
“Smart Entity” – How to Build DEVS Models
from Large Amount of Data and Small

Amount of Knowledge?

Thierry Antoine-Santoni, Bastien Poggi, Evelyne Vittori,
Ho Van Hieux(&), Marielle Delhom, and Antoine Aiello

University of Corsica, UMR CNRS SPE, Corte, France
{antoine-santoni_t,ho_vh}@univ-corse.fr

Abstract. University of Corsica and CNRS are working on a scientific program
called “Smart Paesi”. This project focus on a sustainable rural territories
development using advanced artificial intelligence concepts in order to adapt
smart city concept (including sustainable development, ICT with by example
wireless sensors network, education, e-citizenship, governance) to rural terri-
tories and their specificities. In this paper, we introduce a new approach com-
bining discrete event modelling concepts and machine learning methods. This
work is a first step towards the conception of a generic and scalable framework
allowing model generation from large amount of data.
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1 Introduction

In the recent past, boosted by artificial intelligence (AI) progress, a horde of automation
and acceleration technologies in the IT field have been proposed to resolve smart cities
problematics with great success [1, 2]. Indeed fewer have been proposed for people
who live in rural and isolated territories.

In the same time, we assist to the deployment of low cost Wireless Sensor Network
(WSN) over all territories. Due to the success of IoT [3], related technologies have
generated an exponential increase of collected data. The challenge today is to explore
the potential of this amount of data over artificial intelligence process base and machine
learning (ML) in a modeling and simulation context as describe in Fig. 1.

Supported by a “European Fund for Research and Development” (ERDF) and the
“Regional Council of Corsica” (RCC), the “Smart Village Scientific Program” (SVSP)
[4] proposes newer approaches based on the concept of “real-world people-centric
applications” [5]. Built in partnership with two company: EDF (Electricity of France)
and SITEC (IT Service Company) the project focuses on four areas of research:
environmental data gathering, data visualization, e-democracy and simulation. This
paper deals with the last.
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Our goal is to provide a robust framework allowing an easy integration of collected
data inside a modelling and simulation process by replacing “physical model” with
“data model”.

2 M&S, Data and Machine Learning

Recently, researches in the field of Modeling and Simulation (M&S) have intensively
evolved towards hybrid approaches combining M&S background and Artificial Intel-
ligence advances in data mining and machine learning. Nowadays, complementarity of
both approaches seems to appear as an evidence. Miller and Buckley [6] argue that they
should be used in conjunction through a “modeling continuum” and illustrate their
vision upon examples from health care and supply chain management. In [7], the
authors provide an extensive comparison of both approaches called respectively
“simulation modeling” and “data modeling” and detail their advantages and limitations.
They demonstrate their complementarity and suggest a new modeling approach
involving both of them. In according to Andreas Tolk [8], the next generation of
Modeling & Simulation applications will integrate big data and deep learning tools and
methods: “bringing all the three topics together will create synergy that will allow us to
significantly improve our services to others science”.

An interesting review about ways of combining both approaches in the context of
manufacturing and logistics is done in [9]. They focus on the integration of Machine
Learning (ML) process from a simulation perspective.

According to literature in the field of M&S, the main benefit of the use of Machine
Learning is to improve the efficiency simulation analysis. In other words, it may help to
reduce simulation cost. This is particularly useful in the context of complex models
requiring extensive resource allocation and leading to very expensive experiments.
Recently [10], it has been proposed to use machine learning mechanisms inside a
DEVS simulator in order to optimize simulation execution by learning from past
simulations.

Wang and Marek-Sadowska [11] suggest a double level learning flow applied to the
field of circuit design. ML is first used to reduce input samples by discarding

Fig. 1. From data to predictive model
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unimportant samples. The selected inputs are then predicted by ML rather than sim-
ulated and so simulation cost is reduced.

In the case study of a green-house control system introduced in [4], the global
model is a “simulation oriented” one but it internally uses results given by a “data
oriented model” (“the controller”). Furthermore, data obtained as outputs from the
simulation model enhance the dataset used for the “controller” data oriented model thru
another data model called “Optimal Controller Model”. Experimental results show that
the use of such hybrid model improves significantly control performance and reduce
the rate of error.

