
TOWARDS A STANDARD COMPUTATIONAL REPRESENTATION FOR SYSTEM
ENTITY STRUCTURES

Bikash Chandra Karmokar

Leibniz University Hannover
Hannover, Germany

bikash.chandra.karmokar@stud.uni-hannover.de

Umut Durak

German Aerospace Center (DLR)
Braunschweig, Germany

umut.durak@dlr.de

Sven Hartmann

Clausthal University of Technology
Clausthal-Zellerfeld, Germany
sven.hartmann@tu-clausthal.de

Bernard P. Ziegler

RTSync Corp. and
Arizona Center for Integrated M&S

University of Arizona
Tucson, AZ, USA

zeigler@ece.arizona.edu

SummerSim-SCSC, 2019 July 22-24, Berlin, Germany; ©2019 Society for Modeling & Simulation International (SCS)

ABSTRACT

System Entity Structure (SES) is a high-level ontology which was introduced for knowledge representa-
tion of decomposition, taxonomy and coupling of systems. It has its roots from the systems theory-based
approaches to modeling and simulation. SES has been applied for various purposes by modeling and sim-
ulation community, however, there still exists a lack of standardized computational representation. This
hinders the shareability of SES artifacts and interoperability of SES tools. In search for wider acceptance
and eventual standardization, this paper proposes a computational representation and supporting application
agnostic tool suite: SESEditor and PESEditor.

Keywords: System Entity Structure (SES), XML Schema, XPath.

1 INTRODUCTION

The System Entity Structure (SES) is a high level ontology framework targeted to modeling, simulation,
systems design and data engineering (Zeigler and Hammonds 2007). An SES is a formal structure governed
by a set of elements and a small number of axioms that provide clarity and consistency to its models. It
supports hierarchical and modular compositions allowing large complex structures to be built in step wise
fashion from smaller, simpler ones. The axioms and functionality based semantics of the SES promote prac-
tical design and are easily understandable by data modelers (Salas 2008). SES is used in many applications
for structural knowledge representation. These include creating suites of models for global warming (Zei-
gler, Seo, Coop, and Kim 2013), modeling the elements of a scenario in a research flight simulator (Durak,
Pruter, Gerlach, Jafer, Pawletta, and Hartmann 2017), reengineering simulation models (Durak 2015) or
metamodeling (Durak, Pawletta, Oguztuzun, and Zeigler 2017) or variant modeling in model-based design
(Pawletta, Pascheka, and Schmidt 2015). It is particularly suitable for describing system configurations
(Deatcu, Folkerts, Pawletta, and Durak 2018). The theory is extended many time based on particular re-



Chandra Karmokar, Durak, Hartmann and Zeigler

quirements of the applications (Santucci, Capocchi, and Zeigler 2016, Pawletta, Schmidt, Zeigler, and Du-
rak 2016, Schmidt, Durak, and Pawletta 2016, Durak, Jafer, Wittman, Mittal, Hartmann, and Zeigler 2018,
Deatcu, Folkerts, Pawletta, and Durak 2018). Various tools SES tools have been developed, some of which
are MATLAB/Simulink SES Toolbox(Pawletta, Pascheka, and Schmidt 2015), SESBuilder (Cheon, Kim,
and Zeigler 2008), DEVSimPy (Santucci, Capocchi, and Zeigler 2016) and SESToPy (Deatcu, Pawletta,
and Folkerts 2019).

Despite its diverse use cases, there still exists a lack of standardized computational representation for the
SES. This hinders the shareability of SES artifacts and interoperability of SES tools. In search for wider
acceptance and eventual standardization, this paper proposes a computational representation and supporting
application agnostic tool suite: SESEditor and PESEditor.

