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ABSTRACT 

The DEVS formalism has been implemented in various 

platforms and languages over the years. However, each 

implementation has been tightly coupled with the underlying 

syntactical language. The DEVS Modeling Language 

(DEVSML) is based on meta-modeling concepts that 

provide a domain-specific-language (DSL) for DEVS model 

description. In this paper, we introduce: Mitris 1.0 (a) a high 

performance DEVS engine implemented in Java, and (b) 

DEVSML Eclipse Studio that implement DEVSML 

execution with two DEVS engines. We elaborate on the 

features of MitRis modeling and simulation APIs, DEVS 

instrumentation and demonstrate the features of DEVSML 

Studio with a moderately complex example of a 

spectroscopy system involving digital shapers.  

Keywords 

Metamodeling, Eclipse Plugin development environment 

(PDE), MitRis, DEVSML Studio, digital shapers, DEVS. 

 

INTRODUCTION  

DEVS formalism has been in existence for over four decades 

and has been implemented in major Object-oriented 

languages, e.g. Lisp, Scheme, C++, Java, Python, SmallTalk, 

etc. We have ourselves tried the next generation of Java 

Virtual Machine (JVM)-based languages such a Groovy, 

Scala and Xtend. There exist many DEVS development 

environments. However, model creation is largely in the 

implementation language of the simulation engine 

implementation. Model-driven engineering (MDE) has 

started to make way into DEVS integrated development 

environments (IDEs) [1] and various DEVS metamodels 

have started to appear in the community. However, the 

abstraction levels at the DEVS Modeling API have not been 

clearly defined or standardized for that matter. Efforts are 

underway for a standardized DEVS modeling and simulation 

API for interoperability at both the modeling and simulation 

layers.  

In this article, we explore the state of the art in DEVS M&S 

IDEs, DEVS metamodeling and abstract DEVS Modeling 

Language (DEVSML). We will introduce MitRis 1.0 

comprising of, first, another JVM-based DEVS M&S engine 

that brings some new features capitalizing on the latest JVM 

release, and second, an Eclipse DEVSML Studio that allows 

graphical development of atomic DEVS state machine and 

coupled digraphs. We will highlight the capabilities of the 

DEVSML Studio through a moderately complex example of 

a spectroscopy system involving digital shapers. We will 

demonstrate that the DEVSML Studio is capable of handling 

complex models and illustrate how the MitRis 1.0 engine 

provides superior abstraction mechanisms and robust 

performance.  

 

SURVEY OF EXISTING DEVS TOOLS 

In the last decade, many DEVS M&S engines have come into 

existence. Almost all of them offer a programmer-friendly 

Application Programming Interface (API) to define new 

models using a high level language and with an exception of 

one or two, most are bound to an implementation language. 

Alternatively, none is based on a DEVS metamodel. Further, 

only a few of them provide a user-friendly Graphical User 

Interface (GUI) for model specification. In the following, we 

describe some of the most referenced DEVS M&S 

simulation frameworks: 

1. DEVSJAVA 

DEVSJAVA has been developed by Bernard P. Zeigler 

(University of Arizona, U.S.A.) and Hessam Sarjoughian 

(Arizona State University, U.S.A.)[17]. It is written in Java 

and supports virtual time, real time, and sequential and 

parallel execution. The definition of new models is 

performed through an API. Several M&S tools have been 

defined around DEVSJAVA (GUIs for results visualization, 

GUIs for models definition, etc.), as DEVSJAVA is one of 

the primary DEVS M&S reference simulators in the 

community. 

2. DEVS-Suite and COSMOS 

DEVS-Suite is a simulator built based on the Parallel DEVS 

formalism, design of experiment concepts, and simulation 

visualization techniques consisting of displaying static 

structure of models, animation of models, and run-time 

viewing of time-based trajectories [18]. CoSMoS 

(Component-Based System Modeling and Simulation) is a 

framework aimed at integrated visual model development, 

model configuration and automatic simulation data 

collection [19]. The CoSMoS environment supports 
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component-based modeling with direct support for DEVS 

formalism and XML Schema. DEVS-Suite’s core is largely 

DEVSJAVA. It is bundled within the CoSMoS distribution 

and thus enables both modeling and simulation of Parallel 

DEVS models. 

