modeling Languages 

Early computers lacked much of the capability we now take for granted, such as 
internal memory. Each use of computers quickly outstripped the available memory 
in the machines. Thus, programs were written in machine or assembly code to save 
memory. These programming approaches were intellectually challenging and quite 
specific in their purpose. Fortunately, computer technology progressed quite rapidly 
and continues to progress, and along with that progression came the development of 
high-level programming languages as an easier means of producing executable 
computer programs. These high-level languages, which generally compiled into the 
necessary low-level code, provided more understandable forms of programming 
and started to appear in the late 1950s. FORTRAN appeared in 1954 and is widely 
regarded as the first popular general-purpose language [99]. These general-purpose 
languages, coupled with the ever-improving computer technology, enabled the 
development of specific simulations and general-purpose simulation infrastructures. 
See Nance [6] and Pegden [74] for more thorough discussions of computer simu-
lation language development, and in particular, Barton et al. [75] for a discussion of 
how simulation has grown more efficient over the years. 

17.3.3 The Arrival of Simulation Programs 

Nance [6] lists the components of a simulation framework, or language as he 
describes it. Those components are: 

. Random number generation; 

. Random variate generation;
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. List processing capabilities; 

. Statistical analysis routines; 

. Report generation; and 

. A timing executive to control the simulation flow. 

Nance [6], Robinson [76] as well as Goldsman et al. [72] credit Tocher with 
developing the first general-purpose simulator in 1960. The first widely popular 
simulation framework, the General Purpose System Simulator (GPSS), appeared in 
the 1960–1961 timeframe. Popular competing languages at the time include 
SIMULA and SIMSCRIPT, as well as a host of others discussed in Nance [6]. An 
excellent survey of how the simulation language domain grew in general is Pegden 
[74]. Early on, these languages were high-level programming languages. The 
simulation analyst needed to define the logic of the simulation and then develop the 
computer program corresponding to that logic using the high-level simulation 
language of choice. The simulation language provided key simulation infrastructure 
components, such as list processing routines, random variate generation routines, 
and some other common simulation characteristics, but it fell into the hands of the 
simulation analyst to put together the program necessary to faithfully represent the 
system or process of interest. 

17.3.4 Expansion of Simulation 

A simulation study will examine some aspect of a system or process of interest. 
Simulation problem-solving requires use of both conceptual and executable models. 
The conceptual model depicts the system or process of interest to include inputs, 
outputs, and interactions among components in the system or process. The exe-
cutable model, referred to often as simply the simulation model, implements the 
conceptual model in the simulation language framework. The early simulation 
languages provided a high-level programming language for creating the latter. 
Support for the former was initially mostly left to the simulation analyst. 

A conceptual modeling method “allows one to describe the time varying 
behavior” of the system(s) of interest such that they “can be analyzed using 
computer simulation” to generate subsequent analyses and insight [77]. As noted in 
Sect. 17.1.5, such methodologies began appearing in the late 1970s. Of such 
methodology, is IDEF2, an architectural methodology for dynamic system speci-
fication developed for the Air Force by the team of Pritsker and Associates and 
SofTech Inc. While focused on manufacturing systems, the IDEF2 methodology 
provided a graphical approach to define the problem of interest in such a way that it 
could then be examined with simulation. The graphical syntax defined in the IDEF2 
methodology found its way into the very popular commercial product SLAM, 
developed by Pritsker and Associates. The benefit in SLAM was that the graphical 
conceptual model led directly to the simulation code required by the SLAM 
high-level simulation programing language. More important than the appearance of 
another simulation modeling framework was that SLAM was an early use of



specific graphical devices to define the conceptual model and then to build the 
executable model. This approach is now somewhat standard in the modern simu-
lation modeling frameworks. 
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While the early graphical devices of the modeling method nicely linked to 
specific simulation modeling code, the process of laying out that conceptual model 
was still largely manual and paper-based. This changed as the computer technology 
dramatically shifted and the computer displays associated with the computing 
systems dramatically improved. 

In the early 1980s, the personal computer emerged. With it came improved graphical 
processing and a personal linkage between the computing device and the user. No 
longer were computational jobs submitted to batch to run over night or required the user 
to interface with a mainframe computer via a terminal computing device. Instead, the 
personal computer allowed the simulation model developer to add their own 
general-purpose programming layer to the simulation language. Just as computer 
technology developed the general-purpose language over the machine-level code, the 
simulation model developers added the graphical user interface over the simulation 
language details. Simulation languages, such as SLAM and SIMAN, were coupled with 
outstanding, graphical-oriented programs yielding AWESIM and ARENA, respec-
tively. While just a sample of two such programs, which is nowhere near compre-
hensive, these are representative of the now accepted approach for delivering a 
simulation framework. See Robinson [76] for more discussion on this aspect. 

17.3.5 Simulation and Paradigm Shifts 

Early simulations were quite limited. It took a couple decades for the simulation 
software to catch up with the promise of simulation as a problem-solving 
methodology. Not surprisingly, Harling [78] deemed simulation a method of last 
resort. But simulation use and influence did grow, spurred on by the rapid 
expansion of computing technology and the rich research agendas within simula-
tion. Lucas et al. [79] declared it a method of first resort. This shift in attitude tracks 
well with the paradigm shifts due to simulation use and simulation technology. 

Simulation-based optimization, or simply simulation optimization involves the 
use of simulation as an input evaluation method for some larger optimization 
process seeking a “best” combination of input values. For instance, Box and Hunter 
[80] introduced the response surface methodology (RSM). This methodology 
allows one to take a simulation meta-model and use it to guide the search for those 
input settings that produce better response output. RSM is an early simulation 
optimization approach. While the RSM process can be automated, it is a fairly 
human-intensive approach. Favored approaches now include heuristic search 
methods using the simulation to evaluate certain potential solutions. The tremen-
dous power of simulation optimization is that the analyst has the descriptive power 
of the simulation model yet can attain the prescriptive modeling power previously 
only attainable via an optimization model. Fu and Henderson [81] provide a more 
thorough historical treatment of the methodology.
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Robinson [76] recounts some of the early simulation frameworks to add visual 
tools. The visual representation of the implemented conceptual model provides a 
powerful mechanism for validating the model as well as achieving buy-in from the 
analytical customer that the simulation is correctly representing their system (or 
process). As the use of computer simulation grew, its influence on decision-making 
grew. Leadership confidence in the computer simulation results needed a firm basis 
beyond just the visual-based affirmation from the computer simulation graphics. 
Simulation model verification and validation grew in response to this need to build 
leadership confidence in simulation model-based analysis. Verification involves 
ensuring the executable model is built correctly while validation ensures that the 
simulation model conceived does in fact accurately mimic the system or process of 
interest. Today, simulation verification and validation is an assumed aspect of any 
simulation study. Sargent and Balci [82] provide a detailed history of simulation 
verification and validation. 

Combat games are not new, and it can be argued that these were among the first 
simulations used. Loper and Turnitsa [83] and Hill and Miller [70] recount the 
pre-computer history of these combat games or simulations. Engineering compu-
tations, manually accomplished before the computer, were natural candidates for 
computational implementation. Quite rapidly, war game adjudication was com-
puterized as well, which, in turn, led to the development of a variety of combat-
focused, analytical, or constructive models. Battilega and Grange [84] provide a 
comprehensive survey of these models up until the 1980 timeframe. These combat 
simulations addressed combat in ground, naval, and air operations and varied levels 
of focus, or fidelity, from component performance, through system-versus-system 
encounters, to models of full theaters of war. This family of models, described in 
Hill et al. [85] as well as Hill and Miller [70] drastically changed the very nature of 
military operational research and continue to represent a significant aspect of 
military analysis. 

Simulation for training has achieved great results due to computer simulation. 
The first such instances of trainers were realized in the early 1950s [83]. Advances 
in the visualization of the executing simulation led to the use of computer games for 
training and immersive gaming in the 1970s. With the growth of the Internet, also 
starting in the 1970s, the use of simulations across distributed platforms was 
envisioned and researched. By the 1990s, distributed simulation was really taking 
hold, with the growth of standards to promote simulation interconnectivity and 
architectures to connect a variety of systems. See Loper and Turnitsa [83] for a 
discussion of these developments. 

A current focus is called Live, Virtual, and Constructive (LVC) simulations. 
Live denotes actual systems communicating with actual participants and various 
models and simulations. Virtual denotes actual participants involved with simula-
tors (versus actual) systems, which are in turn communicating with the Live and 
Constructive components. The Constructive denotes the simulation models that are 
entirely contained with the computer, which are also communicating with the Live 
and Virtual components. The LVC provides enhanced training experiences as well 
as the ability to test and demonstrate large, complex system-of-systems



performance, testing that is largely impossible to attain in the traditional modes of 
system testing. See Hill et al. [86] and Hodson and Hill [87] for further discussion 
of LVC. 
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A final paradigm shift due to the growth of simulation technology discussed here 
is called the digital twin. A simulation represents a system or process of interest and 
produces results that should mimic results from the real system or those results that 
would come from that real system under similar configurations as used in the 
simulation. Why not let the simulation act as the real system then? This is the 
concept of the digital twin. Use the simulation to build and test the system (or 
process) of interest before the system (or process) is physically built or tested. Use 
the simulation to anticipate behaviors or situations in the actual system, before they 
actually occur in the real system. The digital twin concept could lead to fully digital 
system design, could refine use of autonomous vehicles, can help improve health 
care, and could be used to full train personnel on systems (or processes) before they 
actually see the system (or process), to name just a few applications. See Shaw and 
Fruhlinger [88] for an introduction and background on the digital twin concept. 

17.3.6 The Simulation Research that Advanced 
the Simulation Use 

Each of the components of the simulation framework has benefitted from the 
amazing research focused on improving those components of simulation. Early 
random number generation involved looking up values in tables. These were 
replaced with computational routines that were theoretically as well as practically 
limited. Modern uniform random number generators produce a practically unlim-
ited supply of random numbers, with excellent statistical properties. See L’Ecuyer 
[89] for this history of this research. 

Simulations require random instances from various probability distributions. 
Random variate generation routines convert the uniform random numbers to adhere 
to the distributions of interest. These routines are critical to producing accurate 
simulations. Kuhl [90] recounts the history of random variate generation while 
Cheng [91] recounts the advances made in correctly modeling the inputs to the 
simulations. 

Simulation output is only useful if it can be used to make meaningful changes 
and promote leadership decision-making. The output of a simulation needs to be 
accurate, unbiased, and interpretable. The research in simulation output analysis has 
ensured the viability of simulation as a problem-solving methodology. Alexopoulos 
and Kelton [92] recount the advances in output analysis. 

17.3.7 Simulation as the Method of Choice 

Computer-based simulation has grown from a numerical calculation methodology 
to a ubiquitous presence. The engineering communities use simulation to analyze
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and improve design concepts. The healthcare communities use simulation to 
improve all aspects of their operations (see Brailsford et al. [93] for the five-decade 
history). Manufacturing has become reliant on simulation to define and improve 
everything from manufacturing processes, through their warehousing operations, 
onto their supply-chain operations (see McGinnis and Rose [94] for a perspective 
on the history of simulation in manufacturing). Entertainment uses simulation 
routinely, from the computer-generated images that help to create the massively 
entertaining movies of today to the games and educational programs used by 
gamers of all ages and students. 
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Simulation will continue to grow. The research of the past is combining with the 
technology of the present and the future to bring on simulation capabilities that we 
have probably yet to imagine but will absolutely embrace and use to the benefit of  
all involved. 

Disclaimer The views expressed in this article are those of the authors and do 
not reflect the official policy or position of the United States Air Force, the 
Department of Defense, or the United States Government. 
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Abstract 

The SCS M&S Body of Knowledge is a living concept, and core research areas 
are among those that will drive its progress. In this chapter, conceptual modeling 
constitutes the first topic, followed by the quest for model reuse. As stand-alone 
applications become increasingly rare, embedded simulation is of particular 
interest. In the era of big data, data-driven M&S gains more interest as well. 
Applying the M&S Framework (MSF) to enable neuromorphic architectures 
exemplifies the ability of simulation to meaningfully contribute to other fields as 
well. The chapter closes with sections on model behavior generation and the 
growth of simulation-based disciplines. 
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18.1 Conceptual Modeling 

Paul Fishwick, Saikou Y. Diallo 

We begin with discussing the basic ideas of conceptual modeling and then proceed 
to a description of how conceptual modeling is treated within the M&S community. 
We start with the general and then progress toward the specific. 

Modeling is creating a simplified representation of something. This definition 
holds in virtually all disciplines from art, and the humanities, to mathematics, 
science, and engineering. If modeling is representation, then what does conceptual 
modeling mean? A definition of concept from the Oxford English Dictionary 
(OED) is “something conceived in the mind; a notion, idea, image, or thought.” 
Another more elaborate OED definition of concept is “a general idea or notion, a 
universal; a mental representation of the essential or typical properties of some-
thing, considered without regard to the peculiar properties of any specific instance 
or example.” From these two definitions, we are drawn to ideas and mental rep-
resentations. Fishwick [1] presents a chapter on concept modeling, which is por-
trayed as a more informal, initial phase to model development.
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Mental modeling is present in psychology [2, 3] where a mental model is cap-
tured by some language or formalism. Some popular formalisms for this type of 
model are logic, concept maps, and mind maps. Logic [4] is a way to express 
natural language but in a more structured symbolic fashion. Mind maps [5] and 
concept maps [6] are similar. Both maps are directed graphs, represented visually 
by concepts, which are connected by relationships. The mind map centers on one 
primary concept and then branches out to sub-concepts. Mind maps contain wide 
latitude on drawing style and aesthetic choice. Concept maps have no central node 
and represent a network of concepts. 

If we take a step back from mind maps and concept maps, we arrive at two more 
fundamental human activities: drawing and writing. Drawing and writing represent 
languages for describing and notating concepts. The statement “the oak tree has 
many thick, gnarly, branches which tend to twist and turn” is a kind of model since 
the language statement is a simplified representation of the tree. A drawing of the 
oak tree captures the tree but in a more convenient package: the drawing. 

That drawing and writing define modeling at its most natural state, we can situate 
modeling as a fundamental, behavioral aspect of our species. We have been rep-
resenting for a very long time. The notation that drawing and writing capture 
modeling conceptually also feeds into the idea that these creative practices come to 
fruition in our early education. We all learn verbal and written language and 
drawing at a young age and thus begin our conceptual modeling adventure. 

The modeling and simulation community is at its root concerned with engi-
neering models that combine mathematical and logical aspects of a problem. As a 
result, conceptual modeling tended to be subsumed with the natural abstractions 
provided by mathematics and logic. Conceptual models were therefore incorporated 
into design specifications, algorithms, and blueprints and were directly imple-
mented into the expression of the simulation model in the language of the simulator 
in which it was executed. While that approach married well with the problem 
domains associated with engineering models, it did not equip engineers to deal with 
situations where specifying the problem was a necessary first step to solving it. 
Over the years, three major advances lead to the emergence of conceptual modeling 
as a major component of M&S. 

First, the need to reuse models in order to answer new questions pushed M&S 
professionals to develop framework to make simulations interoperable. In that 
process, they soon discovered that they were more likely to build a “Frankenstein” 
solution made of disparate, incoherent models that they were to achieve a cohesive 
whole. They realized that rather than simply making simulation interoperate, they 
had to compose models. The desire to compose models revealed the limitations of 
using design specifications algorithms to capture conceptualizations. While these 
documentations provide what was done, it did not necessarily describe the intent of 
the model and the rationale for making design decisions. As a result, it was nearly 
impossible to determine the intersection of models and decide on which compo-
nents of a model should be included in a desired solution. The struggles to achieve 
meaningful interoperability and composability pushed the M&S engineering 
community toward a separate conceptual modeling process that would help increase



model transparency and provide a solid basis for integration, interoperation, and 
composition of M&S solutions [7]. 
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Second the emergence of computational social sciences [8] over the last two 
decades has given a renewed emphasis to the ability to first design a problem through a 
conceptualization process and then attempt to investigate it through simulation. In 
social sciences, the source of the model or the referent is a social system often 
described in the form of theories with varying levels of complexity and ambiguity. 
The ability to (1) faithfully represent theories and (2) abstract them to their bare 
axiomatic structures requires the development of very elaborate conceptual models. 
Conceptual models thus developed serve communication devices between the 
modelers and an expert audience to evaluate how well the modelers are adhering to 
the theory. As the modelers cease to be the experts, conceptual modeling became the 
means by which modelers capture knowledge from subject matter experts for the 
purpose of using simulation to answer a modeling question. Over time, conceptual 
modeling played a critical translator role between the organized expert knowledge 
captured in theories and the organized semi-formal knowledge required to answer a 
modeling question. Recently, some experts have argued that expert knowledge is 
biased and that it is important to understand and capture all worldviews around a 
situation [9]. They argue that a reference model that captures what is known and 
assumed about the model should first be specified and that the conceptual model 
should be a representative subset of the reference model. This concern of bias and 
myopia in the representation and design of the problem to be solved through modeling 
and simulation has catapulted conceptual modeling in the domains of philosophy of 
science and systems science. It has also opened the door to the use of modeling and 
simulation to study complex societal problems which is the third major advance. 

As global challenges continue to grow and become more intertwined, policy experts 
are seeking ways to gain insight into the mechanisms of a problem and the impact of 
potential solutions. Policy analysts dealing with pandemics, climate change, globaliza-
tion, and forced migrations are asking for tools that can help them frame a problem space 
and help define the contours of a solution space. Modeling and Simulation experts in 
conjunction with economists, social scientists, humanists, and philosophers [10] are  
increasingly developing models that seek to explore problems of interest to 
decision-makers. Conceptual modeling serves as the common language that experts from 
multiple disciplines use to communicate knowledge, assumptions, and worldviews. 
Conceptual models capture the consensus (or lack thereof) on the problem and represent 
the problem specification as understood by the experts. The model is useful in com-
municating with policy experts and serves as the basis for evaluating the recommen-
dations derived from simulation results. Conceptual modeling is very valuable in that: 

1. it uncovers and makes explicit knowledge and bias; 
2. it reveals beliefs about the nature of the situation of interest (climate change, 

child sex traffic, etc.) and its underlying root causes and mechanisms; 
3. it allows policymakers to observe and understand how their views differ from 

those of the experts and other policy professionals; and 
4. it serves as the axiomatic structure for key assumptions and their justification.
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All three of these factors have made conceptual modeling a critical and 
unavoidable step of the M&S lifecycle. 

As a result of the emergence of conceptual modeling as part of a wider elicitation 
process, conceptual modeling tools include a wide range of solutions. The language 
of conceptual models varies from the informal (documents, reports) to semi-formal 
(UML, SYSML, etc.) to formal (domain-specific languages). Mind mapping tools 
are used to capture knowledge and relationships in the form of taxonomies or 
ontologies. Semi-formal tools used in systems and software engineering are 
effective in providing specifications that can be transformed into computational or 
mathematical models. However, conceptual modeling is an iterative process that is 
imbued in every aspect of the M&S process and the different models simply capture 
the consensus of an aspect of the problem at a point in time. 

In a recent expert panel on conceptual modeling [11], the need to make such 
models as discussed in this section accessible to machine was an additional topic. If 
artificial intelligence applications shall help to identify, reuse, and compose simu-
lation solutions, being able to read and understand the underlying assumptions and 
constraints captured in the conceptual model becomes pivotal [11]. 

18.2 Model Reuse 

Saikou Y. Diallo, Umut Durak 

Reuse is a highly desirable property of models because of the perceived savings in 
the time and effort involved in researching, developing, and documenting new 
models and simulations. While reuse has many definitions (formal and informal), it 
is generally understood as the ability to use an existing model to answer a modeling 
question. One of the major references in simulation mode reuse is [12]. 

In order to better understand reuse, it is important to separate (1) the referent 
which is the phenomena being model, (2) the model which is a representation of the 
phenomena, and (3) a simulation which is the execution of a model. Referents by 
their very nature are not reusable. However, modelers can recognize that they are 
dealing with a referent that they or others have modeled before in order to answer a 
modeling question. The recognition of a similar referent is often the first step 
toward model reuse. 

For a modeler, models are reusable depending on how closely they match the 
new modeling question and how relevant the underlying assumptions bounding the 
model remain acceptable. Models that are reusable usually capture mathematical 
abstractions that describe physical and chemical phenomena (speed, motion, heat 
transfer, etc.) and rely on commonly accepted theories, practices, and assumptions 
(Newtonian Laws for instance). For example, physics-based models are largely 
reused and act as de-facto standards in some modeling communities [13, 14]. That 
can be also be categorized as conceptual model reuse.
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Simulation reuse is largely dependent on platform, language, input and outputs. 
In the case where the modeler wants to reuse the simulation as-is, the ability to 
provide acceptable inputs and the relevance of the outputs in terms of resolution and 
scope (types of attributes, units of measure, frequency of sampling) drive the utility 
of the simulation. Full model reuse is at the far end of the reuse spectrum where the 
frequency is rather low and complexity is rather high; the other hand being code 
scavenging where the frequency is high, and the complexity is quite low [15]. From 
code scavenging to full model reuse, there is function reuse and component reuse. 
Further classifications were also made such as programming-level, frameworks-
level, design-level, and COTS-level reuse [16]. 

Model reuse has long been studied by the simulation community. One of the 
early examples is [17] where Reese and Wyatt trying to establish the link between 
software and simulation reuse. Since the early efforts, model reuse is driven by the 
enabling architectural approaches from software engineering. There have been 
efforts around distributed computing and component-based software engineering 
approaches as the enabler of simulation reuse, some of which are High-Level 
Architecture (HLA) [18, 19], DEVS [20, 21], and Functional Mock-up Interface 
(FMI) [22, 23]. The emergence of simulation as a service (SaaS) [24] later brought 
a good step toward increasing the reuse of simulation models. In the case where the 
modeler wants to integrate the simulation with other components, the platform and 
language of the simulation play a larger role. The use of micro-service architectures 
[25] as a part of service-oriented architecture design pattern will further facilitate 
the integration of simulation components into a larger whole. 

Reuse is often associated with interoperability and composability [26] where 
interoperability is the ability to connect simulations to answer a modeling question 
and composability is the ability to connect models to answer a modeling question. 
Interoperability, composability, and reuse are often conflated, although they are 
different [27]. Reuse is ultimately about the ability to map referents and recognize 
the difference between an existing model of that referent and the desired model of 
that referent. A failure to adequately map those aspects will result in wasting 
resources and increased frustration. 

At the enterprise level, reuse, interoperability, and composability must be 
planned and managed. To maximize reuse standards in documentation, develop-
ment, and tools must be promoted and enforced. Design patterns that separate data 
and functions tend to promote the reuse of both. Layered approaches, such as the 
Levels of Conceptually Interoperability Model (LCIM) provide a similar structure 
for governance and implementation as well [28]. Effective documentation of 
knowledge claims and knowledge management strategies and tools that promote 
discovery and transparency are key enablers of reuse. Ontology-based approaches 
have been investigated to streamline simulation reuse [29, 30].
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18.3 Embedded Simulation/Ubiquitous Simulation 

Baocun Hou, Bo Hu Li, Chunhui Su, Yanguang Wang 

18.3.1 Connotation 

Embedded simulation/ubiquitous simulation is a kind of new modeling and simu-
lation technology which integrates real-time computing, ubiquitous computing, 
Internet of Things (IoT), and cloud computing. 

Embedded simulation/ubiquitous simulation is a brand-new simulation mode 
that combines simulated space with physical/logical space, which seamlessly 
integrates simulator hardware/software, communication hardware/software, various 
sensors, and simulated world. Currently, digital twin is an area of increasing focus 
for embedded simulation/ubiquitous simulation, especially when the simulated 
model is represented as digital twin. 

The important significance of embedded simulation/ubiquitous simulation is 
introducing the simulation technology into the real system and embedding seam-
lessly into everything/world for achieving simulation everywhere across the world. 
The simulation services can be accessed transparently whenever and wherever 
possible under the embedded simulation/ubiquitous simulation mode. 

18.3.2 Technology System 

18.3.2.1 Modeling Theory and Methodology 
Modeling theory and methodology mainly include the primary modeling theory of 
the simulation system and its high-performance real-time simulation solution 
algorithm (secondary modeling method) for embedded simulation/ubiquitous 
simulation. 

18.3.2.2 Simulation System Theory and Technology 
Simulation system theory and technology mainly include the relevant theory and 
technology of hardware support environment, software support environment for 
operating system nucleus, high-speed communication system, and resource man-
agement system [31]. 

Theory and technology of simulation system construction and operation include 
real-time service, virtualization service, dispatching management service, load 
balancing service and resource management service and simulation service 
migration technology, as well as the relevant theories and enabling technologies of 
building and operating the simulation system using real-time/ubiquitous simulation 
engine, solution tool, and algorithm library.
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18.3.2.3 Simulation Application Engineering Theory 
and Technology 

Simulation application engineering theory and technology mainly includes the 
simulation application engineering theories and technologies supporting the 
embedded simulation/ubiquitous simulation application, as well as model library, 
algorithm library and database in the fields of national economy, national welfare, 
people’s livelihood, national security, and the relevant theories and technologies. 

18.3.3 Key Technologies 

18.3.3.1 Embedded Simulation/Ubiquitous Simulation 
Modeling Technology 

Oriented for the embedded system, embedded simulation/ubiquitous simulation 
modeling technology can be classified into two categories general modeling tech-
nologies and specific modeling technologies [32]. General modeling technologies 
include mechanism modeling, identification modeling, object-oriented modeling, 
multi-view modeling, and data visualization modeling. Specific modeling tech-
nologies include agent-oriented modeling, ontology-oriented modeling, distributed 
inference-oriented network modeling, high-performance real-time simulation 
technology, inference/evolution /self-organization modeling for mobile 
communication. 

18.3.3.2 Embedded Simulation/Ubiquitous Simulation System 
Architecture 

Based on the Internet, the hierarchical, networked and service-oriented embedded 
simulation/ubiquitous simulation system architecture focuses on the integration of 
simulation and physical spaces, with the aim of accessing to the simulation services 
as needed anytime and anywhere and transparently, so as to conform to the new 
requirements in the simulation application field under the “user-centric” and “im-
plicit invocation” application mode [33–37]. 

Embedded simulation/ubiquitous simulation system architecture includes portal 
layer, core service layer, middleware layer, resource layer, and the security system 
for ubiquitous simulation system throughout the aforesaid all layers. Figure 18.1 
shows the embedded simulation/ubiquitous simulation system architecture. 

1. Resource layer: Various resources dynamically dispatched and applied by the 
ubiquitous simulation system are provided in the form of services, including 
computing service, data service, storage service, software service, model ser-
vice, RTI service, etc. 

2. Middleware layer: It consists of context-aware middleware, service grid mid-
dleware, and intelligent agent middleware. 

3. Core service layer: The core service layer is composed of operation support 
service, application development environment, simulation application support 
service, and simulation service/task description specifications.