These hybrid modeling approaches may also be related to “grey-box” modelling in
the field of “system (or model) identification” [12]. Grey-box models are defined as
combination of “data driven models” (black-box), and “physical based models” (white-
box). They combine physics based methods for building the model structure and use
data driven to estimate the model parameters. They also benefit from the advantages of
both approaches: generalization capabilities from physical models and better accuracy
from data driven ones.

On the other hand, M&S models may be used to help in building ML models.
Results from simulation may provide data sets allowing to construct data-oriented
models. In the field of personalized medicine [13], it shown that the prediction of a
cancer treatment efficiency cannot be processed using “pure data” approaches. Authors
suggest to integrate simulation as a “pre-processing step in a machine learning pipeline
to include detailed expert knowledge”.

Similar hybrid approaches are introduced in the domain of “smart manufacturing”
[14]. In a case study, simulation results are used to generate data streams that can be
used by a diagnostic analytics application (“data oriented model”).

In summary, ML may assist M&S in building input samples, estimating unknown
input parameters, analyzing output data and validating simulation results. M&S can
also assist ML by providing data sets as output results from simulation process.

In the context of smart village, according to the diversity of data and associated
processes, it clearly appears that we need to combine both data centered and simulation
based approaches. However, we think that defining an integration framework will be a
guaranty of the global model coherence.

In order to provide a high level of genericity and interoperability between models
and their formalism we choose to build our approach on Discrete Event System
Specification (DEVS) formalism. We introduce the concept of “Smart-Entity” (SE) as a
specific DEVS model. Background on the formalism is described in next part.

3 Back Ground: DEVS Formalism

DEVS is a modelling and simulation formalism proposed by Zeigler [15]. Due to its
success since its publication and a large community of users, high number of extension
DEVS extensions have been proposed to enrich the classic formalism: dynamic DEVS
[16], parallel DEVS [17], Cell-DEVS [18], etc. Due to the number of extensions DEVS
is today one of the main used formalism for modeling and simulation in research teams.
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This formalism can be considered as a multi-formalism [19] integrating other for-
malisms such as Petri-Net [20] or differential equations [21].

DEVS allows to represent a wide range of systems. It has been used with success
for many applications in various fields such as: agriculture, military, anthropology,
engineering, ecology, etc.

The main idea beside this formalism is an explicit separation between modeling
description and simulation core. The formalism is based on two mains concepts:
“Atomic model” (AM) and “Coupled model” (CM). AM describes the system behavior
in a modular way and CM describes the system structure by abstraction levels and
model encapsulations. This genericity of model description provides a reusable abstract
simulator independent of studied systems.

3.1 Atomic DEVS Model

Atomic DEVS model (AM) is the lowest level of abstraction of studied system. It
describes the component behavior. This model is defined by the following structure:

AM = \XY; S; dext; dint; k; ta[ ð1Þ

Where:

– X: the set of input ports of the model defined by tuple (port, value)
– Y: the set of output ports of the model defined by tuple (port, value)
– S: the set of model states
– dext: the external transition function activated when events are received on model

inputs port
– dint: the internal transition function activated during state change (state time

exceed)
– k: the ouput function activated when outputs are produced by model
– ta: time advance function defining state duration for each model state

Complex systems are described over several atomic models. Inputs and outputs
(IO) of model must be connected to others models IO. This part is insured by coupled
DEVS model (CM).

3.2 Coupled DEVS Model

CM describe model structure over interconnections and encapsulations. Indeed CM can
encapsulate AM and CM models allowing different granularity of system description.
This models are described by the following tuple:

CM = <X, Y, D, EIC, IC, EOC, Select>
Where:

– X: the set of input ports of the model defined by tuple (port, value)
– Y: the set of output ports of the model defined by tuple (port, value)
– D: the set of components (AM or CM)
– EIC: External Input Coupling (input to input)
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– IC: Internal Coupling (input to output)
– EOC: External Ouput Coupling (output to output)
– Select: selection function used to ordinate model execution when their states expire

at the same time.

After this description of DEVS formalism we introduce our approach of Smart
Entity”.

4 Our Approach “Smart Entity”

We choose to build our approach on DEVS formalism in order to maintain a high level
of genericity in the decision support framework.