3. CD++ 

CD++ has been developed by Gabriel Wainer and his 

students (Carleton University, Canada; Universidad de 

Buenos Aires, Argentina). Written in C++, it allows the 

definition of DEVS and Cell-DEVS models graphically. 

These models are also defined using an API. CD++ supports 

virtual and real time, as well as sequential, parallel and 

distributed simulations [20]. 

4. PyDEVS 

PythonDEVS (a.k.a. PyDEVS) implements both Classic and 

Parallel DEVS in the Python language, with a matching 

simulator [21]. Models are defined through the provided 

API, allowing the execution of virtual time or real time 

simulations. The latest release of PyDEVS is focused on 

improving the performance, mainly because Python is an 

interpreted language. To this end, several schedulers have 

been defined, obtaining good performance metrics. 

5. ADEVS 

ADEVS (A Discrete EVent System simulator) is a C++ 

library for constructing discrete event simulations based on 

the Parallel DEVS and Dynamic DEVS (dynDEVS) 

formalisms [22]. Developed by Jim Nutaro, it allows the 

implementation of both sequential and parallel simulations 

using the provided C++ API. This framework by far, displays 

the best performance. 

6. JAMES-II 

Developed at the University of Rostock, the Java-based 

Multipurpose Environment for Simulation II (JAMES II) 

provides support for many different formalisms, including 

various variants of DEVS formalisms. Besides an API to 

define models, this framework also provides a GUI to 

configure experiments and see simulation results. This 

simulation engine supports sequential and parallel execution 

[23]. 

7. DEVSim++ 

Developed by Tag Gon Kim and his group at Korea 

Advanced Institute of Technology (KAIST) [24], this is a 

C++ based engine and used extensively for large simulations 

focusing on wargaming and simulation interoperability. 

In addition to the above DEVS implementations used widely, 

there are others with selective adoption such as GALATEA 

[25] for Multi-Agent Systems (MAS), SimStudio [26], 

PowerDEVS [27] for hybrid systems, MS4Me based on 

DEVSJAVA [28] and last but not the least, Virtual 

Laboratory Environment (VLE) [29], based on C++. VLE is 

a multiparadigm environment based on several DEVS 

extensions. Providing a graphical atomic model 

representation has been a challenge in all the existing DEVS 

engines and simulation environments, mostly attributed to 

the lack of a DEVS metamodel and standardized atomic 

notation. Consequently, while depicting coupled model is 

easy, depicting an atomic DEVS state machine has proven to 

be hard and largely unattended. It is worth stating that a 

DEVS State machine is more expressive than a UML state 

machine. Consequently, more notations are needed in UML 

to account for DEVS specifications. This paper provides a 

way forward to visualize both the atomic and coupled 

models. 

 

MITRIS 1.0 ENGINE 

MitRis, is designed using Object-oriented paradigm and is 

released under the GNU Public License (GPL). This 

facilitates the rapid development of new components and 

extensions, and wide adoption of the core engine. MitRis 

provides the user with a set of base classes that can be used 

to develop new DEVS models, or to develop new DEVS 

simulation engines. MitRis is based on the fundamental 

separation of model and the underlying corresponding 

simulator [16] and rightly so, provides, the modeling 

Application Program Interface (API) and the simulation 

API. 

Modeling API 

Figure 1 depicts an UML diagram of the MitRis modeling 

layer. DEVS models can either be of Atomic or Coupled type 

and implements the modeling principle through the 

Modeling API via DevsAtomic and DevsCoupled interfaces. 

As Figure 1 shows, atomic and coupled models are, in turn, 

Components. Each component has a set of input and output 

ports, defined in InPort and OutPort classes, respectively, 

that extend a base class, PortBase, which implements a 

generic Port interface. According to the DEVS formalism, a 

model is composed by a set of components with ports and 

connections between these ports. The Coupling class has 

been implemented to define these connections. Finally, every 

single piece in a MitRis DEVS model is considered an entity, 

inherits from EntityBase and implements the Entity interface. 