Portal layer: The intelligent terminal of ubiquitous simulation system is vital to 
enabling the ubiquitous simulation application mode. Intelligent agent generated 
by the intelligent terminal of ubiquitous simulation system helps the user 
complete simulation service request, access, and simulation task execution. 

18.3.3.3 Software Platform and Middleware of Embedded 
Simulation/Ubiquitous Simulation System 

18 Core Research Areas 443

S
ecu

rity
 sy

stem
 fo

r u
b

iq
u

ito
u

s sim
u

latio
n

 sy
stem

 

Middleware layer Context-aware middleware Service grid middleware (OGSA) Intelligent agent middleware 

Resource layer 

Computi 

ng 

service 

Data 

service 

Storage 

service 

Software 

service 

Model 

service 

Sensor 

service 

... 
RTI 

service 

Core service layer 

S
y
n
erg

ic m
o
d
el serv

ice 

C
o
llab

o
rativ

e v
isu

alizatio
n
 

serv
ice 

Portal layer 

Intelligent simulation 

space 

Application field 

layer 
Wearable simulation 

Intelligent transportation 

simulation 

Other embedded simulation / ubiquitous 

simulation fields 

Operation support service 

S
im

u
latio

n
 en

g
in

e 

serv
ice 

S
im

u
latio

n
 serv

ice 

d
isco

v
ery

 an
d

 m
atch

in
g

 

serv
ice 

Simulation application 

support service 

Application development 

environment 

U
b

iq
u

ito
u

s sim
u

latio
n

 

m
o
d
el serv

ice to
o
l 

sim
u
latio

n
 serv

ice ag
en

t 

A
u
to

m
atic g

en
erato

r 

C
lien

t p
ro

x
y

 A
u

to
m

atic 

g
en

erato
r 

Simulation service / task description specifications 

... 

C
o
n
tex

t-aw
are serv

ice 

Intelligent terminal of ubiquitous simulation grid 

Client proxy Sensor 

S
im

u
latio

n
 serv

ice ag
en

t 

Voice recognition ... 

Fig. 18.1 Embedded simulation/ubiquitous simulation system architecture 

4. 

The software platform of embedded simulation/ubiquitous simulation system sup-
ports the deployment, operation and testing of embedded simulation application, 
including the framework of software platform, reusable component library, devel-
opment kit, and open third-party application interface [37–40]. The middleware 
technology for embedded simulation/ubiquitous simulation system mainly includes 
such technologies as context awareness, service discovery, security control, and 
embedded-resource constrained device processing. The ubiquitous simulation 
middleware can be classified into data processing middleware, context-aware 
middleware, service discovery middleware, and integrated application middleware 
by functions, respectively. Through the functional integration of universal simu-
lation middleware, comprehensive application services can be provided for users to 
improve system availability and usability.



444 P. Fishwick et al.

18.3.3.4 Perception and Interaction Technologies Between 
Human and Embedded Simulation/Ubiquitous 
Simulation Service 

The ultimate goal of the Ubiquitous computing mode is to integrate the information 
space consisting of communication and computer with the physical space where 
people live and work, support the user to acquire the personalized information 
service “anytime and anywhere” and transparently, so as to provide the user with an 
implicit interaction mode [34]. 

“User-centric” represents a significant change in the way of accessing to the 
simulation service, and a transformation of a simulator-centered application mode 
into a human-centered application mode. Computer is no longer the only access for 
user to acquire simulation service. The networking intelligent terminal will pene-
trate into people's living space by taking various forms, representing a carrier from 
which people acquire the simulation service, i.e., a ubiquitous simulation space. 

Under the “user-centric” ubiquitous simulation application mode, all users will 
stay in a terminal environment with perceiving and networking functions, the 
intelligent terminal can automatically identify user's application requirements, then 
map the application requirements into the simulation ones, and the simulation tasks 
will be submitted to the ubiquitous simulation grid. The ubiquitous simulation grid 
searches for the required simulation services automatically, combines the simula-
tion services, dynamically constructs the simulation application system, executes 
the simulation task, fulfill user’s requirements, and returns the simulation result. 
A desired simulation result can be obtained as long as the user describes his 
application or simulation requirements based on a certain simulation language. 
Finally, a highly automated and intelligent simulation system is established. 

18.3.3.5 Simulation Service Migration Technology 
for Embedded Simulation/Ubiquitous Simulation Mode 

Simulation service migration technology for embedded simulation/ubiquitous 
simulation mode involves the definition of simulation service migration agent and 
its internal modules, simulation services and design for general interface associated 
with migration [41]. Depending on mobile agent and context-aware technologies, 
the functional and non-functional migration attributes of simulation service can be 
separated, ensuring the consistency of simulation service operation status, achieving 
the goal of the full life circle management of simulation service migration. This 
conforms to the application requirements of network bandwidth and resource 
configuration optimization, load balancing and support offline services in ubiqui-
tous simulation. 

18.3.3.6 Coordinated Management and Integration 
Technologies of Simulation Space and Physical/Logical 
Space 

Ubiquitous simulation represents the integration of such technologies as cloud 
simulation, sensor network, mobile computing, context-aware computing, wearable 
computing, intelligent, agent and Semantic Web, aiming at enabling security



dynamic sharing, reuse and interoperability as well as collaborative scheduling 
operation and optimization of various simulation resources. Firstly, various soft-
ware and hardware simulation resources are provided to serve people's life by virtue 
of cloud simulation technology, so as to “spread” the simulation resources ubiq-
uitously. Secondly, simulation application terminal extends to the network every-
where based on its functions of perceiving, computing, and networking, which 
thoroughly breaks away from the bondage in time and space, conforms to the 
requirements of accessing simulation services “anytime and anywhere”. Finally, 
simulation user, task, and service can be freely organized according to require-
ments, simulation service can be changed from “simulator-centric” to 
“user-centric.” 
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18.3.3.7 System Security Technology 
System security technology includes authentication, access control, privacy man-
agement, distribution control, and interoperability between mobile device and 
infrastructure, which provides security assurance to application services in a 
ubiquitous simulation environment [30, 42–44], such as middleware technology 
based on security rules, context-centered access control, public key-based or 
role-based authentication and intrusion detection, symmetric encryption algorithm, 
security group communication, and authentication. Currently, the existing system 
security technology calls for high-performance computing ability and storage 
capacity, the applicability on resource-constrained devices in ubiquitous simulation 
environment is somewhat inadequate. From an implementation perspective, 
focusing on the development of mobile terminal security control technology in a 
ubiquitous simulation environment will be an important research direction. 

18.3.3.8 Embedded Simulation/Ubiquitous Simulation 
Application Technologies 

The application technologies of embedded simulation/ubiquitous simulation include 
the construction technology of ubiquitous simulation solving environment, 
HLA/RTI network technique, resource service middleware, simulation resource 
service, semantic-based simulation model resource discovery, simulation resource 
service combination and system security mechanism and user management. The 
functions of simulation resource development, deployment/registration, and simu-
lation resource retrieval/discovery are implemented in combination with the 
application scenarios of different industrial fields, leading to the ability to dynam-
ically construct simulation application based on the service combination mode. 

18.3.4 Development Tendency 

18.3.4.1 Ubiquitous Simulation Service 
Simulation resources are ubiquitous. Various software and hardware simulation 
resource services are provided to human life to shield the complicate and



18.3.4.2 Ternary Integration of “Human-Cyber-Physical” 

18.3.4.3 Ubiquitous Human–Computer Interaction 

18.3.5 Application Scenarios 

18.3.5.1 Intelligent Manufacturing 

1. Simulation, control, and optimization in the manufacturing process 
Embedded simulation is conducted on the control model of predictive control 
system for parameter matrix optimization of multiple-input multiple-output 
(MIMO) control system, and cooperative control simulation and optimization of 
the distributed system consisting of a plurality of controllers. 

2. Simulation and dynamic configuration of production resources 
Parameter estimation and rapid workshop scheduling optimization are enabled by 
building the desired prediction and production resource organization models for 
real-time workshop production simulation at the edge layer of intelligent manu-
facturing system. 

3. Predictive maintenance 
Predictive maintenance and fault detection process optimization are enabled by 
comparing various kinds of characteristic data generated by equipment health 
model and equipment during the production in the intelligent manufacturing 
system. 

4. Intelligent logistics 
By the means of embedded simulation, during the process of intelligent logistics, 
real-time simulation and optimization of work path can be carried out to realize 
intelligent dynamic path planning and improve logistics efficiency.

heterogeneous ubiquitous simulation environment, in order to meet the require-
ments of invocation simulation services anytime, anywhere, and transparently [29]. 
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With the development of cloud computing, IoT technologies, and the emerging 
heterogeneous terminals, ubiquitous simulation will develop the “human-centric” 
ubiquitous perception service and expand the perception and interoperability of 
existing equipment, which is a key supporting technology for developing the 
ternary integration of “human-cyber-physical.” 

It integrates such advanced technologies as intelligent computing, sensor, and 
embedded system, which provides more intuitive and natural interactive experience 
in the simulation, physical and social spaces. 
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18.3.5.2 Intelligent Transportation 
Massive video data is subject to storage, predictive analysis for simulation and 
recognition locally based on ubiquitous computing and embedded simulation 
techniques, which supports real-time intelligent transportation control. 

18.3.5.3 Intelligent Training 
The intelligent space for embedded computer, information equipment, and 
multi-mode sensor is constructed to support the intelligent training scene for data 
precipitation and reuse, the ubiquitous computing and AI technology. 

18.4 Data-Driven M&S 

Lin Zhang, Xu Xie, Longfei Zhou 

18.4.1 Introduction 

Modeling and simulation are a method of choice for studying and predicting 
dynamic behavior of complex systems. In the application of simulation, the real 
system is first abstracted by a conceptual model, which is then translated into a 
(computer-executable) simulation model [45]. The simulation model needs to be 
verified (whether the computer implementation of the conceptual model is correct) 
and validated (whether the conceptual model can replace the real system for the 
purposes of experimentation) iteratively until the simulation model can represent 
the real system accurately, in the sense that the discrepancy between the simulation 
output and the relevant system measurements is within pre-specified acceptance 
criteria [45, 46]. During this iterative model construction process, data is used 
offline, e.g., for model calibration (adjusting model parameters) [47, 48], or for 
automated model generation [49]. Once the simulation model is verified and vali-
dated, we can experiment with the simulation model to predict the behavior of the 
real system, while the data itself is not used in the simulation process. However, 
models inevitably contain errors, which arise from many sources in the modeling 
process, such as inadequate sampling of the real system when constructing the 
behavior database for the source system [50], or conceptual abstraction in the 
modeling process [51]. Due to these inevitable errors, even elaborate complex 
models of systems cannot model the reality perfectly, and consequently, results 
produced by these imperfect simulation models will diverge from or fail to predict 
the real behavior of those systems [52, 53]. 

With the advancement of measurement infrastructures, such as sensors, data 
storage technologies, and remote data access, the availability of data, whether 
real-time online or archival, has greatly increased [52, 53]. This allows for a new 
paradigm – dynamic data-driven simulations, in which the simulation is continu-
ously influenced by fresh data sampled from the real system [54] shows a general



dynamic data-driven simulation, which consists of (1) a simulation model, 
describing the dynamic behavior of the real system; (2) a data acquisition com-
ponent, which essentially consists of sensors that collect data from the real system; 
and (3) a data assimilation component, which carries out state estimations based on 
information from both measurements and the simulation. The dynamic data-driven 
simulation integrates computational (i.e., behavior predicted by the simulation 
model) and measurement (i.e., real-time data from the real system collected by 
sensors) aspects of a system. This can lead to more accurate simulation results (i.e., 
the estimated model state is closer to the real system state) than using a single 
source of information from either the simulation model or the measurements. 
Integrating data from the real system also helps the simulation to prune unrealistic 
states, since actual system data naturally contains correlation information which is 
easily lost in the modeling process (e.g., by falsely assuming that state variables are 
independently distributed). Such an integration is achieved by an analysis tech-
nique, data assimilation, which incorporates measured observations into a 
dynamical system model in order to produce a time sequence of estimated system 
states [55, 56]. By assimilating actual data, the simulation can dynamically update 
its current state to be closer to the real system state, which facilitates real-time 
applications of simulation models, such as real-time control and analysis, real-time 
decision making, and understanding the current state of the real system. Besides, if 
the model state is extended to include model parameters, online model parameter 
calibration can be achieved together with the state estimation [57]. With more 
accurate model state and model parameters adjusted by assimilating real-time data, 
we can experiment (offline) on the simulation model with the adjusted state and 
parameters, which will lead to more accurate results for follow-on simulations. In 
reverse, the information from data assimilation can also be fed back to the data 
acquisition component to guide the measurement process, for example, to optimize 
the sensor deployment (Fig. 18.2). 
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Fig. 18.2 A general dynamic 
data-driven simulation
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18.4.2 Data Assimilation Techniques 

The aim of data assimilation is to incorporate measured (noisy) observations into a 
dynamic system model in order to produce accurate estimates of all the current (and 
future) state variables of the system [56]. Therefore, data assimilation relies on the 
following three elements to work, which include the system model that describes 
the evolution of the state over time, the measurement model that relates noisy 
observations to the state, and the data assimilation techniques that carry out state 
estimation based on information from both the model and the measurements, and in 
the process address measurement and modeling errors [55]. In literature, many data 
assimilation techniques exist, such as Kalman filter [58], extended Kalman filter 
[59], and ensemble Kalman filter [60]. However, their working relies on certain 
assumptions, such as linear model assumption, or Gaussian error assumption [61]. 
Another powerful data assimilation technique is the particle filters [58, 62]. The 
particle filters approximate a probability density function by a set of particles and 
their associated importance weights, and therefore, they put no assumption on the 
properties of the system model. As a result, they can effectively deal with nonlinear 
and/or non-Gaussian applications [63, 64]. The main data assimilation techniques 
are compared in Table 18.1. 

The dynamic data-driven simulation paradigm has been successfully applied in 
many fields. One of the earliest applications is data assimilation in wildfire spread 
simulations conducted at the Systems Integrated Modeling and Simulation (SIMS) 
Lab at Georgia State University [64]. In this work, the simulation model for wildfire 
spread is a cellular automaton-based discrete event simulation model called 
DEVS-FIRE [65]; the measurements are temperature values from sensors deployed 
in the fire field; particle filters are employed to assimilate these measurements into 
the DEVS-FIRE model to estimate the spread of the fire front. Experimental results 
show that the data assimilation system is able to improve the accuracy of wildfire 
simulation by assimilating real-time data from sensors. The proposed framework is 
later applied to agent-based simulation of smart environments in order to estimate 
people’s location information [66]. This information can help to make decisions 
in situations like emergency evacuation in smart environments. Other applications 
can be found in transportation systems in which vehicle trajectories are recon-
structed by assimilating noisy event-based data and travel times into microscopic

Table 18.1 Comparison of main data assimilation techniques 

Kalman 
filter (KF) 

Extended Kalman filter 
(EKF) 

Ensemble 
Kalman filter 
(EnKF) 

Particle 
filter (PF) 

System model Gaussian 
errors 
linear 

Gaussian errors 
continuously 
differentiable 

Gaussian errors No 
restrictions 

Measurement 
model 

Gaussian 
errors 
linear 

Gaussian errors 
continuously 
differentiable 

Gaussian errors No 
restrictions



traffic simulation models [67]. Manufacturing industrial is also an important 
application field of data-driven simulation. An example is presented in the next 
section.

450 P. Fishwick et al.

18.4.3 An Example: Real-Time Scheduling of Cloud 
Manufacturing Services Based on Dynamic 
Data-Driven Simulation 

Cloud manufacturing (CMfg) is a service-oriented and network-based manufac-
turing mode that provides customers with on-demand manufacturing services [68, 
69]. The scheduling problem is critical for realizing the optimal matching and 
scheduling of tasks and services in CMfg [70]. Compared with typical manufac-
turing systems, the CMfg system has some characteristics, such as individualized 
requirements of customers, distributed services, and uncertainties [71]. These fea-
tures bring more difficulties to CMfg than traditional environments in solving the 
scheduling problem. 

Dynamic cloud manufacturing scheduling (DCMS) problem is different from 
traditional job shop scheduling problem in scopes, models, and objectives. 
A scheduling method based on dynamic data-driven simulation DDDS is proposed 
to address the DCMS problem and improve the system robustness [72]. 

18.4.3.1 Model of DCMS Problem 
The CMfg environment differs from typical manufacturing systems in some 
aspects, such as tasks, services, and uncertainties. There are N service providers P1, 
P2, …, PN. The logistics time between Pi and Pj is li,j. Pi provides ni manufacturing 
services Si,1, Si,2, …, Si, ni. The service type of Si,j is hi,j. In the dynamic CMfg 
environment, tasks randomly arrive at the CMfg platform. Assume that the number 
of arrived tasks during [t1, t2] is  M(t1, t2), and the ith arrived task is Ti. The task 
type, arrival time, due date, and priority of Ti are bi, ai, ci, and pi, respectively. There 
are a total of H different task types. The number of tasks and the service status in the 
CMfg system change over time. The service status includes service availability 
information and subtask queue information. A task can be decomposed into a 
subtask sequence based on its task type. The jth subtask of Ti is Ii,j and the subtask 
type of Ii,j is gi,j. The length of the subtask sequence of task type bi is mi. 

To study the system operation performance and the execution of tasks of dif-
ferent scheduling strategies, we consider the DCMS problem during a specific 
period of time [t1, t2]. Assume that the service time of subtask Ii,j on Sx,y is ex,y,i,j. 
We define a relationship indicator vhx;y;gi;j by (18.1) to represent the many-to-many 
mapping relationship from service types hx,y to subtask types gi,j as follows: 

vhx;y;gi;j ¼
1; ex;y;i;j\1 
0; ex;y;i;j ¼ 1  

⎧ 
ð18:1Þ
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If service Sx,y has the ability to execute subtask Ii j, then relational variable v = 1  
where hx,y is the type of service Sx,y and gi,j is the type of subtask Ii,j. Otherwise, 
v = 0. There are three decision variables including serial number of the selected 
provider by Ii,j (represented by xi,j), serial number of the selected service by Ii,j 
(represented by yi,j) and start time of Ii,j (represented by zi,j). 

There are multiple stakeholders in CMfg including demanders, providers, and 
operators. For different stakeholders, the optimization objectives of the DCMS 
problem may be different or even contradictory. The simulation method can 
emulate the operational processes of different scheduling strategies for different 
optimization objectives. The statistical results of simulations can assist the CMfg 
platform in selecting a better scheduling strategy for a specific type of stakeholder 
under the current system environment. We assume that the completion time of Ii,j is 
fi,j. The remaining service time of Si,j at t is ri,j(t). Total service time of subtasks in 
the queue of Si,j at t is qi,j(t). Completion time of Ti is Fi. The utilization rate of Si,j 
during [t1, t2] is  ui,j (t1, t2), and the delay time of Ti is di. 

18.4.3.2 The Dynamic Scheduling Method 
The advantages of simulation technologies in dynamic scheduling are reflected in 
predicting future scheduling performance and eventualities to guide the current 
scheduling decision making. Traditional simulations are largely decoupled from 
real manufacturing systems due to the limited availability of real-time data of 
manufacturing systems in the past. With the recent development of sensors and 
IoT-based technologies, the availability and quality of real-time data have greatly 
increased. In DDDS, a simulation system is continually affected by the real-time 
data of the real system. Ehm et al. proposed a DDDS-based optimization heuristic 
for the dynamic shop floor scheduling problem [73]. Keller and Hu presented a data 
driven simulation modeling method for mobile agent-based systems [74]. 

To solve the DCMS problem, a DDDS-based dynamic CMfg service scheduling 
method (DSS) is proposed to address the randomly arrived tasks and unpredicted 
service time in the dynamic CMfg environment. In this section, the DSS method is 
introduced from the aspects of system framework, DDDS strategy, and scheduling 
rules. 

18.4.3.3 System Framework 
The system framework of DSS is presented in Fig. 18.3. There are three main roles 
in the framework: service demanders, service providers, and simulation platform. 
Service demanders submit task requirements to the simulation platform, and sim-
ulation platform applies a service scheduling system to generate task schedules 
based on real-time task information, real-time service information, scheduling rules, 
and optimization objectives. Service providers receive allocated subtasks and 
execute these subtasks at specific time according to task schedules. The completed 
products/parts are then delivered from selected service providers to service 
demanders through logistics.
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Fig. 18.3 System framework of the DSS method 

18.4.3.4 Scheduling Rules 
There are two kinds of scheduling rules in the proposed method including subtask 
priority rules and service selection rules. In the subtask priority rules, task arrival 
time, task due date, and subtask serial number are considered to rank the simul-
taneously triggered subtasks. When several subtasks compete for a single service, 
the task arrival times of these triggered subtasks are compared. And the scheduling 
program selects subtasks with earliest task arrival time. If the task arrival times of 
these subtasks are equal, the scheduling program compares the due dates and select 
subtasks with earliest due date. If the task due dates of these subtasks are equal, the 
scheduling program compares the subtask serial numbers and select subtasks with 
minimum serial numbers. If an extreme situation occurs that the task arrival times, 
task due dates, and subtask serial numbers of these subtasks are equal, the program 
randomly selects a triggered subtask. 

Function values of different scheduling rules are calculated based on service 
time, logistics time, and queue time of candidate services. Three single rules 
Minimum Service Time (MS), ML Minimum Logistics Time (ML), and Minimum 
Queue Time (MQ), and three combined rules Minimum Logistics and Service Time 
(MLS), Minimum Maximum Queue and Logistics Time (MMQL) and Minimum 
Service, Queue and Logistics Time (MSQL) are proposed as service selection 
strategies. In MS, only service time is considered as the optimization criterion, and 
the function value of Si,j is ei,j,k where k is the type of subtask. Figure 18.4 presents 
an example of these scheduling rules in DSS. 

The MS rule selects the service with the minimum service time to execute the 
current subtask I2,3. The ML rule selects the service with minimum logistics time 
from service S1,2. The total remaining service time of service Si,j is considered by 
the MQ rule. The total remaining service time of service Si,j is equal to the sum of 
the total service time of the subtasks in the queue of Si,j and the remaining service 
time of service Si,j at time t1. The MQL rule takes both the logistics time of the 
candidate service and the service time of the triggered subtask into account. The



subtask queue of service Si,j continues executing on Si,j after I2,3 selects Si,j and 
moves by logistics. Therefore, the MMQL rule selects the candidate service with 
minimum max (logistics time, queue time). In MSQL, the service time, logistics 
time, and queue time of candidate services are considered to select the optimal 
service. Compared with the above five service selection rules, MSQL is of higher 
computational complexity. 
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Fig. 18.4 An example of the scheduling rules in DSS method 

18.4.3.5 DDDS Strategies 
The interaction between the DDDS simulator and the service scheduling system in 
DSS is a close loop, as shown in Fig. 18.5. When trigger events occur, the service 
scheduling system sends the real-time service information to the DDDS simulator 
and makes a simulation call. The DDDS simulator runs the discrete event system 
specification (DEVS) simulations and then sends the evaluation results of different 
scheduling strategies to the service scheduling system. 

The input information of the DDDS simulator includes real-time task informa-
tion, real-time service information, the optimization objective and the simulation 
period. The real-time information of task includes the arrival time, due date, task 
priority, subtask numbers, completion time of completed subtasks, and the serial 
number of the subtask under execution. The real-time information of service 
includes the service busy/idle status and the remaining service time. The opti-
mization objective is given by the platform operator to reflect the target of the 
current platform. The simulation period is set to be the total simulation time of the 
DEVS simulations. 

The DEVS modeling method is applied in the DDDS simulator to model the 
simulation environment. The task scheduling processes of multiple distributed 
service providers are then simulated by the DDDS simulator. A DEVS simulation

Fig. 18.5 Real-time interaction between the DDDS simulator and the service scheduling system



model includes tasks, service providers, services, and scheduling rules. The attri-
butes of tasks include task arrival time, task types, task due date, task priority, and 
subtask sequence length. The attributes of service providers include service pro-
vider number N, service numbers, and logistics time. The attributes of services 
include service types, service capacity, and service time. There are two types of 
scheduling rules in the DEVS models: subtask ranking rules and service selection 
rules.
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After being invoked, the DDDS simulator will initialize the DEVS model based 
on the current system status. Different scheduling rules are added to this initialized 
DEVS model to construct different simulation models. These simulation models 
with different scheduling rules are then separately simulated for the same length of 
time. The simulation results of different DEVS models under the current scheduling 
objective are then compared after these simulations. Finally, the optimal scheduling 
rules under the current system status are obtained and sent to the service scheduling 
system. 

Initial results in some examples were encouraging, nevertheless further research 
needs to be done to confirm the feasibility and advantages of the proposed method. 

18.5 Research Enabled by the M&S Framework: 
Application to Neuromorphic Architecture Design 

Bernard P. Zeigler 

In this chapter, we illustrate how the modeling and simulation (M&S) framework 
introduced in Section 1.4.2 can help to formulate approaches to M&S in creation of 
novel functional products and processes. The example under focus concerns design 
and testing of neuromorphic architectures for a variety of information processing 
applications. Currently, new computer systems based on emerging understanding 
the brain are under serious development. Such neuromorphic architectures are 
intended to perform correctly in challenging environments while also meeting strict 
low-power consumption, time, and weight constraints. Not all modern information 
processing and classification algorithms can be expected to benefit significantly from 
migration to new form of neuromorphic hardware architectures from current com-
puting platforms. However, the current state of the art does not readily allow pre-
diction of neuromorphic systems’ success in meeting such criteria. Indeed, an overall 
framework is lacking in which novel architectures can be modeled and potential 
applications’ processing chains characterized in terms of computations required. In 
this chapter, we illustrate how the modeling and simulation (M&S) framework 
introduced in [12, 75] can be applied to this problem thereby illustrating how a novel 
domain of interest can be organized by M&S as its core basis for development. 

As illustrated in Fig. 18.6, we can express an image recognition/chip machine 
learning (ML) [76] configuration under study within the M&S framework (Sec-
tion 1.4.2) to enable its transformation into computational form. The M&S



framework allows modeling novel architectures and analyzing processing chains to 
be characterized in terms of computations required. This framework enables pre-
dicting the success of novel neuromorphic systems’ in application to a variety of 
information processing applications that must meet strict low-power consumption, 
time, and weight constraints. For example, the framework should help to charac-
terize a subset of modern signal processing and classification algorithms that can be 
expected to benefit significantly from migration from current computing platforms 
to new forms of neuromorphic hardware architectures. It can help to identify those 
types of application processing chains that are well-suited or not to such translation 
and the underlying reasons why this should be so. 
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Fig. 18.6 M&S framework 
in application to 
neuromorphic architecture 
design 

Recall that the M&S Framework (MSF) was developed in the theory of mod-
eling and simulation [77]. Based on systems theory, it provides a conceptual 
framework and an associated computational approach to methodological problems 
in M&S. The framework provides a set of entities and relations among the entities 
that, in effect, present an ontology of the M&S domain. As shown in Fig. 18.6, the 
entities are of four types: Experimental Frames (EF), Source Systems, Models, and 
Simulators, each of which is formalized as a mathematical system object that can be 
computationally represented in the Discrete Event System Specification (DEVS) 
formalism, and implemented directly in a M&S environment such as the MS4 Me 
Integration Platform [78] With examples given in the figure, EFs formalize the 
objectives of modeling studies in terms of the conditions under which models are to 
be simulated and the metrics of interest. Source systems are the real or 
to-be-designed objects for which Models are constructed to be simulated under the 
conditions of the EFs and thereby meet the objectives of the study. Simulators are 
the devices capable of executing the models, formulated as computational struc-
tures, or sets of instructions for generating observable system behaviors. 