Our framework will allow to define three kinds of DEVS models:

– “white-box” model: atomic or coupled classical DEVS models
– “black-box” model: DEVS atomic wrapper model that encapsulates ML capabilities

(“Smart entity Model”).
– “grey-box” model: coupled models including at least one Smart entity.

In this part, we focus on “black-box” model by introducing the concept of Smart-
Entity Model. We detail structural and behavioral conceptual representations of the
Smart Entity Model and we show how these capabilities are embedded into a DEVS
atomic model.

4.1 SEM Conceptual Structure

The “smart entity model” (SEM) is a generic model based on data approach modeling
concepts. As describe on Fig. 2, the model is defined with a fixed number of inputs and
outputs ports. This constraint maintains a high level of interoperability between dif-
ferent model on smart entities to represent a global system.

In our approach, two inputs ports are defined: “Environmental Data” (XE) and
“Decision data” (XD). XD port can be optional if SE represents an entity on witch no
influences can be made. The XE port is connected to outputs of models that represent
the unmanageable phenomena of studied system as weather or environmental events
(e.g. fire, storm, etc.). The XD port is connected to models that represent the man-
ageable interactions such as decision or users choices.

Two outputs ports are also defined. The outputs ports are: “Interactions” (YI) and
“Results” (YR). The YI port is connected to other SEM models in case of interactions
between them. The YR port is connected to a “decision model” (DM) in order to
estimate efficiency of different decisions scenarios by collecting and observing deci-
sions effects on results. Their outputs values are computed by ML methods provided
inside the SEM attributes.
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As illustrated in Fig. 2, the SEM also contains a buffer. The goal is to increase the
prediction precision by considering previous received data without compromising
simulation coherence. Indeed many applications need more than one previous value to
predict next value (e.g. past three day rain to predict day rain). In this case SE stores the
previous values in a buffer. When prediction function is called, this buffer is passed as
an input parameter. At each new event on input port, this buffer is updated with the new
value received.

4.2 SEM Dynamic Behavior

SEM execution can be decomposed in three parts: “learning”, “testing” and “simuling”.
Transitions between these states are explain on Fig. 3.

At the beginning of process execution, SEM is in the “learning” state. During this
state, the model is built from a dataset by using machine learning algorithms. When this
step is over, SEM state turns into “testing”. Model outputs are collected and analyzed.
If their accuracy exceeds a specified threshold SEM state becomes “simuling”.
Otherwise it goes back to “learning” state and a new machine learning process is
performed. At the end of simulations, if some new data has been added to the initial
dataset, the size of the added data is quantified. If the increase is significant, a new
learning process occurs.

Using of ML methods is based on the principle of “cross-validation”. Usually the
algorithms use 80% of data to make their learning process and 20% of data to make the
validation process. This principle provides an estimation of prediction quality. We
reproduce this concept in our architecture and we add the concept of “choosing the best
method” for SEM linked dataset.

Fig. 2. Conceptual structure of SEM
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During “learning” step, the SEM generates several learners based on different
machine learning algorithms family. The “learning ()” method is called with database
link as parameter. The different algorithms provided by SEM are listed in Table 1.

Fig. 3. Conceptual representation of SEM states

Table 1. Algorithm provided by smart entity

Category Method name

Linear Regressor Linear Regression (LR) Huber Regression (HR]
Random Sample Concesus Regression (RSCR)

Generalized linear
model

Stochastic Gradient Descent (SGD)

Support vector
Regression

SVR with kernel

Gaussian Processes
Regrettion

Gaussian Process Regression (GPR)

Ensemble methods Kernel Ridge Regression (KRR)
Bayesian Ridge Regression (BRR)

Decision Tree Decision Tree Regressor Random Forest Regressor Extra Trees
Regressor
Gradient Bosting for regression

Neural Networks Neural Network with 2 hidden layers (NN2) Convolutional Neural
Network (CNN) Recurrent Neural Network (RNN)
Bi-directional Recurrent Neural Network
(LSTM)

Others Least Angle Regression (LAR)
Automatic Relevance Determination Regression (ARDR)
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During “testing” step, “loss value” (LV) is computed for each instanced learner.
Different equations are introduced in literature. In our models, LV is represented by
men squared error (MSE) and given by:

MSE ¼ 1
N

X

ðx;yÞ2D
ðy� predictionðxÞÞ2 ð2Þ

where

– N is the dataset size
– x is the input of the prediction function
– y is the observed value

The learner with minimum LV is selected to produce model behavior. During
simulation when data are received on inputs port, they are combined with buffer values
to make predictions. At regular interval the SEM checks the size of its learning
database. If number of new records exceed a specified threshold, a new “learning” step
occurs. It allows to perform better predictions over simulation time.