Simulation API 

Figure 2 shows the UML diagram of the MitRis simulation 

layer. In this case, the simulation principle of MitRis is 

twofold: first, corresponding to an atomic or a coupled 

model, there is corresponding DEVS simulator and a DEVS 

coordinator interface, and second, MitRis completely 

encapsulates the complexities related to the simulation clock 

(virtual time or real time) or the parallelization level 

(sequential, parallel or distributed). To this end, MitRis 

implements a very minimalist simulator that implements a 

DEVS simulation interface: DevsSimulator. An abstract 

class called AbstractSimulator implements the basic 

functionality of a DEVS simulator. The Simulator class 

execute the time advance, output and transition functions of 

a DEVS atomic model. After that, specialized coordinator 

classes implementing the DevsCoordinator interface, 

perform a DEVS simulation for different requirements, such 

as fast-mode, centralized, parallelized, real-time, etc.  



 

Figure 1. General architecture of the MitRis modeling layer. 

 

The Coordinator implements a sequential simulation 

algorithm (also known as DEVS simulation protocol) using 

virtual time. CoordinatorParallel implements a parallel 

DEVS simulation using virtual time and a given number of 

threads. The RTCentralCoordinator performs the same 

operations as CoordinatorParallel but uses real-time. Our 

future work includes the implementation of a 

CoordinatorDistributed class for the execution of distributed 

simulations, and RTCoordinator and RTSimulator classes for 

the execution of real time reactive DEVS simulations [1] (see 

Chapter 8). Finally, the CoordinatorProfile class implements 

a proxy pattern to extract a set of metrics from any of the 

specialized coordinators. 

Features 

Port-identity and Port-extensibility 

MitRis 1.0 provides a set of classes to define DEVS ports. 

Every Port is an Entity, as described above and can be either 



an input or an output port. MitRis DEVS input or output port 

implements the Port interface (see Figure 1). Each port is 

also associated with a specific Entity i.e. a message data-type 

and has a fullyQualifiedName (per Eclipse Plugin 

development environment [PDE] parlance). From its 

fullyQualifiedName, a port can be traced back to its 

containing component (atomic or coupled) in the model 

hierarchy. Port interface allows the software engineer the 

rapid implementation of different communication 

alternatives between models, using for example, Java 

Message Services (JMS), Apache Camel, Websphere, etc. 

Flattening 

Flattening is a mechanism that applies the Closure under 

Coupling DEVS principle which states that every coupled 

model can be replaced by an atomic model. Since each 

coupled model behaves exactly as the model that it contains, 

a DEVS engine can replace all the coupled models by their 

corresponding sub-models to the irreducible atomic models. 

Flattening a coupled model to the basic atomic components 

reduces the depth of the entire model, thereby, improving 

performance as the messages need not travel up the coupled-

coordinator hierarchy. Thus, the corresponding DEVS 

coordinators are no longer needed. As can be seen in Figure 

1, the DevsCoupled interface declares this simplification 

mechanism in the flatten member function, which is 

implemented in the Coupled class. By default, all the MitRis 

coordinators flatten the simulation model just before the 

simulation is initialized. However, this is an optional 

parameter in the Coordinator constructor method. 

Parallelism 

It is well known that the Java Development Kit (JDK) 

incorporates many facilities to develop parallel and 

distributed programs: Threads, Remote Method Invocation 

(RMI) or Sockets are some examples [2]. In the current 

version of MitRis, parallelism is included using Executor 

services based on pool of threads. These threads concurrently 

execute all the output functions in parallel and all the 

transition functions in parallel. To this end, we group all the 

output functions in a list called lambdaTasks in the 

CoordinatorParallel class (see Figure 2), and all the 

transition functions in the deltfcnTasks list of the same class. 

It is worthwhile to mention that the parallelism is 

implemented in the simulation layer. Thus, every MitRis 

DEVS model can be simulated sequentially or in parallel by 

just changing the coordinator. Finally, distributed 

simulations are included as part of our immediate future 

work, using DEVS/SOA as the base of our design [3]. 

 

 

Figure 2. General architecture of the MitRis simulation layer. 