The framework’s application can be analyzed in the proposed terms: 

1. Experimental Frames: Three types of frames: (1) what kind of computation is 
needed for the problem under scope, (2) performance measures (latency, 
throughput, power) of algorithms/architectures, (3) tradeoffs between
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competence and performance such as between recognition/categorization 
accuracy and speed. 

2. Source Systems: Existing realizations such as real-time simulation of spiking 
neural nets (SNNs) on SpiNNaker, Question–Answering system implemented 
on a TrueNorth chip, human motion and action recognition learned on Loihi 
chip, biomedical image learned on BrainScaleS [79]. 

3. Models: The DEVS formulations of a variety of models of (1) architectures/ 
mechanisms, i.e., DEVS representations of neuromorphic chips, e.g., SpiNNa-
ker, TrueNorth, Loihi, BranScaleS [80] and (2) “equivalents” from neurosci-
entific literature, i.e., neuroscience models such as the SNN and recurrent neural 
nets (RNNs) [81]. 

4. Simulators: Algorithmic characterization of devices needed for simulating 
models of architectures executing existing algorithms, e.g., the TrueNorth 
development simulator and eventual chip implementation [79], also simulation 
algorithms for efficient simulation of SNNs [82]. 
Figure 18.7 illustrates the approach and problems that arise in it. The example 

concerns the conversion of Elman recurrent neural networks (RNN) to spiking 
neural networks (SNN) for low power on IBM TrueNorth hardware [79]. An 
examination of the framework’s concepts suggests how this example can be ana-
lyzed in the advocated terms: 

• Source System: Question–Answering ML on TrueNorth chip 
• Models: Elman RNN and customized SNN derived from the original RNN. 
• Simulators: TrueNorth development simulator and eventual chip 

implementation. 
• Experimental Frame: The primary focus was on showing the lower power 

consumption of the converted model relative to the original implementation. 
The EF specification would include conditions requiring equivalent behavior in 
the form of question–answering categorization. In the study, an upper bound on 
power was derived by employing the known power consumption of the chip on 
which the target was implemented. This approach fits within the general concept 
of EF computation of performance indices. 

Fig. 18.7 Framework 
applied to RNN-to-SNN 
conversion example (from 
literature)
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In addition, the model/system, simulation/model, and model/model relations (as 
briefly defined in the figure (see Muzy and Zeigler [83]) are of critical importance in 
addressing the following: 

5. System/Model relations: The artificial neurons of Elman RNNs were replaced 
by integrate-and-fire neurons of SNNs. The mapping from the RNN to the SNN 
was a composition of two component processes: discretization and conversion. 
To accommodate the network parameters on TrueNorth, the weights of the 
machine learning RNN had to be scaled and discretized. A rate code for the 
output of the recurrent layer also reduced the precision used for training. Rep-
resenting the feedback structure of RNNs (that serves as a memory for 
non-trivial abstraction of past history) proved challenging and was approached 
through an approximation with error that vanishes as integration times increase. 
The discretization and conversion caused a drop in correct responses of some 
20%. An analysis attributed portions of the drop to each of the parts of the 
mapping. These critical error propagation analyses can be accomplished within 
the concept of approximate morphism for fidelity of target model representation. 

6. Simulation/Model relations: The model was written in MATLAB, using the 
integrated programming environment for IBM’s Neurosynaptic System. This 
allows the same program to be run on a TrueNorth chip or in the associated 
simulation environment. This is an instance of limited model continuity [77] in  
that it relates only to the coded version of the source RNN. The artificial neurons 
of Elman RNNs were replaced by integrate-and-fire neurons of SNNs. The 
mapping from the RNN to the SNN was a composition of two component 
processes: discretization and conversion. To accommodate the network 
parameters on TrueNorth, the weights of the machine learning RNN had to be 
scaled and discretized. A rate code for the output of the recurrent layer also 
reduced the precision used for training. Representing the feedback structure of 
RNNs (that serves as a memory for non-trivial abstraction of past history) 
proved challenging and was approached through an approximation with error 
that vanishes as integration times increase. The discretization and conversion 
caused a drop in correct responses of some 20%. An analysis attributed portions 
of the drop to each of the parts of the mapping. The MSF helps to formulate 
these critical error propagation analyses within the concept of approximate 
morphism for fidelity of target model representation. 

Questions 
Questions arising in the design of neuromorphic architectures and the elements of 
the framework that are related to them are suggested in the table. 

Question Elements of DEVS NeuroMatch involved in 
related analysis 

How general are various methods for 
converting existing ML neural net 
applications to SNN form? (In the example, 

The class of models to which a method 
applies in relation to classes of other such 
methods 

(continued)



Question Elements of DEVS NeuroMatch involved in 
related analysis 

generality is based on agnosticism to the task 
on which the machine learning RNN was 
trained) 

What are the different structures that 
constrain the conversion from source to target 
versions of a trained model? 

Model formalisms including differential 
equations, discrete event etc. and their 
characterization of computational model 
components: neurons, synapses, axons, etc., 
and behaviors: spikes, voltages, currents, etc 

What are the errors involved in the current 
approaches to conversion from conventional 
to novel platforms? 

Approximate morphisms that support 
analysis of the deviation of mappings from 
exact requirements of behavior preservation 
[84] 

What accuracy reductions can be expected in 
current approaches to migration from 
conventional to novel platforms? 

Error propagation analysis of approximate 
morphisms to predict effect of deviations 
from exact requirements [83] 

How good is the development simulator as a 
predictor of performance attributes of actual 
hardware execution? (Typically such 
simulators can give only approximate 
statistics on the actual performance when the 
model is executed in the hardware itself.) 

Representation of the simulator in terms of its 
validity for class of models it is aimed at 

How can performance indices of the target 
system be estimated and related to the 
complexity of the task being performed? 

Characterization of the structural and 
performance indices related to the 
computations required and the 
structure/behavior of the target system’s 
architecture 
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(continued) 

Temporal and Dynamic Properties 
Third-generation SNNs have been shown to employ temporal and dynamic prop-
erties [80] that point to new forms of applications. Introducing temporality into 
SNN-based computation necessitates inclusion of features that are not manifest in 
conventional architectures. These include timing related to the arrival of spikes, 
coincidence of spikes, end-to-end time of computation, and time before new inputs 
can be submitted/recognized by the system. A solid system-theoretical foundation 
and simulation framework for high-performance computational support is needed 
for such applications [85]. The framework helps to include system state and timing 
considerations: 

• Time dispersion of spikes—how the input and output arguments are encoded in 
spikes over a time base, where inter-arrival times make a difference in the output 
[86]. 

• Coincidence of spikes—in particular, whether spikes represent arguments from 
the same submitted input or subsequent submission depends on their spacing in 
time [85].



Fig.18.8 Simulator-independent FMI-based model generation in an SES/MB environment 

• End-to-end computation time—the total processing time in a multi-component 
concurrent system depends on relative phasing as well as component timings, 
and may be poorly estimated by summing up of individual execution cycles [85]. 

• Time for return to ground state—the time that must elapse before a system that 
has performed a computation is ready to receive new inputs may be longer than 
its computation time, as it requires components to reset, i.e., return to their 
ground states [87]. 
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The framework helps to formulate specific problems that arise in applications of 
SNNs, including: 

• How to make efficient use of spike times for communication, e.g., order of 
arrival vs rate coding [86]? 

• How to implement backpropagation through time with spiking neurons? 
• How to modify traditional deep learning algorithms to use low precision 

numerics? 
• How to model memristive device behaviors in neuromorphic computing, such as 

variations in conductance states with time and ambient temperature? 
• How can the more advanced architectures based on an all-optical or 

photonic-based SNN be accommodated in the framework? 

Current Neuroscience Models 
The framework can apply to current neuroscience models to give potential insights 
into likely success of current approaches in light of emerging alternatives. Exam-
ples of such models at various system specification levels: 

• Neuron level: Inter-spike time distribution found to be Gamma not Poisson; 
Spike-Timing-Dependent Plasticity (STDP) implements Hebbian learning [88]. 

• Circuit Level: Theory of Connectivity power-of-two permutation-based logic 
governs specific-to-general innate cell-assembly lattice arrangement (vs learned, 
e.g., by backpropagation) [89] 

• System level Current Neuroscience Models: Emergence of signal propagation 
pathways and logic gating [90]. Bottom-up/top-down integration of information 
by distributed neuron microcircuits underlies high-order neural processing, e.g., 
perception-to-action cycle [81, 91]. 

• Brain architecture: Hierarchical multi-scale organization: neuron communities, 
modules, themselves are modular [92]



The MSF helps to develop key abstractions that help to understand the structure and 
behavior of various neuromorphic computation and architecture technologies within 
a unified conceptual modeling and simulation framework. This helps to. 
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Co nclusions 

• Leverage the tools of systems theory and MSF to work with both exact and 
approximate morphism relations between abstractions dealing with simplifica-
tion, state reduction, discretization and their effects on error and its propagation. 

• Take into account inherent temporal requirements of application behaviors and 
temporal aspects in novel learning algorithms. 

• Exploit the power of the hierarchical modular DEVS formalism to (1) express 
the network of processing components and subcomponents across multiple 
sensors and (2) formulate the temporally based synchronous and asynchronous 
computations required to capture the relations between conventional and neu-
romorphic architectures. 

18.6 Model Behavior Generation for Multiple Simulators 

Thorsten Pawletta, Hendrik Folkerts 

The research in this section builds on the concepts of the System Entity Structure 
and Model Base (SES/MB) Framework (Pawletta, Section 1.5). An aspect of this is 
the realization of a generic MB that allows simulator-independent model genera-
tion. This supports the exchangeability of the models. In addition, there are 
advantages in terms of operational validity. According to Sargent [ ], operational 
validation is comprised of the simulation model and the executing simulator. Zei-
gler (Section 1.4.3.2) refers analogously to the basic simulation relation between 
simulator and model. Junghanns and Blochwitz [ ] refer to the necessity to test 
simulation models with different simulators with the argument: “DASSL of tool A 
differs from DASSL of tool B, even if the same name is used. Solvers contain 
heuristics, which are optimized with respect to the models which are most com-
monly simulated.” In the field of discrete event simulation, Junglas and Pawletta 
[ ] point out that simultaneous events in models are processed differently by 
simulators, resulting in different results. Comparing models with different simula-
tors means repeating the experiment under the same conditions. The execution of 
experiments under equal conditions reinforces the general requirement of experi-
ment automation. An SES/MB-based architecture for experiment automation is a 
further topic of this section. Here we refer to the interpretation of experiments as 
defined in Chapter 1 of this volume: “Simulation is performing goal-directed 
experiments with models of dynamic systems.”
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According to Pawletta (Section 1.5), an SES specifies a set of system configu-
rations with respect to the permissible system structures, associated experimental 

18 Core Research Areas 461

frames and possible model parameter settings. It defines the references to the 
dynamic basic models organized in an MB. The specification of the SES is 
simulator-independent. The base models are simulator-specific or generically 
described within model formalisms, for example, as with DEVS [77]. During the 
model generation, a system configuration is first derived from the SES by way of 
pruning and stored as Pruned Entity Structure (PES). A model builder is then used 
to generate a simulator-dependent model based on the information from the PES 
and using basic models from the MB. This approach is called native model gen-
eration [96]. With a model formalism-based MB or different simulator-specific 
MBs, models can also be generated for use in different simulators. However, the 
effort needed to create the MBs or the model generator is relatively large. 

An alternative approach to building a simulator-independent MB arises from the 
Functional Mock-up Interface (FMI) standard of the automotive industry. Here, the 
interchangeability of the models is an urgent requirement. FMI enables the 
exchange of models between simulators as well as co-simulation [97, 98]. In the 
context of SES/MB-based M&S, we put the focus on FMI for the purpose of model 
exchange. A dynamic model that implements the FMI is called Functional Mock-up 
Unit (FMU). This is especially so for the simulators in the cyber-physical system 
(CPS) domain that support the export and import of FMUs. Using FMI offers the 
possibility of specifying an easy-to-maintain MB with basic FMUs for use in 
multiple simulators. The simulator-independent FMI-based model generation 
approach is illustrated in Fig. 18.8. The MB is populated with FMUs exported from 
any simulator. The core of the model builder is the build method. The build method 
generates a new FMU, called Model FMU, according to the PES using FMUs from 
the MB. Using the new FMI companion standard System Structure and Parame-
terization (SSP), the generated Model FMU can consist of one or more FMUs 
including parameterizations [99]. The FMI and SSP standards are applicable for 
time-continuous models, specifically signal-flow oriented and physical ones. Cur-
rently, FMI does not support models with discrete event behavior well [100]. 

Every M&S environment has a specific interface to import and execute models. 
Therefore, we differ regarding a generated simulation model between a Simulation 
Model Executable (SME) and a Simulation Model Representation (SMR) [101]. 
An SME can be executed directly by the target simulator while an SMR encodes the 
instructions on how to build an executable in the target simulator. 

The automation of goal-directed simulation experiments requires an integration 
of the classic SES/MB framework into an extended architecture as shown in 
Fig. 18.9. 

The automation requires the input and output interface of the SES/MB Frame-
work. The input interface is provided by SES/MB methods such as pruning or build 
and additionally a set of variables with a global scope called SESvars. The output 
consists of links to the generated simulation models of type SME or SMR. For 
some experiments, it can be useful to derive a set of system configurations from the 
SES in one experiment cycle and to generate the corresponding simulation models.



Automated pruning requires that the SES encodes all information to be able to 
derive the unique system configurations. Therefore, it is necessary to define 
appropriate selection rules at all variation points of the SES (Pawletta, Section 1.5). 
Some types of variability, such as variable coupling relationships, can easily be 
described in a procedural way which reduces the complexity of the tree. For this 
purpose, the concept of SES functions was introduced [ ]. SES functions can be 
used for the variable parameterization of all tree attributes. For the exchange with 
other architectures, an XML structure was defined for the SES. 
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As shown in Fig. , an automated experiment is supervised by the component 
Experiment Control (EC). The EC defines an experiment specification that can 
depend on the current experiment results. An experiment cycle starts with assigning 
values to the SESvars and using the pruning method of the SES/MB Framework. 
Via the SESvars, the EC initiates the derivation of a system configuration or a set of 
system configurations. Then the SES/MB Framework generates the respective 
simulation models as discussed above. The generated simulation models of type 
SME or SMR are either simulator-specific or simulator-independent, depending on 
the model generation approach used. In the next step, the EC determines for each 
model the execution data and methods to use such as the solver method or simu-
lation start and stop time. This information is added to each model. The EC then 
initiates the execution of each model under the control of an Execution Unit (EU). 
The EU is a kind of wrapper for one or several target simulators. Finally, the EU 
returns the simulation results to the EC where they are evaluated. Based on the 
results of the evaluation, the EC reactively decides whether a further experiment 
cycle is started or whether the experiment is terminated. In the latter case, the EC 
calculates the overall results. 

18.9
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Fig. 18.9 SES/MB-based 
architecture for automation of 
goal-directed experiments, 
derived from the basic 
architecture by Schmidt [102] 

An implementation of the extended SES/MB-based architecture as a Python 
toolset is provided on the GitHub platform [104]. A case study showing the 
simulator-independent FMI-based model generation is provided by Folkerts et al. 
[101].



A recent book by Mittal et al. [ ] contains several examples from diverse 
disciplines demonstrating simulation maturity to provide a solid basis for 
advancement in many disciplines; from life sciences to engineering; from archi-
tecture to arts to social sciences. As a sign of the times, we are truly at the 
crossroads where M&S itself is becoming a “discipline.” The book highlights the 
state of the art in simulation in the modern era and how simulation-based T&E 
methodologies across multiple disciplines advance the very discipline itself. The 
notable contribution of this book is providing a comprehensive collection of

105
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18.7 Simulation-Based Disciplines 

Saurabh Mittal 

We live in the information age in which information underpins every technology in 
today’s world. Scientific theories—introduced in the last five decades—are realized 
with today’s scalable computational infrastructure effectively characterized by 
Moore’s Law. Modeling and Simulation (M&S), along with Big Data technologies, 
is at the forefront of such exploration and investigation. Furthermore, simulation 
has a unique characteristic: Dynamic models associated with diverse experimental 
conditions and scenarios (sometimes in extreme and even at adverse conditions) 
have the power of generating new knowledge. 

M&S is often taken as a single activity but in its practice and engineering, 
modeling and simulation are separate activities. While modeling has been ade-
quately embraced by various disciplines, leading to many modeling techniques, 
many times the modeling activity is not supported by simulation activity. On the 
other hand, a simulation-based approach subsumes modeling as an inherent activity. 
While modeling helps in bringing a common understanding across all stakeholders 
(e.g., scientists, engineers, practitioners), it is usually through simulation that a 
model’s correctness is evaluated. A validated model must be amenable to simula-
tion. A model represents a real-world phenomenon using abstractions. A properly 
validated, verified and accurately computerized model lends itself to experimen-
tation. Experimentation with a dynamic model as well as gaining experience based 
on a dynamic model lies within the domain of simulation-based approaches. 

Many professionals who use simulation techniques in their practice may not 
consider themselves simulationists, since they primarily identify as engineers, 
scientists, social scientists, or medical or defense professionals. However, the 
technology they are applying is simulation. Simulation establishes a model in a 
computational environment and allows us to experiment with the model to solidify 
our understanding in a dynamic environment. “Computation” in computational 
modeling and simulation is an aspect of modeling and simulation and does not 
(cannot) imply that modeling and simulation is a subfield of computation or soft-
ware engineering. Pretending otherwise would be like claiming that “computational 
astronomy” and “computational archeology,” respectively, are the subfields of 
computation or software engineering. Rather, simulation extends the power of 
computation by allowing experimentation and experience. Furthermore, simulation 
models can act as generators of new data under the associated scenarios. 



chapters from diverse disciplines with the unique characteristics of simulation. It 
emphasizes the fact that simulation may enhance the power of many disciplines and 
may serve as a foundation to shape emerging disciplines. Not only is M&S ben-
efiting disciplines like sociology, which has largely been insulated from such 
experimentation, but it is also undoubtedly used in every aspect of life, be they 
transportation, finance, economics, biology, and so forth. Furthermore, the book 
explores and elaborates on the position of simulation in various disciplines and 
notes its impact on the advancements of these disciplines as we advance toward a 
computational future in the twenty-first century: a computational future to be 
enhanced and empowered by simulation-based approaches. 

Model development is based on the knowledgebase of a particular discipline. It 
is against this knowledgebase the model is validated. While multi-disciplinary and 
interdisciplinary systems are grounded in constituent disciplines with established 
theories, the transdisciplinary and novel research-based disciplines lack the theo-
retic constructs to validate a model. It is in this latter case; the true vision of a 
simulation-based discipline, is realized. In these cases, the model itself becomes the 
vehicle to augment the theory for the new knowledgebase. In the former case, when 
sourced from multiple disciplines, the coming together of constituent disciplines in
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Disciplines emerge through an evolutionary process spanning a few years or 
decades. The first step is the generation of new knowledge from one of the fol-
lowing methods [106]: 

1. Two or more branches of knowledge merge to form a new discipline with its 
own characteristics, for example, biochemistry, geobiology, neuroscience, etc. 

2. A number of disciplines converge into an important field of activity and 
resulting in a two-way flow of ideas between pairs of disciplines that enrich 
both, leading to interdisciplinary knowledge, for example, transportation engi-
neering, biomedical engineering, cyber-physical systems, etc. 

3. A social or professional activity becomes an area of application for several 
disciplines and recognized as an independent field of study, for example, edu-
cation, economics, social work, management, agriculture, engineering, etc. This 
leads to a complete new set of a knowledgebase completely unrelated to the 
constituent disciplines. 

4. The changes in the sociopolitical scenario, for example, culture, urban devel-
opment, smart cities, etc. 

5. New research through natural discovery, subsequent development, and targeted 
inventions lead to a new discipline, for example, nanotechnology, space science, 
quantum mechanics, etc. 

These methods lead to the development and massaging of the knowledgebase, 
which in turns defines boundaries for this specialized knowledge and the underlying 
taxonomy. The emerging discipline can also be categorized as multi-disciplinary, 
interdisciplinary or transdisciplinary. In the list above, #1 and #4 are multi-
disciplinary, #2 is interdisciplinary, and #3 is transdisciplinary. The item #5 is 
unique and truly introduces a new scientific theory. 



a new discipline does not guarantee automatic alignment of scientific theories and 
paradigms. A deliberate effort is needed to align the theories and paradigms, and 
sometimes the disciplines cannot be reconciled. For example, developing an 
interdisciplinary model that brings together both the disciplines of quantum 
mechanics and Newtonian mechanics is infeasible, even though these two para-
digms are well-established. In such a case no new disciplines emerge and when the 
need to bring together such disciplines is presented, the project team warrants 
subject matter experts from the constituent multiple disciplines with the multidis-
ciplinary effort. When reconciled, this gives rise to a new community that aligns the 
paradigms and develops new technology, best practices, and knowledge-exchange 
mechanisms for the emerging interdisciplinary discipline. Model developed within 
such a discipline can now be validated with the new knowledgebase. 

The exploration of the phrase “simulation-based” provides evidence that 
simulation-based thinking is prevalent in many disciplines including complex 
systems, engineering, medicine, natural sciences, physical sciences, social sciences, 
education, and training. Dedicated professionals spanning leadership, management, 
and engineering recognize M&S as a profession and as an integral structure to their 
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day-to-day operations [107]. The simulation community includes many technical 
societies to serve their members in many disciplines. Simulation is a big business, 
with new technologies such as serious gaming, augmented reality and virtual 
worlds now becoming regular household entities. Furthermore, simulation used for 
entertainment purposes (e.g., simulation games) is also a big business. Without 
simulation at their core, such experiences would never have become possible. 

The advancements in simulation of interdisciplinary and transdisciplinary dis-
ciplines such as cultures, human personality, and behavior as well as incorporation 
of social system and ethics in simulation studies may support simulation-based 
rational decision-making education and training as a part of the education and 
training of future statesmen. This may even include education of citizens including 
the recognition of cognitive biases leveraged by some politicians to distort reality 
for their personal advantages. 

M&S practitioners are truly happy to see simulation now in every aspect of 
modern life. Today, we should not embark on any complex system study (design, 
analysis, or control) without considering “simulation-based” techniques unless we 
prefer to ignore all the benefits of simulation-based approaches. By emphasizing the 
role of simulation in the education of many disciplines, future professionals may be 
better equipped for their professions. Involving—even non-computational—simu-
lation in K-through-12 education, future generations may be better prepared with 
enhanced thinking abilities. 
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and Challenges 
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Abstract 

The SCS M&S Body of Knowledge is closed by a chapter on trends, desirable 
features, and challenges. Where are we going with simulation? How are other 
supporting disciplines evolving? What are current simulation technology trends? 
The following section on desirable features elaborates on the ideal characteristics 
set to make modeling and simulation technology rapidly develop into a generic 
and strategic technology. The chapter concludes with technical and conceptual 
challenges that will have to be addressed soon, hopefully contributing to the next 
iteration of the BoK. 
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A new round of revolution in technology and industry is spreading worldwide 
nowadays. Driven by the vision of this new era for innovative, coordinated, green, 
open, and shared development, it is ushering in major changes to all sectors of 
society in terms of the new model, means, and business format. A new landscape 
that is all connected, intelligence-led, data-driven, service-shared, inter-sector 
integrated, and massive innovative is being shaped as a result of deep integration of 
various technologies into every corner of the national economy, people’s livelihood 
and national security. These include new Internet technology (Internet of things, 
Internet of vehicles, mobile Internet, satellite network, space-ground integrated 
information network, new-generation Internet, etc.), new information and com-
munication technology (cloud computing, big data, fifth-generation mobile com-
munication (5G), high-performance computing, modeling/simulation, digital twin, 
blockchain, quantum computing, etc.), new artificial intelligence technology 
(data-driven deep reinforcement learning intelligence, network-based swarm intel-
ligence, technology-oriented hybrid intelligence of human–computer and 
brain-computer interaction, cross-media reasoning intelligence, autonomous intel-
ligent unmanned system, etc.), new energy technology (solar energy, wind energy, 
bioenergy, hydrogen energy, geothermal energy, marine energy, chemical energy, 
nuclear energy, etc.), new material technology (metal material, inorganic non-metal 
material, organic polymer material, and advanced composite material technologies), 
and new biotechnology (new biomedicine, green bio-manufacturing technology, 
advanced biomedical materials, cutting-edge generic biotechnology, biological 
resource utilization, biosecurity, life science instruments and equipment, synthetic 
biology, biological big data, regenerative medicine, 3D bioprinting, etc.). 

Modern modeling and simulation technology is an essential part of the new 
information and communication technology. Modeling and simulation technology, 
driven by various application requirements and related discipline development, has 
evolved into a new comprehensive technical system and quickly grown into a 
general and strategic technology. It is serving as the third vital means to understand 
and transform the objective world after theoretical research and experimental 
research. Its research falls into three major categories: simulation modeling theory, 
methods and technologies; simulation systems and supporting technologies; and 
simulation application engineering technologies (see Fig. 19.1). 

At present, modeling and simulation technology is developing toward the new 
“digital/data-oriented, virtual/augmented reality-based, high-performance/parallel, 
networked/cloud-based, intelligent, and universal” trend.