4.3 SEM as a DEVS Atomic Model

As said before, SEM outputs are generated by a learner object encapsulated inside the
SEM. To make an efficient learning, this object needs a large amount a data, pretreated
and stored inside a database. Each record is described by

\XE, XD,YI,YR[ ð3Þ

Where:

– XE: {XE1,…,XEn}: the inputs environmental data
– XD: {XD1,…,XDn}: the decision data
– YI = {YI1, …, YIn}: the results (interactions)
– YR = {YR1, …, YRn}: the results

This record is enriched by model state variables C added to each record to enhance
the learning process with model characteristics. At this end of configuration process,
the SEM is ready to learn from the following dataset:

\XE; XD; YI; YR; C[ ð4Þ

This conception allows us to define a SEM as a DEVS atomic model wrapper
encapsulating ML capabilities.

The input sets XE and XD are linked to X values of DEVS atomic model (AM).
The output sets YI and YR are linked to Y values of DEVS atomic model. C values are
linked to DEVS states (S).

Concerning the DEVS functions, they are the same for each SEM independently of
modelized system. The dext function stores input values and updates the buffer
(function save). The k function calls the “predict” function of learner and sends value
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on specified output port. The dint function checks the SEM database and starts a new
learning process when needed.

The mapping between DEVS concepts and ML concepts is summarized in Fig. 4.

5 First Results

In order to validate the SE concepts, we build our own machine learning library called
“PredictSV”. This library is based on several well know Python optimized and scalable
libraries: Kereas, Scikit-Learn, Pytorch and Tensorflow. This “PredictSV” library not
only merges several ML libraries but also tries to automatize the data pretreatment (e.g.
normalization) and the method configuration process in a not fastidious way for the
modeler. These aspects are not presented in this paper.

Before applying the SEM on collected data from SVSP, we choose to use robust
datasets to compare obtained results with literature. In next step of our development,
these datasets will be replaced by SVSP data that we are collecting today.

We choose a dataset relevant to sustainable development as studied in (SVSP):
“Weather in Madrid” (WIM). This data has been linked to a SEM integrated in a DEVS
architecture as described in Fig. 5.

Smart Entity wrapping has been tested in different ways considering different
number of features. For WIM dataset, we try to predict day+1 temperature from

DEVS init X Y S δext() δint() λ() ta()

SEM learning() XE XD YI YR C save() check_data() predict() ta()

Fig. 4. Analogy between DEVS & SEM

Fig. 5. Example of SM utilization for ECE dataset
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minimum, maximum, mean temperature of 8 previous day. An example of best
obtained results with double layers neural network is visible on Fig. 6.

First results confirm the interest of our unified approach to approximate physical
model behavior.

6 Conclusion

Smart Village is a scientific program which combines the collected data using Wireless
Sensor Networks, data storage, visualization and prediction.

For the prediction, our goal is to propose a generic model using DEVS formalism
whose inputs are produced by Machine Learning methods using large amount of data.
This model had to be compatible with classic DEVS models in order to benefit of
available models. The “smart entity model” offers a promising solution to this prob-
lematic for system on which user dispose of big data but few knowledges.

First results have replaced a model of weather with an acceptable precision level
during a DEVS simulation. At this step of our research, we need to perform other tests
on different systems and test interactions between different smart entities. Moreover
many improvement must be proposed. Indeed, data pretreatment is a central task in
machine learning field. We need to propose efficient software solution helping modeler
to exploit efficiently provided data. We also need to develop an efficient ML method
comparison process in order to provide to the SEM the better predict core.

An important part of our work will be to integrate SEM inside combinational
optimization process to provide an intuitive but powerful tool helping rural decision
makers to benefit of most recent advances in M&S, ML and optimization fields.

Fig. 6. Comparison of SM predict data and real data
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