2 BACKGROUND

SES is a high-level ontology which was introduced for knowledge representation of decomposition, taxon-
omy and coupling of systems (Kim, Lee, Christensen, and Zeigler 1990). It has a set of elements and axioms.
The elements of SES are Entity, Aspect, Specialization and Multiple-Aspect (Zeigler and Hammonds 2007).
Real or artificial system components can be represented using Entity nodes. An Entity is an object of in-
terest, and can also have variables attached to it. An Aspect denotes the decomposition relationship of an
Entity node. Specialization nodes represent the taxonomy of an entity. A Multi-Aspect is a special kind
of aspect, which represents a multiplicity relationship that specifies the parent entity as a composition of
multiple entities of the same type. Aspect, Specialization and Multi-Aspect are represented by one, two and
three vertical lines respectively. There are six axioms of SES: (1) uniformity, (2) strict hierarchy, (3) alter-
nating mode, (4) valid brothers, (5) attached variables, and (6) inheritance (Zeigler 1984). According to the
uniformity axiom, any two nodes with the same labels have isomorphic subtrees. Strict hierarchy defines a
restriction that prevents a label from appearing more than once down any path of the tree. Alternating mode
requires that, if a node is an Entity, then the successor is either Aspect or Specialization and vice versa.
Valid brothers axiom disallows two brothers from having the same label. An attached variable specifies a
constraint that variable types attached to the same item shall have distinct names. With inheritance, it is
indicated that Specialization inherits all variables and Aspects.

Pruning is the operation in which a unique system structure is derived from an SES and the result is called
Pruned Entity Structure (PES). SES represents a family of models for a given application domain in terms of
decompositions, component taxonomies and coupling specifications. In the modeling process, using SES,
all the available options of a system are considered. As an SES describes a number of system configurations,
the SES tree needs to be pruned to get a particular configuration. Pruning cuts off unnecessary structure from
an SES tree based on the specification of a realistic frame to bring this particular configuration or PES which
is a selection-free tree. The pruning process normally reduces an SES by removing choices for an entity
which has multiple aspects and specializations consisting of multiple entities. An SES tree can be pruned
by assigning values to the variables, choosing a particular subject from several aspect nodes for several
decompositions of the system on the same hierarchical level, selecting one entity from various options of
specialization node and specifying cardinality in Multi-Aspect node. Figure 1 shows an Aircraft metamodel
using SES and Figure 2 shows the pruned model of the Aircraft metamodel.

3 COMPUTATIONAL REPRESENTATION

Computational representation means denoting SES and PES in a machine readable format. This paper is
based on the XML based computational representation proposed by Zeigler and Hammonds (Zeigler and
Hammonds 2007). As depicted in Figure 3 there are two important operations in the conceptual space.
First, a particular SES is built using the constructs, structure and axioms of SES, called an SES Ontology.



Chandra Karmokar, Durak, Hartmann and Zeigler

Figure 1: Aircraft Metamodel Using SES.

Figure 2: Pruned Model of Aircraft

Then, Pruned Entity Structures (PESs) are obtained from this particular SES via pruning operations. In
the computational space Zeigler and Hammonds propose that we can represent the SES ontology with an
XML Schema and the particular SES as an XML file. They then recommend writing XML that specifies a
particular SES to an XML Schema. Finally, this schema is then used during pruning for constructing and
validating PESs. PESs are eventually XML instances.

Figure 3: Computational Representation.

The schema for the SES ontology can be specified using the XML Schema Definition Language (XSD).
XSD provides means for describing the structure and the constraints of an XML document (Thompson,
Mendelsohn, Beech, and Maloney 2009). Referring back to Figure 3, the XML Schema for the SES ontology
provides us a metasyntax at the metamodeling level. The Data Type Definition (DTD) representation of the
SES ontology that is proposed by Zeigler and Hammonds (Zeigler and Hammonds 2007) is adapted to



Chandra Karmokar, Durak, Hartmann and Zeigler

prepare the XML Schema representation that is presented in Figure 4. It reflects the elements of an SES and
their structure as it is presented in the previous section.

Figure 4: XML Schema for the SES ontology.

Extending what is proposed by Zeigler and Hammonds (Zeigler and Hammonds 2007), we use XML
Schema capabilities for formal checking of SES against its axioms. XML Schema assert (xs:assert) is
utilized to formalize the axioms of the SES ontology that are introduced at the previous section. Assertions
provide means to constrain the existence and values of elements and attributes in XML Schemas. Assertions
are specified using XPath 2.0 which is a functional language that is used to navigate through elements and
attributes (Berglund, Boag, Chamberlin, Fernández, Kay, Robie, and Simeon 2010).