19 Trends, Desirable Features, and Challenges 473

Fig. 19.1 Simulation technology system 

19.1.1 New Digital/Data-Based Modeling and Simulation 
Technology 

New digital/data-based modeling and simulation technology is a new kind of 
technology that integrates new digital technologies, new data processing tech-
nologies, and modeling and simulation technologies [1]. In addition to improving 
existing mechanism-based digital modeling and simulation technologies (such as 
the DEVS theory and methods in continuous development, and Petri Net modeling 
methods), modeling and simulation technology based on new data processing 
technologies will be a focus of the future development. Because modern complex 
large-scale systems are usually nonlinear, time-varying, multivariable, and uncer-
tain, it is difficult to build an accurate model based on mechanisms, making it 
challenging to analyze and predict the behavior of complex large-scale systems 
realistically. Modeling and simulation technology based on new data processing 
technologies provide new ideas for solving such system simulation. New 
digital/data-based modeling and simulation technology mainly includes 
new-generation digital modeling, dynamic data-driven simulation technology, 
man–machine-material fusion simulation technology, digital twin technology, etc.
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As one of the critical supporting technologies for the new-generation intelligent 
systems [2], the new-generation digital modeling (NGDM) [3] combines typical 
M&S and new information technologies, such as CPS, IoT, AI, and VR. For 
specific simulation needs, a highly reliable NGDM needs to be constructed based 
on the structure and real-time status of the physical system. NGDM can also be 
built based on data correlation rather than system-based mechanisms (such as 
artificial neural network models). With NGDM, not only offline system analysis and 
prediction but also online interaction with physical systems are made possible. As a 
typical NGDM, digital twin (DT) is an extension and development of traditional 
virtual prototype (VP) technology. VP is built for design. When a product is 
constructed, VP is turned into DT along with the data sensed from the physical 
product [3, 4]. Although DT cannot be the same as the physical object, it is possible 
to construct a suitable DT model according to different simulation requirements to 
adapt to different scenarios. Siemens recommend that the enterprise DT includes 
product DT, production process DT, and equipment DT. With these three types of 
DT integrated, the actual production system is simulated, tested, and optimized 
through a virtual enterprise based on models and automation technology before the 
actual production is conducted [5]. 

Digital twin technology is a kind of new simulation technology that makes full 
use of the static and dynamic operation data of the simulated physical/logical 
system, integrates the new digital technology, new data processing technology, and 
multi-disciplinary, multi-physical, multi-scale, virtual-real mapping technologies, 
and completes the corresponding physical system/logical system/physical equip-
ment life cycle activities in the virtual space in a digital way. Its research scope 
covers perception, model construction, virtual-real model interaction, data/model/ 
technology/business integration, cyber-physical system control, and man–machine 
interaction technology. It is developing into a key technology in various cyber-
physical systems and intelligent systems and has drawn great attention from aca-
demics and industry [6]. 

Edge simulation is to configure the corresponding computing and simulation 
functions at the low end (device terminal) of the Internet of things as a means to 
improve the real-time performance of the system and ease the pressure of the cloud 
platform from management and control of the entire system. It is a supplement and 
enhancement to cloud simulation. The collaborative performance between edge 
simulation and cloud simulation provides more comprehensive support for pro-
duction process management, scheduling, and optimization. For embedded simu-
lation, the simulation system is embedded in the actual system and participates in 
the system operation. Embedded simulation technology was initial developed to 
meet military training requirements. Simulation modules are embedded in real 
combat equipment in order to support simulation and training of operators in real 
systems and improve their simulation experience. In the intelligent manufacturing 
environment, embedded simulation can support real-time scheduling, site moni-
toring, quality inspection, and situation prediction. In addition, embedded simula-
tion can be used to train workers on how to use complex manufacturing equipment. 
Embedded simulation is an extension of edge simulation. Both edge simulation and



embedded simulation in intelligent manufacturing are relatively new research ori-
entations. There are some key issues that need to be addressed. 
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19.1.2 New Virtual/Augmented Reality Modeling 
and Simulation Technology 

New virtual/augmented reality modeling and simulation technology is a type of new 
technology that combines new virtual/augmented reality technology and modeling 
and simulation technology. It is furthered not only by the advancement of related 
technologies but also by the requirements from economic development (such as 
industrial manufacturing, cultural entertainment, education and training, and 
e-commerce), social development (such as public safety and urban management), 
national defense development (such as weapon development, combat simulation, 
and personnel training), and scientific development (such as natural science, social 
sciences, management science, life science, and engineering science). 

New virtual/augmented reality modeling and simulation technology is a com-
prehensive simulation technology developed based on computer graphics, computer 
image processing, computer vision, network communication technology, computer 
simulation technology, multimedia technology, psychology, cybernetics, electron-
ics, and other disciplines and technologies. It features the construction of a unified 
and complete virtual environment for the entire system. To represent the real 
characteristics of the objective world, it enables a large number of entities integrated 
and controlled in the virtual environment to interact with each other or with the 
virtual environment itself. It can simulate real entities (people, objects) and the 
environment in terms of vision, hearing, touch, and function, performance, and 
behavior. With 3I (immersion, imagination, and interaction), it satisfies the devel-
opment needs and technical directions of modern simulation technology [10]. 

The research scope of new virtual/augmented reality modeling and simulation 
technology falls into five categories: perception technologies (such as vision, 
hearing, smell, taste, force, and touch), modeling technologies (such as geometric 
modeling, image modeling, physical modeling, and behavior modeling), presenta-
tion technologies (such as virtual reality rendering, naked eye 3D display, and 
helmet-mounted display), interaction technologies (such as human–computer 
interaction, environmental interaction, and virtual reality interaction), and 
platform-based integration technologies. In the field of manufacturing, virtual 
reality (VR) is mainly used for design and test, while augmented reality (AR) is 
usually used for assembly. In the process of assembly, the instruction information 
of product assembly can be displayed in the operator view by wearing AR glasses, 
which is very important for assisting the operator in assembling products. Park [7] 
proposed an AR-based model that can interactively change product shape as well as 
color, texture, and user interface. Ng et al. [8] proposed a gesture-based AR design 
environment in which designers can evaluate and modify their 3D models through 
gestures.
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19.1.3 New High-Performance/Parallel Modeling 
and Simulation Technology 

New high-performance/parallel modeling and simulation technology is a type of 
new technology that combines new high-performance, high-reliability, parallel 
computing technology with modeling and simulation technology. Complex system 
simulations such as national and national defense strategy research, emergency 
response processing, transportation/communication network simulation, aviation 
scheduling, virus transmission mechanism, weapon and equipment system 
demonstration, and battle plan analysis and evaluation often include a large number 
of entities, and there are intricate and complex interactions between entities. With 
the continuous development of simulation application, the simulation will be built 
on a larger scale and in a more complex manner, and it will demand more com-
puting resources. On the other hand, due to the randomness of the simulation 
process, the simulation of complex systems often entails an exploration of the 
uncertainty factors within the parameter space of a large sample by traversing 
various parameter combinations. That requires the simulation to run hundreds of 
times or even more for a single analysis, evaluation, demonstration, etc. If a single 
simulation runs for a long time, therefore, it will take a rather long time to make a 
single analysis, evaluation or demonstration. This monotonous and lengthy simu-
lation operation not only wastes valuable human and material resources but also 
hinders the development of complex system research and the improvement of 
research capabilities. For this reason, high-performance parallel simulation is 
becoming an essential direction for the development of this type of simulation [10]. 

The research scope of new high-performance/parallel modeling and simulation 
technology covers: (1) parallel algorithms, including how to achieve dynamic load 
balancing; how to reduce the amount of communication required for collaboration 
in parallel computing; how to take into account the scalable, portable, large-grained 
task-level parallel and the reasonable data structures, programming, and commu-
nication methods in each process that facilitate the performance of stand-alone 
machine; (2) distributed parallel algorithms, including the distributed algorithms 
based on grid and cloud simulation platforms, and the distributed parallel discrete 
system algorithms; and (3) the parallel programming environment. At present, it is 
urgent to study the user-oriented parallel programming environment which is easy 
to use, reliable, and scalable. Parallel algorithms and parallel programming are the 
scientific issues and critical technologies in which breakthrough must be made in 
the next few decades. 

19.1.4 New Networked/Cloud-Based Modeling 
and Simulation Technology 

New networked/cloud-based modeling and simulation technology is a type of new 
technology that combines new network technology, new cloud computing tech-
nology, and modeling and simulation technology. Modeling and simulation (M&S)



faces the following problems in various engineering and non-engineering fields: 
(1) the expansion and complexity of simulated systems in terms of scale and 
structure, and the multi-unit collaborative simulation in need of a distributed system 
with distributed, heterogeneous, collaborative, interoperable, and reusable functions; 
(2) the availability of the required simulation service to various users via the Internet. 
Driven by the above demands, “networked/cloud-based simulation” has come into 
being. Networked/cloud-based simulation is performed on the network, including 
three types of simulation: (1) the simulation operation of the model through the 
network interconnection, which is a traditional networked simulation, represented by 
DIS, ALSP, and HLA; (2) completion of simulation experiments through networked 
collaboration, represented by WEB-based simulation and HLA Evolved; and (3) the 
network-based domain simulation service environment, which is aimed to achieve 
overall and efficient simulation goals such as complex system modeling, simulation 
operation, and result analysis, and represented by cloud simulation and domain 
simulation engineering. As the real world tends to be complex nowadays, networked 
simulation finds its demand from the complex system problems faced by the national 
development [10]. 
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The core of networked/cloud-based simulation is to build a simulation environ-
ment that supports collaboration, sharing, and service in the application field and 
create a win–win simulation ecosystem for stakeholders. At present, its research 
content can be summarized as follows: (1) a type of networked/cloud-based simu-
lation technology with advanced simulation modes, theories and methods; (2) a type 
of network/cloud-based simulation technology with high efficiency and quality to 
complete all activities in the whole life cycle of simulation; (3) a type of 
networked/cloud-based simulation technology that enables a logically centralized 
and physically decentralized simulation environment, overcoming through the net-
work such barriers as are caused to inter-departmental collaboration by geographical 
locations; (4) a type of networked/cloud-based simulation technology that empha-
sizes the collaboration and resource sharing services among various departments in 
the application field, enhances the simulation application capability and realizes 
low-cost and efficient design, analysis, evaluation, and production; (5) a type of 
networked/cloud-based simulation technology that can be used to build simulation 
systems with multiple forms and functions as required by different needs. 

19.1.5 New Intelligent Modeling and Simulation Technology 

New intelligent modeling and simulation technology is a type of new technology 
that combines new intelligent technology with modeling and simulation technol-
ogy. New intelligent technology includes brain science, cognitive science, and 
artificial intelligence technology. In recent years, driven by the rapid development 
of the new-generation artificial intelligence technology, the development of intel-
ligent modeling and simulation technology has reached a new height. There are two 
important research and application areas for new intelligent modeling and



simulation technology. The first is the modeling and simulation of intelligent sys-
tems (such as human systems) and artificial intelligence systems (such as brain-like 
intelligent robots and complex adaptive systems). The second is the use of artificial 
intelligence technology to facilitate simulation modeling, operation and result from 
analysis and evaluation [9]. 
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The research hotspots of new intelligent modeling and simulation technology 
include: simulation modeling theory, methods, and technologies (primary modeling 
such as qualitative and quantitative hybrid system modeling oriented to simulated 
objects, metamodel framework-based modeling, variable structure modeling, big 
data-based modeling, deep learning-based simulation modeling, agent-oriented 
modeling, ontology-oriented modeling, and SDG modeling; secondary modeling 
such as high-efficiency multi-level parallel simulation algorithms, neural network-
based optimization simulation algorithms, and machine learning-oriented simulation 
algorithms); simulation systems and supporting technologies (such as intelligent 
simulation clouds oriented to new artificial intelligence systems, multi-disciplinary 
virtual prototype engineering of complex products, intelligent problem-oriented 
simulation language for complex systems, intelligent simulation computer systems 
for edge computing, intelligent cross-media visualization technology, universal 
interconnection interface, and intelligent parts technology); and simulation appli-
cation engineering technologies (such as full life cycle VV&A, full system VV&A, 
hierarchical VV&A, all-personnel VV&A, and comprehensive management 
VV&A, the management, analysis, and evaluation technology for intelligent system 
simulation experiment results, big data analysis, and evaluation technology, etc.). 

19.1.6 New Ubiquitous Modeling and Simulation Technology 

New ubiquitous modeling and simulation technology is a type of new technology 
that combines ubiquitous computing technology with modeling and simulation 
technology. Tightly integrating the simulator’s hardware and software, communi-
cation hardware and software, various sensors and all of the simulated 
objects/world, it is a new simulation mode that combines the simulation space with 
the physical/logical space of everything. It is significant in that the simulation 
technology is introduced into real systems and seamlessly embedded into 
everything/the world, realizing pervasive simulation [10]. 

New ubiquitous modeling and simulation technology is a new field that needs to 
be vigorously developed. Its research scope covers: the advanced ubiquitous sim-
ulation system architecture that integrates distributed simulation technology, grid 
computing technology, cloud computing technology, and ubiquitous computing 
technology; the development of software platforms and middleware for ubiquitous 
simulation; establishing new interactive channels for human and simulation com-
puting services; establishing new simulation application models for ubiquitous 
computing mode; providing new simulation services suitable for the needs of 
ubiquitous computing; the coordinated management and integration technology for
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simulation space and physical/logical space of everything; self-organization, 
self-adaptability, and high-fault tolerance of ubiquitous simulation based on ubiq-
uitous computing; ubiquitous simulation application technology, etc. 
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The ideal characteristics are set to make the modeling and simulation technology 
rapidly develop into a generic and strategic technology, a third ideal means to 
understand and transform the objective world subsequent to theoretical research and 
experimental research, as a result of various demand for modeling and simulation in 
various applications as well as of the development of related technologies. 

19.2.1 Ideal Characteristics in Simulation Modeling Theory, 
Method, and Technology 

The first is to form a class of entirely realistic object-oriented modeling (i.e., pri-
mary modeling) theories, methods, and techniques that enable a completely realistic 
modeling of animate/inanimate objects in the real or imagined world based on their 
continuous, discrete, qualitative, decision-making, optimization, and other complex 
mechanisms in the full life cycle; the second is to form a complete class of algo-
rithms for various types of simulation computers and simulators (i.e., secondary 
modeling), that is, various models formed by object-oriented primary modeling, and 
a set of simulation modeling theories, algorithms, and technologies with high speed, 
high reliability, high quality, high-energy saving and high availability that are 
intended for all kinds of simulation computers and simulators. 

19.2.2 Ideal Characteristics in Simulation Systems 
and Supporting Technologies 

It is intended to develop the modeling and simulation system and the supporting 
technology that can support the vision of “innovative, coordinated, green, open, and 
shared development,” optimize, and independently integrate “digital/data-oriented, 
virtual/augmented reality-based, high-performance/parallel, networked/cloud-
based, intelligent, and universal modeling” on demand [10].



19.3 Challenges 

480 B. H. Li et al.

19.2.3 Ideal Characteristics in Simulation Application 
Engineering Technology 

The first is to develop a class of perfect generic simulation application engineering 
technology, including the VV&A technology that is applied to the full life cycle, 
the whole system, all personnel and all aspects of management of the models of the 
animate/inanimate objects in the real or imagined world; the analysis, 
decision-making, and visual technology that is applied to highly-efficient 
man/machine intelligent simulation experimental results; the second is to develop 
a class of perfect modeling and simulation technology oriented to such fields as 
scientific experiments, engineering science, social sciences, life science, manage-
ment science, and military science. 

Bo Hu Li, Wenhui Fan, Lin Zhang 

19.3.1 Challenges to Simulation Modeling Theory 
and Methods 

19.3.1.1 Challenges to Virtual Reality Modeling Theory 
and Methods 

Currently, virtual reality modeling mainly focuses on fixed topological geometric 
modeling and dynamic physical modeling oriented to virtual environments and 
objects. One of critical problems in future virtual reality to be addressed is how to 
establish a variable topological geometric model and a more comprehensive 
physical model, or even an intelligent model that can self-evolve and be so “viable” 
as to enable the virtual reality system. It not only to give a more comprehensive and 
realistic visual expression but also to present the dynamic evolution of functions 
and environment/events as well as the intelligent behaviors of animate objects in a 
more realistic manner. The real world contains complex, dynamic, multi-source, 
massive data. Another critical problem to be addressed for future virtual reality is 
how to efficiently collect these data and perform automatic analysis and real-time 
modeling so that the virtual reality system can genuinely express the rapidly 
changing real world and develop “synchronously” with the latter. It is also an 
intelligent modeling problem [10]. 

19.3.1.2 Challenges to Networked Simulation Modeling Theory 
and Methods 

Challenges to networked simulation modeling theory and methods include: 
(1) Studies focused on cloud simulation theory and methods as well as new patterns 
and formats of “Internet+” simulation based on high-performance simulation theory



and method research; studies on the theory and methods of simulation modeling 
automation and intelligence; studies on the visual modeling methods of complex 
systems in the application fields; studies on the networked simulation experiment 
methods based on data cultivation; and initiation of studies on the theory and 
methods of intelligent networked simulation to establish a domain model frame-
work in each application field. (2) Studies focused on the theory and methods of 
intelligent networked simulation; studies on the integration of simulation system 
with other systems; and studies on networked simulation modeling methods based 
on big data and artificial intelligence; initiation of studies on ubiquitous simulation 
theory and methods to build a standardized model library for each application field 
based on the domain model framework. (3) Studies focused on ubiquitous simu-
lation theory and methods, and studies on the construction method of dynamic earth 
simulator; development of an interoperable domain model framework system to 
enable models in different application domains to achieve interoperability [10]. 
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19.3.1.3 Challenges to Intelligent Simulation Modeling Theory 
and Methods 

The challenges to intelligent simulation modeling theory and methods include: 
(1) Developing modeling methods based on big data intelligence. Due to the high 
complexity of the mechanism of the new artificial intelligence system, it is often 
difficult to establish a system principle model based on the mechanism (analytic 
method). Therefore, the internal mechanism needs to be simulated and emulated 
through a large number of experiments and application data. Big data 
intelligence-based modeling methods are a type of method for effectively simu-
lating intelligent systems with ambiguous mechanisms using massive observations 
and application data. The main research scope covers data-based reverse design, 
data-based neural network training and modeling, and data clustering-based mod-
eling. (2) Developing deep learning-based simulation modeling methods. Within 
the environment of the new artificial intelligence system, the data to be collected 
and used has exploded. At the same time, the neural network based on deep 
learning and simulation of the human brain provides evolutionary support for the 
development and application of intelligent simulation modeling. (3) Developing 
machine learning-oriented simulation algorithms. Machine learning methods have 
formed a huge pedigree. How to effectively simulate and model machine learning 
methods in new artificial intelligence systems and put it to extensive use will be a 
new research orientation of significance. (4) Developing an optimization-based 
simulation algorithm to perform multi-sample iterative simulation calculations [10]. 

19.3.1.4 Challenges to High-Performance Simulation Modeling 
Theory and Methods 

Simulation modeling is an abstract description of the simulated objects such as 
entities (airplanes, missiles, ships, vehicles, machinery, etc.), natural environments 
(terrain, atmosphere, ocean, space), and human behaviors (individuals, groups, 
organizations). Mechanism modeling is used in most application fields to describe 
the characteristics and behaviors of objects, including continuous system modeling,



discrete event system modeling, or hybrid system modeling. With the development 
of complex systems, the traditional modeling and simulation based on reductionism 
are challenging to work effectively because of their nonlinear properties, evolu-
tionary uncertainty, and whole emergence. It is the new research orientation of 
high-performance simulation modeling theory and methods to integrate big data, 
machine learning, and high-performance modeling and simulation technologies and 
to replace reductionist decomposition modeling with “whole data” analysis [10, 11]. 
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19.3.1.5 Challenges to Data-Driven Simulation Modeling Theory 
and Methods 

The challenges to data-driven simulation theory and methods mainly include: 
(1) Studies focused on dynamic data-driven theory and methods, multi-disciplinary 
model interoperability theory and methods, digital twin theory and methods, and 
man–machine-material fusion modeling theory and methods, initiation of studies on 
intelligent data-driven simulation, and preliminary formation of real-time assisted 
decision-making theory and methods based on data-driven simulation for key 
application fields [11]. (2) The theory and methods of real-time assistant 
decision-making based on parallel simulation preliminarily formed for key appli-
cation fields. Focus is placed on the theory and method of intelligent data-driven 
simulation and parallel systems, the theory and method of application-oriented 
data-driven automatic modeling and parallel execution, the automatic modeling 
theory and method of digital twin and man–machine environment integration 
system, the theory and method of parallel-degree enhancement for specific appli-
cation fields, and the realization of real-time data-driven simulation-based assistant 
decision for various application fields. (3) Studies are focused on the ubiquitous 
simulation theory and method based on data-driven simulation and parallel system 
as well as on the digital twin theory and method, data-driven construction methods 
of the man–machine-material-environment integrated world, the parallel earth 
construction methods, and the formation of real-time assistant decision theory and 
methods based on data-driven simulation and parallel system for various fields [10]. 

19.3.1.6 Challenges to New AI-Based Simulation Modeling 
Theory and Methods 

The new artificial intelligence system is a new intelligent interconnected system 
based on the new Internet and its combinations, which integrates man, machine, 
material, environment, and information within the information (cyber) space and 
physical space to provide intelligent resources and capabilities on demand by means 
of digital, networked, and intelligent technologies arising from new information and 
communication technology, new intelligent technology, and new professional 
technology in application fields (national economy, people’s livelihood, national 
security). Its system is characterized by the independent automation of perception, 
interconnection, collaboration, learning, analysis, cognition, decision-making, 
control and execution on the part of man, machine, material, environment, and 
information in the whole system throughout the whole life cycle. It implements the 
optimized integration of six factors (human, technology/equipment, management,



data, material, capital) and six flows (human flow, technology flow, management 
flow, data flow, logistics flow, and capital flow) to form digital, networked and 
intelligent products, equipment/systems, and full life cycle activities. Its goal is to 
achieve an “innovative, green, open, shared, and personalized” society. The 
architecture of the new AI system is shown in Fig. 19.2 [2]. 
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Fig. 19.2 Architecture of the new artificial intelligence system 

The challenges to new artificial intelligence-based simulation modeling theory 
and methods are mainly divided into two groups. The first group of challenge 
comes from object-oriented modeling (i.e., primary modeling), the challenges from 
new system modeling methods, especially those based on big data or deep learning, 
in view of such mechanisms, compositions, interactions, and behaviors as conti-
nuity, discreteness, qualitative/decision-making, and optimization with respect to 
man, machine, material, and environment in new artificial intelligence systems; the 
other group of challenge comes from modeling/algorithm (i.e., secondary model-
ing) on the simulator, that is, the challenges from developing new algorithms/ 
methods for multi-level parallel and efficient simulation (such as efficient simulation 
operation of artificial intelligence system model) of various object-oriented models 
based on the architecture, software, and hardware characteristics of new AI systems 
and simulation systems [2].
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19.3.1.7 Challenges to Simulation Modeling Theory 
and Method of System-of-Systems Confrontation 

In future, the warfare will gradually develop toward intelligence and multi-domain, 
and be characterized as intelligent, systematic, unmanned, platform-based, and 
tactical, with the equipment system-of-systems confrontation increasingly intensi-
fied. It will pose a massive challenge to the traditional simulation technology for 
system-of-systems confrontation. The challenge to simulation modeling theory and 
method of system-of-systems confrontation covers two aspects: (1) design of 
component model based on the model framework. The modeler can complete the 
rapid construction of the model by combining the components. After model anal-
ysis, the simulation engine completes the comprehensive scheduling to obtain the 
simulation results. The most typical is the simulation model portability specification 
(SMP2.0). The design of the domain model framework is the key to the general-
ization of the equipment combat simulation model framework. It can be abstracted 
by modeling oriented to object, ontology, design pattern, and others and described 
with graphical specifications based on UML and other technologies. (2) Cognitive 
domain decision modeling framework based on rule bank. The core of intelligent 
modeling is cognitive domain decision modeling. The description of operational 
decisions is very complicated. The diversity of missions and the complexity of the 
space situation require sufficient flexibility in the description of operational deci-
sions, while excessive flexibility may discourage modelers [12]. 

19.3.1.8 Challenges to the Unified Simulation Modeling Theory 
Based on DEVS 

Simulation as a discipline is now in urgent need of a unified fundamental theory of 
simulation modeling, which should meet two basic requirements: First, it should 
have an excellent mathematical foundation, that is, it is based on formal mathe-
matical theories; second, it should make the entire simulation knowledge systematic 
through the unified modeling theory. Discrete event system specification (DEVS) 
was proposed by Professor Zeigler of the University of Arizona in 1976. DEVS is 
based on strict mathematics, covering such types as distribution, parallel, real-time, 
and fuzziness. It unifies the descriptions for models, simulators, and experimental 
frameworks and includes theories, methods, and applications. It already has rela-
tively independent and self-contained systems, theory, knowledge base, and 
methodology. Therefore, DEVS can be used as the basis or the starting point for 
establishing a unified modeling theory. It is a feasible way to improve the theoretical 
system of simulation and modeling based on DEVS. Similar to physics in pursuit of 
a grand unified theory, M&S also needs a unified modeling theory to unify various 
professional theories and provide the impetus for the development of the discipline. 
Even if DEVS cannot fully play its role as such a core theory, it also serves as an 
essential bridge to development in this direction. There are four basic models of 
DEVS: differential equations, difference equations, discrete events, and logical and 
symbolic forms. In recent years, various types of DEVS, together with the research 
findings based on the combination of DEVS and other modeling methods, show that 
DEVS is open and easy to integrate various theories and methods [13].
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19.3.2 Challenges to Simulation Systems and Supporting 
Technology 

19.3.2.1 Challenges to Virtual Reality System and Supporting 
Technology 

In the context of the Internet of things, cloud computing, big data, smart city, etc., 
virtual technology needs to be more integrated with the Internet to open and 
integrate existing data and computing resources, express cognitive contents for 
users, and enable personalization on demand. In fact, it raises the technical 
requirements of virtuality-reality fusion. Only an excellent virtuality-reality fusion 
can produce a new networked virtual technology and application mode with a leap 
forward. At present, virtual reality technology is also integrating into the Internet, 
forming the mode of “Internet plus virtual reality.” It begins to integrate with cloud 
computing, big data, and mobile devices. As a result, higher requirements are raised 
to virtual reality technology from different aspects such as function and index. The 
current virtual reality technology can be combined with technologies related to 
vision, hearing, touch, and so on, but the intelligent part is still inadequate, leaving 
human–computer interaction unnatural. The development of new technologies in 
related fields may provide new opportunities and platforms for virtual reality 
technology. The challenge to the virtual reality system and supporting technology 
lies in integrating the existing data and resources with the development of related 
technologies and building more intelligent simulation systems. Virtual reality is 
closely related to human–computer interaction technology. The perception and 
cognition by cloud integration and human–computer interaction need to establish a 
human centered interaction paradigm, the key of which lies in the perception of 
multimodal information by cloud devices. After intelligent analysis and processing, 
such information is finally presented naturally, so that people can understand the 
connotation of big data more effectively. Deep fusion and processing of multimodal 
perceptual information can improve the accuracy and effectiveness of perception; 
the interaction may be made natural by barrier-free interaction means that break-
through hardware constraints and meet people’s psychological and physiological 
requirements [10]. 