Engine Footprint 

The performance of a given DEVS model mainly depends on 

the simulator used. This, translated to MitRis, implies that 

the performance of a given model depends on the coordinator 

selected to simulate that model. In MitRis, we have 

implemented a DEVS profiler using two classes, namely, 

CoordinatorProfile and SimulatorProfile. Applying a proxy 

pattern, these classes are able to collect different metrics of 

the coordinator selected to perform the simulation. These 

metrics measure various statistics for DevsSimulator, 

DevsCoordinator, and by extension, DevsAtomic and 

DevsCoupled member functions, as well as their 

accumulated execution time. In the UML diagram depicted 

in Figure 2, all the parameters measured are contained in both 

CoordinatorProfile and SimulatorProfile classes. Java 

VisualVM [4] is utilized to measure simulations’ 

performance in terms of percentage of CPU or memory used, 

time consumed by a given member function, detecting 

hotspots, etc. 

 

MITRIS DEVSML ECLIPSE DEVELOPMENT STUDIO  

The MitRis 1.0 DEVS engine is available for use with any 

JVM-based languages, such as Groovy, Scala, Xtend, etc. A 

demonstrative example is available online [6] where various  

languages can be used at the Modeling layer leveraging the 

modeling API interface (Figure 3). MitRis 1.0 engine is 

made available as the platform-specific-model (PSM) of a 

more abstract DEVS Modeling Language (DEVSML), based 

on XML-Based Finite Deterministic DEVS [7] and language 

introduced in [8] and later developed in [1,9]. The DEVSML 

Stack shown in Figure 4 describes the layered architecture of 

platform-independent nature of DEVSML [8,10]. The idea 

of including other domain-specific languages (DSLs) and the 

following transformations at the top layer of the stack brings 

in model-driven engineering (MDE) concepts with the 

DEVS M&S framework. Three transformations are defined 

that allows various DSLs to be transformed into DEVSML 

or directly to DEVS: 

1. Model-to-Model (M2M) 

2. Model-to-DEVSML (M2DEVSML) 

3. Model-to-DEVS (M2DEVS) 

DEVSML and DEVS Unified Process (DUNIP) are focused 

towards interoperability at the application level, specifically, 

at the modeling level and hiding the simulator engine as a 

whole, making it transparent [11]. Our vision and solution 

development is along the lines of Model-as-a-Service 

(MaaS), Simulation-as-a-Service (SimaaS), DEVS-as-a-

Service (DevaaS) and ultimately, System-as-a-Service 

(SysaaS). We would like the user or designer to code the 

behavior in any of the programming languages, ideally a 

DSL of his choice and let the DEVSML stack develop the 

transformations (Figure 3). The DEVS/SOA architecture is 

responsible for taking a DSL or a coupled DEVSML model 

with the associated transformations and delivering us with an 

executable model that can be simulated on any parallel-

distributed netcentric DEVS platform. The realization of 

netcentric DEVS has the following pieces: 

1. DEVSML Stack: the central concept 

2. Distributed simulation using SOA 

3. Netcentric DEVS VM (both client and server)  

4. Design, development and deployment of netcentric 

systems with DEVS  

The user can integrate his model from models stored in any 

Web/Cloud repository, whether it contained public models 

of legacy systems or proprietary standardized models. This 

will prove beneficial for both the industry as well as to the 

user, thereby truly realizing the model-driven paradigm. 

MS4Me [28] and CD++ [20] are already having such 

repositories..  

 

Figure 3. Integrating theory of modeling and simulation 

framework with MDE 

 

 

Figure 4. DEVSML Stack showing DEVS modeling language 

and various transformations 

 

We introduce a DEVSML Modeling Studio in this article 

that demonstrates MDE principles and core ideas in the 

DEVSML paradigm  

Features 

The DEVSML Studio provides the following features: 

1. It is based on Eclipse PDE with Xtext [12] EBNF 

grammar underneath as DEVSML metamodel 

2. It provides textual templates for Atomic and Coupled 

DEVSML models, rich with code-completion and 

DEVS model validation. 



3. It provides a visualization plugin for rapid visual 

inspection of both the atomic and coupled DEVS. The 

visualization plugin is based on open-source 

PlantUML plugin [13]. 