A sample axiom for valid brothers is given below:
<xs:unique name="validBrothers">

<xs:selector xpath="*/entity"/>
<xs:field xpath="@name"/>

</xs:unique>

A particular SES is then an XML document that conforms to the XML Schema for the SES ontology given
in Figure 4. Following the Figure 3, the XML representation can be written into an XML Schema either
programmatically or manually. SES Entity can be modeled as XML Schema element (xs:element) with
a name attribute that designates the SES Entity name. It is by definition an XML Schema complex type
(xs:complexType) which can contain elements and/or attributes. Aspect can also be represented by an XML
Schema element (xs:element) with a name attribute that designates the SES Aspect name. It will also be



Chandra Karmokar, Durak, Hartmann and Zeigler

Figure 5: XML Schema for an SES.

a complex type which has an XML Schema sequence (xs:sequence) composed of XML Schema elements
(xs:element). MultiAspect can be represented pretty much the same way as the Aspect, but with only having
one element in its sequence. The MultiAspect element possesses minOccurs and maxOccurs properties to
specify the cardinality. Specialization is accordingly an element with a complex type. XML Schema choice
(xs:choice) is then used to specify the specialization relation to child entities. Variable can be defined by
attributes where attribute name is used to specify the name of a variable and type for its type. Figure 5
summarizes the XML Schema for an SES.

There is an overhead associated with representing an SES following the structure presented in Figure 5.
A general restructuring is recommended by Zeigler and Hammonds (Zeigler and Hammonds 2007) for
eliminating the elements including aspect, multiAspect and specialization. The semantics of aspect and
multiAspect can be represented by an xs:sequence and multiAspects with xs:sequence and minOccurs and
maxOccurs attributes. xs:choice can then represent the semantic for the specialization. The reduced XML
schema for an SES would be then as presented in Figure 6.

XML Schema assert (xs:assert) is further proposed to specify selection constraints in an SES. Selection
constraints enable us to restrict the choices during pruning. Pretty much the same way as the axioms are
defined at the XML Schema for the SES ontology, assertions can be specified using XPath 2.0. A typical
example could be given using the musical performance SES from Zeigler and Hammonds (Zeigler and



Chandra Karmokar, Durak, Hartmann and Zeigler

Figure 6: Restructured XML Schema for an SES.

Figure 7: SES Metamodel for Musical Performances



Chandra Karmokar, Durak, Hartmann and Zeigler

Hammonds 2007) that is given in Figure 7. As not all combinations are likely, constraints can added in
the MusicPerofrmanceDec aspect node. Listing 1 shows the the constraint for Symphonic, Folk and Jazz
Musical Performance. If Symphonic is selected from the Music node then the only option from performer
is Orchestra can be selected. Orchestra selected if the Music selection is Folk. In case of Jazz music
performance Soloist can not be selected. Orchestra and SmallGroup are possible performer for Jazz music.
<xs:assert test="if(Music/*[@name='Symphonic']) then (Performer/*[@name=
'Orchestra']) else true()"
/>

<xs:assert test="if(Music/*[@name='Folk']) then (Performer/*[@name=
'SmallGroup']) or (Performer/*[@name='Soloist']) else true()"
/>

<xs:assert test="if(Music/*[@name='Jazz']) then (Performer/*[@name=
'Orchestra']) or (Performer/*[@name='SmallGroup']) else true()"
/>

Listing 1: Constraint Example for Symphonic, Folk and Jazz Musical Performances.

4 APPLICATION AGNOSTIC SES TOOLS

4.1 SESEditor: The SES Modeling Environment

Figure 8: A Screenshot from SESEditor.

SESEditor has been developed as an application agnostic SES modeling environment. Fig. 8 shows its
Graphical User Interface (GUI) which is designed in such a way that a user can draw SES graphs on the
screen almost as one would on paper. An SES is represented by a directed tree structure. Here, objects are



Chandra Karmokar, Durak, Hartmann and Zeigler

represented by nodes that are connected using edges. In Fig. 8, an SES model is presented in the editor
where the root entity Aircraft is decomposed into Engines and Airframe using physicalDec aspect node.
The Multi-Aspect node enginesMAsp decomposes Engines to Engine representing that Engines is made
of multiple instances of Engine. Specialization node materialSpec is used to express that Airframe can be
Aluminum or Composite.

Elements icons are added in the toolbox for easy access. The vertices or elements and edges can be drawn by
clicking and dragging the mouse. Also nodes and edges can be easily moved to any position. The drawing
panel is synchronized with the bottom-left tree. If there is an element addition in one place, either in the
white drawing panel or the left tree, it will be added in both the sections automatically. Variables can be
attached to the nodes. Eventually, the attached variables are listed in the variable table on the right top corner
during any node selection from either of the trees. Furthermore, selection constraints can be added to the
aspect node to restrict the choices of entities. These constraints are specified using XPath. Like variables,
constraints are also listed on the constraint table on the right side of the editor during aspect node selection.
The SESEditor allows the user to save part of the designed model as a module for future use. That saved
module can be reused in any project later. SESEditor also has the ability to validate the created model against
SES axioms using a predefined XML Schema. Validation results are displayed in the console window and
for valid models, the SES XML and SES Schema are displayed in the bottom-right display window. The
editor’s export and import options increase the shareability of the designed models.