19.3.2.2 Challenges to Networked Simulation System 
and Supporting Technology 

Challenges to networked simulation system and technology mainly cover: 
(1) Focusing on research on the domain simulation supporting technology based on 
cloud computing and establishing a network simulation environment in each 
application field for all kinds of simulation users. By taking the application field as 
the object, research is focused on the domain simulation technology based on cloud 
computing, the network simulation technology under the big data environment, and 
the network simulation technology based on artificial intelligence, and the simu-
lation cloud-based network simulation environment is established in each appli-
cation field to serve all-domain simulation users. (2) Focusing on research on the 
ubiquitous supporting technology for intelligent simulation and establishing a



network simulation environment with high intelligence in each application field. 
Research is focused on the new network-based ubiquitous simulation technology, 
distributed virtual reality technology, and large-scale parallel system technology. 
The networked simulation technology under the big data environment and the 
AI-based networked simulation technology are expanded to various simulation 
application fields, where a highly intelligent and user-friendly networked simulation 
environment is established. The effort is initiated to study the quantum computing 
simulation technology and the dynamic earth simulator construction and integration 
technology. (3) Focusing on the research of quantum computing simulation tech-
nology, computer-brain interaction simulation technology, and the implementation 
of all-round simulation of dynamic earth simulator. Research is expedited on 
ubiquitous simulation supporting technology based on the new network, 
brain-computer interconnection, Internet of everything, quantum computing, and 
big data, so as to build a dynamic earth simulator that can provide ubiquitous 
simulation capability, and to comprehensively realize ubiquitous multi-level sim-
ulation [10]. 
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19.3.2.3 Challenges to Intelligent Simulation System 
and Technology 

Challenges to intelligent simulation system and technology mainly cover: (1) de-
velopment of intelligent simulation computer system for edge computing. It refers 
to the integrated intelligent simulation system that is aimed to optimize the overall 
performance of “system modeling, simulation operation, and result analysis/ 
processing” and oriented to two kinds of simulation users (high-end modeling of 
complex systems and on-demand provision of high-performance simulation cloud 
service) and three kinds of simulation (mathematics, human in the loop, hardware in 
the loop/embedded simulation) by integrating emerging computer technology (such 
as cloud computing, Internet of things, big data, service computing, and edge 
computing), modern modeling and simulation technology, and supercomputer 
system technology. Its main research content involves computer system architec-
ture, independent and controllable essential hardware/software, etc. (2) Develop-
ment of cross-media intelligent visualization technology. It mainly includes the 
GPU group-based parallel visualization system technology and virtual reality fusion 
technology. The former involves data organization and scheduling technology of 
large-scale virtual scene, two-level parallel rendering technology based on 
multi-computer and multi-core technology, high-efficiency visualization technology 
of amorphous objects in a complex environment, and real-time dynamic global 
illumination technology. For example, the preliminary research results of the 
author’s team include: the GPU group-based parallel visualization system. 
(3) Development of the Internet-of-everything interface and intelligent special 
component technology. It mainly includes the research of CPS interface technology 
and the R&D of high-efficiency simulation acceleration components based on big 
data and artificial intelligence algorithm [10].
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19.3.2.4 Challenges to High-Performance Simulation System 
and Supporting Technologies 

Challenges to high-performance simulation system and supporting technologies 
mainly cover: (1) In view of the characteristics of complex system simulation, such 
as large sample, multi-entity, complex model, various data interaction, and in view 
of such requirements as domestic production, autonomous controllability, and 
multi-core + many-core, research is conducted by means of the deep integration of 
advanced software technology, artificial intelligence technology, and modeling and 
simulation technology, such as componentization, visualization, and automatic 
parallelization, focusing on development of the multi-level and multi-granular 
parallel supporting technology for high-performance simulation that can make full 
use of computing resources and provide an intuitive and easy-to-use development 
and operation platform for mining the parallelism of complex system simulation 
from the perspectives of sample, entity, model, algorithm, etc. (2) In view of the 
application demands by users for sharing simulation resources and capabilities on 
demand and obtaining simulation services anytime and anywhere, and based on 
cloud computing and essential big data services, research is focused on the intel-
ligent service technology for lightweight container-based cloud simulation platform 
and the high-performance cloud simulation platform technology that supports 
efficient collaboration of generalized complex system simulation models to achieve 
efficient collaboration of simulation models in the cloud environment through the 
virtualization and service-oriented simulation system intelligence [10]. 

19.3.2.5 Challenges to Data-Driven Simulation System 
and Technology 

Challenges to data-driven simulation system and technology mainly cover: 
(1) Realizing big data-driven simulation and modeling in the industry. It can 
implement the modeling of rapid environment, equipment, products, etc., and form a 
perfect simulation data governance mechanism through big data in the industry. 
Research is conducted on the construction technology for artificial systems, the 
computing experiment technology, and the parallel execution technology based on 
simulation cloud and big data, so as to establish a parallel simulation environment 
based on domain simulation cloud that meets the requirements of all-domain parallel 
simulation in typical application domains. (2) Realizing big data-driven simulation 
and modeling across domains. With data in different fields, models can be generated 
quickly for different scenes, and joint simulation of interdisciplinary and 
multi-disciplinary data can be supported; research is focused on the parallel simu-
lation technology based on new network and artificial intelligence, the construction 
and experiment technology of large-scale comprehensive parallel systems, and the 
construction of a highly intelligent parallel simulation environment in the application 
fields to support real-time decision-making [11]. (3) Realizing ubiquitous data-driven 
simulation and modeling. The ubiquitous data extraction and processing are formed. 
According to the data, the relevant models are generated and simulated at any time. 
Research is focused on the parallel system technology based on quantum computing 
simulation technology and computer-brain interaction simulation technology so as to



build parallel earth. In addition, through the development of three stages, gradually 
developed are the security technology, security standards, and the security framework 
for data-driven simulation and parallel systems [10]. 
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19.3.2.6 Challenges to New AI-Based Simulation Systems 
and Supporting Technologies 

Major challenges come from the following five types of supporting technologies: 

1. AI simulation cloud: Due to the distributed and heterogeneous characteristics of 
man, machine, material, and environment of the new AI system, it is necessary 
to virtualize and service all kinds of resources and capabilities so that users can 
obtain all kinds of resources and capabilities on demand, and then carry out 
various simulation activities such as mathematics, human in the loop, hardware 
in the loop/embedded simulation. 

2. Intelligent virtual prototype engineering, including the support for heteroge-
neous integration and parallel simulation optimization of multi-disciplinary 
virtual prototype of complex objects in all kinds of new AI systems, and the 
optimized integration of human/organization, business management and tech-
nology, information flow, knowledge flow, control flow, and service flow in the 
whole system and life cycle. 

3. Problem-oriented AI simulation language: For the modeling and simulation of 
new AI systems, a description language which is very similar to the original 
form of the system under study is used for input and then compiled to call the 
algorithm library, function library, and model library related to the field for 
high-performance simulation solution. 

4. Construction of intelligent high-performance modeling and simulation system 
oriented to edge computing technology. Because some new artificial intelligence 
systems need simulation/calculation to be performed on the device terminals, 
such an intelligent system is required to ensure real-time operation. In addition, 
there is a potential need for collaborative solution and analysis between the 
high-performance computing center and massive front-end devices’ intelligent 
computing capabilities. 

5. Research on visualization technology based on cross-media intelligence, which 
is mainly intended for virtual scene computing and virtual reality fusion 
application in various new AI systems, by providing intelligent, 
high-performance, user-friendly visualization applications [2]. 

19.3.2.7 Challenges to Simulation Systems and Supporting 
Technologies of System-of-Systems Confrontation 

Challenges to simulation system and supporting technologies of system-of-systems 
confrontation mainly include two aspects [12]: 

1. A service-oriented confrontation simulation architecture is proposed to solve the 
following two core problems in simulation: The first is to upgrade the internal 
algorithm without changing the model interface and affecting the operation of the
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simulation system, so as to ensure that the simulation system can obtain contin-
uous model upgrade services. The second is to provide technical support for mode 
innovation of model management. The service-oriented architecture includes 
three types of roles: requester, provider, and registry. With the characteristics of 
loose coupling, it provides the maximum reuse degree for the model. 

2. Building an living, virtual, constructive (LVC) universal platform based on 
real-time interaction technology. At present, one of the key development 
directions of system-of-systems confrontation simulation is the reuse, combin-
ability, and interoperability of three kinds of heterogeneous simulation systems, 
so as to open up the three fields of simulation, experiment, and training and form 
the integrated simulation capability [12]. 

19.3.2.8 Challenges to DEVS-Based Simulation Interoperability 
Supporting Technology 

In the early days, the development of M&S technology was mainly driven by its 
applications. With the development of the subject, theory, and method in the field of 
M&S will play an essential role in the development of technology. The breakthrough 
in the large-scale complex system simulation technology must be supported by 
theory and methods. Therefore, the merits and demerits of M&S theory are measured 
by judging whether it can promote the development of M&S technology, especially 
whether to break through the difficulties encountered in simulation practice, in 
addition to explaining M&S activities entirely and systematically. For the latter 
aspect, DEVS is not outstanding as yet, but it also provides a good foundation for the 
development of some critical technologies, such as interoperability, model verifi-
cation and validation, and multi-resolution modeling. In terms of interoperability, 
DEVS can describe various types of models (discrete, continuous, real-time, intel-
ligent, etc.) based on unified mathematics, which provides a better mathematical 
basis for model interoperability. DEVS also provides multi-faceted modeling, sys-
tem entity structure/model base (SES/MB), and DEVS-based SOA, thereby deliv-
ering comprehensive support for interoperability. DEVS standardization is the key to 
achieving interoperability. Currently, such work as the establishment of the DEVS 
standard language and library, the standardization of DEVS modeling structure and 
semantics, the standardization of artificial intelligence DEVS models, the stan-
dardization of DEVS models for real-time systems, and the interoperability of DEVS 
tools at the model level and the determination of the DEVS kernels will promote the 
interoperability research in the field of simulation [13]. 

19.3.3 Challenges to Simulation Application Technology 

19.3.3.1 Challenges to Virtual Reality Application Engineering 
With the continuous development of virtual reality technology and applications, 
many practical application systems have been built in the fields of military, public 
security, industrial design and large-scale engineering, medicine, and cultural edu-
cation. As virtual technology is commercialized, there appear more and more virtual



experience applications worthy of promotion, such as a virtual wedding, a virtual 
family gathering, and a virtual company meeting. At present, the foreseeable appli-
cation fields of virtual technology include: transportation, health care, emergency 
rescue, environmental pollution, natural disasters, population education, intelligent 
manufacturing, smart town, cultural creativity, translational medicine, e-commerce 
and other industries, as well as online services, social management, and so on. At 
present, the equipment is developing toward lightweight and portability. Now, most 
of the supporting technologies are available. The development roadmap for virtual 
technology and application simulation application engineering is based on the needs 
of various industries, focusing on user experience, and promoting the implementation 
of relevant applications through market demands [10]. 
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19.3.3.2 Challenges to Networked Simulation Application 
Engineering 

Challenges to networked simulation application engineering mainly cover: 
(1) Focusing on the construction of domain simulation resources, carrying out the 
construction of domain simulation model engineering, domain simulation data 
engineering, domain ontology engineering and domain high-performance simula-
tion algorithm library, and establishing domain simulation cloud to provide 
Web-based services of simulation models, algorithms and tools for economic, 
social, and national defense fields. (2) Focusing on the construction of virtualiza-
tion, integration and sharing of domain simulation resources, carrying out intelli-
gent domain simulation engineering, and building intelligent domain simulation 
cloud, a visualized, intelligent, multi-functional cloud for real-time socio-economic 
simulation and providing cloud simulation services for simulation application 
systems. Based on the domain simulation cloud, a comprehensive parallel system is 
built for the simulation applications in the fields of economy, society, and national 
defense. (3) Focusing on the construction of dynamic earth simulator, providing 
universal simulation services to protein folding of molecular dynamics, weather 
forecasting, drug research, development, space exploration, nuclear simulation, so 
as to realize the synchronous operation of the simulation model with the actual 
system. The part people pay attention to in the real world has a digital twin in the 
dynamic earth simulator, where virtual entities interact with physical entities, and 
any question on issues of common concern raised by people from time to time may 
be answered by the model quickly with accurate explanations and potential 
exploration of the possible development of events at different granularity [10]. 

19.3.3.3 Challenges to Intelligent Simulation Application 
Engineering 

Challenges to intelligent simulation application engineering mainly cover: 

1. Fully developing software definition network (SDN), using the big data col-
lected by the SDN controller for deep learning to improve the reliability of 
VV&A.
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2. Further improving intelligent analysis of big data, especially collection, classi-
fication, identification, and comprehensive processing of simulation experiment 
data closely related to intelligent simulation. 

3. Using new artificial intelligence technology to realize full life cycle VV&A, full 
system VV&A, hierarchical VV&A, all-personnel VV&A, and all-round man-
agement VV&A. 

4. Realizing intelligent data acquisition, zero waiting for data transmission, data 
storage learning, and brain-like data analysis in simulation experiment [10]. 

19.3.3.4 Challenges to High-Performance Simulation 
Application Engineering 

Challenges to high-performance simulation application engineering mainly cover: 

1. Intelligent VV&A of simulation models. The credibility of modeling and sim-
ulation is the basis of its survival, while the biggest problem of modeling and 
simulation is the verification of its credibility, especially the simulation model of 
the complex system. Verification and validation become a significant problem in 
simulation currently. The arrival of the big data era provides a new solution for 
VV&A of the complex system simulation models, which verifies not only the 
authenticity of the simulation but also the correctness of each model through 
fidelity and credibility data of simulation that are obtained by using sufficient 
similar cases. 

2. Multi-sample simulation experiment design technology based on big data and 
artificial intelligence. In view of the characteristics of large-scale complex 
simulation system such as complex spatial structure, numerous schemes, and 
many types of factors affecting system efficiency and complex relationships, 
research is focused on the intelligent simulation test design technology for 
complex large systems based on big data and artificial intelligence, and the new 
efficient means for the simulation test design of complex large-scale systems 
based on the information mined by big data and using artificial intelligence 
technology to guide the search process of sample space. 

3. Big data mining and intelligent evaluation technology for simulation results. In 
view of the complicated relationship between simulation factors and perfor-
mance indicators in complex system simulation, research is focused on the 
intelligent simulation evaluation technology based on big data and deep learning 
to support big data analysis and intelligent evaluation of performance indicators 
and simulation factors [10]. 

19.3.3.5 Challenges to Data-Driven Simulation Application 
Engineering 

Challenges to data-driven simulation application engineering mainly cover: 

1. Focusing on domain dynamic data-driven and parallel system engineering. 
Based on the construction of domain model engineering, domain simulation data 
engineering, domain ontology engineering, and domain high-performance
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simulation algorithm library, domain dynamic data-driven parallel system 
engineering is developed based on the domain simulation cloud to provide 
support for real-time assistant decision-making in economic, social, and national 
defense fields [11]. 

2. Focusing on dynamic data-driven and parallel system engineering in the field of 
intelligence. Based on automatic interaction of virtual-real systems, the domain 
intelligent dynamic data drive and parallel system engineering are developed 
based on the intelligent domain simulation cloud to improve the parallel degree 
of the parallel system and provide high-quality support for real-time assistant 
decision-making in the fields of economy, society, and national defense. 

3. Focusing on the construction of parallel earth engineering and providing 
ubiquitous simulation services in cooperation with the dynamic earth simulator 
engineering [10]. 

19.3.3.6 Challenges to New AI-Based Simulation Application 
Engineering 

The challenges to new AI-based simulation application engineering cover mainly: 

1. Verification, validation, and acceptance (VV&A) methods for intelligent mod-
els, including primary model approval, execution accuracy approval of simu-
lation system algorithm, and user approval of simulation execution results. 

2. Management, analysis, and evaluation of intelligent simulation experiment 
results. It is necessary to conduct efficient concurrent simulation and efficient 
acquisition, management, and analysis of simulation results since a large 
number of demands for intelligent simulation applications come from the rapid 
simulation and prediction of the possible behavior mode and performance of the 
whole system. 

3. Big data-based intelligent analysis and evaluation technology. The application 
of new artificial intelligence systems is necessary to consider the complexity of 
the actual man, machine, material and environment, as well as the constraints of 
various running equipment. It is also necessary to consider such application 
modes and technologies as big data access and storage management, big data 
cloudization, big data analysis and decision-making, big data visualization, and 
result evaluation [14]. 

19.3.3.7 Challenges to Simulation Application Engineering 
of System-of-Systems Confrontation 

With the continuous updating of warfare equipment, the rapid development of 
technology, and the continuous changes in combat modes, future operations will 
gradually grow from mechanization to informationization and intelligence. Future 
warfare will gradually enter a period in which “in-depth practice of information 
warfare” and “initial development of intelligent warfare,” and warfare will gradu-
ally evolve from land, air, and naval battles to the six-dimensional integration of 
land, sea, air, space, power, and network. The “Multi-domain Battle” by the U.S. 
Army, the “AirSea Battle” by the U.S. Air Force, and the “Distributed Lethality” by



the U.S. Navy are all operational concepts aimed to address all-domain operations, 
with main features including: Integrated joint operations, multi-dimensional 
cooperative operations, and unmanned intelligent operations. The new global 
combat mode has profoundly affected the combat methods of weapons and 
equipment, which is manifested as the intensification of equipment system con-
frontation. The traditional “one-on-one” confrontation mode is now difficult to 
come up with new requirements. As the system-of-systems confrontation grows 
more intensive and longer with several means, a significant challenge is posed to 
the traditional confrontation simulation technology. In the case where actual con-
frontation is challenging to carry out, a new confrontation simulation technology is 
urgently needed to address the new system-of-systems confrontation. In future, the 
warfare will gradually develop toward intelligence and multi-domain, and be 
characterized as intelligent, systematic, unmanned, platform-based and tactical, 
with the equipment system-of-systems confrontation increasingly intensified. It will 
pose a considerable challenge to the traditional simulation technology for 
system-of-systems confrontation, including the adaptation of the combat system 
architecture to dynamic changes, the rapid formation of model system simulation 
under the system-of-systems operation, the synchronization of modeling technology 
to the pace of intelligent operations, and the adaptation of the combat system-of-
systems simulation platform to multi-resolution application requirements, etc. [12]. 
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19.3.3.8 Challenges to DEVS-Based Simulation Application 
Engineering 

Due to the modular and hierarchical modeling and the analysis capability based on 
simulation, DEVS formal mechanism and its various extension forms have been 
used in many application engineering and scientific fields. The application fields of 
DEVS include: manufacturing system, military system and infrastructure, real-time 
embedded system, transportation and traffic system, robot and multi-robot system, 
agent M&S, ecological and environmental system, biological system and social 
system, etc. DEVS continues to expand in terms of scope, depth, and breadth of its 
use. For example, DEVS is a significant candidate for simulation-based acquisition 
(SBA) simulation model description standards. By using DEVS-based interoper-
ability standards, the M&S system and C2 system are integrated to support C2 
system decision-making and test evaluation. DEVS is also used as the whole 
framework of knowledge-based control for steel production process control. 
Because DEVS delivers a good formal description, it is easy to be used in the 
automatic generation of simulation application test system, such as the automatic 
test of Link 16 using DEVS and XML [13]. 

The capability maturity model (CMM) for software development plays a crucial 
role in ensuring the success of software projects. CMM and CMM integration 
(CMMI) originated from software engineering, but they have been applied in many 
other fields for years. However, in M&S, this standardized and systematic evalu-
ation method have not been developed for M&S processes [15]. Based on 
CMM/CMMI, the capability maturity model (MS-CMMI) for modeling and sim-
ulation process can be established by the following methods: By analyzing the



characteristics of modeling process and complex system simulation, the similarities 
and differences between modeling/simulation process and software development 
process are found out, and then indexes and metrics are defined for M&S process. 
An MS-CMMI evaluation system (evaluation methods, standards, tools, organi-
zations, etc.) is set up to evaluate the structured capability of model developers or 
model users (using models for simulation). 
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Appendix A: Terminology and Other Reference 
Documents 

Compiled by Tuncer Ören 

Terminology 

Establishing a common set of concepts and describing terms is pivotal for every 
discipline. There will always be variation used by communities of interest or 
community of practice, but a common core vocabulary allows to communicate new 
ideas. The following two seminal papers are highly recommended to be studied to 
set the foundation for the terminology used within the Body of Knowledge for 
M&S: 

Ören, T.I. (2011a). The Many Facets of Simulation through a Collection of about 
100 Definitions. SCS M&S Magazine, 2:2 (April), pp. 82–92. http://scs.org/ 
wp-content/uploads/2016/12/2011-04-Issue06-6.pdf (Accessed: 2021-06-30) 

Ören, T.I. (2011b). A Critical Review of Definitions and About 400 Types of 
Modeling and Simulation. SCS M&S Magazine, 2:3 (July), pp. 142–151. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.371.4566&rep= 
rep1&type=pdf (Accessed: 2021-06-30) 

Furthermore, this set of appendices provides additional sources:

. A1: Glossary of Terms Used in this Document

. A2: Dictionaries of Modeling and Simulation (M&S), Cybernetics, and Systems

. A3: M&S Associations/Organizations/Committees/Groups/Research Centers

. A4: Additional Resources. 

The definitions are from the author(s) of the sections associated to each definition. 
In cases where section numbers are omitted, the names indicate who provided 

the definitions.
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In section 

A 
An abstract DEVS simulator describes implementable simulators of 
DEVS model 

Section 1.4.6 

Abstraction is the process of constructing a lumped model from a base 
model intended to be valid for the real system in a given experimental 
frame 

Section 1.4.6 

Acceptor monitors an experiment to see the desired experimental 
conditions are met 

Section 1.4.2 

Advisory professional codes for simulationists provide guidelines that 
help the simulationist to make good decisions, often very similar to Code of 
Best Practices 

Section 8.2.5 

Augmented reality (AR for short) is a new technology that integrates the 
real-world information and the virtual world information seamlessly. 
Through computer technology, it simulates and superposes physical 
information (visual information, sound, taste, touch, etc.) that is difficult to 
experience in a certain spatio-temporal range of the real world 

B 
A base model is valid within a larger set of experimental frames (with 
respect to a real system) than the lumped model 

Section 1.4.4 

C 
Complexity of a model can be measured by the resources required by a 
particular simulator to correctly interpret it 

Section 1.4.4 

A conceptual model describes, at the highest level of abstraction, the 
general knowledge about the system under study to highlight system 
entities (or classes), as well as the relationships between them 

Section 2.3 

Computer simulation: Simulation where the computations are performed 
on a computer 

Ören 

Computer simulation: Simulation of computers (similar to simulation of 
traffic is called traffic simulation) 
Also synonym of computerized simulation 

Ören 

Computerized simulation: Simulation study where all knowledge 
processing are done on a computer 

Ören 

Constraint (or conservative) model provides system descriptions in terms 
of laws and constraints. Differential equations or difference equations are 
examples of adequate formalism for this abstraction level 

Section 2.3 

D 
Data (To see definitions of 64 types of data in Sect. 2.2) Section 2.2 

Data level (or level 1 system specification) is a data base of measurements 
and observations made for the source system 

Section 1.4.1 

Data poor environment is an environment where historical data lacks 
desirable qualities (such as quality or quantity) 

Section 1.4.2 

Data-rich environment is an environment where data is abundant from 
prior experimentation or can easily be obtained from measurements 

Section 1.4.2 

De Facto standard: A standard widely used, but not endorsed by a 
standards organization 

Section 6.1.1

http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_8
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_6
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In section 

De Jure standard: A standard endorsed by a standards organization Section 6.1.1 

A declarative model provides system description in terms of sequences of 
events that move the system from one state to another 

Section 2.3 

Descriptive model analysis—Syn. model characterization 

Discrete Event System Specification (DEVS) Section 1.4.2 

A DEVS model is a state machine with time included as a component of 
the state 
A DEVS model can be regarded as a state machine that specifies transitions 
of the total state [s, Dte]—that is, transitions of the state and elapsed 
duration in combination—rather than transitions of the state s by itself 

Section 3.4 

Digital simulation: A simulation where the computation is carried out on a 
digital computer 

Ören 

Disciplinary professional codes impose negative consequences for 
violations of standards 

Section 8.2.5 

A domain rule represents some domain-dependent state transformation 
mechanisms 

Section 2.4.5 

E 
Epistemology is the branch of philosophy that copes with the question of 
how to gain new knowledge within a discipline 

Section 15.1 

Ethics is the branch of philosophy that studies moral problems, that is, 
problems of right and wrong action. 

Section 8.1 

Ethics, also called moral philosophy, is the discipline concerned with what 
is morally good and bad and morally right and wrong. The term is also 
applied to any system or theory of moral values or principles. 

Section 8.2.1 

Evaluative model analysis—Syn. model evaluation Section 2.1 

Experimental frame is a specification of the conditions under which 
system is observed or experimented with 

Section 1.4.2 

F 
A functional model provides system descriptions in terms of sequences of 
functions (the outputs of the ones feeding the inputs of the others), arranged 
such that the final treatment performed by the system is found downstream 
of this sequence 

Section 2.3 

G 
Gaming simulation provides experience for entertainment and for training 
purposes 

Section 1.1 

General domain model 
Generator generates input segments to the system Section 1.4.2 

Grading professional maturity involves assessing processes used in a 
profession, individuals and organizations active in this profession, and 
products and/or services of the profession 

Chapter 10 

H 
Haptic feedback technology is a technology that is utilized to reproduce 
real tactile sensation for users through a series of actions such as force or 
vibration provided by the professional equipment 

Section 14.2.3

http://dx.doi.org/10.1007/978-3-031-11085-6_6
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_3
http://dx.doi.org/10.1007/978-3-031-11085-6_8
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_15
http://dx.doi.org/10.1007/978-3-031-11085-6_8
http://dx.doi.org/10.1007/978-3-031-11085-6_8
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_10
http://dx.doi.org/10.1007/978-3-031-11085-6_14


(continued)

(continued)

498 Appendix A: Terminology and Other Reference Documents

In section 

High-fidelity model may refer to a model that is both high in detail and in 
validity (in some understood experimental frame) 

Section 1.4.3 

High-performance simulation is a new simulation paradigm, new approach, 
and new ecosystem, which combines four kinds of technologies including 
emerging computer science technology (i.e., cloud computing, IoT, big data, 
service computing, and edge computing), modern modeling and simulation 
technology, supercomputer system technology, and artificial intelligence 
technology, aimed to optimize the overall performance of system modeling, 
simulation operation and result analysis/processing for 2 kinds of users 
(high-end simulation user and massive simulation user group) and 3 types of 
simulations (constructive simulation, virtual simulation, and live simulation) 

Section 11.6 

Hybrid simulation is the combined application of simulation techniques 
like system dynamics (SD), discrete event simulation (DES), and 
agent-based simulation (ABS) in the context of a single simulation study 

Section 3.6.2 

Hybrid simulation: A simulation where the computation is carried out on a 
hybrid computer 

Ören 

L 
Logical time is measured by ticks of a clock somehow embedded in a model Section 1.4.5 

M 
Measures of effectiveness measure how well the overall system goals are 
being achieved 

Section 1.4.2 

Measures of performance are output variables that typically judge how 
well parts of a system are operating 

Section 1.4.2 

A meta-model performs some domain-independent 
functionalities/states/activities 

Section 2.4.5 

Metric time—Syn. physical time Section 1.4.5 

Model is a representation of a simulant, broadly grouped into conceptual 
and executable types 

Section 1.4.6 

(A model can be conceived as any physical, mathematical, or logical 
representation of a system, entity, phenomenon, or process.) 