4. It can be configured with different DEVS-engines 

using DEVSML configuration settings. The default is 

MitRis M&S engine. The other available engine is 

DEVSJAVA [14].  

5. It can be configured with various platform-specific 

implementations. Currently only JVM-based 

languages are supported and efforts are underway to 

generate C++ (adevs) and Python (PyDEVS). 

6. It provides compiled JAVA code for ready execution 

of DEVSML 

7. It integrates EclEmma Code Coverage plugin [14] for 

JVM executable platform-specific code. 

8. It provides explicit port-interfaces for rapid 

prototyping to message-based netcentric systems 

using Oracle JMS, Apache Camel, IBM Websphere 

MQ and Event-driven Architectures using TIBCO, 

Esper, etc.  

9. Code-snippets are provided as String and when a 

model runtime is configured for a DEVSML project, 

the platform-specific model shows errors in the 

generated platform-specific code. 

10. It shows the hierarchical structure of a DEVS file in 

the Eclipse Outline View. 

Architecture 

The architecture of DEVSML Studio is based on 

metamodeling concepts and is shown in Figure 5.  

 

 

Figure 5. Metamodeling and DEVSML Studio 

DEVSML Studio inherits from the Eclipse Workbench 

Plugin architecture and integrates various views (PlantUML, 

EclEmma) into a DEVSML Perspective. The execution of 

DEVSML Studio will be demonstrated through a moderately 

complex example in the sections ahead. The Studio is 

available for download at [15]. The MitRis M&S Engine is 

available both as .jar and as an Eclipse plugin. The DEVSML 

Studio is available as an installable Eclipse feature. 

 

CASE STUDY: TRAPEZOIDAL PULSE SHAPER 

In recent years, the performance of nuclear spectroscopy 

systems has been considerably improved by replacing the 

conventional analogue electronics modules by modern 

digital systems. The detector-preamplifier configuration of a 

common spectroscopy system produces a pulse with an 

initial short rise time followed by a long exponential tail. 

Using a trapezoidal digital shaper, the exponential signal is 

transformed into a trapezoid by series of differentiators and 

integrators, and the pulse energy is measured as the 

difference between the fat top of the trapezoid and its base. 

The design of these trapezoidal shapers requires the 

definition of a set of parameters based on the characteristic 

of the input signal (timing, noise, etc.). Hence, M&S is 

essential to analyze these parameters. In the following, we 

model a common spectroscopy system using MitRis 

DEVSML Studio and analyze its behavior. 

Model description 

A recursive algorithm that converts a digitized exponential 

pulse 𝑣(𝑛) into a symmetrical trapezoidal pulse 𝑠(𝑛) is given 

by equations (1) to (5), borrowed from [5]: 

𝑑𝑘(𝑛)  =  𝑣(𝑛)  −  𝑣(𝑛 − 𝑘) (1) 

𝑑𝑘,𝑙(𝑛) =  𝑑𝑘(𝑛) − 𝑑𝑘(𝑛 − 𝑙) (2) 

𝑝(𝑛) = 𝑝(𝑛 − 1) + 𝑚2 ⋅ 𝑑𝑘,𝑙(𝑛), 𝑛 ≥ 0 (3) 

𝑟(𝑛) = 𝑝(𝑛) + 𝑚1 ⋅  𝑑𝑘,𝑙(𝑛) (4) 

𝑠(𝑛) = 𝑠(𝑛 − 1) +  𝑟(𝑛), 𝑛 ≥ 0 (5) 

In the equations above, 𝑣(𝑛), 𝑝(𝑛) and 𝑠(𝑛) are equal to zero 

for 𝑛 < 0. Parameters 𝑚1 and 𝑚2 only depend on the decay 

time constant of the exponential pulse, 𝜏, and the sampling 

period, 𝑇𝑐𝑙𝑘 , given by: 

𝑚1

𝑚2

= (𝑒
𝑇𝑐𝑙𝑘

𝜏 − 1)
−1

 
(6) 

According to [5], the duration of both the rising and falling 

edge of the trapezoidal shape is defined by min(𝑘, 𝑙), 

whereas the duration of the flat part of the trapezoid is given 

by |𝑘 − 𝑙|. Parameter 𝑚2 determines the digital gain of the 

shaper. 