4.2 PESEditor: The Interactive PES Pruning Tool

Figure 9: An Excerpt from PESEditor.

PESEditor has been developed as an interactive pruning tool. The user basically selects each and every
decision point, such as a specialization node, and resolves the decision. It supports all the design patterns
proposed in Deatcu et al. (Deatcu, Folkerts, Pawletta, and Durak 2018) for interactive pruning of SES. Its
GUI looks very similar to the SESEditor. It also has variable table for displaying variables or editing values
of variables. Constraint table and console window work exactly the same way. Here, the left side tree is
also synchronized with the white drawing panel and nodes are movable. Unlike SESEditor, here we can not



Chandra Karmokar, Durak, Hartmann and Zeigler

create new projects, but only open SES models created in SESEditor. New elements cannot be added or
deleted; the existing SES cannot be edited. The main functionality of PESEditor is interactive pruning of an
SES model.

Figure 9 depicts an instance from interactive pruning using PESEditor. During pruning, MultiAspect node
enginesMAsp is pruned and aspect node enginesDec is added with children Engine_1 and Engine_2 of the
same type as Engine. From the available options, the specialization node is being pruned and Aluminum_-
Airframe is being selected. Thus the completely pruned structure is created, where there are no choices
left and a specific model of an Aircraft is shown. When the pruning is complete, PESEditor also supports
transformations using XSLT. The user can transform the PES to the schema of choice without leaving the
PESEditor.

5 CONCLUSION

Despite the wide utilization of System Entity Structures in modeling and simulation community, there is
a lack of common computational representation. This eventually impairs shareability and interoperability.
In search for wider acceptance and eventual standardization, based on previous work, this paper proposes
a computational representation and introduces an application agnostic SES modeling environment, namely
SESEditor and interactive pruning tool, namely PESEditor. Already existing XML based computational
representation is revisited, and extended using XML Schema assert (xs:asset) to check the SES axioms and
to specify selection constraints for a specifics SES. SESEditor and PESEditor is developed to demonstrate
the utilization of this computational representation. SESEditor examplified a user friendly way of constraint
specification and PESEditor demonstrated an interactive pruning approach.

Though the proposed approach and the tooling is adding lots of benefits, the next challenge to tackle is
the scalability. Both the graphical and the computational representations need to be enhanced to enable
modular and hierarchical construction to handle large SES models. It includes but not limmited to support
for composition of SESs as in (Zeigler, Seo, Coop, and Kim 2013).

REFERENCES

Berglund, A., S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Simeon. 2010. XML Path
Language (XPath) 2.0. World Wide Web Consortium.

Cheon, S., D. Kim, and B. P. Zeigler. 2008. “System Entity Structure for XML Meta Data Modeling; Appli-
cation to the US Climate Normals.”. In SEDE, pp. 216–221.

Deatcu, C., H. Folkerts, T. Pawletta, and U. Durak. 2018. “Design patterns for variability modeling using
SES ontology”. In Proceedings of the Model-driven Approaches for Simulation Engineering Sympo-
sium. SCS.

Deatcu, C., T. Pawletta, and H. Folkerts. 2019. “MATLAB/Simulink’s Variant Manager vs SESToPy”. In
ASIM STS/GMMS Symposium - ARGESIM Report 57, pp. 77–80.

Durak, U. 2015. “Extending the Knowledge Discovery Metamodel for architecture-driven simulation mod-
ernization”. Simulation vol. 91 (12), pp. 1052–1067.

Durak, U., S. Jafer, R. Wittman, S. Mittal, S. Hartmann, and B. P. Zeigler. 2018. “Computational Rep-
resentation for a Simulation Scenario Definition Language”. In 2018 AIAA Modeling and Simulation
Technologies Conference. AIAA.

Durak, U., T. Pawletta, H. Oguztuzun, and B. P. Zeigler. 2017. “System entity structure and model base
framework in model based engineering of simulations for technical systems”. In Proceedings of the
Symposium on Model-driven Approaches for Simulation Engineering. SCS.