Section 1.4.2 

Each model is a simplification and abstraction of reality, and the model 
becomes the reality of the simulation 

Section 15.2 

Model analysis consists of descriptive model analysis (model 
characterization) and evaluative model analysis (model evaluation) 

Section 2.1 

Model base management includes model search, semantic model search, 
and model integrity 

Chapter 2 

Model characterization (or descriptive model analysis) consists of model 
comprehensibility (model documentation and model ventilation) and model 
usability 

Section 2.1 

Model engineering (ME) or named as model lifecycle engineering 
(MLE) deals with the model lifecycle credibility and scalability problem for 
complex systems, especially systems-of-systems 

Section 2.4 

Model engineering is a general term for theories, methods, technologies, 
standards, and tools relevant to a systematic, standardized, quantifiable 
engineering methodology that guarantees the credibility of the full lifecycle 
of a model with the minimum cost 

Section 2.4.2

http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_11
http://dx.doi.org/10.1007/978-3-031-11085-6_3
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_15
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
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In section 

Model lifecycle contains six phases, i.e., problem definition, model design, 
model construction, verification, validation, and accreditation (VV&A), 
model implementation, model evolution and reconfiguration, and model 
maintenance 

Section 2.4.1 

Model Lifecycle Engineering—Syn. model engineering Section 2.4 

Model evaluation or evaluative model analysis can be done with respect to 
modeling formalisms, another model (model comparison), real system, and 
goal of study 

Section 2.1 

Model processing consists of model analysis, model transformation, and 
behavior generation 

Section 2.1 

Model realism (or model veracity, model verisimilitude) consists of 
adequacy of model structure (static structure (relevant variables, interface of 
models) and dynamic structure) and adequacy of model constants and 
parameters 

Section 2.1 

Model reconfiguration means to change part of model during its runtime Section 2.4.6 

Model ventilation is examination of its assumptions, deficiencies, 
limitations, etc 

Section 2.1 

Modeling is a task-driven purposeful simplification and abstraction of a 
perception of reality 

Section 16.2 

Modeling is creating a simplified representation of something Section 18.1 

Monte Carlo Simulation—synonym: stochastic simulation Ören 

Monte Carlo simulation is use of random variates to 
solve deterministic problems such as computation of multi-dimensional 
integrals 

Ören 

Moral philosophy—Syn. ethics 

Morals are the practice of ethics Section 8.2.1 

N 
Numerical simulation designates the process by which a program is 
executed on a (digital) computer in order to represent a given phenomenon 

Section 11.1 

O 
Outcome measures are measures of the effectiveness of a system in 
accomplishing its goal which are required to evaluate the design 
alternatives 

Section 1.4.2 

Output variables are variables of a model whose values are computed 
during execution runs of the model in order to compute outcome measures 

Section 1.4.2 

P 
Physical time, also called metric time or wall-clock time, is measured by 
ticks of physical clocks 

Section 1.4.5 

Predictive validity of a model necessitates not only replicative validity, 
but also the ability to predict as yet unseen system behavior 

Section 1.4.3 

Proprietary standard: A standard that belongs to an entity that exercises 
control over the standard 

Section 6.1.1

http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_2
http://dx.doi.org/10.1007/978-3-031-11085-6_16
http://dx.doi.org/10.1007/978-3-031-11085-6_18
http://dx.doi.org/10.1007/978-3-031-11085-6_8
http://dx.doi.org/10.1007/978-3-031-11085-6_11
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_6


(continued)

(continued)

500 Appendix A: Terminology and Other Reference Documents

In section 

R 
Reliable model: If the simulation model is reliable, conclusions and 
perceptions obtained from its execution can be reliably used to draw 
inferences about the simuland 

Section 7.2 

Replicative validity of a model is affirmed if, for all the experiments 
possible within the experimental frame, the behavior of the model and 
system agree within acceptable tolerance 

Section 1.4.3 

The results of simulation are the output produced by a model during a 
simulation 

Section 1.4.6 

S 
A scientific explanation is a deductive argument from a general law and 
certain other premises to the desired conclusion. The general law needs to 
be an essential premise. Deductively invalid arguments fail to explain, as do 
arguments not containing a general law 

Section 16.3 

A simuland is the real-world system of interest. It is the object, process, or 
phenomena to be simulated 

Section 1.4.6 

Simulation: (Please see: Appendices A2 and A3): 
A2—Ören, T.I. (2011a). The Many Facets of Simulation through a 
Collection of about 100 Definitions. SCS M&S Magazine, 2:2 (April), 
pp. 82–92 
A3—Ören, T.I. (2011b). A Critical Review of Definitions and About 400 
Types of Modeling and Simulation. SCS M&S Magazine, 2:3 (July), 
pp. 142–151 

Ören 

Simulation (experimentation aspect): Simulation is performing goal 
directed experiments with models of dynamic systems 

Section 1.1 

Simulation (experience aspect): Simulation is providing experience under 
controlled conditions for: 
1. Training, i.e., for gaining/enhancing competence in one of the three types 
of skills: 

(a) motor skills (virtual simulation or use of simulators), 
(b) decision and/or communication skills (constructive simulation such 

as business games, war games, or peace games; aka serious 
games), 

(c) operational skills (live simulation) 
2. For entertainment purposes 

Section 1.1 

Simulation model is a set of instructions, rules, equations, or constraints 
for generating I/O behavior. In other words, a simulation model is a 
specification with state transition and output generation mechanisms to 
accept input trajectories and generate output trajectories depending on its 
initial state setting 

Simulator is a computational device for generating behavior of the model 

A simulator is any computation system (such as a single processor, a 
processor network, the human mind, or more abstractly an algorithm), 
capable of executing a model to generate its behavior 

Simulator correctness: A simulator correctly simulates a model if it is 
guaranteed to faithfully generate the model’s output trajectory given its 
initial state and its input trajectory

http://dx.doi.org/10.1007/978-3-031-11085-6_7
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_16
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
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In section 

Source level (or level 0 system specification) identifies a portion of the real 
world that we wish to model and the means by which we are going to 
observe it 

Section 1.4.1 

Structural validity of a model necessitates that the model not only is 
capable of replicating the data observed from the system but also mimics in 
step-by-step, component-by-component fashion, the way that the system 
does its transitions 

Section 1.4.3 

Structural validity of a model necessitates that the model not only is 
capable of replicating the data observed from the system but also mimics in 
step-by-step, component-by-component fashion, the way that the system 
does its transitions 

Section 1.4.3 

System (or source system) is the real or virtual environment that we are 
interested in modeling. It is viewed as a source of observable data, in the 
form of time- indexed trajectories of variables 

Section 1.4.2 

System behavior database is the data that has been gathered from 
observing or otherwise experimenting with a system 

Section 1.4.2 

System integration technology refers to the technology that can help 
integrate various technologies applied in VR/AR (such as information 
synchronization technology, model calibration technology, data conversion 
technology, recognition and synthesis technology) 

Section 14.2.1 

T 
Time base is an ordered set, usually the real numbers, for indexing events 
that model the flow of actual time 

Section 1.4.5 

Transducer that observes and analyzes the system output segments Section 1.4.2 

V 
Validation is the process of determining if a model behaves with 
satisfactory accuracy consistent with the study objectives within its domain 
of applicability to the simuland it represents 

Section 1.4.6 

Validity of a model is the assurance that the model faithfully captures the 
system behavior only to the extent demanded by the objectives of the 
simulation study. The concept of validity answers the question of whether 
it is impossible to distinguish the model and system in the experimental 
frame of interest 

Section 1.4.3 

Verification is the process of determining if an implemented model is 
consistent with its specification 

Section 1.4.6 

Virtual reality (VR for short) is the use of computer simulation to generate 
a three-dimensional virtual world, providing users with simulated vision, 
hearing, touch, and other senses so that users feel as if they were in the real 
environment and were able to observe things in the three-dimensional space 
immediately without any restrictions 

Section 14.2.1 

W 
Wall-clock time—Syn. physical time Section 1.4.5

http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_14
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_1
http://dx.doi.org/10.1007/978-3-031-11085-6_14
http://dx.doi.org/10.1007/978-3-031-11085-6_1
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Modeling and simulation (29 dictionaries) 
Augmented reality 
AR BimDictionary Augmented reality simulation (AR) 
Analog and hybrid computers 
NEES Network for Earthquake Engineering Simulation (NEES) Hybrid 

Simulation Primer and Dictionary 

SCS-1975 The Society for Computer Simulation—Definitions of Terms for Analog 
and Hybrid Computers (1 November 1975). Simulation, 26:3 (March 
1976), 80–86 

Biology 
SB Biology Online Dictionary 

Education 
UCF UCF (University of Central Florida) Modeling and Simulation 

Terminology (Modeling and Simulation for Instructional Design) 

Environmental engineering 
EnvEng General Glossary of Terms relating to Modelling and Simulation for 

Environmental Engineering 

Flight simulation Definitions and Abbreviations for Flight Simulation Training Devices 

Gaming 
GameDeveloper Dan Carreker (2012). The Game Developer’s Dictionary: A 

Multidisciplinary Lexicon for Professionals and Students. Courser 
Technology Press, Boston, MA, USA 

G.I. Gibbs G.I. Gibbs (1978). Dictionary of Gaming, Modelling & Simulation. E & 
F N Spon (An imprint of Routledge) (at Amazon) 

L. Pulsipher Glossary for Game Designers. Copyright 2010 Lewis Pulsipher 

Sloper FAQ 28: A Glossary of Game Biz terms 

General M&S 
ACM SIGSIM 
M&S 

ACM SIGSIM Modeling and Simulation Glossary 

IEEE IEEE Standard Glossary of Modeling and Simulation Terminology 
(IEEE 610.3–1989) withdrawn 

Li, Bo Hu et al. Li, Bo H, T.I. Ören, Qinping Zhao, Tianyuan Xiao, Zongji Chen, and 
Guanghong Gong et al. (2012). Modeling and Simulation Dictionary: 
Chinese-English, English-Chinese (over 9000 terms), Chinese Science 
Press, Beijing, P.R. of China. (With the contribution of 30 Chinese 
colleagues—contributors) (front cover) 

Li, Bo Hu et al. 
(2nd ed.) 

Li, Bo Hu et al. (2019). 2nd edition of the Modeling and Simulation 
Dictionary: Chinese- English, English-Chinese (about 12 500 English 
terms). Chinese Science Press, Beijing, P.R. of China 

Ören et al. Ören, T.I. and The French Team: (2006). Modeling and Simulation 
Dictionary: English-French-Turkish. Marseille, France. With the 
support of Centre Nationale de La Recherche Scientifique, I3, 
Université Paul Cézanne—Aix-Marseille III, and LSIS (286 pp). ISBN: 
2-9524747-0-2
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Modeling and simulation (29 dictionaries) 
Augmented reality 

Currently, there are over 12 500 English terms in the master file. The 
work can be continued to finalize English-French, English-Italian, 
English–Spanish, and English-Turkish M&S dictionaries 

Healthcare 
Healthcare Lioce, L. (ed.). Healthcare Simulation Dictionary (2nd edition). 2020. 

AHRQ Publication No. 20-0019 

INALCSL INACSL Standards Committee (2016, December). INACSL standards 
of best practice: SimulationSM Simulation glossary. Clinical Simulation 
in Nursing, 12(S), S39-S47. h 

SSH Glossary of Terms Abridged from SSH Accreditation Manual 

VHA SimLEARN Clinical Simulation and Resuscitation Glossary of Training Terms 

Lighting 
LDG Lighting Design and Simulation Terminology 

Military Simulation 
DoD M&S 
glossary 

DoD M&S Glossary—DoD 5000.59-M 

SEDRIS SEDRIS (Synthetic Environment Data Representation and Interchange 
Specification) Glossary (2007) 

SISO-Fidelitv SISO Glossary of Terms Applied to Fidelity 

SISO_DIS Distributed Interactive Simulation 

UK_SEMS UK Ministry of Defence Synthetic Environment & Modelling & 
Simulation (SEMS) Glossary 

Wikis Glossary of military modeling and simulation: Wikis 

Verification and validation 
NASA Glossary of Verification and Validation Terms 

NPARC V&V Glossary of Verification and Validation Terms 

Cybernetics and Systems (5 dictionaries) 
F. Heylighen Web Dictionary of Cybernetics and Systems (Principa Cybemetica Web) 

IECaS International Encyclopedia of Cybernetics and Systems, edited by Charles 
François, (1997) K. G. Saur publishing, Münich, Germany (second ed. 2004) 

ST Glossary of Systems Theory (Wikipedia) 

TSE List of Types of Systems Engineering (Wikipedia) 

TST List of Types of Systems Theory (Wikipedia)



A3 M&S Associations/Organizations/Committees/Groups/Research Centers

Index

High-Level Recognition of M&S

https://www.trainingsystems.org/initiatives/advocacy/congressional-modeling-
and-simulation-caucus.

Medical Simulation
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High Level Recognition of M&S (3) 
Networking of Professional Organizations 

Medical Organizations (10) 
Others (19) 

Associations 

International Associations/Groups (31) 
by Country Associations (62) 
by Region/Language (22) 

Research Centers/Groups (40) 
Military Organizations 

NATO (4) 
Europe (1) 
Country (28).

. USA—H. Res. 487—Recognizing the contribution of modeling and simulation 
technology to the security and prosperity of the United States and recognizing 
modeling and simulation as a National Critical Technology. 110th Congress (2007– 
2008) https://www.congress.gov/bill/110th-congress/house-resolution/487

. USA—H. Res. 855—Enhancing Safety in Medicine Utilizing Leading 
Advanced Simulation Technologies to Improve Outcomes Now Act of 2009. 
111th Congress (2009–2010) https://www.congress.gov/bill/111th-congress/ 
house-bill/855/text

. USA—Congressional Modeling and Simulation Caucus 

Networking of Professional Organizations 

AIMS—Advanced Initiative in Medical Simulation 
ASPE—The Global Network for Human Simulation Education 
Associations for Simulation in Healthcare 
CSA—The California Simulation Alliance 
Global Simulation Societies—Simulation Societies Around the World 
GNSH—The Global network for Simulation in Healthcare 
SSH Affiliates 
SUN—Simulation User Network (Medical, Nursing, and Healthcare) 
World Medical Simulation Centre Database.

https://www.congress.gov/bill/110th-congress/house-resolution/487
https://www.congress.gov/bill/111th-congress/house-bill/855/text
https://www.congress.gov/bill/111th-congress/house-bill/855/text
https://www.trainingsystems.org/initiatives/advocacy/congressional-modeling-and-simulation-caucus
https://www.trainingsystems.org/initiatives/advocacy/congressional-modeling-and-simulation-caucus


Others

Associations—International
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. AMSC—Alabama Modeling & Simulation Council

. CSSS—Czech and Slovak Simulation Society

. DBSS—Dutch Benelux Simulation Society

. ETSA—European Training and Simulation Association

. EUROSIM—Federation of European Simulation Societies

. G.A.M.E.S. Synergy Summit (Government, Academic, Military, Entertainment 
and Simulation)

. IMSF—International Marine Simulator Forum

. ITSA—International Training and Simulation Alliance

. M&SNet—McLeod Modeling & Simulation Network (of SCS)

. MISS—McLeod Institute of Simulation Sciences (of SCS)

. MSLS—M&S Leadership Summit

. NCS—The National Center for Simulation (USA)

. NEMSC—New England Modeling & Simulation Consortium

. NMSC—National Modeling & Simulation Coalition

. NTSA—National Training Systems Association (USA)

. SAGSAGA—Swiss Austrian German Simulation and Gaming Association

. SIM Center Directory

. SIMS—Scandinavian Simulation Society

. WSA—Worldwide Simulation Alliance.

. ABSEL—Association for Business Simulation and Experiential Learning

. ACM SIGSIM—ACM Special Interest Group on Simulation

. AISB—The Society for the Study of Artificial Intelligence and the Simulation of 
Behaviour

. AMSE—Association for the Advancement of Modelling and Simulation 
Techniques in Enterprises

. ANGILS—Alliance for New Generation Interactive Leisure and Simulation

. DIGRA—Digital Games Research Association

. EBEA—The Economics and Business Education Association

. IASTED—International Association of Science and Technology for 
Development

. IBPSA—International Building Performance Simulation Association

. IGDA—International Game Developers Association

. IMA—International Microsimulation Association

. IMACS—International Association for Mathematics and Computers in 
Simulation

. IMUNA—Education Through Simulation

. INACSL—International Nursing Association for Clinical Simulation and 
Learning

. INFORMS Simulation Society

. IPSS—International Pediatric Simulation Society
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506 Appendix A: Terminology and Other Reference Documents

. ISAGA—International Simulation and Gaming Association

. ISHS—International Society for Human Simulation

. M&SPCC—Modeling and Simulation Professional Certification Commission

. Modelica—Modelica Association

. MSRC—Maritime Simulation and Resource Center

. NAFEMS—The International Association for the Engineering Modelling, 
Analysis and Simulation Community

. NASAGA—North American Simulation and Gaming Association

. PSE—Professional Simulation Engineer Certification

. SAE—Human Biomechanics and Simulation Standardization Committee

. SAGSET—The Society for the Advancement of Games and Simulations in 
Education and Training

. SCS—Society for Modeling & Simulation International (Formerly Society for 
Computer Simulation

. SGA—Serious Games Association

. SGI—Serious Games Initiative

. SSH—Society for Simulation in Healthcare

. SSSG—Social Simulation and Serious Games (SIG of ESSA).

. Albenia 
ALBSIM—Albanian Simulation Society

. Australia 
ASSH—The Australian Society for Simulation in Healthcare 
SimAust—Simulation Australia

. Belgium 
FRANCOSIM—Société francophone de simulation

. Bulgaria 
BASAGA—Bulgarian Academic Simulation and Gaming Association 
Bulsim—Bulgarian Modeling and Simulation Association

. Canada 
Can Sim—Canadian Alliance of Nurse educators using Simulation 
Sim Center Canada 
SimGhosts—Simulation Canada Affiliation 
Simulation Canada

. China 
CASS—Chinese Association of System Simulation 
SASS—Shanghai Association for System Simulation (in Chinese)

. Croatia 
CROSSIM—Croatian Society for Simulation Modelling

. Denmark 
DKSIM—Dansk Simuleringsforening (Danish Simulation Society)
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. Finland 
FinSim—Finnish Simulation Forum

. France 
CNRS-GdR MACS—Groupe de Recherche “Modelisation, Analyse et Con-
duite des Systemes dynamiques” de CNRS 
FRANCOSIM—Société Francophone de Simulation (Belgium, France) 
SoFraSimS—Société Francophone de Simulation en Santé

. Hong Kong 
SGA—Serious Games Association

. Hungary 
HSS—Hungarian Simulation Society

. India 
IAMMS—Indian Academy for Mathematical Modeling and Simulation 
INDSAGA—Indian Simulation and Gaming Association

. Italy 
ISCS—Italian Society for Computer Simulation 
Liophant Simulation 
MIMOS (Italian Movement for Modeling and Simulation) 
SIMMED—SIMulation in MEDicine 
Simulation Team

. Japan 
JASAG—Japan Association of Simulation and Gaming 
JSST—Japan Society for Simulation Technology

. Korea 
KoSSH—Korea Society for Simulation in Healthcare 
KSS—The Korea Society for Simulation (in Korean)

. Kosova 
KA-SIM—Kosova Society for modeling and Simulation

. Latvia 
LSS—Latvian Simulation Society

. Malasia 
MASAGA—Malaysian Simulation & Gaming Conference

. Netherlands 
DSSH—Dutch Society for Simulation in Health Care 
SAGANET—Simulation and Gaming Association Derneği (Medical Simulation 
Association)

. Poland 
PSCS—Polish Society for Computer Simulation (in Polish)

. Puerto Rico 
ASICTEPROS—Asociación de Simulación Clínica y Tecnología Digital de 
Puerto Rico para Profesionales de la Salud

. Romania 
ROMSIM—Romanian Society for Modelling and Simulation



Associations—by Region/Language
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. Russia 
NSSM—National Society for Simulation Modeling in Russia

. Singapore 
SGA—Serious Games Association 
SSAGSg—Society of Simulation and Gaming of Singapore

. Slovenia 
SLOSIM—Slovenian Society for Modelling and Simulation

. Spain 
ASESP—Asociación Estudiantil de Simulaciones Parlamentarias 
CEA-SMSG—Spanish Modeling and Simulation Group of the Spanish Society 
on Automation and Control 
SESSEP—Sociedad Española de Simulación Clínica y Seguridad del Paciente

. Taiwan 
TaiwanSG—Taiwan Simulation and Gaming Association

. Thailand 
ThaiSim—The Thai Simulation and Gaming Association

. Turkey 
BinSimDer—Bina Performansı Modelleme ve Simülasyonları Derneği 
CASE—Center of Advanced Simulation and Education 
Hemşirelikte Klinik Simülasyon Derneği 
IBPSA TR—Bina performans Simülasyonları Komitesi 
Medsimmer—Medikal Simülasyon Derneği 
SSH—Sağlıkta Simülasyon Derneği

. UK 
ASPiH—Association for Simulated Practice in healthcare 
UKSIM—United kingdom Simulation Society (UK, Ireland)

. USA 
AIMS—Advanced Initiative in Medical Simulation 
TNA SEM CSL—Committee on Learning Science: Computer Games, Simu-
lations, and Education; Center for Education, Board on Science Education; The 
National Academies 
SIETAR-USA—Society for Intercultural Education Training and Research 
SSH—Society for Simulation in Healthcare 
URSGA—University of Rochester Simulation Gaming Association 
WISER—Education and Simulation Improving Healthcare

. Americas 
CSSSA—Computational Social Science Society of the Americas (formerly 
NAACSOS)

. Asia 
AFSG—Asian Federation for Serious Games 
ASIASIM—Federation of Asian Simulation Societies



Research Centers/Groups
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. Asia–Pacific 
APSA—Asia-Pacific Simulation Association

. Australia/New Zeland 
MSSANZ—Modelling and Simulation Society of Australia and New Zealand 
Inc.

. Czech and Slovak Republics 
CSSS—Czech and Slovak Simulation Society

. Dutch Benelux 
DBSS—Dutch Benelux Simulation Society

. Europe 
BETA—Simulation of European Politics 
EASA—ATOs—European Aviation safety Agency—Approved Training 
organizations 
ECMS—European Council for Modeling and Simulation 
ESSA—The European Social Simulation Association 
ESSA SSSG—Special Interest Group on Social Simulation and Serious gGames 
EUROSIM—Federation of European Simulation Societies 
EUROSIS—The European Multidisciplinary Society for Modelling and Simu-
lation Technology 
SESAM—Society for Simulation in Europe

. French 
FRANCOSIM—Societe de Simulation Francophone

. German 
ASIM—German Simulation Society

. Mediterranean and Latin America 
IMCS—International Mediterranean and Latin American Council of Simulation

. North America 
NAACSOS—North American Association for Computational Social and 
Organizational Science (currently part of CSSSA) 
NASAGA—North American Simulation and Gaming Association

. Pacific Asia 
PAAA—Pacific Asian Association for Agent-based Approach in Social Systems 
Sciences

. Scandinavia 
SIMS—Scandinavian Simulation Society

. Swiss, Austrian, and German 
SAGSAGA—Swiss Austrian German Simulation and Gaming Association.

. ACIMS—Arizona Center for Integrative Modeling and Simulation

. AFSC—Asia Flight Simulation Centre

. AMCS MMSS—Australian Maritime College - Centre for Maritime Simulation
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. AMSL—The Auburn Modeling and Simulation Laboratory

. BioSystems Group—(UCSF—University of California San Francisco)

. C&MSC—Cheshire and Merseyside Simulation Centre (Medical, Nursing, and 
Healthcare)

. CESAR—The Center for Exascale Simulation of Advanced Reactors

. CMS—Centre for Marine Simulation –

. Fisheries and Marine Institute of Memorial University of Newfoundland

. CMS-UNIPUNE—Centre for Modeling and Simulation, University of Pune, 
Pune, India

. Marseille, France

. CRESS—Centre for Research in Social Simulation

. CSBL—Centre for Simulation Based learning—McMaster University, Faculty 
of Health Sciences

. CSPS—Centre for Simulation and Patient Safety

. CWRU—Mt. Sinai Skills and Simulation Center

. FMSC—Fremantle Marine Simulation Centre

. IBM Cyberattack Simulation Test Centre

. ICSS—Institute for Complex Systems Simulation, University of Southampton, 
UK

. IST—School of Modeling Simulation Training (University of Central Florida)

. KMSC—Kohl's Mobile Simulation Center

. Liophant Simulation Club

. LSIS—Laboratoire des Sciences de l’Information et des Systèmes (Information 
and Systems Sciences Laboratory), Marseille, France

. SAG-ETH—Simulation and Animation Group (part of the Computer Graphics 
laboratory at the ETH in Zurich)

. MacEwanU—Clinical Simulation Centre

. MoSeS—Modelling and Simulation in e-Social Science

. MSC-LES—Modeling & Simulation Center—Laboratory of Enterprise Solu-
tions (at Mechanical Department, University of Calabria)

. MSR—Israel Center for Medical Simulation

. MSUG—Michigan Simulation User Group

. NAIT—Centre for Advanced medical Simulation

. NATSEM—National Centre for Social and Economic Modelling, Australia

. NISAC—National Infrastructure Simulation and Analysis Center, USA

. RSRG—Reservoir Simulation Research Group, University of Calgary

. SAAB TCSC—Training and Simulation—Live Training

. SIRC—Simulation Innovation Resource Center (for Nurse Educators)

. SMS—Systems Modeling Simulation Laboratory at KAIST (Korea Advanced 
Institute of Science and Technology)

. SRG-LBNL—Simulation Research Group at Lawrence Berkeley National 
Laboratory (for building energy simulation software)

. SRG-ORMS—Simulation Research Group at Operational Research and Man-
agement Sciences Group at the University of Warwick

. SSC—Swedish Simulation Center



NATO

Australia

Canada

Korea

Turkey

SISO-SCMs—Standing Study Groups (SSGs) of SISO
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. UAH CMSA—University of Alabama in Huntsville—Center for Modeling, 
Simulation and Analysis

. UHBW Simulation Centre (Previously known as Bristol Medical Simulation 
Centre—BMSC)

. uOSSC—The University of Ottawa Skills and Simulation Centre

. VSIM—Centre for Advanced Studies in Visualization, Simulation & Modelling 
(Carleton University, Ottawa, ON, Canada). 