Figure 6 shows a block diagram of the digital trapezoidal 

shaper. DELAY{1,2} are the delay pipelines, {1,2,3} are 

adders/subtractors, ACC{1,2} are accumulators and X{1,2} are 

multipliers. We can also find coupled models like DS{1,2}, 

which is a Delay-Subtractor unit or HPD, which is a High-

Pass filter Deconvolver. In the following, we describe the 

implementation of this trapezoidal shaper using MitRis 

DEVSML Studio. 

Model code 

In order to deploy a direct mapping between Figure 6 and the 

corresponding MitRis DEVSML model, the following 

classes are designed: 

Atomic models: 

 AdderSubtractor: An adder/subtractor combinational 

model, to implement {1,2,3}. 



 

Figure 6. Diagram of the digital trapezoidal shaper. The elements are: DELAYn - a delay pipeline, n – an adder/subtracter, ACCn 

– an accumulator, Xn – a multiplier. DSn is a delay-subtractor unit, HPD is a high-pass filter deconvolver. 

 

 Clock: It is the digital clock system. It sends a clock 

square signal to all the sequential components. All the 

sequential components react to a rising clock edge. 

 Constant: A combinational atomic model designed to 

send a given value (like m1 or m2 in Figure 6) just at 

the beginning of the simulation. 

 IdealExpInput: This class implements the sequential 

exponential input as a discrete function where each 

value is triggered by a clock signal. 

 Multiplier: A multiplier combinational model to 

implement X{1,2}. 

 Register: This is a register sequential atomic model, 

needed to implement both accumulators. 

 ShiftRegister: Implements a sequential shift register. 

This component is used to simulate the two delay 

pipelines DELAY{1,2}. 

Coupled models: 

 Accumulator: A coupled model that contains an 

AdderSubstractor atomic model and a Register atomic 

model. 

 DelaySubtractor (DS): The DS coupled model in 

Figure 6 contains a ShiftRegister atomic model and an 

AdderSubtractor atomic model. 

 HighPassDeconvolver (HPD): The HPD coupled 

model in Figure 6. This model includes two Constant, 

two Multiplier, one Accumulator and one 

AdderSubtractor atomic models. 

 Trapezoidal: This is the trapezoidal digital shaper, 

including DS1, DS2, HPD and the final Accumulator in 

Figure 6. 

 TrapezoidalTest: This is the coupled model that runs 

the experiment. It consists of Clock, IdealExpInput and 

Trapezoidal components. 

It can be easily seen that it is hierarchical model 

(TrapezoidalTest) with depth of 4. A graphical 

representation in DEVSML Editor for some of the atomic 

models is shown in Figure 7 and coupled model is shown in 

Figure 8. In the graphical atomic model, external transitions 

are shown by red, internal transition are shown by green, an 

external input is shown as a label prefixed by “?” on the red 

arrow and the output is shown as label prefixed by “^”. In the 

coupled model, each port displays the fullyQualifiedName 

and its data-type enclosed within “<< >>”. The external input 

couplings (EIC) are shown in green, the internal couplings 

(IC) in blue and the external output couplings are shown in 

red. The flows are shown by directed arrows. In order to run 

the simulation, TrapezoidalTest is executed by a specific 

coordinator.  

Model Execution 

A set of 100,000 synthetic particle impacts (also called 

events), which represents up to 4 hours of particle detection 

in a real satellite, is generated using the following 

parameters: 

 Tclk = 2×10-5 s 

 Amplitude of the exponential input is randomly 

generated in the interval [70,74] 

  is also randomly generated in the rage of [9,11] 

clock ticks 

 {k,l,m1,m2}={8,64,19,2} 

Figure 9 shows the detection of one of these 100,000 events, 

with amplitude equal to 72 and  equal to 10 clock ticks. The 

left plot shows the input event and the right plot shows the 

trapezoid generated by the digital shaper. As can be seen, the 

set of parameters selected are fine to detect the range of 

particle impacts generated. 