Chandra Karmokar, Durak, Hartmann and Zeigler

Durak, U., I. Pruter, T. Gerlach, S. Jafer, T. Pawletta, and S. Hartmann. 2017. “Using System Entity Struc-
tures to model the elements of a scenario in a research flight simulator”. In AIAA Modeling and Simula-
tion Technologies Conference. AIAA.

Kim, T.-G., C. Lee, E. R. Christensen, and B. P. Zeigler. 1990. “System entity structuring and model base
management”. IEEE Transactions on Systems Man and Cybernetics vol. 20 (5), pp. 1013–1024.

Pawletta, T., D. Pascheka, and A. Schmidt. 2015. “System Entity Structure Ontology Toolbox for MAT-
LAB/Simulink: Used for Variant Modelling”. In Proc. of MATHMOD 2015-8th Vienna Int. Conf. on
Mathematical Modelling.

Pawletta, T., A. Schmidt, B. P. Zeigler, and U. Durak. 2016. “Extended variability modeling using system
entity structure ontology within MATLAB/Simulink”. In Proceedings of the 49th Annual Simulation
Symposium. SCS.

Salas, M. C. 2008. “AutoDEVS: a methodology for automating systems development”. Electrical and Com-
puter Engineering Dept., University of Arizona.

Santucci, J.-F., L. Capocchi, and B. P. Zeigler. 2016. “System entity structure extension to integrate abstrac-
tion hierarchies and time granularity into DEVS modeling and simulation”. Simulation vol. 92 (8), pp.
747–769.

Schmidt, A., U. Durak, and T. Pawletta. 2016. “Model-based testing methodology using system entity struc-
tures for Matlab/Simulink models”. Simulation vol. 92 (8), pp. 729–746.

Thompson, H. S., N. Mendelsohn, D. Beech, and M. Maloney. 2009. “W3C XML schema definition lan-
guage (XSD) 1.1 part 1: Structures”. The World Wide Web Consortium (W3C), W3C Working Draft
Dec vol. 3.

Zeigler, B. 1984. Multifacetted modelling and discrete event simulation. Academic Press.

Zeigler, B. P., and P. E. Hammonds. 2007. Modeling and simulation-based data engineering: introducing
pragmatics into ontologies for net-centric information exchange. Elsevier.

Zeigler, B. P., C. Seo, R. Coop, and D. Kim. 2013. “Creating suites of models with system entity structure:
global warming example”. In Proceedings of the Symposium on Theory of Modeling & Simulation-
DEVS Integrative M&S Symposium. SCS.

AUTHOR BIOGRAPHIES

BIKASH CHANDRA KARMOKAR is a master student from Leibniz University Hannover. His research
interest include simulation based data engineering, simulation in machine learning and artificial intelligence,
software engineering, developing research tool and predictive modeling using machine learning. His email
address is bikash.chandra.karmokar@stud.uni-hannover.de.

UMUT DURAK is a Research Scientist at Institute of Flight Systems of German Aerospace Center (DLR)
and an adjunct faculty at the Department of Informatics of the Clausthal University of Technology. His
research interests include model-driven approaches applied to engineering of simulation systems and mod-
eling and simulation based engineering of flight systems. His email address is umut.durak@dlr.de.

SVEN HARTMANN is a Professor at the Department of Informatics of the Clausthal University of Tech-
nology. His research interests lie in information systems and databases in engineering, life sciences, and
business. His email address is sven.hartmann@tu-clausthal.de.

BERNARD P. ZIEGLER is an Emeritus Professor at the University of Arizona and Adjunct Research
Professor in the C4I Center at George Mason University. He is known for inventing Discrete Event System

mailto://bikash.chandra.karmokar@stud.uni-hannover.de
mailto://umut.durak@dlr.de
mailto://sven.hartmann@tu-clausthal.de


Chandra Karmokar, Durak, Hartmann and Zeigler

Specification (DEVS). He is currently participating in RTSync Corp., a developer of the MS4 modeling and
simulation software based on DEVS, as the Chief Scientist. His email address is zeigler@ece.arizona.edu.

mailto://zeigler@ece.arizona.edu

	Introduction
	Background
	Computational Representation
	Application Agnostic SES Tools
	SESEditor: The SES Modeling Environment
	PESEditor: The Interactive PES Pruning Tool

	Conclusion