Military Organizations

. M&S COE—NATO Modelling & Simulation Centres of Excellence

. NMSG—NATO Modelling and Simulation Group

. NMSG Team—NMSG Specialist Team on Modelling and Simulation in 
NATO Federated Mission Networking

. SAS—NATO Studies, Analysis and Simulation Panel. 

Europe 

ESM3—Systems of Systems, Space, Simulation & Experiment of EDA (European 
Defence Agency) 

By Country

. ADC-WSC—Australian Defence College, Wargaming & Simulation Centre

. ADSTC—Australian Defence Simulation and Training Centre.

. AGDA T&SEC—Training and Engineering Centre, Kingston, Ontario

. Canadian Army Simulation Centre

. Simulation Canada.

. KBSC—Korean Battle Simulation Center.

. MODSIMMER—Modeling and Simulation on Research and Development 
Center, USA

. DMSO– Defense Modelling and Simulation Office

. MOVES—Modeling, Virtual Environments & Simulation Institute. Naval 
Postgraduate School

. MSE– Defense Modelling and Simulation Enterprise

. MSIAC– Modelling and Simulation Information Analysis Center

. NDIA—M&SCom—Modelling and Simulation Committee of the Systems 
Engineering Division of NDIA (National Defence Industrial Association)

. SISO– Simulation Interoperability Standards Organization.



Air Force

Army

Marine/Navy

A4—Additional Resources

I/ITSEC (The Interservice/Industry Training, Simulation and Education
Conference)

INFORMS Simulation Society North Carolina State University (NCSU) Simulation
Archive

Journal of System Simulation—Archive from issue 1 (1989)

NC State University Libraries Computer Simulation Archive
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– CBMS SSG—Cloud-based Modelling & Simulation 
– ENGTAM SSG—Exploration of Next Generation Technology Applica-

tions to Modeling and Simulation 
– S&WG SSG—Simulation and Wargaming 
– Simulation Australasia SSG 
– SIM-SCALE SG—Simulation Scalability 
– XR-INTEROP SG—XR Interoperability Standards.

. AFAMS—Air Force Agency for Modeling and Simulation

. AMSO—US Army Model and Simulation Office

. PEO STRI—US Army Program Executive Office for Simulation, Training, & 
Instrumentation.

. MCMSO—Marine Corps Modeling and Simulation Office

. MTWS—Marine Air Ground Task Force (MAGTF) Tactical Warfare 
Simulation

. NAVMSMO—Navy Modeling and Simulation Management Office

. NMSO—Navy Modeling and Simulation Office. 

Space

. CMSO—Chief Modeling and Simulation Office—Department of the Air Force

. LSIST—Laboratory of Space Information and Simulation Technology. 

Archives 

Knowledge repository: http://www.iitsecdocs.com/ 
Search by keywords: http://www.iitsecdocs.com/search 
Search by year: http://www.iitsecdocs.com/volumes 

https://connect.informs.org/simulation/simulation-resources/simulation-archive 

https://www.oriprobe.com/journals/xtfzxb.html 

https://d.lib.ncsu.edu/computer-simulation/giving/

http://www.iitsecdocs.com/
http://www.iitsecdocs.com/search
http://www.iitsecdocs.com/volumes
https://connect.informs.org/simulation/simulation-resources/simulation-archive
https://www.oriprobe.com/journals/xtfzxb.html
https://d.lib.ncsu.edu/computer-simulation/giving/


Winter Simulation Conference Archive
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Search by year: https://informs-sim.org/ 

Ethics 
Ethics: The Society for Computer Simulation International (SCS) A Code of Pro-
fessional Ethics for Simulationists https://scs.org/ethics/ 

Ethics: Society for Simulation in healthcare (SSH) Healthcare Simulationist Code 
Of Ethics 

https://www.ssih.org/Portals/48/SSH%20-Code-of-Ethics.pdf 

EU: SimE: Simulation Pedagogy in Learning Ethics in Practice of Health Care 
https://simethics.eu/ 

Sim ethics—What are our ethical obligations to future AI? https://curio.io/stories/ 
1gTFDzCe8tHrxOA0akLjZQ 

Lists of 
List of Agent-Based Models (ABM) Researchers 

http://www.agent-based-models.com/blog/researchers/ 

List of Simulationists (by Prof. François E. Cellier) https://uweb.engr.arizona.edu/ 
*cellier/people.html 

List of Systems Engineers (Wikipedia - https://en.wikipedia.org/wiki/List_of_systems_ 
engineers) (WikiVisually—https://wikivisually.com/wiki/List_of_systems_engineers) 

List of Systems Sciences organizations https://en.wikipedia.org/wiki/List_of_ 
systems_sciences_organizations 

List of Systems Scientists (Wikipedia—https://en.wikipedia.org/wiki/List_of_systems_ 
scientists) (pictures—https://en.wikipedia.org/wiki/List_of_systems_scientists) 

YouTube 
https://www.youtube.com/results?search_query=simulation

https://informs-sim.org/
https://scs.org/ethics/
https://www.ssih.org/Portals/48/SSH%20-Code-of-Ethics.pdf
https://simethics.eu/
https://curio.io/stories/1gTFDzCe8tHrxOA0akLjZQ
https://curio.io/stories/1gTFDzCe8tHrxOA0akLjZQ
http://www.agent-based-models.com/blog/researchers/
https://uweb.engr.arizona.edu/~cellier/people.html
https://uweb.engr.arizona.edu/~cellier/people.html
https://en.wikipedia.org/wiki/List_of_systems_engineers
https://en.wikipedia.org/wiki/List_of_systems_engineers
https://wikivisually.com/wiki/List_of_systems_engineers
https://en.wikipedia.org/wiki/List_of_systems_sciences_organizations
https://en.wikipedia.org/wiki/List_of_systems_sciences_organizations
https://en.wikipedia.org/wiki/List_of_systems_scientists
https://en.wikipedia.org/wiki/List_of_systems_scientists
https://en.wikipedia.org/wiki/List_of_systems_scientists
https://www.youtube.com/results?search_query=simulation
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Tuncer Ören Dr. Ören is a professor emeritus of 
computer science at the School of Electrical Engineer-
ng and Computer Science of the University of Ottawa, 
Canada. He has been involved with simulation since 
1965. 

Education: Dr. Ören’s Ph.D. is in Systems Engi-
neering from the University of Arizona, Tucson, AZ 
1971). His basic education is from Galatasaray Lisesi, 
a high school founded in his native Istanbul, in 1481, 
and in Mechanical Engineering at the Technical 
University of Istanbul (1960).

. advancing methodologies for modeling and simulation;

. agent-directed simulation;

. cognitive and emotive simulations (including representations of human per-
sonality, emotions, anger mechanisms, understanding, misunderstanding, and 
computational awareness);

. reliability, QA, failure avoidance;

. ethics;

. Body of Knowledge;

. terminology of modeling and simulation. 

He authored and co-authored over 560 publications, including over 60 books 
and proceedings, and has contributed, since 1950s, to over 500 conferences and 
seminars held in 40 countries. 

Distinctions: Dr. Ören is a fellow of SCS (2016) and an inductee to SCS 
Modeling and Simulation Hall of Fame (2011). He received SCS McLeod Foun-
der’s Award for Distinguished Service to the Profession (2017) and the Golden 
Award of Excellence from the International Institute for Advanced Studies in

515© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 
Nature Switzerland AG 2023 
T. Ören et al. (eds.), Body of Knowledge for Modeling and Simulation, 
Simulation Foundations, Methods and Applications, 
https://doi.org/10.1007/978-3-031-11085-6

https://doi.org/10.1007/978-3-031-11085-6


Phys.) from McGill Univer
Institute of Technology, 19

Systems Research and Cybernetics (2018). He was selected by IBM Canada as one 
of the pioneers of computing in Canada (2005). A book was edited by Prof. Levent 
Yilmaz: Concepts and Methodologies for Modeling and Simulation: A Tribute to 
Tuncer Ören. Springer (2015).

516 Appendix B: Bios of the Contributors

t 

Bernard P. Zeigler Dr. Zeigler is Chief Scientist for 
RTSync Corp and Professor Emeritus of Electrical and 
Computer Engineering at the University of Arizona, 
Tucson. Zeigler is a co-director of the Arizona 
Center for Integrative Modeling and Simulation. 
RTSync is a spinoff of ACIMS devoted to transferring 
DEVS-based technology to general use. He is also on 
he staff of the C4I Center of George Mason 
University. 

Education: Dr. Zeigler’s Ph.D. is in Computer/ 
Communication Science from University of Michigan, 
Ann Arbor, MI (1968). He graduated with a B.S. (Eng. 
sity, Montreal (1962) and an M.S. (E.E.), Massachusetts 
64. 

His research interests include:

. Methodology of Modeling and Simulation

. Software/Hardware support for M&S Development

. Modeling and Simulation of Healthcare Systems

. Model-based System Engineering

. Bridging the Gap between Cognitive Behavior and Neural Circuits 

Distinctions: Zeigler is recognized as Computer Simulation Pioneer and inter-
nationally known for his 1976 foundational text Theory of Modeling and Simu-
lation, revised for a third edition (Academic Press, 2018). He has published 
numerous books and research articles on the Discrete Event System Specification 
(DEVS) formalism. He is a fellow of the IEEE (for his invention of DEVS) and of 
the Society for Modeling and Simulation, International (SCS). He was inducted into 
the SCS Modeling and Simulation Hall of Fame in 2009. He received the highest 
awards offered by the SCS and INFORMS, the McLeod Founders Award, and the 
Lifetime Professional Achievement Award, respectively. Dr. Zeigler is speaking 
across the globe as IEEE Distinguished Visitor—2019–2021.
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Andreas Tolk Andreas Tolk is Chief Scientist for 
Complex System Modeling in the Modeling and 
Analysis Innovation Center of The MITRE Corporation 
n Charlottesville, VA. He is also Adjunct Full Pro-
essor at Old Dominion University in Norfolk, VA. He 
holds a Ph.D. and M.Sc. in Computer Science from the 
University of the Federal Armed Forces of Germany. 

His research interests include computational and epis-
emological foundations and constraints of model‐based 
olutions in computational sciences and their application 
n support of model-based systems engineering, including 
the integration of simulation methods and tools into the 
on and best practices. He is also contributing to the field of 
evaluation in the intersection of modeling and simulation, 
and computational social sciences. 

He published more than 250 peer-reviewed journal articles, book chapters, and 
conference papers and edited 14 textbooks and compendia on Systems Engineering 
and Modeling and Simulation topics. He is Fellow of the Society for Modeling and 
Simulation (SCS) and Senior Member of IEEE and the Association for Computing 
Machinery (ACM). He received multiple awards, including distinguished contri-
bution awards from SCS and ACM and the inaugural technical merit award of the 
Simulation Interoperability Standards Organization (SISO). 
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Laurent Capocchi Laurent Capocchi was born in 
Bastia, Corsica, France. He received an M.Sc. in 
electrical engineering from “Ecole Superieure d’In-
génieurs de Nice Sophia Antipolis” (ESINSA), Nice, 
France, in 2001, and the Ph.D. in Computer Science 
rom University of Corsica “Pasquale Paoli”, Corte, 
France, in 2005. He is an Society for Modeling and 
Simulation International (SCS) member since 2001, 
and he is also a member of the Computer Science SISU 
Team of the “Sciences pour l’environnement” (SPE) 
Laboratory at the University of Corsica. His main 
research concerns the discrete event modeling and 
tems by using the Discrete Event System Specification 

His research field interest includes behavioral faults concurrent simulation, 
optimization via simulation, model-based system engineering, modeling and sim-
ulation as a service and reinforcement learning. He is a founder member of the 
DEVSimPy/DEVSimPy-mob suite open-source project, and he contributes actively 
to its development.
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M.S. in Operations Research, and Ph.D. in Operations 
Research from the Air Force Institute of Technology 
AFIT). He served as an officer in the US Air Force 
or 23 years and retired with the rank of Lieutenant 
Colonel. Currently, Lance is Assistant Professor of 
Operations Research in the Department of Operational 
Sciences at the Air Force Institute of Technology 
with research interests including simulation of 
autonomous system behavior, agent-based combat 
simulation, multivariate analysis techniques, and 
image/video classification. His email address is lance. 
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Su Chunhui Su Chunhui, master’s degree, graduated 
rom Beijing Institute of Technology, majored in 
Computer Science and Technology. As a vice depart-
ment manager in the digital engineering department of 
China Aerospace Science and Industry Corporation 
Limited, CASICloud-Tech Co., Ltd., Beijing Aero-
pace Smart Manufacturing Technology Development 
Co., Ltd., she has long been engaged in the technical 
esearch of industrial internet platform, production 
imulation, digital twin, and VR/AR. She has partici-
pated in the research, development of the INDICS 
Platform (Casicloud), focused on the virtual production 
0 papers were published in academic journals and 
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Esteban Clua Esteban Clua is a professor at Univer-
sidade Federal Fluminense and coordinator of UFF 
Medialab, CNPq researcher 1D, Scientist of the State of 
Rio prize in 2019 and Young Scientist of the State of 
Rio in 2009 and 2013. He is undergraduate in Com-
puter Science by Universidade de São Paulo and has 
master and doctor degrees by PUC-Rio. His main 
esearch and development area are Digital Games, 
Virtual Reality, GPUs and Visualization. 

He is one of the founders of SBGames (Brazilian 
Symposium of Games and Digital Entertainment) and
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council of ABRAGAMES (Brazilian Association for Game Development). In 2015 
he was nominated as NVidia CUDA Fellow. In 2007 he received the prize from 
ABRAGAMES as the main contributor from the academia for the development of 
the game industry at Brazil. Esteban is member of the program committee of most 
digital entertainment conferences. He is today the coordinator of the NVIDIA 
Center of Excellence that is located at the CS Institute of UFF. Esteban belongs to 
the council of innovation of the Culture Secretary of the State of Rio, is member of 
the permanent commission of Rio Criativo, Member of the permanent board of 
innovation and technology at the Legislative board of Rio and member of the 
Innovation Agency at UFF. 
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ions and his HdR from University of Montpellier in 
2017 in evaluation of non-functional requirements in 
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Research topics are systems engineering enterprise 
modeling, systems interoperability, requirements engi-
and automation applied in the fields of health, crisis 
systems He has been involved in international projects 
IP, REHSTRAIN) national projects (ISYCRI, COR-

SIIST). 
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Andrea D’Ambrogio Andrea D’Ambrogio is associ-
ate professor at the Department of Enterprise Engi-
neering of the University of Roma Tor Vergata, where 
he leads the Software Engineering Laboratory (sel. 
uniroma2.it). He has formerly been research associate 
at the Concurrent Engineering Research Center of the 
West Virginia University and director of the postgrad-
uate master’s degree program in Systems Engineering 
at the University of Roma Tor Vergata. His research 
nterests are in the areas of model-driven systems and 
oftware engineering, systems dependability engineer-
ing, business process management, and distributed and 
uch areas, he has participated in several projects at both 
el and has authored more than 150 journal/conference 

He has served as a general chair and/or program chair of various international 
events, such as the Spring Simulation Conference, the Summer Simulation con-
ference, the Theory of Modeling and Simulation (TMS) Symposium, the DS-RT 
conference, the European Simulation and Modelling Conference, and the
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IEEE WETICE conference. In 2010, he started the IEEE International Workshop on 
Collaborative Modeling and Simulation (CoMetS) and in 2011 the SCS Interna-
tional Workshop on Model-Driven Approaches for Simulation Engineering 
(Mod4Sim). He does scientific advisory work for industries and for national and 
international organizations, and he is a member of IEEE, IEEE Computer Society, 
ACM, SCS, and INCOSE. He is the president-elect and members of the Board of 
Directors of the Society for Modeling and Simulation International (SCS). 
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Paul K. Davis Paul K. Davis is Principal Researcher at 
RAND (formally retired but active as an adjunct) and as 
Professor of Policy Analysis in the Pardee RAND 
Graduate School. His research has been in strategic 
planning, strategy, resource allocation, decision-making 
heory, deterrence and influence, modeling and simu-
ation for analysis (e.g., game-structured simulation, 
multi-resolution modeling, exploratory analysis, and 
applying social science to policy analysis. 

His most recent book is Paul K. Davis, Angela 
O’Mahony, and Jonathan Pfautz (eds.), Social-
Behavioral Modeling for Complex Systems (Wiley, 
hemistry at the University of Michigan and received his 
cal physics from the Massachusetts Institute of Tech-
at the Institute for Defense Analyses, the US State 
artment of Defense as Senior Executive in Program 
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ilable from his RAND website (https://www.rand.org/ 
html). 

f 

r 

t 

Breno Bernard Nicolau de França Breno is a pro-
essor at the Computing Institute (UNICAMP) and a 
coordinator of the LASER research laboratory (Labo-
atory for Software Engineering and Reliability), con-
ducting research on Empirical Software Engineering, 
Lean and Agile Software Development, Software 
Architecture, and Computer Simulation. 

He got his Ph.D. in Systems Engineering and 
Computer Science at COPPE/UFRJ, where Breno also 
concluded a postdoctoral fellowship. He got his mas-
er’s and bachelor's degrees in Computer Science at 
Universidade Federal do Pará (UFPA). Over the years, 
rations with public and private organizations in the 
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Saikou Y. Diallo Saikou Y. Diallo is Chief Scientist, 
Research Associate Professor, Virginia Modeling, 
Analysis and Simulation Center (VMASC), Old 
Dominion University. He is a scientist and educator in 
he domain of innovation and equal access to technol-
ogy. He is passionate about using modeling, simulation, 
and analytics to study the connection between people 
on all spectrums and artificial beings. 

Dr. Diallo works with a multi-disciplinary team of 
artists, scientists, humanities scholars, and engineers to 
ackle societal issues that transcend disciplines. His 
current work involves modeling religion, culture, and 
artificial intelligence to improve independent living. He 
ing platforms and solutions to promote an inclusive use 
ectrums. 

Dr. Diallo graduated with a M.S. in Engineering in 2006 and a Ph.D. in 
Modeling and Simulation in 2010 both from Old Dominion University. He is 
current President of the Society for Modeling and Simulation International 
(SCS) and serves on several boards in the United States. Dr. Diallo has over one 
hundred publications in peer-reviewed conferences, journals, and books. 
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Rodrigo Pereira dos Santos Dr. Santos is a professor 
of software engineering and information systems at the 
Department of Applied Informatics from the Federal 
University of the State of Rio de Janeiro (UNIRIO). He 
has worked with systems modeling and educational 
games since 2007 and is a co-editor of the Grand 
Research Challenges on Games and Entertainment 
Computing in Brazil (GranDGamesBR 2020–2030). 
Dr. Santos holds doctorate (2016) and master's (2010) 
degrees in Computer Science and Systems Engineering 
rom the Federal University of Rio de Janeiro 
(COPPE/UFRJ). 

His bachelor’s degree in Computer Science was received from the Federal 
University of Lavras (2007). He was Academic Visitor at University College 
London and Postdoctoral Researcher at COPPE/UFRJ. He is Head of the Complex 
Systems Engineering Laboratory (LabESC), and his research interests include 
complex systems engineering (especially software ecosystems and 
systems-of-systems) and computer science education and training. He has published 
more than 200 studies and has organized more than 20 workshops and symposia. 
Dr. Santos has been a member of the Education Evaluating Commission at the 
Brazilian Ministry of Education since 2011. As a Brazilian Computer Society 
(SBC) member, he is Coordinator of the Special Commission of Information 
Systems, Member of the Special Commission of Games and Entertainment Com-
puting, Member of the Special Commission of Software Engineering, and Member
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of iSys: Brazilian Journal of Information Systems (2017–2021). He also worked in 
several projects related to software process improvement and reuse management in 
large companies at Coppetec Foundation (2008–2017). Dr. Santos has been an 
IEEE and ACM member. 
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essor at Bordeaux University in which he has devel-
oped his career since 1968 after an initial period as 
Engineer in Aerospace industry and as well General 
Manager of INTEROP-VLab, the virtual laboratory in 
Enterprise Interoperability since 2007. He is a specialist 
n the domain of Enterprise Modeling (EM), Business 
Process Management (BPM), Enterprise Interoperabil-
ty (EI), System Performance Evaluation, and Imple-
mentation of Industry 4.0 solutions. 

He is the main author of the GRAI Model and the GRAI Integrated Methodology 
(GIM) since the 1980s. Guy has managed more than twenty important European and 
International projects during the last 30 years in his competence domains (PIRELLI, 
BRITISH AEROSPACE, IBERIA, SIEMENS, SCANIA, AEROSPATIALE, 
ALCATEL, SNECMA, SCHLUMBERGER, LYONNAISE DES EAUX, 
INTEROP-NoE but also with several SMEs …). He has published more than 300 
articles and four books. He is invited regularly to deliver conference in International 
Congress and to manage professional seminars. He acts also as International 
Consultant. 
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Umut Durak Umut Durak is Group Leader for 
Assured Embedded Systems at the German Aerospace 
Center (DLR) and Professor for Aeronautical Infor-
matics at the Clausthal University of Technology. His 
esearch interests concentrate on simulation and 
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oftware-intensive systems. He has published 5 books 
and more than 80 papers in various conference pro-
ceedings and journals. He served as Vice President at 
he Society for Computer Simulation International 
SCS) between 2019 and 2021. He is currently Speaker 
of the Arbeitsgemeinschaft Simulation (ASIM) Section 
thods in Simulation (GMMS)—and an associate fellow 
f Aeronautics and Astronautics (AIAA).
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ciate Editor-in-Chief of Journal of System Simulation. He authored and co-authored
more than 120 papers. He authored and co-authored more than 6 books including
Introduction to System Simulation (Tsinghua University Press, 2010), Modeling
and Simulation of Continuous System (Electronic Industry Press, 2010), Modeling
and Simulation of Discrete Event System (Electronic Industry Press, 2011), etc. His
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essor at the Delft University of Technology. He pre-
viously studied computer science and philosophy at the 
National University of Córdoba (Argentina). During 
his time, he worked at the National Space Activities 
Commission (Argentina) on several projects, including 
oftware engineering and programming neural net-
works, parallel processing, and remote sensing. He 
obtained his Ph.D. at the Cluster of Excellence Sim-
Tech—University of Stuttgart (Germany). Before 
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High-Performance Computing Centre Stuttgart, 
2019, he won the Herbert A. Simon Award for out-
puting and philosophy. This award is offered by 
n for Computing and Philosophy (IACAP) and recog-
tage of their academic career who are likely to reshape 
puting and philosophy through their original research. 
r his work on computer simulations: “the board well 
early contributions you have made staking out new 
d normative dimensions of computer simulations. We 
ct your scholarship will have on many areas beneath the 
philosophy and wish to acknowledge your continued 
is research interests focus on the intersection between 
and technology with ethics and values. He has exten-
s regarding computer simulations, big data, scientific 
erimentation. His current research also includes themes 
and the philosophy of medicine. 

t 

r 

t 
( 

Wenhui Fan Wenhui Fan is a professor at Tsinghua 
University. He received the B.S. degree in 1990 from 
he Department of Materials Science and Engineering, 
Northwest University of Technology, China. He 
eceived the M.S. degree in 1995 from the Department 
of Materials Science and Engineering, Harbin Institute 
of Technology, China. He received the Ph.D. degree in 
1998 from the Department of Mechanical Science and 
Engineering, Zhejiang University, China. He served as 
he vice president of China Simulation Federation 
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research interests include complex system modeling and simulation, multi-agent 
simulation, multi-agent reinforcement learning (MARL), M&S for manufacturing 
and medical systems, etc. 

524 Appendix B: Bios of the Contributors

i 

t 

t 
i 

Paul Fishwick Paul Fishwick is Distinguished 
University Chair of Arts and Technology (ATEC) and 
Professor of Computer Science. He has six years of 
ndustry experience as a systems analyst working at 
Newport News Shipbuilding and at NASA Langley 
Research Center in Virginia. He was on the faculty at 
he University of Florida from 1986 to 2012 and was 
Director of the Digital Arts and Sciences Programs. His 
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he University of Pennsylvania. Fishwick is very active 
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He is Fellow of the Society for Computer Simulation, served as General Chair of 
the Winter Simulation Conference (WSC), was WSC Titan Speaker in 2009, and 
has delivered over 25 keynote addresses at international conferences. He was Chair 
of the Association for Computing Machinery (ACM) Special Interest Group in 
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Florida in its catastrophe modeling software engineering auditing process for 
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eton University (2009) and a bachelor’s degree in 
engineering physics from the University of British 
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Cláudio Gomes Cláudio Gomes is an Assistant 
Professor at Department of Engineering at Aarhus 
University. His research is centered on co-simulation 
and for good reason. During his Ph.D., he worked full 
ime in mapping the state of the art on co-simulation, 
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knowledge on the topic, but that it was scattered across 
different disciplines. He then worked toward unifying 
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ithms to the joint spectral radius theory, leading to 
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later field.
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Maâmar El Amine Hamri Maâmar El Amine Hamri
has obtained his Ph.D. in computer science in 2005 from
Aix-Marseille III University. In 2007, he joined the same
university as maître de conférences for teaching in
computer science department and conducting research in
LSIS laboratory in the field of modeling and simulation
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2017, he obtained his Habilitation à Diriger des
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Hezam Haidar Hezam Haidar is currently working for 
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He earned his Ph.D. (University of Grenoble) in 
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power plant, Yemen. Since December 2019, he works for INTEROP-VLab with the 
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interoperability, industrial and health systems, academia-industry collaboration, and 
open innovation. 

Dr. Hamri supervised 4 Ph.D. students all in the field of DEVS M&S as attested 
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jects implying industrial partners like ST-Microelectronics of Rousset world leader 
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School, in the Peninsular Collaboration for Health 
Operational Research Development. She obtained her 
Ph.D. at the University of Exeter Business School in 
eal-time simulation and short-term decision support. 
Her research interests are applied health and social care 
modeling, simulation, and data analytics to improve 
understanding and inform improvement for healthcare 
processes. 

s 
I 

t 

i 

Raymond R. Hill Raymond R. Hill earned a B.S. in 
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Force after 23 years at the rank of Lieutenant Colonel. 
Currently, Ray is Professor of Operations Research in 
he Department of Operational Sciences at the Air 
Force Institute of Technology with research interests 
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Research journal, Co-Editor-in-Chief of the Journal of Defense Analytics and 
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Simulation. His email address is rayrhill@gmail.com and rhill@afit.edu. 
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Yuanjun Laili Yuanjun Laili is currently a lecturer 
Assistant Professor) at School of Automation Science 
and Electrical Engineering, Beihang University (Bei-
ing University of Aeronautics and Astronautics), 
China, since September, 2015. She obtained her B.S., 
M.S., and Ph.D. degrees in 2009, 2012, and 2015 from 
School of Automation Science and Electrical Engi-
neering at Beihang University, China. From 2017 to 
2018, she worked as a research scholar at the Depart-
ment of Mechanical Engineering, University of Birm-
ngham, UK. She was elected in the “Young Talent 
Lift” project of China Association for Science and 
ded as the “Young Simulation Scientist” of the Society 
n International (SCS). She is an associate editor of 
odeling, Simulation and Scientific Computing”. Her 

system modeling and simulation, evolutionary compu-
n manufacturing systems. She is the author of one 
and conference articles. 