To perform this experiment, we have used an Intel(R) 

Core(TM) i7-3770 CPU @ 3.40GHz with 16 GB RAM 

memory, with a GNU/Linux Debian 7 Operating System. 

To obtain the characteristic of our DEVS coupled model, we 

simulate the model using the CoordinatorProfile class 

depicted in Figure 2. As a result, the number of calls to the 

transition or output functions was equal to 6.66×107, whereas 

the most time consuming function was the Accumulator
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+
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DELAY2
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Figure 7. MitRis DEVSML Studio showing auto-generated DEVS Atomic visual and hierarchical representation 

 

 

Figure 8. Auto-generated Coupled model representation with port data-types. Green arrows represent External Input Coupling 

(EIC), blue arrows represent Internal Coupling (IC), and red arrows represent External Output Coupling (EOC) 

 



 

 

Figure 9. Exponential input (left) and trapezoidal output (right) generated by the MitRis shaper model for one single event. 

 

transition function of the High Pass Deconvolver coupled 

model with a total of 75.56 s. The atomic model with the 

lowest performance was the adder of the accumulator 1 

(ACC1 in Figure 6), with an execution time equal to 3.44 s 

for the transition function (including the external, internal 

and confluent transitions). 

Figure 10 shows the performance comparison of three 

coordinators implemented in MitRis 1.0. CoordinatorProfile 

is not included in the comparison because of the overhead 

(up to 457 seconds of wall clock time).  

 

 

Figure 10. Performance comparison of Coordinators 

 

Per the case study, we have, in total, 14 atomic models in 

TrapezoidalTest. The Sequential Coordinator takes the 

maximum amount of time with 151.54 seconds. After 

flattening the model, the same coordinator improves its 

performance to 93.97 seconds i.e. a speedup of 1.61. For the 

parallelized version, the simulation with the flattened model 

is run on 8 processors and the parallelized Coordinator 

execution is varied from using 1 thread to 10 threads. With a 

single thread, the execution time taken is 96.56 seconds. A 

little jump in execution time (From 93.97 secs) may be 

attributed to the thread management in JVM. When the 

number of threads is increased to 8, the execution time is 

reduced to 34 seconds, i.e. a total speedup of 4.45 over 

sequential (without flattened) and 2.76 with flattened. As the 

threads are increased (from 8 to 10) beyond the number of 

available cores, more time is spent in managing the thread 

execution resulting in increased execution time (Figure 10). 

 

CONCLUSIONS 

DEVS formalism has been in existence for around 40 years 

and many implementations of the formalism exist in various 

programming languages. We surveyed the state of the art in 

DEVS tools and found that very few use MDE and 

metamodeling approaches to deliver a workbench for DEVS 

modeling. In almost all the approaches, the user is forced to 

program using a computer language and is tied to the 

execution platform. We explored the DEVS DSL called 

DEVSML in more detail and implemented the DEVSML 

metamodel in Eclipse PDE. We introduced MitRis 1.0 

containing both the DEVS M&S engine and an Eclipse 

editor. The engine is based on latest JVM features and 

implements advanced executor framework for a parallel and 

distributed execution on JVM. The engine also introduces a 

new port-identity and –extensibility framework for 

netcentric execution, flattening capability for the coupled 

model and a profiler for inspecting the performance of  any 

particular model during a simulation execution. The MitRis 

DEVSML Eclipse Studio features advanced model checking, 

validation, graphical inspection of both atomic and coupled 

models, and advanced code-generation to multiple DEVS 

platforms and languages (Java, Python, Groovy, etc.). We 

also demonstrated the execution of both the engine and the 

editor using a moderately complex example of digital 

shapers utilized in nuclear spectroscopy establishing that 

both the engine and editor are robust enough, and the code-

gen using MDE principles delivers valid simulation results. 

Finally, we examined the performance of the engine for 

Sequential and Parallel execution with multiple thread and 

achieved a maximum speedup of 4.45 for a parallelized 

flattened model with 100,000 events. 

We would like to integrate various other DSLs as shown in 

Figure 3 in our next release of MitRis and as described in [1].  
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