J 

I 

Bo Hu Li Professor Li, Bo Hu is Academician of 
Chinese Academy of Engineering, Ph.D. Adviser, 
Honorary President in the School of Automatic Science 
and Electrical Engineering at Beijing University of 
Aeronautics and Astronautics (BUAA), Honorary 
President of China Simulation Federation (CSF), 
Honorary Co-Chief-Editor of the journal “International 
ournal of Modeling. Simulation, and Scientific Com-
puting”, and Honorary Director of China National 
ntelligent Manufacturing. 
He was Director of Beijing Institute of Computer 

Application & Simulation Technology and Beijing 
as President of the School of Automatic Science and 
BUAA. He was the president of Chinese Simulation 
nt of Federation of Asian Simulation Societies (ASIA-
e council of directors of Society for Modeling & Sim-
. In addition, he was the director of Expert Committee of 
Manufacturing System (CIMS) Subject in Chinese 
Research and Development Plan. 

In the fields of simulation and intelligent manufacturing, he authored or 
co-authored 400 papers, 15 books, and 4 translated books. He received 1 first-class 
scientific award and 3s-class scientific awards from China State and 17 scientific 
awards from the Chinese Ministries. In 2012, he received the Lifetime Achievement 
Award from the SCS and the “National Excellent Scientific and Technical Worker” 
honorary title from the Chinese Association for Science and Technology. In 2017,
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he received the Lifetime Achievement Award from the China Computer Federation 
(CCF). In 2019, he received the Lifetime Achievement Award from the CSF. 
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Ting Yu Lin Ting Yu Lin obtained his Ph.D. in 
Control Science and Engineering, 2013, from the 
School of Automation Science and Electrical Engi-
neering and the Honors College (an elite program) of 
Beihang University (BUAA), Beijing, China. He 
eceived his B. Eng. in Automatic and Information 
Technology, 2007, from the School of Automation 
Science and Electrical Engineering of Beihang 
University (BUAA), Beijing, China. 

Since 2014, he works for the Beijing Simulation 
Center. He is now a senior engineer in State Key 
Laboratory of Intelligent Manufacturing System Tech-
n by Beijing Simulation Center. His research interest 
odeling and simulation and cloud simulation. 

He authored and co-authored 70 papers, 10 books and chapters in the fields of 
his major and has got a first-class Scientific and Technological Progress Award of 
from a Ministry, China, in 2018. He is now a member of China Simulation Fed-
eration (CSF), and the convenor of the Study Group 7 (SG7) of ISO/TC 184/SC 5 
for Interoperability of Simulation Models on Different Platforms. 

i 

Yang Liu Yang Liu, a senior engineer, received the 
B. S. degree in measurement and control technology 
and instruments from Xi ‘an University of technology 
n 2007 and M.S. degree in machinery and electronics 
engineering from Beijing University of technology in 
2010. 

From 2010 to 2016, she was Process Designer with 
Beijing Aerospace Xin feng Machinery Co., Ltd. and 
engaged in complex product process design. Since 
2016, she was Technical Director with Beijing 
Aerospace Manufacturing Technology Co., Ltd. 
Her research interest includes fundamental study of 
industrial internet, artificial intelligence, and machine 

Author’s awards and honors include publishing 10 papers and applying for 3 
invention patents, co-published 2 academic work, and participating in research 
result “intelligent manufacturing cloud platform led by the new generation of 
artificial intelligence technology” was listed as one of the top 10 international 
intelligent manufacturing technological advances in 2019.
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Margaret L. Loper Margaret L. Loper is Associate 
Director for Operations and Chief Scientist for the 
nformation and Communications Laboratory at the 
Georgia Tech Research Institute. Margaret has worked 
n modeling and simulation (M&S) for more than 30 
years, specifically focused on parallel and distributed 
ystems. She is a founding member of the Simulation 
nteroperability Standards Organization (SISO) and 
eceived service awards for her work with the Dis-
ributed Interactive Simulation (DIS) and High-Level 
Architecture (HLA) standards and the DIS/SISO tran-
sition. Her research contributions are in the areas of 
simulation testing, and simulation communication 

Margaret has taught simulation courses for both academic and professional 
education for more than 15 years. She is a founding member of Georgia Tech’s 
Professional Masters in Applied Systems Engineering degree program, where she 
teaches the core M&S course. Margaret started the M&S professional education 
certificate through the Georgia Tech School of Professional Education and has 
taught hundreds of students since it started in 2007. In 2015, she published a book 
on modeling and simulation in the systems engineering life cycle. 

Her current research is focused on computational trust algorithms, edge intelli-
gence, and situational awareness in smart cities and megacities. 

I 

Saurabh Mittal Dr. Saurabh Mittal is currently Prin-
cipal Scientist and Project Lead supporting US Air 
Force Programs at the MITRE Corporation. Previously 
at MITRE, he has held various other roles such as Chief 
Scientist for Simulation, Experimentation and Gaming 
Department, M&S Subject Matter Expert, Technical 
Advisor for various government sponsors, and Principal 
nvestigator for multiple internal MITRE research 
efforts. He received Ph.D. (2007) in Electrical and 
Computer Engineering (ECE) with dual minors in 
Systems and Industrial Engineering and Management 
and Information Systems, M.S. (2003) in ECE from the 
son. and B.Tech. (2001) in Electrical Engineering from 
a. 

Previously, he contributed to modeling and simulation (M&S) efforts at National 
Renewable Energy Lab, Department of Energy, Colorado; Link Simulation and 
Training at US Air Force Research Lab at Wright Patterson Air Force Base, 
Dayton, Ohio; Northrop Grumman Information Technology at DISA, Ft. Huachuca, 
Arizona, and at the University of Arizona, Tucson.



He has co-authored over 100 publications as book chapters, journal articles, and
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conference proceedings including 5 books, covering topics in the areas of complex 
systems, system of systems, complex adaptive systems, emergent behavior, mod-
eling and simulation (M&S), and M&S-based systems engineering. He served as 
President for the Society for Modeling and Simulation International (SCS) for 
FY21, President-Elect (FY20) and Member of the Board of Directors (FY18–20). 
He has also served as General Chair, Vice General Chair, Program Chair, and Track 
Chair during the 2013–2021 period in Spring, Summer, and Winter Simulation 
Conferences. He serves on the editorial boards of Transactions of SCS and Journal 
of Defense M&S. He is a recipient of the US DoD’s highest civilian contractor 
recognition: Golden Eagle award and Outstanding Service and Professional Con-
tribution awards by SCS. 

r 

Nav Mustafee Prof. Nav Mustafee is Professor of 
Analytics and Operations Management and Deputy 
Director for the Centre for Simulation, Analytics and 
Modelling (CSAM) at the University of Exeter Busi-
ness School, UK. His research interests are in hybrid 
modeling and simulation, data-driven analytics, and 
eal-time simulation for short-term decision-making. 
Another strand of his work is on Bibliometrics and 
meta-data analysis of research domains. In terms of 
application area, his focus is on healthcare. He is 
Founder and Co-chair of the Health and Care IMPACT 
Network, a collaboration between University of Exeter 
and several NHS Trusts. 

Through this network, Nav led the research, development, rollout, and evidence 
synthesis of the NHSquicker digital platform. The platform provides real-time data 
on wait times from *25 ED departments and minor injury units in the South West 
of England and nudges users to the most appropriate centers of urgent care. The 
objective is to shape demand for urgent services and to reduce overcrowding at 
EDs. 

Nav publishes in European Journal of Operations Research, Computers and 
Operations Research, Journal of the Operational Research Society, ACM TOMACS, 
and Scientometrics. He is Associate Editor for Simulation, Health Systems, and the 
Journal of Simulation (JOS). He has guest-edited several special issues in journals 
such as TOMACS, Simulation, and JOS. 

Nav has held leadership positions at several international conferences, including 
as General Chair (SpringSim), Program Chair/Co-Chair (ACM SIGSIM PADS, 
UK OR Society Annual Conference), and Proceedings Editor (Winter Simulation 
Conference). His email is n.mustafee@exeter.ac.uk. His webpage is http://sites. 
google.com/site/navonilmustafee/.

http://sites.google.com/site/navonilmustafee/
http://sites.google.com/site/navonilmustafee/
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Valdemar Vicente Graciano Neto Dr. Graciano Neto 
s a professor of software engineering and information 
ystems at the Informatics Institute of the Federal 
University of Goiás, in Goiânia, Brazil. He has worked 
with simulation since 2016. Dr. Graciano Neto is a D. 
Sc. and has a double degree on Computer Science and 
Computational Mathematics from the University of São 
Paulo, São Carlos, Brazil, and Informatics from IRISA 
Labs in University of South Brittany, Vannes, France 
2018). His bachelors' and master's degrees on Com-
puter Sciences were received from Federal University 
of Goiás, Brazil (2009 and 2012, respectively). 

His research interests include (1) modeling and simulation for software engi-
neering, (2) software architecture, (3) model-driven engineering, (4) information 
systems, (5) systems-of-systems (SoS) and systems-of-information systems (SoIS), 
and (6) smart cities. He has published more than 70 studies over the past years, 
including papers in proceedings of international conferences, important journals, 
and book chapters. He has also organized workshops and symposia. Dr. Graciano 
Neto was the coordinator of the Special Committee on Information Systems (CESI) 
of the Brazilian Computer Society (SBC) during 2018–2019 period, being also an 
elected member during 2015–2017. He was the general chair of the Brazilian 
Symposium on Information Systems (SBSI) in 2015, and he has organized the 
workshop series on modeling and simulation for software-intensive systems 
(MSSiS). Dr. Graciano Neto has also been a member of scientific communities, 
such as SCS (2019), SBC (2009–2020), and ACM. 
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Mohammad S. Obaidat Professor Mohammad S. 
Obaidat is an internationally known academic/ 
esearcher/scientist/scholar. He received his Ph.D. 
degree in Computer Engineering from Ohio State 
University, USA. He has received extensive research 
unding and published to date (2021) over one thousand 
and two hundred (1200) refereed technical articles— 
about half of them are journal articles, over 100 books, 
and over 75 book chapters. He is the editor-in-chief of 3 
cholarly journals and the editor of many other inter-
national journals. He is the founding editor-in-chief of 
Wiley Security and Privacy Journal. Moreover, he is 
the founder/co-founder of 5 International Conferences. 

Among his previous positions are Advisor to the President of Philadelphia 
University for Research, Development, and IT, President and Chair of Board of 
Directors of Society for Modeling and Simulation International (SCS), Dean of 
College of Engineering at Prince Sultan University, Chair and Tenured Professor at 
the Computer and Information Science Department at Fordham university, USA,
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Chair and Tenured Professor of Computer Science Department and Director of 
Graduate Program at Monmouth University, USA, Tenured Professor at King 
Abdullah II School of Information Technology, University of Jordan, PR of China 
Ministry of Education, Distinguished Overseas Professor at University of Science 
and Technology, Beijing, China, and Honorary Distinguished Professor at Amity 
University. He is now Founding Dean and Professor, College of Computing and 
Informatics at University of Sharjah, UAE. He has received numerous worldwide 
technical and service awards, has chaired over 175 international conferences, and 
given over 175 worldwide keynote speeches. 
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Ernest H. Page Ernest H. Page is DARPA Portfolio 
Manager at The MITRE Corporation. Previously, he 
erved as Chief Engineer within the Modeling, Simu-
ation, Experimentation and Analytics Technical Center 
and Founding Director of MITRE’s Simulation 
Experimentation and Analytics Lab (SEAL). He holds a 
Ph.D. in Computer Science from Virginia Tech. With a 
esearch interest in simulation modeling methodology 
and distributed systems, he has served as Principal 
nvestigator on numerous government-funded and 
ndependent Research and Development (IR&D) pro-
jects. He has held a variety of senior advisory roles, 
er for the US Army Model and Simulation Office, Chief 
Future Combat Systems (FCS) Modeling Architecture 
entation (MATREX), and Member of the Defense Sci-
Gaming, Exercising and Modeling and Simulation. Dr. 
50 peer-reviewed articles in the areas of simulation 
parallel and distributed systems. He served as Chair of 
uting Machinery (ACM) Special Interest Group on 
oard of Directors of the Winter Simulation Conference 

e editorial boards of Transactions of the Society for 
International, Journal of Defense Modeling and Simu-
lation. 

i 
Thorsten Pawletta Thorsten Pawletta is Full Professor 
n Applied Computer Science at the University of 
Applied Sciences in Wismar, Germany, since 1994. He 
has M.Eng. and Ph.D. (Dr.-Ing.) equivalent degrees in 
mechanical engineering. The focus of his thesis was the 
application of modeling and simulation (M&S) meth-
ods in industrial automation. After his Ph.D. and 
working for the industry, he spent four years at the 
Department of Computer Science at the University of 
Rostock in Germany.



His long-term research interests include the theory of M&S, the combination of

Balqies Sadoun Balqies Sadoun received her M.S. in
Civil Engineering from the Ecole Nationale des Tra-
vaux Publiques de LEtat, Lyon, France. She received
another M.S. and Ph.D. degrees from The Ohio State
University, Columbus, Ohio, USA, where she was on a
scholarship by JUST.

New York, USA, and Yar
Technology, Jordan.

involving modeling and simulation (M&S), machine
learning, and Internet of Things (IoT). Since 2014, he is working in new research
topics: In the one hand, he is performing researches coupling the Discrete Event System

Appendix B: Bios of the Contributors 535

M&S methods with other computational methods, and the software engineering 
conversion of theoretical approaches into tools for engineers. 

He is particularly interested in the further development of the DEVS theory and 
the concept of SES/MB. He has published several book contributions, journal 
articles, and a number of peer-reviewed conference papers. He is a long-standing 
member of SCS and the European Simulation Community (Eurosim/ASIM). He is 
also on the board of Eurosim/ASIM and the co-editor of the SNE—Simulation 
Notes Europe journal of Eurosim/ASIM. 

j 

Currently, she is Full Professor at the College of 
Engineering, University of Sharjah, UAE, and with the 
College of Engineering, at the Al-Balqa Applied 
University, Jordan. She has published about 120 refereed 
ournal and conference papers. She served as Department 
Chair more than once. She worked at City University of 
mouk University and Jordan University of Science and 

Her research interests include: Modeling and Simulation, Geographical Infor-
mation Systems (GIS), GPS, Remote Sensing, Wireless Navigation Systems, Data 
Analytics, Transportation Systems, Smart Homes and Cities, Environmental Plan-
ning and Engineering, Applied Neural Networks, Passive Solar Design, Quantita-
tive Analysis and Methods, System Recognition and Identification, among others. 

i 

Jean François Santucci Jean François Santucci is Full 
Professor in Computer Science at the University of 
Corsica since 1996. His main research interests are 
modeling and simulation of complex systems. He has 
been author or co-author of more than 150 papers 
published in international journals or conference pro-
ceedings. Furthermore, he has been the advisor or 
co-advisor of more than 30 Ph.D. students, and he has 
been involved in the organization of ten international 
conferences and in the scientific responsibility of five 
nternational research projects. 
He is conducting newly interdisciplinary research



Specification (DEVS) formalism with IoT, and on the other hand, he investigates how 
the DEVS formalism could be used in order to improve the reinforcement learning 
process based on multi-agents features, timing aspects, and hierarchy of abstraction. 
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Hessam S. Sarjoughian Hessam S. Sarjoughian is an 
associate professor of computer science and computer 
engineering in the School of Computing, Informatics, 
and Decision System Engineering. His research has 
been funded by NSF, Northrop Grumman, Lockheed 
Martin, Intel, and Boeing at ASU. Prior to ASU, his 
esearch was supported by DARPA, NSF, and the US 
Airforce. Dr. Sarjoughian's professional engineering 
experience has been with Honeywell and IBM, span-
ning nearly five years. He has been integralof editorial 
board of Sage to interdisciplinary and transdisciplinary 
national and international projects. 

Core research topics are on modeling theories, methodologies, and frameworks 
that can support the development of composable, heterogenous, multi-scale 
systems-of-systems. Specialized research areas are poly-formalism modeling, 
hybrid simulation, agent-based modeling and simulation, collaborative model 
engineering, and executable software architecture. 

Application domain experiences include cyber-physical systems, computation-
socio-environmental systems, accelerated network-on-chips, enterprise supply-
chain processes, control, and planning, cellular system biology, and service-
oriented computing. 

Sarjoughian has been leading and developing modeling and simulation frame-
works and tools at ASU, including the flagship DEVS-Suite simulator, serving 
research and development at the science and engineering frontiers. 

His research has received four Technical Best-Paper Awards, two Runner-up 
Technical Best-Paper Awards, and the Best Poster Award at the 2020 Winter 
Simulation Conference. Sarjoughian has graduated more than sixty masters and 
doctoral students. He co-founded and co-directs the Arizona Center for Integrative 
Modeling and Simulation (ACIMS). 
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Mayank Singh Dr. Mayank Singh is currently work-
ng as Sr. Scientist at Consilio Research Lab, Tallinn, 
Estonia, since January 2020. Prior, he worked as 
Postdoctoral Fellow, Department of Electrical, Elec-
ronic and Computer Engineering, at University of 
KwaZulu-Natal, Durban, South Africa, and Professor 
and Head, Department of Computer Science and 
Engineering at Krishna Engineering College, Ghazi-
abad, from January 2013 to September 2017. He has 15 
+ years of extensive experience in IT industry and 
Academics in India. He completed his Ph.D. in



Computer Science and Engineering from Uttarakhand Technical University in 
2011. He obtained his M.E. (2007) in Software Engineering from Thapar 
University, Patiala, and B.Tech. (2004) in Information Technology from Uttar 
Pradesh Technical University, Lucknow. 
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Dr. Singh has organized more than 30 workshops on various technologies and 
one AICTE-sponsored Faculty development programs (FDPs) on Software Testing, 
Database Testing, and Reliability. 

Dr. Singh has published around 56 research papers in peer-reviewed Transac-
tion, Journals, and Conferences of National and International repute and has 
supervised 14 M.Tech. and 6 Ph.D. students in the areas of cloud computing, 
software testing, and ontology and supervising 5 Ph.D. and 2 M.Tech. students. He 
has published four patents and 1 submitted for grant. He is currently also serving as 
Life Member of Computer Society of India, Senior Member of IEEE, ACM, and 
IACSIT. 

Claudia Szabo Claudia Szabo is Associate Professor 
in the School of Computer Science at the University of 
Adelaide, Australia. Her research interests lie in the 
area of complex systems and on using simulation to 
identify and validate their emergent properties. Claudia 
leads the Complex Systems Program in the Centre for 
Distributed and Intelligent Technologies and is Asso-
ciate Editor of the ACM Transactions on Modeling 
and Computer Simulation. Her email address is claudia. 
szabo@adelaide.edu.au. 
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Mamadou Kaba Traoré Mamadou Kaba Traoré is Full 
Professor at the University of Bordeaux. He got his M.Sc. 
n mathematical and computational engineering in 1989 
and his Ph.D. in computer science in 1992, both at Blaise 
Pascal University (France). His research interests include 
he theory of Modeling and Simulation (M&S) and the 
hybridization of M&S with analytical methods 
mamadou-kaba.traore@u-bordeaux.fr). He has pub-
ished 100+ papers in international journals and confer-
ences and has authored or co-authored a dozen books. 
Prof. Traoré has been General/Program Chair of several 
SCS conferences and is currently Associate Editor of the 
SCS flagship journal (Transactions of the SCS).

mailto:claudia.szabo@adelaide.edu.au
mailto:claudia.szabo@adelaide.edu.au
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Paul Wach Paul Wach is currently working toward a 
Ph.D. in systems engineering from Virginia Tech and 
holds a B.S. in biomedical engineering from the 
Georgia Institute of Technology as well as a M.S. in 
mechanical engineering from the University of South 
Carolina. His research interests include theoretical 
oundations of SE, digital transformation, and artificial 
ntelligence. Paul is a member of the Intelligent Sys-
ems Laboratory with the Virginia Tech National 
Security Institute. He is President and Founder of the 
Virginia Tech student division of the International 
Council on Systems Engineering (INCOSE). 

He is currently enjoying the full-time student status with part-time association 
with the Aerospace Corp, where Paul is a senior subject matter expert on the digital 
transformation. His prior work experience is with the US Department of Energy, 
two National Laboratories, and the medical industry. 
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Yan-guang Wang Yan-guang Wang, Ph.D., a senior 
engineer, graduated from the school of mechanical and 
vehicle engineering of Hunan University in 2013, 
majoring in mechanical engineering. From 2003 to 
2013, he had obtained bachelor's, master's, and doctor's 
degrees successively. From 2014 to 2018, he had 
worked in Computer Technology and Application 
nstitute of Beijing, engaged in inertial navigation 
product system design and simulation. 

Since 2018, he has been working at Beijing Aero-
pace Intelligent Manufacturing Technology Develop-
ment Co., Ltd., engaged in technical research in the 
telligent manufacturing, digital twin, industrial internet 
modeling and simulation, cloud simulation. In the past 
icipated in and completed the application of national 
re area, such as “Network Collaborative Manufacturing 
Ministry of Science and Technology, the key project of 
science and technology innovation cooperation between 
ustrial Internet Innovation and Development Project” of 
d Information Technology.



(Cambridge, 2015), Ration
Choice Using Imprecise Pr

Appendix B: Bios of the Contributors 539

l 

s 

( 

Paul Weirich Paul Weirich is Curators’ Distinguished 
Professor in the Philosophy Department at the 
University of Missouri. He earned his Ph.D. in Phi-
osophy at UCLA and his B.A. in Philosophy at St. 
Louis University. His research interests include deci-
ion and game theory, logic, and philosophy of science. 
He uses normative models to create a framework for 
principles of rational choice. 

He is the author of Equilibrium and Rationality 
Cambridge, 1998), Decision Space (Cambridge, 2001), 
Realistic Decision Theory (Oxford, 2004), Collective 
Rationality (Oxford, 2010), Models of Decision-Making 
al Responses to Risks (Oxford, 2020), and Rational 
obabilities and Utilities (Cambridge, 2021). 

He is a past president of the Central States Philosophical Association, was a 
visiting fellow at the University of Pittsburgh Center for Philosophy of Science, was 
the recipient of two grants from the National Science Foundation, and is an asso-
ciate editor of the British Journal for the Philosophy of Science. 

r 

Xu Xie Xu Xie received the B.S. degree in Simulation 
Engineering and the M.S. degree in Control Science 
and Engineering from National University of Defense 
Technology, Changsha, China, in 2010 and 2012, 
espectively. Subsequently, he went to Delft University 
of Technology, the Netherlands, and got the Ph.D. 
degree in Modeling and Simulation in 2017. He is 
currently Associate Professor at National University of 
Defense Technology. His research interests cover 
modeling and simulation, discrete event simulation, 
data assimilation, and transportation. 
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Chen Yang Chen Yang obtained his Ph.D. in Control 
Science and Engineering, 2014, and B. Eng. in Auto-
matic and Information Technology, 2008, both from the 
School of Automation Science and Electrical Engi-
neering and the Honors College (an elite program) of 
Beihang University (BUAA), Beijing, China. He has 
worked in the HKU-ZIRI Laboratory for Physical 
nternet, the University of Hong Kong as a postdoctoral 
ellow and an associate research officer and in Huawei 
Technologies, as a senior engineer on R&D tools. 

He is currently Associate Professor with the School 
of Cyberspace Science and Technology, Beijing Insti-
ute of Technology, Beijing, China. His research



Federation (ASIASIM), a fellow of SCS, ASIASIM and
CSF, a senior member of IEEE, and a chief scientist of the National High-Tech
R&D Program (863) and National Key R&D Program of China. He serves as the

interests include Internet of Things, Industry 4.0, cloud manufacturing, modeling 
and simulation of complex systems, artificial intelligence, and big data analytics. He 
is currently serving as Associate Editor of IET Collaborative Intelligent Manu-
facturing and Editorial Board Member of The Journal of Manufacturing Systems. 

540 Appendix B: Bios of the Contributors

( 
i 

r 
t 

f 

Gregory (Greg) Zacharewicz Gregory (Greg) 
Zacharewicz is Full Professor at IMT—Mines Ales 
National Institute of Mines and Telecommunications) 
n Alès, France. He joined in 2018 the LSR laboratory to 
develop simulation-driven research works. This labo-
atory works on the relationship between humans and 
he complex systems while keeping their roots in the 
field of Information Science and Technology. He was 
previously Associate Professor at the University of 
Bordeaux (2007–2018) where he focused his research 
or more than 10 years on Enterprise and Social Orga-
nization Modelling, Interoperability, and Simulation. 

More generally, his research interests include Discrete Event Modeling (e.g., 
DEVS, G-DEVS), Distributed Simulation, Distributed Synchronization Algorithms, 
HLA, FEDEP, MDA, Short-lived Ontologies, ERP, BPMN, and Workflow. He 
recently co-wrote with a worldwide team of authors the prospective chapter 
`̀ Model-based approaches for interoperability of next generation enterprise infor-
mation systems: state of the art and future challenges''. In the domain of Healthcare 
methodologies and technologies, he co-wrote in 2018 with Bernard P. Zeigler, 
Mamadou K. Traore, and Raphaël Duboz the book “Value-based Learning 
Healthcare Systems: Integrative modeling and simulation”. He has been the pro-
gram chair of Springsim 2016 in Pasadena, the vice general chair of SpringSim 
2017 in Virginia Beach, and the general chair of SpringSim 2018 in Baltimore. He 
is a member of editorial board of Sage Simulation Journal, JSimE, Science Pro-
gress, SNE, Modelling, JKSUCIS. 
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Lin Zhang Lin Zhang is a professor at Beihang 
University, China. He received the B.S. degree in 1986 
rom Nankai University, China, and the M.S. and the 
Ph.D. degrees in 1989 and 1992 from Tsinghua 
University, China. His research interests include cloud 
manufacturing and simulation, modeling and simula-
ion for complex systems, model engineering. He 
erved as the president of the Society for Modeling and 
Simulation International (SCS) and the executive vice 
president of China Simulation Federation (CSF). 

He is currently the president of Asian Simulation
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director of Engineering Research Center of Complex Product Advanced Manu-
facturing Systems, Ministry of Education of China and the editor-in-chief and the 
associate editors of 6 peer-reviewed international journals. He authored and 
co-authored more than 300 peer-reviewed journal and conference papers, recog-
nized as Highly Cited Researcher by Clarivate in 2020. He received the National 
Award for Excellent Science and Technology Books, the Outstanding Individual 
Award of National High-Tech R&D Program, the National Excellent Scientific and 
Technological Workers Awards. 
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Longfei Zhou Longfei Zhou is currently a postdoc 
associate in the Department of Radiology, Advanced 
maging Laboratories at the Duke University Medical 
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